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Abstract—Cryptocurrencies and decentralized platforms
are rapidly gaining traction since Nakamoto’s discovery of
Bitcoin’s blockchain protocol. These systems use Proof of
Work (PoW) to achieve unprecedented security for digital
assets. However, the significant power consumption and
ecological impact of PoW are leading policymakers to
consider stark measures against them and prominent systems
to explore alternatives. But these alternatives imply stepping
away from key security aspects of PoW.

We present Sprints, a blockchain protocol that achieves
almost the same security guarantees as PoW blockchains, but
with an order-of-magnitude lower ecological impact, taking
into account both power and hardware. To achieve this, Sprints
forces miners to mine intermittently. It interleaves Proof of
Delay (PoD, e.g., using a Verifiable Delay Function) and PoW,
where only the latter bares a significant resource expenditure.
We prove that in Sprints the attacker’s success probability
is the same as that of legacy PoW. To evaluate practical
performance, we analyze the effect of shortened PoW duration,
showing a minor reduction in resilience (49% instead of 50%).
We confirm the results with a full implementation using 100
patched Bitcoin clients in an emulated network.

1. Introduction

Proof of Work (PoW) cryptocurrencies offer a
decentralized form of money, with monetary policy dictated
by code. Participants can acquire coins and perform
transactions without needing permission from other parties
or centralized exchanges. PoW cryptocurrencies, starting
with Nakamoto’s Bitcoin [1], have gained significant success
with market capitalization in the hundreds of billions [2]
and attract the attention of major financial institutions [3, 4].
But PoW cryptocurrencies consume significant resources,
with Bitcoin’s power consumption surpassing Argentina’s
in 2022 [5]. Environmental concerns are leading to policy
changes, including bans [6, 7]. Nevertheless, the stable
valuation of the PoW Bitcoin, despite the proliferation of
non-PoW alterantives, demonstrates the demand for PoW
guarantees. It implies the need for a protocol that provides
such guaratees with lower environmental impact.

Indeed, both theoretical work and operational systems
address this issue. Previous work (§2), showed [8] that
resource expenditure cannot be reduced by tuning the pro-
tocol parameters. Proof of Storage [9] requires participants
to dedicate storage resources instead of computation but

is about 50% cheaper to attack [10]. Proof of Stake (PoS)
protocols (e.g., [11–16]) take a different approach: Instead
of physical resource expenditure, PoS uses on-chain
deposits, thus the likelihood of a miner being able to create
a new block and add it to the blockchain is determined by
the amount of cryptocurrency they have staked, i.e., held in
their account. With this approach, no physical resource is
expended. But PoS protocols require stronger assumptions,
such as long-term connectivity and availability [17–19].
Sprints. We introduce Sprints (§4), a blockchain protocol
that maintains the advantages of PoW but with significantly
lower resource consumption. The key idea is to force miners
to perform PoW intermittently, i.e., to insert periods of time
during which miners pause mining. Like Bitcoin, Sprints
miners collect transactions (e.g., payment orders) from
users and batch them into blocks that they broadcast. Each
block contains a hash reference to its predecessor, so the
blocks together form a tree with an agreed-upon root. The
system state is thus obtained by processing the transactions
in the longest path in the tree, called the longest chain.

In addition to PoW — statistical proofs that the miner
expended computational effort, Sprints also requires PoD,
proving the miner waited for a certain time before the
PoW computation. Unlike PoW, PoD computation does
not require significant computational resources. Thus, a
miner alternates between producing PoD with nominal
power expenditure and PoW with high power expenditure –
Figure 1 illustrates this process.

Like PoW systems where participation is profitable
only for miners with efficient hardware [20–22], Sprints is
profitable only for miners with efficient PoD hardware. We
thus assume all miners have similar, efficient, PoD hardware;

Figure 1: Pure PoW and Sprints over time.
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others with weaker hardware would not participate.
Security. At first glance, it might seem that an attacker
has an advantage compared to a pure PoW system like
Bitcoin: She does not have to stop calculating PoW while
performing the PoD calculation, whereas honest miners
will. We prove (§5) that such behavior specifically is futile,
and that in general there is no sacrifice of security compared
to a pure PoW system. Due to the distinct characteristics
of Sprints, previous proof techniques [10, 23, 24] are not
applicable. Specifically, the PoD puzzle delay eliminates
the memorylessness of pure PoW systems and prevents the
use of the common Markov chain analysis. Consequently,
we are compelled to devise a novel proof approach.

The key step is showing that in a race where the attacker
competes with the honest miners, the attacker has to solve
PoW and PoD puzzles sequentially, thus, parallel mining
would not benefit her. Intuitively, the only race between the
honest chain and that of the attacker is the PoW puzzles, as
both spend the same amount of time solving PoD puzzles
for the same number of blocks. The implication is that
the attacker’s probability of winning the race is the same
as in a pure PoW blockchain. We use this result to show
that if we consider a race where the honest miners and
the adversary are building two chains that extend the same
block and the adversary controls less than half of the PoW
computational power, then her probability of building a
chain that is at least r blocks deep and is longer than the
honest chain is bounded by 2−Ω(r). Finally, we utilize this
result to show that if the propagation delay is negligible,
Sprints provides the same guarantees as pure PoW.
Implementation and evaluation. If we compare Sprints to
a pure PoW system with the same block interval, since part
of the block generation is computing PoD, PoW duration in
Sprints is shorter. Our theoretical analysis shows that with
shorter PoW average duration it is more likely for honest
miners to generate blocks with the same parent, forming
forks. The implication is that the longest chain extension is
slower and the threshold attacker size is smaller.

To confirm this analysis, we implemented Sprints by
patching the standard Bitcoin client [25] and measured the
frequency of forks as a function of both the network propa-
gation delay and the PoW duration. With system parameters
similar to those of the operational Bitcoin system [26],
when using only 5% of block interval for PoW, the
threshold attacker size is 49%, compared to Bitcoin’s 50%.

Implementing Sprints involves addressing several
practical challenges (§6). To address spam prevention
while maintaining efficient propagation, we lazily validate
PoDs, i.e. nodes do not wait for the PoD validation to
complete before propagating the block, allowing for the
same propagation delay as a pure PoW system without
sacrificing spam prevention [27]. Additionally, we adjust
the difficulty of both PoW and PoD to maintain constant
block intervals as hardware for PoW and PoD improves.
We do this by estimating parameters using the second
moments of the interval probability distribution.
Ecological benefits. The analysis Sprints’s ecological
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Figure 2: Attack threshold and normalized emission under
as a function of portion of PoW time out of block interval

footprint (§7) is more involved than comparing the ratio
of PoW per block. We show that Sprints miners use their
budget to purchase more mining equipment compared to
pure PoW, for the short duration where they PoW-mine.
In other words, Sprints shifts a portion of the operating
expenses (OPEX) to capital expenditure (CAPEX), which
we show to be more environmentally friendly by comparing
the emissions from the hardware lifecycle to the emissions
from electricity consumption. We use the CO2e (carbon
dioxide equivalent) metric [28] to compare systems, which
allows us to quantify the emissions resulting from power
consumption and the hardware lifecycle.

Combining the security and emission analyses, Figure 2
shows how the attack threshold and emission reduction ratio
change with the PoW time ratio when using Bitcoin-like
parameters (100ms network delay, 600s block interval [26]).
At 5% of the block interval the CO2e is 9.2% that of Bitcoin.

In summary, our main contributions are:
• Sprints, a novel blockchain protocol that introduces

intermittent mining, alternating between PoD and PoW;
• proof that the security threshold is the same as in PoW;
• tuning of both PoD and PoW based on block interval;
• evaluation with full implementation over an emulated

network demonstrating effective difficulty adjustment
and close-to-optimal (49%) attack threshold values; and

• ecological analysis showing over 10x CO2e reduction.

2. Related Work

We review energy-efficient alternatives to PoW and
their trade-offs.

The most well-established energy-efficient alternative
to PoW is Proof of Stake (PoS) [11–16]. Instead of solving
hash puzzles, PoS miners participate in a mining lottery
with a winning probability proportional to their token
holding in the system. However, these protocols require
stronger assumptions than PoW protocols regarding network
connectivity, validator behavior, or the availability of a ran-
domness oracle [17–19]. Additionally, in PoS protocols new
nodes need cooperation from existing nodes to join the net-
work [29], in contrast to Sprints, where new nodes can join
the network by mining blocks using external computations.

Several protocols take advantage of Verifiable Delay
Functions (VDFs). Verifiable Delay Functions (VDFs) [30–
34] are a class of functions that cannot be accelerated by
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a parallel computation and can be verified efficiently. Long
and Wei [35] propose a PoS protocol that incorporates a
variation of Verifiable Delay Functions (VDFs) that has
a random delay. However, the threshold for a successful
private attack is less than 27% compared to almost 50%
in Sprints. PoSAT [36] has a similar construction. PoSAT
is vulnerable to nothing-at-stake attacks, where an attacker
can mine on multiple forks for no additional cost. The
authors, therefore, divide the rounds into epochs which
prevents new players from joining the network during an
epoch. The system has a threshold of 50% for a private
attack only when the epochs are infinitely long, which turns
it into a permissioned system. Thus, PoSAT has a tradeoff
between decentralization and security.

HEB [37] also utilizes on-chain resources uses
mechanism design to reduce electricity consumption by
50%, but reduces resilience to malicious attacks by 2,
while Sprints has almost the same threshold as pure PoW
with an 8x reduction in power consumption.

Several approaches reduce expenditure with particular
types of PoW. REM [38] and PoET [39] use trusted
hardware to reduce resource expenditure. As the protocols
are based on trusted hardware, they rely on a trusted party
to guarantee the hardware’s integrity. Sprints makes no
such assumptions.

Chia [9] shifts the costs of miners from electricity
to hardware by combining Proof-of-Space (PoS) and
Proof-of-Time (PoT). It reduces electricity consumption
by replacing much of the mining costs with storage costs.
However, it is resilient to attackers with under 30% of the
network storage resources [10], which is significantly lower
than the almost 50% threshold of Sprints.

Another approach to deal with this challenge is to
use permissioned protocols [40–42], which are a class
of protocols that require pre-authorization of nodes
to participate in the protocol. However, permissioned
protocols are not decentralized and require a trusted third
party to authorize new nodes.

As for the analysis of PoW protocols, Dembo et al. [10]
analyze the security of blockchain systems by showing
that a so-called private attack is the worst-case attack.
They define the notion of Nakamoto blocks and use their
existence to prove that the system is secure. We use a
different approach, where we avoid the notion of Nakamoto
blocks and instead describe a single race between the
attacker and the honest miners. We use this race to prove
directly that the security requirements hold.

3. Model

The system consists of a set of participants called min-
ers. Each miner maintains a tree data structure whose
vertices are called blocks. Each block contains transactions,
commands issued by system users, which are the
payload of the block. All miners start with the same block,
called genesis, that serves as the root of the tree. In addition
to the payload, each block contains metadata. The metadata
of all blocks (except the genesis block) includes a hash

that points to its parent block; we say that a block extends
the pointed-to block. A path with the most blocks in the
tree is called a longest chain. There may be several longest
chains and one of them, chosen by a deterministic arbitrary
algorithm, is called the main chain. The height1 of a block b
is the number of blocks in the path from the genesis to b.

Time progresses in discrete steps t = 0, 1, ... (as in,
e.g., [43]). In each step, miners can work on two types
of puzzles. The first type is Proof-of-Delay (PoD), a
function that maps an arbitrarily sized input and difficulty
parameter to a small output. Given a random input, a
PoD requires a deterministic number of steps, called delay
period and denoted by ∆PoD. In each step, a miner can
choose to mine on multiple PoD puzzles. After working on
a particular PoD puzzle in ∆PoD distinct steps, a miner has
its solution, which cannot be guessed except with negligible
probability. The formal specification of a PoD is the same
as that of a VDF [30] with the added requirement that all
the players have the same delay period. This assumption is
reasonable since miners who cannot solve the PoD puzzle
in the given delay period will not be able to compete in
the protocol, and thus will be forced to leave the system.

The second puzzle type is Proof-of-Work, a probabilistic
puzzle that has an independent probability of being solved
in any given step. In each step, a miner can choose to
mine on a PoW puzzle. Miner p has a probability Pw(p)
of solving it in each step independent of previous attempts.
The number of steps until success thus has a Geometric
distribution with parameter Pw(p).

Combining metadata M , payload D and puzzle
solutions Z, a block is the tuple (M,D,Z).

The miners communicate over a ∆-synchronous
broadcast network [10, 23]: If a miner sends a message in
step t, then all miners receive it by step t+∆. We assume
that ∆<∆PoD.

Thus, at the beginning of every step, a miner receives
messages sent in previous steps. The miner can then perform
local computations, i.e., work on one PoW and multiple2

puzzles. Then the environment notifies the miners if they
found solutions. Finally, the miner can broadcast blocks.

There are a total of n+1 miners in the system, where n
are honest, i.e., miners that follow a predefined protocol,
and a single miner is controlled by an adversary A and
acts arbitrarily.

Note that the adversary can only work on a single PoW
puzzle in a single step in our model. However, working on
multiple PoW puzzles in parallel can be approximated by
frequent puzzle changes.

The adversary controls the message delay, constrained
by the bound ∆.

Next, we define a predicate that validates the correctness
of a block and its puzzles. A validity function V (b) returns
true if some predefined conditions on the block contents are
met and false otherwise. A block b is valid if V (b)= true.

1. Called depth in graph-theory literature.
2. The number of puzzles is polynomial in a system security parameter;

we omit these details to simplify the presentation.
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Invalid blocks with either invalid payloads or proofs are
simply ignored.

An execution is a series of states of the system that devel-
ops based on the miners’ algorithms and the environment’s
coin flips, i.e., the outcome of PoW puzzle-solving attempts.
Each execution has a certain probability of occurring.
Denote by Σ the set of all executions. Given step t0, denote
by π the t0−prefix that is the collection of all executions
in Σ that agree on the state of the system at step t0. Given
an execution σ, denote by T σ(t) the tree that corresponds to
the execution in step t, called a mother tree [10]. The mother
tree consists of all valid blocks in the system (published or
not) until step t. Note that T σ(t) represents the state of the
tree at the beginning of the step. Denote the depth of a valid
block b by d(b). Given a execution σ, denote the depth of
the longest chain(s) in T σ(t) by dσ(t). Each player p has
a local copy of the mother tree, which is updated according
to the blocks she receives, it is denoted by T σ

p (t).
Given an execution σ, denote by σp the execution view

of miner p. It includes all the information she received and
the results of her local computations.

In each step, each honest miner performs an action
that comprises the mining target for PoW and PoD and
the blocks a miner publishes. The action is defined by
the mining function q(σp), given a view σp of miner p.
The vector Qσ

H(t) includes the honest miners’ actions in
step t defined by the mining function. We denote by Qσ

A(t)
the action of the adversary at step t and execution σ.
The adversarial action is decided based on a predefined
strategy A, which is a map from step t and a state of
execution at step t−1 to a vector that represents the mining
targets for PoW and PoD, the blocks being published and
the delay the adversary imposes on messages.

A longest chain protocol is thus defined by a pair –
a validity function and a mining function, (V (·), q(·)).
For each node, the sequence of payloads along the main
chain, excluding the payloads of the last r blocks (for
some r), is called a ledger. We use the notions of persis-
tence and progress3, similar to the definitions in previous
work [10, 23, 24]. Given a block b, we denote by dσb (t,p)
the depth of the longest chain in the view of miner p in step t
that contains b and by dσ¬b(t,p) the depth of the longest chain
in the view of miner p in step t that does not contain b.

Definition 1. A protocol (V (·),q(·)) implements a ledger
if it satisfies the following two conditions:
Persistence Given ε>0, step tf , there exists r∈N s.t. for

all adversarial strategy A given a randomly drawn
execution σ ← ΣA , for every step t ≤ tf and every
block b ∈ σ, if b is at depth i of the main chain and
dσb (t−∆,p)>dσ¬b(t−∆,p)+r for an honest miner p,
then for every t′>t it holds that b is in depth i in the
main chain of the view of all other honest miners with
probability at least 1−ε.

Progress3 Given ε>0 and tf there exists δ∈N, such that
for all steps t0 ≤ tf and adversarial strategy A the

3. Our Progress is called Liveness in some prior work [10, 23, 24]
although it is a safety property [44].

probability that a random execution σ ∈ΣA does not
include a block that was mined in [t0,t0+δ] in the main
chain of all honest miners for some step t′ > t0 +δ is
smaller than ε.

4. Sprints

We now present the Sprints protocol, which implements
a ledger.

We only need to define a mining function q(σp) for a
player p and a validity function V (b).

Sprints requires each block to contain two puzzle
solutions, the first is a proof of delay bPoD that enforces
serial computation, and the second is a proof of work bPoW.
The mining function chooses the deepest block, partial or
full, in the view of the miner and returns the puzzle that is
required to be solved: If the deepest block is a full block,
then the mining function first works on the PoD of the
next block, as follows. Given a metadata M that contains
the previous block’s hash, the mining function returns the
action to take a step in the PoD puzzle of M . If the deepest
block is partial, i.e., the PoD puzzle of the new block was
already solved, then the mining function works on the PoW
puzzle, as follows. Given the PoD puzzle solution of the
metadata, bPoD, and the payload of the new block, D, the
mining function returns the action to take a step in the
PoW puzzle of bPoD||D. If the PoW step is successful and
the miner obtains a solution bPoW, then the miner publishes
the new block with the metadata, the payload, and the
puzzle solutions: b=(M,D,(bPoD,bPoW)).

The validity function V (b) validates a block b by
checking that the PoD and PoW puzzles are valid, using
the validity functions VPoD(·) and VPoW(·), respectively:

V (b) :=VPoD(b
PoD,M)∧VPoW(b

PoW,bPoD||D).

Note that the PoD does not require the payload of the
block, while the PoW requires the payload of the block.

If a node learns of a chain longer than the block it
is currently working on, it discards its work and begins
generating a block extending the new chain.

5. Security

We prove that Sprints achieves persistence and progress.
To prove progress, we must show that, given a sufficiently
long duration, at least one honestly-mined block within
that time will remain in the main chain forever with
high probability. We decompose this problem into two
components: (1) Establish that given r > 0, with high
probability, honest miners will discover r blocks within a
long enough period. And (2) show that the probability that
the adversary forms a tree deeper than the tree observed by
honest miners tree by at least r blocks is bounded by 2−Ω(r).

Both proofs employ a reduction to a simple game. In this
game the adversary and honest miners initially mine their re-
spective block trees, stemming from a shared genesis block.
The adversary’s goal is to reach or surpass the length of the
honest miners’ tree once both trees have reached a length of
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at least r blocks. Subsequently, we examine an infinite set
of games where the adversary achieves victory when both
trees have lengths of at least r,r+1,r+2,..., and so forth.
We prove that the sum of the probabilities of the adversary
winning each game is bounded by 2−Ω(r). To do this we
find the attack that is most likely to succeed and bound the
probability of its success; we say this attacker is the worst
attacker. In particular, we should find which PoW and which
PoD the worst attacker should calculate at each step. For
PoD we assume that the adversary mines all possible PoD
blocks in parallel This assumption can only make the ad-
versary stronger since any other adversary can be emulated
by the one described above. Subsequently, we prove that
the optimal strategy, defined as the one that maximizes the
length of the adversary’s subtree while minimizing the hon-
est subtree for any given step, is the strategy that PoW mines
on the deepest block in the adversary’s subtree as long as no
PoW solution exists of the same depth, i.e., a complete PoD
puzzle does not yet extend this PoW puzzle. In the latter sce-
nario, the adversary halts PoW until a PoD puzzle is found.

Now, after proving it is sufficient to consider this simple
worst attack, we note that when the adversary’s subtree
and the honest subtree have the same length, both subtrees
contain an equal number of PoD blocks, so the competition
only depends on the PoW Computations. This simplifies
the analysis and allows us to analyze the game as a pure
PoW game, and conclude the proof.

Before detailing the proof, we present some terminology
and notation (§5.1). We then discuss optimal strategies
for the adversary (§5.2) and the honest miners (§5.3)
subtrees. Next, we use these strategies to analyze the
simple game (§5.4). Finally, we prove persistence and
progress and the security of Sprints (§5.5).

5.1. Terminology and Notation

We define a race between the honest miners and an
adversary with strategy A. We assume that an adversary
always chooses to PoD-mine on all possible blocks
in parallel, as every strategy A1 that PoD-mines only
some blocks creates the same tree as the one created
by a strategy A2 that is identical to A1 but PoD-mines
everywhere. Therefore, for succinctness, we define a mining
action at step t as the block that the adversary chooses to
PoW mine on; if there is no such block, we say that the
adversary’s action is ⊥, i.e., empty action. The adversary
chooses a delay for each block b and honest miner p. To
simplify the analysis, we assume that the attacker can delay
the block even for the miner who found it. This assumption
only strengthens the adversary, allowing us to bound the
adversary’s success probability.

Given a depth i, execution σ and honest block b at
depth i, we define two sub-trees (portrayed in Figure 3): for
all steps t, T σ

H (t) is the sub-tree of T σ(t) that includes b,
its descendants that are known by all honest miners and
its ancestors; tree T σ

A (t) is the sub-tree of T σ(t) that
includes b and its private adversarial descendants and
ancestors. Note that T σ(t) can include adversarial blocks.

b

T σ
A T σ

H

Figure 3: Scheme of T σ
A and T σ

H depending on b.

A block data structure containing only the PoD
puzzle, (M,D, (bPoW,⊥)), is called a partial block and a
valid block with all proofs is called a full block. Denote the
depth of a partial block b by d̃(b). Given an execution σ,
we define the PoD depth of a tree as the deepest block in
the mother tree that has a completed PoD puzzle on the
subtree, it is denoted by d̃σb (t) for T σ

A (t) and by d̃σ¬b(t)
for T σ

H (t). For some π , denote by Σ
πi

A the subset of Σπ ,
where the adversary follows a strategy A.

Next, we define the optimality of an adversarial
strategy. We look separately at T σ

H (t) and T σ
A (t) and find

a single strategy that minimizes the depth of the former
and maximizes the depth of the latter for all steps.

5.2. Adversary tree

We focus on the optimal strategy of the adversary on
her private tree T σ

A (t).
Given a prefix π of length t0, and given an execution

σ ∈ π we start by considering only the actions of an
adversary that target the subtree T σ

A (t). At first, we assume
that given some step tf >t0, the adversary aims to maximize
the depth of T σ

A (tf ). Later we generalize this to a strategy
that aims to maximize the depth of T σ

A (t) for all t>t0.
We define the notion of an optimal strategy. As a first

step, we define a (tf ,ℓ)-optimal strategy that maximizes the
probability that at step tf the depth of T σ

A is at least ℓ. For
a set of executions Σ

π
A , denote by PrΣπ

A
[·] the conditional

probability Pr[·|σ∈Σπ
A ].

Definition 2. An attacker strategy A is (tf ,ℓ)-optimal if,
for all prefixes π of length t0 < tf and strategies A′, it
holds that PrΣπ

A
[dσ¬b(tf )≥ℓ]≥PrΣπ

A′
[dσ¬b(tf )≥ℓ]. Strategy

A is optimal if it is (tf ,ℓ)-optimal for all tf and ℓ.

For execution σ, denote by Bmax(T σ
A (t)) the tips of the

chain the set of deepest partial blocks in step t whose PoD
puzzle is completed locally for player p. Denote their depth
by d̃σ¬b(t).

Definition 3 (longest-chain mining). Given an execution σ,
an attacker strategy that chooses a block in Bmax(T σ

A (t))
for t≥ t0 is longest-chain mining (LCM).

We show that any longest-chain mining strategy
is (tf ,ℓ)-optimal.

Lemma 1. For all prefixes π of length t0, ℓ and steps tf ,
an LCM strategy A played from step t0 is (tf ,ℓ)-optimal.

Before proving Lemma 1, we introduce another lemma,
which will also be useful later. We show that given two
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execution sets where the first has higher partial depth at
step t0 and ∆PoD steps later, it has a higher probability to be
deeper at step tf >t0 if the attacker follows a (tf ,ℓ)-optimal
strategy.

Lemma 2. Let there be two prefixes π1 and π2 of length t0,
given tf and ℓ, and a (tf ,ℓ)-optimal strategy A. Consider
two sets of executions, Σ1 and Σ2, such that Σi = Σ

πi

A .
We assume that for π1 and π2, in step t0 no PoD puzzle
is being calculated so that at some point in the future,
an execution from Σ2 will be deeper than any execution
from Σ2 due to this puzzle. Formally:

∀σ1∈Σ1,σ2∈Σ2,t∈ [t0,t0+∆PoD] : d̃
σ1
¬b(t)≥ d̃σ2

¬b(t). (1)

Then it holds that

PrΣ1
[dσ¬b(tf )≥ℓ]≥PrΣ2

[dσ¬b(tf )≥ℓ].

The full proof of Lemma 1 and Lemma 2 is given
in §B.2. The main idea is that we prove both lemmas by
double induction starting from tf . We run the induction for
decreasing step period and prove both lemmas together at
each step of the induction. We first show that the base of
the induction holds for t0∈ [q0,tf−1] for both lemmas Next,
we assume that both lemmas hold for t0 ∈ [q0−n,tf − 1]
for some n. We then prove the induction step for Lemma 2
for t0 = tf −n−1 using the assumption. Finally, we prove
the induction step for Lemma 1 for t0 = tf−n−1 using the
result we just proved for Lemma 2 for t0 = tf−n−1. This
concludes the proof of both lemmas.

After showing that LCM is a (tf , ℓ)-optimal strategy,
we show that there is no benefit for the adversary from
PoW mining while she calculates the deepest block’s PoD
puzzle. For this purpose, we first define useless actions we
call backward mining, where the adversary mines a PoW
puzzle that would not extend the depth of the chain:

Definition 4. Given an execution σ, an action Qσ
A(t)=bPoD

at step t is backward mining if the adversary already
computed a partial block b′PoD that extends a block in T σ

H ,
such that d̃(bPoD) < d̃(b′PoD) or if there is a full block b
such that d̃(bPoD)=d(b).

Next, we define an upgrade of the LCM strategy
without useless backward mining actions.

Definition 5. A strategy is (tf , ℓ)-intermittent LCM if it
is (tf , ℓ)-optimal and does not perform backward mining
actions.

It remains to show that every LCM can be transformed
to (tf ,ℓ)-intermittent LCM without affecting its optimality.

Lemma 3. For all tf , ℓ and an LCM strategy A, the
intermittent LCM strategy A′ that is identical to A, except
that every backward mining action is replaced with ⊥, is
(tf ,ℓ)-optimal.

Proof. Given a prefix π of length t0, We look at two sets
of executions. (1) Σ

π
A for a (tf , ℓ)-optimal strategy A

that for some σ ∈ Σ
π
A chooses some backward mining

action Qσ
A(t0) = b. and (2) Σ

π
A′ , where the strategy A′

chooses ⊥ at step t0 but for t > t0 it is identical to A.
As before, the probability to find a block exactly at t0

is Pw(A). Note that this probability is not relevant for
Σ

π
A′ . Denoted the subset of Σπ

A where no block is found at
step t0, by Σ1. For all σ1∈Σ1, there exists a unique σ2∈Σ

π
A′

such that T σ1
b ≡T

σ2
b and vice versa. σ1 and σ2 agree on all

random coins from t0+1. If a block is found at step t0, the
tree depth of both executions is still equal, therefore:

PrΣ1
[dσ¬b(tf )≥ℓ])=PrΣπ

A′
[dσ¬b(tf )≥ℓ]. (2)

The block that is found in step t0 for all σ1∈Σ
π
A \Σ1 does

not extends the depth of T σ1
b . Therefore, for all σ2 ∈Σ

π
A′ ,

it holds that d̃σ1
b (t)≤ d̃σ2

b (t) for t∈ [t0+1,t0+∆PoD+1]. The
conditions of Lemma 2 thus hold, so:

PrΣπ

A\Σ1
[dσ¬b(tf )≥ℓ]≤PrΣπ

A′
[dσ¬b(tf )≥ℓ]. (3)

Using complete probability:

PrΣπ

A
[dσ¬b(tf )≥ℓ]=

Pw(A)·PrΣπ

A\Σ1
[dσ¬b(tf )≥ℓ]+

(1−Pw(A))·PrΣ1
[dσ¬b(tf )≥ℓ])

Equation (2) and Equation (3)
≤

Pw(A)·PrΣπ

A′
[dσ¬b(tf )≥ℓ]+

(1−Pw(A))·PrΣπ

A′
[dσ¬b(tf )≥ℓ]=

PrΣπ

A′
[dσ¬b(tf )≥ℓ].

Note that although Pw(A) has no meaning in the context
of Σ

π
A′ , we used a simple algebraic trick to disassemble

PrΣπ

A′
[dσ¬b(tf )≥ℓ] to two parts.

We apply the described process recursively, each time
eliminating a single backward mining action. We end with
a new (tf ,ℓ)-optimal intermittent LCM strategy as required
by the lemma.

We can now conclude that any intermittent LCM
strategy is an optimal strategy.

Corollary 1. Intermittent LCM is an optimal strategy.

Proof. By Lemma 3, for all ℓ and tf any intermittent LCM
strategy is (tf ,ℓ)-optimal, so it is an optimal strategy.

5.3. Honest tree

We now focus on the subtree T σ
H (t). We look for a

strategy that minimizes the depth of the tree.

Definition 6 (Maliciously optimal strategy). A strategy A
is (tf ,ℓ)-maliciously optimal if, for all prefixes π of length
t0 <tf with block b, and for all strategies A′, it holds that

PrΣπ

A
[dσb (tf )≥ℓ]≤PrΣπ

A′
[dσb (tf )≥ℓ].

We call A a maliciously optimal if it is (tf , ℓ)-
maliciously optimal for all tf >t0 and for all ℓ.
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We consider a strategy where the attacker does not
mine new blocks on T σ

H (t) and delays any honest block
by ∆, which is the maximal delay she can impose.

Definition 7. Given a prefix π , a strategy A is a Maximum
Delay and No Mining strategy (MDNM) if the adversary
chooses to mine no blocks and to maximize the delay for
the arrival of all honest blocks to be ∆ for all miners.

Denote the hash rate of the honest miners that received
the block that is a tip of the chain in execution σ at step t
by λσ(t). Similarly, denote by λσ

m(t) the total hash rate of
miners that heard of blocks of depth at least m.

We show that an MDNM strategy maintains some
advantages.

Lemma 4. Given two prefixes π1 and π2 of length t0,
ℓ, and a MDNM strategy A, such that for all σ1 ∈ Σ

π1

A ,
σ2∈Σ

π2

A it holds that

∀t∈ [t0,t0+∆PoD] :d
σ1
b (t)≥dσ2

b (t) (4)
and

∀t∈ [t0,t0+∆+∆PoD] :λ
σ1

d
σ2
b (t)

(t)≥λσ2(t), (5)

it holds that for all ℓ>0 and step tf :
Pr

Σ
π1
A
[dσb (tf )>ℓ]≥Pr

Σ
π2
A
[dσb (tf )>ℓ].

Proof. We fix tf and ℓ and prove by induction.
Basis. For t0∈ [tf−∆PoD,tf ] the lemma holds

by Equation (4) and Equation (5).
Assumption. Denote by qn = tf − ∆PoD − n. We

assume that the lemma holds for all t0∈ [qn,tf ].
Step. We prove the lemma holds for t0 = qn+1. For

some prefix π , the probability that any honest miner would
find a PoW block of depth d

π1

b (t0) + 1, i.e., deeper by 1
than T σ1

H , is denoted by Psuc(π). Denote the correspondent
event by eσsuc(t). From Equation (5) it holds that:

Psuc(π1)>Psuc(π2). (6)
We partition Σ

π1

A into two subsets, Σ1 and Σ2,
where eσsuc(t0) and ¬eσsuc(t0) hold, respectively. To use
the induction assumption, we show that the requirement
in Equation (5) holds for the period starting in step t0 +1.
For all t∈ [t0+1,t0+∆+∆PoD+1], σ1 ∈Σ1 and σ2 ∈Σ2, it
holds that λσ1

d
σ2
b (t)

(t)≥λσ2(t) because for σ2, no new block
is found in t0 thus every miner in σ1 knows of any block
that a miner in σ2 knows in the same step. Additionally,
for σ1 miners’ new mining target would necessarily be
deeper than dσ2

b (t), thus, for all t ∈ [t0 +1,t0 +∆PoD +1] it
holds dσ1

b (t)≥dσ2
b (t). From the induction assumption:

PrΣ1 [d
σ
b (tf )≥ℓ]≥PrΣ2 [d

σ
b (tf )≥ℓ]. (7)

Next we compare Σ
π1

A and Σ
π2

A separately for subsets
that contain executions where a block deeper than d

π1

b (t0)+1
was found in the end of step t0 and to subsets where the
block was not found.

Next, our goal is to show that the requirement
in Equation (5) holds. We look at t= t0+∆PoD+1, σ1∈Σ

π1

A

and σ2 ∈Σ
π2

A . If a block of depth d
π1

b (t0)+1 was found in
the end of step t0, because the depth of σ2 cannot increase

more than dσ1
b (t0)+1 it holds dσ1

b (t)≥dσ2
b (t). If a block of

depth d
π1

b (t0)+1 was not found in the end of step t0, it holds
that dσ1

b (t0)+1>dσ2
b (t), therefore, dσ1

b (t)≥dσ1
b (t0)≥dσ2

b (t).
For t= t0+∆+∆PoD+1: If a block of depth d

π1

b (t0)+1
was found at the end of step t0, the attacker delays blocks
with maximum delay ∆ for all honest miners, thus, they all
hear about the block in step t0+∆+1. The PoD puzzle is
completed by the beginning of step t so that all miners in σ1

and σ2 are now mining on a block with depth dσ1
b (t0)+1.

Because dσ1
b (t0)+1≥dσ2

b (t), it holds λσ1

d
σ2
b (t)

(t)≥λσ2(t).

If a block of depth d
π1

b (t0)+1 was not found at the end
of step t0, by step t all miners in σ1 heard of a block with
depth dσ1

b (t0), as more than ∆ step has passed since such
block was found. Therefore, it must hold λσ1

d
σ2
b (t)

(t)≥λσ2(t).
We assume that the assumption in Equation (4) that

is true for [t0, t0 + ∆PoD], and Equation (5) that is true
for [t0, t0 +∆ +∆PoD] . Using what we showed above, it
holds that: ∀t ∈ [t0 +1, t0 +∆PoD +1] : dσ1

b (t) ≥ dσ2
b (t) and

∀t∈ [t0+1,t0+∆+∆PoD+1] :λσ1

d
σ2
b (t)

(t)≥λσ2(t).
Based on the induction assumption we get:

Pr
Σ

π1
A
[dσb (tf )≥ℓ|eσsuc(t0)]≥Pr

Σ
π2
A
[dσb ≥ℓ|eσsuc(t0)] (8)

and
Pr

Σ
π1
A
[dσb (tf )≥ℓ|¬eσsuc(t0)]≥Pr

Σ
π2
A
[dσb ≥ℓ|¬eσsuc(t0)]. (9)

We can now conclude (see §B.1 for the full details):
Pr

Σ
π1
A
[dσb (tf )≥ℓ]=Pr

Σ
π2
A
[dσb (tf )≥ℓ]. (10)

This concludes the step of the induction and thus the proof
of the lemma.

Next, we use use Lemma 4 to prove:

Lemma 5. An MDNM strategy is maliciously optimal.

Proof. To simplify the proof, we conservatively assume
that the adversary can add an unbounded number of blocks
to the tree in all steps, obtaining the required PoD and
PoW instantly. If MDNM is optimal for such a powerful
adversary it is also optimal for the weaker adversary
defined in the model.

We prove that the MDNM is (tf ,ℓ)-maliciously optimal
for all tf and ℓ. Given a prefix π of length t0, and
some tf and ℓ, we prove using induction. Denote the
depth of the deepest block that the adversary adds at step t
by dσ∗ (t). If the adversary does not add a block in step t
we take dσ∗ (t)=0.

Basis. First, we prove for t0 ∈ [tf − ∆PoD, tf ]. By
step tf the chain can grow by at most one block. Any
strategy where the block that the adversary adds extends the
total depth would deterministically increase the depth at tf
at least as dσ∗ (t)=0 would in the worst case. Any strategy
where the new block does not change the depth would
have an identical result, as miners extend the first block
they hear of a specific depth. Therefore, not adding a block
is not worse than any strategy and therefore is optimal.

Similarly, not delaying a block that extends the chain
would be an inferior strategy, and delaying a block that does
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not extend the chain would be identical to allowing it to
be published as it does not change other miners’ behavior.

Therefore, MDNM is maliciously optimal
for t0∈ [tf−∆PoD,tf ] as required.

Assumption. Denote qn = tf−∆PoD−n. We assume
that the lemma holds for t0∈ [qn,tf ].

Step. We prove it holds for t0 = qn+1. From the
induction assumption, during [qn, tf ] the maliciously
optimal strategy is to not introduce new blocks and delay
every honest block by ∆. Let A be the MDNM strategy
and A′ be a strategy where the action at t0 is arbitrary and
is MDNM for t∈ [t0+1,tf ]. Denote the sets of executions
where the adversary uses A and A′ by ΣA and ΣA′ ,
respectively. Denote the probability that the honest miners
find a block that extends the depth at step t0 by PFB and the
correspondent event by eσFB(t0). Note that this probability
is identical for both ΣA and ΣA′ , as all the honest miners
have the same mining target at the beginning of step t0.
We are interested in using Lemma 4 for both subsets.

Given σ2 ∈ΣA and σ1 ∈ΣA′ , if the honest miners find
a block on the tip in step t0 for both σ1 and σ2, for some
step t ∈ [t0 +1,t0 +∆PoD +1] it holds dσ1

b (t) ≥ dσ2
b . This is

because for σ2 the depth increase exactly by 1 for t0 + 1
and does not change until at least t0 + ∆PoD + 1, while
for σ1 the depth increase at least by 1 by t0 + 1. It also
holds that λσ1

d
σ2
b (t)

(t)≥ λσ1(t)≥ λσ2(t), from the definition

of λσ1

d
σ2
b (t)

(t) and given a miner p, p receives the block
in σ2 not later than p in σ1, thus, the target of every such
miner p in σ1 cannot be deeper than in σ2.

Using similar considerations for the case where the
miner does not find a block on the tip, we conclude
that λσ1

d
σ2
b (t)

(t) ≥ λσ1(t) ≥ λσ2(t) and dσ1
b (t) ≥ dσ2

b

for t∈ [t0+1,t0+∆+∆PoD+1] in both cases. The condition
in Lemma 4 holds. Therefore:

PrΣπ

A
[dσb (tf )≥ℓ]=

PFB ·PrΣπ

A
[dσb ≥ℓ|eσFB(t0)]+(1−PFB)·PrΣπ

A
[dσb ≥ℓ|¬eσFB(t0)]≤

PFB ·PrΣπ

A′
[dσb ≥ℓ|eσFB(t0)]+(1−PFB)·PrΣπ

A′
[dσb ≥ℓ|¬eσFB(t0)]≤

PrΣπ

A′
[dσb (tf )≥ℓ].

This concludes the induction, showing MDNM is a
maliciously optimal strategy.

5.4. Basic race

We now introduce a two-epoch race where the adversary
tries to fork a chain of blocks. We then find an upper
bound on the probability that the adversary succeeds in the
attack. From now on, we assume that ∆=0.

Given an adversarial strategy A and execution σ, we
define a block bσs (q) as the first published depth-q block in σ.

We consider a race where the adversary mines a secret
tree denoted by T σ

A (t,q), whose root is bσs (q) and it is a
function of step t and depth q of bσs (q). We assume that
the adversary did not mine any blocks before a block at
depth q is published. The adversary never sends blocks

from T σ
A (t, q) to the honest miners until the end of the

race and they stay secret. We also consider a public
subtree T σ

H (t, q) whose blocks are public and has bσs (q)
as its root. All blocks that have bσs (q) as an ancestor and
are not in T σ

A (t,q) are in T σ
H (t,q). The attacker can mine

on T σ
H (t, q) and publish the blocks at any time. Given

an integer r > 0, we say that the adversary has won the
race if, at some step t, it holds that d(T σ

A (t, q)) ≥ q + r
and d(T σ

A (t, q)) ≥ d(T σ
H (t, q)). Note that in this race the

adversary cannot mine before a block of depth q is published
by miners. Therefore, we conclude that the probability that
the adversary wins the race does not depend on q.

Given a random execution σ ∈ ΣA , we denote the
probability that the adversary wins the race by χ(A,r) and
the respective event by eχ(A,r,q).

With foresight, we define the sum

S(r)=max
A

∞∑
i=0

χ(A,r+i) (11)

and show that S(r) = 2−Ω(r). We later use this result to
prove persistence and progress.

Lemma 6. For a minority attacker (αA <αH ) and ∆=0
it holds that S(r)=2−Ω(r).

Proof. First we bound χ(A,m).
For a block bσs (q) of depth q, we break the race

into two epochs. The first epoch ends when the honest
miners find m blocks and the second epoch ends when
the adversary wins the race. Denote by dA the number of
blocks that the adversary has at the beginning of the first
epoch and by Pr[dA=k] the probability of a given k.

Next, to simplify the calculations we observe that differ-
ent values of ∆PoD do not affect the probability that the adver-
sary wins the race. We prove that the attacker has the same
probability to win for ∆PoD >0 and for ∆PoD =0. Intuitively,
the introduction of PoD affects both the honest and the
adversary miners equally, so that we can cancel it out. This
is only true for strategies that mine blocks sequentially, such
as LCM mining with interruption. In this case, the number
of PoD blocks is the same for both T σ

A (t,q) and T σ
H (t,q).

We observe that given an intermittent LCM strategy A
there is a strategy A′ where the adversary stops mining after
she finds m blocks earlier than the honest miners find their
first m blocks. Note that in this scenario whether the adver-
sary stops mining or not, she already won the race. Strat-
egy A′ has the same probability to win the race as A, as they
are different only when the adversary has found m blocks,
and won the race. For strategy A′, the race always ends when
both T σ

H and T σ
A have identical depth. Therefore, because

both the honest and the adversary trees have an identical
number of PoD blocks at the end of the race, we can cancel
out the effect of PoD blocks on both trees. In other words,
for the strategy A′ every execution where the adversary wins
for ∆PoD > 0 has a parallel execution for ∆PoD =0 with the
same probability to happen. Therefore, the probability of
winning for ∆PoD >0 is the same as for ∆PoD =0.
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Denote by Pw(k) the probability that the attacker wins
the race in the second epoch for a given k. The probability
of the attacker winning is:

χ(A,m)≤max
A

χ(A,m)=

m−1∑
k=0

Pw(k)·Pr[dA=k]+

∞∑
k=m

Pr[dA=k]. (12)

We use the stars and bars [45] problem in combinatorics
to calculate Pr[dA = k] = αk

A ·αm
H

(
k+m−1
m−1

)
and gambler’s

ruin [46] for Pw(k)=(αA
αH

)m−k.
Plugging into Equation (12) we get:

χ(A,m)≤αm
A ·

m−1∑
k=0

αk
H ·

(
k+m−1
m−1

)
+

αm
H ·

∞∑
k=m

αk
A ·

(
k+m−1
m−1

)
︸ ︷︷ ︸

ak

≤

αm
A ·αm−1

H ·m·
(
2m−2
m−1

)
+αm

A ·αm
H ·

(
2m−1
m

)
·C≤

αA ·m√
π(m−1)

·(4αAαH)m−1+
2·C√
πm
·(4αAαH)m=2−Ω(m),

(13)
where C is a constant that does not depend on n. We used
the fact that 4αAαH≤1, the known inequality

(
2r
r

)
≤ 4r√

πr
,

the fact that aH is monotonic for k<r and that bk+1

ak
≤2αA

for k≥r.
As the tail of a geometric sum decreases exponentially,

we conclude that
∞∑
k=r

χ(A,k) = 2−Ω(r), thus due

to Equation (11) and Equation (13) we conclude

that S(r)≤
∞∑
i=0

max
Ai

χ(Ai,r+i)=2−Ω(r).

5.5. Persistence and Progress

We are now ready to prove our main results. We first
prove that persistence holds.

Lemma 7. For ∆=0, and a minority attacker, persistence
holds.

Proof. Given σ ∈ ΣA , step tf and r > 0, denote
by ¬Pers(σ,t0, r) the event that r−persistence is violated
for some t < tf in σ. We say that a block violates
persistence if it holds for this block at some step t ≤ tf
that the chain that includes the block is longer by at least r
blocks than any chain that does not contain the block, but
for some t′ > t the block is not in the main chain. We
observe that r−persistence does not hold if for at least one
block persistence is violated. Next, we consider a scenario
where the attacker tries to violate persistence for any block
at a specific depth i. Denote by ¬Persi(σ, r) the event
where persistence was violated for a block at depth i.

Finally, we break the race into a collection of sub-races
where the adversary tries to violate persistence for a specific

depth i by mining only on a specific private tree that starts at
a specific honest block at depth j<i, denoted by T σ

¬j(t
′,i,r),

we denote the event where the attacker was able to do so
by ¬Persji (σ, r). As before we denote by T σ

j (t′, i, r) the
tree that starts at depth j and includes all blocks that are
not in the adversary’s private tree. Observe that persistence
is violated if two conditions hold: (1) at some step t the
chain that includes b at depth i in T σ

j (t′, i, r) is deeper
by r than T σ

¬j , and (2) at some step t′ > t, T σ
¬j(t

′, i, r)
is deeper than T σ

j (t′, i, r). The adversary can maximize
the probability of the first condition to be 1, if she does
not publish her blocks and keeps her chain private. Note
to maximize the probability of the second condition the
attacker should choose a strategy that maximizes T σ

¬j(t
′,i,r)

and minimizes T σ
j (t′,i,r) for all t′, as we saw in Corollary 1

and Lemma 5 LCM mining with interruptions on T σ
¬j(t

′,i,r)
and MDNM mining on T σ

j (t′, i, r) achieve these goals
respectively. Moreover, these two strategies can be used at
the same time and therefore an optimal strategy to maximize
the second condition is their combination. Therefore, we
can think of the game where the attacker tries to maxi-
mize Pr[¬Persji (σ,r)|σ ∈ΣA ] as a race described in §5.4.
Thus, it holds χ(A,r+i−j) = Pr[¬Persji (σ, r)|σ ∈ ΣA ].
There are at most i possible honest blocks on the main
chain before the i-th block, thus,

Pr[¬Persi(σ,r)|σ∈ΣAi ]≤Pr[

i⋃
j=0

¬Persji (σ,r)|σ∈ΣAi ]

Denote by tσi the time when the first block at depth i
was mined. We bound the probability that persistence does
not hold for all A′, q and r:

Pr[¬Pers(σ,t0,r)|σ∈ΣA′ ]≤
tf∑
i=1

S(r)= tf ·S(r)=2−Ω(r)

(14)
The full details of Equation (14) are in §B.3. We used
union bound and Lemma 6.

We choose r such that: Pr[¬Pers(A′, tf , r)] ≤ ε for
all A′ and thus we conclude that for every ε, there exists r
such that persistence holds with a probability at least 1−ε.

Note that because the connection between r and tf
is polynomial, as they are both polynomial in a security
parameter [23], for every ε there exists large enough tf so
there is r that is significantly smaller than tf so that the
probability of persistence is at least 1−ε. Thus, persistence
holds non-vacuously.

Next, we prove that progress holds.

Lemma 8. For ∆ = 0, and a minority attacker, progress
holds.

Proof. Given some ε > 0, we show that there exists δ so
that progress holds with a probability larger than 1−ε for
all steps t0 ≤ tf . To find such δ, we first denote by r a
parameter, such that δ is a function of r and ε. To bound
the probability that progress does not hold, we look at the
first r honest blocks generated after step t0; denote this set
of blocks by Bσ(t0,r). Our goal is to find a δ such that all
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the blocks in Bσ(t0,r) were mined in the period [t0,t0+δ]
with high probability. For the adversary to exclude the
blocks from Bσ(t0,r) from the main chain she has to build
a chain that does not include any of them, i.e, this chain
has to win the race against the tree that includes blocks
from Bσ(t0,r). We look at the chain of all the ancestors of
blocks in Bσ(t0, r) without the blocks themselves. Given
this chain, we look at the subtrees that start at honest blocks
and include only adversarial blocks. Similarly to what we
did with persistence, we separate into sub-races where every
race is between an adversarial subtree and the honest chain.

Given an adversarial strategy A and σ∈ΣA we denote
by Pr[¬Progj

q(σ, t0, r)|σ ∈ ΣA ], the probability that the
attacker was able to exclude all the first r honest blocks
after the first block of depth q, denote by bq, by building
a chain that has a common honest ancestor with Bσ(t0,r)
at depth j. We denote this common ancestor by bj and the
step when it was mined by tj .

We denote by T σ
H (t,t0,r) the tree that includes all blocks

from Bσ(t0,r), their ancestors, and their descendants. We
denote by T σ

A (t,t0,r) the trees that includes all the ancestors
of honest block bj and all the descendants of bj that are not
in Bσ(t0,r) and are not decedents of blocks in Bσ(t0,r).

From Corollary 1 intermittent LCM is an optimal
strategy on T σ

A (t, t0, r). From Lemma 5, MDNM is a
maliciously optimal strategy on T σ

H (t,t0,r). As intermittent
LCM and MDNM can be executed in parallel, and as they
are both optimal and maliciously optimal respectively on
their respective trees, it is guaranteed that if the adversary
uses both of them on T σ

A (t, t0, r) and T σ
H (t, t0, r), she

will maximize the probability that none of the blocks
in Bσ(t0,r) will be in the main chain forever.

Given an adversarial strategy A, denote the probability
that non of the first r honest blocks after step t0 are in the
main chain forever, by P1(A,t0, r) and the corresponding
event by e1(σ,t0,r). Denote by ¬Progq(σ,t0,r) the event
that the first r honest blocks that were mined after bq was
published do not stay in the main chain forever. As we
showed, Pr[¬Progj

q(σ, r)|σ ∈ ΣA ] is maximal when the
adversary’s strategy A is to mine using intermittent LCM
on the adversarial chain and MDNM on the honest miners’
chain. There are at most q honest blocks that are ancestors
of the block from Bσ(t0,r). Thus,

Pr[¬Progq(σ,t0,r)|σ∈ΣA ]≤

Pr[

q⋃
j=0

¬Progj
q(σ,t0,r)|σ∈ΣA ]≤

max
A′

Pr[

q⋃
j=0

eχ(σ,r+j)|σ∈ΣA′ ]≤S(r).

Denote by ed(σ,t0,q) the event where the deepest public
block before step t0 is of depth q.

Due to complete probability and the Poisson tail
bounds [47], it holds that:

P1(A
′,t0,r)=

∞∑
q=0

Pr[¬Progq(σ,t0,r)∧ed(σ,t0,q)|σ∈ΣA′ ]≤

max
A

n−1∑
q=0

Pr[¬Progq(σ,t0,r)|σ∈ΣA ]+2−Ω(n−λT t)≤

n−1∑
q=0

S(r)+2−Ω(n−λT t).

Therefore, we can choose n and r1 such that for ε
2 the

probability P1(A,t,r1) that one of the next r1 blocks will
not stay in the main chain forever is smaller than ε

2 .
Next, for all r, we define δ(r)=∆ r2+r ·∆PoD, where we

add ∆PoD so that the period is long enough to account for the
times of proof of delays puzzles. We calculate the probabil-
ity P2(A,δ,r) (with the corresponding event e2(A,δ,r)) that
there are fewer than r honest blocks within a period δ using
Erlang distribution. For simplicity we look at ∆PoD = 0, as
for ∆PoD >0 we can increase the number of steps by r·∆PoD

to account for the times of proof of delay:

P2(A,δ,r)=1−Erlang(r2;r,λH)=
r−1∑
n=0

1

n!
e−λHr2(λHr2)n︸ ︷︷ ︸

an

(1)

≤ e−λHr2 ·λH
r ·e2rlogr=2−Ω(r).

For (1) we use the fact that an

an−1
≤ λHr2 and the

formula for a sum of geometric series. Thus, there
is r2 such that the probability P2 is smaller than ε

2 . We
choose r3=max(r1,r2). Using the union bound:

Pr[e1(A,t,r3)∪e2(A,δ,r3)]≤

P1(A,t,r3)+P2(A,δ,r3)≤
ε

2
+
ε

2
=ε.

We conclude that the probability for a block in period δ(r3)
to stay in the main chain forever is at least 1 = 1 − ε.
Therefore, at least one block that was mined in the
period [t, t + δ(r3)] will be included in the main chain
forever with high probability and thus progress holds.

We now combine both lemmas to prove our main
theorem:

Theorem 1. Sprints implements a ledger (Definition 1).

Proof. Using Lemma 7 and Lemma 8 we can conclude that
the Sprints fulfills the requirements in Definition 1.

6. Implementation and Practical Considera-
tions

We turn our attention to practical aspects of Sprints. We
implement Sprints using VDF for PoD, apply optimization
to reduce the network delay, and dynamically adjust
PoW and PoD difficulty (§6.1). Our attack threshold
analysis (§6.2) and experiments (§6.3) with practical fork
rates show that the security of our protocol is close (98%)
to that of Bitcoin.
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6.1. Implementation

We implemented a prototype of Sprints by modifying
Bitcoin Core [48]. We made two major changes. First, we
modified the data structure of block headers to include
proofs of delay and adapted the mining process as well
as the block validation process accordingly. Second, we
modified the difficulty adjustment algorithm to adjust both
the PoD and the PoW parameters.

To generate a block, a miner first calculates a VDF
using the previous block hash as input. Then, the PoD is
included in the block header and a standard proof of work
with the new block header as input is calculated.

PoD implementation. In Pure PoW systems, a miner
can change the content of the block while mining, up until
she finds a solution. Replacing the block header (i.e., the
PoW puzzle) does not increase the time to solution; there is
no sunk cost. But PoD is not memoryless; therefore, to allow
miners this flexibility in Sprints, the PoD does not depend
on the block contents. A miner thus solves the PoD once and
can use the same result independent of the block content.

We implement PoD as a Pietrzak VDF [31]. To
overcome domination by a single party with an algorithmic
breakthrough on a single VDF, a more robust way
to implement PoD is requiring the miners to calculate
multiple distinct VDFs in parallel. The difficulty adjustment
method of parallel VDFs is outside our scope and we defer
it to future work.

Reducing propagation latency. In Bitcoin, blocks
are verified before propagation to prevent spam. While
PoW verification is quick, PoD verification is considerably
slower. In our implementation, PoD verification typically
takes 100ms to 500ms. Worse yet, since blocks are verified
at every hop, repeated PoD verification can add significant
propagation latency [49].

We observe that we can postpone the VDF verification
when propagating since PoW alone already creates a
significant barrier for denial of service (rapid publication
of invalid blocks). Specifically, each node that receives a
block verifies the PoW, then concurrently broadcast the
block and validates the PoD. A node processes a block
only if its PoD is verified. Since both proofs are verified
before a block is processed, this network-level optimization
does not affect the logic of the consensus mechanism.

Difficulty adjustment. We assume only principals
with the fastest hardware for VDF computation participate
in the protocol, but the best hardware is expected to get
more efficient over time [50]. Meanwhile, the total hash
power may fluctuate [51] due to hardware improvement or
miners joining and leaving the system. Therefore, Sprints
adjusts the difficulty parameters for PoD and PoW to keep
both the block interval and the mean PoW ratio constant.

Let ∆PoD denote the PoD time and ∆PoW the average
PoW time. We have ∆block=∆PoW+∆PoD. The estimation
of ∆PoD and ∆PoW is based on a recent history we call the
adjustment period. Since we only have samples of block
interval ∆block, we use both the mean x̄ and the variance
s2 of block intervals in the adjustment period to estimate
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Figure 4: Attacker threshold against PoW time ratio ρPoW
with different delay ratio ρδ .

∆PoD and ∆PoW. Since the variance of the distribution is
only due to its PoW element, which is exponentially
distributed, the mean PoW time estimate is the root of the
variance, E(∆PoW)=

√
s2. The PoD time estimate is thus its

complement, E(∆PoD) = x̄−
√
s2. We can thus adjust the

difficulty to match our target PoD time and PoW mean time.
We numerically compare the estimation accuracy of

PoW mean time between Bitcoin (first moment) and Sprints
(second moment, see above). As in Bitcoin, we use a 2016
block adjustment period with 10 minute PoW for both
processes. Based on 30k instances, the average error is only
slightly higher in Sprints (0.09%) than in Bitcoin (0.02%)
and so is the standard deviation (3.14% vs. 2.22%), showing
that difficulty adjustment is practical for both puzzle types.

6.2. Attacker threshold analysis

So far we analyzed Sprints’ security without network
delays, We now consider the effect of network delay on
Sprints miners. The probability of forks is a function of the
ratio between proof-of-work time and proof-of-delay time.
Intuitively, the less proof-of-work time, the more likely for
nodes to finish proof-of-delay around the same time which
leads to forks.

Forked blocks are blocks not on the main chain. We
refer to the ratio between forked blocks and all blocks
as fork rate, denoted by ϕ. Conservatively assuming
the adversary does not incur any forks (this means the
adversary has strong control over the network which
makes the result stronger), the honest mining power is
reduced by (1−ϕ), thus the adversary threshold becomes
αA<(1−αA)(1−ϕ) [52], i.e., αA< 1−ϕ

2−ϕ .
To derive ϕ, we first calculate the probability that when

a miner i mines a block at height h, another miner j also
mines a block at height h before learning of i’s block, cre-
ating a fork. Denote the propagation delay from miner i to
miner j by Tij . Let βj ∈ [0,1) denote node j’s share of min-
ing power. Assuming difficulty is well adjusted, miner j can
mine a block in time ∆PoW with probability βj . Therefore,
when ∆PoW ̸= 0, node j can mine a block in time Tij with
probability βjTij

∆PoW
. Once miner i generates a block, the mean

number of forks generated by other miners is, therefore,∑
j ̸=i

βjTij

∆PoW
. Calculating the total probability over all min-
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ers i, we obtain the average number of forks nf as follows:

nf =

N∑
i=1

βi

 N∑
j=1,j ̸=i

βjTij

∆PoW

. (15)

Data propagation in a decentralized blockchain system
is performed with gossip over a p2p unstructured overlay
network. The propagation delay is due to the transmission
of blocks over multiple hops, and we express it based on the
average one-hop delay between a pair of nodes, denoted δ.
For each pair of miners denote by dij the number of hops be-
tween them, so the overall propagation delay is Tij=dij×δ.

Assuming all nodes have same mining power, i.e.
βi=

1
N (i=1,2,···,N ), Equation (15) could be simplified as

nf =
N−1
N · davgδ

∆PoW
where davg is the average number of hops

between any two nodes in the network. davg is determined
by the network topology. Note that we have a coefficient
N−1
N because the average distance does not take the distance

to the node itself into account. The fork rate is then

ϕ=
nf

1+nf
=

N−1
N ∆PoW

davgδ
+(N−1)

. (16)

According to the relationship between fork rate and
attack threshold, the attack threshold is

αA=
1

2+N−1
N · davgδ

∆PoW

.

The fork rate and attacker threshold are thus a function
of the delay ratio between the one-hop propagation delay
and the block interval, denoted ρδ = δ

∆block
and the PoW

ratio between PoW mean duration and the block interval,
denoted as ρPoW= ∆PoW

∆block
.

Figure 4 visualizes the attacker threshold for various ρδ
and ρPoW values. With the increase of PoW ratio ρPoW and
decrease of delay ratio ρδ , the attacker threshold increases
and approaches 0.5. For example, suppose the one-hop
network latency is 100ms (approximately the average
latency in Bitcoin [26]) and the block interval is 600s (i.e.,
ρδ=

100ms
600s ), even if Sprints performs PoW only for 5% of

the time (ρPoW = 0.05), the attacker threshold is still 49%
(compared to 50% in Bitcoin.)

6.3. Evaluation

We have derived an analytical relationship between
attacker threshold, fork rates, and network parameters. Now
we empirically validate the analysis by running Sprints
with real-world parameters. We describe our setup (6.3.1),
validate our theoretical results (6.3.2), and evaluate Sprints
under practical parameters (6.3.3).

6.3.1. Setup. We deploy a network of 100 nodes running
Sprints on our testbed with two 64-core AMD processors
(256 hardware threads in total). Each node is given two
hardware threads, so they have roughly the same mining
power. Like previous work [53], we create a random topol-
ogy by connecting each node to four random neighbors and
we fix the topology throughout the experiments. We added

network latency to outbound traffic using the Linux tc tool.
We did not explicitly limit the bandwidth since messages
sent in our experiments are small; this is representative of
the nominal block size in practice (e.g., Bitcoin’s Compact
Blocks [54] and Prism’s Proposal blocks [53]).

From propagation traces, we identified that the average
number of hops of block propagation in our network is
davg=4.5 (see §A.2 for details).

6.3.2. Theory Validation. We now use our experimental
setup to validate the analysis of §6.2. In all experiments,
we run Sprints until 100 blocks are generated and calculate
the fork rate from the log.

Parameter choice. According to Equation (16),
when N and davg are fixed, fork rates are determined by ρδ
(network latency normalized by block interval) and ρPoW
(PoW ratio). We choose ρδ∈{ 100ms

60s , 400ms
60s , 800ms

60s } to cover
a wide range of latencies. For each ρδ , we run experiments
with different block intervals ∆block ∈ (30s,60s,120s) and
thus different one-hop network latency δ=ρδ×∆block.

Results. Figure 5 plots the results. The three
subgraphs correspond to the values of ρδ . In all graphs,
the y axis is the fork rate and the x-axis is the PoW ratio
ρPoW ranging from zero to one. In each graph, there are
four lines. The solid line shows fork rate by Equation (16).
Markers, connected by dashed lines, show the experimental
results for each block interval ∆block (and thus network
latency δ=∆block×ρδ). Each dot represents an experiment
with 100 blocks.

We observe that the experimental results are closer to
the theory with a larger one-hop delay δ. This is because
the analysis only takes the network delay into account,
while in reality there are other sources of delay, e.g., disk
I/O, block validation, etc. These additional delays are more
significant when δ is small. Nonetheless, the experimental
results of each graph are close to each other, confirming
that the fork rate is affected mostly by the ratio ρδ .

Finally, note that the measured fork rate without PoW
is much smaller than the theory. From Equation (16), when
taking ∆PoW → 0, all the miners produce a block at about
the same time. The fork rate is then ϕ = N−1

N (about
one). However, in practice, variance in network delays and
computation times reduce the synchrony of block generation
even with ∆PoW =0, resulting in a smaller fork rate.

6.3.3. Real-world parameters. We conclude by studying
Sprints’s behavior with practical, Bitcoin-like parameters:
We measure the fork rate under ∆block = 600s and the
one-hop network delay δ = 100ms [26]. Figure 6 shows
the results. The x axis is the ratio of PoW time ρPoW,
while the left y axis shows the fork rate, and the right y
axis shows the attacker threshold. The red line plots the
fork rate in theory and the blue dots are the experiment
results. Each dot represents 3 experiments, each with 100
blocks. The green line shows the attacker threshold derived
from fork rates, and the orange dots represent the attacker
threshold derived from experimental fork rates. According
to Figure 6, Sprints achieves a good attacker threshold even
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Figure 5: Fork rate under different ρδ , ρPoW and ∆block. Each graph corresponds to a different delay ratio ρδ . Solid lines
plot the theoretical analysis in Equation (16). Dotted lines plot the experiment results under different ∆block.
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Figure 6: Fork rates and attack threshold under Bitcoin-like
parameters (100ms network delay and 600s block interval.)

with small ρPoW. For example, when ρPoW =0.05, Sprints
can withstand an attacker with αA = 49% mining power,
close to the ideal attacker threshold 50%.

7. Ecological Benefit Quantification

The primary objective of Sprints is to reduce environ-
mental impact while preserving the security standards that
are characteristic of conventional pure Proof-of-Work (PoW)
protocols. To facilitate a fair comparison between Sprints
and pure PoW, we compare them assuming the same revenue
per second and profit margins for both systems and equal
electricity costs so that the aggregate expenses, encompass-
ing hardware acquisition and electricity-related costs, are
equivalent in both systems. We compare the environmental
impact of the electricity and hardware that is utilized in
both systems using CO2e (Carbon dioxide equivalent [28]).
CO2e is a measure expressing the total impact of greenhouse
gas emissions including power, hardware manufacturing,
transportation and disposal in terms of the amount of CO2
that would have the same environmental impact.

Although Sprints reduces each mining rig’s electricity
consumption by limiting its activity to a ρPoW portion of
the time, this does not lead to a proportional reduction in
the overall electricity consumption. This occurs due to the
variation in the number of mining rigs between the two
systems, i.e., a portion of the expenses are reallocated from
electricity consumption to hardware acquisition and miners
in Sprints purchase more mining hardware. However, The
added electricity consumption due to the increased number
of rigs in the system is less significant than the reduction in

consumption achieved by shortening each rig’s active time.
For instance, when ρPoW = 0.05, the total electricity con-
sumption in Sprints is 15.7 times lower than in pure PoW.

While reducing electricity consumption is important, our
primary objective is to decrease the overall environmental
impact. To assure this, we take into account the environmen-
tal consequences of hardware production and disposal, using
data from previous studies [55–57]. Our results (Figure 2)
show that despite an increase in total hardware in Sprints,
the system’s overall environmental impact decreases while
taking into account the environmental impact of hardware
production and disposal. For example, when ρPoW is set to
5%, the total environmental impact of Sprints is reduced
by 90.8% compared to pure PoW.

In our analysis, we do not consider the power
consumption and environmental effects of PoD computation,
as they are insignificant compared to PoW mining, owing
to their non-parallelizable nature (similar to VDFs). The
acquisition of additional hardware would not expedite
the puzzle-solving process, and a single PoD device per
miner is sufficient. We anticipate that PoD ASICs will
be energy-efficient, similar to VDF ASICs, where the
Ethereum Foundation’s intention to develop cost-effective,
optimized VDF ASICs in the form of USB sticks [58].

The full details of our analysis are presented in §C.

8. Conclusion

We present Sprints, a hybrid PoD-PoW protocol that
shifts costs from OPEX to CAPEX, decreasing the ecologi-
cal footprint with the same security threshold as pure PoW.
Moreover, we show that even when keeping the same block
interval as Bitcoin and reducing the PoW portion to 5%,
the security threshold is only reduced from 50% to 49%,
achieving a reduction of 10.9x in resource expenditure.

The Sprints design of a hybrid PoW-PoD system
can pave the way to an eco-friendly decentralized PoW
blockchain protocol.
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Appendix A.: Details of implementation and
experiments

A.1. Block Time estimation in difficulty adjustment

In Sprints, the block interval follows a “lifted”
exponential distribution: ∆block ∼ Exp(λ) + ∆PoD. Unlike
Bitcoin, we cannot estimate ∆PoW directly from the mean (the
first moment) of the block interval. Instead, we use both the
first moment (x̄) and the second moment (s2). Since ∆PoD

is a constant, the variance of ∆block is equal to the variance
of ∆PoW. Using the method of moments [59], we get the
following estimations: E(∆PoW)=

√
s2, E(∆PoD)= x̄−

√
s2.

A.2. Modeling the delay of the experiment network

Several factors contribute to davg. First, the average
distance of our network is ∼ 2.5, so nodes are on average
2-3 hops away. Moreover, the compact block feature
transmits blocks in multiple rounds to reduce bandwidth
consumption [54], which adds extra hops. We assume the
block header propagates through first (taking 2.5 hops on
average), then the recipient requests the block content from
its peer following the compact block protocol, which adds
two more hops in most cases. Thus the total number of
hops is davg=2.5+2=4.5.

Appendix B.: Proofs Details

B.1. Equation 10

We provide the development of Equation (10).

Pr
Σ

π1
A
[dσb (tf )≥ℓ]=Psuc(π1)·PrΣπ1

A
[dσb (tf )≥ℓ|eσsuc(t0)]

+(1−Psuc(π1))·PrΣπ1
A
[dσb (tf )≥ℓ|¬eσsuc(t0)])=

Psuc(π1)·(PrΣπ1
A
[dσb (tf )≥ℓ|eσsuc(t0)]

−Pr
Σ

π1
A
[dσb (tf )≥ℓ|¬eσsuc(t0)])

+Pr
Σ

π1
A
[dσb (tf )≥ℓ|¬eσsuc(t0)])

Equation (6), value in parentheses positive from Equation (7)
≥

Psuc(π2)·(PrΣπ1
A
[dσb (tf )≥ℓ|eσsuc(t0)]

−Pr
Σ

π1
A
[dσb (tf )≥ℓ|¬eσsuc(t0)])

+Pr
Σ

π1
A
[dσb (tf )≥ℓ|¬eσsuc(t0)])

Equation (8),Equation (9)
≥

Psuc(π2)·PrΣπ2
A
[dσb (tf )≥ℓ|eσsuc(t0)]

+(1−Psuc(π2))·PrΣπ2
A
[dσb (tf )≥ℓ|¬eσsuc(t0)]=

Pr
Σ

π2
A
[dσb (tf )≥ℓ].

B.2. Proofs of Lemmas 1 and 2

We prove both lemma Lemma 1 and Lemma 2 together:

Proof. We prove by backward induction on
qn=

∆ tf−∆PoD−n.
As the basis of induction, we prove that both lemmas

hold for all t0∈ [q0,tf−1].
Basis (Lemma 1). Note a PoW puzzle for a block

can only be solved after the block’s PoD puzzle. Therefore,
a new block with both PoW and PoD puzzles, cannot
be created in the period [q0, tf − 1]. In contrast, a PoD
puzzle that has started before q0 and was completed
during [q0,tf−1], can be extended by a PoW puzzle.

Given a prefix π of length t0, we define a set Σπ
A1

all
executions starting with π , with all subsequent actions are
chosen according to an LCM strategy A1. Additionally, we
define the set Σπ

A2
which is the set of all executions where

the actions are chosen according to some strategy A2.
Denote the probability that the depth in step tf has
grown by 1 compared to the depth at t0 for strategy i
by gi =

∆ PrΣπ

Ai

[dσ¬b(tf )= dσ¬b(t0)+1]. It holds that g1≥ g2,
because in both cases the probability to find the PoW
puzzle is identical and the LCM strategy chooses to mine
on the deepest partial block would increase the depth by
1. Denote by δ(q) the Kronecker delta that returns 1 if the
predicate q is true and 0 otherwise. The probability that
the depth at tf is greater than ℓ for strategy i∈ [1,2] is

PrΣπ

Ai

[dσ¬b(tf )≥ℓ]=

gi ·δ(d
π
¬b(t0)+1≥ℓ)+(1−gi)·δ(d

π
¬b(t0)≥ℓ) (17)

Since g1≥ g2≥0 and δ(d
π
¬b(t0)+1≥ ℓ)≥ δ(d

π
¬b(t0)≥ ℓ), it

follows from Equation (17) that

PrΣπ

A1

[dσ¬b(tf )≥ℓ]≥PrΣπ

A2

[dσ¬b(tf )≥ℓ]

as required by Lemma 1.
Basis (Lemma 2). The lemma holds for t0 ∈

[q0,tf−1] because of the requirement in Equation (1).
Assumption. We assume that both lemmas hold for

t0∈ [qn,tf ] and prove they hold for t0 =qn+1.
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Step (Lemma 1). Consider a prefix π of length t0, a
strategy A1 that is LCM and a strategy A2 that is LCM after
step qn. We look at two sets of executions Σ

π
A1

and Σ
π
A2

.
The probability of finding a PoW puzzle in qn+1 is Pw(A)
in both Σ

π
A1

and Σ
π
A2

. Denote the successful mining event
at step t of execution σ, by eσt . Denote by Σ1 and Σ2

the subsets of Σ
π
A1

and Σ
π
A2

where a PoW puzzle is not
found in step qn+1: Σi =

∆ {σ ∈Σπ
Ai
|¬eσqn+1

}. Because both
subsets have the same prefix until step qn+1 and optimal
by assumption strategies are used after, it holds that:

PrΣ1 [d
σ
¬b(tf )≥ℓ]=PrΣ2 [d

σ
¬b(tf )≥ℓ]. (18)

For Σ
π
A1
\Σ1 and Σ

π
A2
\Σ2, where the attacker solves

a PoW puzzle in step qn+1, relevant PoD can start only at
step qn. Therefore, the Lemma 2 assumption (Equation (1))
holds, and we can use Lemma 2 for qn, obtaining

PrΣπ

A1
\Σ1

[dσ¬b(tf )≥ℓ]≥PrΣπ

A2
\Σ2

[dσ¬b(tf )≥ℓ]. (19)

Using complete probability:

PrΣπ

A1

[dσ¬b(tf )≥ℓ]=

Pw(A)·PrΣπ

A1
\Σ1

[dσ¬b(tf )≥ℓ]+(1−Pw(A))·PrΣ1
[dσ¬b(tf )≥ℓ]

Equation (18) and Equation (19)
≥

Pw(A)·PrΣπ

A2
\Σ2

[dσ¬b(tf )≥ℓ]+(1−Pw(A))·PrΣ2 [d
σ
¬b(tf )≥ℓ]

=PrΣπ

A2

[dσ¬b(tf )≥ℓ].

This concludes the step proof for Lemma 1.
Step (Lemma 2). Taking t0 = qn+1, according

to the lemma assumption, for all σ1 ∈ Σ1, σ2 ∈ Σ2 and
t ∈ [qn+1, qn+1 + ∆PoD], it holds that d̃σ1

b (t) ≥ d̃σ2
b (t).

If the adversary solves a PoW puzzle in qn+1, she
will complete the PoD puzzle in qn+1 + ∆PoD. Given
any σ1 ∈ Σ1 and σ2 ∈ Σ2, we showed in the step
for Lemma 1 that a (tf ,ℓ)-optimal LCM strategy A chooses
a block b1∈Bmax(T σ1

A (qn+1)) and b2∈Bmax(T σ2
A (qn+1)).

We again separate for eσqn+1
and ¬eσqn+1

for both sets.
Note that whether a PoW puzzle is found or not in both
σ1 and σ2 at step qn+1, it holds for all t ∈ [qn,qn +∆PoD]
that d̃σ1

b (t)≥ d̃σ2
b (t): For t∈ [qn,qn+∆PoD−1] it is true from

the assumption for Equation (1). As for qn+∆PoD, d̃σ2
b (qn+

∆PoD) cannot outgrow d̃σ1
b (qn + ∆PoD) because the PoD

puzzles that can finish at this step all started in step qn
where the depth of σ1 is greater or equal of that of σ2. The
probability that a PoW block is found for qn is Pw(A)
in both sets of executions Σ1 and Σ2. Therefore, we can
use Lemma 2 twice for eσqn+1

and for ¬eσqn+1
where the

conditions of the lemma hold also for qn+∆PoD. Therefore,
PrΣ1 [d

σ
¬b(tf )≥ℓ|eσqn+1

]≥PrΣ2 [d
σ
¬b(tf )≥ℓ|eσqn+1

], (20)
and

PrΣ1
[dσ¬b(tf )≥ℓ|¬eσqn+1

]≥PrΣ2
[dσ¬b(tf )≥ℓ|¬eσqn+1

].
(21)

Using complete probability:

PrΣ1 [d
σ
¬b(tf )≥ℓ]=

Pw(A)·PrΣ1
[dσ¬b(tf )≥ℓ|eσqn+1

]+

(1−Pw(A))·PrΣ1 [d
σ
¬b(tf )≥ℓ|¬eσqn+1

])

Equation (20) and Equation (21)
≥

Pw(A)·PrΣ2
[dσ¬b(tf )≥ℓ|eσqn+1

]+

(1−Pw(A))·PrΣ2
[dσ¬b(tf )≥ℓ|¬eσqn+1

])

=PrΣ2 [d
σ
¬b(tf )≥ℓ].

This concludes the step of Lemma 2 and thus the proof
of Lemma 1 and Lemma 2 for all t0.

B.3. Equation (14)

We provide the full details of the inequality
in Equation (14).

Pr[¬Pers(σ,t0,r)|σ∈ΣA′ ]≤
max
A

Pr[¬Pers(σ,t0,r)|σ∈ΣA ]=

max
A

Pr[

tf⋃
i=1

¬Persi(σ,r)∧tσi ≤ tf |σ∈ΣA ]≤

max
A

tf∑
i=1

Pr[¬Persi(σ,r)∧tσi ≤ tf |σ∈ΣA ]≤

tf∑
i=1

max
A

Pr[¬Persi(σ,r)∧tσi ≤ tf |σ∈ΣA ]≤

tf∑
i=1

max
Ai

Pr[¬Persi(σ,r)|σ∈ΣAi
]≤

tf∑
i=1

max
Ai

Pr[

i⋃
j=0

¬Persji (σ,r)|σ∈ΣAi
]=

tf∑
i=1

max
Ai

Pr[

i⋃
j=0

eχ(σ,r+j)|σ∈ΣAi ]≤

tf∑
i=1

S(r)= tf ·S(r)=2−Ω(r)

We used union bound and Lemma 6.

Appendix C.: Ecological Impact Analysis

We analyze the ecological impact of Sprints compared
to pure PoW by presenting a model for comparison (§C.1),
quantifying the improvement, parameterized by the PoW
time ratio ρPoW (§C.2) and instantiate it with a practical
value (§C.3).

C.1. Modeling mining expenditure

Following the model of Tsabary et al. [8], we assume
miners’ expenses consist of capital expenditure (CAPEX,
the cost of acquiring mining hardware) and operating
expenses (OPEX, the cost of electricity). Denote the
CAPEX and OPEX costs per device per second by C
and O , respectively. Specifically, C is the cost of each
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device divided by its lifetime and O is the average cost of
electricity used by one device in each second.

We compare two scenarios, scenario p representing
Nakamoto’s pure Proof-of-Work (PoW) consensus and
scenario s, Sprints, with ρsPoW<1. Both scenarios generate
a constant revenue of R0 per second, allowing for a fair
and balanced evaluation between the two cases. We explain
how the ρsPoW influences Cs and Os, which are the CAPEX
and OPEX costs respectively in scenario s.

CAPEX. Mining rigs’ life expectancy is limited by
both technological advances and wear [20, 60]. Frequent
on-off switching accelerates wear through thermal cycling,
leading to mechanical failure [60, 61]. We introduce a
factor µ to account for this difference in life expectancy.
The CAPEX cost per machine per second in both scenarios
is related by the factor µ: Cs = µCp. Determining the
precise value of µ is challenging; however, as indicated
by a miners’ technical guide [60], it is greater than 1. We
conservatively assume µ=1, as any value of µ> 1 would
result in a higher CAPEX expense for Sprints, thereby
further shifting the costs from electricity to hardware
procurement. By assuming this, we set a lower bound for
total savings, suggesting that actual environmental benefits
could surpass our conservative estimates.

OPEX. We assume that the electricity prices are
homogenous for both Bitcoin and Sprints. Since the rigs
in Sprints only run ρPoW of the time, the average OPEX
cost per machine per second reduces, and Os = ρsPoWOp,
as a mining rig is active only for ρsPoW of the time. The as-
sumption is conservative because industrial consumers often
encounter peak demand-based charges [62], which lead to
higher OPEX costs per hash for Sprints compared to pure
PoW when a greater number of rigs operate simultaneously
which would further increase the total cost of electricity and
make Sprints more energy and environmentally efficient
than what we account for in our model.

Total revenue. We use the factor θ to account for
the profit margin of the miners, i.e.,

R0=θ ·Ns(Cs+Os)=θ ·Np(Cp+Op). (22)

C.2. Reduction of ecological footprint

First, we find the relation between the number of
mining rigs in the two systems. Denote the numbers of
mining devices in the pure-PoW system and in Sprints by
Np and Ns, respectively. Since the rewards are the same,
the overall expenditure per second is the same in both
systems. It follows that:

Np(Op+Cp)=Ns(ρsPoWOp+µCp)

⇒Np

Ns
=

ρPoWOp+µCp

Op+Cp
=

ρPoW+ µCp

Op

1+ Cp

Op

.

We first estimate the ratio Cp

Op , based on real-world
statistics from the Bitcoin system. As of March 29, 2022, in
Bitcoin, considering the block reward and inter-block time,
the base revenue amounts to R0=499 $

sec . Take the miners’
electricity price to be 0.04 $

kWh [63]. The total amount of

electricity consumed by Bitcoin annually is 89 TWh [64].
We assume a competitive market, as in [8, 63, 65, 66], the
per-second total mining cost is close to the per-second rev-
enue (θ≈1), as we assume small profit margins. Therefore,
using Equation (22) it holds that Np ·Op = 113 $

sec . Using
the constants values from Bitcoin and Op and assuming
that θ ≈ 1 we derive Np · Cp ≈ 386 $

sec . Therefore, the
ratio of CAPEX and OPEX in Bitcoin is Cp

Op =3.42. If we
assume θ=1.05 the ratio will increase by 6.5%.

Electricity consumption reduction. Denote the rate
between the electricity cost per second in Sprints and pure
PoW by QH(ρsPoW) =∆ NpOp

NsOs = Np

Nsρs
PoW

=
ρs
PoW+µCp

Op

(1+Cp

Op )ρs
PoW

. This
equation shows that when µ=1 and the PoW time ratio is
5%, the ratio of electricity consumed in Bitcoin and Sprints
is 15.7:1.

Emission reduction. To justify Sprints’s environ-
mental impact, we need to show that the increase in the
number of mining devices used has a smaller environmental
impact than the reduction in electricity consumption.

We employ the concept of carbon dioxide equiva-
lent [28] (denoted as CO2e) to gauge the environmental im-
pact of a mining device. This measure takes into account the
emissions of all greenhouse gases, converting them to CO2

based on their respective environmental impacts. It provides
a unified metric to assess the overall contribution of different
gases to climate change. We define the total amount of
CO2e emission during the production of each mining device
as EC and the total emission of mining during the lifetime
of a device as EO. While the estimation of non-energetic
components carries uncertainty [56], our analysis shows that
they are considerably smaller than electricity-related waste,
suggesting that any variations in these estimates would not
alter the overall conclusions. Additionally, we use a rough
estimate based on data regarding PC production carbon
footprint [57]. Using PC production data as a proxy for
mining rig production is a practical approach, given their
manufacturing similarities. We estimate each rig implies
an emission of 200 kg CO2 in production and delivery
(EC =200). Based on de Vries [55] we estimate a mining
rig emits 8400 kg CO2 during its lifetime (EO = 8400),
considering the popular Antminer S9 mining rig.

WWe define the emission reduction ratio Qe as the
ratio between Bitcoin and Sprints emissions. Considering
the device’s total lifetime emission and that Sprints allows
mining in ρPoW of the time, the emission ratio for each
device in Bitcoin and Sprints is EC+EO

EC+ρs
PoWEO

. Therefore, the
emission reduction ratio as a function of the load ρsPoW is

Qe(ρ
s
PoW)=

Np(EC+EO)

Ns(EC+ρsPoWEO)

=
ρsPoW+ µCp

Op

1+ Cp

Op

(EC+EO)

(EC+ρsPoWEO)
.

Figure 2 shows the relationship of ρPoW and Qe.
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C.3. Finding the optimal ρPoW

Lowering ρPoW reduces the ecological footprint but
also the attack threshold (§6), forming a tradeoff.

Our analysis shows that the attacker threshold decreases
very slowly as we gain more reduction in emission (i.e,. as
Qe increases). For example, for ρPoW =0.05 the reduction
in emission is 10.9x and Sprints achieves a threshold of
αA=49% mining power based on experiment fork rates.
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