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Abstract. Online auctions have a steadily growing market size, creating billions
of US dollars in sales value every year. To ensure fairness and auditability while
preserving the bidder’s privacy is the main challenge of an auction scheme. At the
same time, utility driven blockchain technology is picking up the pace, offering
transparency and data integrity to many applications. In this paper, we present a
blockchain-based first price sealed-bid auction scheme. Our scheme offers privacy
and public verifiability. It can be built on any public blockchain, which is leveraged
to provide transparency, data integrity, and hence auditability. The inability to
double spend on a blockchain is used to prevent bid replay attacks. Moreover, our
scheme can achieve non-repudiation for both bidders and the auctioneer without
revealing the bids and we encapsulate this concept inside the public verification of
the auction. We propose to use ElGamal encryption and Bulletproofs to construct
an efficient instantiation of our scheme. We also propose to use recursive zkSNARKs
to reduce the number of comparison proofs from N −1 to 1, where N is the number
of bidders.
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1 Introduction

In the last few decades, online auctions are becoming an important vehicle to advertise
and trade assets. They connect buyers and sellers dispersed geographically and allows
them to perform the exchange without being in the same location physically. In traditional
online auctions platforms (such as eBay), the auctioneer is entrusted to conduct the entire
auction correctly. This design demands a high degree of trustworthiness on auctioneer’s
side. Fortunately, we can leverage a blockchain’s built-in consensus and data-integrity to
add transparency to the process. This can be done in two ways. The blockchain can be used
as a bulletin board where data is posted publicly by bidders and the auctioneer. Afterwards,
an independent party can verify the auction using the (immutable) information on the
blockchain. The other possibility is to delegate the verification to the blockchain itself,
yielding a self-enforcing transparent auction. In both cases, blockchains can be effectively
used to verify the correctness of the auction result.

The challenge is to design a blockchain-based auction that does not compromise privacy.
In a sealed-bid auction, only the winning bid is revealed by the auctioneer, and the other
bids are kept private (as opposed to open-outcry auctions, where all the bids are known
to everyone). The most common types of sealed-bid auctions are first and second price
winning auctions.
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– First-price sealed-bid auction (FPSBA). The bidder with the highest bid wins and pays
the value of the bid to the seller.

– Second-price sealed-bid auction (Vickrey auctions [29]). The bidder with the highest
bid wins, but pays an amount equal to the value of the second highest bid.

In this work we focus on FPSBA for simplicity, but we emphasize that with slight modi-
fications our system can be applied to Vickrey auctions as well. We refer to [28] for more
information about the different types of auctions.

1.1 Auction model

Security: Building on [19] we define security of a blockchain-based FPSBA with the fol-
lowing properties:

– Bid privacy. No information about non-winning bids can be inferred from the result
(beyond that the winning bid is the highest bid).

– Bid independence. Bids are independent from each other. A (possibly malicious)
bidder cannot construct their bid based on a bid from an honest bidder.

– Bid binding. After the bid phase is closed, bidders cannot change their mind and bid
differently.

– Public verifiability. The correctness of the result (namely, the winner is the one
claimed by the auctioneer) and the correct behaviour of the auctioneer, can be verified
by anyone using public information only.

Public verifiability is sometimes referred as universal verifiability, and bid binding as non-
repudiation or non-cancellation [16]. As noted in [15], these security definitions borrow
from the e-voting literature, wherein individual/universal verifiability, eligibility and ac-
countability are well-established notions.

Adversary model. To achieve bid privacy we assume the auctioneer is semi-honest. Specif-
ically, they do not share private information. For the remaining security properties, the
auctioneer and the bidders can be malicious (they may deviate from the protocol instruc-
tions and share information). We observe that an auction with bid independence implies
that there cannot be replay attacks.

Trustless verification. Public verification should be conducted based only on public infor-
mation. This means that neither the auctioneer nor the bidders need to disclose private
information. In most cases, all public information can be fetched from the blockchain.
Public verifiability,as defined above, also captures the case of verifying that a bid has
been discarded by the auctioneer because it is indeed malformed (e.g. out of range). If the
chosen blockchain supports contract automation and enforcement, the verification can be
embedded in blockchain transactions and conducted by the blockchain network.

Complexity: We identify metrics relating to the complexity of the auction scheme.
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Communication overhead (CO). The amount of data published on the blockchain by the
bidders and the auctioneer. For scalability, it should be linear in the number of bidders
O(λN). Ideally, any party publishes O(λ) bits to the blockchain, where λ is the security
parameter.

Rounds of interaction (blockchain latency). This can be defined as the minimum number of
blocks elapsed while executing an auction. Ideally, bidders only interact with the blockchain
in the bid phase, and do not participate in the result phase nor in the public verification.

Verification overhead (VO). The complexity of the public verification algorithm. This
affects the feasibility and cost of self-enforced verification in the blockchain. Public verifi-
cation uses on-chain information, thus a lower bound is the communication overhead.

Financial fairness: Some schemes require that dishonest behaviour should be financially
penalised. In this work we do not detail how to achieve financial fairness. However, since we
obtain public verifiability we can ask bidders to deposit funds in the blockchain and only
return the funds if they behave as they should. There are a number of ways this can be im-
plemented in practice. For example, using smart contracts in an Ethereum-like blockchain
as in [19,22] or using multi-signatures escrow payments in a Bitcoin-like blockchain. How-
ever, care must be taken as publicly disclosing the deposit (which is greater but not neces-
sarily equal than the bid) may influence the strategic interaction and equilibrium bidding
behaviour [27]. Even worst, it might conflict with bid privacy or bid independence.

1.2 Related work

Since the early works of Nurmi and Salomaa [26] and Franklin and Reiter [18] many auction
schemes secured by cryptography have followed [4, 7, 9, 12, 19, 24, 25]. Some works rely on
Yao’s millionaire’s problem [12], others are based on garbled circuits [25], or homomorphic
encryption [1, 4, 24]. These protocols require a third party (the auctioneer) that should
remain honest and does not collude with bidders. Other schemes aim to eliminate the
auctioneer [9] and achieve fairness with low complexity [3, 14]. For example, in [9] Brandt
exploits the homomorphic property of ElGamal encryption with a combination of discrete-
log based zero-knowledge proofs (ZKP) to construct a multiparty protocol for fully-private
auctions (whereby the winning bid is not public). However, all these works require some
degree of interaction of bidders in the result phase. A recent survey of auction schemes [2]
offers detailed descriptions of the security properties and technologies used in those works.

Blass and Kerschbaum present Strain in [7], which is an auction protocol for blockchains
secure against a malicious bidder. The scheme uses Goldwasser-Micali’s homomorphic en-
cryption [20] scheme which has large ciphertexts and ZKPs of order N . While the scheme
preserves bid privacy, the comparison of two bids requires interaction between the bidders.
Lafourcade et. al. in [22] propose Auctionity, a scheme for open-outcry auctions (where all
bids are public) using Ethereum to secure deposits, and analyse its security in a symbolic
model.

In a different fashion, Galal and Youssef in [19] describe a blockchain-based FPSBA de-
ployed in Ethereum. Bidders commit to their bids using Pedersen commitments and send
the commitments to the auction contract. Bids are integers in Zp where p is the size of
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the Pedersen group Gp. Only after the auction contract has been updated with all com-
mitments, the bidders encrypt their bids and the Pedersen openings with an asymmetric
public-key encryption scheme using the public key of the auctioneer and send the cipher-
texts to the auctioneer. The auctioneer (which is semi-honest only for bid privacy) uses
ZKPs to prove the statement “xw > xi” where xw is the winning (highest) bid, and xi

is any other bid. To create the comparison ZK proofs they use the following implication,
which holds for any positive integer B ≤ p/2:

xw, xi, (xw − xi) mod p,∈ [0, B)⇒ xw > xi (1)

Since xw is publicly announced, the comparison proof can be reduced to two range proofs
for the statements “xi ∈ [0, B)” and “∆i mod p ∈ [0, B)”, where ∆i := xw − xi. For the
range proof they use a non-interactive Σ-protocol by Brickwell et. al. [10]. However, the
soundness of one such ZKP proof is for 1 bit, so they need to repeat the protocol λ times (per
non-winning bid xi). This introduces significant complexity and high gas fees on the chosen
blockchain. As a result, they report an implementation with the security parameter heavily
restricted to λ = 10. Also, their scheme uses a dispute-resolution technique that forces
bidders to disclose their bids on-chain to prove their honesty when a malicious auctioneer
falsely claim that their bids are invalid. Last, in [23] Bulletproofs for bid comparison is
used, however all bidders need to participate in the verification phase.

1.3 Our contributions and techniques

We describe how to conduct FPSBA over any public blockchain. We focus on making an
auction publicly verifiable, using the blockchain for an audit trail without breaching the
privacy of the non-winning and honest bidders. In our scheme, the auctioneer generates
short ZKPs (specifically, we use SNARKs) which greatly improves the complexity of the
solution compared to previous work.

Summary of our main contributions We develop a generic methodology to ensure bid
privacy and bid independence using any encryption scheme and non-malleable commit-
ments. We describe a concrete and practical instantiation using ElGamal encryption [17],
Bulletproofs [11] to generate the comparison proofs, and salted hashes to commit cipher-
texts. In this instantiation, the auctioneer needs to generate one comparison proof per
non-winning bidder, and hence the communication overhead is linear in the number of
bidders. We explain how to achieve constant communication overhead and sub-linear veri-
fication using recursive SNARKs for the comparison proofs. Last, both instantiations have
only four rounds of interactions with the chosen blockchain: two rounds for the bid phase
and one round for each of the result phase and verification phase.

It is also worth noting that in our scheme the auctioneer can prove a bid is out of range
without interacting with the disputed bidder. This eliminates the need of dispute-resolution
mechanisms. Further, we identify a flaw in the comparison proof used by Galal and Youssef
in [19]. This flaw is described in appendix A.

Our techniques We implement the bid phase in two rounds. In the first round, bidders
encrypt their bids and commit to their ciphertexts with a non-malleable commitment. In
the second round, the bidders open the commitments to the ciphertexts by publishing the
opening and the ciphertext. The bids are kept private ‘inside’ the ciphertexts, and the
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ciphertexts (hence the bids) are independently generated. We call this two-round protocol
sealed encryption. As in [19], we reduce the i-th comparison proof “xw > xi” to two range
proofs. Bids are encrypted with ElGamal over a cyclic group Gp of order p. One can derive
Pedersen commitments for xi and ∆̂i := (xw − xi) mod p using the ElGamal ciphertexts
cti and ctw. Our main observation is that the secret key (of the auctioneer) can be seen as
the opening information. Thus, the auctioneer can use these two Pedersen commitments as
the public inputs, and his secret key as the private input to prove with Bulletproof range
proof system that ∀xi, ∆̂i ∈ [0, B), for upper bound B := 2n.

In Section 4, we describe a generic method using recursive SNARKs to generate a single
proof attesting to the validity of all statements “xw > xi”, for i ≤ N, i ̸= w. The auctioneer
organizes the N−1 ciphertexts of the non-winning bids into a Merkle tree, and recurse proof
generation over the tree. We explain how to do sequential recursion and somewhat-parallel
recursion during the proof generation.

Comparison with other blockchain-based auctions We compare the reviewed auction
protocols with ours in Table 1. We chose to use only one security parameter λ for both
security of the encryption and soundness of the argument of knowledge. N is the number
of bidders, and bids are in the range [0, 2n− 1] for some integer n. In our schemes we have
3 + 1 rounds, where the last round is for public-verifiability. The communication overhead
during the bid and result phases directly affect the cost of implementing the auction on
a blockchain, as most blockchains charge fees based on the size of transactions or data.
In the case of an automated verification, the verification runtime is also important as it
affects the cost of executing an automated contract on-chain.

Scheme Rounds Communication Verification runtime Public verifiability
Bid phase Result phase (#Gp operations) Bid correctness Result correctness

[7] 4 O(nλ2) O(N2λ) O(nλ)
[19] 2(λ+ 1) O(λ) O(Nλ2) O(Nλ2)
Ours 3+1 O(λ) O(λN log(n)) O(λN n

log(n)
)

(Section 3)
Ours 3+1 O(λ) O(λ log(n)) O(λ log(n))

(Section 4)
Table 1: Asymptotic comparison of our work

2 Preliminaries

In this section we describe the building blocks that we use in our auction scheme, namely:
commitments, public-key encryption and zero-knowledge proofs.

Notation. We denote a finite cyclic group of prime order p with Gp, and vectors of group
elements in bold v. We write x

$← D to mean x is picked uniformly at random from domain
D. We will use λ for the security parameter, N for the number of bidders that participate
in an auction, and n≪ log(p) for an upper bound of the bids x ∈ [0, 2n).
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2.1 Public key encryption

A public-key encryption scheme PKE has four probabilistic polynomial time (PPT) algo-
rithms:

– Setup(1λ) takes as input the security parameter λ, and outputs the public parameters
param of the scheme.

– KeyGen(param) outputs a pair of keys, a (public) encryption key pk and a (private)
decryption key sk;

– Encrypt(pk,m; r) takes as input the public key pk a plaintext m, and randomness r. It
outputs a ciphertext ct.

– Decrypt(sk, ct) takes as input the secret key sk and a ciphertext ct. It outputs a plaintext
m or a decryption error ⊥.

ElGamal Encryption. It is a public-key encryption scheme [17] instantiated over a cyclic
group Gp with generator g. A ciphertext consist of a pair of group elements ct = (d, e), and
we set the plaintext space to [0, 2n) ⊂ Zp. The decryption requires a precomputed lookup
table storing pairs of the form (x, gx) ∈ [0, 2n) × Gp where x is from the plaintext space.
See Figure 1 for a description.

EG.Setup(1λ, n):

1. p
$← Nλ // λ-bit random prime

2. g
$← Gp // generator

3. DecodeTable← {(x, gx)}x∈[0,2n)

4. Output egparams = (p, g, n,DecodeTable)

EG.KeyGen(egparams):

1. sk $← Zp

2. pk = gsk

3. Output (sk, pk)

EG.Encrypt(egparams, pk,m):

1. Parse m ∈ [0, 2n)

2. r
$← Zp

3. ct = (gr, gmpkr)
4. Output ct

EG.Decrypt(egparams, sk, ct):

1. Parse ct = (d, e) ∈ G2
p

2. M = ed−sk

3. Let (m,M) ∈ DecodeTable
4. Output m

Fig. 1: ElGamal Encryption scheme

2.2 Commitments

A commitment scheme Com enables the generation of a commitment to a message, which
can be used to verify the message when it is revealed with an opening. It consists of four
PPT algorithms:

– Setup(1λ) outputs the public parameters param of the scheme.
– KeyGen(param) generates a public commitment key ck.
– Commit(ck,m; r) takes as input ck and a message m. It outputs the commitment c and

the randomness r used to commit (the opening value).
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– VerCom(ck, c,m, r) outputs true if message m was committed in c using r. Otherwise,
it outputs false.

Intuitively, a commitment scheme is binding if it is infeasible to find messages m′ ̸= m and
openings r, r′ such that Commit(ck,m; r) = Commit(ck,m′; r′). It is hiding if it is infeasible
to infer any information about m from c without the knowledge of the opening r (the
probabilities of both events are negligible in the security parameter λ).

In our auction scheme we will commit to values using a cryptographic hash function Hash
as described in Figure 2. This commitment scheme does not have a commitment key, and
it is well-known to be binding and hiding in the random oracle model. The range of the
hash should be set to 2λ for the binding property (preimage resistance), and use a λ-bit
random salt for the hiding property. This commitment scheme is also non-malleable.

Setup(1λ): Output Hash : {0, 1}∗ → {0, 1}2λ

Commit(m):

1. r
$← {0, 1}λ

2. c = Hash(m||r)
3. Output (c, r)

VerCom(m, c, r):

1. If c = Hash(m||r) output true
2. Else output false

Fig. 2: Salted hash commitment.

2.3 Zero-knowledge proofs

Given a fixed finite field Fp and an Fp-arithmetic circuit C : Fn
p × Fh

p → {0, 1}, a pre-
processing, zero-knowledge, succinct, non-interactive, argument of knowledge (zkSNARK
—see e.g. [6]) for the NP relation

RC := {(x;w) ∈ Fn
p × Fh

p | C(x,w) = 1},

is a triplet of algorithms SNARK = (Setup,Prove,Verify) such that:

– Setup(1λ,RC) takes as input a security parameter λ and the description of a circuit C
it outputs a pair of keys pk, vk.

– Prove(pk, x, w) takes the proving key pk, the public instance x and the private witness
w as input and outputs a proof π.

– Verify(vk, x, π) takes the verification key vk, the public instance x, and the proof π as
input and outputs either accept or reject.

The zkSNARK is complete if Verify always accepts proofs π generated by Prove on inputs
(x; y) ∈ RC . It is succinct if |π| = Oλ(1), and it has a succinct verifier (sometimes also re-
ferred as fully succinct) if Setup runs in time Oλ(|x|). It is zero-knowledge if no information
about the witness w is leaked from the proof.
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Knowledge soundness. It must be possible to efficiently extract a witness from any (possibly
cheating) prover Prove∗ that outputs an accepting pair (x, π). More formally, for every
polynomial-time adversary Prove∗, there exists a polynomial-time extractor ExtractProve∗ ,
such that for every large-enough security parameter λ,

P

Verify(vk, x, π) = 1
(x; y) /∈ RC

∣∣∣∣∣∣
(pk, vk)← Prove(1λ, C)
(x, π)← Prove∗(pk, vk)
y ← ExtractProve∗(pk, vk)

 ≤ negl(λ).

Bulletproofs Bulletproofs [11] is a SNARK used to prove interval membership x ∈ [0, 2n).
The public input is a Pedersen commitment C = Commit(ck, x; r) := gxhr of the integer
x under commitment key ck := (g, h) ∈ G2

p. A prover convinces the verifier that a given
x ∈ Zp lies in range [0, 2n) by showing it knows the bit decomposition b of x. Specifically,
the NP relation is:

RBP = {(g, h, C ∈ Gp, n ∈ N); (x, r ∈ Zp) | C = gxhr, x ∈ [0, 2n)} (2)

The high-level idea is to prove in zero-knowledge that the following constraints are satisfied:

⟨b,2n⟩ = x; and b ◦ b′ = 0; and b′ = b− 1

Above, 2n is a vector of all the powers of 2 up to 2n−1, and ◦ denotes component-wise
product. The second and third constraints proves that elements in b are indeed bits, and
the first constraint shows that b is the bit decomposition of x. To achieve logarithmic
communication in n, satisfiability of the above constraints is reduced to a inner product
argument (sound but not zero-knowledge) in which the prover commits to messages m ∈
Z2n
p of 2n elements using a (binding-only) length-reducing Pedersen vector commitment

with key ck := g ∈ G2n
p , setting Commit(ck,m) :=

∏2n
i=1 g

mi
i . The triplet of algorithms

BP = (BP.Setup,BP.Prove,BP.Verify) is as follows:

– BP.Setup(1λ, n) takes as input a security parameter λ and the description of the range
[0, 2n). It outputs a pair of keys pkbp = vkbp = g ∈ G2n

p(λ).
– BP.Prove(pkbp, (g, h, C), (x, r)) takes the proving key pkbp, the public instance (g, h, C)

and the private witness (x, r) and outputs a proof πbp.
– BP.Verify(vkbp, (g, h, C), πbp) takes the verification key vkbp, the public instance (g, h, C),

and the proof πbp, and it outputs accepts or rejects.

The soundness of Bulletproofs relies on the assumption that there is no known relationship
between the group elements g, g, h. Recall g is the Vector Pedersen key used to commit to
internal messages in the proving and verification algorithms of BP, and g, h is the Pedersen
key (part of the public instance) used to commit to x in relation RBP — see Equation
(2). The publicly-verifiable correctness of the result of our auction scheme will rely on the
following theorem proved in [11].

Theorem 1 (Corollary 2 of [11], informal). If there is no known relationship between
the group elements g, h,g, then BP with pkbp = vkbp = g is knowledge sound.
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Recursive proof composition. This is useful to prove that a function is applied itera-
tively x1 = f(x0), . . . , xn = f(xn−1). Proving the correct iteration of f can be done with
proof composition. A proof πn for the statement “xn = f(xn−1)” also attests to the ex-
istence of valid proofs πi for the statements “xi = f(xi−1)” for each i = 1 . . . , n − 1. In
a recursive SNARKr, the verification logic of the base SNARKb is implemented as part of
the prover. Thus, if the base circuit is “Cb(xi, xi−1) = 1 iff xi = f(xi−1)”, the recursive
algorithm Prover proves satisfiability of the augmented circuit:

“Cr((xi, vkb), (xi−1, πi−1)) = 1 iff xi = f(xi−1) ∧ Verifyb(vkb, xi−1, πi−1) = true”.

The main benefit of recursive proofs is that the prover can be parallelised. Of course, it
also reduces the number of proofs that need to be transmitted from N − 1 (using a non-
recursive SNARK) to just one. Proof composition was first constructed using cycles of
pairing-friendly curves [5] and can be recursed assuming the base verifier is succinct (it
runs in logarithmic time). Further works [8, 21], reduce the recursion overhead without
requiring a succinct base verifier.

3 Description of our scheme

In this section we describe the details of our auction scheme. The interactions after setup,
between the blockchain and the participants of the auction are described in Figure 3 and
Figure 4. The verification of the auction can be conducted by an independent party or
automated on the blockchain. Our auction scheme has four phases: setup, bid, result, and

Fig. 3: Auction schemes interaction
with independent public verification

Fig. 4: Auction schemes interaction
with automated verification

public verification. It can be implemented with appropriate choices of commitments, public-
key encryption and ZKPs. We give a concrete instantiation by setting the commitment to
salted hashes, encryption to ElGamal [17] and the ZKP to Bulletproof [11]. The details of
these building blocks can be found in Section 2. In Figure 8 we describe the implementation
of our auction scheme.
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3.1 Setup Phase

In this phase, the auctioneer sets time bounds Tb, Tr, Tv for each subsequent phase (e.g.
given by block heights). It then generates the following scheme parameters:

– Select a cyclic group Gp of prime order p = p(λ).
– Set the upper bound of the bids to n < log(p) − 1. Thus the bid range is [0, 2n) for

2n < p/2.
– Generate 2n+1 group elements g,g ∈ G2n+1

p . These group elements are generated in a
publicly-verified way to ensure no discrete-log relation is known. The proving key (and
verification key) of Bulletproofs is set to g. The group generator of ElGamal is set to
g.

– Compute the ElGamal decoding table DecodeTable = {(x, gx)}x∈[0,2n) and his se-
cret/public key pair (pkA, skA).

Then, the auctioneer publishes (n, p, g,g, pkA, Tb, Tr, Tv) and the description of the goods
to the blockchain. It keeps the decryption key skA private.

3.2 Bidding Phase

We design a new protocol for the bid phase called sealed encryption and described in Figure
5. This new protocol allows for a message to be committed and revealed to an intended
recipient at a later stage. It uses two cryptographic primitives: encryption and commitment
as defined in Section 2. For the auction use case, the message is the bid and the intended
recipient is the auctioneer. We make use of the security of Bitcoin-like blockchains to
prevent man-in-the-middle attacks. Our construction can be generalized to any blockchain
of which transactions are secure against man-in-the-middle attacks. More concretely, in the
bid phase, we instantiate a sealed encryption using ElGamal encryption and salted hash:

Commit phase: the bidder encrypts his bid x with ElGamal using the public key pkA
of the auctioneer. The ciphertext ct is concatenated with a transaction identifier txid0,
corresponding to a transaction tx0 spendable by the bidder. Then ct||txid0 is committed
in c using randomness r. Finally, c is pushed on the blockchain by embedding it in a
transaction tx1 that spends tx0.

Reveal phase: the bidder publishes his ciphertext ct and the opening randomness r on the
blockchain by embedding them in a transaction tx2 that spends tx1.

3.3 Result phase

In this phase, the auctioneer identifies the winning bid xw and announces it publicly in the
blockchain. The auctioneer does the following:

– Obtain and decrypt all ElGamal ciphertexts {cti}i≤N from the bid phase using his
secret key skA.

– Discard incorrect bids: If an opening to a ciphertext cti is incorrect add i to a list of
incorrect openings LBadComm. If it decrypts to group element Xi that cannot be decoded
(bid out of range) add i to a list of bad encryptions LBadEnc. The auctioneer disqualify
all bidders in LBadComm ∪ LBadEnc. Else, he adds i to a list of honest bidders LHB.
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SE.Commit(param,M, pk):

1. Pick an unspent transaction txid0
2. Compute ct = Encrypt(param, pk,m)

3. Pick r
$← Zp

4. Compute c = Commit(ck, ct||txid0; r)
5. Embed c in the transaction txid1 spending

the transaction txid0

SE.Reveal(ct, r, txid1):

1. Embed ct, txid0 and r in the transaction txid2
spending txid1.

SE.Verify(ct, r, c, txid2) :

1. Verify c lies inside the parent transaction of
txid2 and child transaction of txid0.

2. Output VerCom(ck, c, ct||txid0; r)

SE.Open(ct, r, c, txid2, sk):

1. Run SE.Verify(param, ct, r, c, txid2) if it
ouputs 0 then output ⊥

2. m← Decrypt(param, sk, ct)
3. Output m

Fig. 5: Sealed Encryption Protocol

– Identify the highest bid xw from the set of honest bids LHB.
– Prove correctness of his computations. He creates a correct decryption proof πdec,w to

prove ctw decrypts to xw, and (at most) N − 1 comparison proofs πcmp,i to prove that
xw > xi for each i ̸= w, i ∈ LHB. He also creates proofs πdec,i of correct decryption to
out of range bid Xi for each i ∈ LBadEnc. (See next paragraphs for more information.)

– Publish to the blockchain the winner bid xw, the list of ZKP proofs Lzkp =
{πdec,w, {πcmp,h}h̸=w,h∈LHB

, {πdec,c}c∈LBadEnc
}, and the list of honest bidders LHB and dis-

qualified bidders LBadComm ∪ LBadEnc.

Correct decryption proof. This is essentially a proof of equal discrete logarithms. Let
the auctioneer ElGamal public key pkA = h = gskA , and let the ElGamal ciphertext
ctw = (dw, ew) = (gr, gxwhr). If the ciphertext decrypts to xw under secret key skA,
then it holds ewx

−1
w = hr = dskA

w . Thus, the auctioneer proves in zero-knowledge that
the group elements ewx

−1
w and h have the same discrete logarithm skA in basis dw, g

respectively. We use the Σ-protocol of Chaum and Pedersen [13] to prove equality of
discrete logs on public basis. For completeness, we describe the non-interactive version
CDEC = (CDEC.Prove,CDEC.Verify) in Figure 6.

CDEC.Prove((g, pkA, ct, x), skA):

1. Parse ct = (d, e) ∈ G2
p

2. s
$← Zp

3. (a, b) = (gs, ds)
4. c = Hash(g, pkA, x, ct, a, b) ∈ Zp

5. z = s+ cskA
6. Output πdec = (c, z)

CDEC.Verify((g, pkA, ct, x), πdec):

1. Parse ct = (d, e) ∈ G2
p

2. Parse πdec = (c, z) ∈ Z2
p

3. a = gzpk−c
A ,

4. b = dz(eg−x)−c

5. If c = Hash(g, pkA, ct, x, a, b) output true
6. Else, output false

Fig. 6: Non-interactive sigma protocol to prove correct decryption of ct
to x using decryption key skA. Based on equality of discrete logs [13].



12 P. Germouty et al.

Comparison proof. The auctioneer needs to prove that for each i ̸= w the bid xw

encrypted in the ElGamal ciphertext ctw = (dw, ew) is greater than the bid xi encrypted
in cti = (di, ei). As in [19], we reduce bid comparison to checking interval membership,
namely that xw, xi, ∆̂i := (xw − xi) mod p ∈ [0, B) for some fixed bound B := 2n ≤ p/2
—see implication (1). The NP relation RCMP for bid comparison is then as follows:

RCMP =

g, dw, ew, di, ei ∈ Gp, n ∈ N;
xw, xi, skA ∈ Zp

∣∣∣∣∣∣∣∣
ew = gxwdskA

w

ei = gxidskA
i

∆̂i = xw − xi mod p

xi, ∆̂i ∈ [0, 2n − 1]

 (3)

We use Bulletproofs [11] as a building block. Recall from section 2.3 that Bulletproofs
take as public input a Pedersen commitment C = gxhr ∈ Gp, and as private input the
integer x ∈ [0, 2n) and the opening r ∈ Zp. Our observation is that an ElGamal ciphertext
ct = (d, e) ∈ G2

p, encrypted with public key pk = gsk can be seen as a Pedersen commitment
under commitment key ck = (g, d). More precisely, the second ciphertext component e can
be seen as a Pedersen commitment with opening the secret key sk:

ct = (d, e) = (gr, gxhr) = (gr, gxgskr) = (d, gxdsk) (4)

The above equation means that the auctioneer can use the ciphertext cti = (di, ei) and his
private key skA to prove with Bulletproofs that what the ciphertext decrypts to (the bid
xi) is in the valid range [0, 2n). Since ElGamal is additively homomorphic, the auctioneer
can also derive a ciphertext for the difference ∆̂i = (xw − xi) mod p setting

ct∆̂i
= (d∆̂i

, e∆̂i
) := (dwd

−1
i , ewe

−1
i ) = (grw−ri , g∆̂ipkrw−ri

A ) = (d∆̂i
, g∆̂idskA

∆̂i
) (5)

and prove ∆̂i ∈ [0, 2n). In Figure 7 we detail the snark CMP =
(CMP.Setup,CMP.Prove,CMP.Verify) to prove correct bid comparison. Thus, it proves
that ((g, ctw, cti, n); (xw, xi, skA)) ∈ RCMP.

Soundness of the comparison proof Due to lack of space we just give the intuitions
of why the comparison proofs πcmp,i are sound. We just have to argue for honest bidders.
If the i-th non-winning bidder is honest, he will not reveal the encryption randomness
ri used to encrypt cti = (di, ei) = (gri , gxipkriA ) to the auctioneer. Thus, the auctioneer
does not known the discrete-log relationship between g, and di = gri , where g is the
ElGamal generator. Now, because no one knows a discrete-log relationship between the
group elements g,g that form the verification key vkcmp (they are generated in a publicly
verifiable way), it is not difficult to see that g, di,g are also independent elements from
the point of view of the auctioneer. Using Theorem 1, the soundness of the bulleproof πi

generated in step 5 of algorithm CMP.Prove of Figure 7 is guaranteed.

The same applies when arguing the soundness of the bulleptroof π∆̂i
generated in step 6 of

CMP.Prove. The elements g, d∆̂i
,g are independent for the auctioneer, where d∆̂i

is the first
component of the (homomorphically derived) ciphertext ct∆̂i

encrypting ∆̂i := (xw − xi)

mod p. Indeed if ri is unknown, then g and d∆̂i
= grw+ri are independent elements for the

point of view of the auctioneer (see Equation (5)). Therefore, the i-th comparison proof
πcmp,i = (πi, π∆̂i

) is sound.
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CMP.Setup(1λ, n):

1. g,g
$← G2n+1

p(λ) // Independent generators.
2. Output pkcmp = vkcmp = (g,g) // g for Bulletproofs, and g for ElGamal.

CMP.Prove(pkcmp, (ctw, cti), (xw, xi, skA)):

1. Parse pkcmp = (g,g)
2. Parse ctw = (dw, ew), cti = (di, ei)
3. Set ∆̂ = xw − xi mod p
4. Set d∆̂ = dwd

−1
i , e∆̂ = ewe

−1
i

5. πi ← BP.Prove(g, (g, di, ei, n), (xi, skA))
6. π∆̂ ← BP.Prove(g, (g, d∆̂, e∆̂, n), (∆̂, skA))
7. Output πcmp,i = (πi, π∆̂)

CMP.Verify(vkcmp, (ctw, cti), πcmp,i):

1. Parse vkcmp = (g,g)
2. Parse ctw = (dw, ew), cti = (di, ei)
3. Parse πcmp,i = (πi, π∆)
4. Set d∆̂ = dwd

−1
i , e∆̂ = ewe

−1
i

5. bi = BP.Verify(g, (g, di, ei, n), πi)
6. b∆̂ = BP.Verify(g, (g, d∆̂, e∆̂, n), π∆̂)
7. If bi = 0, b∆̂ = 0 output 0 (accept)
8. Else output 1 (reject).

Fig. 7: SNARK to compare two bids xw, xi encrypted in ElGamal
ciphertexts ctw, cti. Internally, it uses Bulletproofs [11].

3.4 Public Verification

In this phase, the auditor verifies the correct behaviour of all bidders and the auctioneer.
Namely, they obtain and verify correct openings of all commitments ci to ciphertexts cti
for i ≤ N , and that the ZKP proofs of the auctioneer are valid. Note that the verifier can
be automated on the blockchain in some cases.

The verifier maintains a running list LHB of honest bids, initially set to all bidders. It does
the following:

– Verify correct openings of commitments to ciphertexts. Use the algorithm VerCom
which in our instantiation takes as input the commitment ci, the randomness ri
and the ciphertext concatenated with transaction id cti||txidi and output true if
ci = Hash(cti||txidi||ri). If the check fails, remove i from the list of honest bidders
LHB.

– Verify incorrect encrypted bids For each bidder c ∈ LHB for which the auctioneer claims
ctc decrypts to incorrect Xc, verify the correct decryption proof πdec,c on public input
(g, pkA, ctw, Xc). Here g is the ElGamal generator from setup and pkA is the public
key of the auctioneer (can be found on the blockchain). Then, verify Xc is not in the
decoding table DecodeTable. Last, remove c from the list of honest bidders LHB.

– Verify correct decryption of ctw to winning bid xw. First check w ∈ LHB. Then, run the
verification algorithm CDEC.Verify on public input (g, pkA, ctw, gxw) and proof πdec,w.

– Verify xw is the highest bid. For each non-winning bidder i ̸= w, i ∈ LHB, run the
verification algorithm CMP.Verify on public input (ctw, cti) and proof πcmp,i using the
verification key vkcmp. Here vkcmp was made publicly available by the auctioneer during
setup, ctw is the ciphertext of the winning bid (for which correct decryption is checked),
and for each i ̸= w in the honest list, the ciphertext cti was published in the bid phase.

An invalid commitment opening to a ciphertext cti or an out of range ciphertext cti means
the i-th bidder is dishonest, so his bid has been discarded correctly. An invalid or missing
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ZKP proof means the auctioneer is dishonest. If all the ZKP proofs are valid, the auction
is valid and the winner wins the auction item and pays the amount xw.

4 Reducing the number of comparison proofs

The approach described in Section 3 requires the auctioneer to generate N − 1 comparison
proofs, one per non-winning bidder. In this section we explain a generic approach that
leverages recursive SNARKs to produce a single comparison proof attesting for the N − 1
comparisons. Note that reducing the number of comparison proofs minimizes the overall
proof size, and simplifies the process of verifying the correctness of the auction result.
Another interesting effect of the proof size reduction is the cost of publishing the proof on
the blockchain. Since it is of size O(log(n)) the modified scheme is very scalable.

Our proposal allows to use any encryption scheme PKE = (Setup,KeyGen,Encrypt,Decrypt)
for which it is possible to prove in zero-knowledge correct keypair generation and cor-
rect decryption (namely, without revealing the decryption key). We define the comparison
predicate CCMP in Figure 9. In a nuthsell, the circuit enforces xw > xi and that xi can
be decrypted from an input ciphertext cti using the secret key skA corresponding to the
auctioneer public key pkA.

We also need to ensure recursive comparison is done exactly on the bids encrypted in the
ciphertexts {cti}i ̸=w posted in the blockchain in the bid phase. We propose two ways of
enforcing this.

Sequential recursion. For simplicity, below we assume N − 1 = 2d. We see the 2d

ciphertexts as the leaves of a Merkle tree, whose root is given as public input. An extra
gadget is added to the comparison predicate CCMP: it receives the root of the tree as public
input, and the Merkle proof for the i-th leaf as private input. It enforces cti is in the
tree using the Merkle proof. This approach has the disadvantage that proof generation is
sequential. Thus, the auctioneer cannot generate πcmp,i at the same time than πcmp,i−1.

Parallel recursion. Now we assume N −1 = 2d−1. To be able to batch proof generation
we see the ciphertexts as the 2d − 1 root nodes of a Merkle tree of depth d− 1. We define
the hash at node i as hi = Hash(cti, hi,0, hi,1), where hi,b denotes the hashes of the two
children of node i. The extra gadget of ĈCMP this time receives as public input the hash hi,
and as private inputs, the two child ciphertexts and the two child hashes. It enforces correct
hash generation. The downside with respect the previous approach is that the complexity
is increased because now two child proofs must be verified in the recursive circuit ĈCMP

(instead of one proof verification as in the sequential recursion). However, note that to
generate proofs at layer k of the tree, the recursive prover only needs two proofs from the
previous layer k− 1, and all the proofs in the same layer can be parallelised. Thus, we can
parallelise proof generation in batches of 2d−1, 2d−2, . . . , 2 sizes.
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Auction.Setup(1λ): // Auctioneer

1. Set time bounds Tb, Tr, Tv

2. Set n ∈ N // Upper bound for bids x ∈ [0, 2n)
3. pkcmp = vkcmp = (g,g)← CMP.Setup(1λ, n) // Transparent setup (see Figure 7)
4. ElGamal setup: // Equivalent to EG.Setup (see Figure 1)

(a) DecodeTable← {(x, gx)}x∈[0,2n) ⊂ Zp ×Gp

(b) Set egparams = (p, g, n) and DecodeTable
5. (pkA, skA)← EG.KeyGen(g)
6. Publish param := (n, egparams, vkcmp, pkA, Tb, Tr, Tv) on the blockchain

Auction.Bid(egparams, pkA, x): // Bidders. On input bid x ∈ [0, 2n):

1. (c, ct, r, tx1)← SE.Commit(x, pkA) // tx1 hs commitment c
2. Publish tx1 on the blockchain
3. tx2 ← SE.Reveal(ct, r, txid1) // tx2 spends tx1 and contains encrypted bid ct and commitment

opening r.
4. Publish tx2 on the blockchain

Auction.Result(egparams, pkcmp, Lct, Lcom, Lop, skA): // Auctioneer. Let lists of commitments, open-
ings and ciphertexts Lcom = {ci}1≤i≤N , Lop = {ri}1≤i≤N , Lct = {cti, tx2,i}1≤i≤N from the bid
phase (before time Tb)

1. LHB, LBadComm, LBadEnc ← ∅ // List of honest bidders, bad commitments, and bad encryptions
2. Open sealed bids from bidders. For i ∈ [0, N ]:

(a) (bi, xi)← SE.Open(cti, ri, ci, tx2,i, skA) // Verify opening and decrypt
(b) If bi = true add i to LHB.
(c) Else, if ci cannot be decommitted, add i to LBadComm. Else cti decrypts to out of range bid

Xi, add i to LBadEnc

3. Let xw = maxi∈LHB{xi} // The winning bid
4. Create ZKP proofs:

(a) πdec = CDEC.Prove((egparams, pkA, ctw, xw), skA) // Correct decryption to winning bid
xw

(b) πcmp,i = CMP.Prove(pkcmp, (ctw, cti), (xw, xi, skA)) // Correct comparison for i ∈ LHB\{w}
(c) πdec,i = CDEC.Prove((egparams, pkA, cti, Xi), skA) // Correct decryption to bid Xi out of

range for i ∈ LBadEnc

(d) Set list Lzkp := (πdec, {πcmp,i}i∈LHB\{w}, {Xi, πdec,i}i∈CBList)
5. Publish winning bid xw and lists LHB, LBadComm, LBadEnc, Lzkp to the Blockchain

Auction.Verify(egparams, vkcmp, Lct, Lop, xw, LHB, LBadComm, LBadEnc, Lzkp) // Independent party or
Blockchain. On input Lcom, Lop, Lct from the bid phase, winning bid xw, and lists
LHB, LBadComm, LBadEnc, Lzkp, from the result phase. If any check fails the auctioneer is dishonest,
else the result is valid:

1. Check [1, N ] = LHB ∪ LBadComm ∪ LBadEnc

2. Verify openings:
(a) Check True = SE.Verify(cti, r, c, tx2,i) // for i ∈ LHB ∪ LBadEnc

(b) Check False = SE.Verify(cti, r, c, tx2,i) // for i ∈ LBadComm

3. Check w ∈ LHB for winning bid xw

4. Verify ZKPs:
(a) Check True = CDEC.Verify((egparams, pkA, ctw, xw), πdec) // Correct decryption for xw

(b) Check True = CMP.Verify(vkcmp, (xw, cti), πcmp,i) // for i ∈ LHB, i ̸= w
(c) Check True = CDEC.Verify((egparams, pkA, cti, Xi), πdec,i) // cti decrypts to Xi for i ∈

LBadEnc

(d) Check Xi /∈ DecodeTable // Xi out of range for i ∈ LBadEnc

Fig. 8: Auction Scheme with ElGamal encryption and Bulletproofs
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Public input Winning bid xw, auctioneer public key pkA, i-th ciphertext cti.
Private input i-th bid xi, auctioneer secret key skA, randomness r for key generation.
Steps Enforce the following.

1. xw > xi

2. xi = Decrypt(sk, cti)
3. (pkA, skA) = KeyGen(param; r)

Fig. 9: Comparison predicate CCMP for a generic encryption scheme.
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A Bypassing the comparison proof of [19]

Let xw the winning bid, and let xi any other bid. The authors of [19] observe that if
xw, xi, ∆i mod q ∈ [0, q/2], where ∆i := xw − xi, then xw > xi. Thus, since the winning
bid xw is known to everyone, the comparison proof for “xw > xi” can be accomplished with
two range proofs: one to prove “xi ∈ [0, q/2)”, and another to prove “∆i mod q ∈ [0, q/2)”.
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The range proof used in [19] is the Σ-protocol due to Brickell et. al. [10]. See Figure
10 for a description of the protocol. An (honest) prover, that knows an integer x ∈ [0, B),
convinces the verifier that x ∈ [−B, 2B). Note the gap in the ranges, which is also observed
in [19]. Since bids cannot be negative (at least if aim to be the highest bid), the authors
assumed that the interval membership was reduced to [0, 2B) and set the upper bound
to B = q/4 accordingly. Our observation is that the difference ∆i = xw − xi (without
modulus reduction) can be negative. Below we show how a malicious prover (auctioneer)
can generate a valid proof for ∆i ∈ [−B, 0) that convinces the verifier that ∆i ∈ [−B, 2B].
In other words, how the malicious auctioneer can generate a valid comparison proof that
does not attest for the veracity of “xw > xi”.

The attack. Suppose the difference between the highest bid x1, and the second-highest bid
x2, is less than B < q/4 and that a malicious auctioneer announces the winning bid to
be xw := x2. Thus ∆1 = xw − x1 ∈ [−B, 0]. The malicious prover (auctioneer), instead of
following the steps of Figure 10 proceeds slighlty different:

– In step 1 (commit), the only difference is that the auctioneer chooses w1 ∈ [−∆,B]
(instead of w1 ∈ [0, B]).

– In step 3 (response), if challenge bit is e = 1 the auctioneer always sends m = ∆+w1,
(and the other response n).

To see why verification passes, it is enough to observe that w1 ∈ [0, B] (because −∆ is
positive), so the verifier checks will pass in case the challenge bit is e = 0. Also, m ∈ [0, B]
which follows from assuming ∆ ∈ [−B, 0] and w1 ∈ [−∆,B], so if e = 1 the verifier checks
will also pass.

Public input Pedersen commitment C = GxHo, and upper bound B.
Private input Integer x ∈ [0, B), and opening o.

1. Commit. The prover (auctioneer) picks w1 ∈ [0, B], sets w2 = w1−B and commits to w1, w2

with Pedersen using openings r1, r2. It sends commitments W1 = Gw1Hr1 ,W2 = Gw2Hr2 to
the verifier.

2. Challenge. The verifier picks a random challenge bit e and sends it to the prover.
3. Response. The prover sends one of the following responses to the verifier, based on the

challenge bit e:
– If e = 0 the prover sends w1, w2, r1, r2 to the verifier. The verifier checks w1 ∈ [0, B],

w2 = B − w1, and Wi = GwiHri for i ∈ {1, 2}.
– Else e = 1, and the prover sends m = x+ wj , opening n = o+ rj , and index j such that

m ∈ [0, B]. The verifier checks CWj = GmHn, and m ∈ [0, B].

Fig. 10: Range proof from [10] used in the comparison proof of [19]. It
convinces the verifier that x ∈ [−B, 2B]


