
ISBN: xxxxxxxx

2021 the 11th International Workshop on Computer Science and Engineering (WCSE 2021)

doi: xxxxxxxx

Neural-Linear Attack Based on Distribution Data and Its Application

on DES

Rui Zhou 1,2, Ming Duan 1,2, Qi Wang1, Qianqiong Wu1, Sheng Guo1, Lulu Guo1,2 and Zheng Gong3

1 Information Engineering University, Zhengzhou, China

zhourui110.love@163.com, mdscience@sina.com
 2 Henan Key Laboratory of Network Cryptography, Zhengzhou, China

3 South China Normal University, Guangzhou, China

Abstract. The neural-differential distinguisher proposed by Gohr boosted the development of neural aided

differential attack. As another significant cryptanalysis technique, linear attack has not been developing as

rapidly in combination with deep learning technology as differential attack. In 2020, Hou et al. proposed the

first neural-linear attack with one bit key recovery on 3, 4 and 5-round DES and restricted multiple bits recovery

on 4 rounds, where the effective bits in one plain-ciphertext pair are spliced as one data sample. In this paper,

we compare the neural-linear cryptanalysis with neural-differential cryptanalysis and propose a new data

preprocessing algorithm depending on their similarities and differences. We call the new data structure

distribution data. Basing on it, we mount our key recovery on round-reduced DES—first, we raise the accuracy

of the neural-linear distinguisher by about 50%. Second, our distinguisher improves the effectiveness of one

bit key recovery against 3, 4 and 5-round DES than the former one, and attack 6-round DES with success rate

of 60.6% using 2048 plain-ciphertext pairs. Third, we propose a real multiple bit key recovery algorithm,

leading neural-linear attack from theory to practice.

Keywords: Linear cryptanalysis, Neural-linear attack, Deep learning, Data preprocessing, DES

1. Introduction

As deep learning has been widely used and outstands in various tasks, its security and privacy problems

becomes a concern[1], e.g., modify the logistic regression algorithm to preserve privacy[2], and use facial key

templates in homomorphic encryption[3].

Meanwhile, scholars also exploit neural networks to help cryptanalysis. In 2019, Gohr used deep learning

technology to build differential distinguishers, which is the first successful combination of deep learning and

traditional cryptanalysis[4]. The essential of this neural distinguisher is binary classification: distinguishing

the specific differential distribution from random differential distribution. On the one hand, various methods

mushroomed afterwards to improve the neural distinguisher or to widen its applications — Su et al. applied

neural distinguishers to polytope differential attack[5]. Bao et al. focused on neutral bits and attacked more

rounds[6]. Hou et al. transformed the input data to improve the distinguisher's accuracy[7]. Chen et al. further

proposed a neural aided statistical attack based on the differential cryptanalysis[8] [9]. On the other hand,

scholars attempted to explain the inherent workings of this neural aided cryptanalysis and its deeper mechanism.

Analysis on Gohr's distinguisher to boost simulation on non-Markov ciphers[10]. An interpretability of deep

neural networks is provided by Benamira et al. from both cryptanalysis and machine learning perspectives[11].

Lu et al. conclude technically the data structure used in training neural networks[12].

With the development of the neural aided differential attacks above, how to combine linear attack with

deep learning has become a natural question. Linear attack is another strong cryptanalysis technique on

symmetric-key ciphers like differential attack. First proposed in 1993 by Matsui[10][11], it is still one of the

most widely used attacks to test the security of primitives. Although neural aided differential attack has become

a hit, researching on the neural-linear attack has been at a slow pace. Till 2020, Hou et al. first proposed a

linear attack on DES using neural distinguisher[15]. Yet, neural distinguishers in Hou's paper didn't achieve

better result than traditional linear attack in one bit key recovery, nor is the multiple bits key recovery close to

mailto:zhourui110.love@163.com
mailto:mdscience@sina.com

practical use. Therefore, there remains an open question that how to use deep learning to improve traditional

linear attack.

Our Contributions. Determined by the essential of linear cryptanalysis, binary classification neural

network can be applied to linear attack. We show by experiments that the neural distinguisher cannot extract

linear feature from direct plain-ciphertext but from a new form of data: distribution data, which is produced

by a new method of data preproccessing we propose. Different from any other neural aided cryptanalysis, one

sample of our data contains multiple plain-ciphertext pairs information. This new data preprocessing method

is derived from comparison. Compared with former neural-linear distinguisher, our distinguisher trained with

distribution data has the following advantages:

1. The accuracy of the neural distinguisher rises, which indicates that our distinguisher has a better

capability of learning linear feature.

2. We mount one-bit key recovery with higher success rate and fewer plain-ciphertext pairs than the former,

and even surpass the traditional method on 5 round.

3. We mount real multiple bits key recovery on 4 and 5 round DES using the same distinguisher as in one

bit key recovery. Thus, we simplify the neural aided multiple bits key recovery with less space and computation

time.

Still, we are going to take advantage of distribution data to improve the accuracy further and launch key

recovery on longer round (e.g., train multiclass classification neural network).

Outline. In Section 2, we introduce significant notations that will be used in the rest of this paper. And we

will give a brief description of DES and linear cryptanalysis as well. In Section 3, we compare the similarity

and difference between neural aided differential attack and linear attack as well as provide a new data

processing method. We present the result and discussions of neural distinguisher training and key recovery

attacks in Section 4 and Section 5 respectively. Finally, we conclude this paper and propose future work in

Section 6.

2. Preliminaries

Table 1 presents the notations we use throughout the paper.

Table 1: Notations in this paper.

Notations Description

⊕ Bitwise XOR operation.

⋘ Left bit rotation.

∥ Concatenation operation.

∼ Bitwise NOT operation.

𝑋 = (𝑥𝑛−1, 𝑥𝑛−2, . . . , 𝑥0) An n-bit binary vector, where 𝑥0 is the right most bit.

𝑋[𝑖] = 𝑥𝑖 The i-th bit position of 𝑋

𝑋[𝑖, 𝑗, … , 𝑘] 𝑥𝑖 ⊕ 𝑥𝑗 ⊕ … ⊕ 𝑥𝑘

𝑃 The 64-bit plaintext

𝐶 The corresponding 64-bit ciphertext

𝑃𝐿 The left 32-bit of 𝑃

𝑃𝑅 The right 32-bit of 𝑃

𝐶𝐿 The left 32-bit of 𝐶

𝐶𝑅 The right 32-bit of 𝐶

𝐾𝑟 The subkey used in r-th round.

𝐿𝑟 Linear approximate equation.

𝑃𝑟(𝐿𝑟) The probability of 𝐿𝑟.

𝑁𝐷𝐿𝑟
 Neural distinguisher trained with 𝐿𝑟

2.1. A Brief Description of DES

DES[16] is the first cryptographic primitive attacked by linear cryptanalysis. As a typical Feistel-structured

block cipher, DES is chosen as object primitive to apply our neural-linear attack on. Its block size is 64 bits

and master key is 56 bits long. In this paper, we omit the initial permutation 𝐼𝑃 and the final permutation 𝐼𝑃−1.

Fig. 1: DES cipher.

The nonlinear function 𝐹: 𝐹2
𝑛 → 𝐹2

𝑛 is defined as follows:

 () ((()))F X P S E X K=  (1)

where E, S, P are expansion operation, S-box operation and permutation respectively.

2.2. Linear Attack

Linear attack is one of the known-plaintext attacks. Given plaintext 𝑃 and corresponding r-th round output

C, we need to obtain linear approximate equation 𝐿𝑟, whose probability deviates from 1/2, and recover the key

bits by statistical distribution. Traditional linear attack on DES proposed by Matsui includes two algorithms

from paper[13]. Algorithm 1 can recover 1 bit subkey, and Algorithm 2 can recover multiple bits at one time.

The following 𝛼, 𝛽, 𝛾, 𝜇 and 𝜈 are all bitwise masks.

One bit key recovery: The linear approximate equation is a pure linear equation. The left side of the

equation is the XOR of effective plain-ciphertext bits, the right side of the equation is the XOR among effective

key bits.

 :rL P C K     =  (2)

Algorithm1 can only recover 1 bit 𝛾 ⋅ 𝐾 on the right side of the equation.

Multiple bits key recovery: The chosen linear approximate equation is a nonlinear equation with a

nonlinear part, usually derived from a shorter round linear equation (2).

'

1: (,) (,)r rL P C F P K F P K K           =  (3)

Algorithm2 can recover not only 1 bit 𝛾 ⋅ 𝐾, but also effective bits in 𝐾1,𝐾𝑟 according to 𝜇 ⋅ 𝐹(𝑃, 𝐾1) ⊕

𝜈 ⋅ 𝐹(𝑃, 𝐾𝑟) on the left side.

Assuming that the equation 𝐿𝑟 holds with the probability 𝑃𝑟(𝐿𝑟) = 𝑝𝐿𝑟
 for each 𝐾 , when 𝛾 ⋅ 𝐾 = 0 ,

𝑃𝑟(𝛼 ⋅ 𝑃 ⊕ 𝛽 ⋅ 𝐶 = 0) = 𝑝𝐿𝑟
, 𝑃𝑟(𝛼 ⋅ 𝑃 ⊕ 𝛽 ⋅ 𝐶 = 1) = 1 − 𝑝𝐿𝑟

; when 𝛾 ⋅ 𝐾 = 1 , 𝑃𝑟(𝛼 ⋅ 𝑃 ⊕ 𝛽 ⋅ 𝐶 = 1) =
𝑝𝐿𝑟

, 𝑃𝑟(𝛼 ⋅ 𝑃 ⊕ 𝛽 ⋅ 𝐶 = 0) = 1 − 𝑝𝐿𝑟
. As a result, the left side of the equation is a binomial distribution, of

which linear attack take advantage.

3. Data Preprocessing

As we want to apply the binary classification distinguisher to linear attack, we first need to reduce it into

a binary classification problem. According to Section 2.2, we find it naturally that the two different

distributions when 𝛾 ⋅ 𝐾 = 0 or 1 can be chosen as our classification object. Meanwhile, basing on the

supervised learning mode, the training data involve two parts—sample 𝑋 and corresponding label 𝑌.

3.1. Pre-experiments

The first question we need to answer is that: Can Residual Network directly learn the linear feature from

plain-ciphertext? For this purpose, we conduct two experiments: A sample is 𝑁-bit binary string, of which first

(𝑁 − 4) bits are generated randomly and the last 4 bits are XOR of two bits chosen from the front (𝑁 − 4)

bits. The specific data generation is shown in the following table. In this way, there are linear relations inside

data.

Table 2: Accuracy of neural distinguisher trained with different data structures.

Experiment Sample X Label Y Accuracy

a

64-bit 0-1 string (𝑥63, 𝑥62, … , 𝑥0)，where 𝑥0, … , 𝑥59 are

random, and 𝑥60 = 𝑥0 ⊕ 𝑥1, 𝑥61 = 𝑥2 ⊕ 𝑥3, 𝑥62 = 𝑥4 ⊕
𝑥5, 𝑥63 = 𝑥6 ⊕ 𝑥7

1

0.501
64-bit 0-1 string (𝑥63, 𝑥62, … , 𝑥0)，where 𝑥0, … , 𝑥59 are

random, and 𝑥60 = ~(𝑥0 ⊕ 𝑥1), 𝑥61 = ~(𝑥2 ⊕ 𝑥3), 𝑥62 =
~(𝑥4 ⊕ 𝑥5), 𝑥63 = ~(𝑥6 ⊕ 𝑥7)

0

b

32-bit 0-1 string (𝑥31, 𝑥30, … , 𝑥0)，where 𝑥0, … , 𝑥27 are

random, and 𝑥28 = 𝑥0 ⊕ 𝑥1, 𝑥29 = 𝑥2 ⊕ 𝑥3, 𝑥30 = 𝑥4 ⊕
𝑥5, 𝑥31 = 𝑥6 ⊕ 𝑥7

1

0.496
32-bit 0-1 string (𝑥31, 𝑥30, … , 𝑥0)，where 𝑥0, … , 𝑥27 are

random, and 𝑥28 = ~(𝑥0 ⊕ 𝑥1), 𝑥29 = ~(𝑥2 ⊕ 𝑥3), 𝑥30 =
~(𝑥4 ⊕ 𝑥5), 𝑥31 = ~(𝑥6 ⊕ 𝑥7)

0

Table 2 shows the average accuracy of the neural distinguisher from repeated experiments a and b, both

of which and even all the accuracy we obtained is close to 0.5, indicating that the neural distinguisher fails to

learn the linear features of the data. Next, we use just real plain-ciphertext, namely, do not have data

prepocessing phase, to train the binary classification neural distinguisher and it fails again.

3.2. Data Structures in Neural-Aided Attacks

We recall the plain-ciphertext data prepocessing in paper[15]. For one-bit key recovery, the effective text

bits were extracted as one sample (𝑃[𝑖0], 𝑃[𝑖1], … , 𝑃[𝑖𝑚] and 𝐶[𝑗0], 𝐶[𝑗1], … , 𝐶[𝑗𝑛] are effective plain-cipher

text bits in a linear approximate equation 𝐿𝑟 in Table 3).

Table 3: Data structure for one-bit key recovery.

Sample X Label Y

Binary string with fixed length: (𝑃[𝑖0] ∥ 𝑃[𝑖1] ∥ ⋯ ∥ 𝑃[𝑖𝑚] ∥ 𝐶[𝑗0] ∥ 𝐶[𝑗1] ∥ ⋯ ∥ 𝐶[𝑗𝑛]) 𝛾 ∙ 𝐾

The accuracy of the trained distinguisher is higher than 0.5, but the success rate is lower than that of the

traditional model.

For multi-bits key recovery, assuming that 𝛾 ⋅ 𝐾 is known in a linear approximate equation 𝐿𝑟
′ , we extract

effective bits in left-side plaintext 𝑃𝐿, right-side plaintext 𝑃𝑅, left-side ciphertext 𝐶𝐿, right-side ciphertext 𝐶𝑅,

𝐹1(𝑃, 𝐾1), 𝐹𝑟(𝐶, 𝐾𝑟): 𝑃𝐿[𝑖0], 𝑃𝐿[𝑖1], … , 𝑃𝐿[𝑖𝑚], 𝑃𝑅[𝑖0
′], 𝑃𝑅[𝑖1

′], … , 𝑃𝑅[𝑖𝑢
′], 𝐶𝐿[𝑗0], 𝐶𝐿[𝑗1], … , 𝐶𝐿[𝑗𝑛], 𝐶𝑅[𝑗0

′],

𝐶𝑅[𝑗1
′], … , 𝐶𝑅[𝑗𝑣

′], 𝐹1(𝑃, 𝐾1)[𝑘0], … , 𝐹1(𝑃, 𝐾1)[𝑘𝑠] and 𝐹𝑟(𝐶, 𝐾𝑟)[𝑙0], … , 𝐹𝑟(𝐶, 𝐾𝑟)[𝑙𝑡]. A sample labelled 1 is

composed of 6 parts above, and 0s are padded in the end of each to keep these 6 parts in the same length, while

the samples labelled 0 substitute the last 2 parts with random data.

Table 4: Data structure for multi-bits key recovery.

Sample X Label Y

Binary string: (𝑃𝐿[𝑖0] ∥ 𝑃𝐿[𝑖1] ∥ ⋯ ∥ 𝑃𝐿[𝑖𝑚] ∥ 𝑃𝑅[𝑖0
′] ∥ 𝑃𝑅[𝑖1

′] ∥ ⋯ ∥ 𝑃𝑅[𝑖𝑢
′] ∥

𝐶𝐿[𝑗
0
] ∥ 𝐶𝐿[𝑗

1
] ∥ ⋯ ∥ 𝐶𝐿[𝑗

𝑛
] ∥ 𝐶𝑅[𝑗

0
′] ∥ 𝐶𝑅[𝑗

1
′] ∥ ⋯ ∥ 𝐶𝑅[𝑗

𝑣
′] ∥ 𝐹1(𝑃, 𝐾1)[𝑘0] ∥ ⋯

∥ 𝐹1(𝑃, 𝐾1)[𝑘𝑠] ∥ 𝐹𝑟(𝐶, 𝐾𝑟)[𝑙0] ∥ ⋯ ∥ 𝐹𝑟(𝐶, 𝐾𝑟)[𝑙𝑡])

1

Binary string: (𝑃𝐿[𝑖0] ∥ 𝑃𝐿[𝑖1] ∥ ⋯ ∥ 𝑃𝐿[𝑖𝑚] ∥ 𝑃𝑅[𝑖0
′] ∥ 𝑃𝑅[𝑖1

′] ∥ ⋯ ∥ 𝑃𝑅[𝑖𝑢
′] ∥

𝐶𝐿[𝑗
0
] ∥ 𝐶𝐿[𝑗

1
] ∥ ⋯ ∥ 𝐶𝐿[𝑗

𝑛
] ∥ 𝐶𝑅[𝑗

0
′] ∥ 𝐶𝑅[𝑗

1
′] ∥ ⋯ ∥ 𝐶𝑅[𝑗

𝑣
′] ∥ 𝑟𝑎𝑛𝑑𝑜𝑚 ∥ 𝑟𝑎𝑛𝑑𝑜𝑚)

0

What could be improved with the data structure above is that 𝛾 ⋅ 𝐾 is known as the premise and padding

0s will also reduce the information entropy.

Based on our experiments a, b and Hou's experiments, we believe that a more suitable method of data

preprocessing should be designed according to the characteristic of linear attacks.

In section 2.2, we state that linear attack focus on binomial distribution over 𝐹2. While in Gohr's neural-

differential attack, the differential distribution is a multinomial distribution. The classification target of Gohr's

neural distinguisher is to determine whether a difference belongs to an output differential distribution with a

fixed input difference or a random distribution. Experiments A and B from paper[11] indicates that Gohr's

neural distinguisher generally relies on the probability of (ciphertext, penultimate and antepenultimate-round)

differences in the full space 𝐹2
32 — the higher the probability of its difference is, the higher score it got from

the distinguisher, and the more likely it is to be judged as a real ciphertext pair. And vice versa, some

differences' probability is 0.

In comparison, it is infeasible for the neural distinguisher to identify whether it belongs to a specific

binomial distribution based on the probability of one piece of plain-ciphertext, like what is done in neural-

differential attack, because there are only two events in a binomial distribution with respective probabilities:

𝑝𝐿𝑟
 and 1 − 𝑝𝐿𝑟

, which have negligible deviation with each other. If one sample only contains one-bit value

from 𝐹2, there is a great chance that the distinguisher will misjudge. Hence, we state the assumption that

samples containing the information from multiple plain-ciphertext pairs work better than those from one plain-

ciphertext pair in neural aided linear attack, which we will verify with later experiments.

3.3. Distribution Data

Next, in what form does a sample contain multiple plain-ciphertext pairs? Gohr directly use the ciphertext

pairs denoted as a vector: (𝐶𝐿, 𝐶𝑅 , 𝐶𝐿
′ , 𝐶𝑅

′), and many researches have been done to figure out the effectiveness

that different methods of data preprocessing have on neural aided cryptanalysis. These attempts are described

as matrix multiplication with ciphertext-pair vector (𝐶𝐿, 𝐶𝑅 , 𝐶𝐿
′ , 𝐶𝑅

′) in paper[12]. Another way to improve the

accuracy of neural distinguishers is add more text pairs in one sample.

Similarly, We also put the XOR operation of effective text bits forward in data preprocessing: (𝛼, 𝛽) ⋅
(𝑃, 𝐶)𝑇 = 𝛼 ⋅ 𝑃 ⊕ 𝛽 ⋅ 𝐶, and the dot product of mask and vector can be seen as matrix multiplication reversely.

The following is the new data preprocessing algorithm:

Algorithm 1: A new data preprocessing algorithm for neural-linear attack

Input: Master key 𝐾

𝑁 pieces of plaintext 𝑃: 𝑃1, 𝑃2, . . . , 𝑃𝑁

Output: A sample 𝑋 with corresponding label 𝑌

1. Compute 𝛾 ⋅ 𝐾 as the label Y depending on the linear approximate equation 𝐿.

2. Encrypt 𝑃 with 𝐾 and obtain 𝑁 pieces of cipertext 𝐶: 𝐶1, 𝐶2, . . . , 𝐶𝑁.

3. For the 𝑁 pairs of plain-ciphertext, compute the value (0 or 1) of 𝛼 ⋅ 𝑃 ⊕ 𝛽 ⋅ 𝐶 according to the linear

equation 𝐿. Splice the 𝑁 values into an 𝑁-bit string as sample 𝑋.

The data we obtain after preprocessing are in the form: a 𝑁-bit string as a sample with 1-bit label, and the

data structure is shown in table 5. One sample contains information from 𝑁 pairs of plain-ciphertext, which is

a partial binomial distribution itself. Thus, we call it distribution data. The former training data forms a

distribution, whereas we take distributions as data. And in rest of the paper, we will generate our training data

through Algorithm 1 and mount a key recovery attack on round-reduced DES with trained linear distinguisher.

Table 5: Distribution data.

Sample X Label Y

𝑁-bit binary string: (𝛼 ∙ 𝑃1 ⊕ 𝛽 ∙ 𝐶1 ∥ 𝛼 ∙ 𝑃2 ⊕ 𝛽 ∙ 𝐶2 ∥ ⋯ ∥ 𝛼 ∙ 𝑃𝑁 ⊕ 𝛽 ∙ 𝐶𝑁) 𝛾 ∙ 𝐾

4. Training the Neural Linear Distinguisher

4.1. Network Structure

The neural network used in differential distinguisher[4] and linear distinguisher[15] is Residual Network,

whose main component is iterated Residual Towers. The convolution blocks can reduce the computational cost

when deepening the network, which is a highly effective deep learning model. The main structure of the

network we use remains unchanged, and the input layer is modified according to data structure (Fig. 2). We

change the reshape layer from a 4 × 16 matrix to an 8-column matrix. The input strings are 𝑁-bit in length,

and passed through the reshape layer changed into (𝑁/8) × 8 matrices. The last two dense layers contain 32

neurons each. And the output layer contains 1 neuron.

Fig. 2: An overview on the network structure.

4.2. Training Process

We generate training data depending on 3-round, 4-round, 5-round and 6-round linear equations: 𝐿3, 𝐿4,

𝐿5 , 𝐿6 . And their respective probabilities are 𝑃𝑟(𝐿3) = 0.7 , 𝑃𝑟(𝐿4) = 0.439 , 𝑃𝑟(𝐿5) = 0.519 , 𝑃𝑟(𝐿6) =

0.4962. The training data are divided into training data set and validation data set, whose sizes are shown in

the following table. When executing the experiments, we find that the convergence speed of training is

moderate when the training epoch is 50 and the batch size is 500. Table 6 presents the validation accuracy on

the 4 rounds. In addition, we take round 3 and round 4 for example, to show the accuracy varying with different

value of input strings' length 𝑁 (Fig. 3).

 3 1 3: [7,18,24,29] [15] [7,18,24,29] [15] [22] [22]L R L RL P P C C K K   =  (4)

4

1 3 4

: [7,18,24,29] [15] [15] [7,18,24,27,28,29,30,31]

[22] [22] [42,43,45,46]

L R L RL P P C C

K K K

  

=  
 (5)

5

1 2 4 5

: [15] [7,18,24,27,28,29,30,31] [15] [7,18,24,27,28,29,30,31]

[42,43,45,46] [22] [22] [42,43,45,56]

L R L RL P P C C

K K K K

  

=   
 (6)

 6 2 3 4 6: [7,18,24] [7,18,24,29] [15] [22] [44] [22] [22]R L RL P C C K K K K  =    (7)

Table 6: Accuracy of two neural distinguishers on four linear equations. We show the accuracy range of 2000 times

test.

Round Source N1
Train data2

(training data set + validation data set)
Accuracy

3

This

paper

32 104 + 103 0.99 ± 0.009

64 104 + 103 1.000

256 104 + 103 1.000

[15] - 105 0.6723

4

This

paper

64 104 + 103 0.815 ± 0.02

256 104 + 103 0.970 ± 0.01

512 104 + 103 0.996 ± 0.02

[15] - 106 0.5375

5

This

paper

256 104 + 103 0.658 ± 0.02

512 104 + 103 0.749 ± 0.02

1024 105 + 2 × 103 0.856 ± 0.01

[15] - 106 0.5128

6
This

paper

512 104 + 103 0.546 ± 0.01

1024 105 + 2 × 103 0.57 ± 0.015
1 𝑁 is the length of input samples.

2 The data size in this paper is described in the form of `size of the training data set' + `size of the validation data set'.

(a): Validation accuracy on 𝐿3. (b): Validation accuracy on 𝐿4.

Fig. 3: Training accuracy with different 𝑁.

Discussions. With the new data preprocessing method, we successfully improve the accuracy of the

distinguisher comparing to Hou's result on 𝐿3, 𝐿4, 𝐿5 and add the round that the neural distinguisher can

identify to 6. Furthermore, we find that the accuracy declines with the decrease of the probability 𝑝𝐿 according

to table 6. And figure 3 demonstrates that on the same linear equation, the longer the input string is, the better

the distinguisher learns. These experiment phenomena are consistent with our expectations as we assume that

feature of the binomial distribution is what the distinguisher learns.

5. Key Recovery

5.1. One Bit Key Recovery

As the linear distinguishers have been trained in section 4 with fixed input length 𝑁, we need at least 𝑁

pairs of plain-ciphertext when mounting key recovery. Similar to the data preprocessing, we compute the

values on the left side of linear approximate equation to obtain an 𝑁 -bit string. Feed it to the trained

distinguisher and we get a score 𝑍 ranging from 0 to 1.

Algorithm 2: One bit key recovery algorithm

Input: 𝑁 pairs of plain-ciphertext encrypted by a same master key

 Neural distinguisher 𝑁𝐷𝐿𝑟
 trained by 𝐿𝑟

Output: one-bit value of 𝛾 ⋅ 𝐾

1. For the 𝑁 pairs of plain-ciphertext, compute the value (0 or 1) of 𝛼 ⋅ 𝑃 ⊕ 𝛽 ⋅ 𝐶 according to the linear

approximate equation 𝐿𝑟. Splice the 𝑁 values into an 𝑁-bit string 𝑆.

2. 𝑍 ← 𝑁𝐷𝐿𝑟
(𝑆)

3. If 𝑍 ≥ 0.5 then
4. Return 𝛾 ⋅ 𝐾 = 0
5. Else

6. Return 𝛾 ⋅ 𝐾 = 1
7. End if

In case that we have more than 𝑁 pairs of known plain-ciphertext, subtle changes can be made on

Algorithm 2: we take 𝑁 pairs as a group and get multiple strings 𝑆 in step 1. In step 2, we get multiple scores

and take their average as the final score 𝑍.

In practical experiment, we randomly generate the master key and the plaintext. Table 7 shows the

comparison among traditional way, neural-linear attack in paper [15] and our approach in one bit key recovery.

The success rate of traditional way is the theoretical result calculated by expression (9) from paper [13]. And

we put the average success rate in 200 times tests in table 7.

Table 7: Success rate of one bit key recovery on 3, 4, 5 and 6-round DES

Round Source Tarin data Number of plain-ciphertext pairs1
Success

rate

3

[13] - 30 98.5%

[15] 104 + 103 32 95%

This paper 104 + 103 32×1 98.5%

4

[13] - 448 99.5%

[15] 104 + 103 633 99%

This paper 104 + 103 256×1 96.6%

This paper 104 + 103 512×1 99.5%

5

[13] - 4617 90%

[15] 106 + 5 × 104 8631 90%

This paper 104 + 103 1024×1 84.28%

This paper 104 + 103 1024× 2 91.15%

6
[13] - 34627 92.1%

This paper 105 + 2 × 103 1024×2 60.6%
1 The number of pairs in this paper is described in the form of ‘𝑁’ × ‘number of the groups’.

Discussions. The neural-linear distinguisher trained in this paper shows its advantages in one bit key

recovery. In the situation that we have 𝑁 pairs of plain-ciphertext (i.e., the number of the group is 1). the

success rate is slightly lower than the accuracy of training, and the difference is within 0.02. The success rate

will increase slightly when we add more groups of plain-ciphertext—Hence, in key recovery of 5 and 6 round,

we increased the number of the groups instead of training new distinguisher. Compared with Hou's linear

distinguisher, our new distinguisher not only has higher accuracy, but also get higher success rate with fewer

plain-ciphertext pairs. Besides, it also surpasses the traditional method in 5-th round.

5.2. Multiple Bits Key Recovery

We still use the trained distinguisher in section 4 for multiple bits key recovery. Linear approximate

equation 𝐿4
′ , 𝐿5

′ are derived from 𝐿3, 𝐿4, keeping the probability, i.e., 𝑃𝑟(𝐿4
′) = 𝑃𝑟(𝐿3), 𝑃𝑟(𝐿5

′) = 𝑃𝑟(𝐿4). The

nonlinear part of both is 𝐹(𝑃𝑅 , 𝐾1)[15], effecting 6 bits: 𝐾1[42], 𝐾1[43], 𝐾1[44], 𝐾1[45], 𝐾1[46], 𝐾1[47]:

'

4 1

2 4

: [15] [7,18,24,29] [7,18,24,29] [15] (,)[15]

[22] [22]

L R L R RL P P C C F P K

K K

   

= 
 (8)

'

5 1

2 4 5

: [15] [7,18,24,29] [15] [7,18,24,27,28,29,30,31] (,)[15]

[22] [22] [42,43,45,46]

L R L R RL P P C C F P K

K K K

   

=  
 (9)

From the result of one bit key recovery, the distinguisher we trained can classify two binomial distributions:

𝐵(𝑁, 𝑝𝐿) and 𝐵(𝑁, 1 − 𝑝𝐿). The multi-bit linear approximate equation holds the same probability with one-bit

ones, therefore we consider the classification object keeps the same in multiple key recovery. So we did not

design new distinguisher. In fact, we trained new distinguisher depending on 𝐿4
′ and 𝐿5

′ , the accuracy and its

performance in key recovery remains similar, which also demonstrates it is the binomial distribution that the

distinguisher classifies.

In multiple key recovery, we recover not only one-bit 𝛾 ⋅ 𝐾 on the right side, but also six effective key bits

in nonlinear function on the left side. Our multiple key recovery algorithm contains two steps accordingly.

When recovering left-side effective key bits, we consider the distinguisher can classify the two real

binomial distributions but cannot identify the distribution when the key is wrong. So, we assume that the more

the score deviates from 0.5, the more possible the key is real.

When recovering 𝛾 ⋅ 𝐾, according to the way we set the label, we believe that if the score is close to 0,

then 𝛾 ⋅ 𝐾 is 0; otherwise, 𝛾 ⋅ 𝐾 is 1.

Algorithm 3: Left-side multiple bits key rank algorithm

Input: r-round linear approximate equation 𝐿𝑟
′ : 𝛼 ⋅ 𝑃 ⊕ 𝛽 ⋅ 𝐶 ⊕ 𝜇 ⋅ 𝐹(𝑃, 𝐾1) ⊕ 𝜈 ⋅ 𝐹(𝑃, 𝐾𝑟) = 𝛾 ⋅ 𝐾

 𝑟-round 𝑛 × 𝑁 pairs of plain-ciphertext encrypted by a same master key

 Neural distinguisher 𝑁𝐷𝐿𝑟−1
 trained by 𝐿𝑟−1

Output: 𝑅𝑎𝑛𝑘𝑘𝑒𝑦

1. Divide the plain-ciphertext pairs into 𝑛 groups 𝐺1, 𝐺2, … , 𝐺𝑛, 𝑁 pairs a group.
2. 𝑙 ← length of left-side effective key bits
3. for 𝑘𝑒𝑦 in 2𝑙 do
4. for plain-ciphertext pairs in {𝐺1, 𝐺2, … , 𝐺𝑛} do

5. Compute the value (0 or 1) of left side of 𝐿𝑟
′

6. end for

7. Splice the 𝑁 values into an 𝑁-bit string 𝑆

8. 𝑍𝑖 ← 𝑁𝐷𝐿𝑟
(𝑆)

9. end for

10. |𝐶𝑘𝑒𝑦| = |
∑ 𝑍𝑖

𝑛
𝑖=1

𝑛
 −

1

2
|

11. Return 𝑅𝑎𝑛𝑘𝑘𝑒𝑦 ←sort |𝐶𝑘𝑒𝑦| by descending value order

Algorithm 4: 𝛾 ⋅ 𝐾 recovery algorithm

Algorithm A Algorithm B

Input: 𝐿𝑟
′ : 𝑟-round linear approximate equation

𝐶𝐾𝑟𝑒𝑎𝑙
: score of real left-side effective key

𝐾𝑟𝑒𝑎𝑙

Output: one-bit value of 𝛾 ⋅ 𝐾

1. If 𝐶𝐾𝑟𝑒𝑎𝑙
≥ 0.5 then

2. Return 𝛾 ⋅ 𝐾 = 0
3. Else

4. Return 𝛾 ⋅ 𝐾 = 1
5. End if

Input: 𝐿𝑟
′ : 𝑟-round linear approximate equation

𝐶𝐾𝑚𝑎𝑥
: the max score 𝑚𝑎𝑥|𝐶𝐾𝑖

| which

corresponds to the first key 𝐾_𝑚𝑎𝑥 in 𝑅𝑎𝑛𝑘𝑘𝑒𝑦

Output: one-bit value of 𝛾 ⋅ 𝐾

1. If 𝐶𝐾𝑟𝑒𝑎𝑙
≥ 0.5 then

2. Return 𝛾 ⋅ 𝐾 = 0
3. Else

4. Return 𝛾 ⋅ 𝐾 = 1
5. End if

Unlike one bit key recovery, the group number 𝑛 has negligible effect on the multiple bits key recovery

through the experiment. We repeated 200 times and the average real key rank is around 30—slightly higher

than random search. Algorithm A and B recover 𝛾 ⋅ 𝐾 under different circumstances. If we have determined

the real effective key on the left side, we can recover 𝛾 ⋅ 𝐾 with high possibility using Algorithm A. And

Algorithm B make use of the key rank obtained through Algorithm 3 (table 8).

Table 8: Multiple bits key recovery on 4 and 5-round DES.

Round Distinguisher Left-side multiple bits key rank
success rate of 𝛾 ⋅ 𝐾 recovery

Algorithm A Algorithm B

4 𝑁𝐷𝐿3
 30 100% 99%

5 𝑁𝐷𝐿4
 31 99% 63%

Discussions. We believe that our multiple bits key recovery surpasses Hou's in three aspects. Firstly, we

add one more round in the recovery on DES than in paper [15]. Secondly, we did not retrain any new

distinguisher but use the same one in one bit key recovery. And experiments had been executed to prove that

both have the same effect. Therefore, our approach simplifies the recovery process and take up less space and

precomputation time. Last but not least, we can get key rank by Algorithm 3 and 𝛾 ⋅ 𝐾 by Algorithm B in

sequence without any precondition, Hou's multiple bits key recovery attack is actually theoretical because there

is a precondition that 𝛾 ⋅ 𝐾 = 0. Although Algorithm A is not feasible in practical for 𝛾 ⋅ 𝐾 recovery, it proves

that the distinguisher can identify 𝛾 ⋅ 𝐾 according to real distribution data. To the best of our knowledge, this

work is the first neural aided multiple bits key recovery that can be applied to practical linear attack. Future

work will aim at improving Algorithm 3 to raise real key rankings.

6. Conclusion

In this paper, we mounted a new neural-linear attack on round-reduced DES. We compared the similarities

and differences between neural aided differential and linear attack and confirmed our findings with

experiments. With a new data preprocessing: we obtained distribution data as our training data and successfully

improved the neural distinguisher's accuracy. Moreover, our distinguisher performs better than the state-of-art

one in one bit key recovery: reaching higher success rate with fewer plain-ciphertext pairs. It is also capable

in multiple bits key recovery, for which we proposed a practical but not theoretical key recovery algorithm.

Our results indicate that especial approaches are necessary to suit in linear attack when deep learning

techniques are used. The work we've done reflects the comparison between linear attack and differential attack

from a machine learning perspective, and more researches are needed to explain its deeper mechanism

theoretically and propose even better methods. Our neural-linear attack can be applied to other cryptographic

primitives, and we are going to modify the binary classification distinguisher into multiclass ones for multiple

bits key recovery for better performance in the future.

7. References

[1] D. Harinath, P. Satyanarayana, M.V.R. Murthy. A Review on Security Issues and Attacks in Distributed Systems.

Journal of Advances in Information Technology. (2017) 1–9.

[2] K. Chaudhuri, and C. Monteleoni. Privacy-preserving logistic regression. In: NIPS, 2008: pp. 289–296.

[3] T. Chandrasekhar, and S. Kumar. A Noval Method for Cloud Security and Privacy Using Homomorphic

Encryption Based on Facial Key Templates. Journal of Advances in Information Technology. 13 (2022).

[4] A. Gohr. Improving Attacks on Round-Reduced Speck32/64 Using Deep Learning. In: A. Boldyreva, D.

Micciancio (eds.). Advances in Cryptology – CRYPTO 2019. Springer International Publishing, Cham, 2019: pp.

150–179.

[5] H.-C. Su, X.-Y. Zhu, D. Ming. Polytopic Attack on Round-Reduced Simon32/64 Using Deep Learning. In: Y.

Wu, M. Yung (eds.). Information Security and Cryptology. Springer International Publishing, Cham, 2021: pp. 3–

20.

[6] Z. Bao, J. Guo, M. Liu, L. Ma, Y. Tu. Conditional Differential-Neural Cryptanalysis. Cryptology ePrint Archive.

Report 2021/719 (2021).

[7] Z. Hou, J. Ren, S. Chen. Improve Neural Distinguisher for Cryptanalysis. Cryptology ePrint Archive. Report

2021/1017 (2021).

[8] Y. Chen, H. Yu. Improved Neural Aided Statistical Attack for Cryptanalysis. Cryptology ePrint Archive. Report

2021/311 (2021).

[9] Y. Chen, Y. Shen, and H. Yu. Neural-Aided Statistical Attack for Cryptanalysis. The Computer Journal. 2022.

[10] A. Baksi, J. Breier, Y. Chen, X. Dong. Machine Learning Assisted Differential Distinguishers For Lightweight

Ciphers (Extended Version). Cryptology ePrint Archive. Report 2020/571 (2020).

[11] A. Benamira, D. Gerault, T. Peyrin, Q.Q. Tan. A Deeper Look at Machine Learning-Based Cryptanalysis. In: A.

Canteaut, F.-X. Standaert (eds.). Advances in Cryptology – EUROCRYPT 2021. Springer International

Publishing, Cham, 2021: pp. 805–835.

[12] J. Lu, G. Liu, Y. Liu, B. Sun, C. Li, L. Liu. Improved Neural Distinguishers with (Related-key) Differentials:

Applications in SIMON and SIMECK. Cryptology ePrint Archive. Report 2022/030 (2022).

[13] M. Matsui, Linear Cryptanalysis Method for DES Cipher, In: eurocrypt93ed (ed.). Eurocrypt93, 1994: pp. 386–

397.

[14] M. Matsui. The First Experimental Cryptanalysis of the Data Encryption Standard. Crypto94. 1994: pp. 1–11.

[15] B. Hou, Y. Li, H. Zhao, B. Wu. Linear Attack on Round-Reduced DES Using Deep Learning. In: L. Chen, N. Li,

K. Liang, S. Schneider (eds.). Computer Security – ESORICS 2020, Springer International Publishing, Cham,

2020: pp. 131–145.

[16] Data Encryption Standard. National Bureau of Standards, NBS FIPS PUB 46. U.S. Department of Commerce.

1977.

