
FedVS: Straggler-Resilient and Privacy-Preserving Vertical Federated Learning
for Split Models

Songze Li 1 2 Duanyi Yao 2 Jin Liu 1

Abstract
In a vertical federated learning (VFL) system
consisting of a central server and many distributed
clients, the training data are vertically partitioned
such that different features are privately stored
on different clients. The problem of split VFL
is to train a model split between the server and
the clients. This paper aims to address two
major challenges in split VFL: 1) performance
degradation due to straggling clients during
training; and 2) data and model privacy leakage
from clients’ uploaded data embeddings. We
propose FedVS to simultaneously address these
two challenges. The key idea of FedVS is to
design secret sharing schemes for the local data
and models, such that information-theoretical
privacy against colluding clients and curious
server is guaranteed, and the aggregation of all
clients’ embeddings is reconstructed losslessly,
via decrypting computation shares from the non-
straggling clients. Extensive experiments on
various types of VFL datasets (including tabular,
CV, and multi-view) demonstrate the universal
advantages of FedVS in straggler mitigation and
privacy protection over baseline protocols.

1. Introduction
Federated learning (FL) (McMahan et al., 2017; Zhang
et al., 2021a) is an emerging machine learning paradigm
where multiple clients (e.g., companies) collaborate to train
a machine learning model while keeping the raw data
decentralized. Based on how data is partitioned across
clients, FL can be categorized into horizontal FL and vertical
FL. In horizontal FL (HFL), each client possesses a distinct
set of data samples who share the same set of features;

1The Hong Kong University of Science and Technology
(Guangzhou) 2The Hong Kong University of Science and
Technology. Correspondence to: Songze Li <songzeli@ust.hk>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

in vertical FL (VFL), each client has a distinct subset of
features for a collection of shared samples. While current
FL research largely focused on HFL, VFL is attracting more
attention due to its suitability for enabling data augmentation
for a wide range of applications in decision making (Cheng
et al., 2021), risk control (Cheng et al., 2020), and health
care (Lee et al., 2018). In a basic VFL setting (see,
e.g., (Yang et al., 2019a; Feng & Yu, 2020)), the FL system
trains a local model for each client, which are jointly utilized
to perform inferences. A more general VFL setting, named
split VFL (Ceballos et al., 2020), incorporates the idea of
split learning (Vepakomma et al., 2018), and jointly trains a
central model at the server and local models at the clients.

In a training round of split VFL, all clients forward
propagate their local data using local models, and
send the output embeddings to the server; the server
then aggregates these embeddings and continues forward
prorogation through its central model. Having computed
the loss, the server back propagates to update the central
model, and sends the gradients of the embeddings to
the clients to update the local models. An ideal round
requires synchronous aggregation of clients’ embeddings.
However, this is severely challenged by the system and
task heterogeneity commonly observed in VFL, which
is caused by variability of clients’ storage, computation
and communication resources, and local data and model
complexities (Reisizadeh et al., 2022; Wei et al., 2022).
Clients with slowest speeds of forward propagation, which
we call stragglers, become the bottleneck in training process,
and cause detrimental effects on model convergence.

One way to deal with stragglers is simply ignoring them,
which however leads to slow convergence and model
bias. Asynchronous VFL protocols have been proposed
to enable asynchronous submissions of embeddings and
model updates without client coordination (Chen et al.,
2020; Hu et al., 2019). However, this causes staleness of
model updates that can degrade model performance. Under
the synchronous framework, Flex-VFL (Castiglia et al.,
2022) was proposed to enable flexible numbers of local
model updates across clients, mitigating the slowdown of
convergence caused by stragglers.

Other than stragglers, another key challenge for split VFL

FedVS: Straggler-Resilient and Privacy-Preserving Vertical Federated Learning for Split Models

is privacy leakage through clients’ embeddings. Various
inference attacks have been developed to recover clients’
private data and model parameters, from the uploaded raw
embeddings ((Erdogan et al., 2021; Jin et al., 2021; Li et al.,
2021a; Luo et al., 2021; Fu et al., 2022)). Differential
privacy (DP) has been adopted to defend inference attacks,
which adds a DP noise layer on raw embeddings to protect
data privacy (see, e.g., (Thapa et al., 2022; Chen et al.,
2020; Xu et al., 2021)). However, the added noises cause
inaccurate computations of gradients, which subsequently
leads to performance loss. Homomorphic encryption (HE)
has also been utilized in VFL to protect embedding privacy,
such that ciphertexts of embeddings are aggregated and
only the summation of all embeddings is revealed (Hardy
et al., 2017; Yang et al., 2019b; Cai et al., 2022). These
methods provide privacy for clients’ data but cannot mitigate
stragglers effectively. Recently in (Shi et al., 2022), it is
proposed to use secure aggregation (Bonawitz et al., 2017)
for privacy protection in asynchronous training of linear and
logistic regression models over vertically partitioned data,
which is nevertheless faced with slow convergence from
asynchronous model updates. Given the above challenges
and the prior works, we ask the following question:

Can one design a synchronous split VFL protocol that is
simultaneously lossless against unknown stragglers and
provably private against curious server and clients?

We answer this question in affirmative, via proposing
a straggler-resilient and privacy-preserving split VFL
protocol named FedVS. The key idea is to secret share
local data and model of each client with peer clients,
creating data redundancy across the network without any
privacy leakage. Specifically, Lagrange Coded Computing
(LCC) (Yu et al., 2019) is adopted to improve computation
and communication efficiencies. Averaging is chosen as
the embedding aggregation method, such that the server
only recovers the summation of the embeddings without
knowing individual values. Clients utilize polynomial
networks (Livni et al., 2014) as local models, such that
embedding summation can be losslessly reconstructed at
the server using polynomial interpolation. Leveraging the
threshold property of polynomial interpolation, computation
results from only a subset of clients are needed, effectively
mitigating the stragglers. We theoretically analyze the
straggler resilience and privacy guarantees of FedVS, its
convergence performance, and operational complexities.

We experimentally demonstrate the advantages of FedVS
in straggler mitigation and privacy protection for split VFL
systems. Over a wide range of tabular, computer vision,
and multi-view datasets, FedVS uniformly achieves the
fastest convergence and highest accuracy, over baselines
with or without privacy protection. The impacts of design
parameters of FedVS on its performance and privacy are

also empirically studied.

Related works

Straggler-resilient FL:

Horizontal FL: Proposed in (Reisizadeh et al., 2022),
FLANP starts the training with server exchanging models
with a group of fast-responding clients, and gradually
involves the slower clients. Sageflow (Park et al.,
2021) proposes to group the local models from stragglers
according to their staleness, and aggregate the models from
different groups with appropriate weights. In (Dhakal et al.,
2019; Prakash et al., 2020; Sun et al., 2022a;b), clients share
a part of their local data with the server, who computes the
missing results from stragglers; while in (Schlegel et al.,
2021; Shao et al., 2022), clients secret share their data with
each other and perform local training on shares of all clients,
such that the server losslessly decodes the gradient over all
clients’ data from only a subset of non-straggling clients.
On the other hand, many asynchronous HFL protocols (Xie
et al., 2019; van Dijk et al., 2020; Li et al., 2021b; Huba
et al., 2022; Chai et al., 2021; Nguyen et al., 2022) have
been proposed to handle the straggler problem.

Vertical FL: For mitigating stragglers in VFL, Multiple
asynchronous VFL protocols (see, e.g., (Chen et al., 2020;
Gu et al., 2021; Zhang et al., 2021b; Li et al., 2020; Shi
et al., 2022; Hu et al., 2019)) have been proposed to
reduce the waiting time for stragglers. VAFL (Chen et al.,
2020) is designed for clients with intermittent connectivities,
where each client individually updates its local model once
connected with the server. DP is introduced to protect the
privacy of local embeddings in VAFL, which nevertheless
incurs performance loss. AFSGD-VP (Gu et al., 2021) is
designed for the scenario where there is no central server and
labels are held by multiple clients. It allows asynchronous
data collection and model updating for label holders, and
at the same time protects embedding privacy via a tree-
structured aggregation scheme. AMVFL (Shi et al., 2022)
proposes asynchronous aggregation to compute gradients,
for linear and logistic regression problems, where local
embeddings are protected by secret shared masks.

Privacy-preserving FL: Current approaches to provide
privacy protection for FL can be categorized into three
types, which are homomorphic encryption (HE), DP, and
secure multi-party computation (MPC) (Liu et al., 2022b).
HE methods are applied to encrypt the local updates sent
to the server (see, e.g.,(Chai et al., 2020; Zhang et al.,
2020; Cai et al., 2022)). It allows certain computations
(e.g., addition) directly on the ciphertexts and noise-free
recovery of computation results. However, the encryption
and decryption introduce significant overheads. Compared
with HE, DP is more efficient to provide privacy by injecting
noises to the private data (Wei et al., 2020; Truex et al.,

FedVS: Straggler-Resilient and Privacy-Preserving Vertical Federated Learning for Split Models

0 25 50 75 100 125 150 175 200
Time(s)

10

20

30

40

50

60

70

80

90

Te
st
 A
cc

ur
ac

y
(%

)

No traggler
Ignore
VAFL
Wait

(a) Concatenation

0 25 50 75 100 125 150 175 200
Time(s)

10

20

30

40

50

60

70

80

90

Te
st
 A
cc

ur
ac

y
(%

)

No traggler
Ignore
VAFL
Wait

(b) Element-wise average

0 25 50 75 100 125 150 175 200
Time(s)

10

20

30

40

50

60

70

80

90

Te
st
 A
cc

ur
ac

y
(%

)

No traggler
Ignore
VAFL
Wait

(c) Element-wise maximum

Figure 1. Test accuracies using different embedding aggregation methods and straggler handling strategies.

2020; Thapa et al., 2022; Wang et al., 2020). Nevertheless,
the performance and convergence rate of the model suffer
from the inaccurate computation results (Truex et al., 2019;
Kairouz et al., 2021). MPC protocols based on Shamir
secret sharing have been proposed to securely aggregate
clients’ local models in HFL, such that the server learns
nothing beyond the aggregated model (Bonawitz et al.,
2017; So et al., 2021; Bell et al., 2020; Choi et al., 2020;
So et al., 2022; Liu et al., 2022a; Jahani-Nezhad et al.,
2022a;b). These protocols guarantee information-theoretic
privacy for clients’ local data, in the presence of client
dropouts. Compared with these works, the proposed FedVS
is the first MPC-based synchronous VFL protocol that
simultaneously achieves information-theoretic privacy for
each client’s local data and model. Furthermore, in contrast
to recovering model aggregation of non-straggling clients,
FedVS achieves straggler resilience with no performance
loss, i.e., the recovered embedding aggregation contains the
local embeddings of all stragglers.

2. Background and Motivations
2.1. Split vertical federated learning

We consider a vertical federated learning (VFL) system that
consists of a central server and N clients. The training
dataset S = {(x(m),y(m))}Mm=1 contains M input-label
pairs, where each input x(m) ∈ Rd has d features. The
training set is vertically partitioned such that each client n
locally has a disjoint subset of dn features of each input. All
labels are stored at the server. The VFL system aims to train
a neural network that is split among server and clients. The
server has a central model with parameters W0, and each
client n has a local model with parameters Wn. Models on
different clients may have different architectures, and hence
the model parameters may have different dimensions.

The server and clients collaboratively train their models
to minimize the empirical loss L((Wn)

N
n=0;S) =

1
M

∑M
m=1 ℓ

(
(Wn)

N
n=0; (x

(m),y(m))
)
, for some loss

function ℓ. The training is carried out via forward-backward
prorogation over split models. In each round, for a batch

B of b inputs X(B) ∈ Rb×d, we denote the partition at
client n as X(B)

n ∈ Rb×dn , for all n ∈ [N] ≜ {1, . . . , N}.
To start, each client n computes an embedding matrix
H

(B)
n ∈ Rb×hn , for some embedding dimension hn, using

its local network as H
(B)
n = gn(X

(B)
n ,Wn), and sends

it to the server. The server aggregates embeddings from
all clients into a global embedding H(B). As discussed
in (Ceballos et al., 2020), the aggregation can be done
in multiple ways, including concatenation, element-wise
average, and element-wise maximum. Next, the server
feeds H(B) into the central network until the loss function
L is computed with the corresponding labels Y (B). In the
backward propagation, the server computes the gradient
∇W0

L to update the central model with learning rate η0,
i.e., W0 = W0 − η0∇W0

L. Then, for each n ∈ [N], the
server computes the gradient∇

H
(B)
n
L and sends it to client

n. Finally, each client n further computes the gradient with
respect to its local model, and updates the local model with
learning rate ηn, i.e., Wn = Wn−ηn∇H

(B)
n
L ·∇Wn

H
(B)
n .

2.2. Straggler and privacy challenges

Challenge 1: Performance degradation from stragglers.
Straggler problem is commonly observed in FL systems,
due to heterogeneous computation and communication
resources across clients, and can be even worse for VFL
systems where heterogeneity also exists for local model
architecture and data features. To understand the effect of
stragglers on model performance, we carry out experiments
on the FashionMNIST dataset (Xiao et al., 2017a) in
split VFL setting, where 16 clients evenly hold parts of
each training image. We select 60% clients as stragglers
to add an additional exponential delay when submitting
their embeddings. We compare three strategies to handle
stragglers: 1) Wait for all stragglers (Wait); 2) Ignore
stragglers (Ignore); and 3) VAFL with asynchronous model
updates (Chen et al., 2020). Three methods, including
concatenation, element-wise average and element-wise
maximum, are utilized for embedding aggregation. As
shown in Figure 1, for all aggregation methods and
strategies, presence of stragglers leads to convergence

FedVS: Straggler-Resilient and Privacy-Preserving Vertical Federated Learning for Split Models

slowdown and accuracy degradation.

Challenge 2: Data/model leakage. The embedding from
a client contains information about its private data and
local model parameters. It has been shown in (Luo et al.,
2021; Erdogan et al., 2021) that through inference attacks, a
curious server can reconstruct a victim client’s private input
features and local model, from its uploaded embedding.

Threat model. We consider an honest-but-curious threat
model, which is widely adopted to study the privacy
vulnerabilities of FL systems. All parties in the system
will faithfully follow the specified learning protocol. The
curious server attempts to infer private data and local model
of a victim client from its uploaded computation results. A
subset of curious clients may collude to infer the private
data and local models of the other victim clients.

The goal of this work is to tackle the above challenges,
via developing a synchronous split VFL framework whose
model training is resilient to stragglers, and private against
passively inferring clients’ local data and model parameters.

3. Preliminaries
Embedding averaging. We adopt the element-wise
average as the aggregation method. That is, H(B) =
1
N

∑N
n=1 H

(B)
n . The reason for this choice is two-folded: 1)

As shown in Figure 1, compared with concatenation, which
is the best performing aggregation method, element-wise
average achieves comparable performance when there is
no straggler; 2) For element-wise average, the server does
not necessarily need to know individual client embeddings
to compute their summation, hence potentially allowing
a higher level of privacy protection. To implement this
embedding averaging, we require the same dimension for
the embeddings from all clients, i.e., h1 = · · · = hN = h.

Lagrange coded computing. Proposed in (Yu et al.,
2019), Lagrange coded computing (LCC) is a cryptographic
primitive for sharing multiple secrets. Given a privacy
parameter T , LCC guarantees information-theoretic privacy
against up to T colluding shares. LCC supports
homomorphic evaluation of arbitrary polynomials on the
shares. The decryption is accomplished through polynomial
interpolation, which is resilient to loss of decryption shares
up to a certain threshold.

Polynomial networks. As one of our main goals is
to provide data and model privacy for split VFL, which
requires utilizing secure computation primitives like LCC,
we adopt polynomial network (PN) as the architecture
of the client models. Proposed in (Livni et al., 2014), a
PN uses quadratic function as the activation function, and
outputs a polynomial function of the input. For instance,
the output y ∈ R of a 2-layer PN with r neurons in the

hidden layer, for some input x ∈ Rd, is computed as y =
b+w⊤

0 x+
∑r

i=1 αi(w
⊤
i x)

2, where wi ∈ Rd are network
parameters. Compared with standard architectures like MLP
and CNN with non-linear activation functions, PN is natively
compatible with homomorphic evaluations on secret shares,
and at the same time exhibited superior performance (Liu
et al., 2021). Here we consider a simplified architecture such
that for a PN withD layers, the output embedding h ∈ Rh is
produced from an input x ∈ Rd as h =

∑D
i=1(x

iW i+bi),
where xi is the ith power of the input computed element-
wise, and W i ∈ Rd×h and bi ∈ Rh are the weight matrix
and bias vector for the ith layer.

Table 1. Test accuracies of different client network architectures.
of layers MLP CNN PN

1 88.35% 90.48% 88.19%
2 88.60% 90.79% 88.31%
3 88.70% 91.53% 88.49%

In a split VFL system, a PN with Dn layers at client n
consists of Dn weight matrices Wn = (W 1

n , . . . ,W
Dn
n),

where W i
n ∈ Rdn×h. For an input data partition X

(B)
n of

batch B, the output embeddings are computed as

H(B)
n = gn(X

(B)
n ,Wn) =

Dn∑
i=1

Xi,(B)
n W i

n,
1 (1)

where X
i,(B)
n is a matrix whose elements are ith power of

the corresponding elements in X
(B)
n .

To verify the effectiveness of using PN in split VFL, we
train image classifiers on FashionMNIST over 4 clients. The
server holds a VGG13 network (Simonyan & Zisserman,
2014); three different network architectures, including MLP,
CNN, and PN, are respectively employed at the clients. As
shown in Table 1, PN achieves comparable performance
with CNN. which has the highest accuracies.

4. Protocol Description
4.1. Overview

We develop a synchronous split VFL framework FedVS,
which simultaneously addresses the straggler and privacy
leakage challenges. In FedVS, each client secret shares
its training data across the network using LCC before
training starts. In each training round, each client first secret
shares its current local model; then, utilizing the algebraic
structures of the shares and the underlying PN computation,
each client performs homomorphic evaluations on coded
data and models, and sends computation results to the
server. The summation of embeddings can be reconstructed
losslessly at the server, in spite of missing results from a

1The bias vectors are absorbed into the weight matrices with a
1 appended to each data sample.

FedVS: Straggler-Resilient and Privacy-Preserving Vertical Federated Learning for Split Models

threshold number of stragglers. We give a full description
of FedVS in Algorithm 1.

4.2. Data preparation

Before training starts, a data preparation step takes place
among the clients.

Pre-processing and quantization. Each client n pre-
processes its input Xn to obtain X̂n = (X1

n, . . . ,X
Dn
n),

where Xi
n is computed via raising Xn to the ith power

element-wise. Then, the client quantizes X̂n onto a finite
field Fp, for some sufficiently large prime p. Specifically,
for some scaling factor lx, rounding operator Round(x) ={
⌊x⌋ , if x− ⌊x⌋ < 0.5

⌊x⌋+ 1, otherwise
, and shift operator ϕ(x) ={

x, if x ≥ 0

p+ x, if x < 0
, client n obtains its quantized data

Xn = ϕ(Round(2lx · X̂n)), applied element-wise.

Private data sharing. The clients secret share their
quantized local data with other clients using LCC
with partition parameter K and privacy parameter T .
Specifically, for each n ∈ [N], client n horizontally
partitions Xn = (X

1

n, . . . ,X
Dn

n) into K segments
Xn,1, . . . ,Xn,K , and then samples independently T masks
Zn,K+1, . . . ,Zn,K+T uniformly at random. For a set
of distinct parameters {β1, . . . , βK+T } from Fp that are
agreed among all clients and the server, using Lagrange
interpolation, client n obtains the following polynomial.

Fn(x) =

K∑
k=1

Xn,k ·
∏

ℓ∈[K+T]\{k}

x− βℓ
βk − βℓ

+

K+T∑
k=K+1

Zn,k ·
∏

ℓ∈[K+T]\{k}

x− βℓ
βk − βℓ

.

(2)

Here we note that Fn(βk) = Xn,k, for all k ∈ [K].

For another set of public parameters {α1, . . . , αN} that are
pair-wise distinct and {β1, . . . , βK+T } ∩ {α1, . . . , αN} =
∅, client n computes X̃n,n′ = Fn(αn′), for all n′ ∈ [N],
and sends it to client n′. Note that the size of a secret share is
1
K of the size of the original data. Data partitioning in LCC
helps to reduce the communication cost for secret sharing,
and the complexity of subsequent computations on secret
shares. By the end of the data sharing phase, each client
n′ has locally the secret shares X̃n′ = (X̃1,n′ , . . . , X̃N,n′)
from all N clients.

4.3. Training operations

Model quantization and secret sharing. A training round
starts with each client n quantizing and secret sharing its

Algorithm 1 The FedVS protocol
Input: K (partition parameter), T (privacy
parameter)

1: // Data preparation phase
2: for each client n = 1, 2, . . . , N in parallel do
3: X̂n ← (X1

n, . . . ,X
Dn
n) // Raises data to the degree

of local PN
4: Xn ← Quantization on X̂n

5: Xn,1, . . . ,Xn,K ←Horizontally partitions Xn into
K segments

6: Zn,K+1, . . . ,Zn,K+T ← Sample random masks
7: {X̃n,n′}n′∈[N] ← Evaluating (2) at α1, . . . , αN //

Data secret shares
8: Sends data share X̃n,n′ to client n′ ∈ [N]\{n}
9: Receives data share X̃n′,n from user n′ ∈ [N]\{n}

10: end for

11: // Training phase
12: for Round 1, 2, . . . do
13: // Model secret sharing
14: for each client n = 1, 2, . . . , N in parallel do
15: W n ← Quantization on Wn

16: Vn,K+1, . . . ,Vn,K+T ← Sample random masks
17: {W̃n,n′}n′∈[N] ← Evaluating (4) at α1, . . . , αN

// Model secret shares
18: Sends model share W̃n,n′ to client n′ ∈ [N]\{n}
19: Receives model share W̃n′,n from user n′ ∈

[N]\{n}
20: end for
21: // Homomorphic embedding evaluation
22: for each client n = 1, 2, . . . , N in parallel do
23: For a sample batch B, computes coded embedding

H̃
(B)
n as in (5) and sends it to server

24: end for
25: // Server model update
26: Server executes:
27: Receives coded embeddings from non-straggling

clients U ⊂ [N]
28: Interpolates embedding summation polynomial ψ(x)

in (6) from {H̃(B)
n : n ∈ U}

29: Recovers embedding summation H
(B)

by evaluating
ψ(x) at β1, . . . , βK

30: H(B) ← Dequantization on H
(B)

// Recovers
average embedding over all clients (including
stragglers)

31: Back-propogates to update central model W0, and
broadcasts ∇H(B)L to all clients

32: // Client model update
33: for each client n = 1, 2, . . . , N in parallel do
34: Obtains ∇Wn

L ← ∇
H

(B)
n
L · ∇Wn

H
(B)
n , and

updates local model Wn

35: end for
36: end for

FedVS: Straggler-Resilient and Privacy-Preserving Vertical Federated Learning for Split Models

current model parameters Wn. Firstly, For some scaling
factor lw, client n quantizes its model parameters to obtain

W n=(W
1

n, . . . ,W
Dn

n)=ϕ(Roundstoc(2
lw ·Wn)). (3)

Here Roundstoc(x) ={
⌊x⌋ with prob. 1− (x− ⌊x⌋)
⌊x⌋+ 1 with prob. x− ⌊x⌋

is an unbiased

stochastic rounding operator, i.e., E[Roundstoc(x)] = x.

Then, client n samples uniformly at random T noise
terms Vn,K+1, . . . ,Vn,K+T , and constructs the following
Lagrange polynomial.

Gn(x) =

K∑
k=1

W n ·
∏

ℓ∈[K+T]\{k}

x− βℓ
βk − βℓ

+

K+T∑
k=K+1

Vn,k ·
∏

ℓ∈[K+T]\{k}

x− βℓ
βk − βℓ

.

(4)

For each n′ ∈ [N], client n computes a secret share of it
model W̃n,n′ = Gn(αn′), and sends it to client n′.2

Homormophic evaluation and embedding decryption.
For a batch B ⊆ [MK] of coded training samples,
the clients start forward propagation by homomorphic
embedding evaluation. Specifically, for each n′ ∈ [N],
client n′ takes the coded data X̃

(B)
1,n′ , . . . , X̃

(B)
N,n′ , with

X̃
(B)
n,n′ = (X̃

1,(B)
n,n′ , . . . , X̃

Dn,(B)
n,n′) for all n ∈ [N], and

the coded models W̃1,n′ , . . . , W̃N,n′ , with W̃n,n′ =

(W̃ 1
n,n′ . . . , W̃

Dn

n,n′) for all n ∈ [N], computes its output

H̃
(B)
n′ =

N∑
n=1

gn(X̃
(B)
n,n′ , W̃n,n′)=

N∑
n=1

Dn∑
i=1

X̃
i,(B)
n,n′ W̃

i
n,n′ , (5)

and sends H̃
(B)
n′ to the server. During this process, some

clients become stragglers, and server only waits to receive
results from a subset U ⊂ [N] of non-straggling clients.

It is easy to see that for the polynomial F
(B)
n (x) =

(F
1,(B)
n (x) . . . ,F

Dn,(B)
n (x)) corresponding to data batch B,

and the model polynomial Gn(x) = (G1
n(x) . . . ,G

Dn
n (x)),

H̃
(B)
n′ can be viewed as the evaluation of the following

composite polynomial at point x = αn′ .

ψ(x) =

N∑
n=1

Dn∑
i=1

F i,(B)
n (x)Gi

n(x). (6)

2WLOG, we assume that all clients successfully share their
models with all other clients. In a more general scenario where
each client may not be able to communicate with every other
client, we can consider a subset S of clients who have successfully
shared their models with a subset R of clients, and the proposed
FedVS protocol can be used to compute the aggregated embedding∑

n∈S H
(B)
n from the uploaded results of clients in R.

The server interpolates ψ(x) from the received
results (H̃

(B)
n′)n′∈U , and evaluates it at β1, . . . , βK

to recover the summation of the embedding
segments

∑N
n=1 H

(B)

n,1 , . . . ,
∑N

n=1 H
(B)

n,K , where∑N
n=1 H

(B)

n,k = ψ(βk) =
∑N

n=1

∑Dn

i=1 X
i,(B)

n,k W
i

n.
The server horizontally stacks these summed segments to
obtain the summation H

(B)
of local embeddings. Note that

the overall batch size of H
(B)

is K|B|.

Dequantization. The server maps H
(B)

back to the
real domain to obtain an approximation of the average
embedding H(B) via applying the following dequantization
function φ : Fp → R element-wise on H

(B)
.

φ(x)=

{
1
N · 2

−(lx+lw) · x, if 0 ≤ x < p−1
2

1
N · 2

−(lx+lw) · (x− p), if p−1
2 ≤ x < p

. (7)

Next, server continues forward-backward propagation to
update the central model W0. The server also computes
∇H(B)L, and broadcasts it to all clients. With ∇

H
(B)
n
L =

1
N∇H(B)L, client n computes the gradient ∇WnL =

∇
H

(B)
n
L · ∇WnH

(B)
n , and updates its local model Wn.

5. Theoretical Analyses
5.1. Straggler resilience and privacy analysis

Theorem 5.1 (Straggler resilience). The summation of
local embeddings of all clients, i.e, H

(B)
=
∑N

n=1 H
(B)

n ,
can be exactly recovered at the server, in the presence of up
to N − 2(K + T − 1)− 1 straggling clients.

Proof. The server can exactly reconstruct ψ(x), and

hence the summation of local embeddings H
(B)

, from
the computation results of the non-straggling clients
(H̃

(B)
n)n∈U , if |U| ≥ degree(ψ(x))+1 = 2(K+T−1)+1.

Hence, the embedding aggregation process can tolerate up
to N − 2(K + T − 1)− 1 stragglers.

Theorem 5.2 (Privacy against colluding clients). Any
subset of up to T colluding clients learn nothing about the
local data and models of the other clients. More precisely,
for any T ⊂ [N] with |T | ≤ T , the mutual information

I
(
(X̃n, W̃n)n∈T ; (Xn,W n)n∈[N]\T

)
equals zero.

Proof. As the local data and models are secret shared using
LCC, their privacy against T colluding clients follows the
T -privacy guarantee of LCC construction (Theorem 1 in (Yu
et al., 2019)). For completeness, we give a detailed proof in
Appendix A.

FedVS: Straggler-Resilient and Privacy-Preserving Vertical Federated Learning for Split Models

Theorem 5.3 (Privacy against curious server). For each
n ∈ [N], the server learns nothing about the private
data and the local model of client n, from its uploaded
computation result. That is, the mutual information
I
(
H̃

(B)
n ; (Xn,W n)

)
equals zero.

Proof. We know from the privacy guarantee of LCC that the
secret shares of input data and model parameters at client n,
i.e., (X̃n, W̃n), reveal no information about its private data
and model (Xn,W n). Moreover, as the output H̃(B)

n of
client n is computed from (X̃n, W̃n), i.e., (Xn,W n) →
(X̃n, W̃n) → H̃

(B)
n forms a Markov chain, and we have

I
(
H̃

(B)
n ; (Xn,W n)

)
≤ I

(
(X̃n, W̃n); (Xn,W n)

)
=

0 by data processing inequality.

Theorem 5.3 implies that in FedVS, local data and model
of an individual client is perfectly secure against the server,
which completely mitigates any privacy leakage from data
inference and model stealing attacks on a client’s output.

5.2. Convergence analysis

Since the rounding operation can be performed on both
training and test data, FedVS can be considered to optimize
the model parameters on the rounded data, which is denoted
as (x′(m),y(m)),m ∈ [M]. That is, we consider the
following optimization problem for W = (Wn)

N
n=0.

min
W

F (W)≜
1

M

M∑
m=1

ℓ(W ;(x′(m),y(m)))=
1

M

M∑
m=1

fm(W).

In round r of FedVS, for a sampled data batch B, the
server and the clients update their models as W r+1

n =

W r
n−ηn∇nFB(Ŵ

r), ∀n ∈ {0, 1, . . . , N}, where FB(·) =
1
|B|
∑

m∈B fm(·). Here we have Ŵ r
0 = W r

0 , as the central
model is not rounded during forward propogation; for each
client n, Ŵ r

n =Qstoc(W
r
n)=2−lw ·Roundstoc(2lw ·W r

n).

We first make the following assumptions to facilitate our
convergence analysis.

Assumption 1 (Variance-bounded stochastic rounding):
There exists a constant γ > 0 such that ∀z ∈ R, the operator
Qstoc(.) satisfies E

[
∥Qstoc(z)− z∥2

]
≤ γ2z2.

Assumption 2 (Lipschitz Smoothness): For any input u,v,
there exists a constant L > 0, such that for all m ∈ [M], the
function fm satisfies ∀n ∈ {0, 1, . . . , N}, ∥∇nfm(u) −
∇nfm(v)∥ ≤ L∥u− v∥.

Assumption 3 (Global minimum existance): There exists
a globally optimal collection of model parameters W ∗, such
that F (W) ≥ F (W ∗) > −∞, for all W .

Assumption 4 (Bounded model parameters): The norm
of the collection of all model parameters ∥W ∥ is upper
bounded by some constant σ.

We give the convergence result of FedVS in the following
theorem, whose proof can be found in Appendix B.

Theorem 5.4 (Convergence of FedVS). Under Assumption
1-4, when the learning rate ηn = 3

4L
1√
R
,∀n ∈

{0, 1, . . . , N}, after R rounds of FedVS, with probability at
least 1− δ we have:

1

R

R−1∑
r=0

E
(N∑
n=0

∥∇nF (W
r)∥2

)
≤ 16L

9
√
R
(F (W 0)−F (W ∗))

+

∑N
n=0(2L

2γ2σ2 + 2Vn)√
R

= O
(

1√
R

)
,

where Vn=
32L2(log(2pn/δ)+

1
4)

|B| , and pn is dimension of Wn.

5.3. Complexity analysis

Computation and communication costs for data sharing.
Before training starts, each client secret shares its local data
using LCC. Given that evaluating a polynomial of degree
K + T − 1 at N points can be done using O(N log2N)
operations in Fp (Von Zur Gathen & Gerhard, 2013),
the computation load at client n to generate N shares is
O(MdnDn

K N log2N). The communication cost for client
n to secret share its data is O(MdnDnN

K). We note that
these computation and communication overheads occur
once before the training starts, and become less relevant
as the number of training rounds increases.

Computation and communication costs for a training
round. In each training round, each client n first needs
to secret share its local model, which takes a computation
load of O(dnhDnN log2N) and a communication load
of O(dnhDnN). Next, for the sampled data batch B of
size |B| ≤ M

K , client n performs embedding computation
as in (5) with a computation load of O(|B|h

∑N
i=1 diDi),

and sends the computed results to the server with a
communication load of O(|B|h). Note that while according
to Theorem 5.1 a smaller partition paramter K allows to
tolerate more stragglers, the load of embedding computation
is also higher. We stress that in FedVS, the loads of
computing and communicating (coded) embeddings are
identical across all clients, further alleviating the straggler
effect caused by imbalanced data and model dimensions.

Server decodes the embedding aggregation from results of
R=2(K+T−1)+1 non-straggling clients, via interpolating
ψ(x) in (6) with a computation cost of O(|B|hR log2R).

FedVS: Straggler-Resilient and Privacy-Preserving Vertical Federated Learning for Split Models

CV Multi-view Tabular

0 100 200 300 400 500
Time(s)

10
20
30
40
50
60
70
80
90

Te
st
 A
cc
ur
ac

y
(%

)

FedVS
VAFL
Ignore
Wait
Wait-DP

(a) FashionMNIST

0 100 200 300 400 500 600
Time(s)

20

40

60

80

100

Te
st

 A
cc

u
ac

y
(%

)

FedVS
VAFL
Igno e
Wait
Wait-DP

(c) Caltech-7

0 50 100 150 200 250 300 350
Time(s)

45
50
55
60
65
70
75
80

Te
st
 A
cc
ur
ac

y
(%

)

FedVS
VAFL
Ignore
Wait
Wait-DP

(e) Credit card

0 100 200 300 400 500
Time(s)

0
10
20
30
40
50
60
70
80

Te
st
 A
cc
ur
ac

y
(%

)

FedVS
VAFL
Ignore
Wait
Wait-DP

(b) EMNIST

0 25 50 75 100 125 150 175 200
Time(s)

20

40

60

80

100

Te
st

 A
cc

u
ac

y
(%

)

FedVS
VAFL
Igno e
Wait
Wait-DP

(d) HandWritten

0 20 40 60 80 100 120
Time(s)

45
50
55
60
65
70
75
80

Te
st

 A
cc

u
ac

y
(%

)

FedVS
VAFL
Igno e
Wait
Wait-DP

(f) Parkinson

Figure 2. Test accuracies using different straggler handling and privacy protection methods on different datasets.

0 20 40 60 80 100 120 140
Time(s)

30

40

50

60

70

80

90

Te
st
 A
cc
ur
ac
y
(%

)

K=1
K=3
K=6

(a) Delay dominant.

0 5 10 15 20 25 30 35
Time(s)

20

30

40

50

60

70

80

Te
st
 A
cc
ur
ac
y
(%

)

K=1
K=3
K=6

(b) Computation dominant.

Figure 3. Test accuracies of FedVS on FashionMNIST using different K.

0 20 40 60 80 100 120 140
Time(s)

10
20
30
40
50
60
70
80

Te
st
 A
cc
ur
ac
y
(%

)

T=1
T=2
T=4
T=6

Figure 4. Test accuracies of FedVS on
FashionMNIST using different T .

6. Experimental Evaluations
We carry out split VFL experiments on three types of
six real-world datasets, and compare the performance of
FedVS in straggler mitigation and privacy protection with
four baselines. All experiments are performed on a single
machine using four NVIDIA GeForce RTX 3090 GPUs.

6.1. Datasets

We consider three types of data, and select two datasets
from each type. For tabular datasets Parkinson (Sakar et al.,
2019) and Credit card (Yeh & Lien, 2009), and computer
vision (CV) datasets EMNIST (Cohen et al., 2017) and
FashionMNIST (Xiao et al., 2017b), we evenly partition
the features of each data sample across the clients. For the
multi-view datasets Handwritten (Dua & Graff, 2017) and
Caltech-7 (Li et al., 2022), each client holds one view of

each data sample. We provide descriptions of the datasets,
number of clients considered for each dataset, employed
model architectures, and training parameters in Appendix C.

6.2. Experiment settings

Baselines. We consider the following four baseline
methods for straggler handling and privacy protection. 1)
Wait: Server waits for all clients (including stragglers)
for embedding aggregation; 2) Ignore: Server ignores
the stragglers, and proceeds with aggregating embeddings
from non-stragglers; 3) VAFL (Chen et al., 2020): Server
asynchronously receives embeddings and updates model
parameters; 4) Wait-DP: To utilize differential privacy
to protect clients’ data and model privacy, as in (Thapa
et al., 2022), a calibrated noise is added to the output (e.g.,
embedding) of a network layer at each client, and the server
waits to aggregate all clients’ perturbed embeddings.

FedVS: Straggler-Resilient and Privacy-Preserving Vertical Federated Learning for Split Models

Delay pattern. We add artificial delays to the clients’
computations to simulate the effect of stragglers. Before the
clients upload their computed embeddings, 50% of them add
a random delay sampled from an exponential distribution
with a mean of 0.2s. The other 50% are modelled as
stragglers, whose delays are sampled from exponential
distributions with incremental means, i.e., 1 + 2i

N , i ∈ [N2].
Besides, the straggler effect in the model sharing phase of
FedVS is also simulated by adding an exponential delay
at each client, whose mean, according to the analysis of
computation costs, is 1/|B| of the corresponding delay’s
mean for embedding uploading.

Parameter settings. For Wait-DP, we set the privacy
budget ϵ′ to 10. For FedVS, we optimize the rate of
convergence over the partition parameter K for each dataset.
The privacy parameter of FedVS is set to T = 1. To
simulate communication delays, a network bandwidth of
300Mbps, as measured in (So et al., 2022) for AWS EC2
cloud computing environment, is assumed for the server
and all clients. Each experiment is repeated 5 times and the
average accuracies are reported.

6.3. Results

Comparisons with baselines. As shown in Figure 2, for CV
and multi-view datasets, FedVS outperforms all baselines
in test accuracy at all times. For tabular datasets, VAFL and
Ignore converge quickly at the beginning and are eventually
outperformed by FedVS. For privacy protection, inserting
DP noises in Wait-DP hurts the accuracies for all datasets.
In sharp contrast, FedVS protects data and model privacy
without performance loss.

Optimization of partition parameter. We further explore
the optimal choices of the partition parameter K for FedVS
under different straggler patterns. Specifically, we consider
two delay patterns depending on whether the mean of clients’
added delays is greater than the local computation time at a
single client. As shown in Figure 3(a), when the mean delay
is greater than the computation time, stragglers cause major
performance bottleneck, and it is preferable to use a smaller
K to tolerate more stragglers. On the other hand, when
the local computation time dominates the delay caused by
stragglers, Figure 3(b) indicates that it is optimal to choose
a larger K to minimize local computation load.

Privacy-performance tradeoff. For a larger privacy
parameter T , the privacy guarantee of FedVS becomes
stronger as it protects data and model privacy from T
colluding clients. However, as shown in Figure 4, its
performance suffers as it tolerates less number of stragglers.

7. Conclusion
We propose FedVS, a synchronous split VFL framework
that simultaneously addresses the problems of straggling
clients and privacy leakage. Through efficient secret
sharing of data and model parameters and descryption
on the computation shares, FedVS losslessly aggregates
embeddings from all clients, in presence of a certain number
of stragglers; and simultaneously provides information-
theoretic privacy against the curious server and a certain
number of colluding clients. Extensive experiments on
various VFL tasks and datasets further demonstrate the
superiority of FedVS in straggler mitigation and privacy
protection over baseline methods.

Acknowledgement
This work is in part supported by the National Nature
Science Foundation of China (NSFC) Grant 62106057,
Foshan HKUST Projects FSUST20-FYTRI04B, and
Guangzhou Science and Technology City-University Joint
Project 2023A03J0151.

References
Bell, J. H., Bonawitz, K. A., Gascón, A., Lepoint, T., and

Raykova, M. Secure single-server aggregation with (poly)
logarithmic overhead. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications
Security, pp. 1253–1269, 2020.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A.,
and Seth, K. Practical secure aggregation for privacy-
preserving machine learning. In proceedings of the
2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1175–1191, 2017.

Cai, S., Chai, D., Yang, L., Zhang, J., Jin, Y., Wang, L.,
Guo, K., and Chen, K. Secure forward aggregation
for vertical federated neural networks. arXiv preprint
arXiv:2207.00165, 2022.

Castiglia, T., Wang, S., and Patterson, S. Flexible vertical
federated learning with heterogeneous parties. arXiv
preprint arXiv:2208.12672, 2022.

Ceballos, I., Sharma, V., Mugica, E., Singh, A., Roman, A.,
Vepakomma, P., and Raskar, R. Splitnn-driven vertical
partitioning. CoRR, abs/2008.04137, 2020. URL https:
//arxiv.org/abs/2008.04137.

Chai, D., Wang, L., Chen, K., and Yang, Q. Secure federated
matrix factorization. IEEE Intelligent Systems, 36(5):11–
20, 2020.

https://arxiv.org/abs/2008.04137
https://arxiv.org/abs/2008.04137

FedVS: Straggler-Resilient and Privacy-Preserving Vertical Federated Learning for Split Models

Chai, Z., Chen, Y., Anwar, A., Zhao, L., Cheng, Y.,
and Rangwala, H. Fedat: a high-performance and
communication-efficient federated learning system
with asynchronous tiers. In Proceedings of the
International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16,
2021.

Chen, T., Jin, X., Sun, Y., and Yin, W. VAFL: a method
of vertical asynchronous federated learning. CoRR,
abs/2007.06081, 2020. URL https://arxiv.org/
abs/2007.06081.

Cheng, K., Fan, T., Jin, Y., Liu, Y., Chen, T., Papadopoulos,
D., and Yang, Q. Secureboost: A lossless federated
learning framework. IEEE Intelligent Systems, 36(6):
87–98, 2021.

Cheng, Y., Liu, Y., Chen, T., and Yang, Q. Federated
learning for privacy-preserving AI. Communications of
the ACM, 63(12):33–36, 2020.

Choi, B., Sohn, J.-y., Han, D.-J., and Moon, J.
Communication-computation efficient secure aggregation
for federated learning. arXiv preprint arXiv:2012.05433,
2020.

Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A.
Emnist: Extending mnist to handwritten letters. In
2017 international joint conference on neural networks
(IJCNN), pp. 2921–2926. IEEE, 2017.

Dhakal, S., Prakash, S., Yona, Y., Talwar, S., and Himayat,
N. Coded federated learning. In 2019 IEEE Globecom
Workshops (GC Wkshps), pp. 1–6. IEEE, 2019.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Erdogan, E., Kupcu, A., and Cicek, A. E. Unsplit: Data-
oblivious model inversion, model stealing, and label
inference attacks against split learning. arXiv preprint
arXiv:2108.09033, 2021.

Feng, S. and Yu, H. Multi-participant multi-class vertical
federated learning. CoRR, abs/2001.11154, 2020. URL
https://arxiv.org/abs/2001.11154.

Fu, C., Zhang, X., Ji, S., Chen, J., Wu, J., Guo, S., Zhou, J.,
Liu, A. X., and Wang, T. Label inference attacks against
vertical federated learning. In 31st USENIX Security
Symposium (USENIX Security 22), Boston, MA, 2022.

Gu, B., Xu, A., Huo, Z., Deng, C., and Huang, H. Privacy-
preserving asynchronous vertical federated learning
algorithms for multiparty collaborative learning. IEEE
Transactions on Neural Networks and Learning Systems,
pp. 1–13, 2021. doi: 10.1109/TNNLS.2021.3072238.

Hardy, S., Henecka, W., Ivey-Law, H., Nock, R., Patrini,
G., Smith, G., and Thorne, B. Private federated learning
on vertically partitioned data via entity resolution and
additively homomorphic encryption. arXiv preprint
arXiv:1711.10677, 2017.

Hu, Y., Niu, D., Yang, J., and Zhou, S. Fdml: A
collaborative machine learning framework for distributed
features. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pp. 2232–2240, 2019.

Huba, D., Nguyen, J., Malik, K., Zhu, R., Rabbat, M.,
Yousefpour, A., Wu, C.-J., Zhan, H., Ustinov, P., Srinivas,
H., et al. Papaya: Practical, private, and scalable federated
learning. Proceedings of Machine Learning and Systems,
4:814–832, 2022.

Jahani-Nezhad, T., Maddah-Ali, M. A., Li, S., and Caire, G.
Swiftagg: Communication-efficient and dropout-resistant
secure aggregation for federated learning with worst-
case security guarantees. In 2022 IEEE International
Symposium on Information Theory (ISIT), pp. 103–108,
2022a. doi: 10.1109/ISIT50566.2022.9834750.

Jahani-Nezhad, T., Maddah-Ali, M. A., Li, S., and Caire,
G. Swiftagg+: Achieving asymptotically optimal
communication load in secure aggregation for federated
learning. arXiv preprint arXiv:2203.13060, 2022b.

Jin, X., Chen, P.-Y., Hsu, C.-Y., Yu, C.-M., and Chen, T.
Cafe: Catastrophic data leakage in vertical federated
learning. Advances in Neural Information Processing
Systems, 34:994–1006, 2021.

Kairouz, P., Liu, Z., and Steinke, T. The distributed discrete
gaussian mechanism for federated learning with secure
aggregation. In International Conference on Machine
Learning. PMLR, 2021.

Lee, J., Sun, J., Wang, F., Wang, S., Jun, C.-H., Jiang, X.,
et al. Privacy-preserving patient similarity learning in a
federated environment: development and analysis. JMIR
medical informatics, 6(2):e7744, 2018.

Li, F.-F., Andreeto, M., Ranzato, M., and Perona, P. Caltech
101, April 2022.

Li, M., Chen, Y., Wang, Y., and Pan, Y. Efficient
asynchronous vertical federated learning via gradient
prediction and double-end sparse compression. In 2020
16th International Conference on Control, Automation,
Robotics and Vision (ICARCV), pp. 291–296. IEEE, 2020.

Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., Li, Y., Liu,
X., and He, B. A survey on federated learning systems:
vision, hype and reality for data privacy and protection.
IEEE Transactions on Knowledge and Data Engineering,
2021a.

https://arxiv.org/abs/2007.06081
https://arxiv.org/abs/2007.06081
http://archive.ics.uci.edu/ml
https://arxiv.org/abs/2001.11154

FedVS: Straggler-Resilient and Privacy-Preserving Vertical Federated Learning for Split Models

Li, X., Qu, Z., Tang, B., and Lu, Z. Stragglers are not
disaster: A hybrid federated learning algorithm with
delayed gradients. arXiv preprint arXiv:2102.06329,
2021b.

Liu, L., Gu, R., and Hu, X. Ladder polynomial neural
networks. CoRR, abs/2106.13834, 2021. URL https:
//arxiv.org/abs/2106.13834.

Liu, Z., Guo, J., Lam, K.-Y., and Zhao, J. Efficient dropout-
resilient aggregation for privacy-preserving machine
learning. IEEE Transactions on Information Forensics
and Security, 2022a.

Liu, Z., Guo, J., Yang, W., Fan, J., Lam, K.-Y., and Zhao, J.
Privacy-preserving aggregation in federated learning: A
survey. arXiv preprint arXiv:2203.17005, 2022b.

Livni, R., Shalev-Shwartz, S., and Shamir, O. On the
computational efficiency of training neural networks.
Advances in neural information processing systems, 27,
2014.

Luo, X., Wu, Y., Xiao, X., and Ooi, B. C. Feature inference
attack on model predictions in vertical federated learning.
In 2021 IEEE 37th International Conference on Data
Engineering (ICDE), pp. 181–192. IEEE, 2021.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of
deep networks from decentralized data. In Artificial
intelligence and statistics, pp. 1273–1282. PMLR, 2017.

Nguyen, J., Malik, K., Zhan, H., Yousefpour, A., Rabbat,
M., Malek, M., and Huba, D. Federated learning with
buffered asynchronous aggregation. In International
Conference on Artificial Intelligence and Statistics, pp.
3581–3607. PMLR, 2022.

Park, J., Han, D.-J., Choi, M., and Moon, J. Sageflow:
Robust federated learning against both stragglers and
adversaries. Advances in Neural Information Processing
Systems, 34:840–851, 2021.

Prakash, S., Dhakal, S., Akdeniz, M. R., Yona, Y.,
Talwar, S., Avestimehr, S., and Himayat, N. Coded
computing for low-latency federated learning over
wireless edge networks. IEEE Journal on Selected Areas
in Communications, 39(1):233–250, 2020.

Ramezani, M., Cong, W., Mahdavi, M., Sivasubramaniam,
A., and Kandemir, M. Gcn meets gpu: Decoupling “when
to sample”from “how to sample”. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 18482–18492. Curran Associates,
Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/

d714d2c5a796d5814c565d78dd16188d-Paper.
pdf.

Reisizadeh, A., Tziotis, I., Hassani, H., Mokhtari, A.,
and Pedarsani, R. Straggler-resilient federated learning:
Leveraging the interplay between statistical accuracy and
system heterogeneity. IEEE Journal on Selected Areas in
Information Theory, 2022.

Sakar, C. O., Serbes, G., Gunduz, A., Tunc, H. C., Nizam,
H., Sakar, B. E., Tutuncu, M., Aydin, T., Isenkul, M. E.,
and Apaydin, H. A comparative analysis of speech
signal processing algorithms for parkinson’s disease
classification and the use of the tunable q-factor wavelet
transform. Applied Soft Computing, 74:255–263, 2019.

Schlegel, R., Kumar, S., Rosnes, E., et al. Codedpaddedfl
and codedsecagg: Straggler mitigation and secure
aggregation in federated learning. arXiv preprint
arXiv:2112.08909, 2021.

Shao, J., Sun, Y., Li, S., and Zhang, J. Dres-fl: Dropout-
resilient secure federated learning for non-iid clients via
secret data sharing. Advances in Neural Information
Processing Systems, 2022.

Shi, H., Xu, Y., Jiang, Y., Yu, H., and Cui,
L. Efficient asynchronous multi-participant vertical
federated learning. IEEE Transactions on Big Data, 2022.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

So, J., Güler, B., and Avestimehr, A. S. Turbo-aggregate:
Breaking the quadratic aggregation barrier in secure
federated learning. IEEE Journal on Selected Areas in
Information Theory, 2(1):479–489, 2021.

So, J., He, C., Yang, C.-S., Li, S., Yu, Q., E Ali, R.,
Guler, B., and Avestimehr, S. Lightsecagg: a lightweight
and versatile design for secure aggregation in federated
learning. Proceedings of Machine Learning and Systems,
4:694–720, 2022.

Sun, Y., Shao, J., Li, S., Mao, Y., and Zhang, J. Stochastic
coded federated learning with convergence and privacy
guarantees. In 2022 IEEE International Symposium on
Information Theory (ISIT), pp. 2028–2033, 2022a.

Sun, Y., Shao, J., Mao, Y., Li, S., and Zhang, J.
Stochastic coded federated learning: Theoretical analysis
and incentive mechanism design. arXiv preprint
arXiv:2211.04132, 2022b.

Thapa, C., Arachchige, P. C. M., Camtepe, S., and Sun, L.
Splitfed: When federated learning meets split learning.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 8485–8493, 2022.

https://arxiv.org/abs/2106.13834
https://arxiv.org/abs/2106.13834
https://proceedings.neurips.cc/paper/2020/file/d714d2c5a796d5814c565d78dd16188d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d714d2c5a796d5814c565d78dd16188d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d714d2c5a796d5814c565d78dd16188d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d714d2c5a796d5814c565d78dd16188d-Paper.pdf

FedVS: Straggler-Resilient and Privacy-Preserving Vertical Federated Learning for Split Models

Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig,
H., Zhang, R., and Zhou, Y. A hybrid approach to privacy-
preserving federated learning. In Proceedings of the 12th
ACM workshop on artificial intelligence and security,
2019.

Truex, S., Liu, L., Chow, K.-H., Gursoy, M. E., and Wei,
W. Ldp-fed: Federated learning with local differential
privacy. In Proceedings of the Third ACM International
Workshop on Edge Systems, Analytics and Networking,
pp. 61–66, 2020.

van Dijk, M., Nguyen, N. V., Nguyen, T. N., Nguyen,
L. M., Tran-Dinh, Q., and Nguyen, P. H. Asynchronous
federated learning with reduced number of rounds and
with differential privacy from less aggregated gaussian
noise. arXiv preprint arXiv:2007.09208, 2020.

Vepakomma, P., Gupta, O., Swedish, T., and Raskar, R. Split
learning for health: Distributed deep learning without
sharing raw patient data. CoRR, abs/1812.00564, 2018.
URL http://arxiv.org/abs/1812.00564.

Von Zur Gathen, J. and Gerhard, J. Modern computer
algebra. Cambridge university press, 2013.

Wang, C., Liang, J., Huang, M., Bai, B., Bai, K.,
and Li, H. Hybrid differentially private federated
learning on vertically partitioned data. arXiv preprint
arXiv:2009.02763, 2020.

Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F.,
Jin, S., Quek, T. Q., and Poor, H. V. Federated learning
with differential privacy: Algorithms and performance
analysis. IEEE Transactions on Information Forensics
and Security, 15:3454–3469, 2020.

Wei, K., Li, J., Ma, C., Ding, M., Wei, S., Wu, F., Chen,
G., and Ranbaduge, T. Vertical federated learning:
Challenges, methodologies and experiments. arXiv
preprint arXiv:2202.04309, 2022.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms, 2017a.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017b.

Xie, C., Koyejo, S., and Gupta, I. Asynchronous federated
optimization. arXiv preprint arXiv:1903.03934, 2019.

Xu, D., Yuan, S., and Wu, X. Achieving differential privacy
in vertically partitioned multiparty learning. In 2021
IEEE International Conference on Big Data (Big Data),
pp. 5474–5483. IEEE, 2021.

Yang, S., Ren, B., Zhou, X., and Liu, L. Parallel distributed
logistic regression for vertical federated learning without
third-party coordinator. CoRR, abs/1911.09824, 2019a.
URL http://arxiv.org/abs/1911.09824.

Yang, S., Ren, B., Zhou, X., and Liu, L. Parallel distributed
logistic regression for vertical federated learning without
third-party coordinator. arXiv preprint arXiv:1911.09824,
2019b.

Yeh, I.-C. and Lien, C.-h. The comparisons of data mining
techniques for the predictive accuracy of probability
of default of credit card clients. Expert systems with
applications, 36(2):2473–2480, 2009.

Yu, Q., Li, S., Raviv, N., Kalan, S. M. M., Soltanolkotabi,
M., and Avestimehr, S. A. Lagrange coded computing:
Optimal design for resiliency, security, and privacy.
In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 1215–1225. PMLR, 2019.

Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., and Liu,
Y. BatchCrypt: Efficient homomorphic encryption for
Cross-Silo federated learning. In 2020 USENIX annual
technical conference (USENIX ATC 20), pp. 493–506,
2020.

Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., and Gao, Y.
A survey on federated learning. Knowledge-Based
Systems, 216:106775, 2021a. ISSN 0950-7051.
doi: https://doi.org/10.1016/j.knosys.2021.106775.
URL https://www.sciencedirect.com/
science/article/pii/S0950705121000381.

Zhang, Q., Gu, B., Deng, C., and Huang, H. Secure bilevel
asynchronous vertical federated learning with backward
updating. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 10896–10904,
2021b.

http://arxiv.org/abs/1812.00564
http://arxiv.org/abs/1911.09824
https://www.sciencedirect.com/science/article/pii/S0950705121000381
https://www.sciencedirect.com/science/article/pii/S0950705121000381

FedVS: Straggler-Resilient and Privacy-Preserving Vertical Federated Learning for Split Models

Appendix

A. Proof of Theorem 5.2
Here we prove information-theoretic data privacy against T colluding clients, and the proof for model privacy follows the
similar steps.

WLOG, let us consider the first T clients colluding to infer private data Xn of client n > T . We have from (2) that the
secret shares of Xn at the first T clients are

X̃n,1

X̃n,2

...
X̃n,T

︸ ︷︷ ︸

X̃n,T

=

a1,1 . . . a1,K
a2,1 . . . a2,K

... . . .
...

aT,1 . . . aT,K

︸ ︷︷ ︸

A1

Xn,1

Xn,2

...
Xn,K

︸ ︷︷ ︸

Xn

+

a1,K+1 . . . a1,K+T

a2,K+1 . . . a2,K+T

... . . .
...

aT,K+1 . . . aT,K+T

︸ ︷︷ ︸

A2

Zn,K+1

Zn,K+2

...
Zn,K+T

︸ ︷︷ ︸

Zn

(8)

Here an′,k =
∏

ℓ∈[K+T]\{k}
αn′−βℓ

βk−βℓ
, for all k ∈ [K + T].

As Zn is uniformly random in F
TM
K ×dnDn

p and the matrix A2 comprised of Lagrange coefficients has full rank, A2Zn is

also uniformly random in F
TM
K ×dnDn

p . Now, for any M ∈ F
TM
K ×dnDn

p and N ∈ FM×dnDn
p , we have

Pr[X̃n,T = M |Xn = N] = Pr[A2Zn = M −A1N |Xn = N] (9)
(a)
= Pr[A2Zn = M −A1N] (10)
(b)
=

1

p
TMdnDn

K

. (11)

Here (a) is because that Xn and Zn are independent, and (b) is because that A2Zn is uniformly random in F
TM
K ×dnDn

p .
Next, we have

Pr[X̃n,T = M] =
∑
N

Pr[X̃n,T = M |Xn = N]Pr[Xn = N] (12)

=
∑
N

1

p
TMdnDn

K

Pr[Xn = N] =
1

p
TMdnDn

K

. (13)

We have from the above that for any M and N , Pr[X̃n,T = M |Xn = N] = Pr[X̃n,T = M] = 1

p
TMdnDn

K

, and hence

X̃n,T and Xn are statistically independent. That is, the mutual information I
(
X̃n,T ;Xn

)
= 0. As this holds for all

n > T , we have I(X̃T+1,T , X̃T+2,T , . . . , X̃N,T ;XT+1,XT+2, . . . ,XN) = 0.

B. Proof of Theorem 5.4
From Lemma 10 in (Ramezani et al., 2020), we state the following lemma that bounds the difference between the gradients
of the losses computed from a sampled batch and all training data.

Lemma B.1. Consider mini-batch function ∇nFB(W) ∈ Rpn , n ∈ {0, 1, . . . , N}, which satisfies E[∇nFB(W)] =
∇nF (W). For ϵ < 2L, we have with probability at least 1− δ that:

∥∇nFB(W)−∇nF (W)∥2 ≤
32L2(log(2pn/δ) +

1
4)

|B|
. (14)

Proof. The proof refers to (Ramezani et al., 2020).

Then we provide lemma B.2 to bound the loss function in each round r as follows:

FedVS: Straggler-Resilient and Privacy-Preserving Vertical Federated Learning for Split Models

Lemma B.2. Under Assumption 2, for each round r, it follows that

F (W r+1) ≤ F (W r) +

N∑
n=0

(Lη2n −
3

2
ηn)∥∇nF (W

r)∥2 +
N∑

n=0

Lη2n∥∇nFB(Ŵ
r)−∇nF (W

r)∥2, (15)

Proof. From Assumption 1, we can derive that:

F (W r+1) =F
(
W r

0 − η0∇0FB(Ŵ
r), . . . ,W r

N − ηN∇NFB(Ŵ
r)
)

≤F (W r)−
N∑

n=0

⟨∇nF (W
r), ηn(∇nFB(Ŵ

r)−∇nF (W
r) +∇nF (W

r))⟩+
N∑

n=0

L

2
η2n∥∇nFB(Ŵ

r)∥2

=F (W r)−
N∑

n=0

ηn∥∇nF (W
r)∥2 −

N∑
n=0

ηn⟨∇nF (W
r), (∇nFB(Ŵ

r)−∇nF (W
r))⟩

+

N∑
n=0

L

2
η2n∥∇nFB(Ŵ

r)∥2.

(16)

Note that we have:

∥∇nFB(Ŵ
r)∥2 =∥∇nFB(Ŵ

r)−∇nF (W
r) +∇nF (W

r)∥2

=∥∇nFB(Ŵ
r)−∇nF (W

r)∥2 + ∥∇nF (W
r)∥2

+ 2⟨∇nF (W
r),∇nFB(Ŵ

r)−∇nF (W
r)⟩,∀n ∈ [N].

(17)

Combining (16) and (17), we have:

F (W r+1) ≤ F (W r) +

N∑
n=0

(Lη2n −
3

2
ηn)∥∇nF (W

r)∥2 +
N∑

n=0

(Lη2n −
1

2
ηn)∥∇nFB(Ŵ

r)−∇nF (W
r)∥2

≤ F (W r) +

N∑
n=0

(Lη2n −
3

2
ηn)∥∇nF (W

r)∥2 +
N∑

n=0

Lη2n∥∇nFB(Ŵ
r)−∇nF (W

r)∥2,

(18)

which completes the proof of lemma B.2.

Proof of Theorem 5.4:

Considering the stochastic rounding on clients’ model parameters, from Assumption 1, 2, 4 and Lemma B.1, we can derive
the following inequality with probability at least 1− δ, ∀n ∈ {0, 1, . . . , N}:

∥∇nFB(Ŵ
r)−∇nF (W

k)∥2 ≤ 2∥∇nFB(Ŵ
r)−∇nFB(W

r)∥2 + 2∥∇nFB(W
r)−∇nF (W

r)∥2

≤ 2L2∥(W r
0 , Qstoc(W

r
1 , . . . ,W

r
N))−W r∥2 + 2∥∇nFB(W

r)−∇nF (W
r)∥2

≤ 2L2∥Qstoc(W
r
0 ,W

r
1 , . . . ,W

r
N)−W r∥2 + 2∥∇nFB(W

r)−∇nF (W
r)∥2

= 2L2γ2σ2 +
64L2(log(2pn/δ) +

1
4)

|B|
= 2L2γ2σ2 + 2Vn,

(19)

where Vn =
32L2(log(2pn/δ)+

1
4)

|B| .

When ηn ≤ 3
4L ,∀n ∈ {0, 1, . . . , N} in Lemma B.2, the following inequality holds:

N∑
n=0

3

4
ηn∥∇nF (W

r)∥2 ≤ F (W r)− F (W r+1) +

N∑
n=0

Lη2n∥∇nFB(Ŵ
r)−∇nF (W

r)∥2, (20)

FedVS: Straggler-Resilient and Privacy-Preserving Vertical Federated Learning for Split Models

Under Assumption 3, taking expectation on both sides of (20) and adopting ηn = 3
4L

√
1
R ≤

3
4L ,∀n ∈ {0, 1, . . . , N}, the

following holds with probability at least 1− δ:

1

R

R−1∑
r=0

E

(
N∑

n=0

∥∇nF (W
r)∥2

)
≤ F (W 0)− F (W ∗)

3
4ηnR

+

∑R−1
r=0 E(

∑N
n=0 Lη

2
n∥∇nFB(Ŵ

r)−∇nF (W
r)∥2)]

3
4ηnR

≤ 16L

9
√
R
(F (W 0)− F (W ∗)) +

∑N
n=0(2L

2γ2σ2 + 2Vn)√
R

= O
(

1√
R

)
.

(21)

This completes the proof of Theorem 5.4.

C. Six datasets’ descriptions, models and training details

Table 2. Dataset Descriptions.

Tabular Multi-view CV

Parkinson Credit card Handwritten Caltech-7 EMNIST FashionMNIST
Number of samples 756 30,000 2000 1474 131,600 70,000

Feature size 754 24 649 3766 784 784
Number of classes 2 2 10 7 47 10

Parkinson: The dataset’s features are biomedical voice measurements from 31 people, 23 with Parkinson’s disease (PD).
Each feature is a particular voice measurement. The label is divided to 0 and 1, which represents PD and healthy people.
There are 10 clients with vertically partitioned data. 70% of the data is regarded as training data and the remaining part is
test data. Each client holds a 2-layer PN, and the server holds a network with 2 Linear-ReLU layers and 1 Linear-Sigmoid
layer. The learning rate is set to 0.005. The batch size is 16.

Credit Card: The dataset is composed of information on default payments, demographic factors, credit data, history
of payment, and bill statements of credit card clients in Taiwan from April 2005 to September 2005, which contains 24
attributes. The labels of the samples are biased since there are 78% of samples labeled as 0 and 22% of samples labeled as 1
to denote default payment. 11 clients equally hold vertically partitioned data. Each client holds a 2-layer PN, and the server
holds a network with a Linear-BatchNorm-Linear-ReLU-BatchNorm-WeightNorm-Linear-Sigmoid structure. The learning
rate is set to 0.01 and the batch size is set to 32.

FashionMNIST: It is an image dataset related to household goods. Each image sample is evenly partitioned across 28 clients.
Each client holds a 1-layer PN, and the server holds a network with 2 Linear-ReLU layers and one Linear-Logsoftmax layer.
The learning rate is set to 0.5 and batch size 256 is selected.

EMNIST: The EMNIST dataset is a set of handwritten character digits converted to a 28x28 pixel image format. There are
28 clients and the data is partitioned the same as FashionMNIST. The clients’ model is a 2-layer PN, and the server model is
the same as the above FashionMNIST server’s model. The learning rate is 0.05 and the batch size is 512.

HandWritten: The dataset consists of features of handwritten numerals 0-9 extracted from a collection of Dutch utility
maps. 200 patterns per class (for a total of 2,000 patterns) have been digitized in binary images. It consists of 6 views,
pixel (PIX) of dimension 240, Fourier coefficients of dimension 76, profile correlations (FAC) of dimension 216, Zernike
moments (ZER) of dimension 47, Karhunen-Loeve coefficients (KAR) of dimension 64 and morphological features (MOR)
of dimension 6. Each client holds one view. The dataset is split to 60% as the train set and 40% as the test set. Each client
holds a 2-layer PN, and the server holds a model with 2 Linear-ReLU layers and 1 Linear-Logsoftmax layer. The learning
rate is 0.02 and the batch size is 8.

Caltech-7: Caltech-101 is an object recognition dataset containing 8677 images of 101 categories. 7 classes of Caltech 101
are selected, i.e., Face, Motorbikes, Dolla-Bill, Garfield, Snoopy, Stop-Signand Windsor-Chair. The dataset is composed of

FedVS: Straggler-Resilient and Privacy-Preserving Vertical Federated Learning for Split Models

6 views, each of which is held by a client. 80% of the dataset is used for training and 20% for testing. Each client holds a
2-layer PN. The server holds the same model structure as HandWritten. The learning rate is 0.02 and the batch size is 8.

