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Abstract

Private messaging systems that use a bulletin board, like privacy-preserving blockchains, have
been a popular topic during the last couple of years. In these systems, typically a private message
is posted on the board for a recipient and the privacy requirement is that no one can determine
the sender and the recipient of the message. Until recently, the efficiency of these recipients was
not considered, and the party had to perform a naive scan of the board to retrieve their messages.

More recently, works like Fuzzy Message Detection (FMD), Private Signaling (PS), and Obliv-
ious Message Retrieval (OMR) have studied the problem of protecting recipient privacy by out-
sourcing the message retrieval process to an untrusted server. However, FMD only provides
limited privacy guarantees, and PS and OMR greatly lack scalability.

In this work, we present a new construction for private signaling which is both asymptotically
superior and concretely orders of magnitude faster than all prior works while providing full privacy.
Our constructions make use of a trusted execution environment (TEE) and an Oblivious RAM
to improve the computation complexity of the server. We also improve the privacy guarantees by
keeping the recipient hidden even during the retrieval of signals from the server. Our proof-of-
concept open-source implementation shows that for a server serving a hundred thousand recipients
and ten million messages, it only takes < 6 milliseconds to process a sent message, and < 200
milliseconds to process a retrieval (of 100 signals) request from a recipient.

1 Introduction

The protection of message contents in messaging applications is well-studied, and end-to-end encryp-
tion is nowadays widely practiced. Protecting the metadata, such as sender and recipient identity, is
essential in anonymous message delivery systems [1, 2, 3, 4, 5], especially when messages are posted on
a publicly-visible blockchain or bulletin board. This model of anonymous communication using a bul-
letin board is not new, in fact, stealth transactions [6] and privacy-preserving transactions[7, 8, 9, 10]
both work in the same model. Anonymous messaging services such as Riposte[2], also deploy a bulletin
board for parties to post their messages.

However, despite the importance, there is room for improvement in recipient efficiency. With
respect to private blockchain transactions, it seems that there is a tradeoff between recipient privacy
and efficiency. Namely, if all messages are encrypted on the bulletin board, the only means for a
recipient to find their messages would be to try and decrypt each ciphertext on the board. An
approach that is popular with stealth addresses is to outsource the search for transactions to a server
that attempts to decrypt each transaction with a different viewing key and notifies the recipient when
a transaction is posted on the chain for them. In this case, the recipient naturally loses all privacy
to the server. Thus there is some trade-off between the efficiency and privacy of the receiver in these
systems.
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Recently, there have been efforts to improve the privacy of the recipients while maintaining the
efficiency of recipients by using an untrusted server. Fuzzy Message Detection [5] by Beck et al.
was the first work to address this. The authors propose a decoy-based approach: the server detects
messages including both the real messages addressed to the recipient as well as some randomly chosen
false positives. The number of false positives can be adjusted depending on the privacy requirements
of the recipient. For full privacy, the server would detect all messages on the board to be pertinent
to the recipient. This would require the recipient to decrypt all messages, thereby not improving
the efficiency of the recipient. On the other hand, the recipient could choose to have negligible false
positives, but in this setting, the recipient has (almost) zero privacy since the server knows exactly
which messages correspond to the recipient. Therefore, in their work, there is an implicit trade-off
between efficiency and privacy that a recipient can hope to achieve.

Two follow-up works by Madathil et al[11] and Liu and Tromer [12] improved this to entirely hide
the set of pertinent messages (i.e., the message addressed to the retrieving recipient). Madathil et.
al. [11] denote the problem as private signaling where a sender sends a signal to a recipient that a
message exists on the board through an untrusted server. They propose two solutions, one based on
trusted hardware and one based on two non-colluding servers running a garbled-circuit-based protocol.
We will describe this construction in more detail in Section 2. Liu and Tromer [12] independently
solve a similar problem and called it oblivious message retrieval, and propose a solution where a
server is able to obliviously detect and retrieve messages for recipients based on leveled homomorphic
encryption. While both works have made great progress in proposing schemes providing full privacy,
while preserving efficiency for the recipient, they still lack scalability.

In both of the works for a board with N messages, a server serving M recipients needs to spend
Ω(N ·M) work to distribute the messages in a privacy-preserving way. Thus, when N and M are
huge, one server can hardly handle the computation cost.

The focus of this work is on the following natural question:

Can we have a scheme that is fully private and the runtime of the server scales sublinear
in M and (almost) linear in N?

1.1 Our contribution

In this paper, we firmly answer yes to this question. We propose a scheme that is fully private and
the server runtime is only Õ(N) 1 to process N sent messages and Õ(Mℓ̄) 2 to perform M retrievals,
where ℓ̄ is the number of signals retrieved at a time, which are asymptotically almost optimal except
for some logarithmic factors (not even poly-log), and concretely, orders of magnitude faster than the
prior works.
• Scalable PS construction. We propose a private signaling construction such that for N signals
and M recipients, a server only needs to do O(N(log(M) + log(N))) work to find the signals
addressed to each recipient with full privacy guarantee. Concretely, with practical parameters (e.g.,
10 million messages and 100 thousand recipients), the total cost is only < 6 milliseconds to process
a sent signal and < 200 milliseconds to do a retrieval for a recipient (for 100 per retrieval). These
are orders of magnitude faster than prior works (the fastest prior work [11] requires ∼5 seconds to
process a sent signal with 100 thousand recipients, each having at most 100 signals).
Moreover, our protocol achieves a stronger correctness functionality compared to prior schemes.
Schemes in [11] suffer from a simple DoS attack we describe in Section 2. The scheme in [12] output
overflow when there are more than ℓ̄ messages for a recipient (where ℓ̄ is some upper bound on
the number of messages addressed to a recipient, provided by the recipient when doing retrieval
3). However, our scheme does not have any of the issues and thus provides a stronger correctness
guarantee.

1O(N · (log(M) + log(N)))
2O(M(ℓ̄ log(N) + log(M)))
3When this happens, the recipient needs to either download the board themselves or re-outsource the job with a

larger ℓ̄. Either way, it introduces a large overhead.
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• Strengthened Private Signaling problem. We present a stronger private signaling functionality
than the one introduced in [11], where the server cannot link two retrieval requests. This property is
denoted as detection key unlinkability in [12]. We define this functionality in the UC framework[13]
and show that our protocol UC-realizes this functionality.

• Open-sourced implementation. We implement and evaluate our protocol, and our implementa-
tion is open-sourced at [14]. We observed that our prototype is significantly more performant and
scalable than all prior work.

2 Technical Overview

In this section, we give an overview of the main technique in our construction of an efficient private
signaling protocol.

Original protocol review. We start by reviewing the recent TEE-based protocol of Madathil et
al[11].

In their protocol, the TEE stores a mapping of parties and their pertinent signals (i.e., the signals
addressed to the corresponding party). Since this mapping is stored inside the TEE, all information
about the signals is private. In more detail, their construction works as follows: The TEE stores a
table T of size M × ℓ̄, where M is the total number of participants and ℓ̄ is the total number of signals
the TEE can store for a recipient.

To send a signal, a sender computes an encryption of the recipient’s identity and the location on
the board that the sender wants to communicate to the recipient. The encryption is done using the
public key of the TEE. This ciphertext constitutes the signal and is sent to the server running the
TEE. The server invokes the TEE with this ciphertext as input, and TEE decrypts the ciphertext
and appends the signal to the recipient’s row in the table T .

At any point in time, a party can choose to retrieve its locations by sending an authenticated
message to the server. The server verifies the signature and inputs this authenticated retrieval request
to the TEE. Upon verification, TEE encrypts all the locations in the corresponding row of the recipient
under their public key and outputs it to the server, which then forwards it to the recipient. Upon
every retrieval, the TEE flushes the row of the retrieving recipient so they can receive the next set
of signals. Security is guaranteed since all the signals are stored privately inside the TEE, and upon
retrieval, they are all encrypted under the public key of the recipient. Therefore no entity can link
either the senders or the locations of messages on the blockchain to a recipient.

In addition, to mitigate certain side-channel attacks, [11] proposes to update the entire table after
each signal arrives. Thus, for each signal sent to TEE, the TEE runtime is O(Mℓ̄). TEE local storage
is also O(Mℓ̄). Both of these limit the efficiency and scalability of the original protocol.

An inherent issue with [11]. Despite this being a secure solution, the work of [11] has an inherent
issue regarding the correctness guarantee. Recall that the constructions presented in [11] only allows
for storage of up to ℓ̄ signals per recipient. Now, what would happen if a particular recipient were to
receive more than ℓ̄ signals before they retrieve their signals from the TEE?

In an earlier version of the same work by Madathil et. al. [15]: the authors suggest that the older
signals would be overwritten upon receipt of new signals that have not been retrieved. In the newer
version [11], the authors do not deal with this directly, but assume that the recipient retrieves the
signals frequently enough, such that there are at most ℓ̄ signals between two retrievals.

Both of these are clearly unsuitable for cases when a recipient receives more than ℓ̄ messages in a
short period of time. Note that one could set ℓ̄ to be a very large number, but the size of ℓ̄ will be
constrained by the runtime and the storage space of the TEE since they are both linear in ℓ̄.

Moreover, their designs could actually lead to a DoS attack where an adversary simply sends
ℓ̄ dummy signals to the recipient via the TEE. This would ensure that an honest recipient cannot
retrieve its actual signals: the dummy signals would overwrite all the honest ones.

Our approach in a nutshell. In this work we show how we can improve the scalability of the
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TEE-based private signaling protocol of [11], and ensure that the above-mentioned issues with ℓ̄ are
mitigated.

We present a construction that maintains the signals pertinent to a recipient in the form of a linked
list. Moreover, these linked lists are not stored inside the TEE but with the server that runs the TEE.
Since there are no storage constraints on the server, these linked lists can be of arbitrary length. To
prevent the server from learning which signals are retrieved, the signals are stored in an Oblivious
RAM[16, 17, 18]. Moreover, each retrieval has a fixed number of signals that can be retrieved, and
the recipient’s identity is hidden during retrieval. Thus, the server does not know how many signals
are received by a single recipient.

We describe below our ideas of changing data structure in Section 2.1, an overview of the ORAM-
based construction in Section 2.2, and an overview of our new retrieval mechanism in Section 2.3.

2.1 Changing data structure to a linked list

In this subsection, we will first present how to mitigate the issue of the server’s ability to store only
ℓ̄ number of signals per recipient. These changes will have certain privacy and efficiency drawbacks,
that we fix in the next subsection.

Recall that in the original construction of [11], the authors suggested a solution where the TEE
stores the table of signals locally and updates the entire table for each incoming signal. This implies
a computation complexity of O(M × ℓ̄) for the TEE, and a local storage of size O(M × ℓ̄). 4

We take a completely different approach as mentioned above: a linked list is used to store the
list of signals pertinent to a recipient. Every incoming signal is stored and includes a pointer to the
previous pertinent signal for the same recipient. This way, the TEE only needs to keep track of the
latest signal pertinent to each recipient. The previous signals are retrieved by using the pointer to
the prior relevant signal in the linked list.

In more detail, for each signal TEE receives, TEE stores an encrypted pointer in the server. Each
pointer points to the previous pertinent signal. Upon processing a new signal, the TEE updates the
recipient’s last signal and adds an encryption of the pointer to the previous pertinent signal. The TEE
also does dummy updates to the last signal of all the other parties as well to prevent any leakage.
Thus per each signal, the TEE only needs to perform O(M) computation as compared to O(M × ℓ̄)
with the original construction of Madathil et al [11].

To retrieve their signals, a receiver sends an authenticated request to the TEE. The TEE looks up
the last signal pertinent to this receiver, and also the pointer to the previous signal pertinent to this
receiver. The TEE requests the ciphertext corresponding to the previous signal from the server and
determines the pointer to the previous one. The TEE requests these ciphertexts until the pointer is
a default value (e.g. -1). The TEE then encrypts these corresponding signals under the public key of
the recipient and outputs this list of ciphertexts to the recipient.

We present an overview of this technique in Figure 1.

2.2 ORAMs to prevent information leakage

A careful reader might have observed that the approach outlined above is flawed. During the retrieval
of signals, the server executing TEE sees exactly which ciphertexts are requested by the TEE. This
allows the server to learn which of the signals were pertinent to the recipient. To prevent this leakage
we must hide the access patterns of the TEE. To this end, we use an Oblivious RAM to store all
the signals as well as the pointers to the previously pertinent signals. An Oblivious RAM (ORAM)
ensures that the server cannot know which locations are accessed by the TEE and which locations
were written by the TEE. This ensures that the server does not know which signals are pertinent to
a user.

4In the older version of [11], i.e., [15], the authors suggest storing the table in the server and re-encrypt it after every
incoming signal. This also results in a computation complexity of O(M × ℓ̄) for the TEE, with a much larger hidden
constant, while maintaining the local storage to be O(1).
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Figure 1: Overview: 1 Party A registers with his public key pkA with the TEE. 2 A sender writes a message

m at position 10 on the board for party A. 3 The sender then sends a signal (Enc(epk, [A, 10])) to the server.

4 The TEE maintains a linked list of encrypted signals and a table with the latest signals of each recipient
on the server. The TEE then appends an encryption of 10 and adds a link to party A’s previous signal which
is an encryption of 7. 5 The party A requests its signals from the TEE. 6 The TEE retrieves all the signals
by iterating through the linked list (via ORAM) which is 10, 7, and 5, and returns them encrypted under A’s
public key.

Upon receiving a signal, instead of directly writing the encrypted pointer, the TEE writes it with
ORAM access. We note that the total cost to process a signal is just O(M + log(N)) as opposed to
the previous O(M × ℓ̄), as each ORAM operation takes O(log(N)) [18].

Getting rid of the linear dependency on M . Recall that in the approach described above the
server maintains a table of size M that stores the last pertinent signal to each recipient. The TEE
would need to do a dummy update to the entire table for every incoming new signal to ensure that the
server does not learn the recipient of the signal. We, therefore, propose to use another ORAM to store
the last pertinent signal for each recipient. The TEE therefore only needs to access the corresponding
ciphertext from the ORAM, update it, and write back to the ORAM. This ensures that the runtime
cost per signal sending simply becomes O(log(M) + log(N)) and the local storage remains O(1) [18].

2.3 Private retrieval

As described earlier, to retrieve their signals, a recipient sends a signed request message. This signed
message includes an incrementing counter value to prevent replay attacks. If the signature is correct,
TEE reads all the pertinent signals from ORAM and sends them back encrypted under the recipient’s
public key (using a key-private PKE scheme).

Hiding the number of pertinent signals. Note that the above-described solution leaks the number
of pertinent signals to a particular recipient. While we believe whether this information needs to be
hidden is application-dependent, for achieving the strongest functionality, we still prevent the leakage
using the following modification to our scheme. Add a bound ℓ̄ that each recipient retrieves each
time, and if a recipient R has more than ℓ̄ signals stored using the linked list, simply stop at the ℓ̄-th
latest signal and send these ℓ̄ signals back to the recipient. Then, TEE updates the ORAM database
to store the latest signal that is not yet retrieved (such that TEE can resume at this place next time
to avoid repetitive work). If the recipient has less than ℓ̄ signal, the TEE pads the response to have
ℓ̄ ciphertexts in total. In the former case where there are more than ℓ̄ ciphertexts, the TEE indicates
that there are more signals by sending an encryption of −2 along with the encryptions of the pertinent
signals, and otherwise sends −1. If there are still more signals left, the recipient simply requests again.
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Retrieval privacy. In the discussion, so far we have not shown how the privacy of the recipient is
maintained. For example, the server will always learn when a recipient is attempting to retrieve its
signals. This could also be an issue when a recipient has more than ℓ̄ signals. Using some timing
information, if a recipient requests to retrieve signals within a short interval, the server could infer
that the recipient has greater than ℓ̄ pertinent signals.

An easy way to resolve this issue is to have the recipient use the TEE’s public key to encrypt the
signed request. By CPA security, the recipient’s identity remains private 5.

To verify the signature, we could have all the verification keys inside the TEE, but since this leads
to O(M) overhead in local storage, we store these verification keys in yet another ORAM on the
server. The TEE can then privately retrieve the verification key corresponding to the recipient and
therefore verify its identity.

By putting everything together, we have a privacy-preserving signal retrieval method, with a cost
of O(ℓ̄ log(N) + log(M)) per retrieval.

3 Related work

Private Signaling. Private Signaling (PS) [15] tries to address the problem of recipient privacy
when retrieving from a privacy-preserving message system. They present their definition of private
signaling in the UC framework and present an ideal functionality FprivSignal, that captures the property
that all the messages addressed to a recipient can be retrieved and no one except for the sender and
the recipient learns the recipient of a message.

The paper provides two solutions, one based on a server with trusted hardware and one based
on the garbled circuit with two servers. A later version [11] of the paper modified the construction
based on trusted hardware, where the table of recipients mapped to their messages is stored inside the
TEE. Both versions of the trusted-hardware-based solution lack some scalability, in different ways,
as we discussed earlier in Section 2. Moreover, the constructions in [15, 11] also only achieve a
slightly weaker ideal functionality (that some old messages may not be received by the recipient
in some circumstances). In comparison, in this work, all messages can be retrieved by a recipient.
Furthermore, we strengthen the ideal functionality (by capturing an unlinkability property, details in
Section 5), and show a construction that fully realizes the ideal functionality.

Fuzzy Message Detection. FMD [5] uses a decoy-based privacy notion for the recipients. In more
detail, they introduce some false positives together with the true positives, such that adversaries
cannot distinguish the false positives from the true positives. This is a weaker privacy guarantee
susceptible to attacks [21, 22]. Thus, FMD provides a tradeoff between privacy and efficiency for
the recipient , where-in for optimal efficiency, the recipient would decrypt only its signals but its full
anonymity to the server. On the other hand, to achieve full privacy the recipient needs to decrypt all
signals.

Oblivious Message Retrieval. Oblivious Message Retrieval (OMR) [12] also tries to address the
problem of recipient privacy when retrieving from a privacy-preserving message system. Similar to
PS, they achieve full privacy. The major OMR constructions are based on leveled homomorphic en-
cryptions (leveled-HE). The construction is later improved in [19] and achieves better server runtime
efficiency, but still lacks scalability. However, their concrete cost is still relatively high, and asymp-
totically, their cost is linear in both the total number of messages and the number of recipients doing
the retrieval with the server.

An extended group version Group OMR was recently introduced by [19]. We also briefly discuss
how we can extend to the group setting (i.e., a message may be addressed to more than one recipient).

ZLiTE. ZLiTE [20] also tries to deal with a similar problem. Their result is also based on a trusted

5Of course, there might be some network-level leakage. This can be resolved by, for example, using TOR. Since this
is beyond the scope of this paper, we assume this is already addressed appropriately.
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Server runtime
per send

Server runtime
per retrieve

Total server runtime
N sends + M retrievals

Recipient
Time

Security
Assumption

Environment
Assumption

TEE
Local
Storage

Privacy

PS1
[15]

O(ℓ̄M) O(ℓ̄) O(Nℓ̄M) O(ℓ̄) PKE
Trusted
Hardware

O(1) No unlinkability

PS1N
[11]

Nℓ̄M O(ℓ̄) O(Nℓ̄M) O(ℓ̄) PKE
Trusted
Hardware

O(ℓ̄M) No unlinkability

PS2
[15, 11]

O(Nℓ̄M) O(ℓ̄) O(Nℓ̄M) O(ℓ̄) GC
Two non-colluding
servers

N/A No unlinkability

OMR
[12, 19]

O(1) O(Npolylog(ℓ̄)) O((Npolylog(ℓ̄)M) O(ℓ̄3) LWE N/A N/A Full

ZLiTE
[20]

O(1) O(N log(ℓ̄)) O((N log(ℓ̄)M) O(ℓ̄) PKE TEE O(1) No unlinkability

Our work O(log(N) + log(M)) O(ℓ̄ log(N) + log(M)) O(N log(M) +Mℓ̄ log(N)) O(ℓ̄) PKE
Trusted
Hardware

O(1) Full

Table 1: Asymptotics and privacy comparisons with prior works. N is the total number of messages
on the board. M is the total number of recipients registered with a server. ℓ̄ is the number of messages
that can be retrieved by the recipient per retrieval. Server runtime is calculated for N messages with
M recipients, each having ℓ̄ as the upper bound of the number of messages. Unlinkability refers to
the sender unlinkability and recipient unlinkability defined in Section 5.

execution environment and oblivious RAM. However, their approach is to let the recipient send a
secret key (viewing key) to the TEE and then ask the TEE to scan the entire chain and send back
the signals addressed to the recipient. This results in a server time linear in M ·N . Furthermore, the
model is not entirely the same: all the works above and our work focus on having the servers as a
separate component from the blockchain or the other parts of the system, while for ZLiTE, the server
is also a full node in Zcash. In contrast, our model is more generic and therefore applicable in systems
other than cryptocurrency as well.

3.1 Comparison with prior works

In Table 1, we compare our construction asymptotically with other works. PS1 and PS2 are introduced
in [15], and PS1N is a modified version of PS1 introduced in [11]. The central idea remains the same,
but for PS1, the table is stored outside the TEE and the TEE re-encrypts the table each time when
it updates the table; while for PS1N, they store this table inside TEE, thus trading off local storage
for runtime. Since they provide trade-offs and both have some scalability issues in different ways, we
compare our scheme with both.

As shown in the table, our scheme gives the second-best asymptotic server runtime to process a
sent signal and a retrieve operation and is only a log factor worse than the best ones. In addition, for
the total runtime for N sends and M retrievals, our scheme is undoubtedly the best. Moreover, our
scheme can keep the TEE local storage to be constant. Thus, our scheme offers the best scalability
compared to all the other works.

Privacy-wise, our construction also offers the strongest privacy. In addition to that the adversary
does not learn which messages are addressed to a recipient, they also do not learn who is the sender
and who is the recipient (which is the unlinkability property, details in Section 5). Note that while
OMR also achieves full privacy, our privacy guarantee is defined by UC, and thus provides better
composability and extendability compared to OMR.

4 Preliminaries

Notation Let λ be the security parameter, poly(·) be a polynomial function, polylog(·) be poly-log
function, and let negl(·) be a negligible function. M denotes the total number of recipients and N
denotes the number of signals on the board. Õ(x) denotes x log(x) in our paper (as opposed to
xpolylog(x)).

Public board: Gledger. We assume that all parties have read and write access to a public board,
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which we abstract via a public ledger ideal functionality Gledger (Fig 12) functionality introduced in [23].
Gledger maintains a global variable called state and parties can read from and write to this global state
through the commands READ and SUBMIT.

Gatt[Σ, reg]

On initialize: (mpk,msk) := Σ.KeyGen(1λ), (epk, esk) := Enc.KeyGen(1λ), T = ∅
On receive* getpk() respond with (mpk, epk)

Enclave operations

//local interface – install an enclave.
On receive* install(idx,Prog) from some P ∈ reg:
• if P is honest, assert idx = sid
• generate nonce eid ∈ {0, 1}λ, store T [eid,P] := (idx,Prog, 0⃗), send eid to P.
//local interface – resume an enclave.
On receive* resume(eid, inp) from some P ∈ reg:
• let (idx,Prog,mem) := T (eid,P), abort if not found
• let (outp,mem) := Prog(inp,mem), update T [eid,P] := (idx,Prog,mem)
• let σ := Σ.Sigmsk(idx, eid,Prog, outp) and send (outp, σ) to P.

Figure 2: Global functionality modeling a TEE [24]

In this section, we present the crucial definitions and security guarantees of the primitives used in
our protocols.

Trusted Execution Environment: Gatt. A Trusted Execution Environment (TEE) is a hardware-
enforced primitive that protects the confidentiality and integrity of privacy-sensitive software and
data from untrusted software including OS/hypervisor, and other applications residing on the same
computer. In this paper, we model TEE as a single, globally-shared ideal functionality that is denoted
as Gatt following the definition of [24]. The Gatt functionality is depicted in Fig. 2. There are two
types of invocations to the TEE - installation, which allows installing a piece of software, and a stateful
resume, which allows executing it on a given input.

There are a few TEE solutions available commercially, hosted on public clouds such as AWS, Azure,
and GCP. AWS has AWS Nitro Enclaves [25], Azure offers Confidential Compute machines using Intel
SGX [26], and GCP provides AMD SEV [27] machines for trusted execution. We use Intel SGX to
implement our protocols – because of two reasons: (1) SGX has a minimal Trusted Computing Base
(TCB) compared to others, and (2) our construction uses ORAMs to store huge databases outside
the TEE and since SGX is an application-level enclave, it incurs lower memory-access overhead to
read/write from untrusted host memory. However, we note that any TEE adhering to Fig. 2 can be
used to realize our protocols.

Threat model of SGX. SGX enclaves are strongly isolated from the untrusted host and OS by en-
crypting all their memory using a Memory Encryption Engine (MEE). Apart from providing confiden-
tiality and integrity of computations inside the enclave; SGX also offers an authentication mechanism
via attestation using which a recipient can verify the correctness of the enclave. After verification,
recipients can encrypt their data towards the enclave using the key provided in the attestation report.

However, there are a few limitations for SGX. In particular, side-channel attacks and limited in-
enclave memory. SGX is not resilient against page table-based[28], cache-based[29], branch-prediction-

8



based[30], and physical[31] side channels. An adversary can launch these side channels either via a
compromised OS or host application and extract secrets using timing or control-flow analysis. To
ensure confidentiality against most of these side channels, the enclaves must implement constant-
time programming and oblivious memory-access patterns. To this end, several techniques have been
proposed recently and we refer the reader to [32, 33, 34, 35] for a detailed description. Regarding the
enclave memory limit, the previous processors – Intel Coffee Lake, 2017 – running SGXv1 can load
up to 256 MB of enclave memory. However, the newer processors – Intel Ice Lake, 2020 – running
SGXv2 can load up to 1 TB of enclave memory, hence, the memory limit is no more a concern for
in-enclave storage-intensive applications.

However, since our protocols do not store a lot of data within the enclave (due to ORAM), in our
implementation, we stick with SGXv1. Our experiments in section 7.2 show that the enclave requires
less than 50 MB of heap beside the enclave code and stack.

Key-private Public Key Encryption scheme. We also require a correct and semantically secure
PKE scheme (KeyGen,Enc,Dec) that is also key-private. Correctness and semantic security are both
standard. Key-privacy, introduced in [36], basically means that if a ciphertext is encrypted under a
public key, one cannot tell which public key was used. This is achieved by most of the commonly used
encryption schemes including El Gamal[37], Cramer-Shoup[38], a variant of RSA-OAEP suggested in
[36], LWE [39] and so on. We formally capture this property as follows, adapted from [36]:

Definition 1 (Key-privacy). A PKE scheme (KeyGen,Enc,Dec) is key-private if for any PPT adver-
sary A = (A0,A1), it can only win the following game with probability ≤ 1/2 + negl(λ): (pk0, ·) ←
KeyGen(λ), (pk1, ·) ← KeyGen(λ), (x, s) ← A0(pk0, pk1), y ← Enc(pkb, x) where b ←$ {0, 1}, b′ ←
A1(y, s), and the adversary wins iff b′ = b.

Oblivious RAM (ORAM). We adapt the ORAM security definition to TEE and the server [17].
At a high level, the goal of ORAM is to hide the data access pattern (which blocks are accessed

and whether it’s for a read or a write) from the server. Therefore, we need two sequences of read/write
operations with the same length to be (computationally) indistinguishable to anyone except for the
TEE.

Definition 2. An ORAM construction contains one PPT algorithm:

• data′ ← Access(DB, op, a, data): on the input of an identifier DB to some database, an operation op
that can be either Read or Write, an identifier of the data block (e.g., memory location of the data
block), and a data block data, returns a data block data.

Let ORAM.Read(DB, a) denote Access(DB,Read, a, ·) (here · is a dummy input) and let ORAM.Write
(DB, a, data) denote Access(DB,Write, a, data).

Let x⃗ = ((DB, op1, a1, data1), . . . , (DB, opQ, aQ, dataQ)) denote a data request sequence of length Q,
where opi is the operation that can be either Read OR Write, ai is the identifier of the data block, and
datai is the data being written. We define ORAM construction’s correctness and privacy as follows:

• (Correctness) On the input x⃗, it returns data that is consistent with x⃗ with probability ≥ 1−negl(|x⃗|).
• (Computational Privacy) Let A(x⃗) sequence of accesses to the remote storage given the sequence of
data requests x⃗. An ORAM construction is said to be computationally private if for any two data
request sequences y⃗ and z⃗ of the same length, their access patterns A(y⃗) and A(z⃗) are computationally
indistinguishable by PPT algorithm except for the TEE.

State-of-the-art ORAM has achieved the asymptotics of O(log(N)) server time per access in the
worst case, with O(1) local memory (i.e., memory required in the TEE) [18].

In addition, for better flexibility, we require the ORAM to have an interface of ORAM.resize(DB, N ′)
that takes an ORAM database DB of size N and resize it to an ORAM database of size N ′ > N .
This is naively achievable by starting a new ORAM database DB′ of size N ′, and then read every
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entry from DB and write it to DB′ and set DB ← DB′. Even with this naive method, the amortized
efficiency per entry is simple O(log(N)). One can use more efficient techniques, e.g. [40], to achieve
resize more efficiently.

5 UC-Definition of Private Signaling

Threat model. We assume all the adversaries are computationally bounded, and they can read all
public information, including all signals on the bulletin board, all the public keys, all accesses to the
bulletin board, and all the communication between the server and the recipients. The adversaries can
also act as a sender, a recipient, or a server.

For correctness, we require the server to be semi-honest. For privacy, all parties in the systems
may be malicious and colluding. We assume that there is only one server, but can be arbitrarily many
senders and recipients. Note that we can easily extend our model to have multiple servers, and we
discuss this in more detail in Appendix C.1.

Formal definition. We define the problem of private signaling in the UC-framework [13]. In this
framework, the security properties expected by a system are defined through the description of an
ideal functionality. The ideal functionality is an ideal trusted party that performs the task expected
by the system in a trustworthy manner. When devising an ideal functionality, one describes the ideal
properties that the system should achieve, as well as the information that the system will inherently
leak.

For the task of private signaling, we want to capture two properties: correctness and privacy, and
we adapt the definition from [11] and improve upon it.
• (Correctness) Correctness means that a recipient Ri should be able to learn all signals that are
intended for them.

• (Privacy) Privacy contains more complicated components:
– (Sender unlinkability) An adversary cannot identify the sender of a signal.
– (Signal recipient hiding) An adversary cannot learn the recipient of a signal.
– (Recipient unlinkability) An adversary cannot learn the identity of a recipient when they retrieve

their signals.
– (Number of signals a recipient receives) An adversary cannot learn the number of pertinent signals

for each recipient.
Note that Sender unlinkability and Recipient unlinkability are not captured by the prior definition in
[11].

Also note that recipient unlinkability is quite essential, as our model assumes the servers to be
semi-honest for the correctness of the retrieval process. Thus, if a server does not know who is doing
the retrieval, they have fewer incentives to behave maliciously.

Furthermore, we want to capture the following inherent leakage. An observer of the system can
always learn that a signal was posted for “someone” (for instance, just by observing the board).
Second, a protocol participant can learn that some recipient is trying to retrieve their own signals (for
instance, in the serverless case, this can be detected by observing that a node is downloading a big
chunk of the board, or in the server-aided case, it is just possible to observe that Ri connected to the
server).

All these properties and inherent leakage are captured by the following ideal functionality.

Private Signaling ideal functionality. The functionality FprivSignal provides the following interface -
SEND and RECEIVE. Furthermore, the functionality maintains a table denoted T . This table maintains
a mapping of a recipient Rj to their pertinent locations.
• SEND allows a sender to send a signal by specifying the recipient and location of the message on the
board. The functionality leaks to the adversary that a SEND request has been received and then
appends the location to the recipient’s row in table T
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Functionality FprivSignal

The functionality maintains a table denoted T indexed by recipient Rj , that contains infor-
mation on the locations of signals for the corresponding recipient.
Sending a signal (SEND). Upon receiving (SEND, Rj , loc) from a sender Si, send (SEND) to
the adversary. Upon receiving (SEND, ok) from the adversary, append loc to T [Rj ].
Retrieving signals (RECEIVE). Upon receiving (RECEIVE) from some Rj , send (RECEIVE) to
the adversary. Upon receiving (RECEIVE, ok) from the adversary, send (RECEIVE, T [Rj ]) to the
recipient Rj and update T [Rj ] = [].

Figure 3: Private Signaling functionality

• RECEIVE allows a recipient to request their signals from the functionality. The functionality leaks to
the adversary that a party is trying to retrieve their messages, and then returns the corresponding
row of the table to the party. Finally, the functionality flushes the same row.
Since the only information leaked to the adversary is that a sender has posted a signal and that a

recipient has retrieved its signals we capture the privacy requirement of private signaling.

6 A Scalable Private Signaling Protocol With TEE (ΠTEE)

ΠTEE is based on the following building blocks:
1. A Gatt functionality [24] as defined in Section 4. This functionality models the TEE. The program

run by the TEE is described in Fig 4.
2. An Oblivious RAM scheme - (ORAM.Read,ORAM.Write,ORAM.resize)
3. A signature scheme (Sig,Ver)
4. A key-private encryption scheme (KeyGen,Enc,Dec)

Gatt Secure processor functionality Figure 2
loc Location of message on the board
N Total number of messages on the board
M Total number of recipients registered in TEE
ℓ̄ Number of signals per retrieval

RID Identifier of the recipient
ctkeys Ciphertext of encryption key and & verification key
ctri Counter to prevent replayability of signatures for party i

ctSignal Encryption of (RID, loc)
mpk,msk Attestation keys of Gatt functionality
epk, esk Encryption keys of Gatt
DB ORAM database of N encrypted pointers

DBrecip ORAM database of the latest signal of the M recipients
DBkeys ORAM database of the M recipients’ keys

CurIdx
A counter locally kept by TEE

on how many signals have been received.

ctrrecip
A counter locally kept by TEE

on how many recipients have been registered.
PrevIdx The entry index in DB of the previous pertinent signal.
PrevLoc The location of the previous pertinent signal.

Table 2: Notations for ΠTEE
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In Table 2 we describe all the notations and variables used in our construction.

Overview We present a high-level overview of our construction, and the formal description is pre-
sented in Figure 5.

Enclave Setup. The server Srv installs the program for the TEE and initializes it with the following
public parameters: N , an upper-bound on the total number of signals that can be stored; M , an upper-
bound on the total number of parties that can register with the server; and ℓ̄, the number of signals
that are retrieved by a recipient upon each request.

Upon running this command, the TEE initializes three databases with an ORAM scheme. The first
ORAM denoted DB, is of size N and stores all the incoming signals to the server. The second ORAM
denoted DBkeys, is of size M and stores the verification keys of the registered recipients. The third
ORAM denoted DBrecip, is of size M and stores information on the last received signal per registered
recipient. TEE also locally initializes two counters CurIdx and ctrrecip as zeros. These counters keep
track of the number of incoming signals and the number of registered recipients respectively.

Note that the three ORAM databases are upper-bounded by N and M . If the above two counter
values reach N and M respectively, we use resize described in Section 4 to resize the databases to
2N, 2M respectively and set N ← 2N,M ← 2M . Note that we can start with large N,M (e.g., 240)
with only limited effects on performance (as our performance scales only with log(N) and log(M)),
and thus in practice, resize may not need to be used.

Note that all the ORAM data entries are encrypted under TEE secret key: esk.
Registration. To register with the server, a party Ri first retrieves the encryption key epk and the

verification key mpk of the TEE. Ri then generates its own encryption keys (pki, ski) (recall that this
encryption scheme is key private) and signature keys (Σ.vki,Σ.ski). Ri then encrypts its public key
and verification key under the public key of the TEE and sends it to the server indicating that they
want to register with the system.

The server then executes the TEE with input “setup” and the ciphertext containing the encryption
key (pki) and the verification key (Σ.vki) of Ri. The TEE first decrypts the ciphertext to compute
(pki,Σ.vki). The TEE then encrypts the (pki,Σ.vki) along with a counter initialized to 1 under the
key esk.

These keys are then written (encrypted under esk) to the DBkeys at location RID, where RID =
ctrrecip is simply a unique index of the recipient. Since the write accesses are hidden using an ORAM
and encrypted under esk, the server does not learn the RID or the keys that were written to the
ORAM. Next, the TEE initializes the last received message for Ri as a default [-1,-1]. The TEE then
encrypts these initialized values under its secret key and writes them to location RID in the DBrecip.
The TEE finally increments ctrrecip by 1, and returns (pk,RID, ctrrecip). Note that by the definition of
Gatt functionality, all messages that are output by the program are signed by the TEE. This signed
output (pk,RID, ctrrecip) is then sent by the server to the party Ri. The recipient verifies pk and the
signature and publishes pk,RID 6.

When the counter ctrrecip is equal to M , the server executes the TEE program to resize the DBkeys
to size 2M . Again, this can be avoided in practice by setting M to a large enough number at first.

Send. To send a signal to a party Ri with identity RID that a message exists for them at position
loc on the board, a sender S does the following. They first retrieve the keys of the TEE - epk and
mpk. The sender then encrypts (RID, loc) under epk and posts the resulting ciphertext ctSignal to the
board (denoted Gledger).

The server reads the board and retrieves the ciphertext ctSignal and executes the TEE with the
“send” command and inputs ctSignal. The TEE first decrypts the ciphertext to receive RID and loc.
The TEE then obtains the ciphertext encrypting the last received location for RID from DBrecip,
decrypts it, and parses it as [PrevIdx,PrevLoc] (which is [−1,−1] if it were the first message) for RID.

6Note that in our construction, we need the TEE to pick a unique RID for the recipient, as the ORAM read needs a
unique location for each recipient to process. Thus, we cannot simply let the recipient randomly pick RID ∈ [M ] unless
M is exponentially large. This is not an issue with our single server model, but for multiple servers, this becomes more
subtle to resolve. We discuss how to resolve this in more detail in Appendix C.1.
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On input* (“initialization”, pp)

Store pp = (N,M, ℓ̄) and locally keep a counter CurIdx← 0, ctrrecip ← 0.
Initialize an empty database of size N with ORAM and store its identifier DB.
Initialize an empty database of size M with ORAM and store its identifier DBkeys.
Initialize an empty database of size M with ORAM and store its identifier DBrecip.

On input* (“setup”, ctkeys)

(pk,Σ.vk)← Dec(esk, ctkeys), set RID← ctrrecip.
· ← ORAM.Write(DBkeys,RID,Enc(esk, (Σ.vk, pk, 1)))
· ← ORAM.Write(DBrecip,RID,Enc(esk, [−1,−1]))
ctrrecip ← ctrrecip + 1
return pk,RID, ctrrecip

On input* (“send”, ctSignal)

[RID, loc]← Dec(esk, ctSignal)
data← ORAM.Read(DBrecip,RID, ·) ▷ · is a dummy data variable
[PrevIdx,PrevLoc]← Dec(esk, data)
· ← ORAM.Write(DBrecip,RID,Enc(esk, [CurIdx, loc]))
· ← ORAM.Write(DB,CurIdx,Enc(esk, [PrevIdx,PrevLoc]))
CurIdx← CurIdx+ 1
return CurIdx.

On input* (“receive”, σ)

σ′ ← Dec(esk, σ)
Parse σ′ = Sig(RID, ctr)
data← ORAM.Read(DBkeys,RID, ·)
(Σ.vk, pk, ctrRID)← Dec(esk, data)
if Σ.Ver(Σ.vk, σ′) = 1 and ctr = ctrRID then

Initialize an empty vector R⃗
[index, loc]← Dec(esk,ORAM.Read(DBrecip,RID, ·))
while |R⃗| ≤ ℓ̄ do

if |R⃗| = ℓ̄ then
· ← ORAM.Write(DBrecip,RID,Enc(esk, [index, loc]))

Append -1 to R⃗ if index from previous iteration is -1, else append -2
Break the loop

Append loc to R⃗
if index from the previous iteration is -1 then

Do a dummy ORAM read and set [index, loc] = [−1,−1]
else

[index, loc]← Dec(esk,ORAM.Read(DB, index, ·))
Update ctrRID = ctrRID + 1
· ← ORAM.Write(DBkeys,RID,Enc(esk, (Σ.vk, pk, ctrRID))

return Enc(pk, R⃗)
else

return ⊥
On input* (“extend”, N ′)

DB′ ← ORAM.resize(DB, N ′)
Clear DB and set DB← DB′

Update pp.N ← N ′

On input* (“extendrecip”,M ′)

DBkeys′ ← ORAM.resize(DBkeys,M ′)
Clear DBkeys and set DBkeys← DBkeys′

DBrecip′ ← ORAM.resize(DBrecip,M ′)
Clear DBrecip and set DBrecip← DBrecip′

Update pp.M ←M ′

Figure 4: Program Prog run by Gatt
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The TEE then writes [CurIdx, loc] to DBrecip (again, encrypted under esk). Note that this correctly
updates the last received signal for RID in DBrecip.

Next, the TEE writes encryption of [PrevIdx,PrevLoc] at index CurIdx in DB . Note that the integer
CurIdx links the latest received signal in DBrecip with the previous signal associated with RID in DB.
Finally, the TEE increments CurIdx and returns CurIdx to the server. As above when CurIdx = N , the
server executes the TEE program to resize the DB to 2N .

Retrieving signals. To retrieve their signals, a party Ri first computes a signature on the RID and
ctri, where ctri is the number of times a request has been made to retrieve (including this current one).
Recall that the TEE stores the same counter with the encryption and verification keys in DBkeys. The
recipient then encrypts this signed request under the public key of the TEE and sends it to the server.
The CPA security of the encryption scheme ensures that the server does not know the requesting
party’s identity.

The server invokes the TEE with “receive” command with received ciphertext as input. The TEE
decrypts the ciphertext to retrieve the RID and ctri. Then it queries DBkeys to retrieve the keys and
counter value associated with the RID. It checks that the received signature verifies and that the ctr
value matches the one stored in DBkeys. Upon each retrieval, the TEE increments the ctr value stored
inside DBkeys and this ensures that no malicious party is able to simply replay a previous request and
learn signals associated with an honest recipient.

The TEE then initializes an empty output vector R⃗ of length ℓ̄. This vector will include encryptions
of the locations pertinent to the recipient. The TEE first retrieves the latest signal received by Ri

from DBrecip. Recall that this is of the form [index, loc] (after decryption using esk). The TEE then

writes the loc to R⃗. The TEE then reads the signal stored at position index from DB, which is again
of the form [index′, loc′]. The TEE then writes loc′ to R⃗. The TEE repeats this operation now with

index′ until filling R⃗ with ℓ̄ locations. If a recipient has less than ℓ̄ signals, perform dummy ORAM
reads and get [index′, loc′] = [−1,−1].

After that, the TEE writes the last [index′, loc′] to DBrecip, maintaining the invariant that the
last non-retrieved signal is stored in DBrecip (which is [−1,−1] if there are ≤ ℓ̄ messages). If the last

index′ retrieved is −1, indicating that all messages of the recipient have been retrieved in R⃗, the TEE
appends −1 to R⃗. On the other hand, if index′ is not −1 indicating that there exist more signals for
Ri, the TEE appends −2 to R⃗.

As mentioned above the TEE updates the request counter ctrRID that corresponds to Ri and
performs a write to DBkeys. Finally, the TEE encrypts the vector R⃗ under the public key of Ri and
sends it to the recipient. Recall that the encryption scheme is key private and thus the identity of the
recipient is not leaked.

Asymptotic analysis. We now analyze the asymptotic costs for the TEE to process a signal upon
execution of the “send” command, and the cost of retrieval of locations upon execution of the “receive”
command. Recall that each ORAM access costs O(logN) computation for an ORAM of size N . The
“send” command consists of one read to DBrecip and a write to DBrecip and another write to DB.
Thus the total computational complexity per “send” invocation is only O(logN + logM). Likewise,
for “receive” command, the TEE performs one read to DBkeys, ℓ̄ reads to DB and one write to DBrecip
and DBkeys. Thus the total computational complexity per “receive” is only O(ℓ̄ logN + logM).

Intuition of privacy. We present an intuition of why privacy is guaranteed for the recipients below.
• (Sender Unlinkability) This is inherent as a signal does not contain any identity-related information
about the sender. A signal is simply Enc(epk, (RID, loc)), where RID is the identity of the recipient
and loc is the location of the message on the board 7.

• (Signal recipient hiding) This is guaranteed by the nature of TEE and ORAM used in our protocol.
• (Recipient unlinkability) As explained above, we encrypt the signed message and use ORAM to
fetch the verification key to verify the signature inside TEE. In addition, our encryption scheme is
key private. Thus our construction achieves this property.

7Again, we assume the network level leakage is already addressed properly, for example, by using TOR.
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Enclave setup
Srv:
1. Run Gatt.install(Prog) to get eid.
2. Gatt.resume(eid, (“initialization”, pp = (N,M, ℓ̄)))

▷ pp are parameters passed to initialize the protocol
Registration
Recipient Ri:
1. Let (mpk, epk) := Gatt.getpk()
2. Compute (pki, ski)← Enc.KeyGen(1λ), (Σ.ski,Σ.vki)← Σ.KeyGen(1λ).
3. Set ctkeys,i = Enc(epk, (pki,Σ.vki)) and send (“setup”, ctkeys,i) to Srv. ▷
4. Await ((eid, pki,RID), σT ) from Srv.
5. Assert Σ.Vermpk((eid, (pk,RID, ctrrecip)), σT ) = 1 and publish (pki,RID). Initialize ctri = 0.

▷ Note that if the returned pki is not the pki sent, abort.
Srv:
1. Upon receiving (“setup”, ctkeys,i) from Ri, let ((pki), σT ) =
Gatt.resume(eid, (“setup”, ctkeys,i)). Upon receiving ORAM request data ←
ORAM.Access(·, ·, ·, ·) from TEE when executing the Gatt.resume(·, ·) operation: pro-
cess and return data to Gatt.

2. Send ((eid, (pk,RID, ctrrecip)), σT ) to Ri.
3. Upon return of ctrrecip from TEE, if ctrrecip = M , call procedure
Gatt.resume(eid, (“extendrecip”, 2M) and update M ← 2M .

Procedure (SEND, Ri, loc) Snder S:
1. Sender S gets (mpk, epk) := Gatt.getpk() and computes ctSignal = Enc(epk, [RID, loc]). S

sends (SUBMIT, (SEND, ctSignal)) to Gledger
Srv:
1. Send READ to Gledger
2. Upon receiving (SEND, ctSignal): Call Gatt.resume(eid, (“send”, ctSignal)). Upon receiving

ORAM requests data← ORAM.Access(·, ·, ·, ·): process and return data to Gatt.
3. Upon return of CurIdx from TEE. If CurIdx = N , call procedure
Gatt.resume(eid, (“extend”, 2N) and update N ← 2N .

Procedure RECEIVE

Recipient Ri:
1. Compute σi = Enc(epk,Sig(RID, ctri)) and send (RECEIVE, σi) to Srv. Await ((eid, ct), σT )

from Srv
2. return R⃗← Dec(sk, ct).
Srv:
1. Upon receiving (RECEIVE, σi) from Ri, let ((eid, ct), σT ) = Gatt.resume(eid, (“receive”, σi)).

Upon receiving ORAM requests data ← ORAM.Access(·, ·, ·, ·): process and return data to
Gatt.

2. Send ((eid, ct), σT ) to Ri

Procedure ExtendDB

Srv:
1. N ← 2N .
2. Gatt.resume(eid, (“extend”, N)). Upon receiving ORAM request data ←

ORAM.Access(·, ·, ·, ·) from TEE when executing the Gatt.resume(·, ·) operation: pro-
cess and return data to Gatt

3. Free the space of the original databases DB
Procedure ExtendRecip

Srv:
1. M ← 2M .
2. Gatt.resume(eid, (“extendrecip”,M)). Upon receiving ORAM request data ←

ORAM.Access(·, ·, ·, ·) from TEE when executing the Gatt.resume(·, ·) operation: process and
return data to Gatt

3. Free the space of the original databases DBrecip,DBkeys

Figure 5: The protocol for private signaling ΠTEE in the Gatt hybrid world.
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• (Number of signals a recipient receives) As mentioned, this requirement may not be needed by many
applications. However, by using ℓ̄, we do achieve this property.

Theorem 1. Assume that the signature scheme Σ is existentially unforgeable under chosen message
attacks, the encryption scheme Enc is CPA secure and key-private, and the underlying ORAM is
correct and private. Then the protocol ΠTEE in the (Gatt, Gledger)-hybrid world UC-realizes the FprivSignal

functionality.

Proof. (Sketch) To prove UC security, we need to show that there exists a PPT simulator interacting
with FprivSignal that generates a transcript that is indistinguishable from the transcript generated in
the real world where the adversary interacts with (Gatt, Gledger) ideal functionalities. The simulator
internally simulates the Gatt and the Gledger functionalities to the adversary. We consider two cases of
corruption here and in both cases, we show that the simulator can simulate without learning the loca-
tions of honest recipients. We briefly describe the main idea in the simulation of the aforementioned
corruption cases:
• Sender and server are corrupt: The simulator receives a (“send”, ctSignal) command via the Gatt
interface from the adversary. The simulator decrypts ctSignal using the secret key of the simulated
TEE functionality esk and learns the recipient (Ri) and the location (loc). The simulator sends
(SEND, Ri, loc) to the FprivSignal ideal functionality on behalf of the adversary.

• Receiver and server are corrupt: The simulator receives a (“receive”, ctr, σ) command via the Gatt
interface from the adversary. The simulator decrypts σ and verifies the signature and sends RECEIVE
to the FprivSignal functionality on behalf of the adversary. The simulator receives a vector of locations
that correspond to the adversary. The simulator encrypts these locations under the public key of
the receiver and returns the vector of encryptions.
Full proofs can be found at Appendix A.2

Finally as noted in [11], it is desirable to not rely on just one server for private signaling. To this
end we describe how we can extend our protocol to the multi-server setting in Appendix C.1.

6.1 Extensions

We discuss several extensions in Appendix C, including extending to the multi-server model, replacing
some ORAM use with PIR use, and extending to a group messaging setting. Since all the extensions
are very natural, we include them in the Appendix.

7 Implementation and Evaluation

This section describes the implementation details of our prototype (proof-of-concept) and its evalua-
tion. All our source code is publicly available at [14].

7.1 Implementation details

We use Intel SGX [26] to instantiate the Gatt functionality of ΠTEE, and we implement the program
Prog running inside the SGX enclave using Intel SGX Linux SDK [41]. Currently, our prototype
implements “initialization”, “setup”, “send”, and “receive” commands of the protocol.

For encryption and authentication, we use OpenSSL [42] on the recipient side and SGX SSL [43] on
the enclave side. In the prototype, the recipient uses RSA-OAEP [44] to submit encrypted send/receive
requests to the enclave and the enclave uses Elliptic Curve Integrated Encryption Scheme (ECIES) to
respond with encrypted replies to the recipient. Using RSA for encrypting responses to the recipients
is not storage efficient because it requires storing longer keys (527 byte-keys using 2048 − bit RSA
modulus) for every recipient. Instead, we use shorter EC keys (65 byte-keys using Prime256v1 curve)
for encrypting responses toward the recipients. This reduces the storage required per recipient by an
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Baseline ΠTEE PS1 [15] PS1,N [11] PS2[11] OMR [12, 19] FMD [5]
Server computation

(per signal per recipient)
NA 0.0077 ms 60 ms 0.228 ms 292 ms 21 ms 0.02 ms

Recipient computation 400 s < 0.1 ms < 0.1 ms < 0.1 ms < 0.1 ms 5 ms 3.13 s
Signal size NA 300 bytes 300 bytes 300 bytes 600 bytes 956 bytes 68 bytes

Security Full Full
No recipient
unlinkability

No recipient
unlinkability

No recipient
unlinkability

Full
pN -msg-anonymity

p = 2−5

Environment
Assumption

NA TEE TEE TEE
Non-colluding

servers
NA NA

Table 3: Performance and security comparisons between prior work PS1, PS1,N, PS2, FMD, OMR, and
our protocol ΠTEE, assuming a recipient connect once a day. These results are measured for parameters:
N = 500, 000, M = 500, and an upper bound of the number of signals retrieved per recipient ℓ̄ = 50. Runtime
is calculated using: (one SEND time / M recipients) + (one RECEIVE time / N signals).

order of magnitude (given each recipient requires two keys, pk and Σ.vk). For authentication, the
prototype uses ECDSA signature scheme with Prime256v1 curve.

For ORAM, the prototype uses PathORAM [17] to instantiate two ORAMs in the enclave (one
for messages DB and the other for recipient information including DBkeys and DBrecip), where the
actual storage is implemented outside the enclave, within the server’s untrusted memory. Note that
PathORAM has a runtime of O(log2(N)) for a database with size N . We choose PathORAM instead
of the asymptotically better [18], since concretely, PathORAM is much faster. All ORAM storage
in the server’s untrusted memory is encrypted using AES GCM 128 − bit encryption scheme with a
key only known to the enclave. The enclave samples different keys for each ORAM at instantiation.
Currently, the prototype uses the server’s main memory (RAM) to store the ORAM database, however,
we envision that, in practical deployments, the database must be implemented using a database
management system such as SQLite, etc.

For benchmarking, we deploy the prototype on Azure DC2s v2 (Confidential Compute, 3.7 GHz
Intel® Xeon E-2288G Coffee Lake) instance with 2 vCPUs and 8GB RAM. Our prototype runs on
Ubuntu 20.04 LTS OS and in total has ≈ 3250 lines of C++ code (≈ 1750 for the enclave and ≈ 1250
for the recipient application).

7.2 Evaluation

Server Computation. Figures 6a and 6b illustrate the server runtime for to process a “send” request
and to process a “receive” request while varying the number of recipientsM and number of messagesN
(as a multiplier of M), with ℓ̄ = 1, implying only one message is retrieved. The plots represent enclave
processing time after being invoked by the server during procedure SEND and RECEIVE respectively.
This enclave processing time includes one RSA decryption, three ORAM accesses, and one ECDSA
signature computation; additionally an ECDSA verification during RECEIVE. As shown in the figures,
this server runtime for both procedures increases poly-logarithmically as a function of N and M due
to ORAM accesses. Concretely, ΠTEE takes at most ∼6 ms for processing one signal (during both
procedures) for 100 thousand recipients and 10 million messages.

Figure 7 depicts the server runtime while varying the number of messages retrieved ℓ̄. As ℓ̄
increases, the time taken to process RECEIVE increases linearly, while the time for SEND is constant,
as expected. This is because, for every message retrieved from the message database DB, the enclave
must perform one ORAM Read. Compared to SEND, RECEIVE performs better when there are multiple
signals to be processed, which is due to the fact that during RECEIVE the enclave can retrieve all of
the signals within the same request, unlike during SEND where it has to process them one at a time.
That said, the baseline performance for both procedures when ℓ̄ = 1 is almost the same. Concretely,
ΠTEE takes less than 0.5s to receive 100 messages when there are 1 million recipients and 10 million
messages in the database.

Recipient Computation. The recipient is only required to perform encryption, decryption, signa-
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Figure 6: Here Y-axis represents the time taken in milliseconds, while the X-axis represents the
number of recipients M in log-10 scale. Each line plot depicts the number of signals N as a multiplier
of M . ℓ̄ = 1.

ture generation, and verification. In our experiments, these operations took less than 1 ms during
RECEIVE procedures, even when processing as many as 100 signals during RECEIVE. This low latency
for the recipient during RECEIVE is a consequence of using ECIES encryption instead of RSA.

7.3 Storage and Memory Required

On the server side, the storage required to store ORAM database scales linearly with M and N . In the
prototype, we assume the index (index), the counter (ctr), and the location of the message (loc) as 4
byte integers and the recipient EC keys are 65 bytes (as mentioned earlier). Hence, we require a block
size of about 3∗4+2∗65 = 142 bytes, plus 12+16 = 28 bytes for AES-GCM encryption metadata (12
bytes for initialization vector and 16 bytes for tag). With 170 byte blocks, message database DB and
recipient database (DBkeys and DBrecip) in the untrusted storage require O(170(N +M)) space. In
our experiments, for 10 million messages and 1 million recipients, the server used 1.8 GB of storage.
However, this can be significantly reduced if different block sizes are used for each database because
the DB database requires only 36 byte blocks (8 bytes of index and loc, plus 28 bytes of encryption
metadata).

Furthermore, the blocks should ideally include a monotonic counter for integrity purposes against
malicious servers. Given the SGX threat model, a malicious server can tamper with the blocks by
corrupting them, modifying their order, or replaying old blocks. Our prototype uses AES-GCM,
which is an authenticated encryption scheme that prevents corruption attacks. For mitigating order
misalignment attacks, the enclave embeds the bucket index in every bucket it writes to the untrusted
storage. However, for integrity against replay attacks, the enclave must use hardware monotonic
counters (which we currently do not support in our prototype).

Enclave Memory. For each ORAM, the enclave stores a position map (an array that maps a
block to its position in ORAM tree) and a stash in its trusted memory. Position map is an integer
array of length N and M ; and stash, in its worst case complexity, requires O(log(N)) and O(log(M))
number of blocks, for message and recipient database respectively. Note that we do not implement the
recursive position map to reduce the enclave memory, as we believe the current usage is already small.
Therefore, the enclave trusted memory in total requires O((N + log(N)) + (M + log(M)) + k), where
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k is the stack and the enclave binary size (which is constant). In our experiments, for 10 million
messages and 100 thousand recipients, the enclave used 41 MB of heap memory to store position maps
and stashes for two ORAMs.

Enclave communication The enclave issues ORAM Read and Write. Both accesses require read-
ing/writing an ORAM tree path consisting of O(Zlog(N)) and O(Zlog(M)) number of blocks for
messages and recipients database respectively, where Z is the number of blocks in each bucket, a
parameter of the underlying ORAM. In our experiments, using Z = 4 and 170 byte blocks, for 10
million messages and 100 thousand recipients, each access reads/writes 15 KB and 11 KB of data
respectively.

7.4 Bandwidth

There are two types of bandwidth: (a) for communication between the recipients/blockchain and the
server, and (b) for communication between the server and the enclave.

For (a), where the recipient frequently uses two procedures SEND, and RECEIVE. SEND requires 8
bytes for RID and loc, while RECEIVE requires 88 bytes for RID and ctr plus an ECDSA signature (of
80 bytes) for authenticating themself to the enclave. Additionally, in these procedures, the recipient
encrypts its data using RSA encryption which adds around 292 bytes of metadata making the final
ciphertext around 300 and 380 bytes respectively. Therefore, the recipient needs at least 380 bytes
of bandwidth for upload. Whereas for download, it is dependent on the number of messages being
retrieved during the RECEIVE procedure, which is O(4L) plus an ECDSA signature to authenticate
that the reply is from the enclave.

For (b), where the enclave issues ORAM Read and Write. Both accesses require reading/writing
an ORAM tree path consisting of O(Zlog(N)) and O(Zlog(M)) number of blocks for messages and
recipients database respectively. In our experiments, using Z = 4 and 170 byte blocks, for 10 million
messages and 1 million recipients, each access reads/writes 15 KB and 13.6 KB of data respectively.

7.5 Comparison with related work

We compare our protocols with the plain baseline solution and the state-of-the-art related work: PS1,
PS1,N, PS2, FMD, and OMR in table Table 3. By baseline solution, we mean: to simply use trial
decryption from [45] to decrypt all the signals on the board for finding relevant ones. Hence, for
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this solution, there are no servers, and thus, there is only recipient computation. For the prior work,
we took the results directly from PS, OMR, and FMD papers. For PS1, we generously estimate the
results for parameters ℓ̄ = 20, M = 100. Note that signal size is based on RSA encryption. From
the table, we observe that our results have significantly lower server runtime per signal per recipient,
compared to any other scheme. Moreover, all the other schemes scale linearly in N and M , while our
scheme scales sublinearly.

Security-wise, we provide equal guarantees as the baseline scheme and OMR scheme, assuming
TEE is trusted. Thus, from the table, it is clear that our scheme performs significantly better than the
state-of-the-art even for small parameters. And for larger parameters, such as N = 107 and M = 105,
it is evident from the figures above that only our scheme can support such scalability.

8 Conclusion

In this work, we have presented a scalable private signaling protocol that is asymptotically superior
and concretely orders of magnitude faster compared to prior works. More specifically, to process N
sent signals and M retrievals of each retrieving ℓ̄ signals, the cost of the TEE is Õ(N +Mℓ), which
is almost optimal except for some logarithmic factor. Moreover, our construction also enjoys the
property of retrieval privacy which was not considered in previous works.
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A Proof

A.1 Universal Composability

In UC security we consider the execution of the protocol in a special setting involving an environment
machine Z, in addition to the honest parties and adversary. In UC, ideal and real models are considered
where a trusted party carries out the computation in the ideal model while the actual protocol runs
in the real model. The trusted party is also called the ideal functionality. For example the ideal
functionality FprivSignal is a trusted party that provides the functionality of private signaling. In the
UC setting, there is a global environment (the distinguisher) that chooses the inputs for the honest
parties, and interacts with an adversary who is the party that participates in the protocol on behalf
of dishonest parties. At the end of the protocol execution, the environment receives the output of
the honest parties as well as the output of the adversary which one can assume to contain the entire
transcript of the protocol. When the environment activates the honest parties and the adversary, it
does not know whether the parties and the adversary are running the real protocol –they are in the real
world, or they are simply interacting with the trusted ideal functionality, in which case the adversary
is not interacting with any honest party, but is simply “simulating” to engage in the protocol. In the
ideal world the adversary is therefore called simulator, that we denote by S.

In the UC-setting, we say that a protocol securely realizes an ideal functionality, if there exist no
environment that can distinguish whether the output he received comes from a real execution of the
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protocol between the honest parties and a real adversary A, or from a simulated execution of the
protocol produced by the simulator, where the honest parties only forward date to and from the ideal
functionality.

The transcript of the ideal world execution is denoted IDEALF,S,Z(λ, z) and the transcript of the
real world execution is denoted Π,A,Z(λ, z). A protocol is secure if the ideal world transcript and the
real world transcripts are indistinguishable. That is, {IDEALF,S,Z(λ, z}λ∈N,z∈{0,1}∗ ≡ {Π,A,Z(λ, z)}λ∈N,z∈{0,1}∗ .

A.2 Proof of Security of Theorem 1

Theorem. Assume that the signature scheme Σ is existentially unforgeable under chosen message
attacks, the encryption scheme Enc is CPA secure and key-private, and the underlying ORAM is
correct and private. Then the protocol ΠTEE in the (Gatt, Gledger)-hybrid world UC-realizes the FprivSignal

functionality.

Proof. To prove that ΠTEE UC-realizes FprivSignal we show that there exists a simulator S that interacts
with FprivSignal and the adversary A to generate a transcript that is indistinguishable from the real
world protocol. We consider the following cases of corruption:
• Simulator SN for the case when only the server is corrupt.
• Simulator Ss for the case when a subset of the senders and the server are corrupt.
• Simulator Sr for the case when a subset of the recipients and the server are corrupt.
• Simulator Srs for the case when a subset of the recipients, a subset of the senders and the server is
corrupt.
We discuss these simulators in more detail in the next subsections.

A.2.1 Case 1: Neither S nor R is corrupt and only SN is corrupt

Simulator overview When neither the sender nor the recipients are corrupt, then the only corrupt
entity is the server. In this case, the simulator interacts with the Srv and the FprivSignal to simulate a
transcript that is indistinguishable from the real world. Note that the simulator also simulates Gatt
and Gledger towards A.
Proof by hybrids We prove security via a sequence of hybrids where we start from the real world
and move to the ideal world.
• Hyb0 The real world protocol.
• Hyb1 is the same as Hyb0 except that upon receiving a SEND command, the ctSignal is replaced with
encryption to 0 instead of the actual location. By the CPA security of the underlying encryption
scheme the two hybrids are indistinguishable.

• Hyb2 is the same as Hyb1 except that all the ORAM calls are now replaced by dummy ORAM
calls as in the simulation. By the computational privacy property of the ORAM scheme, the two
hybrids are indistinguishable.

• Hyb3 is the same as Hyb2 except that in the RECEIVE command, the simulator samples a new
random public key pk∗ and encrypts the locations under this public key. By the key-privacy property
of the underlying encryption scheme, these two hybrids are indistinguishable.

• Hyb4 is the same as Hyb5 except that in the RECEIVE command, the simulator returns encryptions
of 0 as ctloc,i to the server on behalf of Gatt. By the CPA security of the underlying encryption
scheme, the two hybrids are indistinguishable.

• Hyb5 is the same asHyb4 except that in the Setup procedure, the simulator aborts with sigFailure1.
Since we use EUF-CMA signatures, this occurs with negligible probability.

• Hyb6 is the same as Hyb5 except that in the RECEIVE command, the simulator may abort with
sigFailure2. This occurs with negligible probability since we use EUC-CMA signatures.
Note that Hyb6 is exactly the same as the ideal world. Therefore through a sequence of hybrids

we have proved that the real and the ideal worlds are indistinguishable.
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The simulator S internally simulates Gatt and Gledger towards the adversary A
Registration For each recipient Ri:
1. Compute (pki, ski)← Enc.KeyGen(1λ), (Σ.ski,Σ.vki)← Σ.KeyGen(1λ).
2. Set ctkeys,i = Enc(epki, (pki,Σ.vki)) and send (“setup”, ctkeys,i) to A (on behalf of Srv).
3. Upon receiving (“setup”, ctkeys) on behalf of Gatt, send ORAM.Write(DBkeys, ·, ·, ·) and

ORAM.Write(DBrecip, ·, ·, ·) on behalf of Gatt to A.
4. Upon receiving ((eid, pki,RID), σ) abort with sigFailure1 if σ would be validated but the

following communication was not recorded: ((pki), σ) = Gatt.resume(eid, (“setup”, ctkeys,i).

5. Else publish pki and set indexi = 0, ctri = 0 and L⃗ = {0}ℓ̄j=0.

SEND: Upon receiving (SEND) from FprivSignal

1. Compute ctSignal = Enc(epk, 0) and send (SUBMIT, (SEND, ctSignal)) to Gledger.
2. Upon receiving (“send”, ctSignal) on behalf of Gatt from A:

(a) Send ORAM.Read(DBrecip, ·, ·) to A
(b) Send ORAM.Write(DBrecip, ·, ·, ·) to A
(c) Send ORAM.Write(DB, ·, ·, ·) to A

3. Send (SEND, ok) to FprivSignal.

RECEIVE: Upon receiving (RECEIVE) from FprivSignal

1. Compute σi = Enc(epk, 0) and send (RECEIVE, σi) to A.
2. Upon receiving Gatt.resume(eid, (“receive”, σi)) on behalf of Gatt:

(a) Send ORAM.Read(DBkeys, ·, ·) to A
(b) Send ORAM.Read(DBrecip, ·, ·)
(c) For k ∈ [ℓ̄]: Send ORAM.Read(DBrecip, ·, ·, ·) to A
(d) Send ORAM.Write(DBrecip, ·, ·) to A.
(e) Sample a random pk∗ and compute c⃗tloc,i = {Enc(pk∗, 0)}k∈[ℓ̄]

(f) Compute σT = Sig(msk, (eid, c⃗tloc,i))
(g) Return (c⃗tloc,i, σT ) to A

3. Receive (eid, c⃗tloc,i, σT ) from A. If this was received without the communication with Gatt,
abort with sigFailure2.

4. Else send (RECEIVE, ok) to FprivSignal.

READ: Upon receiving (READ) from A, forward (READ) to Gledger and return whatever is returned.

ExtendDB: Upon receiving ExtendDB from A, initialize a database DB′, repeat N times:
ORAM.Write(DB′, ·, ·), set DB← DB′ and simply set pp.N as the received N .

ExtendRecip: Upon receiving ExtendRecip from A, initialize empty databases DBrecip′ and
DBkeys′ and call ORAM.Write(DBrecip′, ·, ·) and ORAM.Write(DBkeys′, ·, ·) , N times.

Figure 8: Simulator SN for the case of only one corrupt server
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The simulator S internally simulates Gatt towards the adversary A
Setup For each recipient Ri: Same as in Fig 8

SEND: Upon receiving (SEND, Si) from FprivSignal, same as in Fig 8. //(Honest send)

Upon receiving Gatt.resume(eidj , (“send”, ctSignal)) on behalf of Gatt for a ctSignal that was not
created by the simulator. //(Malicious send)

Let (RID, loc) = Dec(esk, ctSignal).
if RID corresponds to some Rj then

Send (SEND, Rj , loc) to FprivSignal on behalf of A and receive (SEND) and send back
(SEND, ok).

Send data← ORAM.Read(DBrecip,RID, ·) to A
Send · ← ORAM.Write(DBrecip, ·, ·)) to A
Send · ← ORAM.Write(DB, ·, ·)) to A

RECEIVE Same as in Fig 8

SUBMIT : Upon receiving a SUBMIT request from A, forward to Gledger. //(Malicious write

to Gledger)
READ Same as in Fig 8

Figure 9: Simulator Ss for the case corrupt server and sender

A.2.2 Case 2: S and Srv are corrupt

Simulator Overview In this case a subset of the senders are corrupt along with the server. To
prove security we need to construct a simulator that interacts with the adversary and the FprivSignal

functionality that is indistinguishable from the real world.

Proof by hybrids Through hybrid arguments we move from the real world to the ideal world and
prove that each pair of intermediate hybrids are indistinguishable.
• Hyb0 is the real world.
• Hyb1 is the same as Hyb0 except that for an honest sender, encryptions of 0 are sent instead of the
actual locations in the SEND command. By the CPA security of the underlying encryption scheme,
Hyb1 and Hyb0 are indistinguishable.

• Hyb2 is the same as Hyb1 except that all the ORAM calls are now replaced by dummy ORAM
calls as in the simulation. By the computational privacy property of the ORAM scheme, the two
hybrids are indistinguishable.

• Hyb3 is the same as Hyb2 except that for RECEIVE command, the simulator returns encryptions of
0 to the server as Gatt. By the CPA security of the underlying encryption scheme, the two hybrids
are indistinguishable.

• Hyb4 is the same as Hyb3 except that the “setup” of Setup procedure is done as in the simulation
and the simulator might abort with sigFailure1. By the EUF-CMA property of the signature scheme,
the two hybrids are indistinguishable.

• Hyb5 is the same as Hyb4 except that the RECEIVE is done as in the simulation and the simulator
might abort with sigFailure2. By the EUF-CMA property of the signature scheme, the two hybrids
are indistinguishable.
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The simulator S internally simulates Gatt towards the adversary A
Setup For each honest recipient Ri: Same as in Fig 8
//(Malicious receiver):
Upon receiving Gatt.resume(eid, (“setup”, ctkeys,i) from Srv on behalf of Gatt:
1. Compute (pki,Σ.vki) = Dec(esk, ctkeys,i) and compute pki from ski.

2. Set L⃗ = {0}ℓ̄j=0

3. Set index = 0 and ctr = 0
4. Compute σ = Σ.Sig(msk, (eid, (pk))) and send (pk, σ) to A and store (pki,Σ.vki, indexi, ctri).

SEND: Same as in Fig 8

RECEIVE For honest recipients, same as in Fig 8.
// (For malicious recipients)

1. Receive Gatt.resume(eid, (“receive”, ctri, σi)) from Srv on behalf of Gatt. If
Sig.Ver(Σ.vki, ctri, σi) = 0, return ⊥. Else if i corresponds to that of an honest
recipient, abort with sigFailure. Else:

2. Send (RECEIVE, Ri) to FprivSignal on behalf of Ri and get back (RECEIVE) from FprivSignal.

Send (RECEIVE, ok) to FprivSignal and get back R⃗ = [loc1 . . . lock].
3. Send ORAM.Read(DBrecip,RID, ·) to the adversary.
4. Send ℓ̄ number of calls of ORAM.Read(DB,RID, ·) to the server.

5. If k > ℓ̄: append −2 to R⃗, else if k = ℓ̄, append −1 to R⃗, else for j ∈ [k + 1, ℓ̄], write 0 to

R⃗[j].
6. Run · ← ORAM.Write(DBkeys,RID, (Σ.vk, pk, ctrRID))
7. Compute ctloc,i = (Enc(pki, loc1) . . .Enc(pki, locℓ̄))
8. Compute σT = Σ.Sig(msk, (ctloc,i)) and send (ctloc,i, σT ) to A.
READ Same as in Fig 8

Figure 10: Simulator Sr for the case corrupt server and recipients

A.2.3 Case 3: Srv and R are corrupt

Simulator overview In this case, the simulator needs to simulate a view towards a malicious recipient
that is indistinguishable from the real world interaction. For malicious recipients, the simulator is
notified of their RECEIVE request since the Srv must invoke the Gatt functionality to get . Next the
simulator needs to to send the correct locations to the recipient, even though the simulated L⃗ are just
an encryption of 0s. To this end, the simulator simply sends the RECEIVE command to the FprivSignal

functionality and learns the locations that correspond to the malicious recipient. It then simulates
the Gatt functionality to compute an encryption of the locations and sends it back to the Srv.

Proof by hybrids
• Hyb0 The real world protocol.
• Hyb1 is the same as Hyb0 except that upon receiving a SEND command, the ctSignal is replaced with
an encryption to 0 instead of the actual location. By the CPA security of the underlying encryption
scheme the two hybrids are indistinguishable.

• Hyb2 is the same as Hyb1 except that all the ORAM calls are now replaced by dummy ORAM
calls as in the simulation. By the computational privacy property of the ORAM scheme, the two
hybrids are indistinguishable.

• Hyb3 is the same as Hyb2 except that in the RECEIVE command for an honest recipient, the
simulator returns encryptions of 0 as ctloc,i to the server on behalf of Gatt. By the CPA security of
the underlying encryption scheme, the two hybrids are indistinguishable.
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The simulator S maintains a public board and internally simulates Gatt towards the adversary
A
Setup
For each recipient Ri: Same as in Fig 10

SUBMIT : Same as in Fig 9

SEND: Same as in Fig 9

RECEIVE Same as in Fig 10

READ Same as in Fig 8

Figure 11: Simulator Ssr for the case corrupt server, senders and recipients

• Hyb4 is the same as Hyb3, except that for malicious recipients, the simulator may abort with
sigFailure. Since we assume EUF-CMA signatures these two hybrids are indistinguishable.

• Hyb5 is the same asHyb4 except that in the Setup procedure, the simulator aborts with sigFailure1.
Because of EUF-CMA signatures this occurs with negl probability.

• Hyb6 is the same as Hyb5 except that in the RECEIVE command, the simulator may abort with
sigFailure2. Because of EUF-CMA signatures this occurs with negl probability.

A.2.4 Case 4: Corrupt Srv, S and R

Simulator overview This simulator is a combination of the previous simulators, where the simulator
simulates the SEND command as in the case when the Srv and the sender S are corrupt, for the Setup
and RECEIVE commands the simulator simulates as in the case when the Srv and the recipient R are
corrupt.

Proof by hybrids
• Hyb0 is the real world.
• Hyb1 is the same as Hyb0 except that for an honest sender, encryptions of 0 are sent instead of the
actual locations in the SEND command. By the CPA security of the underlying encryption scheme,
Hyb1 and Hyb0 are indistinguishable.

• Hyb2 is the same as Hyb1 except that all the ORAM calls are now replaced by dummy ORAM
calls as in the simulation. By the computational privacy property of the ORAM scheme, the two
hybrids are indistinguishable.

• Hyb3 is the same as Hyb2 except that for RECEIVE command, the simulator returns encryptions of
0 to the server as Gatt. By the CPA security of the underlying encryption scheme, the two hybrids
are indistinguishable.

• Hyb4 is the same as Hyb3, except that for malicious recipients, the simulator may abort with
sigFailure. Since we assume EUF-CMA signatures these two hybrids are indistinguishable.

• Hyb5 is the same as Hyb4 except that the “setup” of Setup procedure is done as in the simulation
and the simulator might abort with sigFailure1. By the EUF-CMA property of the signature scheme,
the two hybrids are indistinguishable.

• Hyb6 is the same as Hyb5 except that the RECEIVE is done as in the simulation and the simulator
might abort with sigFailure2. By the EUF-CMA property of the signature scheme, the two hybrids
are indistinguishable.
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• Upon receiving (SUBMIT, tx) from a party Pi:
1. Choose a unique transaction ID txid and set BTX := (tx, txid, τL, Pi)
2. If Validate(BTX, state, buffer) = 1 then buffer := buffer ∪ BTX
3. Send (SUBMIT, BTX) to A.

• Upon receiving READ from a party Pi, send statePi to Pi. If received from A, send
(state, buffer) to A.

Figure 12: Abridged Gledger functionality

B Abridged Ledger functionality

In our protocols we model the public board for reads and writes in the form of a Gledger ideal func-
tionality presented here. We present an abridged version of the functionality where we present the
READ and SUBMIT commands in Fig. 12. For the complete description of the functionality, we refer the
reader to Pages 339-340 of [23].

C Extensions

C.1 Extension to multiple servers

In real-world applications, especially in applications like cryptocurrencies, it may be desirable to have
multiple servers serving the parties.

To achieve full privacy in the multi-server model, we need two additional properties for our PKE
scheme used by the TEE: wrong-key decryption detection and key-private encryption. At a high level,
wrong-key decryption detection basically means that when decrypting a message with the wrong key,
TEE can tell that the key used is incorrect and can thus behave accordingly.

We formally capture the property with the following definition.

Definition 3 (Wrong-key Decryption Detection). A PKE scheme (KeyGen,Enc,Dec) is wrong-key-
decryption-detectable if any (pk, sk) ← KeyGen and pk′, sk′ ← KeyGen and any message x, it holds
that Pr[Dec(sk′,Enc(pk, x)) = ⊥] ≥ 1− negl(λ).

Note that this property are very easy to achieve and are achieved by lots of schemes (e.g., trial
decryption with key-exchange used in Zcash [45]), without only a very tiny overhead, if any.

Overview. In the multi-server setting, we enable recipients to register with the TEE of their choice,
and each recipient announces the TEE public key as well as their public key. Thus if any entity
is able to link a signal to a TEE, then the anonymity set for the recipient is reduced to only the
set of parties registered with the TEE. To prevent this, we use key-private encryption to encrypt
the location and RID. This ensures that any entity observing the signal cannot identify the public
key of the TEE that ciphertext is associated to. In fact, any server running the system cannot tell
this either. Therefore every signal on the board will be processed by every TEE. While decrypting
the ciphertext, the wrong-key decryption detection property above ensures that a TEE is able to
determine correctly when a signal is pertinent to one of the parties that are registered with the TEE.
The TEE does dummy operations if the signal ciphertext is not encrypted under its key, and does the
correct operations otherwise. We present the formal updates to the program in Fig 13 and 14.

C.1.1 Proof Overview

Theorem 2. Assume that the signature scheme Σ is existentially unforgeable under chosen message
attacks, the encryption scheme Enc is CPA secure, key private, and satisfies wrong-key-decryption
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On input* (“initialization”, pp)

Store pp = (N,M, ℓ̄) and locally keep a counter CurIdx← 0, ctrrecip ← 0.
Initialize an empty database of size (N + 1) with ORAM and store its identifier DB.
Initialize an empty database of size (M + 1) with ORAM and store its identifier DBkeys.
Initialize an empty database of size (M + 1) with ORAM and store its identifier DBrecip.

▷ “+1” is for dummy writes. That slot is never touched for non-dummy reads/writes.

On input* (“send”, ctSignal)

X ← Dec(esk, ctSignal)
if X = ⊥ then ▷ Not correct key, do dummy reads and writes.

data← ORAM.Read(DBrecip, ·, ·)
▷ Read to whatever value.

· ← ORAM.Write(DBrecip, ·, ·)
· ← ORAM.Write(DB, ·, ·)

▷ Dummy writes can be writing garbage value to some dummy slot.
else

Parse X as [RID, loc]
data← ORAM.Read(DBrecip,RID, ·) ▷ · is a dummy data variable
[PrevIdx,PrevLoc]← Dec(esk, data)
· ← ORAM.Write(DBrecip,RID,Enc(esk, [CurIdx, loc]))
· ← ORAM.Write(DB,CurIdx,Enc(esk, [PrevIdx,PrevLoc]))

CurIdx← CurIdx+ 1
return CurIdx.

Figure 13: Program Prog run by Gatt for multi-server setting

(Definition 3), the ORAM scheme is secure and the encryption scheme Enc1 is key-private. Then the
protocol ΠTEE in the (Gatt, Gledger)-hybrid world UC-realizes the FprivSignal functionality.

Proof. (Sketch) To prove UC security, we need to show that there exists a PPT simulator interacting
with FprivSignal that generates a transcript that is indistinguishable from the transcript generated in
the real world where the adversary interacts with (Gatt, Gledger) ideal functionalities. The simulator
internally simulates the Gatt and the Gledger functionalities to the adversary. The simulator works
similarly to the simulator for the single server case, except that the simulator announces a key-private
encryption key in the setup. Each time the simulator simulates an honest SEND, it generates a new
encryption key and encrypts 0 under this key. By the key-privacy property of our encryption, this
simulated world is indistinguishable from the real world. Moreover, we require that the simulator will
abort, if on behalf of any of the TEEs, the decryption under the wrong key gives a valid plaintext.
Since we use the property of wrong-key decryption detection in our scheme, this event will occur with
negligible probability. Hence the simulated world and the real world are indistinguishable.

C.2 Variants and other extensions

PIR-based Variant. We observe that for DB,DBkeys, we can simply replace the ORAM Write with
a non-privacy preserving write (e.g., simply append the latest signal or key to the databases). Thus,
one alternative is to replace the underlying ORAM with a Private Information Retreival (PIR) scheme
[46] for DB,DBkeys, and replace the ORAM.Read’s to DB,DBkeys with PIR.query.

At a high-level, PIR is essentially a read-only-ORAM, and PIR.query hides the database entry that
TEE is trying to read. Thus, all the privacy analysis still holds.
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Registration
Recipient Ri:
1. Let (mpk, epk) := Gatt.getpk()
2. Compute (pki, ski)← Enc.KeyGen(1λ), (Σ.ski,Σ.vki)← Σ.KeyGen(1λ).
3. Set ctkeys,i = Enc(epk, (pki,Σ.vki)) and send (“setup”, ctkeys,i) to Srv. ▷
4. Await ((eid, pki), σT ) from Srv.
5. Assert Σ.Vermpk((eid, (pk,RID, ctrrecip)), σT ) = 1 and publish (pki,RID, eid). Initialize ctri =

0.
▷ Note that if the returned pki is not the pki sent, abort.

Srv:
1. Upon receiving (“setup”, ctkeys,i) from Ri, let ((pki), σT ) =
Gatt.resume(eid, (“setup”, ctkeys,i)). Upon receiving ORAM request data ←
ORAM.Access(·, ·, ·, ·) from TEE when executing the Gatt.resume(·, ·) operation: pro-
cess and return data to Gatt.

2. Send ((eid, (pk,RID, ctrrecip)), σT ) to Ri.
3. Upon return of ctrrecip from TEE, if ctrrecip = M , call procedure
Gatt.resume(eid, (“extendrecip”, 2M) and update M ← 2M .

Procedure (SEND, Ri, loc) Sender S:
1. Sender S obtains eid from recipient Ri (which is published)
2. Sender S gets (mpk, epk) := Gatt.getpk() from TEE with correct eid and computes ctSignal =

Enc(epk, [RID, loc]). S sends (SUBMIT, (SEND, ctSignal)) to Gledger
Srv:
1. Send READ to Gledger
2. Upon receiving (SEND, ctSignal): Call Gatt.resume(eid, (“send”, ctSignal)). Upon receiving

ORAM requests data← ORAM.Access(·, ·, ·, ·): process and return data to Gatt.
3. Upon return of CurIdx from TEE. If CurIdx = N , call procedure
Gatt.resume(eid, (“extend”, 2N) and update N ← 2N .

Figure 14: The protocol for private signaling in the Gatt hybrid world for multi-server setting.

However, one major issue comes from the efficiency of PIR. As PIR is aimed that different users can
use the same database to do privacy-preserving-reads (in contrast, ORAM is just for a single user, but
the user can do reads and writes to that database). Most of the PIR constructions has query runtime
linear in the size of the database. This results in a O(N) runtime in our case. However, recently,
doubly-efficient PIR [47, 48] and offline/online PIR [49] have made some great progress allowing query
time to be sublinear (e.g., Õ(

√
N) [49] or even polylog(N) [48]).

Thus, using these new schemes, we can achieve a similar efficiency as our ORAM-based construc-
tion. However, all these works are more theoretical, providing great asymptotic costs, but may not be
very practical. Of course, there are some concretely efficient PIR (with preprocessing) constructions
[50] that can be used. Although the query time is linear in N , the concrete runtime is still acceptable.

In this paper, we do not implement or benchmark this variant, as we need ORAM for our DBrecip
anyway (unless we keep DBrecip in TEE), and it is also not yet clear that the PIR protocol can
improve the overall runtime. However, we would like to point out that this is a potentially interesting
and practical direction to further explore.

Extension to the group setting. In [19], the authors introduce an extension of OMR, applying
to the group setting (i.e., a sender may want to send to more than one recipient). This can be
similarly extended to our functionality. Our scheme can also be easily extended to the group setting:
the sender simply sends all the recipients’ identities and TEE simply decrypts and updates all the
recipients’ records accordingly.
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This results in a cost of O(G(log(N)+log(M))) per send, when a signal is addressed to G recipients.
It may be possible to reduce this cost further by modifying the underlying ORAM to take advantage
of the batch setting (i.e., read or write to multiple addresses at the same time). We leave that to
future works to explore in more detail.
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