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Abstract—We present HAETAE (Hyperball bimodAl modulE
rejecTion signAture schemE), a new lattice-based signature
scheme, which we submitted to the Korean Post-Quantum
Cryptography Competition for standardization. Like the NIST-
selected Dilithium signature scheme, HAETAE is based on the
Fiat-Shamir with Aborts paradigm, but our design choices
target an improved complexity/compactness compromise that
is highly relevant for many space-limited application scenarios.
We primarily focus on reducing signature and verification key
sizes so that signatures fit into one TCP or UDP datagram while
preserving a high level of security against a variety of attacks.
As a result, our scheme has signature and verification key
sizes up to 40% and 25% smaller, respectively, compared than
Dilithium. Moreover, we describe how to efficiently protect
HAETAE against implementation attacks such as side-channel
analysis, making it an attractive candidate for use in IoT and
other embedded systems.

Index Terms—Signature, Fiat-Shamir, Lattice-based Cryptog-
raphy, Bimodal Distribution

1. Introduction

The rise of quantum computing has brought up – among
others – the necessity of new, post-quantum digital signature
schemes. In the standardization process of post-quantum
cryptography by the American National Institute of Standards
and Technology (NIST), the lattice-based schemes Falcon [1]
and Dilithium [2] have already been announced as future
standards. The critical challenge in developing lattice-based
digital signatures lies in finding a balance between security
and practicality: while developing secure schemes against a
wide range of attacks is essential, it is also vital to ensure
they are practical for real-world applications. This challenge
becomes even more critical with the increasing prevalence
of embedded devices and the Internet of Things (IoT). Both

technologies have become ubiquitous, from home appliances
to medical devices connected to the internet.

In particular, this leads to two practical requirements:

1) The verification key and signature sizes must be as
small as possible since both are frequently transmitted.
Specifically, it is helpful if the signature is small enough
to be sent in only one UDP or TCP datagram, as
this minimizes the need for packet fragmentation. The
importance of the signature and verification key sizes for
communication protocols has been highlighted already
in multiple evaluations [3, 4, 5]. Paquin et al. [4] observe
for TLS, that fragmentation over many packets has a
significant performance impact for network links with
non-ideal packet loss rates. Benchmarking DNSSEC [5]
revealed, that the smaller signatures of Falcon lead to
faster resolution times in comparison to Dilithium in
most scenarios, although the signature computation and
verification is much faster with Dilithium compared to
Falcon.

2) The secret-dependent operations such as key generation
and message signing must be easy to protect against
implementation attacks. This is essential in embedded
use cases like the IoT, where attackers have physical
access and can measure power consumption or elec-
tromagnetic emanation [6], additionally to the timing
behaviour [7], which is also exploitable from remote.

In this context, Falcon fulfills the first requirement very
well, but efforts for making it satisfy the second requirement,
namely Mitaka [8], were recently broken [9]. Dilithium, on
the other hand, focuses on being easy to implement and
protect against side-channel attacks. However, this comes
at the sacrifice of larger signatures and verification keys,
which for example do not allow a signature to fit in one
UDP datagram. We summarize this discussion in Table 1
and compare the two with HAETAE.



Scheme Lvl. Sig. vk Const.-T. Maskable
Falcon-512 1 666B 897B 3 [10] 7 [9]
Dilithium-2 2 2,420B 1,312B 3 [2] 3 [11]
HAETAE-120 2 1,463B 992B 3 3

TABLE 1: NIST security level, signature size, verification key
size, and implementation security, with respect to constant-
time and masking of selected signature schemes

Contribution. We present HAETAE1, a lattice-based digital
signature scheme that improves over Dilithium by up to
40 % smaller signature and key sizes while being similarly
easy to protect against physical attacks. Its quantum security
is based on the hardness of the module versions of the
lattice problems LWE and SIS [12, 13], in the Quantum
Random Oracle Model (QROM). The scheme design follows
the “Fiat-Shamir with Aborts” paradigm [14, 15], which
relies on rejection sampling: rejection sampling is used to
transform a signature trial whose distribution depends on
sensitive information, into a signature whose distribution can
be publicly simulated.

HAETAE is in part inspired from Dilithium, a post-
quantum “Fiat-Shamir with Aborts” signature scheme, no-
tably concerning the use of the module LWE and SIS
assumptions. HAETAE differs from Dilithium in two major
aspects: (i) we use a bimodal distribution for the rejection
sampling, like in the BLISS signature scheme [16], instead
of a “unimodal” distribution like Dilithium, (ii) we sample
from and reject to hyperball uniform distributions, instead
of discrete hypercube uniform distributions. The design
departs from BLISS, as HAETAE relies on module lattice
problems while BLISS relies either on assumptions on
unstructured lattices or the NTRU assumption [17]: this
leads us to introduce a new key generation algorithm. A
further difference is that BLISS involves on discrete Gaussian
distributions whereas HAETAE considers hyperball uniform
distributions as suggested in [18]. This choice allows for
simple rejection sampling without transcendental function
computation and tail-cutting, while retaining the signature
compactness enabled by Gaussian distributions.

HAETAE benefits from several novel improvements in
the key generation algorithm. We introduce a new rejection
procedure in the key generation algorithm to minimize the
magnitude of the secret key when multiplied by the challenge.
This facilitates rejection sampling in the signing algorithm
and leads to smaller signatures. The key generation rejection
is also designed to be efficient and simple to implement.
It significantly improves over a procedure with a similar
objective in the key generation of BLISS. Furthermore, we
introduce to the bimodal setting a verification key truncation
with the same objective as Dilithium’s. A direct adaptation
would lead to large bounds for the verification algorithm and
degraded security. Instead, we compensate for the verification
key truncation by correcting the signing key accordingly. It
increases the magnitude of the signing key, but by a much
smaller amount than the naive approach.

1. The haetae is a mythical Korean lion-like creature with the innate
ability to distinguish right from wrong.

Param. set Lvl. Sig. vk KeyGen Sign Verify
H-120/D-2 2 60% 76% 408% 548% 106%
H-180/D-3 3 71% 75% 383% 484% 123%
H-260/D-5 5 63% 80% 181% 363% 94%
F-512/H-120 1 / 2 46% 90% 3,885% 277% 27%
F-1024/H-260 5 44% 86% 9,110% 423% 25%

TABLE 2: Relative comparison between HAETAE (H),
Dilithium (D) and Falcon (F). The percentages are the
ratio of their sizes and the execution times. The execution
time is measured as the median cycle counts among 1000
executions, obtained on one core of an Intel Core i7-10700k,
with TurboBoost and hyperthreading disabled.

For the signing algorithm, we adapt Dilithium’s signature
compression so that it is compatible with our module lattices
key generation algorithm, by taking into account the residues
modulo 2. Further, we apply the signature encoding technique
from [19] to hyperball uniform distributions. The main
novelty in the signing algorithm is a detailed description of
a fixed-point arithmetic algorithm for sampling uniformly in
a hyperball, which was left open in [18]. The discretization
leads to numerical errors: we bound them and bound their
effect on the scheme security.

Implementation and performance. We propose three pa-
rameter sets with NIST security levels 2, 3 and 5. Each
parameter set of HAETAE has 20-25% smaller verification
key size and 30-40% shorter signatures than its counterpart
in Dilithium. Based on our C implementation of HAETAE,
the verification process is as fast as Dilithium’s, while the
resulting key generation and signing algorithm are up to
six times slower than Dilithium’s. However, we emphasize
that our implementation of HAETAE is yet unoptimized but
already portable and constant-time. In addition, up to 80%
of the signing time is consumed by the hyperball sampling.
Thus, any improvement to this sampling would contribute
greatly to the efficiency of HAETAE, an independent speedup
to further optimizations. Nonetheless, on our benchmark
signing with HAETAE-120 is still 2-3 times faster than with
Falcon-512 and signing with HAETAE-260 is 3-4 times
faster than with Falcon-1024’s, with emulated floating-point
operations. We summarize the comparison results in Table 2.

Moreover, we observe that masking HAETAE against
physical attacks is nearly as easy as masking Dilithium, based
on the similarity of the scheme design and the use of fixed-
point arithmetic. One of the conceptual differences between
HAETAE and Falcon (and their variants) regarding physical
attacks is that HAETAE only needs Gaussian samples for
secret-independent centers and standard deviations.

Finally, we note that like other Fiat-Shamir signatures,
such as Schnorr signatures [20], the randomized signing
of HAETAE can take advantage of pre-computations. By
sampling from the hyperball and pre-computing the message-
independent components offline, the online signing phase of
HAETAE is cut by factor five.

Our code is available on the team HAETAE website:
https://kpqc.cryptolab.co.kr/.

https://kpqc.cryptolab.co.kr/


2. Preliminaries

Before introducing the core concepts in Section 3 and
the HAETAE scheme in Section 4, we start by defining
notations used throughout this paper and recapitulate relevant
fundamental work.

2.1. Notations

Matrices are denoted in bold font and upper case letters
(e.g., A), while vectors are denoted in bold font and
lowercase letters (e.g., y or z1). The i-th component of
a vector is denoted with subscript i (e.g., yi for the i-th
component of y).

Every vector is a column vector. We denote concatenation
between vectors by putting the rows below as (u,v) and the
columns on the right as (u|v). We naturally extend the latter
notation to concatenations between matrices and vectors (e.g.,
(A|b) or (A|B)).

We define a polynomial ring R = Z[x]/(xn+1) where n
is a power of 2 integer and for any positive integer q the
quotient ring Rq = Z[x]/(q, xn + 1) = Zq[x]/(xn + 1). We
abuse notations and identify R2 with the set of elements in R
with binary coefficients. We also define a polynomial ring
over real numbers RR = R[x]/(xn + 1). For an integer η,
we let the set of polynomials of degree less than n with
coefficients in [−η, η] ∩ Z be denoted by Sη. Given y =
(
∑

0≤i<n yi x
i, · · · ,

∑
0≤i<n ynk−n+i x

i)> ∈ Rk (or RkR),
we define its `2-norm as the `2-norm of the corresponding
“flattened” vector ‖y‖2 = ‖(y0, · · · , ynk−1)>‖2.

Let BR,m(r, c) = {x ∈ RmR |‖x − c‖2 ≤ r} denote the
continuous hyperball with center c ∈ Rm and radius r > 0
in dimension m > 0. When c = 0, we omit the center.
Let B(1/N)R,m(r, c) = (1/N)Rm ∩ BR,m(r, c) denote the
discretized hyperball with radius r > 0 and center c ∈ Rm
in dimension m > 0 with respect to a positive integer N .
When c = 0, we omit it. Given a measurable set X ⊆ Rm of
finite volume, we let U(X) denote the continuous uniform
distribution over X . It admits x 7→ χX(x)/Vol(X) as a
probability density, where χX is the indicator function of X
and Vol(X) is the volume of the set X . For the normal
distribution over R centered at µ with standard deviation σ,
we use the notation N (µ, σ).

For a positive integer α, we define r mod± α as the
unique integer r′ in the range [−α/2, α/2) satisfying the
relation r = r′ mod α. We also define r mod+ α as the
unique integer r′ in the range [0, α) satisfying r = r′ mod α.
We denote the least significant bit of an integer r with LSB(r).
We naturally extend this to integer polynomials and vectors
of integer polynomials, by applying it component-wise.

2.2. Signatures

We briefly recall the formalism of digital signatures.

Definition 1 (Digital Signature). A signature scheme is a
tuple of PPT algorithms (KeyGen, Sign,Verify) with the
following specifications:

• KeyGen : 1λ → (vk, sk) outputs a verification key vk
and a signing key sk;

• Sign : (sk, µ)→ σ takes as inputs a signing key sk and
a message µ and outputs a signature σ;

• Verify : (vk, µ, σ) → b ∈ {0, 1} is a deterministic
algorithm that takes as inputs a verification key vk, a
message µ, and a signature σ and outputs a bit b ∈
{0, 1}.

Let γ > 0. We say that it is γ-correct if for any pair (vk, sk)
in the range of KeyGen and µ,

Pr[Verify(vk, µ,Sign(sk, µ)) = 1] ≥ γ,

where the probability is taken over the random coins of the
signing algorithm. We say that it is correct in the (Q)ROM
if the above holds when the probability is also taken over
the randomness of the random oracle modeling the hash
function used in the scheme.

We also give two security notions, namely the existential
unforgeability under chosen message attacks, and under no-
message attacks.

Definition 2 (Security). Let T, δ ≥ 0. A signature scheme
sig = (KeyGen, Sign,Verify) is said to be (T, δ)-UF-CMA
secure in the QROM if for any quantum adversary A with
runtime ≤ T given (classical) access to the signing oracle
and (quantum) access to a random oracle H , it holds that

Pr
(vk,sk)

[Verify(vk, µ∗, σ∗) = 1|(µ∗, σ∗)← AH,Sign(vk)] ≤ δ,

where the randomness is taken over the random coins of A
and (vk, sk)← KeyGen(1λ). The adversary should also not
have issued a sign query for µ∗. The above probability of
forging a signature is called the advantage of A and denoted
by AdvUF-CMA

sig (A). If A does not output anything, then it
automatically fails.

Existential unforgeability against no-message attack,
denoted by UF-NMA is defined similarly except that the
adversary is not allowed to query any signature per message.

2.3. Lattice assumptions

We first recall the well-known lattice assumptions MLWE
and MSIS on algebraic lattices.

Definition 3 (Decision-MLWEn,q,k,`,η). For positive integers
q, k, `, η and the dimension n ofR, we say that the advantage
of an adversary A solving the decision-MLWEn,q,k,`,η
problem is

AdvMLWE
n,q,k,`,η(A) =∣∣∣∣∣∣
Pr
[
b = 1 | A← Rk×`q ;b← Rkq ; b← A(A,b)

]
− Pr

[
b = 1

∣∣∣ A← Rk×`q ; (s1, s2)← S`η × Skη ;
b← A(A,As1 + s2)

]∣∣∣∣∣∣ .
Definition 4 (Search-MSISn,q,k,`,β). For positive integers
q, k, `, a positive real number β and the dimension n of R,



we say that the advantage of an adversary A solving the
search-MSISn,q,k,`,β problem is

AdvMSIS
n,q,k,`,β(A) =

Pr

[
0 < ‖y‖2 < β ∧

(A| Idk) · y = 0 mod q

∣∣∣ A← Rk×`q ;y← A(A)

]
.

We finally introduce a variant of the SelfTargetMSIS
problem introduced in Dilithium [2], which corresponds to
our setting.

Definition 5 (BimodalSelfTargetMSISH,n,q,k,`,β). Let H :
{0, 1}∗ × M → R2 be a cryptographic hash function.
Let q, k, ` > 0, β ≥ 0 and the dimension n of R. An adver-
saryA solving the search-BimodalSelfTargetMSISH,n,q,k,`,β
problem with respect to j ∈ Rk2 \ {0} has advantage

AdvBimodalSelfTargetMSIS
H,n,q,k,`,β (A) =

Pr


0 < ‖y‖2 < β ∧

H(Ay − qcj mod 2q,M) = c
(A0|b)← Rk×`q ;

A = (2b + qj| 2A0| 2Idk) mod 2q;
(y, c,M)← A|H(·)〉(A)

 .
In the ROM (resp. QROM), the adversary is given classical
(resp. quantum) access to H .

The following classical reduction from MSIS to
BimodalSelfTargetMSIS is very similar to the reduction
from MSIS to SelfTargetMSIS introduced in [2] and is
similarly non-tight. Moreover, since the reduction relies
on the forking lemma; it cannot be directly extended to a
quantum reduction in the QROM.

Theorem 1 (Classical Reduction from MSIS to
BimodalSelfTargetMSIS). Let q > 0 be an odd modulus,
H : {0, 1}∗ × M → R2 be a cryptographic hash
function modeled as a random oracle and that every
polynomial-time classical algorithm has a negligible
advantage against MSISn,q,k,`,β . Then every polynomial-
time classical algorithm has negligible advantage against
BimodalSelfTargetMSISn,q,k,`,β/2.

Proof sketch. Consider a BimodalSelfTargetMSISn,q,k,`,β/2
classical algorithm A that is polynomial-time and has
classical access to H . If AH(·)(A) makes Q hash
queries H(wi,Mi) for i = 1, · · · , Q and outputs a
solution (y, c,Mj) for some j ∈ [Q], then we can construct
an adversary A′ for MSISn,q,k,`,β as follows.

The adversary A′ can first rewind A to the point
at which the j-th query was made and reprogram the
hash as H(wj ,Mj) = c′(6= c). Then, with probability
approximately 1/Q, algorithm A will produce another
solution (y′, c′,Mj). We then have{

Ay − qcj = zj = Ay′ − qc′j mod 2q,

‖y‖2, ‖y′‖2 < β/2.

As q is odd, we have A(y − y′) = (c − c′)j mod 2. The
fact that c′ 6= c implies that the latter is non-zero modulo 2,

and hence so is y− y′ over the integers. As it also satisfies
(b| A0| Idk) · (y − y′) = 0 mod q and ‖y − y′‖ < β, it
provides a MSISn,q,k,`,β solution for the matrix (b|A0| Idk),
where the submatrix (−b| A0) ∈ Rk×`q is uniform.

2.4. Bimodal hyperball rejection sampling

Recently, Devevey et al. [18] conducted a study of
rejection sampling in the context of lattice-based Fiat-Shamir
with Aborts signatures. They observe that (continuous)
uniform distributions over hyperballs can be used to ob-
tain compact signatures, with a relatively simple rejection
procedure. HAETAE uses (discretized) uniform distributions
over hyperballs, in the bimodal context. The proof of the
following lemma is available in Appendix A.

Lemma 1 (Bimodal Hyperball Rejection Sampling). Let n
be the degree of R, c > 1, r, t,m > 0, and r′ ≥

√
r2 + t2.

Define M = 2(r′/r)mn and set

N ≥ 1

c1/(mn) − 1

√
mn

2

(
c1/(mn)

r
+

1

r′

)
.

Let v ∈ Rm ∩ B(1/N)R,m(t). Let p : Rm → {0, 1/2, 1} be
defined as follows

p(z) =


0 if ‖z‖ ≥ r,
1/2 else if ‖z− v‖ < r′ ∧ ‖z + v‖ < r′,
1 otherwise.

Then there exists M ′ ≤ cM such that the output distributions
of the two algorithms from Figure 2 are identical.

−v v

Figure 1: The HAETAE eyes

Figure 1 illustrates (the continuous version) of the
rejection sampling that we consider. The black circles have
radii equal to r′ and the pink circle has radius r. We sample
a vector z uniformly inside one of the black circles (with
probability 1/2 for each) and keep z with p(z) = 1/2 if z
lies in the blue zone, with probability p(z) = 1 if it lies
inside the pink circle but not in the blue zone, and with
probability p(z) = 0 everywhere else.

Figure 2 illustrates bimodal hyperball rejection sampling
algorithm (A) and its simulator (B). As we do not know the
exact value of M ′, we cannot use algorithm B as a signature
simulator in the security proof of HAETAE. Note that in



A(v) :

1: y← U(B(1/N)R,m(r′))
2: b← U({0, 1})
3: z← y + (−1)bv
4: return z with probabil-

ity p(z), else ⊥

B :

1: z← U(B(1/N)R,m(r))
2: return z with probabil-

ity 1/M ′, else ⊥

Figure 2: Bimodal hyperball rejection sampling

the security proofs of lattice-based Fiat-Shamir with Aborts
signatures, it is required to have an efficient simulator that
simulates all iterations of the signature algorithm. Hence,
simply replacing B with a version that always output z does
not suffice. Our proposal is to use A(0) as an efficient
simulator: as 0 has norm at most t for any t > 0,
algorithm A(0) has statistical distance 0 with B and thus
with A(v) for any v with norm ≤ t.

2.5. Sampling from the continuous hyperball-
uniform

In order to sample in practice from discrete hyperball
uniform, we rely on the following result.

1: yi ← N (0, 1) for i = 0, · · · , nk + 1
2: L← ‖(y0, · · · , ynk+1)>‖2
3: y← r′′/L · (

∑n−1
i=0 yi x

i, · · · ,
∑nk−1

i=nk−n yi x
i)>

4: return y . y ∈ RkR
Figure 3: Hyperball uniform sampling

Lemma 2 ([21]). The distribution of the output of the
algorithm in Figure 3 is U(BR,k(r′′)).

Using Lemma 2, we can conclude that if we use the
algorithms in Figures 1 to 3 and if we can sample from a
normal distribution correctly, then the resulting distribution
of z is indeed the uniform sample from the discretized
hyperball.

We delay to Section 3.2 the analysis of a version which
turns discrete Gaussian samples to a discretized version of
the hyperball-uniform distribution.

2.6. High and low bits

A HAETAE signature is principally a vector z, whose
lower part is replaced with a (smaller) hint. HAETAE makes
use of high and low bits decomposition when compressing
a signature as well as when computing a hint. Furthermore,
we use the decomposition for key truncation. For these ends,
we use different decompositions.

We use the following base method of decomposing an
element in high and low bits. We first recall the Euclidean
division with a centered remainder.

Lemma 3. Let a ≥ 0 and b > 0. It holds that

a =

⌊
a+ b/2

b

⌋
· b+ (a mod± b),

and this writing as a = bq + r with r ∈ [−b/2, b/2) is
unique.

We define our decomposition for compressing the upper
part of the signature.

Definition 6 (High and low bits). Let r ∈ Z and α be
a power of two. Define r1 = b(r + α/2)/αc and r0 =
r mod± α. Finally, define the tuple:

(LowBits(r, α),HighBits(r, α)) = (r0, r1).

We extend these definitions to vectors by applying them
component-wise. We state that this decomposition lets us
recover the original element and bound the components of
the decomposition in Lemma 4. The proof is available in
Appendix A.

Lemma 4. Let α be a power of two. Let q > 2 be a prime
with α|2(q − 1) and r ∈ Z. Then it holds that

r = α · HighBits(r, α) + LowBits(r, α),

LowBits(r, α) ∈ [−α/2, α/2),

r ∈ [0, 2q − 1] =⇒ HighBits(r, α) ∈ [0, (2q − 1)/α] .

We define HighBitsz1(r) = HighBits(r, 256),
LowBitsz1(r) = LowBits(r, 256) and HighBitsvk(r) =
HighBits(r, d), LowBitsvk(r) = LowBits(r, d).

2.6.1. High and low bits for h. In order to produce the
hint that we send instead of the lower part of z, we could
use the previous bit decomposition. However, as noted in [2,
Appendix B] in a preliminary version, a slight modification
allows to further reduce the entropy of the hint.

The idea is to pack the high bits in the range [0, 2(q −
1)/αh). This is possible if we use the range [−αh/2− 2, 0)
to represent the integers that are close to 2q − 1.

Definition 7 (High and low bits for h). Let r ∈ Z. Let q
be a prime and αh|2(q − 1) be a power of two. Let m =
2(q − 1)/αh, r1 = HighBits(r mod+ 2q, αh), and r0 =
LowBits(r mod+ 2q, αh). If r1 = m, let (r′0, r

′
1) = (r0 −

2, 0). Else, (r′0, r
′
1) = (r0, r1). We define:

(LowBitsh(r),HighBitsh(r)) = (r′0, r
′
1).

As before, we extend these definitions to vectors by
applying them component-wise. We state that this decom-
position lets us recover the original element and bound the
decomposition components.

Lemma 5. Let r ∈ Z. Let q be a prime, αh|2(q − 1) be a
power of two and define m = 2(q − 1)/αh. It holds that

r = αh · HighBitsh(r) + LowBitsh(r) mod 2q,

LowBitsh(r) ∈ [−α/2− 2, α/2),

HighBitsh(r) ∈ [0,m− 1] .

The proof of Lemma 5 is available in Appendix A.



SampleInBall(ρ, τ):
1: Initialize c = c0c1 . . . c255 = 00 . . . 0
2: for i = 256− τ to 255 do
3: j ←↩ {0, . . . , i}
4: ci = cj
5: cj = 1

6: Return c

Figure 4: Challenge sampling algorithm

2.7. Challenge sampling

Our challenges are polynomials c ∈ R with binary
coefficients and exactly τ of them are nonzero. The challenge
space has size

(
n
τ

)
. To sample such challenges we rely on the

SampleInBall algorithm from Dilithium, which we recall in
Fig. 4.

For HAETAE 260, however, we require 255 bits of
entropy for the challenge, which cannot be reached with
the current challenge sizes. To achieve it, we replace
the challenge sampling with the following. Given a 256-
bits hash w0 . . . w255 with Hamming weight w, do the
following. If w < 128, return

∑255
i=0 wix

i. If w = 128,
return

∑255
i=0 wi ⊗ w0x

i. Otherwise, return
∑255

i=0 wi ⊗ 1xi.
Exactly half of all binary polynomials are reachable this way,
which means that the challenge set has size 2255 as desired.

3. Building blocks

While our scheme is reminiscent of Dilithium, the
bimodal setting hinders the adaptation of some of the building
blocks. In this section, we describe the parts that are specific
to HAETAE. First, the key generation algorithm departs from
known key generation algorithms for BLISS, as we work in
the module setting. Second, we study the precision needed
for our fixed-point discrete hyperball sampler. Finally, we
describe the signature encoding, based on range asymmetric
numeral system (rANS).

3.1. Key generation

The bimodal rejection sampling relies on having a key
pair (A, s) ∈ Rk×(k+`)p ×Rk+`p such that As = −As mod p.
To generate such a pair, following [16], we choose p = 2q
and aim at As = qj mod 2q for j = (1, 0, . . . , 0)>.

3.1.1. Key generation and encoding. To build a key pair,
we start from an MLWE sample b− a = A0s0 + e0 mod q,
where A0 ←↩ U(Rk×(`−1)q ), a ←↩ U(Rkq ) and (s0, e0) ←↩
U(S`−1η × Skη ). For any b = b1 + b0, we define A =
(2(a − b1) + qj|2A0|2Ik) as well as s> = (1|s>0 |(e0 −
b0)>). One sees that As = qj mod 2q. In practice, the
verification key is then comprised of b1 and the seed that
allows generating A0 and a. The secret key is the seed used
to generate s and (A0,a).

It remains to choose the decomposition of b, that we see
as an nk-dimensional vector with coordinates in [0, q − 1].
We choose b0 with coordinates in {−1, 0, 1} such that if
a coordinate of b is odd, then it is rounded to the nearest
multiple of 4. We can then write b = b0 + 2b1, where b1

is encoded using dlog2(q)− 1e bits per coordinate. This is
computed coordinate-wise with b0 = (−1)bb/2c mod 2b mod
2, i.e. one less bit than b. In all of the following, we
let (LowBitsvk(b),HighBitsvk(b)) denote (b0,b1). When b
is uniform, we notice that the coordinates of b0 roughly
follow a (centered) binomial law with parameters (2, 1/2),
which experimentally leads to smaller choices for β, which
we discuss and introduce now.

3.1.2. Rejection sampling on the key. A critical step of our
scheme is bounding ‖sc‖2, where s is generated as before
and c ∈ R is a polynomial with coefficients in {0, 1} and
has less than or equal to τ nonzero coefficients. The lower
this bound is, the smaller the signature is, which in turn
leads to harder forging. In the key generation algorithm, we
apply the following rejection condition for some heuristic
value β:

τ ·
m∑
i=1

i-th
max
j
‖s(ωj)‖22 + r ·

(m+1)-th
max
j
‖s(ωj)‖22 ≤

nβ2

τ
,

where m = bn/τc and r = n mod τ . We argue that the left
hand side is a bound on n

τ · ‖sc‖
2
2 and that this condition

leads to asserting ‖sc‖2 ≤ β.

Lemma 6. For a binary challenge c ∈ {0, 1}n with hamming
weight τ and a secret s ∈ Sk+`η , n‖cs‖22 is bounded by

τ2 ·
m∑
i=1

i-th
max
j
‖s(ωj)‖22 + r · τ ·

(m+1)-th
max
j
‖s(ωj)‖22,

where m = bn/τc and r = n mod τ .

Proof. We first rewrite ‖sc‖2 as:

‖sc‖22 =

∑
i |c(ωj)|2 · ‖s(ωj)‖22

n
,

where s(ωj) = (s1(ωj), · · · , sk+`(ωj)), and ωj’s are the
primitive 2n-th roots of unity. For n = m · τ + r, let m =
bn/τc and r = n mod τ . Since

∑n
j=1 |c(ωj)|2 = nτ and

|c(ωj)|2 = | ωj,1 + · · ·+ ωj,τ |2 ≤ τ2,

we can bound
∑n

j=1 |c(ωj)|2 · ‖s(ωj)‖22 by rearrangement:
let m = bn/τc be the maximum number of |c(ωj)|2’s that
can be τ2. By sorting ‖s(ωj)‖2 in a decreasing order,

‖s(ωσ(1))‖2 ≥ ‖s(ωσ(2))‖2 ≥ · · · ≥ ‖s(ωσ(n))‖2,

where σ is a permutation for the indices, we have
n∑
j=1

|c(ωj)|2 · ‖s(ωj)‖22 ≤
m∑
j=1

|c(ωσ(j))|2·‖s(ωσ(j))‖22

+

n∑
j=m+1

|c(ωσ(j))|2·‖s(ωσ(m+1))‖22.



Then it reaches the maximum when the m largest ‖s(ωj)‖22’s
are multiplied with the m number of τ2’s. That is,
n∑
j=1

|c(ωj)|2 · ‖s(ωj)‖22 ≤
m∑
j=1

τ2 · ‖s(ωσ(j))‖22

+
( n∑
j=1

|c(ωj)|2 −mτ2
)
·‖s(ωσ(j))‖22

= τ2 ·
m∑
j=1

‖s(ωσ(j))‖22 + r · τ ·‖s(ωσ(j))‖22.

3.2. Sampling in a discrete hyperball

Our approach in sampling is to avoid the use of
floating point arithmetic for two reasons: First, many
microarchitectures do not provide floating-point units and
even if so, the execution time of floating-point instructions
may be data-dependent and thus unsuitable [22] for a
constant-time implementation. Floating-point computation
would also prohibit a masked implementation, that is
protected against power side-channel attacks, because known
masking techniques are only applicable to integers. And
second, the required precision is higher than achievable
even in IEEE double. In order to do so, we replace the
continuous Gaussian sampler from Lemma 2 and instead
use discrete Gaussian distributions, as we know that they
approximate well continuous Gaussian distribution for large
standard deviation.

3.2.1. Discrete Gaussian sampling. As we will lose preci-
sion when computing the inverse square root of a Gaussian
sample, we require a Gaussian sampler with high fix-point
precision. This is achieved by sampling over Z with a large
standard deviation and then scaling the resulting sample to
our convenience. We use [23, Algorithm 12] to sample from
a discrete Gaussian distribution with σ = 276, k = 272. In
essence, we start by sampling a discrete Gaussian x with
σ = 16 using a cumulative distribution table and a uniform
y ∈ {0, . . . , 272 − 1} and set the Gaussian sample candidate
as x272 + y. Subsequently, this candidate is accepted with
probability exp(−y(y + x273)/2153). The resulting value is
(implicitly) scaled by the factor 2−76 to obtain a continous
sample from the standard normal distribution.
Approximating the exponential For this, we need to
approximate the exponential function e−x by a polynomial
f(x) on the closed interval [c − w

2 , c + w
2 ], with center c

and width w. We obtain f(x) by truncating the expansion
of e−x into a series of Chebyshev polynomials of the first
kind Tn(x) with linearly transformed input, as this is known
to minimize the absolute approximation error for a given
polynomial order. We find:

e−x = −e−c + 2e−c
∞∑
n=0

(−1)nIn
(
w
2

)
Tn

(
x−c
w/2

)
x ∈ [c− w

2 , c+ w
2 ]

where In(z) are modified Bessel functions of the first kind,
which rapidly converge to zero for growing n. We recall
‖Tn(x)‖ ≤ 1 for ‖x‖ ≤ 1. For intervals [0, w] with not
too large widths we find 2e−cIm+1(w2 ) to be a useful
estimate of the maximum absolute error, when truncating
the series at order m > 1. This relation allows us to
directly choose m according to the interval to cover and
the maximum permissible error. The number of fraction bits
is chosen to match this error. The numerical evaluation is
performed in fixed-point arithmetic using the Horner scheme
and multiplying with shifts to retain significant bits. When
shifting right, we round half up, which retains about one
additional bit of accuracy when compared to truncation.

Barthe et al. [24] introduced the GALACTICS tool-
box to derive suitable polynomials approximating e−x.
They numerically evaluate and modify trial polynomials,
minimizing the relative error, until an acceptable level is
reached. The polynomials are evaluated using a Horner
scheme, similar to this work, but rely on truncation. When
comparing to polynomials derived using the GALACTICS
toolbox, our approximation has a slightly smaller absolute
error for intervals of interest in this work, while maintaing
the same polynomial order and constant time properties.
This holds true even when introducing rounding to the
GALACTICS evalution of polynomials. Moreover, our
approach is somewhat less heuristic than the GALACTICS
method.

Approximating the inverse square root In order to turn the
vector of standard normal distributed variates into a hyperball
sample candidate, we must compute its norm. For this, we
accumulate all squared samples and approximate its inverse
square root. The approximation result is then multiplied
by the constant r′ +

√
nm/(2N), which yields the scaling

factor that is multiplied to each Gaussian sample. For the
inverse square root, we deploy Newton’s method, which is a
well-known technique for that purpose. However, Newton’s
method requires a starting approximation that is, with each
iteration, turned into a better approximation. Fortunately, we
know that the sum of nm+ 2 independent squared standard
normal variables follows a χ2 distribution with expected
value nm+2. Hence, the starting approximation can be fixed
and precomputed as 1/

√
nm+ 2. The number of iterations

for a targeted precision can be determined experimentally.
Therefore, we performed the approximation for the first
input values that have negligible probabilities either for the
cumulative distribution function of χ2(nm+2) or its survival
function, and checked how many iterations are required to
still reach reasonable precision.

3.2.2. Discretizing the output. Once we obtain an “hyper-
ball” sample, we choose to round it. Then, if the resulting
sample lies too close to the border of the hyperball, we
reject it. This ensures that for any possible sample, they
have the same amount of pre-rounding predecessors. This
also decreases the precision but the output is now discrete
in a hyperball with a somewhat-smaller radius. We simply
increase the starting radius to compensate.



y← U(B(1/N)R,m(r′)):

1: y← U(BR,m(Nr′ +
√
mn/2))

2: if ‖bye‖2 ≤ Nr′ then
3: return bye/N
4: else, restart

Figure 5: Discrete hyperball uniform sampling

We study in the following lemma the rejection probability
of this step.

Lemma 7. Let n be the degree of R, M0 ≥ 1, r′,m > 0
and set

N ≥
√
mn

2r′
· M

1/(mn)
0 + 1

M
1/(mn)
0 − 1

.

At each iteration, the algorithm from Figure 5 succeeds with
probability ≥ 1/M0. Moreover, the distribution of the output
is U(B(1/N)R,m(r′)).

The proof of this lemma can be found in Appendix A.

3.3. Signature encoding via range asymmetric nu-
meral system

To encode a signature, we will split some of its
components into low and high bits. If we correctly choose
the number of low bits, they will be distributed almost
uniformly. The high bits on the other hand, will then
follow a distribution with a very small variance and can
be considerably compressed with a suitable encoding. While
Huffman coding would be applied on each coordinate at a
time, an arithmetic coding encodes the entire coordinates in
a single number. In contrast to Huffman coding, arithmetic
coding gets close to entropy also for alphabets, where the
probabilities of the symbols are not powers of two. We recall
a recent type of entropy coding, named range Asymmetric
Numeral systems (rANS) [25], that encodes the state in
a natural number and thus allows faster implementations.
As a stream variant, rANS can be implemented with finite
precision integer arithmetic by using renormalization.

Definition 8 (Range Asymmetric Numeral System (rANS)
Coding). Let n > 0 and S ⊆ [0, 2n−1]. Let g : [0, 2n−1]→
Z∩ (0, 2n] such that

∑
x∈S g(x) ≤ 2n and g(x) = 0 for all

x /∈ S. We define the following:
• CDF : S → Z, defined as CDF(s) =

∑s−1
y=0 g(y).

• symbol : Z→ S, where symbol(y) is defined as s ∈ S
satisfying CDF(s) ≤ y < CDF(s+ 1).

• C : Z× S → Z, defined as

C(x, s) =

⌊
x

g(s)

⌋
· 2n + (x mod+ g(s)) + CDF(s).

Then, we define the rANS encoding/decoding for the set S
and frequency g/2n as in Figure 6.

Lemma 8 (Adapted from [25]). The rANS coding is correct,
and the size of the rANS code is asymptotically equal to

Encode((s1, · · · , sm) ∈ Sm):
1: x0 = 0
2: for i = 0, · · · ,m− 1 do
3: xi+1 = C(xi, si+1)

4: return xm

Decode(x ∈ Z):
1: y0 = x
2: i = 0
3: while yi > 0 do
4: ti+1 = symbol(yi mod+ 2n)
5: yi+1 = byi/2nc · g(ti+1) + (yi mod+ 2n)

−CDF(ti+1)
6: i++
7: m = i− 1
8: return (tm, · · · , t1) ∈ Sm

Figure 6: rANS encoding and decoding procedures

Shannon entropy of the symbols. That is, for any choice
of s = (s1, · · · , sm) ∈ Sm, Decode(Encode(s)) = s. More-
over, for any positive x and any probability distribution p
over S, it holds that∑
s∈S

p(s) log(C(x, s)) ≤ log(x)+
∑
s∈S

p(s) log

(
g(s)

2n

)
+

2n

x
.

Finally, the cost of encoding the first symbol is ≤ n, i.e., for
any x ∈ S, we have log(C(0, s)) ≤ n.

We determine the frequency of the symbols experimen-
tally, by executing the signature computation and collecting
several million samples. Finally, we apply some rounding
strategy to compute g such that the average overcost per
coordinate caused by this rounding is almost negligible.

4. The HAETAE signature scheme

In this section, we describe three different versions of
HAETAE. As a warm-up, we give an uncompressed, un-
truncated version of HAETAE, implementing the Fiat-Shamir
with aborts paradigm in the bimodal hyperball-uniform
setting. We then give the full description of optimized and
deterministic HAETAE as we implemented it. Finally, we
discuss the parts of the signing algorithm which can be
pre-computed.

4.1. Uncompressed description

As a first approach, we give a high-level, uncompressed,
description of our signature scheme in Figure 7. In all
of the following sections, we let j = (1, 0, . . . , 0) ∈ Rk,
as well as k, ` be two dimensions, N > 0 the fix-point
precision and τ > 0 the challenge min-entropy parameter.
The parameters B, B′, and B′′ refer to the radii of hyperballs.



Let q be an odd prime and αh|2(q − 1) is a power of two.
We define the key rejection function:

f : s 7→ τ ·
m∑
i=1

i-th
max
j
‖s(ωj)‖22 + r ·

(m+1)-th
max
j
‖s(ωj)‖22,

and the parameter β is the maximum allowed value for
τ
n

√
f(s), which ensures that ‖sc‖2 ≤ β for all c ∈ R2

satisfying ‖c‖ ≤
√
τ . The key generation algorithm is a

simplified version from Section 3.1, which removes the
verification key compression, for conceptual simplicity.

KeyGen(1λ):

1: (Agen)← Rk×(`−1)q and (sgen, egen)← S`−1η × Skη
2: b = Agen · sgen + egen ∈ Rkq
3: A = (−2b + qj| 2Agen| 2Idk) mod 2q
4: s = (1, sgen, egen)
5: if f(s) > nβ2/τ then restart
6: return sk = (A, s), vk = A

Sign(sk,M):
1: y← U(B(1/N)R,(k+`)(B))
2: w← Abye
3: c = H(w,M) ∈ R2

4: z = (z1, z2) = y + (−1)bc · s for b← U({0, 1})
5: if ‖z‖2 ≥ B′ then restart
6: else if ‖2z− y‖2 < B then restart with prob. 1/2

7: return σ = (bze, c)

Verify(vk,M, σ = (z, c)):
1: w̃ = Az− qcj mod 2q

2: return (c = H(w̃,M)) ∧
(
‖z‖ < B +

√
n(k+`)

2

)
Figure 7: Uncompressed description of HAETAE

4.2. Specification of HAETAE

We now give the full description of the signature scheme
HAETAE in Figure 8 with the following building blocks:
• Hash function Hgen for generating the seeds and hashing

the messages,
• Hash function H for signing, returning a seed ρ for

sampling a challenge,
• Extendable output function expandA for deriving Agen

from seedA,
• Extendable output function expandS for deriving

(sgen, egen) ∈ S`−1η × Skη from seedsk and countersk,
• Extendable output function expandYbb for deriving y, b

and b′ from seedybb and counter,
The above building blocks can be implemented with

symmetric primitives.
Note that at Step 3 of the Verify algorithm, the division

by 2 is well-defined as the operand is even and defined
modulo 2q.

KeyGen(1λ):
1: seed← {0, 1}ρ
2: (seedA, seedsk,K) = Hgen(seed)
3: (a| Agen) := expandA(seedA) ∈ Rk×`q

4: countersk = 0
5: (sgen, egen) := expandS(seedsk, countersk)
6: b = a + Agen · sgen + egen ∈ Rkq
7: (b0,b1) = (LowBitsvk(b),HighBitsvk(b))
8: A = (2(a− 2b1) + qj| 2Agen| 2Idk) mod 2q
9: s = (1, sgen, egen − b0)

10: if f(s) > nβ2/τ then countersk++ and Go to 5
11: return sk = s, vk = (seedA,b1)

Sign(sk,M):
1: µ = Hgen(seedA,b1,M)
2: seedybb = Hgen(K,µ)
3: counter = 0
4: (y, b, b′) := expandYbb(seedybb, counter)
5: w← Abye
6: ρ = H(HighBitsh(w), LSB(by0e), µ)
7: c = SampleInBall(ρ, τ)
8: z = (z1, z2) = y + (−1)bc · s
9: h = HighBitsh(w)

−HighBitsh(w − 2bz2e) mod+ 2(q−1)
αh

10: if ‖z‖2 ≥ B′ then
11: counter++ and Go to 4
12: else if ‖2z− y‖2 < B ∧ b′ = 0 then
13: counter++ and Go to 4
14: else
15: x = Encode(HighBitsz1(bz1e))
16: v = LowBitsz1(bz1e)
17: return σ = (x,v,Encode(h), c)

Verify(vk,M, σ = (x,v, h, c)):

1: z̃1 = Decode(x) · a+ v and h̃ = Decode(h)
2: (a| Agen) = expandA(seedA)
3: A1 = (2(a− 2b1) + qj| 2Agen) mod 2q

4: w1 = h̃ + HighBitsh(A1z̃1 − qcj) mod+ 2(q−1)
αh

5: w′ = LSB(z̃0 − c)
6: z̃2 = (w1 · αh + w′j− (A1z̃1 − qcj)) /2 mod± q
7: z̃ = (z̃1, z̃2)
8: µ̃ = Hgen(seedA,b1,M)
9: ρ̃ = H(w1, w

′, µ̃)
10: return (c = SampleInBall(ρ̃, τ)) ∧ (‖z̃‖ < B′′)

Figure 8: Full description of deterministic HAETAE

Lemma 9. We borrow the notations from Figure 8. If we run
Verify(vk,M, σ) on the signature σ returned by Sign(sk,M)
for an arbitrary message M and an arbitrary key-pair
(sk, vk) returned by KeyGen(1λ), then the following relations
hold:
1) w1 = HighBitsh(w),
2) w′j = LSB(by0e) · j = LSB(w) = LSB(w − 2bz2e).
3) 2bz2e−2z̃2 = LowBitsh(w)−LSB(w) assuming it holds



that B′ + αh/4 + 1 ≤ B′′ < q/2,

Proof. Let m = 2(q−1)/αh. Let us prove the first statement.
By definition of h, it holds that w1 = HighBitsh(w)
mod m. However, the latter part of the equality already
lies in [0,m−1] by Lemma 5. The first part lies in the same
range as we reduce mod+ m. Hence, the equality stands
over Z too.

We move on to the second statement. By considering
only the first component of z = y + (−1)bc · s, we obtain,
modulo 2:

z̃0 = bz0e = by0e+ (−1)bc = by0e+ c.

This yields the result. Moreover, considering everywhere a
2 appears in the definition of A, we obtain that

w = A1bz1e − qcj = (bz0e − c)j mod 2.

For the last statement, let us use the two preceding results.
In particular, we note the identity

w1 · αh + w′j = w − LowBitsh(w) + LSB(w).

We note that the last two elements have same parity, as
the former one has the same parity as LowBits(w, αh). By
Lemma 5 their sum has infinite norm ≤ αh/2 + 2. Hence
from its definition, it holds that

2z̃2 = 2bz2e − LowBitsh(w) + LSB(w) mod± 2q.

Finally, this identity holds over the integers as the right-hand
side has infinite norm at most 2B′ + αh/2 + 2 < q.

Theorem 2 (Completeness). Assume that B′′ = B′ +√
n(k + `)/2+

√
nk · (αh/4+1) < q/2. Then the signature

schemes of Figures 8 is complete, i.e., for every message M
and every key-pair (sk, vk) returned by KeyGen(1λ), we
have:

Verify(vk,M, Sign(sk,M)) = 1.

Proof. We use the notations of the algorithms. The first and
second equations from Lemma 9 state that ρ = ρ̃ and thus

c = SampleInBall(ρ̃, τ).

On the other hand, we use the last equation from the
same lemma to bound the size of z̃. We have:

‖z̃‖ ≤ ‖z‖+ ‖z− bze‖+ ‖bze − z̃‖
≤ B′ +

√
n(k + `) · ‖z− bze‖∞ + ‖bz2e − z̃2‖

≤ B′ +
√
n(k + `)

2
+
√
nk · ‖LowBitsh(w)‖∞

≤ B′ +
√
n(k + `)

2
+
√
nk ·

(αh

4
+ 1
)
.

The definition of B′′ implies that the scheme is correct.

Sim(A, c) :

1: y← U(B(1/N)R,m(r′))

2: w← (HighBitsh(Abye), LSB(y0))
3: b← U({0, 1})
4: z← y + (−1)bv
5: u← U(Rkq )
6: u0 ← U(R2)
7: w̃← (HighBitsh(2u + qju0), u0)
8: return (w, c, z) with probability p(z), else (w̃, c,⊥)

Figure 9: HAETAE simulator

4.3. Security proof

When proving security in the Fiat-Shamir with aborts
setting in the QROM, on typically relies on the generic
reduction from [26]. However, as pointed out in [27] and [28],
this analysis is flawed. Both works give adaptations to Fiat-
Shamir with aborts of the analysis from [29] of Fiat-Shamir
(without aborts). Moreover, the reduction from [26] assumes
an arbitrary bound on the number of restarts, which is not the
case here. This restriction is waived in both [27] and [28].

Theorem 3. Let B′ ≥ (k + `)n/(2e
√
π)qk/(k+`). Then

HAETAE as described in Figure 8 is UF-CMA secure in
the QROM.

Proof sketch. The proof relies on the analysis of [27], which
reduces UF-CMA security to UF-NMA security, where an
adversary is not allowed to make signing queries. This
analysis requires that the commitment min-entropy is high
and the underlying Σ-protocol is Honest-Verifier Zero-
Knowledge (HVZK). The latter is proved by providing a
simulator for non-aborting transcripts and proving that the
distribution of bye has sufficiently large min-entropy.

Commitment min-entropy. We first claim that the un-
derlying Σ-protocol has large commitment min-entropy.
Indeed, LSB(y0) is part of the initial commitment, and has
min-entropy n.

HVZK. Next, we show that the underlying Σ-protocol
satisfies the HVKZ property. To do so, we follow the strategy
from [27, Section 4], which studies the simulation of non-
aborting transcripts and applies the leftover hash lemma when
simulating aborting transcripts. We propose the following
simulator in Figure 9. On input a challenge c, it runs A(0),
and if it fails, it samples a uniform commitment and no
answer.

(i) Simulating non-aborting transcripts. When a sample is
accepted, Lemma 1 states that the simulator follows exactly
the same distribution as the real aglorithm.

(ii) High min-entropy for source distribution. When a
sample is aborted, the distribution of bye has sufficiently
high min-entropy to apply [27, Lemma 4] (we can first
consider not applying high and least significant bits and
adding them later for free thanks to the data processing
inequality of the statistical distance). Indeed, the distribution



has min-entropy log((B′
√
π)n(k+`)/(n(k + `)/2)!) as n is

even. Setting B′ ≥ (k + `)n/(2e
√
π)qk/(k+`) · 2 log(1/ε) is

then enoguh to adapt [27, Theorem 1] and show that the
output of the simulator is whithin statistical distance ε to the
distribution of a real transcript.

These two properties allow us to apply [27, Theorem 4]
to reduce the SUF-CMA security to UF-NMA security.

Proving UF-NMA security. Finally, we note that the
UF-NMA security game is exactly the problem defined in
Definition 5, up to replacing the verification key by an
uniform matrix (still in HNF form), which is done under the
MLWE assumption.

4.4. HAETAE with pre-computation

We observe that in the randomized signing process of
HAETAE, many operations do not depend on the message M ,
and some do not even on the signing key. This enables
efficient “offline” procedures, i.e., precomputations that speed
up the “online” phase.

Specifically, there are two levels of offline signing that
can be applied to randomized HAETAE:

1) Generic. If neither the message M nor the signing
key is yet unchosen in advance, it is still possible to
perform hyperball sampling. This removes the most
time-consuming operation from the online phase.

2) Designated signing key. Here, only the message M
is unknown during offline signing, while the signing
key is fixed. This allows us to perform even more
pre-computations by using only the verifiction key, as
shown in Figure 10. Most notably, there is no longer a
matrix-vector multiplication in the online phase.

We showcase the offline and online parts of the (random-
ized) version of HAETAE in Figure 10.

5. Implementation

In this section, we give the implementation details of
HAETAE. The constant-time reference implementation and
the supporting scripts can be found on the team HAETAE
website: https://kpqc.cryptolab.co.kr.

5.1. Parameter sets and signature sizes

We propose three different parameter sets with varying
security levels, where we prioritize low signature and
verification key sizes over faster execution time. The
parameter choices are versatile, adaptable and allow size
vs. speed trade-offs at consistent security levels. For example
at cost of larger signatures, a smaller repetition rate M is
possible and thus a faster signing process. This versatility is
a notable advantage over Falcon and Mitaka.

Like in Dilithium, our modulus q is constant over the
parameter sets and allows an optimized NTT implementation
shared for all sets. With only 16-bit in size, our modulus

Signoffline(vk):
1: (a| Agen) = expandA(seedA)
2: A1 = (2(a− 2b1) + qj| 2Agen) mod 2q
3: List = ()
4: for iter in [L] do
5: y← U(B(1/N)R,(k+`)(B))
6: w = Abye
7: w1 = HighBitsh(w)
8: List.append(y,w,w1, LSB(by0e))
9: return List

Signonline(sk, List,M):
1: µ = Hgen(seedA,b1,M)
2: tuple = (y,w, tuple3, tuple4)← List
3: List.delete(tuple)
4: c = SampleInBall(H(tuple3, tuple4, µ), τ)
5: (b, b′)← {0, 1}2
6: z = (z1, z2) = y + (−1)bc · s
7: h = tuple3 − HighBitsh(w − 2bz2e)

mod+ 2(q−1)
αh

8: if ‖z‖2 ≥ B′ then Go to 2
9: else if ‖2z− y‖2 < B ∧ b′ = 0 then Go to 2

10: else
11: x = Encode(HighBitsz1(bz1e))
12: v = LowBitsz1(bz1e)
13: return σ = (x,v,Encode(h), c)

Figure 10: Randomized, on/off-line signing. Note that app
is the function that appends a tuple to the list.

also allows storing coefficients memory-efficiently without
compression.

The rANS encoded values h and high bits of z1 lead
to a varying signature size. In our current implementation
we opted for a fixed signature size as reported in Table 4.
We evaluated the distribution empirically and determined
a threshold that requires a rejection in less than 0.1% of
the cases. A field of two bytes indicates the length of the
encoded values, the padding can be done with arbitrary data.

A dynamic signature size would allow an individual
implementation to reject and recompute signatures until a
desired size threshold is reached and still be compatible with
implementations without this rejection. Due to the small
variance in the distribution of the signature size, however,
this would result in a distinct performance overhead, if the
threshold is more than a few bytes below to the average size.
Figure 11 displays the signature size distribution of 1000
executions.

In Table 4 we compare the signature and key sizes
of HAETAE, Dilithium, and Falcon. The verification keys
in HAETAE are 20% (HAETAE-260) to 25% (HAETAE-
120 and HAETAE-180) smaller, than their counterparts in
Dilithium. The advantage of the hyperball sampling manifests
itself in the signature sizes, HAETAE has 30% to 40%
smaller signatures than Dilithium. Less relevant are the

https://kpqc.cryptolab.co.kr


Security 120 180 260
q 64513 64513 64513
M 6.0 5.0 6.0

Key Rate 0.1 0.25 0.1
β 354.82 500.88 623.72
B 9388.97 17773.21 22343.66
B′ 9382.26 17766.15 22334.95
B′′ 12320.79 21365.10 24441.49
(k, `) (2,4) (3,6) (4,7)
η 1 1 1
τ 58 80 128
αh 512 512 256
d 1 1 0

Forgery
BKZ block-size b 409 (333) 617 (512) 878 (735)
Classical hardness 119 (97) 180 (149) 256 (214)
Quantum hardness 105 (85) 158 (131) 225 (188)

Key-Recovery
BKZ block-size b 428 810 988
Classical hardness 125 236 288
Quantum hardness 109 208 253

TABLE 3: HAETAE parameters sets. Hardness is measured
with the Core-SVP methodology.

secret key sizes, that are almost half the size in HAETAE
compared to Dilithium. A direct comparison to Falcon for the
same claimed security level is only possible for the highest
parameter set, Falcon-1024 has a signature of less than half
the size compared to HAETAE-260, and its verification key
is about 14% smaller.
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Figure 11: Signature size distribution over 1000 executions.

Scheme Lvl. vk Signature Sum Secret key
HAETAE-120 2 992 1,463 2,455 1,376
HAETAE-180 3 1,472 2,337 3,809 2,080
HAETAE-260 5 2,080 2,908 4,988 2,720
Dilithium-2 2 1,312 2,420 3,732 2,528
Dilithium-3 3 1,952 3,293 5,245 4,000
Dilithium-5 5 2,592 4,595 7,187 4,864
Falcon-512 1 897 666 1,563 1,281
Falcon-1024 5 1,792 1,280 3,072 2,305

TABLE 4: NIST security level, signature and key sizes (bytes)
of HAETAE, Dilithium, and Falcon.

5.2. Performance

We developed a unoptimized, portable and constant-time
implementation in C for HAETAE and report median and
average cycle counts of one thousand executions for each
parameter set in Table 5. Due to the key and signature
rejection steps, the median and average values for key
generation and signing respectively differ clearly, whereas
the two values are much closer for the verification.

For a fair comparison, we also performed measurements
on the same system with identical settings of the reference
implementation of Dilithium2 and the implementation with
emulated floating-point operations, and thus also fully
portable, of Falcon3, as given in Table 5. The performance
of the signature verification for HAETAE is very close
to Dilithium throughout the parameter sets. HAETAE-180
verification is about 23% slower than its’ counter-part,
HAETAE-260 on the other hand, is even 6% faster than
the respective Dilithium parameter set. For key generation
and signature computation, our current implementation of
HAETAE is clearly slower than Dilithium. We measure a
slowdown of factors two to five. In comparison to Falcon,
however, HAETAE reports 30-90 times faster key generation
and 2-4 times faster signing speed. For the verification,
Falcon outperforms both Dilithium and HAETAE by a factor
of four.

A closer look at the key generation reveals, that the
complex Fast Fourier Transformation, that is required
for the rejection step, is with 53% by far the most
expensive operation and a sensible target for optimized
implementations.

Profiling the signature computation reveals, that the
slowdown compared to Dilithium is mainly caused by
the sampling from a hyperball, where about 80% of the
computation time is spent. The hyperball sampling itself is
dominated by the generation of randomness, which we derive
from the extendable output function SHAKE256 [30], which
is also used in the Dilithium implementation. Almost 60%
of the signature computation time is spend in SHAKE256.
We expect an optimized software implementation e.g. with
parallel hashing to be much more efficient and closer to, but
not faster than Dilithium.

Based on the profiling and benchmarking of subcom-

2. https://github.com/pq-crystals/dilithium/tree/master/ref
3. https://falcon-sign.info/falcon-round3.zip



Scheme KeyGen Sign Verify

HAETAE-120 med 1,384,274 6,253,166 387,594
ave 1,832,973 8,903,852 388,377

HAETAE-180 med 2,333,614 9,472,724 718,010
ave 3,464,004 11,763,246 719,400

HAETAE-260 med 1,693,776 8,989,980 913,378
ave 2,129,737 12,459,046 914,336

Dilithium-2 med 339,334 1,140,794 367,264
ave 339,569 1,446,174 367,399

Dilithium-3 med 609,696 1,955,296 585,536
ave 610,114 2,359,859 585,755

Dilithium-5 med 935,830 2,473,582 975,802
ave 936,202 2,904,138 976,350

Falcon-512 med 53,778,476 17,332,716 103,056
ave 60,301,272 17,335,484 103,184

Falcon-1024 med 154,298,384 38,014,050 224,378
ave 178,516,059 38,009,559 224,840

TABLE 5: Median and average cycle counts of 1000
executions for HAETAE, Dilithium, and Falcon. Cycle
counts were obtained on one core of an Intel Core i7-10700k,
with TurboBoost and hyperthreading disabled.

ponents, we estimate the performance of a randomized
HAETAE implementation with pre-computation. The generic
version, that is independent of the key, would already
achieve a speedup of a factor five for its online signing,
because the expensive hyperball sampling can be done
offline. For the pre-computation variant with a designated
signing key, additionally a lot of matrix-vector multiplications
and therefore most of the transformations from and to
the Number-Theoretic Transform (NTT) domain, can be
precomputed. We estimate about 12% of the full deterministic
signing running time, for the online signing in this case.

While the smallest parameter set HAETAE-120 yields
the fastest implementation, our parameter selection leads to
the unusual situation, that the most secure HAETAE-260
is very close or even faster in key generation and signing
than HAETAE-180. HAETAE-180 is nevertheless a viable
option, due to the smaller signature and key sizes compared
to HAETAE-260.

Our rANS encoding is based on an implementation by
Fabian Giesen [31].

5.3. Security against physical attacks

Implementation security is a crucial aspect of making
cryptosystems feasible in real-world applications. A signifi-
cant advantage of HAETAE is that it can be protected against
power side-channel attacks efficiently and with reasonable
overhead. In this context, we emphasize the similarity of
HAETAE to Dilithium. Hence, past works analyzing concrete
attacks [32, 33], but also countermeasures [11, 34], mainly
apply to HAETAE as well.

While a fully protected implementation is out of scope for
this paper, we briefly sketch its feasibility. During signing, the
most critical operation is multiplying the (public) challenge
polynomial c with s and subsequently adding the result to y.
Since this operation may leak information about the secret
key statistically over many executions, implementers must

protect it accordingly. As countermeasures against these so-
called Differential Power Analysis (DPA) attacks, masking
has been proven effective.

This operation is straightforward to mask at arbitrary
order by splitting the secret key polynomials into multiple
additive shares in Rq . A masked implementation then stores
the NTT of each share of s and multiplies them to c, obtaining
a shared cs. Following this, the inverse NTT is applied share-
wise. Since y is a polynomial vector in (1/N)R, it is not
trivially possible to add our shares of cs ∈ Rk+`q .

On the other hand, y is not a secret-key-dependent value.
Therefore, it is not required to be protected against DPA but
only against the much stronger attacker model of an Simple
Power Analysis (SPA). In fact, coefficient-wise shuffling
of the addition is sufficient at this point (cf. [34]). This
might involve a masking conversion from Zq to Z232 , but
no multiplication of masked fix-point values, which would
be costly. Subsequently, the computation of 2z − y and
the bound checks can be shuffled without applying costly
masking.

The same idea applies to the whole hyperball sampling
procedure. Since the order of the Gaussian samples is, in
principle, irrelevant, they can be generated in random order.
This is particularly an advantage for randomized HAETAE.

It is noteworthy that hashing the challenge seed is only
required to be protected against SPA as well. Since the
input order into the hash function cannot be randomized,
the preceding values must still be protected by masking.
Therefore, we propose to perform a shuffled point-wise
multiplication of A and y, directly followed by freshly
masking the resulting coefficients. Then, a share-wise inverse
NTT and a masking conversion to the Boolean domain will
be performed, which enables a secure HighBits operation.
For the LSBs of y0, generating a fresh Boolean masking
during the shuffled generation of the hyperball sample’s
coefficients is sufficient.

Comparison to Falcon and Mitaka. While there is no
known method to efficiently mask Falcon, Mitaka [8] was
designed to be easy to protect against implementation attacks,
while still having the advantage of similarly small signatures
as Falcon. For Mitaka, the crux regarding side-channel
security is sampling Gaussian-distributed values. Together
with Mitaka, an efficient, masked algorithm for discrete
Gaussian sampling was presented. However, Prest broke its
security proof recently [9]. In this respect, HAETAE has the
strong advantage, that Gaussian sampling only needs to be
secured against the much stronger SPA attacker model, which
allows for simpler countermeasures, while Mitaka’s side-
channel security will always depend on a masked sampler.

5.4. Hardware implementations

Hashing and generation of randomness are the most time-
consuming operations of HAETAE. Therefore, we assume
that hardware implementations will bring significant speedup
and can be competitive to Dilithium, particularly through



efficient Keccak cores. Furthermore, hardware implemen-
tations will benefit significantly from applying the offline
approach. Naturally, a module generating hyperball samples
can be instantiated and run parallel to the online phase, thus,
hiding its latency behind the online phase. Moreover, high-
speed applications could adopt the offline approach with
designated signing key, including the multiplication of A
and y, to further reduce the latency of the online phase.

6. Conclusion

With HAETAE, we close an important gap between the
two state-of-the-art digital signature schemes Dilithium and
Falcon. Novel contributions in key generation and rejection
sampling allow us to reach smaller signature and verification
key sizes, while still allowing physical side-channel protected
implementations for IoT use-cases.

Acknowledgments. Part of this work was done while
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Appendix A.
Missing Proofs

A.1. Useful Lemma

We will rely on the following claim.

Lemma 10. Let n be the degree of R. Let m,N, r > 0
and v ∈ Rm. Then the following statements hold:

1) |(1/N)Rm ∩ BR,m(r)| = |Rm ∩ BR,m(Nr)|,
2) |Rm ∩ BR,m(r,v)| = |Rm ∩ BR,m(r)|,
3) Vol(BR,m(r −

√
mn
2 )) ≤ |Rm ∩ BR,m(r)| ≤

Vol(BR,m(r +
√
mn
2 )).

Proof. For the first statement, note that we only
scaled (1/N)Rm and BR,m(r) by a factor N . For
the second statement, note that the translation x 7→ x − v
maps Rm to Rm.

We now prove the third statement. For x ∈ Rm, we
define Tx as the hypercube of RmR centered in x with
side-length 1. Observe that the Tx’s tile the whole space
when x ranges over Rm (the way bounderies are handled
does not matter for the proof). Also, each of those tiles has
volume 1. As any element in Tx is at Euclidean distance at
most

√
mn/2 from x, the following inclusions hold:

BR,m
(
r−
√
mn

2

)
⊆

⋃
x∈Rm∩BR,m(r)

Tx ⊆ BR,m
(
r+

√
mn

2

)
.

Taking the volumes gives the result.

A.2. Proof of Lemma 1

Proof. Figure 2 is the bimodal rejection sampling algorithm
applied to the source distribution U((1/N)Rm ∩ BR,m(r′))
and target distribution U((1/N)Rm ∩ BR,m(r)) (see, e.g.,
[18]). It then suffices that the support of the bimodal shift
of the source distribution by v contains the support of the
target distribution. It is implied by r′ ≥

√
r2 + t2.

We now consider the number of expected iterations,
i.e., the maximum ratio between the two distributions. To
guide the intuition, note that if we were to use continuous
distributions, the acceptance probability 1/M ′ would be
bounded by 1/M . In our case, the acceptance probability
can be bounded as follows (using Lemma 10):

1

M ′
=
|(1/N)Rm ∩ BR,m(r)|

2|(1/N)Rm ∩ BR,m(r′)|
=
|Rm ∩ BR,m(Nr)|

2|Rm ∩ BR,m(Nr′)|

≥ Vol(BR,m(Nr −
√
mn/2))

2Vol(BR,m(Nr′ +
√
mn/2))

=
1

2

(
Nr −

√
mn/2

Nr′ +
√
mn/2

)mn
.

It now suffices to bound the latter term from below
by 1/(cM) = 1/(2c(r′/r)mn). This inequality is equivalent
to:

c ≥ 1

2
·
(

r

r −
√
mn/(2N)

)mn
·
(
r′ +
√
mn/(2N)

r′

)mn
,

and to:

N ≥ 1

c1/(mn) − 1
·
√
mn

2

(
c1/(mn)

r
+

1

r′

)
,

which allows to complete the proof.

A.3. Proof of Lemma 4

Proof. By Lemma 3, there exists a unique representation

r = b(r + α/2)/αcα+ (r mod± α).

By identifying HighBits(r, α) and LowBits(r, α) in the above
equation, we obtain the first result.

By definition of mod± α, we have that r′ ∈ [−α/2,
α/2).

Finally, since r 7→ b(r + α/2)/αc is non-decreasing, it
suffices to show that b(2q − 1 + α/2)/αc ≤ b(2q − 1)/αc.
We have (2q − 1 + α/2) ≤ b(2q − 1)/αcα + α − 1 by
assumption on q. Dividing by α and taking the floor yields
the result.
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A.4. Proof of Lemma 5

Proof. Let r ∈ [0, 2q − 1]. Let r1, r2, r′1, and r′2 defined as
in Definition 7.

The equality r′1 + r′2 · αh = r1 + r2 · αh mod 2q holds
vacuously if r′1 = r1 and r′2 = r2.

If not, then r′1 = r1 − 2 and r′2 = r2 − 2(q − 1)/αh

and r′1 + r′2αh = r1 + r2αh − 2q. By Lemma 4, we get the
first equality.

The second property stems from the second property
in Lemma 4. The modifications to r1 make r′1 lie in the
range [−αh/2− 2, αh/2).

The last property stems from the third property in
Lemma 4 and the fact that if r2 = m, then we have r′2 = 0.

A.5. Proof of Lemma 7

Proof. Let y ∈ BR,m(Nr′+
√
mn/2) and set z = bye. Note

that z is sampled (before the rejection step) with probability

Vol(Tz ∩ BR,m(Nr′ +
√
mn/2))

Vol(BR,m(Nr′))
,

where Tz is the hypercube of RmR centered in z with side-
length 1. By the triangle inequality, this probability is equal
to 1/Vol(BR,m(Nr′ +

√
mn/2) when z ∈ BR,m(Nr′).

Hence the distribution of the output is exactly U(Rm ∩
BR,m(Nr′)), as each element is sampled with equal prob-
ability and as the algorithm almost surely terminates (its
runtime follows a geometric law of parameter the rejection
probability).

It remains to consider the acceptance probability.∑
y∈Rm∩BR,m(Nr′) Vol(Ty ∩ BR,m(Nr′ +

√
mn/2))

Vol(BR,m(Nr′ +
√
mn/2))

.

By the triangle inequality and Lemma 10, it is

|Rm ∩ BR,m(Nr′)|
Vol(BR,m(Nr′ +

√
mn/2))

≥
(
Nr′ −

√
mn/2

Nr′ +
√
mn/2

)mn
.

Note that by our choice of N , this is ≥ 1/M0.


	Introduction
	Preliminaries
	Notations
	Signatures
	Lattice assumptions
	Bimodal hyperball rejection sampling
	Sampling from the continuous hyperball-uniform
	High and low bits
	High and low bits for h

	Challenge sampling

	Building blocks
	Key generation
	Key generation and encoding
	Rejection sampling on the key

	Sampling in a discrete hyperball
	Discrete Gaussian sampling
	Discretizing the output

	Signature encoding via range asymmetric numeral system

	The HAETAE signature scheme
	Uncompressed description
	Specification of HAETAE
	Security proof
	HAETAE with pre-computation

	Implementation
	Parameter sets and signature sizes
	Performance
	Security against physical attacks
	Hardware implementations

	Conclusion
	References
	Appendix A: Missing Proofs
	Useful Lemma
	Proof of Lemma 1
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 7


