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Abstract. In this paper, we provide experimental evidence for the bene-
fits of multi-task learning in the context of masked AES implementations
(via the ASCADv1-r and ASCADv2 databases). We develop an approach
for comparing single-task and multi-task approaches rather than compar-
ing specific resulting models: we do this by training many models with
random hyperparameters (instead of comparing a few highly tuned mod-
els). We find that multi-task learning has significant practical advantages
that make it an attractive option in the context of device evaluations: the
multi-task approach leads to performant networks quickly in particular
in situations where knowledge of internal randomness is not available
during training.
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1 Introduction

The rapid adoption of deep learning methods as an alternative to classical
statistics in profiled side-channel attacks is due to their superior capability to
efficiently utilize information from multiple tracepoints. However, many deep
learning architectures still rely on the conventional thinking of statistics-based
attacks, where a single intermediate target is learned at a time, resulting in a
single learning task being executed.

Multi-task learning is a technique where multiple optimisation functions and
their respective ground truths are combined in order to improve the learning of
a deep network model. As is so often the case, the idea for multi-task learning
is inspired by how humans often learn: in order to perform a new task, humans
often try to combine the knowledge gained from (many) related tasks. And
maybe to learn a new task that is difficult, humans might first try to learn a
related easier task and then move on to the harder problem. These ideas are the
key to multi-task learning.

Most fields connected to pattern recognition are investing heavily in the
multi-task paradigm with a clear trend to move towards it. The learning goals in
side channel analysis can be linked to goals within the field of pattern recognition.
However, so far multi-task learning has not shown significant promise in the side
channel setting.



We believe that this is mostly because the architectures introduced in the
initial works are not leveraging what multi-task learning is good at. In the first
two works by Maghrebi [5] and Masure and Strullu [8], a classical multi-task
architecture as summarised in [14] has been used. However, our previous work [6],
showed that this kind of architecture is typically inferior to single-task training.
However, better ways of defining multi-task architectures are available, and the
goal of this paper is to convince readers that such approaches have strong benefits
over single-task learning.

1.1 Summary of Contributions and Outline

Using the public databases ASCADv1-r and ASCADv2, we study the applica-
tion of multi-task learning in the context of masked AES-128 implementations.
Using different masking schemes allows us to explore very different scenarios
and highlight the benefits of multi-task learning approaches. The work of our
paper is done assuming no knowledge about the Boolean mask during profiling
and attack. With masking countermeasures, the trace complexity of the prob-
lem increases exponentially with the number of masks/shares. Therefore even
one unknown mask decreases greatly the chances of finding a successful model.
After providing some notation and background in Sect. 2, we provide empirical
evidence for the improvement of the single-task approach [7] in Sect. 3; we in-
troduce the methodology and present our first experiment on the ASCADv1-r
dataset in Sect. 4. We continue with experiments on the ASCADv2 dataset in
Sect. 5 and summarise our findings in Sect. 6.

• We propose a methodology for comparing deep learning approaches rather
than resulting trained models.

• We demonstrate that the adoption of an “expert” based approach is not only
beneficial for multi-task learning but also for single-task architectures.

• We provide evidence that multi-task architectures benefit from shared vari-
ables, like masks, even if they are not provided as labels during training.

• We show that multi-task learning enables us to find more working models
than single-task learning at a fraction of the training time.

We provide the code and our extracted datasets used in this paper at:

• https://github.com/sca-research/multi-vs-single-experiments/
• https://zenodo.org/record/7885814

1.2 Relevant related works

Mahgrebi [5] introduces the multi-task learning paradigm to the side channel
community. The model defined in this paper, is a model that learns bit per bit
the masked intermediate values, and the related mask. It provides attacks on
the ASCADv1 database but with extracted samples.

The paper Perin et al. [10] continues and improves the work done by the
community on the ASCADv1-r dataset. Their main discussion evolves around



the point of interest selection, which is a critical step in profiled attacks. They set
a new state of the art in the scenario where no knowledge about the randomness
is assumed during training, and where the training is based on the raw traces
(i.e. no points of interest must be extracted).

The introduction and characterisation of the ASCADv2 dataset are done in
Masure and Strullu [8]. They provide an extracted version of the dataset and then
propose a first utilisation of multi-task learning in a scenario where the knowledge
of randomness is assumed during profiling, but also in two cases when a part of
the randomness isn’t assumed (permutations, and then the multiplicative mask).
They set the first state-of-the-art for this dataset, with 60 traces with a single
multi-task learning model. However, they use an architecture that doesn’t fully
take advantage of the benefits of multi-task learning, as the model possesses a
branch for each task and then does not connect those branches again.

The paper by Masure et al. [7] explores the idea of training two models
simultaneously. In their architecture, they apply a loss function on the predicted
combined probabilities of their respective softmax outputs. This approach relaxes
the difficulty of the problem, as the network doesn’t have to learn how to combine
the leakages. The authors solely focus on the PI metric and don’t present any
attack outcomes.

A further study of multi-task learning is provided in [6]. They propose a new
best attack on the ASCADv2 dataset in the scenario where randomness is fully
assumed. The authors introduce several novel multi-task architectures and they
also utilise custom layers to combine knowledge from multiple branches.

2 Preliminaries

To perform side-channel attacks with deep learning, the attacker typically op-
erates over two stages. The first stage consists of exploring the device leakage,
building a dataset, and then training a model. In the second stage, the attacker
performs the attack. Such side-channel attacks are often called profiled attacks.

Deep nets aim to learn the leakage distribution of intermediate values. A
specific intermediate x corresponds to the chosen points of interest from a leakage
trace l and we refer to these points by lx.

An approach to deep learning consists of the choice of an architecture and a
training regime; we focus on single-task vs multi-task architectures specifically.
An architecture is a set of layers (of different types) and their connections.
Training an architecture results in a deep net model which we call mθ, whereby
θ is the set of hyperparameters corresponding to the model. The output layers
of those models are by default unactivated. We call σ(x) the activation of the
layer x by a softmax function.

2.1 Profiling based on Deep Learning

To perform attacks on newly observed traces, an attacker must first train one
or multiple models to build a distinguisher. To build a training dataset, one



must obtain a clone of the device to capture training traces. Once the dataset is
built, it is possible to train and then utilise the models. Since it is unlikely that
the model will recover the target key in only one trace, one must combine the
predictions from multiple traces. We note Si,j the scores related to the target
byte i of the key, obtained on the trace j picked randomly from the set of attack
traces Na. The recovery of the key will be done using the sum of the logarithm
of Si,j in the following way d[ki] =

∑Na

j=1 log(Si,j)

2.2 Training Methodology

To enable meaningful comparisons, we use the same learning rate, optimizer, and
number of epochs across all training regimes. The only difference is that we train
all bytes together in the multi-task models instead of byte by byte training in
the single-task models (the multi-task models consist of multiple identical copies
of the respective single-task models; we explain them in more detail later in this
paper).

Our datasets are split into three different sets: training (size NT ), validation
(size NV ), and attack (size NA) dataset. All results reported in this paper are
made on the attack dataset. Training and validation sets are labeled with inter-
mediates derived from random keys. In the ASCADv1-r dataset, fixed keys are
provided and therefore our attack dataset is labeled with a fixed key. However,
in the ASCADv2 dataset, only random keys are provided. A simple re-labeling
of the keys and plaintexts allow us to artificially fix the key. We use a callback
to save the best model from the training phase. This callback will either monitor
the validation accuracy in the case of single-task models, or the minimum vali-
dation accuracy over all bytes, in the case of multi-task learning. Even though
accuracy is a problematic metric in side-channel analysis as demonstrated first
in Cagli et al. [1] and then in Picek et al. [11], it is difficult to find a better way
to judge the quality of the model during the training phase.

2.3 Comparison Methodology

We wish to compare different approaches to deep learning in the context of
masked AES implementations. We consider an approach as “better” if desirable
qualities (accuracy, time to find a model, time for training) are favorable com-
pared to other approaches. Comparing approaches cannot be done by picking just
one or two models because individual models are not necessarily representative
of an approach. To compare approaches we need to compare a lot of models (of
each approach), and then check how many models of one approach outperform
the models from another approach.

This type of comparison also ties in with the reality of side channel evalua-
tions: a model that works well on one device, might not perform well on another
device. However, if an approach performs well, then this means that it is likely
that we can find a good model for any device. Thus a good approach is beneficial
in the long run for an evaluator.



Summarising, we consider the quality of an approach as the reliability with
which the approach is going to yield performing models. It might be hard to
estimate the best model possible with an approach, however, the average perfor-
mance on many hyperparameter sets is a reliable metric. Therefore, to compare
approaches, we instantiate many models with random hyperparameters.

2.4 Computing resources

We are using two GPUs: one Nvidia A30 with 24GB of dedicated memory, and
one Nvidia A4000 with 16GB of dedicated memory. In addition to the GPUs,
we’re using 4 cores of an AMD EPYC at 2.6GHz with 128 GB of RAM. As OS
we use an Ubuntu 22.04.1 kernel, with TensorFlow 2.10.1.

2.5 ASCADv1-r

The paper of Prouff et al. [13] introduces the dataset in 2018, along with a
characterization of the leakage characteristics. the ASCADv1-r dataset possesses
a total of 300k traces of a Boolean masking implementation of an AES. The
device on which the dataset has been acquired through electromagnetic emissions
is a simple 8-bit microcontroller and therefore is very leaky. About two third of
the traces are based on using random keys, intended for training and validation
purposes, and the rest is based on a fixed key to perform attacks. Because 50k
traces are more than enough for the training dataset, we decided to only include
60k traces from the random key split and 10k traces from the fixed key traces.

The dataset contains the encryption up to the beginning of the second round
of the AES. The masking scheme is a simple Boolean masking with two shares.
Before encryption, a masked SubBytes table SubBytes∗ is precomputed using
the randomness rin and rout, and during the computation of a masked encryption
round, all state bytes are masked by a state mask ri. The input to the masked
SubBytes step is protected by rin, and the corresponding output is protected by
rout, as defined by SubBytes∗. The output is then remasked with ri.

The usual target on this dataset is the Subbytes outputs si along with the
state byte share (si ⊕ ri, ri). However, to investigate the power of multi-task
learning, we need a shared mask for all learning tasks, and consequently, we
target the less leaky intermediate (ti ⊕ rin, rin).

2.6 ASCADv2

Introduced in 2020, the ASCADv2 dataset is less researched in the literature
perhaps because it is based on a better protected implementation of AES. The
dataset has been generated using the EM waves from an STM32 microcontroller
with an ARM Cortex M4. It has in total of 800k traces with a million points per
trace. This is because it has been purposely over-sampled and should be resam-
pled for better use. All traces are created based on random keys and therefore it
is necessary to artificially fix the key in the attack time. Also, it is very important



to shuffle the files, as during acquisition, physical perturbations impacted on the
leakage from the device. Therefore, one might observe different attack results
when attacking different files if, initially, the training dataset doesn’t contain
traces from all files. After shuffling the traces, we pick 300k traces at random to
build our dataset.

The masking scheme is a shuffled affine masking as defined in [3]. It possesses
a non-zero multiplicative mask (note: a few zeros are present in the dataset), and
an additive mask. Those masks are respectively noted α and β. Those masks are
common for all bytes of the state, implying that the representation of the state
bytes around the Subbytes operation is α⊗ x⊕ β. On the other operations, the
masking is done with α and a state mask. We do not use the state mask in this
paper. Permutations over all 16 state bytes are present over the whole encryption
except MixColumns, in which only the column elements are permuted.

We kept the original notation from the ASCAD database. The subkey of the
byte i, is denoted by ki, along with the Subbytes input and outputs, respectively
ti, si. The multiplicative mask is noted rm, the additive mask for the Subbytes
inputs is rin, and the additive mask from the Subbytes outputs is rout. The
permuted state bytes are noted respectively kj , tj , sj .

2.7 Custom layers

To fit our design needs, we use several custom layers that were defined in [6], and
we include the basic principle to combine outputs of layers for ease of reading.
The custom layers compute the joint probability distribution of two variables
x, y given the probability distributions of two layers (that we understand to be
statistically independent) that depend on x and a function of x, y:

f⊕(x, y)[i] =

255∑
j=0

x[j]× y[i⊕ j] ∀ i ∈ [0, 255]

f⊗(x, y)[i] = x[0] +

255∑
j=1

x[j]× y[i⊗ j] ∀ i ∈ [0, 255]

(1)

(2)

The function f⊗ has to discriminate the first case where j = 0, being a null
element. We decided that in this case, the probabilities of x should be unchanged.
The use of these functions will become clear from the architecture.

2.8 Multi-Task Learning

Multi-task learning is a very natural concept introduced in Caruana [2]. It can
be defined as a network architecture that has multiple outputs and is trained
with multiple labels. During training, multi-task models try to optimise multiple
objective functions. Across all domains where deep learning is the state-of-the-
art, multi-task learning approaches are among the most used, see [14].

The main potential benefits according to Caruana [2], are the following: data
amplification, attribute selection, eavesdropping, and representation bias. Data



amplification can also be understood as data augmentation. The idea is that
the samples from different tasks sharing features might share the signal but
not the noise as the noise is independent of the signals. By training both tasks
together, the noise is effectively reduced. The concept of attribute selection,
is subsequent to the concept of data amplification. As the noise is reduced and
the signal clearer for a shared feature, the relevant inputs will be easier to find.
Eavesdropping is a very interesting case where two tasks share a feature. But
this feature is hard to understand for one task and easy to learn for the other.
Then, the first task is going to benefit from collaborating with the second task
since the knowledge of the feature will be shared. And finally, representation
bias is the idea that a model trained with multiple labels is going to yield more
consistent results. Since the training of deep networks is a stochastic process,
the ”path” taken by the gradient depends on the initialisation. However, since
there are multiple objectives to learn, the gradient will take the path that is best
for all objectives instead of just one. This will lead the model weights to prefer
a reduced set of representations.

However, those strengths might also be the drawbacks of this technique.
Some potential benefits listed above assume that tasks share features. If there
is no feature shared between the different objectives, this technique can yield
sub-optimal models as the gradient will struggle to find a common ”path”. Even
though, some results [9, 15] have shown that including unrelated tasks in the
training procedure can lead to improvements, it is very hard to infer from previ-
ous literature if one set of tasks will perform better trained jointly. One reason is
the lack of a cross-domain formalism that would explain when tasks collaborate
or compete.

3 Utilising Experts to Improve Single-Task Architectures

Only in very recent work [6], multi-task learning appears to show any real benefit
over single-task learning. In this section, we show that a seemingly small “tweak”
in combining learned distributions within a network can significantly benefit its
performance. We do this by referring back to a recent single-task architecture
that combines information that is learned about a mask and the corresponding
masked value and modify it by borrowing inspiration from [6], and then show
that our tweak improves the network’s performance in a single task setting. We
will use this tweak then in our multi-task architectures as well.

The initial single-task architecture proposed in [7] produces probabilities from
the activated outputs of two ”models”, trained with one loss function. One model
that we denote mθr is expected to learn the mask r, and the other model denoted
mθx⊕r

is supposed to learn the masked intermediate x⊕ r. This technique feels
natural in the sense that the probability distribution of x can be derived by the
learned distributions of the two branches. We provide a visual representation of
this architecture in Fig. 1a.

In [6] the idea of “weighing” up learning results was introduced in the context
of multi-task learning. This way of combining the learning from related branches



can be understood as a “multi-gate mixture of experts model”, see [4]. In a multi-
gate mixture of experts model the idea is that one branch acts as an “expert” for
one or more other branches, by contributing its learning to update the learning
of the other branch(es). We find that this idea is appealing when different parts
of a network learn intermediate values that are related to the same internal
randomness (aka mask) and thus use this to further improve the recent results
of [7].

We suggest that the idea of using experts can also be applied to single learning
tasks. For instance, we can view the related learning tasks for x ⊕ r, and r as
training two experts who can influence each other. Their outputs are combined
via a custom layer and only thereafter a softmax layer is applied to produce
a distribution for x. This is in line with the design of [6], but simplified, and
adapted to the single-task approach from [7]. We provide a visual representation
of this architecture in Fig. 1b.

To evaluate if there is merit in this idea, we run a set of experiments on the
ASCADv2 dataset. The setup of this experiment is the same as the extracted
scenario in Figure. 5 and therefore the final architectures used in the experiment
are based on Figure. 6. We are targeting the unmasked values of the subbytes
inputs tj to compare the better positioning of the softmax activation σ. Knowl-
edge of the multiplicative mask rm and the permutations ji is being assumed.
Therefore we have in this experiment xi = rm ⊗ tj and r = rin.

lr lx⊕r

mθr mθx⊕r

f⊕

x

σ(mθr ) σ(mθx⊕r
)

(a) Masure proposition

lr lx⊕r

mθr mθx⊕r

f⊕

x

σ(mθr )

σ(f⊕)

(b) Our proposition (c) Comparison

Fig. 1: Single-task architecture difference from Masure et al. [7], with a full key
recovery comparison

We can see in Figure. 1c that the architecture where we use the learning of
one share as an expert for the other share increases the average performance of
the models while keeping the same best performances.

4 ASCADv1-r: Comparing Multi-Task and Single-Task
Architectures

In this section, we will use the idea of experts for all architectures alike.



4.1 Assumptions, Contributions and State of the Art

ASCADv1-r has been extensively researched by the community in all sorts of
scenarios and it has come to light that this dataset leaks many intermediate
values, giving many opportunities for attacks. In this paper, we use only the raw
traces, without access to any randomness. The state of the art in this scenario is
an attack using 1 trace, in [10], while targeting the SubBytes outputs. We choose
another target and therefore a straightforward comparison is difficult. We choose
to attack the SubBytes inputs ti because they all share the same mask across all
state bytes, and thereby enable this multi-task learning approach. Recall that
the shared mask is rin. Therefore we note in this section xi = ti and r = rin

4.2 Architectures

fpool

mθconv

mθr mθxi⊕r

f⊕

xi

σ(mθr )

σ(f⊕)

(a) Single-task-xor model for one byte

fpool

mθconv

mθr mθx2⊕r mθx16⊕r

f⊕ f⊕

x2 x16

σ(mθr )
σ(mθr )

∀i ∈ [2, 16]

σ(f⊕) σ(f⊕)

(b) Multi-task model for all bytes

Fig. 2: Architectures used in the Ascadv1 experiment

We provide a visual representation of network architectures that we use in
the context of the ASCADv1-r dataset in Figure. 2. In addition to those two
architectures, we also define single-task-twin-xor, which is an architecture
similar to 2a but with two separate convolutions mconv. All architectures take
as input the raw traces from the ASCADv1-r dataset. Those raw traces are 250k
samples long and include the full execution of the masking scheme up to the end
of the first round. Inspired by the work in [10] in relation to the NOPOI scenario,
we give each model a weighted average pooling of the traces. This pooling takes
place in the fpool layer. After this layer, which in the multi-task architecture is
provided to all tasks, the model is going to split into multiple branches supposed
to learn each one a piece of the puzzle ti.

We have two models in the single-task learning approach. This is because we
were interested in comparing the impact of shared convolutions in a single-task



scenario. Even though it is not given multiple labels, each branch is supposed
to learn a different part of the problem. This might cause an increase in the
difficulty of learning.

4.3 Training many models

We train 50 CNNs for each approach. We do not train all bytes for the single-task
scenarios because of the significant overhead. Instead, we only compare byte 6.
The attacks are therefore also only on this byte. All bytes are trained for the
multi-task model and reach similar accuracies.

Training time. On our A30 GPU, each epoch for both single-task models takes
about 17-25s while each epoch from the multi-task model takes 20-27s depending
on the hyperparameters. This is relatively close since the input is huge and the
”processing” layers are the bottleneck of the model. Therefore the difference in
training time between the two approaches is almost irrelevant, except that in
the case of the multi-task model, all bytes are trained.

Hyperparameter choices. The choice of hyperparameter is done fully ran-
domly. Both models start with a layer that reduces the size of the input us-
ing weighted average pooling, followed by convolutions. Those convolutions are
shared for both models, however, the architecture splits with different fully con-
nected layers.

Set Hyperparameter Interval

convolution block [1, 3]
kernel of block i [16, 64] ∀ i

θconv filters [3, 16]
strides [2, 30]

pooling size [2, 5]

θr, θx⊕r dense blocks [1, 5]
dense units [64, 512]

Table 1: Table of the architectural hyperparameters

Fixed hyperparameters. The number of epochs is 100 for all models with a
batch size of 250. We’re using an Adam optimiser with 0.001 learning rate.

4.4 Results of the experiments

For every model trained, we perform 1000 key recovery attacks using 1000 ran-
domly picked traces from the attack dataset. In this section, a model is deemed
successful if on average, the subkey rank reaches 1 under 1000 traces.



The main metric used to compare the approaches is the number of successful
models nwin. Additionally, we compare the best models and the average per-
formance of successful models. Those key metrics are given in Figure. 3; and
Table. 2. Note that unsuccessful approaches do not appear in Figure. 3.

Model type nwin
single-task-xor 0

single-task-twin-xor 2
multi-task 8

Table 2: Successful models

Fig. 3: 7-th subkey recovery attack results for the successful models

Single-task-xor vs single-task-xor-twin. In the case of single-task models,
we see that the model that does not share the convolutions outperforms the one
with shared convolutions. The extra hyperparameters help the model converge
twice, while the single-task-xor architecture struggles to even find one model.

Single-task vs multi-task models. In this experiment, which is based on
traces that are very long, we hypothesise that the main difficulty for any network
is to find the leaking trace points; the amount of leakage in “the right trace
points” is known to be strong. Our results suggest that multi-task learning seems
to be better in finding working models. The average model performance for
both successful approaches is low because only very few models managed to
converge according to the results in Tab. . In the case of the single-task-twin-
xor model, the best model reached rank one on average at trace 5, while the
second model converged, after 444 traces. For the multi-task approach, while
6/8 models managed to reach on average rank 1 using fewer than 20 traces, the
two other models were significantly less performant. This make-or-break success
is highlighting the fact that the difficulty for the networks is to make sense of



the samples. Another reason for this disparity is the problematic relationship
between accuracy and key ranking [1]. On this dataset, the networks are often
likely to overfit and be over confident. Because they do not learn the leakage
distributions, their first ”bad” predictions are hard to fix. In this case, multi-
task learning brings a much better approach than single-task learning. While it
requires almost as much time to train all bytes with this approach than training
a single byte with single-task learning, it yields more often successful models,
with a better overall performance.

5 ASCADv2

5.1 Assumptions and state of the art

The first best results were achieved by Masure and Strullu [8]. They required only
60 traces for successful key recovery in a setting where access to all randomness
is assumed during training, but no knowledge about the randomness is assumed
during the attack. Then an improvement of the state of the art has been achieved
in [6], reducing the number of traces to recover the full key at 24 traces. Their
results show that to perform the best attacks on ASCADv2, one has to target the
input of the AES Sboxes t instead of the more commonly used output s because
the signal in the inputs is stronger than the signal in the SubBytes output. We
also select the SubBytes input in this work.

We do not work with raw traces, but select points of interest to contain
only the leakages from all bytes of the SubBytes inputs of the first round, and
their mask rin (we thus assume knowledge about these locations for this pur-
pose). However, we do not include knowledge about additive randomness, and
the choice to extract “windows of interest” is to speed up experiments (we al-
ready considered a scenario with long traces in the previous section). Extracting
points does not impact the comparison between single-task and multi-task mod-
els, because the selection is helping both approaches (and perhaps slightly more
the single-task models).

In addition to the assumption needed to extract the samples from the raw
traces, we give to both approaches the knowledge of the multiplicative mask
rm and the permutations. Therefore the only randomness not assumed during
profiling and attack is the additive mask rin. Since the multiplicative mask and
the permutations are assumed, xi = rm ⊗ tj and r = rin are in the following
section for clarity purposes.

5.2 Input scenarios

We recombine the selected points of interest of different intermediate values into
three different “extraction levels”: fully-extracted, separated, and concatenated.

• “Fully-extracted” is a scenario where the samples from the mask but also
the individual bytes of the targeted intermediate, are given as inputs inde-
pendently.



• “Separated” is a scenario where the samples related to the mask are given
independently from the samples related to all bytes of the intermediate.
However, the latter is fed to the network in a concatenated manner.

• “Concatenated” is a scenario where all extracted samples are concatenated
in a single input.

In both fully-extracted and separated scenarios, the leakage related to the
mask rin is given to the “mask” branch of the network. This will make it easier
for the network as this branch will only see helpful samples. In the concatenated
strategy, all extracted samples are concatenated to recreate a large trace. This
will allow us to further investigates the attribute selection benefit of the multi-
task approach.

In the ”fully-extracted” scenario, each byte’s samples are kept away from
the others. This means that each model branch will have only the samples from
which it should learn the distribution. This represents the best-case scenario.

5.3 Architectures

We define three architecture types : single-task, single-task-xor, and multi-task.
We give a visualisation of the considered single-task-xor architectures in Fig-
ure. 4.

lr lxi⊕r

mθr mθxi⊕r

f⊕

f⊗rm

xi

σ(mθr )

σ(f⊗)

(a) fully-extracted

lr lxi⊕r ∀i ∈ [0, 16]

mθr mθxi⊕r

f⊕

f⊗rm

xi

σ(mθr )

σ(f⊗)

(b) separated

[lr|lxi⊕r ∀i ∈ [0, 16]]

mθr mθxi⊕r

f⊕

f⊗rm

xi

σ(mθr )

σ(f⊗)

(c) concatenated

Fig. 4: Architectures for the single-task-xor approach

In the case of the single-task type, the architectures are provided in Fig-
ure. 4a, 4b. They are the same as before with the exception that the custom
layer f⊕ is the multiplication layer. However, in the concatenated scenario, the
architecture differs as can be seen in Figure. 5.

The multi-task models are extensions of the architectures in Figure. 4 in the
same manner as Figure. 2b. The branching is the same but the model is extended
to all xi.
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(a) fully-extracted
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(c) concatenated

Fig. 5: Architectures for the single-task approach

5.4 Training many models

To better compare the approaches, we train many models with random sets of
hyperparameters and observe metrics such as the number of successful models,
the average number of traces to recover the full key for the successful models,
and the best model in terms of traces for all approaches.

The model that will represent the learning of the mask, mθr has been pre-
tuned. This means that we selected the hyperparameters for this training task
on beforehand and tested them with the labels. We supply this model to all
networks, and the only reason for pre-tuning is performance because we wish
to obtain a good amount of working models and therefore need to reduce the
variance in the hyperparameter choices.

A special case is the case of the architecture in Figure. 5c. This architecture
has only one branch all the way to the end, and the branch supposed to act as
the mask mθr doesn’t exist. So the hyperparameters chosen for mθxi⊕r

are given
to the model named mθxi

with θxi = θxi⊕r. We choose the θxi⊕r randomly from
the intervals defined in the table 3.

Fixed training hyperparameter. We train all our models with 25 epochs
and a batch size of 500. The chosen optimizer is Adam, with a learning rate of
0.0001. No search of any kind has been done for those hyperparameters.

Training time Training one epoch of a multi-task model on the full dataset
N200k in the fully-extracted scenario takes between 80-85s on our A30 GPU.
This can be compared to the 10-15s it takes for one epoch of a single-task-xor
model with the same input scenario. Training all bytes at once takes 2 times less
than the single-task-xor approach.



Hyperparameter mθr mθxi⊕r

convolution block 1 [1, 3]
kernel of block i 32 [4, 32] ∀i ∈ [1, cb]

filters 16 [3, 16]
strides 10 1

pooling size 2 [2, 5]
dense blocks 2 [1, 5]
dense units 256 [64, 512]
batch norm yes yes

Table 3: Table of the architectural hyperparameters

5.5 Results of the experiments

We train our models with two datasets size. The first dataset has 200k traces
(N200k) in the training split, while the second dataset has 100k only (N100k). This
is to observe the resilience of multi-task learning when the amount of training
traces is reduced.

Once the models are trained, we test the attack performances of our models
in a full key recovery attack. We perform an attack with all models over 1000
experiments. In each experiment, we pick at random 1000 traces from the attack
set and we try to recover the full key. A model is deemed successful if it recovers
the key in all experiments. We note the number of successful models for each
dataset size (N200k and N100k), for each approach and each scenario in Table. 9.
The figures 6, 7, 8 present the average performance over all successful models,
along with the best model found for each input scenario.

Single-task vs single-task-xor First, it appears clear that the single-task-xor
is a better approach than the classical idea (i.e. single-task [10, 12, 13]) that a
deep net can learn to find the leakage from the sample, but also how to combine
it. Doing a conditional probability between the output of a ”mask” branch and
the output of an ”intermediate” branch, give significantly better results than
the naive approach. This result confirms the results from [7], on actual attacks.
On the 25 sets of hyperparameters chosen, the single-task didn’t get a single one
successful in all scenarios.

Single-task-xor vs multi-task Secondly, we see that the ”mask expert” (i.e.
mθr ) has a better understanding of the mask distribution and therefore helps
the networks trained with this approach to outperform the lone single-task-xor
models. In this experiment, the difficulty isn’t in finding the tracepoints, as in
the first experiment, but in how to not overfit. The regularisation effect of multi-
task learning yields more performant models on average. In addition to that, the
shared expert is forced to learn a distribution fitting all bytes instead of one.
This will help yield more successful models.



Fig. 6: fully-extracted Fig. 7: separated

Fig. 8: concatenated

Strategy Approach N200k N100k

fully-extracted single-task 0 0
single-task-xor 24 22

multi-task 25 25

separated single-task 0 0
single-task-xor 16 0

multi-task 22 9

concatenated single-task 0 0
single-task-xor 17 0

multi-task 24 4

Fig. 9: Successful models

ASCADv2: Results of the experiments

Fully extracted. In the fully extracted scenario, the average performance is
close to the best model which itself is catching up with the best attack in a white
box scenario reported in [6]. Even though there are obvious differences because
here rm and the permutations are assumed. This still means that most of the
leakage has been captured by the model. The difference between the multi-task
and the single-task-xor models isn’t yet significant. A small amount of single-
task-xor models didn’t manage to converge towards a successful model. However,
even when reducing the amount of training traces, the multi-task model managed
to always be successful, Finally, on average performance the multi-task models
trained on N100k, beats the single-task-xor models trained on N200k.

Separated. The most significant difference happens in the separated scenario.
Where the samples related to each byte aren’t extracted. The multi-task learning
scenario is doing much better at identifying the good samples since it knows a
little bit more about the problem. The multi-task best model is close to the fully
extracted scenario. In a single-task-xor approach, only 64% of the hyperparame-
ter sets yield a successful model against 88% from its multi-task counterpart with
trained on N200k. However, when reducing the size of the dataset, the single-task
models do not manage to mount a successful attack even once, while 9 multi-



task models are successful. This further highlights, the data amplification effect
of multi-task learning and helps to utilise better the inputs related to shared
tasks such as the mask here.

Concatenated. Finally, in the concatenated scenario, where the inputs are
given altogether, we can see similar results from the separated scenario. We
see a significant difference in performance between the two approaches. On the
N200k dataset, even the best model from the single-task-xor models is a lot less
trace efficient than the average multi-task model. Only 68% of the single-task-
xor models recover the key, while 96% of their multi-task counterparts succeed
to do so. On the N100k dataset, no single-task-xor models are successful while 4
multi-task models are.

6 Conclusion

Throughout our two examples, we showcase the strengths of multi-task learning
over multiple input sizes when the access of the randomness is not possible, or
limited. From our point of view, the key takeaway points are the following:

• Single-task-xor learning, as introduced in [7] and [6], is improving signifi-
cantly the previous single-task learning paradigm.

• Training in a multi-task learning scenario will yield more models that can
perform an attack.

• Training in a multi-task learning scenario improves the performance of suc-
cessful models thanks to its regularisation effect.

• Training in a multi-task learning scenario better utilise the inputs it’s given,
making models more resilient to the lack of training traces.

• In addition to performance gains, the training time can be radically im-
proved.

The results presented in this paper contribute to the community by show-
casing the strength of multi-task learning against single-task approaches. We
propose a methodology to compare approaches through the training of many
models with random hyperparameters. Using this methodology, we highlight the
difficulty in the previous single-task learning paradigm, to find models able to
perform attacks without the knowledge of randomness thereby confirming [7].
We show evidence that multi-task learning has huge advantages over single-task
learning methods at a minimal cost, especially in the case of large traces.
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