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Abstract. This paper analyses the security of the so-called Milenage construction,
developed by ETSI SAGE, when it is based on a non-one-to-one pseudo-random
function (PRF) rather than a one-to-one pseudo-random permutation (PRP). It is
shown that Milenage based on an n-bit random function and producing t n-bit out-
puts, is indistinguishable from a random tn-bit function up to q = O(2n/2/t) queries.
We also extend the existing security proof for PRP-based Milenage due to Gilbert
by generalising the model and incorporating the Milenage message authentication
function in the proof.
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Update notes and Acknowledgements

We thank anonymous reviewers for valuable comments to this paper, which is the main

reason of this update versus the previous version. Also, we have generalised the Milenage

construct, see Figure 3, and modified Theorem 4 to derive the security bounds for the

general case, while including the MAC function f1.

1 Introduction

The 2G mobile systems defined two algorithms used for authentication (computing the
authentication response), A3, and a ciphering key-derivation function, A8. For 3G, a new
framework was defined, encompassing the following functions which are to be implemented
in a network-side authentication server, and in the USIM1, the latter residing in the phone:

f1: MAC-function, integrity protecting the authentication parameters. Most notably,
the random challenge and a sequence number, SQN, is integrity protected.

f2: Computing the authentication response (corresponding to A3).

f3: Ciphering key derivation function (corresponding to A8).

f4: Integrity key derivation function.

f5: Anonymity key derivation function, protecting the sequence number and thereby
providing some strengthened untraceability of the subscriber.
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1Universal Subscriber Identity Module
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Additionally, there are two functions whose usage is conditional in the sense that they are
only used in an error situation where the network’s and USIM’s values for the sequence
number are out of synch. Specifically, a function f∗5 provides confidentiality for the USIM-
provided sequence number and f∗1 provides integrity protection of a re-synch message
(comprising the protected sequence number). The same functions are defined also for
usage in the 4G and 5G standards.
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Figure 1: Milenage-128 instantiation of f1, f2, . . .. OPc is derived from an operator-
selectable parameter and the ci-values are selectable constants with certain distinctness
requirements.

The f -functions are not really concrete cryptographic algorithms, but rather an API-
specification for such algorithms and the algorithms in practice need to be instantiated
with some concrete crypto primitives. The same held for A3, A8 and the lack of stan-
dardised, well analysed instantiations is likely a reason for some examples of insecure
implementations [AR98]. For this reason, ETSI SAGE defined an example algorithm set
for f1 to f5, known as the Milenage algorithm set [3GPa, 3GPb, SAG]. Also this more
concrete algorithm-set is still just a framework, since it proposes that any suitable (secure)
cryptographic core (e.g. a hash function or block cipher) can be “plugged in” as EK , see
Figure 1.

However, SAGE also specified a concrete instantiation of this framework using AES
with 128-bit keys as the core EK . In fact, at the time of specifying Milenage, NIST
had not yet made the final selection for AES, so the core used was actually defined to
be the block cipher Rijndael, which only later was adopted as the AES. In [Gil03] a
formal security proof for f2, . . . , f5 was given by Gilbert, assuming the core approximates
a pseudo-random permutation (PRP) and fixing all rotations as ri = 0.
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Interestingly, while the technical documents [3GPa, 3GPb] as mentioned state that a
non-permutation core can be used, there has so far not existed any security proof for that
setting, though a standard PRP-to-PRF switching argument could be applied. In any
case, a direct security proof is one of the main topics within the scope of this paper. In
light of the ongoing work on standardising 256-bit sets of algorithms in 3GPP, the security
proof of various ways to instantiate Milenage, including PRF-based constructs, become
increasingly important in order to build security confidence.

One might perhaps expect that a general pseudo-random function (PRF) could give
somewhat better quantitative bounds than a PRP. However, in this specific case, the
security bound that we can demonstrate for PRF-based instantiations is essentially the
same as for the PRP case, i.e. that they are secure for attackers making up to q = O(2n/2/t)
queries, where n is the output block size of the core and t is the number of f -functions
(i.e. t = 5 for the concrete case). We also extend the proof from [Gil03] by including the
function f1 in the proof.

We shall in general not deal further with f∗1 , f∗5 and only analyse the algorithms under
normal circumstances when no synch error occurs, i.e. when only f1 to f5 are used. It
should be noted though that the security proof given in this paper automatically covers
also the security of f∗5 , i.e. when both f5, f∗5 are exposed to an attacker.

Related work

There is by now a vast number of papers devoted to the study of (pseudo)randomness
properties of cryptographic constructions based on block ciphers and hash functions. A
seminal work in the area is that of Luby and Rackoff [LR98], which studies the security of
the well-known Feistel-construction with 3 and 4 rounds. A number of later generalisations
of that work (adding more rounds) has appeared, e.g. [Pat03].

The Milenage construction can be seen as a mode of operation of a block cipher. The
randomness properties of the modes cipher block chaining (CBC), counter mode (CTR),
and output feedback mode (OFB), were first analysed by Bellare et al. [BDJR97]. Later
works have also included an associated message authentication function, e.g. the study
of the Galois Counter Mode and CTR with CBC-MAC mode by McGrew and Viega,
respectively Johnsson [MV04, Joh03].

Of particular relevance to the present work is the aforementioned result by Gilbert
that proves security for the basic Milenage construction (excluding the f1-MAC function
and removing the rotations) when based on a PRP [Gil03]. That work makes use of a
very general result by Patarin [Pat91a, Pat91b], which will be used also in our analysis.

Most of the constructions that do not iterate the cryptographic primitive more than
2 or 3 times, can usually be proven to be secure against attackers allowed to make up
to O(2n/2) queries to an oracle, where n is the number of output bits. By adding more
rounds (as in [Pat03]) this bound has been pushed higher. By basing the round function
on tweakable permutations/ciphers, other works have also been able to increase this bound
without increasing the number of rounds, e.g. [BNR21]. These proofs are typically done
in the model of indifferentiability due to Maurer et al. [MRH04].

2 Preliminaries

In the present document, ⊕ denotes bitwise XOR of binary strings in In
def= {0, 1}n. For

D, a probability distribution over some set S, x ∈D S refers to an element drawn from
S according to D, where x ∈U S is used when we consider the uniform distribution over
S. If S is a set, ∣S∣ is the cardinality of S and Sq denotes the Cartesian product of q

copies of S. A vector (q-tuple) representing an element of Sq, is written using boldface:
x = (x1, . . . , xq) ∈ Sq.
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Given x = (x1, . . . , xq) ∈ (In)q, y = (y1, . . . , yq) ∈ (Im)q, we use x ↦f y to denote the
event that a randomly chosen f ∶ In ↦ Im maps each component of x to the corresponding
component of y, i.e. the event that

(f(x1) = y1) ∧ (f(x2) = y2) ∧ ⋯ ∧ (f(xq) = yq) .

(This is in [Gil03] referred to as a q-ary transition event).
The notation Fn,m is used for the set of all functions {f ∶ In ↦ Im}. We will also study

functions of two inputs and use Fn1×n2,m to denote {f ∶ In1
× In2

↦ Im}.
A distinguishing algorithm for functions F, G, drawn from Fn,m according to probabil-

ity distributions DF ,DG , respectively, is a probabilistic algorithm, A, that has a black-box
access to an oracle OH , where H is either F or G, allowing A(OH) to obtain2 the values
of H(x) for chosen values x ∈ In. Let A(OF ),A(OG) ∈ {0, 1} be the output distribution
of A when it has access to the corresponding oracle. The distinguishing advantage of A
is defined to be

ADVF ∈DFFn,m,G∈DGFn,m
(A) def= ∣Pr[A(OF ) = 1] −Pr[A(OG) = 1]∣,

the probability taken over the choices of F, G and the internal random choices3 of A.
For the purpose of this paper, DF ,DG will both be the uniform distribution over two
(distinct) subsets of Fn,m. When these subsets are clear from the context we simply write
ADVF,G(A). We similarly define

ADVF,G(q) def= max
A

ADVF,G(A),
where the maximum is taken over all A making at most q queries to the provided oracle.
When we are considering distinguishers that are resource upper-bounded by some value
R, we write ADVF,G(q, R). For the case when DG is the uniform distribution over the
entire set Fn,m (corresponding to choosing G perfectly at random), we use the notation
ADVF,RF(n,m)(A), ADVF,RF(n,m)(q), respectively.

3 Security of Milenage with a PRF

3.1 Description of a simplified Milenage construct

In the first step of our analysis we will focus on a simplified variant of Milenage as shown
in Figure 2 (left), that is, compared to Figure 1, excludes the MAC function f1 and
data-rotations 4, while OPc can be safely considered as part of the first layer block EK .
The only requirement in this simplified model is that the constants c1, . . . , ct are pairwise
distinct.

Note that a similar model was proved by Gilbert but with PRPs. One of the main
reasons to consider this model is that it demonstrates core techniques that will later be
used to prove a more general case of Milenage.

We now turn to analysing the security of the Milenage construction based on an n-
bit random function, i.e. a function f drawn at random from Fn,n. After studying the
simplified Milenage, we return to study the full and generalised Milenage in Section 3.5.

2If the distribution DF is efficiently sampleable, A can obviously also obtain values of F ′(x) for
F ′ ∈DF Fn,m of its own choosing.

3By standard arguments, one can without loss of generality consider only deterministic algorithms.
4The input data is rotated by r1, . . . , r5 bits, and an operator may select these rotation parameters ri

and the constants ci in Milenage. However, these parameters must follow certain criteria, e.g. to ensure
that the inputs to the second layer EK are pairwise distinct.
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Figure 2: Simplified Milenage construct (left) and an ideal random function (right) for
the adversary to distinguish between.

3.2 Proof outline

We shall analyse ADV
Milenage

f
n,t(x),RFn,nt

(q), the maximum possible advantage, in distin-

guishing Milenagef
n,t(x) from a function drawn at random from Fn,tn when f is a (perfect)

random function. Given such bound, ǫ0 say, we can by standard arguments conclude that
when f is instead selected as a PRF, f ′, indistinguishable from a perfect random func-
tion from Fn,n within some ǫ′0, the ability to distinguish Milenagef ′

n,t(x) from a random
function must still be upper bounded by ǫ0+ǫ′0. We focus on the former, “ideal” case first.

The first part of the proof follows the structure of the existing proof for Milenage, based
on a PRP, provided in [Gil03], and studies the security of all fi-functions, except the f1

(MAC) function. This proof in turn is based on the results by Patarin [Pat91a, Pat91b,
Pat03], and in order to apply these results, it is necessary to analyse the probabilities of
collisions among input values to f , occurring during Milenage computations, and collisions
among output values of f during the same process. This is the case also here, but when
f is a random function, rather than a random permutation, two main differences need to
be handled:

• Let X = {xi ∣ i = 1, 2, . . . , q} be the inputs queried by the attacker (i.e. corresponding
to the RAND-values). Since we can without loss of generality assume that all xi are
pairwise distinct, this means that when f is a permutation, the outputs of the first
“layer” (corresponding to the intermediate values {yi} in Figure 2) are automatically
also pairwise distinct. This will not be the case when f is not one-to-one, and this
could be important5 since two colliding yi = yj will directly imply that also zi

k = z
j
k

5However, as it turns out, there is actually another set of collisions that define the main limitation
on the security: collisions among the inputs to the second layer PRF. This is due to the fact that these
collisions are a factor t2 more likely to occur, and collision-freeness in this set implies collision-freeness
among y-values.
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for all k = 1, 2, . . . , t. This occurs after q ∼ 2n/2 queries, whereas a random function
mapping into Itn would exhibit such collisions only after q ∼ 2nt/2 queries. On the
other hand, considering also that we work with functions mapping In ↦ Itn, after
q = 2n queries, an attacker will have been able to build a complete table of all
possible outputs, which renders the function insecure for future usage, even if the
function is otherwise perfectly random. Thus, the maximal number of allowable
queries for a PRF mapping In ↦ Itn is (in theory) the minimum of 2n and 2tn/2.
However, for Milenage, the maximum allowable number of queries is, due to colliding
intermediate y-values as above, limited to 2n/2. This is thus an unavoidable upper
bound on the maximum attainable security-level of the Milenage construction. So,
the proof must now account for possible collisions among yi values.

• On the other hand, when f is not a permutation, we can be more “liberal” about
allowing collisions among individual output zi

k values. That is, if we encounter some
values zi

k = z
j
l

this is not a concern in the present case, since such collisions should

occur naturally.

As mentioned, we shall rely on the following result:

Theorem 1 (Patarin [Pat91a]). Let F ∈D Fn,m for some distribution D and let q be an

integer. Denote by X the subset of (In)q containing all the q-tuples x = (x1, . . . , xq) of

pairwise distinct elements. If there exists a subset Z ⊆ (Im)q and two positive real numbers

ǫ1, ǫ2 such that

1. ∣Z ∣ ≥ (1 − ǫ1)∣Im∣q, and

2. ∀x ∈X,∀z ∈ Z, PrF ∈DFn,m
[x ↦F z] ≥ (1 − ǫ2) 1

∣Im∣q
,

then ADVF,RF(n,m)(q) ≤ ǫ1 + ǫ2.

Figure 2 shows the two cases which are placed as a challenge on the adversary to
distinguish between: Milenagef

n,t, for randomly chosen f , or, a random function from
Fn,tn. The highlighted values xj , yj , z

j
i as discussed above will be used in the proof below.

3.3 Simplified Milenage in the ideal case

Theorem 2. Let F = Milenagef
n,t, t ≥ 2 and f ∈U Fn,n be as in the left half of Figure 2

with pairwise distinct constants ci, i = 1, 2, . . . , t. Then,

ADVF,RF(n,tn)(q) ≤ 2t2q2

2n
.

It can be noted that since the Milenage construction employs t + 1 invocations of the
the function f , using a PRP-to-PRF switching argument combined with [Gil03] would
give a bound of roughly (t+ 1)2q2/2n. (Further, the bound above is actually not the best
possible, see below.)

Proof. Let X ⊂ (In)q be the subset consisting of all q-tuples of pairwise distinct values
from In. We aim to apply Theorem 1, and to this end it is necessary to find a suitable set
Z. We simply define Z = (Int)q (without the pairwise distinctness condition as in [Gil03]).
This immediately gives us the ǫ1 of Theorem 1 as ǫ1 = 0. It remains to find a bound on
ǫ2 such that ∀x ∈X,∀z ∈ Z,

Pr[x ↦F z] ≥ (1 − ǫ2)2−nqt,

where the probability is taken over the choices of f used in instantiating F =Milenagef
n,t.
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With reference to Figure 2, we can as in [Gil03] condition the probability that a certain
x maps to a certain z according to the intermediate values y as:

Pr[x ↦F z] = ∑
y∈Y

Pr[x ↦f y ∧ ∀i ∈ [1..q],∀k ∈ [1..t] ∶ (yi ⊕ ck)↦f zi
k]

= ∑
y∈Y

Pr[∀i ∈ [1..q],∀k ∈ [1..t] ∶ (yi ⊕ ck)↦f zi
k ∣ x ↦f y]

⋅Pr[x ↦f y]
=

1
2nq
∑

y∈Y

Pr[∀i ∈ [1..q],∀k ∈ [1..t] ∶ (yi
⊕ ck)↦f zi

k ∣ x ↦f y], (1)

where Y = (In)q. But since we wish to avoid collisions among intermediate y-values, we
consider only the (proper) Y ′ ⊂ Y consisting of pairwise distinct values.

Continuing from Eq. (1) we now obtain a lower bound:

Pr[x ↦F z] ≥ 1
2nq

∑
y∈Y ′

Pr[∀i ∈ [1..q],∀k ∈ [1..t] ∶ (yi
⊕ ck)↦f zi

k ∣ x ↦f y]. (2)

In fact, let us restrict Y ′ further to the subset Y ′′
x
⊆ Y ′ consisting of those y ∈ Y ′ that

additionally (besides distinctness) also satisfy:

(a) ∀i, j ∈ [1..q], ∀k ∈ [1..t]: xi ≠ yj
⊕ ck, and

(b) ∀i, j ∈ [1..q], ∀k, l ∈ [1..t]: yi
⊕ ck ≠ yj

⊕ cl.

For simplicity of notation, we suppress the dependence on x and just write Y ′′ from here
on. We need to lower bound the size of Y ′′, which we postpone for the moment.

Returning to Eq. (2), if we instead sum only over y ∈ Y ′′ we obtain the lower bound

Pr[x ↦F z] ≥ 2−nq ∑
y∈Y ′

Pr[∀i ∈ [1..q],∀k ∈ [1..t] ∶ (yi
⊕ ck)↦f zi

k ∣ x ↦f y]
≥ 2−nq ∑

y∈Y ′′
Pr[∀i ∈ [1..q],∀k ∈ [1..t] ∶ (yi

⊕ ck)↦f zi
k ∣ x ↦f y]. (3)

But for y ∈ Y ′′, due to the condition (a), the events (yi
⊕ ck) ↦f zi

k are completely
independent from the event x ↦f y since the input sets {xi} and {yi

⊕ ck} are disjoint.
Therefore

Pr[x ↦F z] ≥ 2−nq ∑
y∈Y ′′

Pr[∀i ∈ [1..q],∀k ∈ [1..t] ∶ (yi
⊕ ck)↦f zi

k]. (4)

Furthermore, for y ∈ Y ′′, due to condition (b), the events (yi
⊕ck)↦f zi

k are also completely
independent for distinct (i, k)-pairs. Therefore

Pr[x ↦F z] ≥ 2−nq ∑
y∈Y ′′

q∏
i=1

t∏
k=1

Pr[(yi
⊕ ck)↦f zi

k]
= 2−nq2−nqt∣Y ′′∣ = 2−nq(t+1)∣Y ′′∣. (5)

So to conclude, we need to lower-bound the size of Y ′′ and we start by lower-bounding
the size of the super-set Y ′.

First, we claim that the size of Y ′ must be at least

∣Y ′∣ ≥ (1 − q2

2n+1
) ∣Y ∣ = (1 − q2

2n+1
)2qn. (6)
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This follows since for a random subset y ∈ Y of size q, the expected number of collisions in
y is q(q−1)

2
⋅ 2−n. Therefore, the probability that there is one or more collisions in such y

is by Markov’s inequality6 at most q(q−1)
2
⋅ 2−n so the probability of a collision-free subset

must be greater than (1 − q2

2n+1 ). (If ∣Y ′∣ was smaller than the claimed bound, this would
contradict the probability of obtaining collision-free subsets).

We now lower bound the size of Y ′′ as a subset of Y ′, by considering the restrictions
imposed by conditions (a) and (b).

(a): The number of y ∈ Y ′ that fail to meet (a) for fixed (i, j, k) is ∣Y
′∣

2n . Since there

are q2t distinct (i, j, k), the fraction of y ∈ Y ′ failing (a) is at most q2t

2n .
(b): We divide the analysis into three cases. First, for i = j there can be no y ∈ Y ′

failing this criteria, due to the distinctness of ck ≠ cl. Similarly, for k = l there cannot be
any such y either, simply due to the fact that y ∈ Y ′ rules out that yi = yj . Finally, fix
i ≠ j and k ≠ l. The number of y ∈ Y ′ such that yi = yj

⊕ ck ⊕ cl = yj
⊕∆, for any ∆ ≠ 0,

is ∣Y ′∣
2n−1

. There are q(q − 1)/2 pairs of (i, j) and t(t − 1)/2 pairs (k, l) to consider so the
fraction of y ∈ Y ′ not meeting (b) is therefore strictly less than

t2q2

4(2n − 1) <
t2q2

2n+1
.

In summary, the fraction of y ∈ Y ′ failing either (a) or (b) is upper-bounded by

q2t

2n
+

t2q2

2n+1
≤

t2q2

2n
. (7)

The bound Eq. (7) implies that the size of Y ′′ is at least a (1 − t2q2

2n )-fraction of the
size of Y ′. Thus, combining this with the bound Eq. (6) on the size of ∣Y ′∣ we get

∣Y ′′∣ ≥ (1 − t2q2

2n
)(1 − q2

2n+1
)2qn = (1 − t2q2

2n
−

q2

2n+1
+

t2q4

22n+1
)2qn

> (1 − 2t2q2

2n
)2qn.

Putting this back into Eq. (5) we obtain

Pr[x ↦F z] ≥ 2−nq(t+1)∣Y ′′∣ ≥ 2−nq(t+1) (1 − 2t2q2

2n
)2qn

= (1 − 2t2q2

2n
)2−nqt = (1 − 2t2q2

2n
) ∣Z ∣,

so we may take ǫ2 = 2t2q2

2n .

Returning to the Footnote 5, we now see that introducing the intermediate set Y ′,
capturing uniqueness among the intermediate y-values, was not really necessary. Although
a collision among pairs of these y-values would limit the security, the important set of
collisions are those captured by condition (b), since these are a factor t2 more likely to
occur. In fact, note that if there existed yi, yj ∈ Y ′′ with yi = yj for i ≠ j, then we would
also have yi

⊕ck = yj
⊕ck which would be captured by (b). In Theorem 4 below, a slightly

different proof methodology is used which could probably be used also here and thereby
slightly improve the bound on q.

6Markov’s inequality states that for a random variable R, Pr[R ≥ a] ≤ E[R]/a, which we here apply
with a = 1.
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3.4 Going from the ideal case to a PRF

In a real instantiation of Milenage, f will not be an ideal random function, but rather
some concrete pseudo-random function, assumed to be indistinguishable from a random
function within some advantage ǫ. Also in this case we can obtain an upper bound on
distinguishability, expressed in terms of ǫ and the bound established in Theorem 2.

Theorem 3. Let F ′ ⊂ Fn,n, e.g. a subset defined by a fixed, key-dependent construct for

which it holds that

ADVF ′,Fn,n
((t + 1)q, R + q(t + 1)) < ǫ,

for some t ≥ 2. Let M be the distribution obtained by instantiating Milenagef ′

n,t(x) by

functions f ′, drawn uniformly at random from F ′. Then it holds that

ADVM,Fn,tn
(q, R) ≤ ǫ +

2t2q2

2n
.

Proof. Take any distinguisher A using at most q queries and resources at most R and
assume for contradiction that

ADVM,Fn,tn
(A) > ǫ +

2t2q2

2n
.

Let p, p∗ be the probabilities that A answers “1” on inputs from M,Fn,tn respectively, so

that by the assumption ∣p − p∗∣ > ǫ + 2t2q2

2n .
Consider the distinguisher A′, aiming to distinguish between F ′,Fn,n, obtained as

follows: A′ simply launches A, and whenever A queries some input x, A′ queries its own
oracle, obtaining y = f(x), then it queries its oracle again t times, obtaining zk = f(y⊕ck)
for k = 1, 2, . . . , t, and then returns (z1, . . . , zt) as response to A (the values y and zi are
as in Figure 2). Observe that A′ in this way returns exactly Milenagef

n,t(x) where f is
either from F ′, or, from Fn,n. Finally, when A gives its response, A′ returns the same
value.

Observe that if A uses q queries, then A′ uses q(t + 1) queries. Further, if A uses
resources at most R, then A′ uses at most q(t + 1) additional operations (deriving the
input queries for its own oracle7).

Note that Pr[A′ = 1 ∣ f ∈ F ′] = p. If we define

p′ = Pr[A′ = 1 ∣ f ∈ Fn,n] = Pr[A = 1 ∣ f ∈ Fn,n],
we can on one hand see that ∣p − p′∣ is precisely the value of ADVF ′,Fn,n

(A). But on

the other hand, we know from Theorem 2 that ∣p′ − p∗∣ ≤ 2t2q2

2n . So, due to the triangle
inequality, we must have ∣p−p∗∣ ≤ ∣p−p′∣+∣p′−p∗∣, which is then impossible unless ∣p−p′∣ ≥ ǫ,
contradicting the assumption in the theorem statement.

3.5 Including f1 in the proof and generalisation of Milenage

The proof in Theorem 2 omits the Milenage function corresponding to the message authen-
tication code (obtained by the f1 output function) that is different from f2, . . . , ft since it
has an additional input which, in an adversarial setting, could be selected by an attacker.
As can be seen in Figure 1, f1 takes an additional input in the form of (SQN, AMF).

When f1 is excluded (or modelled as any other f -functions), one can without loss of
generality assume that all inputs (corresponding to the RAND-input) are distinct. When
f1 is added in scope, there is a trivial distinguishing attack using only two queries of
the form (RAND, SQN1, AMF1) and (RAND, SQN2, AMF2), with (SQN1, AMF1) ≠

7Computing an XOR is treated as taking constant time.
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(SQN2, AMF2). For this reason, the model used to analyse also f1 must require that
the attacker is not allowed to query on the same RAND twice. In practice, a Milenage
implementation would also refuse to output all f -functions if the same SQN is used more
than once, but we do not require this for our analysis.

ffff

f

β α2 α3 αt

xi ∈ In (pairwise distinct)

ui ∈ In−d

yi ∈ In

. . .

zi
1, zi

2, . . . , zi
t ∈ In

Figure 3: Generalised Milenage with the “real” f1 function included.

Theorem 2 demonstrates the general strategy for the security proof where rotations(r1, . . . , rt) from the original Milenage have been ignored, and the security bounds received
in both Theorem 2 and [Gil03] do not trivially apply to the “real” Milenage.

In order to cover Milenage variants with multiple viable options, we generalise it as
shown in Figure 3. We define inputs to the second layer of the Milenage construct as

{ β(yi, ui), α2(yi), . . . , αt(yi) },
where αk() are (t−1) fixed invertible transformations of yi (linear, affine, or even an Sbox,
but they must be invertible), carefully selected to hold the property of distinctiveness:

∀yi ∈ In, and k, l ∈ [2..t], k ≠ l ∶ αk(yi) ≠ αl(yi), (8)

and β() is yet another mixing operation on two inputs: n-bit yi, and a typically shorter(n−d)-bit value of ui that basically corresponds to the (SQN, AMF) input. The function
β() must be chosen such that either of the following two properties hold:

(P1) ∀ui ∈ In−d, k ∈ [2..t], yi ∈ In ∶ β(yi, ui) ≠ αk(yi); or

(P2) ∀ui ∈ In−d, k ∈ [2..t] ∶ Pr{β(yi, ui) = αk(yi)} ≈ 2−n, and

for any fixed value of ui the function β(yi, ui) is invertible. (9)

Exemplified construct with property P1. The first property P1 may be achieved by,
e.g., setting αk(yi) = yi

⊕ ck, k ∈ [2..t] and β(yi, ui) = yi
⊕ (ui ≪ d) ⊕ c1, such that the

constants c1..ct are pairwise distinct in the first d bits (where d is at least d ≥ ⌈log2 t⌉), and
ui is added to the bits outside the first d bits. This guarantees that the attacker cannot
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force a collision on the second layer by selecting some clever values of ui, and all inputs
to the second layer of Milenage are distinct for every (ui, xi).
Exemplified construct with property P2. The second property P2 may be achieved
by, e.g., setting αk(yi) = (yi ⋘ rk) ⊕ ck, k ∈ [2..t], and β(yi, ui) = yi

⊕ ui, where the
rotations are nonzero rk ≠ 0 and the constants chosen such that Eq. (8) holds. In this
case, the choice of inputs that the adversary makes may result in the second-layer collision
as follows:

e.g., if β(yi, ui) = α2(yi)
then ui = yi

⊕ (yi⋘ r2)⊕ c2

and assuming ui can be any n-bit value (i.e., d = 0), and since yi is an n-bit unknown
value, the probability to match the above equation is only about 2−n+1. I.e., the attacker
can indeed find such ui that would make a pair in the second inputs to collide, but that
may only happen by a very small probability.

Note that in the general case of the original Milenage construction with αk(yi) = (yi⋘
rk)⊕ck, collisions of the form αk(yi) = αl(yi)may exist even though (rk, ck) ≠ (rl, cl). This
for example holds if n is even and ck is the bit-complement of cl (so that ck ⊕ cl = 111 . . .),
in which case yi = 1010 . . . exhibits such a collision for any values of rk and rl where rk is
odd and rl is even.
“Bad” example with neither of P1, P2. Just to demonstrate the importance of the
above properties P1 and P2, let us now design Milenage instance such that αk(yi) = yi

⊕ck

where all rotations are set to zero rk = 0, but all constants ck ≠ cl so that Eq. (8) holds.
Let us then design β(yi, ui) = yi

⊕c1⊕ui, which may seem fine but in reality it has neither
P1 nor P2 property. To demonstrate this:

if β(yi, ui) = α2(yi)
then yi

⊕ ui
⊕ c1 = yi

⊕ c2

⇒ ui = (yi
⊕ c1)⊕ (yi

⊕ c2) = c1 ⊕ c2,

and if the attacker makes a single query u1 = c1 ⊕ c2 then he instantly gets z1
1 = z1

2 .
For Milenage constructs with the property P2, it does not seem possible to account

collisions of the type β(yi, ui) = αk(yi) in a generic way (see the proof for Claim 4 in
Theorem 4), since these counts may heavily depend on a particular value of ui and the ex-
act form of the functions β() and αk(). Overall, Milenage instantiations with P2 seem less
secure than those with P1 since, e.g., the attacker may eventually increase the probability
of the events zi

1 = zi
k by somehow cleverly selecting ui; thus we recommend constructions

having the property P1. The only viable scenario where one would want to instantiate
Milenage with the property P2 is when instantiation with P1 is not possible (e.g., in case
d < ⌈log2 t⌉).
Theorem 4. Let F = Milenagef

n,t(u, x), t ≥ 2 and f ∈U Fn,n be as in Figure 3 with the

property P1. Then, for any distinguisher making at most q ≤ 2n/2/t queries (ui, xi) for

pairwise distinct xi:

ADVF,RF((n−d)×n,tn)(q) ≤ 9q2t2

2n+3
.

The proof proceeds similarly to Theorem 2 but needs to be more careful in the analysis
of the influence from the ui values.

Proof. Let the sets X, Y, Z be defined as in the proof of Theorem 2. We intend again to
apply Theorem 1 so we also here immediately have ǫ1 = 0, following from the definition
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of Z and the main task remaining is to analyse what value we can obtain for ǫ2 such that
∀x ∈X,∀z ∈ Z,

Pr[x ↦F z] ≥ (1 − ǫ2)2−nqt.

The restrictions on the intermediate-value set Y to a subset Y ′ become slightly different
since we need to account for the additional input to f1 comprising the attacker-selectable
values ui ∈ In−d.

Let y = (y1, . . . , yq) ∈ Y be a set of intermediate values that have been produced after
the q queries. We say that y is safe if it satisfies the following conditions:

(A) ∀i, j ∈ [1..q],∀k ∈ [2..t]: xi ≠ αk(yj);
(B) ∀i, j ∈ [1..q] ∶ xi ≠ β(yj , uj);
(C) ∀i, j ∈ [1..q], ∀k, l ∈ [2..t] and (i, k) ≠ (j, l): αk(yi) ≠ αl(yj);
(D) ∀i, j ∈ [1..q], ∀k ∈ [2..t]: αk(yi) ≠ β(yj , uj);
(E) ∀i, j ∈ [1..q] and i ≠ j: β(yi, ui) ≠ β(yj , uj).

The new restrictions to capture inclusion of f1 are: B (which mirrors A), D and E (both
mirroring C).

Let Y ′
x,u ⊆ Y be the set of all safe sets as defined above. For simplicity, from here

on, we again suppress the dependence of x, u and write only Y ′. We are interested in
the size ∣Y ′∣, which is a function of q and t (where the value of t is fixed by design) and
we define this number S(q). Consider a specific safe set y = (y1, . . . , yq) ∈ Y ′. We can
view y as having been incrementally built during the query process. Having selected the i

first values, a certain number of yi+1 values are selectable such that the extended set will
remain safe. There are 2n

− e(i) such choices for yi+1, where e(i) denotes the number of
choices that needs to be evicted due to the conditions (A)-(E). Recursively, we see that
S(i + 1) = S(i)(2n

− e(i)). By defining S(0) = 1, we have that in general:

S(q) = q−1∏
i=0

(2n
− e(i)). (10)

Let eχ(i) be the number of choices for yi+1 evicted specifically by condition χ ∈ {(A), . . . ,(E)}.
Since one and the same choice for yi+1 could be evicted by more than one of (A)-(E), it
will certainly hold that e(i) ≤ ∑χ eχ(i), and therefore

S(q) ≥ q−1∏
i=0

(2n
−∑

χ

eχ(i)). (11)

We make the following claims, the proofs of which are postponed.

Claim 1. For all i ∈ [0..q − 1], eA(i) ≤ q(t − 1);
Claim 2. For all i ∈ [0..q − 1], eB(i) = q;

Claim 3. For all i ∈ [0..q − 1], eC(i) ≤ i(t2
− t + 1);

Claim 4. For all i ∈ [0..q − 1], eD(i) ≤ i(t − 1);
Claim 5. For all i ∈ [0..q − 1], eE(i) ≤ i.
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By these claims

e(i) ≤ q(t − 1) + q + i(t2
− t + 1) + i(t − 1) + i = qt + i(t2

+ 1). (12)

Note that when q ≤ 2n/2/t, the factors in Eq. (10) and Eq. (11) are all positive. By
Eq. (11) and Eq. (12) we then get:

S(q) ≥ q−1∏
i=0

(2n
− qt − i(t2

+ 1)) = 2nq
q−1∏
i=0

(1 − 2−n (qt + i(t2
+ 1)))

≥ 2nq (1 − 2−n
q−1∑
i=0

(qt + i(t2
+ 1))) = 2nq (1 − 2−n (q2t +

q(q − 1)
2

⋅ (t2
+ 1)))

> 2nq (1 − q2

2n
⋅
t2
+ 2t + 1

2
) ≥ 2nq (1 − 9q2t2

2n+3
) , (13)

where the last inequality follows from t ≥ 2. We now proceed as in the proof of
Theorem 2, summing over only the safe intermediate set Y ′:

Pr[x ↦F z] ≥ ∑
y∈Y ′

Pr[∀i ∈ [1..q],∀k ∈ [2..t] ∶ (αk(yi)↦f zi
k)

∧β(yi, ui)↦f zi
1) ∣ x ↦f y] ⋅Pr[x ↦f y], (14)

where Pr[x ↦f y] = 2−nq. However, due to conditions (A) and (B), both of the events
αk(yi)↦f zi

k and β(yi, ui)↦f zi
1 are independent from the event x ↦f y so that

Pr[x ↦F z] ≥ 2−nq ∑
y∈Y ′

Pr[∀i ∈ [1..q],∀k ∈ [2..t] ∶
(αk(yi)↦f zi

k) ∧ β(yi, ui)↦f zi
1)]. (15)

Furthermore, due to condition (C), the events in the set {αk(yi)↦f zi
k} are independent

for distinct (i, k), and due to condition (E), the events {β(yi, ui)↦f zi
1} are also indepen-

dent for distinct i. Finally, due to condition (D), for any (i, j, k) the event αk(yi) ↦f zi
k

is independent from the event β(yj , uj)↦f z
j
1. To conclude,

Pr[x ↦F z] ≥ 2−nq ∑
y∈Y ′

q∏
i=1

(Pr[β(yi, ui)↦f zi
1] ⋅

t∏
k=2

Pr[αk(yi)↦f zi
k])

= 2−nq2−nqt∣Y ′∣ = 2−nq(t+1)∣Y ′∣. (16)

Substituting the lower bound on ∣Y ′∣ from Eq. (13):

Pr[x ↦F z] ≥ 2−nq(t+1)2nq (1 − 9q2t2

2n+3
) = 2−nqt (1 − 9q2t2

2n+3
) ,

so ǫ2 = 9q2t2

2n+3 as claimed.

What remains is to complete the proof of claims 1 to 5. Observe that the adversary
may only select distinct inputs (x1, . . . , xq), while there is no restriction on the choices of(u1, . . . , uq). Also note that for distinct x we must get a sequence of values of y that is
unknown to the adversary. Therefore, when adding a new yi+1 to the set of (y1, . . . , yi)
in the proofs below, we account that whatever values of x1..q the adversary selects in the
end there will be exactly q distinct input values. Since the adversary does not know the
mapping between distinct x and the values of y, then the selection of the values of x and
u can be done either all together or one-by-one.
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Proof of Claim 1. When adding a new value of yi+1 to the set (y1, . . . , yi), we require
that yi+1 ≠ α−1

k (xj) for j ∈ [1..q] and k ∈ [2..t]. For each i, there are therefore always
at most q(t − 1) values to avoid, defined by the q distinct xj-values, combined with the
fact that α2..t() functions are invertible and all α−1

2..t(xj) are distinct due to Eq. (8), i.e.
eA(i) ≤ q(t − 1).
Proof of Claim 2. We here need to evict values that satisfy xj = β(yi+1, ui+1) for j ∈ [1..q].
Note that ui+1 is already fixed and all values of x are distinct, and since for a fixed ui+1

the function β is invertible as per Eq. (9), we thus need to evict exactly q values, namely
β−1(xj , ui+1) for j ∈ [1..q]. Thus, eB(i) = q.

Proof of Claim 3. The next selected yi+1 must not be such that αk(yi+1) = αl(yj) for
any j ∈ [1..i + 1], k, l ∈ [2..t] and (i + 1, k) ≠ (j, l). When j = i + 1 we get the condition
αk(yi+1) ≠ αl(yi+1) which always holds due to Eq. (8), thus we can limit our scope to
j ∈ [1..i].

When k = l, we only require that yi+1 ≠ yj , thus evicting i elements. For other cases
where k ≠ l, each selection of yi+1 evicts at most t2

− t other elements for each j ∈ [1..i], so

eC(i) ≤ i(t2
− t) + i = i(t2

− t + 1).
The set of evicted values does not need to be unique values, but collisions only means

that fewer values would be evicted. Thus the upper bound holds.

Proof of Claim 4. In this case the concern when selecting yi+1 is related to collisions of
type αk(yi+1) = β(yj , uj), for j ∈ [1..i+1] and k ∈ [2..t]. For the case j = i+1 the condition
αk(yi+1) ≠ β(yj , uj) always holds for Milenage constructs with the property P1, thus we
limit our scope to j ∈ [1..i]. Then, for each j, the number of elements that we need to
evict is at most t − 1, and therefore we get eD(i) ≤ i(t − 1).
Proof of Claim 5. Collisions of type β(yi+1, ui+1) = β(yj , uj) j ∈ [1..i] are equivalent to
yi+1 = β−1(β(yj , uj), ui+1). Since the adversary does not know the previous values of y

(which are internal values before the final call to the PRF), she cannot select the next
ui+1 to guarantee a collision, but such a collision may still occur by chance. Thus, for any
fixed ui+1 the number of evicted choices for yi+1 is at most i, i.e. eE(i) ≤ i.

Note that for this generalised construct we cannot reduce the scope to consider only
k < l in the proof for Claim 3, since there is no guarantee that αk(yi+1) = αl(yj) would
imply αl(yi+1) = αk(yj). This forces us to count “bad” events also for k > l and it makes
the overall bound worse. However, in the exemplified construct with property P1 given
earlier, we can actually reduce the space of “bad” events to k < l since yi+1

⊕ ck = yj
⊕ cl

would indeed imply yi+1
⊕ cl = yj

⊕ ck, and thus the overall security bound is even better
than that derived in Theorem 4.

3.6 Original Milenage-128 with a PRF

3GPP TS 35.206 [3GPb] specifically proposes these constants and rotations for the original
Milenage-128:

c1 = 0, c2 = 1, c3 = 2, c4 = 4, c5 = 8 (in Big Endian encoding)
r1 = 64, r2 = 0, r3 = 32, r4 = 64, r5 = 96
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Let u =(AMF, SQN) is considered below as a 64-bit value, and W = OPc is a precomputed
operator’s constant. Then the functions are defined as follows:

β(y, u) = y ⊕ ((W ⊕ (u∣∣u))⋘ 64)
α2(y) = y ⊕W ⊕ 1

α3(y) = ((y ⊕W )⋘ 32)⊕ 2

α4(y) = ((y ⊕W )⋘ 64)⊕ 4

α5(y) = ((y ⊕W )⋘ 96)⊕ 8

In order to see whether Milenage-128 (with a PRF) is in category P1 or P2 we need to
study the probability of the event β(y, u) = αk(y) 8, for k ∈ [2..5]. Let us split 128-bit y

and W into four 32-bit words as y = (y0, y1, y2, y3) and W = (w0, w1, w2, w3), respectively,
and the 64-bit u into two 32-bit words u = (u0, u1). Collisions of the form β(y, u) = αk(y)
can be described by the following four systems of equations, each describing word-wise
collisions between the four sub-words of β(y, u) and αk(y):

sub-word Corresponding sub-word of αk(y)
in β(y, u) α2(y) α3(y) α4(y) α5(y)
y0 ⊕w2 ⊕ u0 = ... y0 ⊕w0 ⊕ 1 y3 ⊕w3 ⊕ 2 y2 ⊕w2 ⊕ 4 y1 ⊕w1 ⊕ 8
y1 ⊕w3 ⊕ u1 = ... y1 ⊕w1 y0 ⊕w0 y3 ⊕w3 y2 ⊕w2

y2 ⊕w0 ⊕ u0 = ... y2 ⊕w2 y1 ⊕w1 y0 ⊕w0 y3 ⊕w3

y3 ⊕w1 ⊕ u1 = ... y3 ⊕w3 y2 ⊕w2 y1 ⊕w1 y0 ⊕w0

and none of them have any solution, which means that Milenage-128 with a PRF as
the building block has the property P1 and the bounds of Theorem 4 apply. This
can also be seen from the fact that the parities (odd or even number of 1s) satisfy
parity(β(y, u)) = parity(y ⊕W ) (parity is invariant under rotation and addition of u∣∣u),
whereas parity(αk(y)) = 1 − parity(y ⊕W ) since c2, . . . , c5 all have odd parity.

4 Summary and conclusion

We have shown that replacing the block-cipher core defined in the current Milenage spec-
ification by a (non-one-to-one) PRF is safe in the sense that the security against distin-
guishing attacks remain quantitatively true. We also generalised the Milenage construct
with the f1 MAC-function included in the scope of the proof, and identified two types P1
and P2 of secure Milenage instantiations. This could stimulate new attractive implemen-
tation options based e.g. on hash functions. One rationale for this could be to increase
the block size from 128 to 256 bits (or more) since few block ciphers with larger block size
than 128 bits exist.
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A MAC security

In this section we analyse the security of the MAC function of the Milenage instance
as given by the “Exampled construct with P1” in Section 3.5, but the results may be
extended to other Milenage instances as well.

The function f1 is a MAC function on the pair of message blocks M1 = xi and M2 =(ui ≪ d)⊕ c1 defined as:
MAC = fK(fK(M1)⊕M2),

where fK is the underlying (keyed) PRF drawn from Fn,n when the key K is fixed. This
is a well-known prefix-free CBC-MAC construct, but based on a PRF, instead of a PRP
that is commonly used for instantiation of fK (e.g. AES-based).

Bellare et al., see Section 3 in [BKR00], showed that the CBC-MAC transform applied
to a PRF yields a provably secure PRF, and prove the following results (Theorems 3.1
and 3.2 in [BKR00]):

ADVdist
CBC−MACm(Fn,n),Fmn,n

≤ 1.5 ⋅
q2m2

2n
,

ADVprf

CBC−MACm(fK)
(q, T ) ≤ ADVprf

fK
(mq, T +O(mqn)) + 1.5 ⋅

q2m2

2n
,

where m is the number of the message blocks, which is m = 2 in our case, q is the number
of queries, and T is the computational time. This proves that the MAC generated by f1

is secure up to q = O(2n/2) queries. This is also inline with the results of Theorem 4: if
there was a distinguisher for f1 (alone), then that distinguisher could be used to build a
distinguisher for (f1, . . . , ft).

Yet another question is whether the forgery of f1 has a better advantage when the
outputs from other function, f2, . . . , ft are also known. But this can be seen as the query-
process of the forgery-algorithm getting t − 1 additional CBC-MACs in a single query on
2-block messages, namely {(M1, M2)} = {(xi, (ui ≪ d)⊕c1), (xi, c2), . . . , (xi, ct)}, resulting
in t “MACs” zi

1, . . . , zi
t. Thus, the security level of q = O(2n/2) queries for the stand-alone

function f1 is still bounded by q = O(2n/2/t) when a single query results in t “MACs”
produced by f1, . . . , ft. However, the freedom of the attacker is even smaller in this case,
since the attacker cannot pick the t messages to be queried independently from each other
so that the actual security might be better.
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