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Abstract—Verifiable Computation (VC) schemes provide a mechanism for verifying the output of a remotely executed program.
These are used to support computing paradigms wherein a computationally restricted client, the Verifier, wishes to delegate work to a
more powerful but untrusted server, the Prover. The Verifier wishes to detect any incorrect results, be they accidental or malicious.
The current state-of-the-art is only close-to-practical, usually because of a computationally demanding setup which must be amortised
across repeat executions. We present a VC scheme for verifying the output of arithmetic circuits with a small one-time setup, KGen,
independent of the size of the circuit being verified, and a insignificantly small constant program specific setup, ProbGen. To our
knowledge our VC scheme is the first built from the hardness of integer factoring, a standard cryptographic assumption. Our scheme
has the added novelty that the proofs are simply the raw output of the target computation, and the Prover is in effect blind to the
fact they are taking part in a VC scheme at all. Although our scheme has worse asymptotic performance than the state-of-the-art it is
particularly well suited for verifying one-shot programs and the output of large integer polynomial evaluation.

Index Terms—Verifiable computation, Cloud computing, Delegated computing, Distributed computing
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1 Introduction
VC schemes are protocols by which a Prover can convince
a Verifier of the correctness of the output of some compu-
tation. There are obvious applications to a huge variety of
client/server programs. From cloud deployments [1] to dis-
tributed volunteer scientific computation [2], the client/server
paradigm is a hugely popular and widely accepted standard
program architecture.

In programs using this design pattern there is usually a
powerful server performing calculations on behalf of a weaker
client. Despite how commonplace this style of computation
is, there are relatively few usable mechanisms by which the
client can generate strong guarantees of the correctness of
the output from a computation run on a remote server.
The best performing VC schemes to date have extremely
efficient verification steps, but expensive setup phases that
must be amortised across multiple repeat executions of the
same program with different inputs.

Worse still, existing VC schemes assume that there is
no bound on the computational power of the Prover. In
all the related work the computational complexity of the
prover increases by some non-negligible multiplicative factor
over unverified computation. In practice the Prover is rarely
unbounded, and often the Verifier will be incentivised to
minimise their use of the Prover, perhaps because they are
paying for the Prover’s time.

A compelling application of VC involves verifying work
offloaded to a peer-to-peer computation network. There are
a variety of projects and frameworks built to support the
operation of peer-to-peer computation networks [3] [4] [5].
At most, these protocols may have some protections against
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independently misbehaving nodes, but rarely build defences
against nodes capable of collusion. Work duplication is the
validation mechanism of choice, with a majority consensus
forming the result. This does not protect against the possi-
bility of collusion, but beyond this, work duplication is clearly
wasteful. Each program has to be executed at least twice to see
if consensus was reached; more if a dispute has to be resolved.

Without a viable mechanism to check the output of an
outsourced computation, one of the few ways to build faith in
the validity of a result is through the weaker notions of brand
reputation and contract law. Along with the economic benefit
of a large scale data centre [1], it must be the case that one
of the reasons cloud computing has become so successful is
that large brand names can garner more trust than smaller
operations or anonymous donors. Trusting a computational
task to a cloud provider with a good brand reputation is
considerably more compelling than a series of results provided
by donated resources of unknowable repute.

The ability to formally verify the correctness of a result is
clearly a compelling prospect, if only it could be done compu-
tationally cheaply enough. This paper presents a mechanism
that allows a computationally restricted Verifier to check
the results of a remote computation from a more powerful
but untrusted Prover with minimal additional computational
complexity to either party. Although our asymptotic complex-
ity is worse in many cases than the related work, there are
a number of situations in which our protocol excels. These
include programs that will only be executed and verified once,
and the evaluation of polynomials over large integers.

We leave a discussion on the related VC work until towards
the end of the paper. The work presented here is a completely
new approach to the problem of VC, and as such understand-
ing the construction does not require an understanding of the
mechanics of the related work.



1.1 Our Contributions
In this work we present a novel VC scheme. Our contributions
can be summarised as:
• Specifying a novel VC scheme, which, to the best of

our knowledge, is the first VC scheme to be:

– Proofless, the raw computational output of the
target program is verified without any addi-
tional data from the Prover.

– Built from the hardness of integer factoring.

• Prove our scheme satisfies the standard VC properties
of Completeness, Soundness, and is always Outsource-
able.

For large composite number N =
∏
PN , arithmetic circuit

to be verified CN , our scheme has the following additional
properties:
• A small one-time setup KGen, independent of the size

of the target computation; O(|PN |). Which can be
shared between programs to be verified.

• An insignificantly small constant cost ProbGen.
• A verification step, Vf, with computational complexity

a constant factor of the computational complexity of
the target program, O(|C|)

|PN |
• A zero additional Prover computational complexity as

compared with unverified computation, O(|C|).
• Zero additional bandwidth as compared with unveri-

fied computation.
• Requires only implementing the KGen and Vf functions

to add VC functionality to an existing unverified re-
mote computation framework.

The downside of our scheme in relation to the related
work is worse asymptotic properties for the verification step.
For programs executed many times, our scheme is almost
certainly not the most suitable approach. However, where
related work requires repeat executions of the same program
to be considered Outsourceable, we are Outsourceable with
only a single execution.

1.2 Notation
In this paper we will refer to the local client that has issued
the work as the Verifier, and the remote server performing the
outsourced execution as the Prover. Standard cryptographic
notation is used throughout; pk and sk for any public and
secret keys, and a security parameter λ. negl(λ) is any function
that grows negligibly in λ. poly(x) is any polynomial function
of x.

Usually, capital letters are used to represent sets, with the
size of a set A given by |A|. There are a few cases where
capital letters do not refer to sets, as to better align our work
with conventions in related fields. The first case is for the
large composite integer N . The second is for B and C which
denote binary and arithmetic circuits respectively. Our work
uses arithmetic circuits, but we reference binary circuits when
discussing related work. We reserve the letter R to represent
a special a ring. Rx is the ring defined by the integers modulo
x. When an arithmetic circuit C operates over ring Rx we use
the notation Cx.

Generic functions are given the letter f , whereas named
functions are written in a specific Function font. In function

VC Protocol
Verifier Prover
(pk, sk)← KGen(λ)
σ ← ProbGenpk(f, x)

σ

r ← Compute(σ)

r

Vfsk(σ, r)

Figure 1. VC protocol overview.

signatures← denotes output, and in pseudo-code descriptions
it indicates an assignment. ←$ is used where a random
element should be sampled from a domain. ≡, and = repre-
sent congruence and equality respectively, the former usually
implying a modular reduction.

2 Background
VC protocols define a set of functions which, when orches-
trated into a protocol can be used to guarantee the correctness
of the result of a computation. Our scheme is a new approach
to VC that is built from the integer factoring problem. In
our scheme, programs are expressed as arithmetic circuits.
First we establish the VC nomenclature, detail the mechanics
of arithmetic circuits, followed by background on the integer
factoring problem.

2.1 Verifiable Computation
A comprehensive formal definition of the VC problem can be
found as part of [6], many of the definitions to follow are
adapted from this work. A VC scheme defines the following
functions:

• Key Generation: (pk, sk) ← KGen(λ); generate a
public and secret key pair.

• Problem Generation: σ ← ProbGenpk(f, x); encode
arbitrary function f and an input x into problem σ.

• Compute: r ← Compute(σ); process problem σ, pro-
ducing a result r.

• Verification: {>,⊥} ← Vfsk(σ, r); verify the result
r, given problem σ. > is an accepted verification, ⊥
indicates a rejection.

The functions are modified slightly from those presented
in [6], as our scheme has some comparatively simple function
definitions. This simplification causes subtle changes in the
other function signatures, and in the security proofs that
follow in this work.

These functions are orchestrated into a protocol between
a Verifier and a Prover. Figure 1 provides an overview of
this exchange, as it should work when provided definitions
for the function signatures above. Key generation, problem
generation, and verification are all executed by the Verifier,
and compute is executed by the Prover.

A VC scheme must accept correct results of computation,
and reject incorrect results. These properties are called Com-
pleteness and Soundness respectively.
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VerifyGame1(f λ)
1 : (pk, sk)← KGen(λ)
2 : (σ, r′)← A(pk, f)
3 : if Vfsk(σ, r′) = > ∧ Compute(σ) 6= r′

4 : return 1
5 : else
6 : return 0
7 : endif

Figure 2. Verify security game for VC schemes. (1) Generate key pair,
(2) send f and pk to adversary, which returns an encoded problem σ
and forgery r′, (3) the adversary wins if r′ is not the correct result of
Compute(σ) but is accepted by the Verifier regardless.

Definition 2.1 (Completeness). An honest Prover can con-
vince a Verifier their result is correct with high probability. For
function f , data x, encoding σ ← ProbGen(f, x), and honestly
generated result r ← Compute(σ)

Pr[Vf(σ, r) = >] ≈ 1 (1)

When considering Soundness we are reasoning about the
security of a VC scheme in the face of an adversarial Prover.
Consider the security game in Figure 2. In this game an
adversary, A, is provided with a public key pk and function f ,
and wins the game if they are able to construct a valid encoded
problem σ and forged output r′, such that Vf incorrectly
returns >. Throughout this work we use the term forgery to
refer to an incorrect result provided by a malicious Prover. A
VC scheme has the Soundness property if the probability of A
winning is negligible.

Definition 2.2 (Soundness). For a VC scheme we define the
advantage of an adversary in the VerifyGame, as detailed in
Figure 2, as:

Advverify
A (λ) = Pr[VerifyGame(λ) = 1] (2)

A VC scheme is secure for a function f , if for any probabilistic
polynomial time adversary A

Advverify
A (λ) ≤ negl(λ) (3)

The central challenge when constructing a VC scheme, is
to create a scheme in which the total computational burden
on a Verifier is less than the fastest time to compute f(x). A
scheme with this property is Outsourceable.

Definition 2.3 (Outsourceable). For any function f , the
total time required to compute ProbGen and Vf is less than
the time required to compute f(x) for any x.

2.2 Arithmetic Circuits
As is common in VC work, we express the computation that
will be verified as an arithmetic circuit, C. An arithmetic
circuit is a directed graph of arithmetic operations. Nodes in
this graph represent arithmetic gates, which perform some
arithmetic operation on their input data. Figure 3 is a toy
example of an arithmetic circuit for a simple program. For a
set of inputs the circuit is evaluated by iteratively processing
the input to a gate based on the gate’s designated operation.

A related computational model often seen in other VC
work is a binary circuit, B. These function similarly to

×

+

r

a

b c

Figure 3. An arithmetic circuit representation of r = a(b+ c).

arithmetic circuits, except the gates are binary operations,
such as AND or OR. Binary circuits can express comparison
operations in fewer gates than arithmetic circuits, but other-
wise arithmetic circuits are more concise than binary circuits.
The number of wires required to express a program as an
arithmetic circuit is approximately four orders of magnitude
smaller than the same program represented as a binary circuit
[7].

It has been shown that arithmetic circuits are a relatively
good model for general computation [8]. In this work programs
are expressed as arithmetic circuits over a ring. For many
cryptographic operations this is particularly useful as these
programs can be naturally expressed as such.

2.3 Integer Factoring Problem
The security of our scheme reduces to security of the
integer factoring problem. The difficulty of integer fac-
toring is a widely accepted standard cryptographic as-
sumption. Given large composite integer N , produc-
ing any non-trivial factors of N is thought to be
computationally intractable [9]. Importantly, while not
NP-complete, current estimates place integer factoring as
an NP-intermediate problem. There is no polynomial time
algorithm for factoring numbers, the current state-of-the-art
uses a General Number Field Sieve (GNFS) to achieve sub-
exponential time [10].

Unfortunately integer factoring is not post-quantum se-
cure, as running Shor’s algorithm on a quantum computer
can factor integers in polynomial time [11]. Current practical
limitations on quantum computing [12] indicate a great deal of
longevity in cryptosystems built on the difficulty of the integer
factoring problem.

The formulation of an instance of the integer factoring
problem is based on the current best known algorithms to
factorN . To better reason about the security of our scheme we
have abstracted the generation of a suitably difficult factoring
problem as an oracle,

(N,PN )← PrimeFactor(λ) s.t. N =
∏

p∈PN

p (4)

which produces a suitably difficult instance of the integer
factoring problem to satisfy security parameter λ.

We use the security game detailed in Figure 4 in later
security proofs. The advantage of an adversary in this game is
defined as follows:
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FactorGame1(λ)
1 : (N,PN )← PrimeFactor(λ)
2 : a← A(N)
3 : if N/a = b for integers b, a /∈ {1, N}
4 : return 1
5 : else
6 : return 0
7 : endif

Figure 4. Factoring security game for the integer factoring problem.
(1) Generate suitably hard factorisation problem, (2) send N to the
adversary and receive result a, (3) the adversary wins if a is a non-trivial
factor of N .

Definition 2.4. For the integer factoring problem we define
the advantage of an adversary to FactorGame, detailed in
Figure 4, as:

Advfactor
A (λ) = Pr[FactorGame(λ) = 1] (5)

3 New Verifiable Computation Scheme
We now present a new VC scheme built from the integer
factoring problem. We start with an intuitive outline of the
mechanisms involved, followed by a formal description of the
scheme.

3.1 Outline
Given an arithmetic circuit, CN , over a ring of integers RN ,
where N is a large composite number, N =

∏
PN . The Prover

is sent CN and some input, x, for evaluation. The Verifier
selects one of the products p of N from PN arbitrarily and
independently evaluates the circuit under Rp with the same
input. The result of this evaluation is then compared to the
result provided by the Prover. The Verifier’s result should be
congruent to the Prover’s result when reduced to the same
modulus.

The ability to efficiently fabricate a result that is not the
correct output ofCN , yet is still congruent to the correct result
modulo an element of PN , reduces to the ability to efficiently
factor N .

3.2 Definition
The Verifier considers a computation they wish to evaluate, C.
They generate a set of co-prime numbers PN = {p1, p2, . . .},
and their product N , as provided by the integer factoring
problem oracle PrimeFactor(λ). PN is kept secret, and N can
be freely shared.

(N,PN )← PrimeFactor(λ) (6)

The generation ofN need only be done once and can be shared
between verifications of different arithmetic circuits.

N is used to define the ring RN , the set of integers modulo
N . The Verifier notes that their arithmetic circuit C should
be evaluated in RN , denoted as CN . Next, the Verifier bundles
the arithmetic circuit CN and the input data x into a tuple σ
and sends it to the Prover for evaluation.

σ ← (CN , x) (7)

The Prover extracts CN and x from σ, and calculates the
result of evaluating CN with input x, r. Then sends r back to
the Verifier.

(CN , x)← σ (8)
r ← CN (x) (9)

The Verifier selects an arbitrary p ∈ PN and evaluates
Cp(x).

rp ← Cp(x) (10)

The Verifier checks the congruence r ≡ rp mod p and if true,
accepts the result from the Prover.

This procedure is expressed as definitions for the standard
verifiable computation functions in Figure 5. Interestingly, a
great deal of the work done by the Verifier is not dependant
on the output of the Prover, and therefore can be executed
asynchronously. The asynchronous exchange between Prover
and Verifier is shown diagrammatically in Figure 6.

KGen(λ)
1 : (N,PN )← PrimeFactor(λ)
2 : return (N,PN )

ProbGenN (C, x)
1 : σ ← (CN , x)
2 : return σ

Compute(σ)
1 : (CN , x)← σ

2 : return CN (x)

VfPN
(σ, r)

1 : (CN , x)← σ

2 : p ∈ PN

3 : rp ← Cp(x)
4 : if r ≡ rp mod p then
5 : return >
6 : endif
7 : return ⊥

Figure 5. The KGen, ProbGen, Compute, and Vf function definitions
for our scheme, where KGen has access to an oracle capable of for-
mulating the integer factoring problem for a given security parameter,
PrimeFactor(λ).

4 Evaluation
In this section we prove properties for our VC protocol relating
to security, and computational and bandwidth complexity.

4.1 Completeness
Theorem 4.1 (Completeness). An honest Prover can con-
vince the Verifier of a correct result r to the computation
CN (x) with probability

Pr[Vf(r) = >] = 1 (11)

This proof is omitted for brevity. The completeness of our
scheme can be trivially derived by assuming both the Prover
and Verifier act honestly and conform to the protocol.
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New VC Scheme
Verifier Prover
(N,PN )← PrimeFactor(λ)
σ ← (CN , x)

σ

p ∈ PN (CN , x)← σ

rp ← Cp(x) r ← CN (x)

r

if r ≡ rp mod p then
return >
endif
return ⊥

Figure 6. Our VC protocol overview. This can be derived by applying
the function definitions in Figure 5 to the exchange detailed in Figure 1
with some of the Vf functionality pre-calculated by the Verifier as they
await r from the Prover.

A

C,N

σ, r′

Figure 7. Adversary A; capable of producing forged results r′ in our VC
scheme to VerifyGame, as defined in Figure 2, with advantage negl(λ) <
Advvf

A(λ) < 1.

4.2 Soundness
The intuition behind the soundness of our scheme is that
fabricating a fake result r′ 6= r with a non-negligible prob-
ability of being congruent to r under a random element of PN

requires knowledge of how N decomposes into PN . We prove
that given a forgery r′ 6= r that is undetectable when reduced
by any elements from the set Q, where Q is an arbitrary non-
empty subset of PN , we can extract

∏
Q, a non-trivial factor

of N . Proving that generating a forgery is at least as hard as
factoring N .

Theorem 4.2 (Soundness). The advantage of a computa-
tionally bounded adversary in the verification game, Advvf

A(λ)
is at most that of the advantage of a computationally bounded
adversary in the integer factoring problem, Advfactor

B (λ).

Proof. We can construct an efficient adversary to the integer
factoring problem, given an efficient adversary against our VC
scheme. Figure 7 depicts a hypothetical black-box adversary
A, capable of efficiently creating forgeries for our VC scheme.
For a given configuration, the public components are passed
in, (C,N), and the adversary returns (σ, r′), an encoded
problem and forged result, with advantage

negl(λ) < Advvf
A(λ) < 1 (12)

As an aside, constructing a proof that a perfect adversary
against our scheme is impossible is trivial given the chinese
remainder theorem. Therefore Q 6= PN , and Advvf

A(λ) < 1.
Given adversary A, it is straightforward to construct

adversary B, detailed in Figure 8. Which, with a single query

C ←$F

(σ, r′)← A(C,N)
(C, x)← σ

r ← C(x)
a← GCD(

∣∣r − r′∣∣, N)

b← N

a

BN

a, b

Figure 8. Adversary B; capable of calculating two non-trivial factors to
any large integer, given the existence of Adversary A.

to A, can efficiently recover two non-trivial factors of N . In
detail, when provided with a number N we wish to factorise,
B chooses a suitable arbitrary arithmetic circuit C from the
space of possible circuits F . The circuit chosen does not
matter, so it is in our best interests to select a simple one.
C and N are passed into adversary A which returns σ and
r′. x is extracted from σ and used to calculate r ← CN (x)
from which we extract two non-trivial factors of N by finding
the greatest common divisor of N and |r − r′|. A complete
list of prime factors can later be found with recursive calls to
adversary B.

Using this construction, when provided with any viable
adversary to our VC scheme, it is possible to construct
an adversary in the integer factoring game with advantage
Advfactor

B (λ) = 1.

negl(λ) < Advverify
A (λ)⇒ Advfactor

B (λ) = 1 (13)
∴ Advverify

A (λ) ≤ Advfactor
B (λ) (14)

4.3 Outsourceable
We will now consider the computational complexity of our VC
scheme and show it is Outsourceable.

4.3.1 Setup
The one time setup cost of the scheme involves generating an
instance of the integer factoring problem. Assuming suitable
Ns are not overly sparse this step has computational complex-
ity

O(|PN |) (15)

This is derived from making a lin-
ear number of calls to an oracle
PrimeFactor(λ), until a suitable N is generated. The
main cost being the generation of prime numbers and their
subsequent multiplication together. The setup for this scheme
is decoupled from the program being validated. As long as the
secret key PN is not leaked there is no need to rerun this step.

4.3.2 Prover
As per the definition of Compute, the Prover executes pro-
grams as if they were not being verified, without any change.

O(|C|) (16)

It is worth noting here that related schemes require a Prover
does an amount of work that is a multiplicative factor of
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the effort required to evaluate circuit C. In our scheme the
Prover need only evaluate the vanilla circuit C and so does
dramatically less work than in the related work.

4.3.3 Verifier
Our ProbGen does nothing except pack the arithmetic circuit
CN , and the input data x into a tuple. This is only done to
conform with the related work. Therefore, it is safe to assume
this step has an insignificantly small constant cost.

The more sizeable contribution to the computational com-
plexity of the Verifier is the Vf function. It is common practice
to use a Residue Number System (RNS) to accelerate modular
arithmetic [13]. This would suggest that the computational
complexity of an RNS can be no worse than computing the
same operation in a more conventional number system.

The work done during Vf amounts to performing a a
tiny subset of the computations required to evaluate the
arithmetic circuit via RNS. This is because the work done
is the exact same as if we were evaluating a single element
of the circuit decomposed into the RNS. It would be safe
to assume only performing a subset of the calculations will
require computational effort proportional to the size of the
subset. The computational burden of Vf is therefore a factor
of |PN | smaller than the cost to evaluate the entire circuit.

O(|C|)
|PN |

(17)

As with the complexity of Compute it is worth noting
here that the complexity of Vf is derived from the raw
computational complexity of the circuit C, with no additional
multiplicative factors.

Theorem 4.3 (Outsourceable). As long as |PN | > 1 the
time complexity for the Verifier is less than the time taken
to evaluate arithmetic circuit C.

The proof is trivial, given insignificant ProbGen complex-
ity, and the Vf complexity in Equation 17, and is therefore
omitted.

4.4 Performance Implications of the Factoring Problem
The belief that integer factoring is computationally in-
tractable is a standard cryptographic assumption. However,
algorithms for factoring integers are continuously being de-
veloped with incremental gains in factoring performance.
Because of this instability we intentionally keep references
to the underlying factoring problem vague, and abstract the
problem generation to an oracle. This abstraction protects us
from any minor developments in integer factoring.

That being said, the properties of the factoring problem
have a direct impact upon our VC scheme. As shown in
Theorem 4.3, as long as N has more than one factor our
scheme is Outsourceable and the amount of work done by the
Verifier shrinks as the number of factors of N increases. This
relies on the fact that the individual complexity of evaluating
the arithmetic gates is simpler if the operands are smaller.
The gain in computing Cp over CN is only valuable if p is
substantially smaller than the expected intermediate results.
Otherwise, it is identical to calculating CN . In which case our
scheme is no better than naively double checking the result.

The difficulty of a given instance of the integer factoring
problem is largely dictated by the size of N ’s smallest factors.

The smaller the smallest factors the easier it is to find it’s
factors. In order to speculate on the real-world performance
of our system, consider the RSA cryptosystem. RSA is built
on the same assumption as our scheme, the computational
intractability of integer factoring. In RSA N is thousands of
bits long. Similarly p must be many hundreds of bits long.
For many conventional computations evaluating CN and Cp

is identical.

4.5 Proof Size

As compared with unverified computation, our scheme re-
quires no extra communication. The only messages passed
between the Prover and the Verifier are a description of
the arithmetic circuit, CN , it’s input, x, and the result, r.
As such nothing extra is sent as compared with unverified
computation.

|C|+ log x+ log r (18)

This leads to an interesting quality of our scheme; because the
workload sent to the Verifier is unchanged, when compared
with unverified computation, there is no reason that the Veri-
fier would know they are engaged in a VC scheme. The prover
is effectively blind to their participation in a VC scheme.

To the best of our knowledge this is the first verifiable
computation scheme to be proofless. In that, no additional
information need be sent from the Prover to the Verifier other
than the raw output of the target computation.

5 Related Work
A great deal of work has already been done attempting to
create a suitable mechanism to check the results from a remote
computation. These solutions range from concrete number
theoretic constructions through to economic solutions wherein
the cost of sending incorrect results is set discouragingly high
[14] [15].

5.1 Auditing

The first concrete anti-cheat mechanisms were built around
the idea of performing an audit on the work process. During
execution, regular stack traces can be saved and returned with
the results. Random pairs of consecutive stack traces can then
be validated by executing the program between these two
checkpoints and validating the latter stack trace as correct
given the former [16]. Faith is built in the correctness of
the answer by checking enough of the pairs provided by the
Prover.

An interesting idea for detecting if a program was run at all
involves introducing random interactive processes at compile
time [17]. In this work automated randomised interactive ele-
ments are added to a program during compilation. At points
known to the Verifier during the program execution the Prover
will interact with the Verifier in a way that suggests they
have reached these checkpoints. Such a tool is not designed
to defend against a powerful malicious adversary capable of
running the program and sending falsified results regardless.
Such an adversary may have motives beyond circumventing
the cost of executing the program.
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5.2 Trusted Platform Modules
A pragmatic solution to verifying the execution of a program
is to produce a golden hardware and software state and then
create a mechanism for a remote computer to prove that
they are in the golden state when performing a computation.
Trusted Platform Modules (TPMs) have allowed this style of
validation to be possible, with attestation procedures that can
provide witness to the entire hardware/software stack [18].
Although this is a viable solution, it does not provide much
flexibility in it’s implementation. To build a solution where
remote parties are attesting with TPMs requires a sufficiently
benevolent and trusted device vendor willing to build these
modules on the behalf of participants, or someone with enough
resources at their disposal to do it themselves. The creation of
a golden state requires trusting every party in the hardware
and software development life cycle.

5.3 Number Theoretic Solutions
A more rigorous approach to VC involves formulating pro-
grams in such a way that the capability to cheat without
detection is reduced to known hard problems.

5.3.1 Program Checking
Early number theoretic solutions concerned themselves with
automated checking of results given some possibility of non-
malicious errors. The field of Program Checkers builds this
functionality for a suite of standard problems. For specifically
chosen problems, such as numerical functions [19], or sorting
and greatest common divisor [20], the authors construct be-
spoke checking programs that certify a program was executed
correctly without bugs. Program checkers are designed to
detect accidental errors in a computation and so are not secure
against a malicious adversary willing to invest computational
effort to create forgeries.

5.3.2 Efficient but Problem Specific Solutions
Some problems have specific VC constructions which can
provide a high guarantee of correctness, with a high degree of
security and approachable resource requirements for both the
Verifier and the Prover. Unfortunately, these constructions are
bespoke and only work for a specific problem, or subset of
problems.

By pairing the somewhat-homomorphic BGN encryption
scheme [21] with a publicly verifiable computation scheme
across polynomials [22] a privacy preserving construction can
be devised that allows users to validate the results of cloud
computations across their health data [23].

Similar constructions exist for verifying searches over en-
crypted data [24], modular exponentiation operations [25],
polynomial function evaluation [26], and matrix multiplica-
tion [27].

5.3.3 Probabilistically Checkable Proofs (PCPs)
An early attempt at a system for verifying general compu-
tation involved using PCPs [28] [29]. PCPs are verifiable in
poly-logarithmic time in the size of the proof; unfortunately
proofs tend to be very long. There has been some work
modifying these schemes to be more efficient by tailoring
them to specific given problems [30]. Even with more modern
cryptographic tools the computational break-even point is

rarely reached. One modern example uses argument systems,
a variant of PCPs in which the Prover answers queries from
the Verifier interactively [7]. Modern PCPs have a great deal
of implementation complexity, deterring adoption and making
a bug-free implementation hard.

Another of the first fully actualised general VC schemes
involved combining Yao’s Garbled Circuit construction [31]
with a fully homomorphic encryption scheme to allow reuse
of the previously-single-use VC properties of the garbled
circuits [6] [32]. By decoupling the setup from the input
data, the expensive setup can be amortised across multiple
executions of the program with different input data.

Multi-Party Computation (MPC) is a closely related field
of inquiry to VC, in which two groups work together to se-
curely compute a function on a shared input without revealing
the input data to the other party. A natural question is, can
we construct VC from MPC. The construction involves using
an MPC scheme to compute the signature of the output of an
outsourced function [33].

Some PCP-based VC schemes are close to practical for
a reduced domain of possible programs [34], albeit with
some non-standard assumptions. Verification is cheap, but the
setup costs are very close to the computation cost of the target
program. As such program encodings must be reused with
new inputs to reduce the average computational burden on
the Verifier per execution.

Interactive Oracle Proofs (IOPs) are a generalisation of
PCPs. These interactive proof systems have been shown to
allow for much more efficient program verification of boolean
circuits [35]. In this case, more succinct arguments are created
by the removal of a requirement to expensively encode the
entire computation.

5.3.4 Succinct Non-Interactive Proofs
Succinct non-interactive proofs are a subset of VC. The aim to
improve the asymptotic properties of existing Zero Knowledge
Proof (ZKP) schemes to provide the performance properties
required by a VC scheme. One of the most prolific of these
is Bulletproofs [36]. Bulletproofs have admirable asymptotic
properties, which are linear in the circuit size, but expensive
cryptographic operations mean that in practice they are
rarely viable, often taking orders of magnitude longer than
vanilla computation. Some more recent work, Libra [37], has
massively improved practical performance, but only produces
succinct arguments for specifically structured arithmetic cir-
cuits.

5.4 Identified Problems
At best, the existing solutions front-load the additional com-
putational complexity to a setup phase, and then have very
efficient verification. This allows for amortised complexity
over multiple executions of the program, with different input
data.

As shown in Table 1, schemes tend to have a large compu-
tational cost for the Prover. All schemes add, at minimum, a
multiplicative factor to the Prover workload over vanilla com-
putation. All related work, save Pinocchio [34], have very large
proofs. There is a clear gap to be explored with a VC scheme
that is extremely cheap to setup with tiny proofs, possibly at
the cost of being more expensive to verify. The development
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Table 1
Our VC scheme compared with the related work. x is the input to

arithmetic circuit C with depth d and result r. Schemes designed to
work with boolean circuits use B instead of C.

Setup Prover Verifier Proof Size

[34] O(|C|) O(|C|) O(log x+ log r) O(1)
[35] O(|B|) O(|B|) O(log x+ log|B|) O(log|B|)
[36] 0 O(|C|) O(|C|) O(log|C|)
[37] O(log x) O(|C|) O(d log|C|) O(d log|C|)

None 0 O(|C|) 0 0
Naive 0 O(|C|) O(|C|) 0

This O(|PN |) O(|C|) O(|C|)
|PN | 0

of a scheme with minimal additional Prover overhead would
likewise offer a viable alternative to the existing work for
settings in which the computational burden on the Prover
need be as small as possible; such as in cloud computing
workloads.

Despite the rich body of existing work on VC, the most
telling evidence that more work is required is that mod-
ern volunteer distributed computation deployments, such as
Folding@home [38], use naive work duplication to validate
outsourced computation.

5.5 Comparison To Related Work
From Table 1 our biggest improvement over the related work
is the massively reduced initial setup, which is decoupled from
the computation being verified. This, as well as the proof size
of zero.

We forgo some additional properties present in related
work; such as program, input, or output secrecy; zero knowl-
edge; or public verification; but our scheme has some inter-
esting properties in it’s own right. First, the Prover is blind
to the fact the computation is being verified as part of a
VC scheme. This is because no additional information passes
between the Prover and Verifier than would otherwise occur
when engaged in a non-verified remote computation protocol.
Our scheme is completely proofless. As the Prover operates on
unmodified arithmetic circuits, it is impossible for them to do
any less work. Therefore, our scheme is Prover-optimal in the
arithmetic circuit setting.

Another notable property is the extreme low latency of
our system. The evaluation of Cp(x) during Vf can be done
before r is received from the Prover. This approach is shown
in Figure 6. As such, the time taken to output a verified result
is the one-time cost to execute KGen, plus Compute, plus the
time taken to perform a single modular reduction by p. It
is hard to imagine a VC protocol which could take less time
from start to finish. This is in comparison to the related work
where the Verifier must await the results and the proof from
the Prover before engaging in Vf.

Thirdly, our scheme is relatively easy to implement. An
existing client/server computation system only need imple-
ment KGen and Vf, as Compute is unchanged and ProbGen
only packs data into a tuple.

6 Conclusion
We described the first VC construction built from the
hardness of factoring integers. This construction only used

standard cryptographic assumptions and, as per Theo-
rems 4.1, 4.2, and 4.3 the scheme presented in this work
has the Completeness and Soundness properties and is Out-
sourceable. Vf is more expensive than in related work but our
scheme has a one-time setup independent of the computation.
Despite the more expensive Vf our setup cost savings mean
our scheme is always Outsourceable even for only a single
execution. Unfortunately, the degree of outsourceableness of
our scheme is intrinsically linked to the approximate operand
size of the programs being verified and the security of the
scheme. In the worst possible case the Verifier does as much
work as if they were duplicating the work to check the program
output. As such the best performance of the system is when
operating with large integer operands much larger than p.

While other schemes have better asymptotic properties, it
is plausible that our scheme has better computational cost
when verifying low-volume programs due to the zero cost
setup phase. Our scheme provides some novel properties, such
as prooflessness, low latency, and relative implementation
ease.
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