Hardware Acceleration of FHEW

Jonas Bertels, Michiel Van Beirendonck, Furkan Turan, Ingrid Verbauwhede
COSIC, KU Leuven
Kasteelpark Arenberg 10, Bus 2452, B-3001 Leuven-Heverlee, Belgium
{firstname.lastname } @esat.kuleuven.be

Abstract—The magic of Fully Homomorphic Encryption (FHE)
is that it allows operations on encrypted data without decryption.
Unfortunately, the slow computation time limits their adoption.
The slow computation time results from the vast memory
requirements (64Kbits per ciphertext), a bootstrapping key of
1.3 GB, and sizeable computational overhead (10240 NTTs, each
NTT requiring 5120 32-bit multiplications). We accelerate the
FHEW bootstrapping in hardware on a high-end U280 FPGA.

To reduce the computational complexity, we propose a fast
hardware NTT architecture modified from [S] with support for
negatively wrapped convolution. The IP module includes large
I/0 ports to the NTT accelerator and an index bit-reversal block.
The total architecture requires less than 225000 LUTs and 1280
DSPs.

Assuming that a fast interface to the FHEW bootstrapping
key is available, the execution speed of FHEW bootstrapping
can increase by at least 7.5 times.

I. INTRODUCTION

Homomorphic encryption means encryption, where some-
one can still do operations on encrypted data. Fast-working
homomorphic encryption would significantly impact the fi-
nancial sector [[7]], the web services sector, and many other
sectors where a company needing computation cannot trust
the company doing the computation to access their data.

There are two types of homomorphic encryption: Leveled
Homomorphic Encryption (LHE) and Fully Homomorphic
Encryption (FHE). LHE allows for a few computations, and
FHE supports infinite computations. “Bootstrapping” is used
to turn LHE into FHE. The computing party decrypts the
ciphertext to allow for another LHE. However, the data owner
has encrypted the key used in this decryption and the ciphertext
with another encryption key. In this way, the decryption of the
ciphertext by the computing party results in another ciphertext,
and the computing party does not get access to the plaintext.

The FHEW scheme [4] is part of the third generation of FHE
schemes [1f], [2]. FHEW tackles the bootstrapping process’s
long length by executing only one NAND gate (other simple
gate functions are also possible), followed immediately by
a bootstrap step. Bootstrapping makes it a true FHE, as the
bootstrapping completes within a reasonable amount of time,
namely 137 milliseconds for NAND + bootstrap for 128-
bit security on an Intel(R) Core(TM) i7-9700 CPU for the
STD128 security parameters listed in Table [] [6]. While one
only computes one NAND gate at a time, there is no limit on
the depth of our circuit, and we can write all functions as a
combination of logic gates; there is no limit on the functions
that can be executed.

In this work, we propose an FPGA-based accelerator for
the compute-intensive bootstrapping step of FHEW. Our ac-
celerator achieves a factor of 7.5 speed-up starting from an
open-source NTT core developed by Mert et al. [5].

II. BACKGROUND

In this section, we explain FHEW bootstrapping, focusing
on the implementation aspects. See [2], [|6]] for a more in-depth
mathematical view.

A. Preliminaries on the FHEW algorithm

1) LWE: The Learning With Errors problem forms the basis
for the FHEW scheme. In LWE, we operate on elements
defined in Z, the ring of integers modulo ¢ (usually ¢ = 512).

We define an LWE ciphertext with parameters: the di-
mension n, the message modulus ¢ > 2, and the ciphertext
modulus q [2]. We also define a randomized rounding function
X : R — Z. We use m to denote our messages and m € Z.
The secret key is a vector consisting of n elements of Zg,
chosen uniformly from this space. The encryption of m under
s is then ([2]], equation 2):

LWEY(m) = (a, x(a ®s + mgq/t) mod q) € ZI"* (1)

We have a a vector (similar to s) consisting of n random
elements of Z,. To decrypt this ciphertext, one takes b—a® s
and rounds, then scales by t/q.

2) RLWE: We also define Ring LWE (RLWE) in an almost
identical way to LWE, but with our message m € R, =
Z4[x]/(x*" +1). In other words, our message is a polynomial
(which can be represented as a vector of coefficients). Similar
to LWE, we define a and s as vectors of these polynomials,
and the encryption of m is then [6]:

RLWE, () = (a,as + e+ m))

with and e < x2" with p some integer.

3) RLWE’ and RGSW: We now informally introduce two
more definitions based on RLWE, which we need when dis-
cussing FHEW. RLWE’ is defined as [2] [|6] a vector of RLWE
ciphertexts decomposed into a base B, with (B,)* = ¢. The
reason for this definition is that we want a system that creates
as little noise as possible when operations are completed.
By decomposing RGSW (to be defined later) into a larger
base, less noise is generated (see section 5.1 in [[6]). Using
this RLWE’ scheme, we can define multiplications between
constants and an RLWE’ ciphertext so that the result is another
ciphertext. This multiplication is homomorphic, meaning that

mailto:michiel.vanbeirendonck@esat.kuleuven.be,jonas.bertels@esat.kuleuven.be,furkan.turan@esat.kuleuven.be,ingrid.verbauwhede@esat.kuleuven.be

Fig. 1. NAND gate created by taking LWEﬁ/q(rh) (with e = ¢/16) +
LWEZ/ % () (with e = ¢/16) = LWE? 7 (1) (with e = q/8) [3]

the result of two multiplied ciphertexts is the encryption of the
product of the two ciphertexts along with some error, similar
to equation [6]

And finally, using these definitions, our RGSW scheme can
be defined, allowing the multiplication of ciphertexts. We need
this ability to run our RLWE decryption while everything is
encrypted under RGSW.

RGSW¢(m) = (RLWE,(—s *m),RLWE,(m)) (3)

B. Introduction to Bootstrapping in FHEW

Bootstrapping means executing decryption operations ho-
momorphically, i.e., doing the decryption operations with an
encrypted secret key. This reduces the noise of the LWE2/9 (i)
ciphertext. To bootstrap efficiently, the FHEW algorithm [2[
only performs one NAND gate before bootstrapping or a
similarly small binary gate operation. We go from LWEZ/4 (1)
to LWE2/9(n), or in other words, from an LWE ciphertext
deciphering to four possible messages with a maximum error
of ¢/16 to a ciphertext deciphering to two possible messages
with a maximum error of ¢/8 [3]] as shown on Figure

Ideally, we would like to continue working with this
LWEZ2/9(1n) ciphertext. But if we add another LWE ciphertext
to this result, our error would overflow, and we would no
longer get the correct result back after decryption. Hence, we
get rid of this noise via bootstrapping.

RGSW provides the encryption for the ciphertext. Encrypt-
ing our secret keys under RGSW allows us to safely send them
to the server without breaking security by giving the server the
means to decipher the LWE ciphertext into plain text. We call
the secret key encrypted under RGSW the bootstrapping key.

Bootstrapping consists of 3 steps: Initialization, Accumu-
lation, and Extraction (which simply consists of taking the
first value of the second part of the RGSW result). The
Accumulation, which consists of n RGSW xRLWE’' — RLWE
multiplications, is the bottleneck of the FHEW algorithm, and
as such, the focus of our acceleration.

When we bootstrap, we will wish to use our secret key s
encrypted under RGSW for multiplications. We can multiply
an RGSW ciphertext RGSW(m1) = (¢,¢’) with an RLWE’
ciphertext RLWE (g, e9) = (a, b) and get a result that when
decrypted gives the product of the 2 messages [6]:

(a,b) ¢ (¢,¢’) = ((a,b),(¢,¢’)) =aGe+boOc 4)
— a ©RLWE ,(—s % m1) +bORLWE ,(m1) (5
= RLWE,((b—a*s) *my) = RLWE,((mo + eg) xm1) (6)

n q Br
512 elements 512 entries 23

LWE size LWE modulus | RLWE’ decomposition base
TABLE T
LWE PARAMETERS FOR STD128
N log, (Q) By
1024 elements 27 bits 128
Polynomial size | Data width (NTT) | RGSW base
TABLE I

RGSW PARAMETERS FOR STD128

This RGSW x RLWE' — RLWE can be turned into a
RGSW x RLWE' — RLWE'. To summarize the accumulation
process, each polynomial coefficient is broken down into B,
through a signed digit decomposition. Then a multiplication
with an RLWE’ vector occurs. As mentioned at the start of the
section, using RLWE’ instead of RLWE for the multiplication
reduces the generated noise. Once the multiplication com-
pletes, the results are summed together. The Number Theoretic
Transform is used to optimize the multiplications.

III. HARDWARE ARCHITECTURE

The reference FHEW software implementation provided in
the PALISADE library can execute one binary gate in 137 ms
[6]]. For many applications, the execution of 7 binary gates per
second is too slow to be practical, especially when an entire
CPU must be dedicated to one binary gate.

Since we attempt to accelerate this FHEW software imple-
mentation, we use the STD128 parameter set, for which timing
results were available and which fit the parameters of the
available NTT accelerators best. Generally, these accelerators
are designed for a ring depth of N = 1024 and a modulus @
bit size of either 14 bits or around 32 bits. The parameters for
which our hardware implementation was designed are given
in Table [

A. The Inner Control Loop

The FHEW algorithm requires n = 512 iterations which
can be broken up into 4 parts: two Inverse Number Theo-
retic Transforms (INTTs), Signed Digit Decomposition, eight
(= 2*dy) Number Theoretic Transforms (NTTs), and RGSW
bootstrapping key multiplication. Of these, the NTTs and
INTTs are by far the most time-critical. The hardware ac-
celerator is therefore based on a design for accelerating NTTs
(see Mert et al. [5]).

This highly parametric design allows 3 parameters to be
set: the Ring Size N, the Modulus Size @), and the number
of Processing Elements PE. The ring and modulus sizes are
found in the parameter set STD128 (see Table [l). The number
of processing elements determines the speed and, to a degree,
the area of the design.

For this implementation, we chose a PE number of 32. Fig-
ure [2] shows the original datapath of one Processing Element.
Based on this design, we created our hardware accelerator
(Figure . The Gentleman-Sande (GS) INTT block contains

DATA
BRAM#0

DATA
BRAM#1

Fig. 2. Mert et al.’s datapath [5]

Dalaln, og INTT—,

— L ADD
SDD —CT INTTJ

| Data out

Fig. 3. Diagram of the RGSW accumulator implementation, with a
Gentleman-Sande INTT, a Signed Digit Decomposition, a Cooley-Tukey NTT
and an addition of the 4 CT NTT results

32 instances of Figure [2] while the CT NTT block contains 32
instances of a modified datapath for the Cooley-Tukey NTT.

Our implementation extends the work of Mert et al. [5].
We add hardware support for bit-reversal of the indices (see
Figure [d), signed digit decomposition, and multiplication with
the bootstrapping key (see Figure [5). We describe our modi-
fications in the next sections.

B. Overview of Index Bit-Reversal

Index bit-reversal introduces read and write access conflicts.
The difficulty with the bit-reversing is the organization of the
memory because each BRAM is instantiated with only one
read port and one write port. This means we must carefully
consider which values are swapped in memory as an index bit-
reverse operation is a series of swaps. We cannot swap two or
more values residing in the same BRAM in the same clock

16 cycles of BRAM #2k,
16 cycles of BRAM #2k+1

——
32CC
P s
BRAM #1 >
Index 1 @)
Reversal (@)
Block — v (@)
BRA"#E]« GS Processing
BRANW]« Element

Fig. 4. Bitreversal in the GS INTT

ACCINTT_NUMBER][1]*secret + (ACC[NTT_NUMBER][0][BRAM #1]*secret)

l ACC[NTT_NUMBER][0]*secret

((BRAM#0 | BRAM#0

CT Processing

secretKey
———————
Element

((BRAM#1 | BRAM#1

[BRAM #62 I BRAM #62 CT Processing

Element

secretKey

[BRAM #63 I BRAM #63

t Even + Odd * Factor
ACC[NTT_NUMBER][0]*secret-

ACCI[NTT_NUMBER][1]*secret + (ACC[NTT_NUMBER][0][BRAM#62]*secret)

Fig. 5. Bootstrapping key accumulation integrated into CT

cycle, as this would require two reads from the same BRAM
in one clock cycle. Note that BRAMs can be instantiated with
two write and read ports, which requires doubling their size
from 18 Kbit to 36 Kbit. It would not simplify the bit-reversal
problem, although it would allow bit-reversal in half the time.

We thus used conflict-free address scheduling combined
with a crossbar to ensure maximum throughput to 32 BRAMs.
This allows us to process our polynomial in 3% = % =32
clock cycles. The bit-reversal step at the start and the bit-
reversal step at the end, plus the integrated multiplication by
% required for the INTT, adds a total of 80 cycles to the INTT

run time of 250 cycles.

C. Non-NTT Components

The Signed Digit Decompose is implemented almost ver-
batim from the PALISADE library and is placed between the
readout from the INTT BRAMs and the NTT BRAMs. The
bootstrapping key multiplication is integrated into the CT NTT.
Because we run both parts of the RGSW accumulator on the
same datapath (multiplexed in time), the BRAMs of the CT
NTT are extended to fit in the results of the bootstrapping
key multiplication with the first part until the second part is
calculated and is summed together with the first part inside
the CT NTT datapath (Figure [3). As previously mentioned,
Mert et al. under-utilizes the BRAM resources, so this does
not increase the area taken up by the memory [9].

The full datapath has been tested in simulation and works
for test vectors generated by the PALISADE library.

IV. MEMORY INTERFACE

The next step is to map the architecture onto the Alveo
U280 FPGA platform while considering the specifics of the
U280 memory architecture. To perform the multiplication with
the bootstrapping key in time with the CT NTT, we must be
able to fetch N * d, x 2 = 8096 elements in the ~ 900 cycles
at 100 MHz it takes to complete half of one accumulator step.
In other words, we would need a memory BW of

8x N x fxlogy(Q) 8096 100 * 10° « 27

_ — 24.3Gb
CC 1/2 of Accumulation 900 3(7)ps

Task Input ACCH = a; * 54 Output 1/16 Bootstrap
Time | 2052 CC 3616 CC 2049 CC 114327 CC
TABLE TII

SIMULATION RUN TIME

This data rate is achieved by storing the key in the HBM
memory and then building 16 256-bit AXI interfaces to
communicate between the FPGA and the HBM memory [_8].

Storing the entire bootstrapping key on the U280 FPGA
would not be possible at all, as it takes up a total of [|6]:

4nNd, B,dglog,(Q) = 10.4Gigabits = 1.3GB (8)

The bootstrapping key exceeds the maximum of 32.1 Megabits
that can be generated [8]].

We verified the correctness of the computation blocks. In
simulation, we used bootstrapping keys of the correct size to
verify correctness. In synthesis, we preferred a bootstrapping
key hardwired to the design instead of reading from an external
HBM memory. Because the multiplier used was the modular
multiplier from the CT NTT, any bootstrapping key used in
our design must be multiplied with the same factor R as our
twiddle factors. Beyond that, the data in the bootstrapping key
must be structured so that each BRAM receives the correct
bootstrapping key at the correct clock cycle.

V. RESULTS

A. Simulation Results

Because the bootstrapping key is over 10 Gigabit, we
decided only to run part of the bootstrapping process in
simulation, with only 1/16th completed. The result of this
simulation corresponded with the execution of 1/16th of the
bootstrapping algorithm in PALISADE. The simulation gave
us the results in Table for our processing speed. When
extrapolating this to a full bootstrap, which consists of n
(= 512) times adding a;*s;, we see that the full bootstrapping
process executes in 1855493 clock cycles (CC). The full
bootstrapping process has a runtime of less than 18.5 ms,
assuming a clock frequency of at least 100 MHz.

B. Implementation Results

An HBM interface was created and tested in hardware
but could not write the full bootstrapping key to the FPGA.
As such, we could not verify the full functionality of the
implementation with the HBM interface.

When we scale our implementation to 2 NTTs and 1
INTT, we receive the results described in Table Suppose
we extrapolate these results with the synthesis results on
a smaller prototyping device. The whole design (minus the
bootstrapping key memory) would use the resources described
in Table [V] The limitation to verifying the whole design is
the High Bandwidth Memory requirements, which require
significant design time to get right.

WNS
1.595 ns

LUT FF
133971
TABLET
IMPLEMENTATION RESULTS FOR 1 INTT AND 2 NTT RUN

BRAM | DSP
56565 146 768

Frequency
100MHz

LUT FF BRAM | DSP
223285 | 94275 240 1280
~ TABLEV

EXTRAPOLATED IMPLEMENTATION RESULTS FOR FULL IMPLEMENTATION

VI. CONCLUSION

Bootstrapping is the bottleneck of Fully Homomorphic En-
cryption for schemes like FHEW. Acceleration via FPGAs or
other hardware is a promising way to improve the throughput
of homomorphic operations. Our current design promises a
speed-up of 7.5 times over the software implementation when
run at 100 MHz. As the NTT core, which makes up most of
our design, can be run at 200 MHz, we project that a speed-
up by a factor of 15 is achievable. FHEW has large memory
bandwidth requirements and is only computation limited when
full advantage is taken of the HBM bandwidth. If the designer
cannot use High Bandwidth Memory, the memory bandwidth
of the FPGA limits the performance of the design.

ACKNOWLEDGMENT

This work was supported in part by CyberSecurity Research
Flanders with reference number VR20192203, the Horizon
2020 ERC Advanced Grant (101020005 Belfort) and by Darpa
DPRIVE (Contract No. HR0011-21-C-0034). Michiel Van
Beirendonck is funded by FWO PhD fellow (1SD5621N).

REFERENCES

[1] 1. Chillotti, N. Gama, M. Georgieva, and M. Izabachene, “TFHE: fast
fully homomorphic encryption over the torus,” J. Cryptol.,, vol. 33,
no. 1, pp. 34-91, 2020. [Online]. Available: https://doi.org/10.1007/
s00145-019-09319-x

[2] L. Ducas and D. Micciancio, “Fhew: Bootstrapping homomorphic encryp-
tion in less than a second,” in Advances in Cryptology — EUROCRYPT
2015, E. Oswald and M. Fischlin, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2015, pp. 617-640.

, “Fhew: Homomorphic encryption bootstrapping in less than a
second,” University Lecture, 2015.

[4] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,”
Proceedings of the IEEE, vol. 93, no. 2, pp. 216-231, 2005, special issue
on “Program Generation, Optimization, and Platform Adaptation”.

[5] A.C. Mert, E. Karabulut, E. Ozturk, E. Savas, and A. Aysu, “An extensive
study of flexible design methods for the number theoretic transform,”
IEEE Transactions on Computers, pp. 1-1, 2020.

[6] D. Micciancio and Y. Polyakov, “Bootstrapping in fhew-like
cryptosystems,” in WAHC °21: Proceedings of the 9th on Workshop on
Encrypted Computing & Applied Homomorphic Cryptography, Virtual
Event, Korea, 15 November 2021. WAHC@ACM, 2021, pp. 17-28.
[Online]. Available: https://doi.org/10.1145/3474366.3486924

[7] H.-T. Peng, W. W. Hsu, J.-M. Ho, and M.-R. Yu, “Homomorphic encryp-
tion application on financialcloud framework,” in 2016 IEEE Symposium
Series on Computational Intelligence (SSCI), 2016, pp. 1-5.

[8] Alveo U280 Data Center Accelerator Card, Xilinx, 11 2019.

[9]1 UltraScale Architecture Memory Resources, Xilinx, 3 2021, block Ram
Summary.

[3]

https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1145/3474366.3486924

	Introduction
	Background
	Preliminaries on the FHEW algorithm
	LWE
	RLWE
	RLWE' and RGSW

	Introduction to Bootstrapping in FHEW

	Hardware Architecture
	The Inner Control Loop
	Overview of Index Bit-Reversal
	Non-NTT Components

	Memory Interface
	Results
	Simulation Results
	Implementation Results

	Conclusion
	References

