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Abstract. In this paper we introduce a novel version of the Joye-Libert
cryptosystem that allows users to decrypt without knowing the factori-
sation of the composite modulus. Then we use our construction as a
building block for a threshold decryption protocol of the homomorphic
Joye-Libert encryption scheme. Finally, we present several extensions of
the threshold cryptosystem.

1 Introduction

In classical public key encryption systems, only the owner of the secret key has
the ability to decrypt ciphertexts. Unfortunately, if an adversary is able to break
into a system administrator’s computer, for example, and steal its secret key, the
whole system is compromised. Since, this type of attack by hackers or Trojan
horses or corrupted insiders becomes more frequent and more easily to perform,
the need to develop a method of distributing trust arises. In order to address this
issue, a possible solution is to distribute the secret key between several servers
and then use threshold decryption algorithms.

Most previous research has mainly focused on developing threshold decryp-
tion algorithms for RSA-based schemes [5,11,16,17] and discrete logarithm-based
schemes [6, 12, 16, 32, 38]. But according to [9, 17, 26], there is still a need to de-
sign threshold schemes for many specific cryptosystems. Furthermore, as many
have pointed out previously [9,11,17,18,25], threshold homomorphic schemes are
useful for achieving goals such as electronic voting and efficient multi-party com-
putation. In line with this reasoning, Katz and Yung [26] developed a threshold
cryptosystem based on the Goldwasser-Micali encryption scheme [21,22]. More-
over, their conversion keeps the homomorphic properties of the original scheme.
The Katz-Yung scheme is revisited in [13] with the goal of extending it to com-
posite moduli for which the Katz-Yung scheme fails.

A rather natural extension of the Goldwasser-Micali cryptosystem was intro-
duced by Joye and Libert in [23] and it was reconsidered in [4]. Despite the fact
that it is simple and elegant, the Goldwasser-Micali scheme is quite uneconom-
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ical in terms of bandwidth3. Various attempts of generalizing the Goldwasser-
Micali scheme were proposed in the literature in order to address the previously
mentioned issue. The Joye-Libert scheme can be considered a follow-up of the
cryptosystems proposed in [7,29] and efficiently supports the encryption of larger
messages. The authors of [23] leave as an open problem the extension of their
scheme, starting from [26], to a threshold decryption scheme.

Having in mind the motivations stated in the previous paragraphs, in this
paper we develop a threshold version of the Joye-Libert cryptosystem [4, 23]
that generalizes both the Katz-Yung scheme [26] and the Desmedt-Kurasawa
scheme [13]. Note that our generalization conserves the homomorphic property
of the Joye-Libert cryptosystem.

Another important problem that we address is proving the security of our
threshold decryption scheme against chosen ciphertexts attacks. This topic was
tackled by Katz and Yung for their scheme [26]. More precisely, they applied the
generic conversion method from [16] that uses two independent encryption runs
and a non-interactive zero-knowledge proof that the resulting ciphertexts contain
the same message. Although, Katz and Yung provide such a proof system, they
do not formally prove it secure. On the other hand, Desmedt and Kurasawa [13]
simply state that proving the chosen ciphertexts security for their scheme is quite
complex, and thus they only focus on semantic security. Therefore, we wanted
to fill these gaps. When we tried to directly generalize Katz and Yung’s proof,
we ended up with a cumbersome protocol. Hence, starting from the examples
described in [16] and the signature protocol from [20], we constructed a novel
non-interactive zero-knowledge proof that is suitable for our threshold scheme
and then we prove it secure. Note that our proof is also suitable for the Katz-
Yung and Desmedt-Kurasawa schemes.

Structure of the paper. In Section 2 we introduce notations, definitions, security
assumptions and schemes used throughout the paper. Inspired by the Joye-Libert
encryption scheme, in Section 3 we propose a new scheme based on 2k residues,
prove it secure in the standard model and analyze its performance compared to
other related cryptosystems. A threshold version of our scheme is proposed in
Section 4 and extensions are given in Section 5. We conclude in Section 6.

2 Preliminaries

Notations. Throughout the paper, λ denotes a security parameter. We use the

notation x
$←− X when selecting a random element x from a sample space X. We

denote by x← y the assignment of the value y to the variable x. The probability
that event E happens is denoted by Pr[E].

The Jacobi symbol of an integer a modulo an integer n is generally repre-

sented by

(
a

n

)
. Jn and J̄n denote the sets of integers modulo n with Jacobi

3 k · log2 n bits are needed to encrypt a k-bit message, where n is a composite modulus
as described in [21,22]
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symbol 1, respectively −1. Throughout the paper, we let QRn be the set of
quadratic residues modulo n. We define the alternative representation of inte-
gers modulo an integer p as Zp = {−(p− 1)/2, . . . ,−1, 0, 1, . . . , (p− 1)/2}. The
set of integers {0, . . . , a− 1} is further denoted by [0, a). For shorthand, we de-
note the set [0, a + 1) by [0, a]. Multidimensional vectors v = (v0, . . . , vs−1) are
represented as v = {vi}i∈[0,s).

2.1 Number Theoretic Prerequisites

The Legendre symbol can be generalized to higher powers in several ways. We
further consider the 2k-th power residue symbol as presented in [40]. The classical
Legendre symbol is obtained when k = 1.

Definition 1. Let p be an odd prime such that 2k|p− 1. Then the symbol(
a

p

)
2k

= a
p−1

2k (mod p)

is called the 2k-th power residue symbol modulo p, where a
p−1

2k ∈ Zp.

Properties. The 2k-th power residue symbol satisfies the following properties

1. If a ≡ b (mod p), then

(
a

p

)
2k

=

(
b

p

)
2k
,

2.

(
a2

k

p

)
2k

= 1,

3.

(
ab

p

)
2k

=

(
a

p

)
2k

(
b

p

)
2k

(mod p),

4.

(
1

p

)
2k

= 1 and

(
−1
p

)
2k

= (−1)(p−1)/2k .

In our paper we will make use of a generalized version of the Chinese Re-
mainder Theorem. More precisely, we are interested in the case of moduli that
are not pairwise coprime. We further present the theorem as stated in [33].

Theorem 1 (Generalized Chinese Remainder Theorem). Let m1,m2, . . . ,
mt be positive integers. For a set of integers a1, a2, . . . , at the system of congru-
ences

x ≡ ai (mod mi), for i ∈ [1, t]

has solutions if and only if

ai ≡ aj (mod gcd(mi,mj)), for i ̸= j, i, j ∈ [1, t]. (1)

If Equation (1) holds, then the solution will be unique modulo lcm(m1,m2, . . . ,mt).



4

We additionally use a theorem proved by Dirichlet in 1837. This theorem
establishes the constrains necessary for the existence of infinitely many primes
in an arithmetic progression. The original proof can be found in [27].

Theorem 2 (Dirichlet’s theorem). Let r, q be two coprime positive integers
and let {an}n∈N be an arithmetic progression such that an = qn+ r. Then there
exists a subsequence {bn′}n′∈N ⊆ {an}n∈N such that bn′ is prime for each n′.

2.2 Computational Complexity

To analyze the performance of our scheme, we must consider the complexities
of the mathematical operations listed in Table 1. These complexities are in line
with those presented in [10]. Note that, instead of using the explicit formula for
the complexity of multiplication, we simply denote it by M(·).

Table 1. Computational complexity for µ-bit numbers and k-bit exponents

Operation Complexity

Multiplication M(µ) = O(µ log(µ) log(log(µ)))

Exponentiation O(kM(µ))

Jacobi symbol O(log(µ)M(µ))

2.3 Security Assumptions

Definition 2 (Quadratic Residuosity - qr, Squared Jacobi Symbol - sjs
and Gap 2k-Residuosity - gr). Choose two large prime numbers p, q ≥ 2λ

and compute n = pq. Let A be a probabilistic polynomial-time (PPT) algorithm
that returns 1 on input (x, n) or (x2, n) or (x, k, n) if x ∈ QRn or Jn or Jn\QRn.
We define the advantages

ADV qr
A (λ) =

∣∣∣Pr[A(x, n) = 1|x $←− QRn]− Pr[A(x, n) = 1|x $←− Jn \QRn]
∣∣∣ ,

ADV sjs
A (λ) =

∣∣∣Pr[A(x2, n) = 1|x $←− Jn]− Pr[A(x2, n) = 1|x $←− J̄n]
∣∣∣ ,

ADV gr
A,k(λ) =

∣∣∣Pr[A(x, k, n) = 1|x $←− Jn \QRn]− Pr[A(x2k , k, n) = 1|x $←− Z∗
n]
∣∣∣ .

The Quadratic Residuosity assumption states that for any PPT algorithm A
the advantage ADV qr

A (λ) is negligible.

If p, q ≡ 1 mod 4, then the Squared Jacobi Symbol assumption states that for
any PPT algorithm A the advantage ADV sjs

A (λ) is negligible.

Let p, q ≡ 1 mod 2k. The Gap 2k-Residuosity assumption states that for any
PPT algorithm A the advantage ADV gr

A (λ) is negligible.
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Remark 1. In [4], the authors investigate the relation between the assumptions
presented in Definition 2. They prove that for any PPT adversary A against the
gr assumption, we have two efficient PPT algorithms B1 and B2 such that

ADV gr
A,k(λ) ≤

3

2

(
(k − 1

3
) ·ADV qr

B1
(λ) + (k − 1) ·ADV sjs

B2
(λ)

)
.

Note that the qr assumption is a well studied security assumption, while the
gr assumption is a relatively new one. Therefore, the relationship between these
assumptions provides us with an additional level of security assurance.

2.4 Public Key Encryption

A public key encryption (PKE) scheme usually consists of three PPT algorithms:
Setup, Encrypt and Decrypt. The Setup algorithm takes as input a security
parameter and outputs the public key as well as the matching secret key. Encrypt
takes as input the public key and a message and outputs the corresponding
ciphertext. The Decrypt algorithm takes as input the secret key and a ciphertext
and outputs either a valid message or an invalidity symbol (if the decryption
failed).

Definition 3 (Indistinguishability under Chosen Plaintext Attacks -
ind-cpa). The security model against chosen plaintext attacks for a PKE scheme
is captured in the following game:

Setup(λ): The challenger C generates the public key, sends it to adversary A
and keeps the matching secret key to himself.

Query: Adversary A sends to C two equal length messages m0,m1. The chal-
lenger flips a coin b ∈ {0, 1} and encrypts mb. The resulting ciphertext c is
sent to the adversary.

Guess: In this phase, the adversary outputs a guess b′ ∈ {0, 1}. He wins the
game, if b′ = b.

The advantage of an adversary A attacking a PKE scheme is defined as

ADV ind-cpa
A (λ) = |Pr[b = b′]− 1/2|

where the probability is computed over the random bits used by C and A. A
PKE scheme is ind-cpa secure, if for any PPT adversary A the advantage
ADV ind-cpa

A (λ) is negligible.

Definition 4 (Indistinguishability under Chosen Ciphertext Attacks -
ind-cca). In the context of Definition 3, if before and after the query phase
the adversary has access to a decryption oracle, we say that scheme is ind-cca
secure. The only restriction imposed on the adversary is that after the query
phase he cannot query the decryption oracle with input c.
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The Joye-Libert PKE scheme. The Joye-Libert scheme was introduced in
[23] as a generalization of the Goldwasser-Micali cryptosystem [21] to multi-
bit messages. The scheme is proven secure in the standard model under the
gr assumption [4, 23]. We shortly describe the algorithms of the Joye-Libert
cryptosystem.

Setup(λ): Set an integer k ≥ 1. Randomly generate two distinct large prime
numbers p, q such that p, q ≥ 2λ and p, q ≡ 1 mod 2k. Output the public key
pk = (n, y, k), where n = pq and y ∈ Jn \ QRn. The corresponding secret
key is sk = (p, q).

Encrypt(pk,m): To encrypt a message m ∈ [0, 2k), we choose x
$←− Z∗

n and

compute c ≡ ymx2k mod n. Output the ciphertext c.

Decrypt(sk, c): Compute z ≡
(
c

p

)
2k

and findm such that the relation

[(
y

p

)
2k

]m
≡

z mod p holds. Efficient methods to recover m can be found in [24].

Threshold PKE schemes. Compared to PKE schemes, the Setup and Decrypt
algorithms of threshold schemes use sub-algorithms to distribute/aggregate in-
formation to/from participants. More precisely, the Setup algorithm takes as
input a security parameter, the number of total players ℓ and the decryption
threshold h; it outputs the public key and distributes the shares of the secret
key to the ℓ players. The Decrypt algorithm takes as input a ciphertext; it for-
wards it to player i’s decryption algorithm4; aggregates the decryption shares
from each player and after receiving at least h shares it outputs either a valid
message or an invalidity symbol.

In our paper we will consider the definition of a simulatable threshold protocol
introduced by Gennaro et al. in [19]. Informally, a protocol is simulatable if we
can show how an adversary attacking the original scheme can simulate the view
of h − 1 players. This implies that this adversary can use an efficient attacker
against the threshold version to break the original protocol. Hence, we show that
if the original PKE is ind-cpa secure and the threshold version is simulatable,
then the threshold PKE is ind-cpa secure even when the adversary has corrupted
h− 1 players.

2.5 Non-Interactive Zero-Knowledge Protocols

Let Q : {0, 1}∗ × {0, 1}∗ → {true, false} be a predicate and let L ∈ NP be a
language. Given a value z ∈ L, Peggy will try to convince Victor that she knows
a value ω such that Q(z, ω) = true.

We further base our reasoning on the definitions from [15, 30, 37] which we
recall next.

Definition 5 (Non-Interactive Proof of Knowledge Protocol). A pro-
tocol (f, P, V ) is a non-interactive proof of knowledge protocol for predicate Q

4 which has access to player i’s secret key share
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if f is a polynomial and P and V are PPT algorithms such that the following
properties hold

– Completeness: For all z ∈ L, all ω such that Q(z, ω) = true and all strings
σ of length f(|x|), on input (x, P (x, ω, σ), σ) V accepts P ’s proof;

– Soundness: For any adversary P̄ , if σ
$←− {0, 1}f(k) is chosen randomly,

then the probability of P̄ outputting an (x, p) such that x ̸∈ L and on input
(x, p, σ) V accepts P̄ ’s proof is negligible in k.

Definition 6 (Non-Interactive Zero Knowledge Protocol). A protocol
(f, P, V ) is zero-knowledge if for every efficient program V̄ there exists an ef-
ficient program S, the simulator, such that the output of S is indistinguishable
from a transcript of the protocol execution between P and V̄ . If the indistin-
guishability is perfect5, then the protocol is called perfect zero-knowledge.

The soundness property of a non-interactive proof of knowledge protocol
(NIZK) states that with overwhelming probability, the prover P should be inca-
pable of convincing the verifier V of a false statement. In the following definition,
we consider a stronger notion, namely that this remains the case even after a
polynomially bounded party has seen a simulated proof of its choosing.

Definition 7 (Simulation-Soundness). A protocol (f, P, V ) is simulation-
sound if for every efficient program P̄ there exists an efficient program S, the
simulator, such that for any bounded list (Σ, κ) of proven words produced by
S, any word z computed by P̄ (Σ) and any proof p calculated by S(x,Σ, κ), the
probability of P̄ (x, p,Σ, τ) outputting an (x′, p′) such that p′ ̸= p, x′ ̸∈ L and on
input (x′, p′, Σ) V accepts P̄ ’s proof is negligible in k.

Twin-Encryption Construction Based on the work of Naor and Yung [30],
Fouque and Pointcheval [16] describe a generic method for converting ind-cpa
secure PKEs into ind-cca secure ones. One of the building block of their con-
struction is a NIZK that convinces everybody that two encryption contain the
same message. In order to show that the proof used in their construction is
simulation-sound, we first need to define our language

Lpk0,pk1
= {(Epk0

(m), Epk1
(m)) | for any message m},

where Epki(m) is the encryption of m with the public key pki, for i ∈ [0, 1]. If a
pair (a0, a1) is a member of the language Lpk0,pk1

we say that the pair is valid.
Otherwise, the pair is invalid.

Using this type of NIZK, Fouque and Pointcheval [16] provide two conver-
sion examples. One for the ElGamal cryptosystem [14] and one for Paillier cryp-
tosytem [31]. Similarly, Katz and Yung [26] provide a NIZK for the Goldwasser-
Micalli cryptosystem [21] when both primes are congruent with 3 modulo 4. Note
that the only NIZK proven to be simulation-sound is the one used for converting
the ElGamal PKE. For the remaining ones the proofs are omitted.

5 i.e. the probability distribution of the simulated and the actual transcript are iden-
tical
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3 A Public Key Encryption Scheme

3.1 Prerequisites

Lemma 1. Let k, α > 0 be integers and let s ∈ Z2α be odd. For a pair of distinct
prime numbers p, q such that

p ≡ q ≡ s · (2α)k + 1 (mod (2α)k+1),

we have

gcd(p− 1, q − 1)|(p− q)/2α.

Proof. We first remark that from the definition of p and q we obtain 2α|p− q.
Lets consider an odd integer r such that r| gcd(p− 1, q − 1). In this case, we

obtain that r|p− q and taking into account the property gcd(2, r) = 1 we derive
the relation r|(p− q)/2α.

We further examine the power of 2 in the prime factorization of the integer
gcd(p− 1, q − 1). According to the definition we have

p = p′ · (2α)k+1 + s · (2α)k + 1,

q = q′ · (2α)k+1 + s · (2α)k + 1,

where p′, q′ are positive integers. Hence, we obtain that

p− q = (p′ − q′)(2α)k+1. (2)

Since s is odd, we have that

2αk|p− 1, 2αk+1 ̸ |p− 1 and 2αk|q − 1, 2αk+1 ̸ |q − 1,

and thus

2αk| gcd(p− 1, q − 1) and 2αk+1 ̸ | gcd(p− 1, q − 1).

In consequence, we need to show that 2αk|(p − q)/2α, or equivalently that
2α(k+1)|p− q. But this is true according to Equation (2). ⊓⊔

Corollary 1. Let k, α > 0 be integers and let s ∈ Z2α be odd. For a pair of
distinct prime numbers p, q such that

p ≡ q ≡ s · (2α)k + 1 (mod (2α)k+1),

the system of congruences

x ≡ (p− 1)/2α (mod p− 1),

x ≡ (q − 1)/2α (mod q − 1),
(3)

has solutions. Note that the solution is unique modulo lcm(p− 1, q − 1).
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Proof. According to Theorem 1 the system of congruences (3) has solutions if
and only if

(p− 1)/2α ≡ (q − 1)/2α (mod gcd(p− 1, q − 1)). (4)

Equation (4) is equivalent to

gcd(p− 1, q − 1)|(p− q)/2α.

and using Lemma 1 we obtain the desired result. ⊓⊔

Lemma 2. Let α > 0. We consider the set

Pi = {p prime | ∃k ∈ N s.t. p ≡ (2i)k + 1 (mod 2i(k+1))}.

Then there exists infinitely many primes p ∈ ∩αi=1Pi and integers e, ki such that

p ≡ 2e + 1 (mod (2i)ki+1),

for each i ∈ [1, α]. More precisely, we have e = lcm(1, . . . , α) and ki = e/i.

Proof. We begin by noticing that gcd(2e+1, 2e+α) = 1. According to Theorem 2,
there exist infinitely many prime numbers p such that

p ≡ 2e + 1 (mod 2e+α). (5)

We can see that Equation (5) implies p ≡ 2e + 1 (mod 2e+i), for each i ∈ [1, α].
This is due to the fact that 2e + 1 < 2e+1 < 2e+2 < . . . < 2e+α.

If we can prove that p ∈ ∩αi=1Pi, then we can conclude our proof. Since
e = lcm(1, 2, . . . , α), then there exist an integer ki such that e = ki · i for each
i ∈ [1, α]. As a result, we obtain that

p ≡ 2e + 1 (mod (2i)ki+1),

for each i ∈ [1, α]. Therefore, p ∈ Pi for each i ∈ [1, α], which is equivalent to
our conclusion. ⊓⊔

3.2 Description

Setup(λ): Set integers k ≥ 1 and e = lcm(1, . . . , k) such that e + k < λ.
Randomly generate two distinct large prime numbers p, q such that p, q ≥ 2λ

and p, q ≡ 2e + 1 (mod 2e+k). Let n = pq. Select zj , such that the following
conditions hold

zj ≡ (p− 1)/2j (mod p− 1),

zj ≡ (q − 1)/2j (mod q − 1),
(6)

where j ∈ [1, k]. Output the public key pk = (n, y, k), where y ∈ Jn \QRn.
The corresponding secret key is sk = z, where z = {zj}j∈[1,k].
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Encrypt(pk,m): To encrypt a message m ∈ [0, 2k), we choose x
$←− Z∗

n and

compute c ≡ ymx2k mod n. Output the ciphertext c.
Decrypt(sk, c): To recover the message simply compute m = Dec(z, y, c).

Algorithm 1: Dec(z, y, c)

Input: The secret value z, the value y and the ciphertext c
Output: The message m

1 m← 0, B ← 1
2 foreach j ∈ [1, k] do
3 v ← czj (mod n)
4 w ← (yzj )m (mod n)
5 if v ̸= w then
6 m← m+B
7 end
8 B ← 2B

9 end
10 return m

Correctness. Let m =
∑k−1

w=0 bw2
w be the binary expansion of m. Note that

czj ≡
(
c

p

)
2j

=

(
ymx2k

p

)
2j

=

(
ym

p

)
2j

=

(
y

p

)∑j−1
w=0 bw2w

2j

≡ (yzj )
∑j−1

w=0 bw2w (mod p)

since

1.

(
x2k

p

)
2j

= 1, where 1 ≤ j ≤ k;

2.
∑k−1

w=0 bw2
w =

(∑j−1
w=0 bw2

w
)
+ 2j ·

(∑k−1
w=j bw2

w−j
)
.

Similarly, we obtain that

czj ≡ (yzj )
∑j−1

w=0 bw2w (mod q).

Therefore, we obtain that

czj ≡ (yzj )
∑j−1

w=0 bw2w (mod n).

As a result, the message m can be recovered bit by bit using zj .

Remark 2. When k = 1 we obtain the Desmedt-Kurosawa encryption scheme
[13].

Remark 3. Note that is sufficient to set the secret key only as sk = zk, since
the remaining values can be easily computed as zk−j = z2k−j+1 for j ∈ [1, k− 1].
But, for simplicity and clarity of the exposition, we describe it as such.



11

Remark 4. In the Setup phase, we have to select an y from Jn\QRn. An efficient

way to perform this step is to randomly select yp
$←− Z∗

p\QRp and yq
$←− Z∗

q\QRq,
and then use the Chinese Remainder Theorem to compute the element y ∈ Z∗

n

such that y ≡ yp mod p and y ≡ yq mod q.

Optimized Decryption Algorithm. When studying Algorithm 1, we can observe
that the values yzj are known beforehand. Hence, we can precompute Dj = yzj

(mod n) for j ∈ [1, k] and augment the private key with these values.

3.3 Security Analysis

Theorem 3. Assume that the qr and sjs assumptions hold. Then, the proposed
scheme is ind-cpa secure in the standard model.

Proof. To prove the statement, we simply change the distribution of the public
key y. More precisely, instead of picking y uniformly from Jn \QRn, we choose it
from the multiplicative subgroup of 2k residues modulo n. According to the gr
assumption, the adversary does not detect the difference between the original
scheme and the one with the modified public key. In this case, the value c is not
carrying any information about the message.

Formally, let A be an efficient PPT adversary, then there exist two efficient
PPT algorithms B1 and B2 such that

ADV ind-cpa
A (λ) ≤ 3

2

(
(k − 1

3
) ·ADV qr

B1
(λ) + (k − 1) ·ADV sjs

B2
(λ)

)
.

Thus, the ind-cpa security of our proposed cryptosystem follows. ⊓⊔

Parameter Selection. In order for our scheme to work, we need to choose special
primes p, q ≡ 2e+1 (mod 2e+k). This means that the first least significant e+k
bits of both p and q are known to everybody. These facts have a very important
impact in the security of the scheme. Due to a powerful attack described by
Coppersmith [8] the size of e + k must be at most 0.25 log n. Otherwise, it is
possible to factor n.

3.4 Complexity Analysis

To facilitate our analysis, we consider that both primes have length λ when
determining the ciphertext expansion and the encryption/decryption complex-
ities. Considering the complexities listed in Table 1, our scheme achieves the
performances presented in Table 2.

Keep in mind that, compared to the Desmedt-Kurasawa cryptosystem, our
decryption algorithm makes one extra exponentiation when k = 1. Hence, this
results in the gap between the complexity of the Desmedt-Kurasawa scheme and
the complexity of our scheme when k = 1. Note that, compared to the analysis
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Table 2. Performance analysis for an η-bit message

Scheme Ciphertext size Encryption Complexity

GM [21] 2λ · η O(2M(2λ) · η)

JL [23] 2λ ·
⌈η
k

⌉
O

(
2(k + 1) ·M(2λ) ·

⌈η
k

⌉)
Scheme Decryption Complexity

GM [21] O(log(λ) ·M(λ) · η)

DK [13] O(2λ ·M(2λ) · η)

JL [23] O
(
(2kλ+ k) ·M(λ) ·

⌈η
k

⌉)
This work O

(
(4kλ+ k) ·M(2λ) ·

⌈η
k

⌉)

provided in [28], we give a better decryption complexity for the Joye-Libert
cryptosystem. More precicely,

O
(
(2kλ+ k2/2) ·M(λ) ·

⌈η
k

⌉)
versus O

(
(2kλ+ k) ·M(λ) ·

⌈η
k

⌉)
.

The difference arises from considering only one exponentiation of y to the power
zjm instead of two exponentiations, one to the power zj and then one to the
power m.

3.5 Implementation Details

We further provide the reader with benchmarks for our proposed PKE scheme.
We ran each of the three sub-algorithms on a CPU Intel i7-4790 4.00 GHz and
used GCC to compile it (with the O3 flag activated for optimization). Note
that for all computations we used the GMP library [2] and the running times
were calculated using the omp get wtime() function [1]. To obtain the average
running time we chose to encrypt 100 128/192/256-bit messages, representing
random symmetric keys. In order to have the same security as the symmetric
keys we considered λ to be 1536/3840/15360, which according to NIST [3] offers
a security strength of 128/192/256 bits.

According to our security analysis e+ k has to be less than 768/1920/3840.
Using Lemma 2 we obtain that the first couples (k, e) are

(k, e) ∈ {(1, 1), (2, 2), (3, 6), (4, 12), (5, 60), (6, 60), (7, 420),
(8, 840), (9, 2520), (10, 2520), (11, 27720)}.

Therefore, we have that k must be less than 8/9/11 when λ is 1536/3840/15360.
We further list our results in Tables 3 to 5 (run times are given in seconds). It

should be noted that in Tables 3 to 5, the first lines of each algorithm correspond
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to Algorithm 1, while the second ones to the optimized decryption version. When
analyzing Table 3, note that in the case k = 1 we obtain the Desmedt-Kurosawa
scheme.

For completeness, in Table 6 we also present the ciphertext size (in kilobytes
= 103 bytes) for the previously mentioned parameters.

Table 3. Average running times (seconds) for a 128-bit message

Algorithm k = 1 k = 2 k = 4

Setup
0.424845 0.471936 0.448168
0.446417 0.468382 0.515123

Encrypt
0.006928 0.004558 0.003055
0.007006 0.004507 0.003110

Decrypt
2.100240 2.606760 3.167010
2.117050 2.113930 2.085170

Table 4. Average running times (seconds) for a 192-bit message

Algorithm k = 1 k = 2 k = 4 k = 8

Setup
10.82220 12.45610 11.30620 10.73360
10.13340 12.98770 11.90220 12.49030

Encrypt
0.041345 0.028024 0.020059 0.015736
0.041092 0.028046 0.020045 0.015511

Decrypt
35.78030 44.64660 54.68320 54.66220
35.58980 35.54510 35.44840 30.95290

Table 5. Average running times (seconds) for a 256-bit message

Algorithm k = 1 k = 2 k = 4 k = 8

Setup
1259.440 1241.650 1381.090 1341.920
1401.100 1191.060 1246.210 1475.490

Encrypt
0.461915 0.312051 0.223570 0.171349
0.459074 0.310038 0.221316 0.169926

Decrypt
1520.860 1895.350 2308.220 2530.180
1508.400 1499.500 1492.010 1435.410
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Table 6. Ciphertext expansion

k = 1 k = 2 k = 4 k = 8

λ = 1536 49.152 24.576 12.288 −
λ = 3840 184.320 92.160 46.080 23.040

λ = 15360 983.040 491.520 245.760 122.880

4 A Threshold Homomorphic Encryption Scheme

4.1 Description

For simplicity and clarity, we begin by describing a threshold protocol that
requires a trusted dealer and is of type ℓ-out-of-ℓ. More precisely, we consider
that the number of participants in our scheme is ℓ and that all of them are
required to decrypt a ciphertext. On the other hand, if an adversary corrupts
ℓ−1 participants it is infeasible for him to decrypt a given ciphertext. The exact
details of our protocol are provided below.

Dealing Phase: In the case of threshold decryption, the Setup phase of our PKE
scheme is replaced by the following protocol.

1. First, the dealer sets integers k ≥ 1 and e = lcm(1, . . . , k) such that
e+k < λ. Then, he randomly generates two distinct large prime numbers
p, q such that p, q ≥ 2λ and p, q ≡ 2e + 1 (mod 2e+k). Finally, he sets
n = pq.

2. Let j ∈ [1, k]. The dealer computes zj , such that the system of congru-

ences (6) holds. Then, he randomly chooses zj,1, zj,2, . . . , zj,ℓ
$←− [0, 22λ]

and computes zj,0 = zj −
∑ℓ

i=1 zj,i. The public key of the protocol is
pk = (n, y, k, Z0), where y ∈ Jn \QRn and Z0 = {zj,0}j∈[1,k].

3. Lastly, the dealer sends the secret key share Zi = {zj,i}j∈[1,k] to player
i for i ∈ [1, ℓ].

Decryption Phase: The decryption process of a ciphertext c proceeds as follows.

1. Player i computes βj,i ≡ czj,i (mod n) for each j ∈ [1, k] and broadcasts
the vector βi = {βj,i}j∈[1,k].

2. All the players publicly compute the values βj,0 = czj,0 for all j ∈ [1, k].

3. Each player computes Cj ≡
∏ℓ

i=0 βj,i (mod n) and then it uses algo-
rithm Dec(z, y, c) to recover message m.

Correctness: In order to see why algorithm Dec(z, y, c) works, all we have to
prove is that Cj ≡ czj (mod n). Thus, we have

Cj ≡
ℓ∏

i=0

βj,i ≡
ℓ∏

i=0

czj,i ≡ c
∑ℓ

i=0 zj,i ≡ czj (mod n).

Therefore, as is stated in Section 3.2, we are now able to decrypt the message
bit by bit.
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4.2 Security Analysis

Theorem 4. The protocol presented in Section 4.1 is simulatable for any ad-
versary who passively eavesdrops on at most ℓ − 1 participant. Moreover, the
protocol is ind-cpa, assuming the hardness of the gr assumption.

Proof. To reduce the security of the threshold version of our PKE to the security
of the original PKE, we need to show how an attacker for the original scheme Ao

can simulate the view of ℓ− 1 participants, and thus use the threshold attacker
At to break the original scheme.

To achieve our goal, we need to show how Ao simulates the dealing phase.
Below, we provide to the reader such a simulation. Furthermore, we assume that
an adversary is able to corrupt ℓ− 1 players and, without loss of generality, we
assume that these players are 1, 2, . . . , ℓ− 1.

Dealing Phase Simulation: When simulating the dealing phase, Ao takes as
input an 2λ-bit integer n and an element y ∈ Jn \QRn, and it outputs the
secret shares. Note that Ao is the dealer and it proceed as follows.

1. The dealer randomly chooses the integers z∗j
$←− [0, 22λ], for j ∈ [1, k].

2. Then, for each integer j ∈ [1, k], the dealer randomly chooses the shares

zj,1, zj,2, . . . , zj,ℓ
$←− [0, 22λ] and computes zj,0 = z∗j −

∑ℓ
i=1 zj,i. The

public key of the protocol is pk = (n, y, k, Z0), where Z0 = {zj,0}j∈[1,k].
3. Lastly, the dealer sends the secret key share Zi = {zj,i}j∈[1,k] to player

i for each i ∈ [1, ℓ).

To see why Ao’s simulator does not decrease the probability of success of At

we remark the following.

– For each i ∈ [1, ℓ), the elements Zi = {zj,i}j∈[1,k] have the same distribution
as in the real execution of the protocol.

– The distribution of Z0 is conditioned on the values Zi seen by At, where
i ∈ [1, ℓ). Now, we notice that the distributions zj − zj,ℓ and z∗j − zj,ℓ are

statistically indistinguishable for any zj , z
∗
j ∈ [0, 22λ] when zj,ℓ is randomly

chosen from [0, 22λ]. Therefore, the distribution of Z0 in the simulated exe-
cution of the protocol is statistically indistinguishable from the distribution
of Z0 in the real execution.

⊓⊔

5 Extending the Threshold Encryption Scheme

5.1 Reducing the Threshold

We can construct an h-out-of-ℓ threshold scheme and achieve robustness6 by us-
ing the same techniques shown in [26, Section 3.2]. For example, in the following
we will show how to convert our ℓ-out-of-ℓ scheme into an h-out-of-ℓ threshold
decryption scheme using the approach found in [36].

6 i.e. even when a malicious adversary convinces h − 1 player to deviate arbitrarily
from the protocol, the correct output can still be computed.
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Dealing phase:

1. The dealer generates parameters p, q, n, y and {zj,i}j∈[1,k],i∈[0,ℓ] as in
Section 4.1.

2. The dealer chooses a prime P > n and broadcasts the public key pk =
(n, y, k, Z0, P ).

3. Before computing the secret shares, for each zj,i, he randomly generates
an (h−1)-degree polynomial fj,i over the field ZP such that fj,i(0) = zj,i.

4. Lastly, the dealer sends the secret shares Zi and Fi = {fj,i(i)}j∈[1,k] to
player i for i ∈ [1, ℓ].

Decryption Phase:

1. The decryption process proceeds as in Section 4.1.
2. If player i fails to participate, then the remaining players can publicly

reconstruct Zi using the shares they have been given. Therefore, using
interpolation the vector βi can be computed publicly and included in the
computation of Cj .

The technique presented in [36] is a generic approach to convert an ℓ-out-of-ℓ
scheme into an h-out-of-ℓ one. Therefore, we obtain the following result.

Theorem 5. The h-out-of-ℓ extension presented in Section 5.1 is simulatable
for any adversary who passively eavesdrops on at most h− 1 participant. More-
over, the protocol is ind-cpa, assuming the hardness of the gr assumption.

5.2 Chosen-Ciphertext Security

Using the generic construction presented in [16], our threshold cryptosystem7

can be converted from a scheme secure against chosen plaintext attacks into one
secure against chosen ciphertext attacks. The twin-encryption technique requires
two independent runs of the initial threshold PKE and a non-interactive zero-
knowledge proof that two ciphertexts encrypt the same plaintext. We further
provide such a NIZK.

For i ∈ [0, 1], let ai ≡ ymi x2k

i (mod ni) be two ciphertexts encrypting the
same message m using the public keys pki = (ni, yi, k)

8. Also, let H be a crypto-
graphic hash function which outputs values in the range [0, B]. Classical crypto-
graphic hash function have B = 2256/2384/2512. Then the NIZK protocol works
as follows. Note that in the protocol parameter A must selected such that it is
significantly larger than 2kB since it defines the size of some random data used
to mask the secret.

Generate Proof (pk0, pk1, a0, a1): Let i ∈ [0, 1]. To generate a proof, we first

randomly select r
$←− [0, A] and χi

$←− Z∗
ni
. Then we compute αi ← yri χ

2k

i

(mod ni) and β ← H(pk0, pk1, a0, a1, α0, α1). Finally, we compute s ←
r + mβ and ui ← χix

β
i (mod ni). A proof of equality is the tuple S =

(β, s, u0, u1).

7 also, the Joye-Libert PKE
8 Z0 is not used for encryption, and therefore we omit it for simplicity.
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Verify Proof (pk0, pk1, a0, a1, S): Before verifying the proof, we must first val-
idate S. More precisely, we must check that β ∈ [0, B], ui ∈ Zni

and
s ∈ [0, A+(2k−1)B]. Then, to verify the proof S we simply have to compute

vi ← ysi u
2k

i /aβi (mod ni) and γ ← H(pk0, pk1, a0, a1, v0, v1), and check if γ
is equal to β.

Completeness. If S is a valid proof, then the following relations are true

vi ≡
ysi u

2k

i

aβi
≡ yr+mβ

i (χix
β
i )

2k

(ymi x2k
i )β

≡ yri χ
2k

i ≡ αi (mod ni),

and thus γ must be equal to β.
Before proving that the NIZK presented in Section 5 is simulation-sound, we

first need to adapt the forking lemma presented in [34,35] to our setting.

Lemma 3. Let A be a PPT algorithm, given only the public data as input and
which can ask qh queries to the random oracle. If A can find in time t a valid
proof (pk0, pk1, a0, a1, β, s, u0, u1) for an invalid word (a0, a1) with probability
ν ≥ 7qh/B, then within time t′ ≤ 16qht/ν and with probability ν′ ≥ 1/9, a
replay of A outputs a distinct second proof (pk0, pk1, a0, a1, β̄, s̄, ū0, ū1) for the
invalid word (a0, a1) such that β ̸= β̄.

Theorem 6. The NIZK presented in Section 5.2 is simulation-sound in the
random oracle.

Proof. The first step we need to take is to create a list of accepted proofs. In

order to do this, we randomly select β
$←− [0, B], s

$←− [0, A+(2k−1)B], ui
$←− Zni

and we define

H(pk0, pk1, a0, a1, y
s
0u

2k

0 /aβ0 (mod n0), y
s
1u

2k

1 /aβ1 (mod n1))← β.

This trick is possible due to working in the random oracle model.
Now, let assume that a PPT adversary A is able to forge a new proof for

a wrong word (a0, a1) within the time bound t and with probability ν. Using
Lemma 3 we obtain two such forgeries

(pk0, pk1, a0, a1, β, s, u0, u1) and (pk0, pk1, a0, a1, β̄, s̄, ū0, ū1).

Assuming that A has not broken the collision intractability of H, we obtain

ysi u
2k

i

aβi
≡ ys̄i ū

2k

i

aβ̄i
(mod ni).

which is equivalent with

ys̃i ũ
2k

i ≡ aβ̃i (mod ni), (7)

where s̃ = s− s̄, ũi = uiū
−1
i and β̃ = β − β̄.
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Since (a0, a1) is an invalid word, then ai ≡ ymi
i x2k

i (mod ni), wherem0 ̸= m1.
Rewriting Equation (7), we obtain

ys̃i ũ
2k

i ≡ (ymi
i x2k

i )β̃ (mod ni),

which is equivalent with

ys̃−miβ̃
i ≡ (ũ−1

i xβ̃
i )

2k (mod ni).

Since yi ∈ Jni
\QRni

, we obtain that

s̃−miβ̃ ≡ 0 (mod 2k),

and thus m0 ≡ m1 (mod 2k). Therefore, the word is in the language, unless one
has broken the collision intractability for H. Using the random oracle assump-
tion and the birthday paradox, we obtain that in order to get a probability of
obtaining a collision greater than 1/9, the adversary has to ask more than

√
B/3

queries to H. Hence,
√
B

3
τ ≤ t′ ≤ 16qht

ν
, (8)

where τ is the time required for an evaluation of H. Rewriting Equation (8), we
obtain that

ADV sim-nizk
A (λ) ≤ ν ≤ 48qht

τ
√
B
.

Therefore, our non-interactive proof is simulation sound. ⊓⊔

6 Conclusions

In this paper we have constructed a novel variant of the Joye-Libert cryptosystem
that allows an user to decrypt messages even if he does not know the factorization
of the composite modulus. Based on this variant, we showed how to achieve
threshold decryption for the Joye-Libert cryptosystem, and therefore solving
some open problems stated in [17,23,26].

In the second part of the paper, we present several extensions of our ba-
sic threshold scheme. We first provide an example of converting the ℓ-out-of-
ℓ threshold into an h-out-of-ℓ one. Then, we provide a non-interactive zero-
knowledge protocol that can be used to protect the proposed cryptosystems
from chosen ciphertext attacks. Note that our NIZK can also be used to protect
the Desmedt-Kurasawa PKE, and thus filling a gap left by the authors in [13].

Future Work. A possible method for accelerating our proposed systems would be
to use small multiple primes instead of only two primes. Therefore, an interesting
research direction would be to find a method to modify the multi-prime Joye-
Libert version proposed in [28,39] such that it allows decryption without knowing
the factorization of n.
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