
High-Throughput Deep Convolutional Neural Networks on Fully Homomorphic
Encryption Using Channel-By-Channel Packing

Jung Hee Cheon 1 2 Minsik Kang 1 Taeseong Kim 1 Junyoung Jung 1 Yongdong Yeo 1

Abstract
Secure Machine Learning as a Service is a viable
solution where clients seek secure delegation of
the ML computation while protecting their sensi-
tive data. We propose an efficient method to se-
curely evaluate deep standard convolutional neu-
ral networks based on CKKS fully homomorphic
encryption, in the manner of batch inference. In
this paper, we introduce a packing method called
Channel-by-Channel Packing that maximizes the
slot compactness and single-instruction-multiple-
data capabilities in ciphertexts. Along with fur-
ther optimizations such as lazy rescaling, lazy
Baby-Step Giant-Step, and ciphertext level man-
agement, we could significantly reduce the com-
putational cost of standard ResNet inference. Sim-
ulation results show that our work has improve-
ments in amortized time by 5.04× (from 79.46s
to 15.76s) and 5.20×(from 455.56s to 87.60s) for
ResNet-20 and ResNet-110, compared to the pre-
vious best results, resp. We also got a dramatic
reduction in memory usage for rotation keys from
several hundred GBs to 6.91GB, which is about
38× smaller than the previous result.

1. Introduction
In a conventional Machine Learning as a Service (MLaaS)
scenario, users upload their personal data to cloud servers to
make use of a provided service. However, the users would
be reluctant to upload their privacy-sensitive data such as
medical information to the server, since they might not
fully trust the server. Therefore, it is important for MLaaS
providers to ensure that they protect the confidentiality and
privacy of each individual during MLaaS.

Privacy-Preserving Machine Learning (PPML) provides a
tool that can be utilized in this scenario. Fully homomorphic

1Department of Mathematical Sciences, Seoul National Univer-
sity, Seoul, Republic of Korea 2CryptoLab. Inc., Seoul, Republic
of Korea.

encryption (FHE) has been considered one of the most ap-
propriate tools for PPMLs that achieve both strong security
in the cryptographic sense and succinctness of communica-
tion. FHE supports computations on encrypted data without
decrypting it, which enables MLaaS providers to perform
inferences directly on the encrypted personal data of their
clients.

Among various FHE schemes, Cheon-Kim-Kim-Song
(CKKS) scheme (Cheon et al., 2017) is regarded as the
most competent scheme for PPML, since CKKS supports
parallel fixed-point arithmetic operations on each encrypted
real number in slots, in a single-instruction-multiple-data
(SIMD) manner. In order to fully utilize the SIMD proper-
ties of CKKS, it is crucial to minimize the unused slots, and
also to minimize the operations between the slots inside a
single ciphertext. With CKKS, we propose a new method-
ology which can achieve the following goals, by utilizing
SIMD.

One is to implement practical PPML for deep standard
CNNs (SCNNs), which is one of the necessities of MLaaS.
In particular, we target the ResNet model (He et al., 2016),
which is a widely used SCNN that effectively operates on
large datasets such as CIFAR-10/100 (Krizhevsky, 2009),
and ImageNet (Deng et al., 2009).

The other is batch inference, which is a service that server
handles multiple inferences at once. Batch inference is used
in situations where the throughput of inference is more
important than response latency, such as in the field of
user-customized recommendations (AmazonAWS, 2023).
This work focuses on actualizing batch inference for secure
MLaaS with standard CNNs, by making better use of the
SIMD properties of CKKS.

Inference on CNN with HE was previously attempted by
several previous works (Gilad-Bachrach et al., 2016; Chou
et al., 2018; Dathathri et al., 2019; Al Badawi et al., 2021),
but most of the works focused on building HE-friendly net-
works. Their constructions modify or redesign the CNN
model, which requires retraining the network. This not only
introduces inefficacy but also falls short of the MLaaS re-
quirement of providing SCNNs. There is a recent line of
work (Lee et al., 2021; 2022b;a) that targets precise approx-

1

High-Throughput Deep Convolutional Neural Networks on Fully Homomorphic Encryption Using Channel-By-Channel Packing

imation of pre-trained deep SCNNs. (Lee et al., 2022b) was
the first work to completely evaluate the ResNet-20 on RNS-
CKKS. The following work (Lee et al., 2022a) proposed an
improved packing method that increases slot efficiency, and
achieved state-of-the-art results for ResNet-20 and deeper
networks, up to ResNet-110. They chose a strategy to pack
single data repeatedly into slots in a single ciphertext, which
enabled the simultaneous computation of multiple output
channels.

Since secure deep SCNNs was not fast enough, the previous
work provided batch inference of multiple images to achieve
high-throughput by assigning each single-image inference
to each CPU thread. Using k threads in batch inference the
throughput can be increased k times ideally. But in actual
implementation, it is not achievable due to the memory
overhead of dealing with large-size ciphertext data. About
25× increase of throughput was possible with 50 threads in
(Lee et al., 2022a).

In this work, we show that this limitation can be broken
by distributing the tasks of batch inference not only to
the CPU threads but also to the slots inside the ciphertext.
We propose a more batch-friendly packing, referred to as
Channel-By-Channel Packing (CBC Packing), boosting up
the throughput of secure ResNet inference by over 5× com-
pared to state-of-the-art previous works. The compactness
of CBC Packing allows us to process a batch size that is
not restricted by the number of threads, breaking the afore-
mentioned throughput limitation. Also, CBC Packing im-
proves the evaluation of Approximate ReLU (AppReLU),
the most time-consuming part, by reducing the number of
input ciphertexts to deal with and utilizing full-slot SIMD
computation.

In CBC Packing, we encode each channel of an image to
each ciphertext. CBC Packing enables computations be-
tween channels by operations between ciphertexts rather
than inter-slot operations of a single ciphertext, reducing
slot rotations. So it effectively reduces the cost of send-
ing user-generated public keys, by minimizing the types of
key-switching keys used in the slot rotations.

1.1. Our Contribution

We implement and test our improvements on standard
ResNet-20/110 architectures on CIFAR-10 dataset with
RNS-CKKS homomorphic encryption scheme using the
HEaaN library1 and our proposed CBC Packing.

• From our proposed convolution utilizing CBC Pack-
ing structure, we get 6.94× less amortized time for
ConvBN, from 12.28s to 1.77s.

• From the compactness of CBC Packing and optimiza-

1Open-access on https://heaan.it

tions on ReLU evaluation, we get 4.78× less amortized
time for AppReLU, from 66.76s to 13.97s.

• We reduce the number of required rotation keys to be
5.73× lower than the previous best method (Lee et al.,
2022a), from 258 to 45. This corresponds to 6.91GB,
which is 37× smaller in memory consumption. Details
are in Appendix A.

• With the above improvements, we boost up the amor-
tized speed of secure ResNet-20 inference by 5.04×,
from 79.46s to 15.76s, and ResNet-110 inference by
5.20×, from 455.56s to 87.60s, without any compro-
mise on accuracy or security, compared to state-of-the-
art previous work (Lee et al., 2022a).

1.2. Technical Contribution

We use the following techniques to boost up the slot effi-
ciency and amortized inference time of the ResNet-20 and
ResNet-110 networks.

• We devise CBC Packing to pack multiple images of the
same channel into a single ciphertext slot. This enables
packing images 100% compactly, compared to 75%
compactness (9.38% considering repetitive slots) of
the previous work (Lee et al., 2022a). We utilized CBC
Packing as Channel-By-Channel Convolution (CBC
Conv), which gives various advantages on amortized
runtime.

CBC Conv reduces the number of key-switching op-
erations (KSOs) per image by 40.37× (from 1968 to
48.75) and constant multiplications (ptMult) during
convolutional layers and the fully-connected (FC64)
layer.

• We lowered the number of relinearization (ReLin) by
15.4% when homomorphically evaluating approximate
ReLU, using the lazy baby-step giant-step (BSGS) al-
gorithm. We also use 3.30× less AppReLU per image,
from 19 to 5.75, by using slots more compactly.

• We used lazy rescaling on each CBC Conv and FC64
layer to lower the overall cost.

• We manually lowered the ciphertext levels after each
bootstrapping to minimize the cost and memory usage
of computations.

2. Preliminaries
2.1. RNS-CKKS Fully Homomorphic Encryption

In our paper, all the operations inside the CNN architecture
are in real arithmetic. CKKS (Cheon et al., 2017) naturally
supports fixed-point arithmetic over real or complex num-
bers and is also capable of handling multiple operations

2

High-Throughput Deep Convolutional Neural Networks on Fully Homomorphic Encryption Using Channel-By-Channel Packing

inside a single ciphertext in a single-instruction-multiple-
data (SIMD) manner. The ciphertexts in CKKS are ele-
ments of R2

Q, where RQ = ZQ(X)/⟨XN + 1⟩ and N is
a power-of-two integer. Each ciphertext encrypts a com-
plex(or real) vector with N/2 slots as a message. The basic
operations supported by CKKS are presented below. Here,
m1,m2 ∈ CN/2 and ⊙ denotes slot-wise multiplication.

Dec(ctAdd(Enc(m1),Enc(m2))) ≃ m1 +m2

Dec(ptAdd(Enc(m1),m2)) ≃ m1 +m2

Dec(ctMult(Enc(m1),Enc(m2))) ≃ m1 ⊙m2

Dec(ptMult(Enc(m1),m2)) ≃ m1 ⊙m2

Dec(Rot(Enc(m1), t))[idx] ≃ m1[idx + t mod N/2]

The message in the ciphertext contains some small error,
and this error is accumulated during the homomorphic eval-
uation of circuits. CKKS manages this error accumulation
by introducing a leveled modulus structure. In RNS-CKKS
(Cheon et al., 2018b), the ciphertext modulus Q is a product
of word-size primes Q = QL :=

∏L
i=0 qi so that the coef-

ficients of the ciphertext polynomials can be decomposed
under residue number system (RNS). Every RNS-CKKS
ciphertext contains a level parameter l which indicates the
capacity of remaining homomorphic multiplications on the
ciphertext, and each multiplication (ctMult or ptMult) con-
sumes a single level. If the ciphertext level is lower, the
number of primes that represent the ciphertext decreases,
and both memory and computational costs for homomorphic
operations also reduce.

After we consume all the levels of a ciphertext, we can
recover the modulus by performing bootstrapping (BTS)
(Cheon et al., 2018a) operation. The number of sequential
multiplications an input ciphertext goes through while evalu-
ating a circuit is referred to as multiplicative depth. Without
BTS, the multiplicative depth is bounded by the level of the
initial ciphertext.

Key switching operation (KSO) is required for ciphertext-
ciphertext multiplication (ctMult) and rotation (Rot). KSO
accounts for most of the time during ctMult and Rot. These
operations are much slower than addition and plaintext mul-
tiplication, which do not require KSOs. BTS contains mul-
tiple calls to ctMult and Rot, and therefore contains many
KSOs. The BTS operation is considered to be the heaviest
operation among all components of the RNS-CKKS scheme.
Keys required for key switching has a large size, and the size
depends on the parameters including degree N , modulus
PQ, and a special parameter called dnum, details are in
Appendix A.

2.2. Proposed Structure for Homomorphic Evaluation
of ResNet on RNS-CKKS

2.2.1. CONVOLUTIONAL LAYERS AND BATCH
NORMALIZATION

Convolution contains an operation multiplying an image
vector with slided kernel vector. To accomplish this
on ciphertexts, we need to appropriately pack the im-
age and kernel into vectors in CN/2. Gazelle (Juvekar
et al., 2018) proposed how to execute a single-input-
single-output (SISO) convolution on HE schemes with
SIMD properties. In the SISO convolution in Gazelle,
the encrypted image is rotated instead of the kernel, and∑i<k×k

i=0 ptMult(Rot(Enc(image), idxi), kerneli) is calcu-
lated, where k × k denotes the size of the kernel.

(Lee et al., 2022b) adapted the SISO convolution to support
strided convolutions. In SISO strided convolution, whenever
the image is downsampled, a gap between the pixels is
generated, and the gap deteriorates the packing density of
the ciphertext. (Lee et al., 2022a) named the packing method
in HEAR (Kim et al., 2022) as multiplexed packing, and
they suggested an improved version of this packing method
to fill in the gaps with different channel data after strided
convolutions. Our CBC Packing is easy to handle with those
gaps, supporting SISO convolutions.

For batch normalization (BN), we use the standard method
of integrating BN into the preceding convolutional layer
(see Appendix B.3). We refer to the fused convolution as
ConvBN.

2.2.2. RELU ACTIVATION FUNCTION

Since RNS-CKKS does not support evaluating non-
arithmetic operations such as ‘if’ statements, rectified linear
unit (ReLU) function has to be approximated by a polyno-
mial.

In evaluating the polynomials for ReLU, we use the odd lazy-
BSGS technique from (Lee et al., 2022c) under a monomial
basis. This technique lets us minimize the number of KSOs
during the evaluation of the approximate ReLU function.

The computational cost and the latency of the BTS are
dependent on the encryption parameters and specific choices
of the algorithms for BTS. Our ReLU evaluation method is
of multiplicative depth 14, and our parameter choice allows
depth 9 before each BTS. Therefore, we use BTS twice per
each call of ReLU. We also used the imaginary-removing
bootstrapping (Lee et al., 2022a) for the first of the two BTS
to reduce the errors, which made it possible to infer deeper
SCNN.

3

High-Throughput Deep Convolutional Neural Networks on Fully Homomorphic Encryption Using Channel-By-Channel Packing

Figure 1. Overall structure of the proposed homomorphic evalua-
tion of ResNet-20.

2.2.3. OVERALL STRUCTURE

Figure 1 represents the overall structure of our method to
evaluate ResNet-20. We call the residual blocks RB for regu-
lar residual block (Figure 1(a)), and DRB for downsampling
residual block (Figure 1(b)), respectively. ResNet of higher
depth shares the same structure with ResNet-20, the only
difference is the number of RBs in each row in Figure 1(c).
For ResNet-110, 15 RBs are added next to the end of each
row. Figure 2 illustrates the number of ciphertexts nct for
the batch inference of 512 CIFAR-10 images. After each
downsampling, we perform Merge to fill the gaps. Here,
the total number of ciphertexts is reduced by half, which is
the same as the number of AppReLU functions to be called
after Merge.

3. Channel-By-Channel Packing Method
Past studies (Kim et al., 2022; Lee et al., 2022a) pack mul-
tiple channels in one ciphertext to make use of SIMD mul-
tiplications between data ciphertexts and kernel plaintexts.
This can reduce the number of multiplications but dealing
with ciphertexts containing multiple channel-packed data
requires a lot of rotations. We must focus on the fact that
these multiplications and rotations need heavy KSOs.

So, we propose a new faster method, compared to the pre-
vious methods in an amortized sense, by deleting those

Figure 2. The number of ciphertexts nct between the components
of ResNet-20 for batch inference of 512 images.

unnecessary additional rotations and maskings. Further-
more, those advantages make us fully utilize the SIMD and
entire slots of a ciphertext.

3.1. Channel-By-Channel Packing

To reduce BTS, (Lee et al., 2022a) used Multiplexed Parallel
Packing (MP Packing) so that the input channels can be
compactly packed in one ciphertext. But there still can be
some waste of ciphertext slots due to the number of input
channels. If the input channel is not a power of 2, we have
to fill in the rest of the remaining slots with zero which will
be referred to as zero channels, since the slots of a ciphertext
is always a power of 2 (Figure 4(a)). The same problem
also arises for output channels. We resolve this problem by
splitting every channel into separate ciphertexts.

We propose a more compact packing method, Channel-By-
Channel Packing (CBC Packing), getting rid of those zero
channels. Our proposal may also be applied to other gen-
eral CNNs if only there are convolutions and downsampling
structures. Furthermore, we input more ciphertexts at once
when we inference. In the case of CIFAR-10 ResNet infer-
ence, 512 images compactly packed in 3× 16 ciphertexts
will be processed simultaneously. With 3× 16 ciphertexts,
we can keep the channels of the input images separated
before the FC64 layer.

The Channel-By-Channel Convolution (CBC Conv), which
utilizes the CBC Packing in convolution layers, has an ad-
vantage not only for the compactness of packing but also
for reducing KSOs and ptMults in every convolution step
during the entire inference procedure. We must pay atten-
tion to the number of channels which is packed in a single
ciphertext.

4

High-Throughput Deep Convolutional Neural Networks on Fully Homomorphic Encryption Using Channel-By-Channel Packing

Figure 3. Comparison between Channel-By-Channel Convolution
and Multiplexed Parallel Convolution. (input channel=3, stride=1)

Table 1. The amortized number of key-switching operations of
the proposed architecture using Channel-by-Channel Convolution
compared to the previous state-of-the-art Multiplexed Parallel Con-
volution (Lee et al., 2022a) in ResNet-20 per image.

Component proposed MP Conv

Convolution 48 1,902
Avgpool 0.75 6
FC Layer 0 60

Total 48.75 1,968

The gap denotes how many slots are away from one pixel
to another adjacent pixel of a single image, inside the same
channel (Figure 4). The gap is multiplied by the stride in
every strided convolution. If the gap increases, the valid
slots of a ciphertext become sparser without any Gathering
or Merge, which will be introduced later.

Rotate-and-sum (RotSum) process for adding values inside
a single ciphertext is included in every MP Conv. During
the RotSum, slots that do not retain the sum are filled with
dummy garbage values. Meanwhile, (Lee et al., 2022a)
adopted the simultaneous computation of multiple output
channels via utilizing repetitive slot (RS) packing, copying
the same image data repeatedly in different slots. As can
be seen in Figure 4(a), garbage values are generated by
the RotSum process in MP Conv. Therefore, multiplexed

Figure 4. Comparison between Channel-By-Channel Convolu-
tion and Multiplexed Convolution. (input channel=3, output
channel=14, stride=2)

packing necessitates a Gathering step that assembles sparse
valid data of the same ciphertext or different ciphertexts
into a more compact single ciphertext in the RS manner.
This Gathering requires many maskings (ptMult), rotation,
and addition. MP Conv entails the Gathering process for
compact packing of output channels, even if the ciphertext
passes stride 1 convolution. The proposed CBC Conv does
not make garbage values during convolutions, so there is no
need to gather the ciphertexts for stride 1 convolutions in
Regular Residual Blocks, which is illustrated in Figure 4(b).

If we look more closely, there is another saving of rotations
in convolution. If we use the Multiplexed Convolution (Kim
et al., 2022), the single output channel ciphertexts should be
rotated before the masking as in Figure 4(a) Gathering step.
(Lee et al., 2022a) implemented output-compact convolu-
tions (stride ≥ 1) by masking the output ciphertext when
they collect valid values after multiplying stride 1 kernels
with Gazelle SISO convolution. But in our Merge step, our
packing method permits the use of a pre-masked version of
kernel plaintexts as can be seen in Figure 4(b). This allows
us to remove masking procedures and unnecessarily many
additional rotations entirely in the whole ResNet structure.

Note that the operations inside RotSum cannot be paral-
lelized. However, as in the Figure 3, CBC Conv has no
RotSum (only sum exists), which allows us to benefit from
multi-threading easily. And We need this simple Merge only
for stride 2 convolutions in DRBs.

In short, CBC Packing evaluates a batch of multiple images

5

High-Throughput Deep Convolutional Neural Networks on Fully Homomorphic Encryption Using Channel-By-Channel Packing

more compactly and simultaneously and excludes additional
rotations, utilizing the SIMD operations to the maximum.
Those optimizations result in the advantage that CBC Pack-
ing has reduced amortized KSOs from 1968 in (Lee et al.,
2022a) to 48.75 in convolutions, average pooling, and fully
connected layer (Table 1).

In addition, there are also advantages in the communication
cost when receiving the inference output ciphertexts. We
have 10 output ciphertexts containing 512 images, compared
to 1 ciphertext containing 1 image. Even if we compress
them into more compactly packed ciphertexts via RotSum,
our proposal needs fewer rotations.

CBC Packing has some demerits in total latency when in-
ferencing a single image. By handling much more images
at a time, the total latency became longer, in spite of the
much shorter amortized inference runtime. Plus, we pro-
cess multiple images as one batch so inferencing a single
image cannot get the same advantages of amortization as in
processing multiple images at a time.

3.2. Reduced Public Key Size

The CBC Packing not only brings the higher-throughput
and the compactness of ciphertext but also brings lighter
public key size and lower communication cost. The required
number of (public) rotation key becomes 45, compared to
258 in (Lee et al., 2022a; Snu-ccl, 2022). There are more
details in Appendix A.1.

4. Further Optimizations
4.1. Lazy Rescaling

When we use the SISO convolution method (Juvekar et al.,
2018) to evaluate the convolution operations, the compu-
tational bottleneck comes from the numerous ptMults be-
tween the input ciphertexts and the plaintexts encoded from
the pre-trained parameters in the kernel. Throughout the
whole procedure of ptMult operation, rescaling accounts for
most of the runtime in ptMult and also induces additional
errors. Thus it is desirable to postpone rescaling during
ptMult until it becomes necessary, to reduce the total num-
ber of rescaling.

We utilize the arithmetic structure in convolution and FC64
layer to adopt the lazy rescaling technique. More precisely,
we postpone the rescaling during the ptMult between the
input ciphertexts and Gazelle kernel plaintexts until the
summation. After performing ptMult-without-rescaling of
all ciphertexts to be added, we then perform only once
rescaling after the summation of them. By adopting lazy
rescaling technique for every convolution layer, we reduce
the computational burden when evaluating the convolution
operation and achieve higher precision of the output. We can

Figure 5. The whole procedure of our method during evaluation
AppReLU. We maintain the ciphertext level to 5 before the resid-
ual block to optimally manage the ciphertext level. Our method
reduces the number of ReLin evaluating AppReLU from 26 to 22
compared to previous work.

also apply the lazy rescaling technique in FC64 similarly.

4.2. ReLU Optimization

To evaluate ReLU activation function on encrypted data,
we replace ReLU functions with approximate polynomials
for ReLU functions (AppReLUs). We utilize AppReLU
polynomial using a composition of minimax approximate
polynomials as in (Lee et al., 2021; 2022b;a). We use the
odd polynomials p1, p2 and p3 of degrees 15, 15, and 27,
respectively, for approximating sign function sgn to capture
the 13-bit precision for AppReLU as follows:

AppReLU(x) = x · 1 + sgn(x)

2
,

sgn(x) ≈ (p3 ◦ p2 ◦ p1)(x),

|AppReLU(x)− ReLU(x)| ≤ 2−13 for x ∈ [−1, 1].

We note that the function AppReLU works only for input
values in [-1, 1] and we confirmed that the absolute value
of all the intermediate values before each ReLU does not
exceed 40. The scale-invariance of the ResNet lets us scale
the intermediate values down; we can multiply the weights
of the very first convolution and the biases of all the convo-
lutions by 1/40.

The performance of homomorphic evaluation of AppReLU
mainly depends on the polynomial evaluation algorithm that
optimized the number of ctMults, since ctMult involves
the relinearization (ReLin) operation, which is the special
case of KSO in ctMult. In (Lee et al., 2021), they utilize
odd baby-step giant-step (BSGS) algorithm to evaluate the
approximate polynomial of sign function using 25 times
of ReLin, which results in 26 times usage of ReLins when
evaluating AppReLU.

6

High-Throughput Deep Convolutional Neural Networks on Fully Homomorphic Encryption Using Channel-By-Channel Packing

BSGS algorithm can be improved by adopting the lazy
ReLin technique during the ctMults in the algorithm, so-
called lazy baby-step giant-step (lazy-BSGS) (Lee et al.,
2022c). During ctMult, the lazy-BSGS algorithm performs
the tensor product of them and then delays the ReLin to
be performed until ctMult with other ciphertexts. Thus,the
lazy-BSGS reduces the number of ReLins in the homomor-
phic evaluation of approximate polynomial, which achieves
both lower complexity and higher precision in computation
compared to the ordinary BSGS algorithm.

We utilize the lazy-BSGS algorithm to homomorphically
evaluate the AppReLU in our model. More precisely, we
apply the lazy-BSGS algorithm when evaluating the poly-
nomials p1, p2 and p3 homomorphically to reduce the total
number of ReLins. Since the available ciphertext levels in
our parameters range from 12 to 3 with a total of 9 lev-
els, without additional BTS. We evaluate the polynomial
p1 of degree 15 by a method of consuming 5 levels of ci-
phertext and then evaluate the polynomial p2 of degree 15
by the other method of consuming 4 levels. The former
requires 6 times ReLin during the evaluation, which is the
more optimal and the latter requires 7 times ReLin. We
then evaluate the polynomial p3 of degree 27 by the optimal
method which uses 4 levels and 8 times of ReLin. In con-
clusion, the total number of ReLin required in our method
is 22, which reduces 26 to 22 compared to previous work.
Figure 5 presents the whole procedure of our method to
homomorphically evaluate AppReLU.

4.3. Ciphertext Level Management

We note that we can process the same homomorphic oper-
ations with less computational cost under lower modulus.
Since the cost of bringing levels down is negligible in RNS-
CKKS, we can optimize the computational complexity by
maintaining the level of ciphertext as low as possible, if we
can adjust the level at which the operations are executed.

Our selection of the parameters in HEaaN requires at least
3 remaining levels before BTS, and if we have more level
budget than needed after BTS, we can adjust the level before
the heavy computation to optimize the computational cost.
The followings are parts of our methodology where we
can deploy level optimization: (1) The first ConvBN: Our
method for ConvBN costs only 1 level, and the ReLU layers
require 4 levels for the input: 1 level for the imaginary-
removing BTS and 3 levels before BTS. Originally, the
plaintexts are encoded to have 12 levels by default. So,
before going through the first convolution, we decrease
the level of the encrypted image vectors from 12 down
to 5. (2) Other ConvBNs: The second through the last
ConvBNs receive outputs of ReLU as inputs. After the
second bootstrapping of each ReLU layer, the remaining
polynomial evaluation for ReLU consumes 6 levels. Since

we have an extra 1 level not being used, we adjust the level
after the BTS from 12 to 11 so that the level is consumed
tightly, as shown in Figure 5. (3) AvgPool and FC64: In
average pooling, we calculate the average of 8 × 8 data
inside a ciphertext. Rather than calling ptMult for the factor
1/64 and consuming 1 level, we merge the multiplication to
the parameters of the FC64 layer. AvgPool and FC64 layer
cost only 1 level. So we reduce the level after the last BTS
by 5, from 12 down to 7.

5. Implementation Environments
We implement the ResNet-20/110 model on the following
computing environment: 2× Intel(R) Xeon(R) Gold 6248
CPU at 2.50GHz with 20 cores (total 40 cores) and 1TB
RAM. We conduct our experiments on the HEaaN docker
image loaded on Ubuntu-20.04. We execute inference with
parameters pre-trained on the CIFAR-10 dataset which is
comprised of 50, 000 images for training and 10, 000 images
for testing (Krizhevsky, 2009).

5.1. Library

HEaaN (CryptoLab, ver. September 2022) is a homo-
morphic encryption library supporting the (RNS-)CKKS
scheme and its BTS. Since the implementation environment
is slightly different from the previous works (Lee et al.,
2022a;b), we provide a rough comparison of the latency for
basic operations in RNS-CKKS between HEaaN and SEAL
library in Table 3.23

5.2. Parameters

We use a parameter preset FGb provided in HEaaN, which
has N = 216 polynomial degree and secret key hamming
weight 192. The total level of ciphertext provided by FGb
parameters is 24, of which 15 are assigned to BTS, and
users can use the maximum multiplicative depth 9 from 3
to 12. FGb parameters have a 58-bit base prime and 42-bit
primes for multiplication. The total modulus size including
the special primes is 1555-bit, with 128-bit security.

6. Experimental Results
This section presents the results of ResNet-20/110 architec-
ture performance upon our architecture contrast to previous
work. In (Lee et al., 2022a), they first implemented ResNet

2Specification details: Intel(R) Xeon(R) Silver 4114 CPU at
2.20GHz, single-thread bound to a single core; HEaaN (CryptoLab,
ver. September 2022), FGb parameter (N = 216, base prime 58 bit,
multiplication prime 42 bit); SEAL v4.1.1 (SEAL, January 2023),
custom parameter (N = 216, base prime 51 bit, multiplication
prime 46 bit); evaluated at level 5 with modulus size 268bit for
HEaaN and 281-bit for SEAL except for BTS.

3SEAL BTS time is excerpted from (Lee et al., 2022a).

7

High-Throughput Deep Convolutional Neural Networks on Fully Homomorphic Encryption Using Channel-By-Channel Packing

Table 2. Comparison of total and amortized inference time for ResNet-20/110. Numbers in * marks are calculated from total time and
percentage data provided in (Lee et al., 2022a).

Model ResNet-20 ResNet-110
(Lee et al., 2022b)

(1 image,
64 threads)

(Lee et al., 2022a)
(1 image,

single thread)

(Lee et al., 2022a)
(50 image,
50 threads)

proposed
(512 image,
40 threads)

(Lee et al., 2022a)
(1 image,

single thread)

(Lee et al., 2022a)
(50 image,
50 threads)

proposed
(512 image,
40 threads)

runtime amor. runtime amor. runtime amor. runtime amor. runtime amor. - amor. runtime amor.

ConvBN - - 351s - 614.06s* 12.28s* 906.84s 1.77s 1,860s - 3,190s* 63.80s* 5237.48s 10.25s

AppReLU - - 1,908s - 3,337.95s* 66.76s* 7,154s 13.97s 11,411s - 19,569s* 391.39s* 39,593s 77.33s

Avg Pool - - 2s - 3.50s* 0.070s* 0.91s 0.002s 2s - 3.43s* 0.069s* 0.50s 0.001s

FC Layer - - 10s - 17.49s* 0.350s* 6.00s 0.012s 10s - 17.15s* 0.343s* 5.77s 0.011s

Total 10,602s - 2,271s - 3,973s 79.46s 8,067.90s 15.76s 13,282s - 22,778s 455.56s 44,850.24s 87.60s

Table 3. Evaluation time comparison of HEaaN and SEAL Library

Rot ptMult ptMult w/o Rescale Rescale BTS

HEaaN 85ms 21ms 2ms 19ms 23s

SEAL 69ms 17ms 2ms 15ms 140s*

models by using one CPU thread with one image and ex-
panded the models to test 50 images with 50 CPU threads
by allocating one CPU thread per image. On the other hand,
we perform ResNet models to test 512 images at once using
40 CPU threads.

Due to our CBC Conv method, the number of KSOs required
in convolutional layers of our model reduces to 48.75, which
is 40.37× smaller than 1, 968 in (Lee et al., 2022a) as an
amortized sense. When evaluating AppReLU, we require
22 ReLins and 2 BTSs whereas 26 ReLins and one BTS
is needed in (Lee et al., 2022a). Our work fully enjoys
SIMD operations in RNS-CKKS to reduce the number of
AppReLU operations from 19 to 5.75 in an amortized sense,
which is 3.30× faster.

6.1. Amortized Runtime

In ResNet-20, our implementation takes 15.76s for one im-
age classification in an amortized sense, which is 5.02×
faster than 79.46s in (Lee et al., 2022a). We note that the
amortized runtime in convolution layers is 1.79s, which is
6.94× faster compared to previous work. We also acceler-
ate AppReLU, Avg Pool, and FC Layer procedures in our
model by 4.78×, 39.22×, and 29.83×, respectively, faster
compared to previous work. We also implement ResNet-
110 to classify 10,000 images, which results in a 5.20×
reduction in amortized runtime.

6.2. Accuracy

We present our classification accuracies for ResNet-20/110
as in Table 4. We confirm that for the both case of ResNet-
20 and ResNet-110, our classification of ResNet-20 and
ResNet-110 has almost the same accuracy compared to

Table 4. Classification accuracy of ResNet20/110 on CIFAR-10.

model #test images backbone obtained

proposed ResNet-20 10,000 91.98% 91.96%
ResNet-110 10,000 93.63% 93.65%

(Lee et al., 2022a) ResNet-20 10,000 91.52% 91.31%
ResNet-110 10,000 93.5% 92.95%

the backbone. More precisely, we note that there is only
0.02% accuracy loss in the classification of ResNet-20 and
in the case of ResNet-110, accuracy increases by 0.02%,
compared to the backbone.

6.3. Memory Management

Our implementation for ResNet models has RAM usage
by 370.28GB at maximum, compared to the 384GB and
512GB for 1 image and 50 images, respectively, in (Snu-ccl,
2022). We note that most of our RAM usage comes from
the storage of plaintexts that encodes pre-trained parameters.
Thanks to our efficient CBC Packing method, the memory
usage for rotation keys is 6.91GB, which is relatively small
in the whole RAM usage.

7. Conclusions
We resolved the bottleneck for the CNN models by achiev-
ing high-throughput inference in a SIMD manner via our
CBC packing algorithm. From the perspective of batch in-
ference, we significantly reduce the amortized runtime of
inference, compared to the previous state-of-the-art work
(Lee et al., 2022a). We also increase the practicality of our
PPML model by downsizing key size for communication
with achieving almost the same accuracy compared to the
backbone models. We expect that our CBC packing method
can be applied to other CNN networks considering their
number of downsampling layers, which results in increased
efficacy.

8

High-Throughput Deep Convolutional Neural Networks on Fully Homomorphic Encryption Using Channel-By-Channel Packing

References
Al Badawi, A., Jin, C., Lin, J., Mun, C. F., Jie, S. J., Tan,

B. H. M., Nan, X., Aung, K. M. M., and Chandrasekhar,
V. R. Towards the alexnet moment for homomorphic
encryption: HCNN, the first homomorphic cnn on en-
crypted data with gpus. IEEE Transactions on Emerg-
ing Topics in Computing, 9(3):1330–1343, 2021. doi:
10.1109/TETC.2020.3014636.

AmazonAWS. Amazon personalize - developer guide; Get-
ting batch recommendations and user segments. https:
//docs.aws.amazon.com/personalize/
latest/dg/getting-started.html, 2023.

Bajard, J.-C., Eynard, J., Hasan, M. A., and Zucca, V. A full
RNS variant of FV like somewhat homomorphic encryp-
tion schemes. In Lecture Notes in Computer Science, pp.
423–442. Springer International Publishing, 2017. doi:
10.1007/978-3-319-69453-5 23. URL https://doi.
org/10.1007/978-3-319-69453-5_23.

Cheon, J. H., Kim, A., Kim, M., and Song, Y. Homomorphic
encryption for arithmetic of approximate numbers. In
Takagi, T. and Peyrin, T. (eds.), Advances in Cryptology –
ASIACRYPT 2017, pp. 409–437, Cham, 2017. Springer
International Publishing. ISBN 978-3-319-70694-8.

Cheon, J. H., Han, K., Kim, A., Kim, M., and Song, Y.
Bootstrapping for approximate homomorphic encryption.
In Nielsen, J. B. and Rijmen, V. (eds.), Advances in
Cryptology – EUROCRYPT 2018, pp. 360–384, Cham,
2018a. Springer International Publishing. ISBN 978-3-
319-78381-9.

Cheon, J. H., Han, K., Kim, A., Kim, M., and Song, Y. A full
RNS variant of approximate homomorphic encryption.
Selected areas in cryptography : ... annual international
workshop, SAC ... proceedings. SAC, 11349:347–368,
2018b.

Chou, E., Beal, J., Levy, D., Yeung, S., Haque, A.,
and Fei-Fei, L. Faster cryptonets: Leveraging spar-
sity for real-world encrypted inference. arXiv preprint
arXiv:1811.09953, 2018.

CryptoLab. HEaaN. https://heaan.it, ver. Septem-
ber 2022.

Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter, K.,
Maleki, S., Musuvathi, M., and Mytkowicz, T. CHET:
an optimizing compiler for fully-homomorphic neural-
network inferencing. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pp. 142–156, 2019.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp. 248–255, 2009. doi:
10.1109/CVPR.2009.5206848.

Gentry, C., Halevi, S., and Smart, N. P. Homomorphic eval-
uation of the AES circuit. In Lecture Notes in Computer
Science, pp. 850–867. Springer Berlin Heidelberg, 2012.
doi: 10.1007/978-3-642-32009-5 49. URL https://
doi.org/10.1007/978-3-642-32009-5_49.

Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.,
Naehrig, M., and Wernsing, J. Cryptonets: Applying
neural networks to encrypted data with high through-
put and accuracy. In Balcan, M. F. and Weinberger,
K. Q. (eds.), Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Pro-
ceedings of Machine Learning Research, pp. 201–210,
New York, New York, USA, 20–22 Jun 2016. PMLR.
URL https://proceedings.mlr.press/v48/
gilad-bachrach16.html.

Han, K. and Ki, D. Better bootstrapping for ap-
proximate homomorphic encryption. In Topics in
Cryptology – CT-RSA 2020, pp. 364–390. Springer
International Publishing, 2020. doi: 10.1007/
978-3-030-40186-3 16. URL https://doi.org/
10.1007/978-3-030-40186-3_16.

He, K., Zhang, X., Ren, S., and Sun, J. Deep resid-
ual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016, pp. 770–778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90. URL https://doi.org/
10.1109/CVPR.2016.90.

Juvekar, C., Vaikuntanathan, V., and Chandrakasan, A.
GAZELLE: A low latency framework for secure neu-
ral network inference. In Proceedings of the 27th
USENIX Conference on Security Symposium, SEC’18,
pp. 1651–1668, USA, 2018. USENIX Association. ISBN
9781931971461.

Kim, M., Jiang, X., Lauter, K., Ismayilzada, E., and
Shams, S. Secure human action recognition by
encrypted neural network inference. Nature Com-
munications, 13(1), August 2022. doi: 10.1038/
s41467-022-32168-5. URL https://doi.org/10.
1038/s41467-022-32168-5.

Krizhevsky, A. Learning multiple layers of fea-
tures from tiny images. pp. 32–33, 2009. URL
https://www.cs.toronto.edu/˜kriz/
learning-features-2009-TR.pdf.

Lee, E., Lee, J.-W., Lee, J., Kim, Y.-S., Kim, Y., No, J.-S.,
and Choi, W. Low-complexity deep convolutional neural

9

https://docs.aws.amazon.com/personalize/latest/dg/getting-started.html
https://docs.aws.amazon.com/personalize/latest/dg/getting-started.html
https://docs.aws.amazon.com/personalize/latest/dg/getting-started.html
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-69453-5_23
https://heaan.it
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5_49
https://proceedings.mlr.press/v48/gilad-bachrach16.html
https://proceedings.mlr.press/v48/gilad-bachrach16.html
https://doi.org/10.1007/978-3-030-40186-3_16
https://doi.org/10.1007/978-3-030-40186-3_16
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1038/s41467-022-32168-5
https://doi.org/10.1038/s41467-022-32168-5
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

High-Throughput Deep Convolutional Neural Networks on Fully Homomorphic Encryption Using Channel-By-Channel Packing

networks on fully homomorphic encryption using multi-
plexed parallel convolutions. In Chaudhuri, K., Jegelka,
S., Song, L., Szepesvari, C., Niu, G., and Sabato, S.
(eds.), Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Ma-
chine Learning Research, pp. 12403–12422. PMLR, 17–
23 Jul 2022a. URL https://proceedings.mlr.
press/v162/lee22e.html.

Lee, J., Lee, E., Lee, J.-W., Kim, Y., Kim, Y.-S., and No, J.-S.
Precise approximation of convolutional neural networks
for homomorphically encrypted data. arXiv preprint
arXiv:2105.10879, 2021.

Lee, J.-W., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin,
M., Lee, E., Lee, J., Yoo, D., Kim, Y.-S., and No, J.-S.
Privacy-preserving machine learning with fully homomor-
phic encryption for deep neural network. IEEE Access,
10:30039–30054, 2022b. doi: 10.1109/ACCESS.2022.
3159694.

Lee, Y., Lee, J.-W., Kim, Y.-S., Kim, Y., No, J.-S., and
Kang, H. High-precision bootstrapping for approximate
homomorphic encryption by error variance minimization.
In Dunkelman, O. and Dziembowski, S. (eds.), Advances
in Cryptology – EUROCRYPT 2022, pp. 551–580, Cham,
2022c. Springer International Publishing. ISBN 978-3-
031-06944-4.

SEAL. Microsoft seal (release 4.1.1). https://github.
com/Microsoft/SEAL, January 2023.

Snu-ccl. FHE-MP-CNN. https://github.com/
snu-ccl/FHE-MP-CNN, 2022.

10

https://proceedings.mlr.press/v162/lee22e.html
https://proceedings.mlr.press/v162/lee22e.html
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://github.com/snu-ccl/FHE-MP-CNN
https://github.com/snu-ccl/FHE-MP-CNN

High-Throughput Deep Convolutional Neural Networks on Fully Homomorphic Encryption Using Channel-By-Channel Packing

A. On the Cost Of Key Switching and the Size of the Key-Switching Keys
In this section, we describe how the modulus and dnum parameter affect key-switching operations in RNS-CKKS.

Let us set Q = QL =
∏L

i=0 qi as a product of (L+ 1) pairwise coprime integers and write Ql =
∏l

i=0 qi. The ciphertexts
consist of polynomials that are in the ring RQl

, and the key-switching keys are generated in the largest modulus PQ.
Here, P is called a temporary modulus and used in error control in KSOs. The security of the parameter is affected by the
polynomial degree N and the largest modulus size logPQ. For a fixed N and security parameter, the maximum value of
logPQ is determined. Here, The size and composition of P =

∏L′

j=0 pj are determined by the dnum value.

In the key switching process of RNS-CKKS, we have to increase the modulus of the ciphertext from Ql to PQl. To represent
the values modulo qi to values modulo pj , we need to recover the original value from RNS decomposition, by using the
Chinese Remainder Theorem (CRT). The CRT introduces an error that is in worst-case proportional to the number of primes
in Q. We can control this error by the temporary modulus technique (Gentry et al., 2012), and the error term is divided by P
in the key-switching process. In the original RNS-CKKS paper (Cheon et al., 2018b), in order to control the error in the key
switching process, they had to set the size of P and Q about the same, and the number of available levels L was low.

The work of (Han & Ki, 2020) used the gadget decomposition method (Bajard et al., 2017) and introduced the notion of
decomposition number dnum, to lower the size of P at the cost of the size of the key-switching keys and the computational
complexity of the key-switching process. dnum roughly means that we decompose the RNS basis {q0, q1, . . . , qL} into
d = dnum disjoint sub-bases so that the error from CRT is proportional to the size of each sub-basis. The size of P is then
required to be larger than the product of primes in each of the sub-basis.

However, In order to switch to the RNS representations for each sub-basis, the total cost of the key-switching process
increases, and is of O((dnum+1)L). Also, the size of the key-switching keys, including the relinearization key and rotation
keys, is also proportional to dnum.

A.1. Details on the Parameters used in HEaaN and SEAL Implementations and Communication Costs

Our choice of parameter preset provided in HEaaN (CryptoLab, ver. September 2022) named FGb uses dnum = 5, with P
consisting of 5 primes and Q consisting of 25 primes. A single key-switching key size is about 157.3MB for this parameter.

SEAL library supports the ‘full dnum’ scheme, using P as a single prime. In the work of (Lee et al., 2022a), the parameter
choice was 51bit base prime q0 and 51bit P , and 46bit multiplication primes. The total number of primes is 33, and
dnum = 32. Therefore, we can estimate that each key-switching key is of size 157.3MB ×32/5 ≃ 1007MB.

We use the (left) rotation key set of size 45: {±1,±2, 3,±4, 5, 6, 7,±8,±16,±24,±32, 33,±64, 66, 96,±128, 160, 192,
224,±256,±512,±768,±1024, 2048, 3072, 4096, 5120, 6144, 7168,±8192, 16384}, of total size about 6.91GB.

The implementation (Snu-ccl, 2022) of the work (Lee et al., 2022a) uses a rotation key set of size 258. The estimated size of
all the rotation keys is about 254GB.

For 512 images, our method packs all the images into 48 ciphertexts at level 5, having a total size of 0.29GB. In the method
of (Lee et al., 2022a), each ciphertext includes a single image, so 512 ciphertexts at level 31 needs to be sent, which adds up
to 15.25GB.

We also note without details that all the communication costs can be halved by using standard compression techniques for
RLWE ciphertexts by using seed-generated polynomials in encryptions and sending seeds instead of polynomials.

B. Convolution Algorithms for the Proposed Architecture
B.1. Image Packing

Here, we explain Image Packing algorithm. Because our inference’s first step is an image packing, this algorithm is a starting
point of our task. This receives imagevector and returns an encrypted image vector. insert(a,b) function is a function that
inserts elements from a to b at the end of the specified function. And, REncode(α) function is an encoding function that
encodes the real part as α and the imaginary part as zero. Since we use the only real part of our ciphertext, REncode is the
appropriate encoding method. Finally, each element of the result vector consists of its corresponding message ciphertext.
More concrete pseudo-algorithm in Algorithm1.

11

High-Throughput Deep Convolutional Neural Networks on Fully Homomorphic Encryption Using Channel-By-Channel Packing

B.2. Kernel Packing

In this section, we present algorithms to pack kernel values (Algorithm3 for multiplicands and Algorithm2 for summands)
into a single plaintext. The algorithm can be repeatedly used in all kinds of convolutions. We can use the same algorithm
also for the FC64 layer as KernelPackingMultiplicands(img, m, g = 1 , s = 1, idxr = 0, idxc = 0, l). image size is 32
for CIFAR-10 images. For 1× 1 convolution, the indices (row index, column index) = (0,0). For 3× 3 convolution, the
indices (row index, column index) ∈ {−1, 0, 1} × {−1, 0, 1}.

B.3. Convolution on Packed Ciphertext

B.3.1. BATCH NORMALIZATION

For the inference of CNN with batch normalization (BN), The BN layer can be integrated into the preceding convolution
layer. For the BN layer and Conv layer without bias y = x−µ√

ν+ϵ
∗ γ + β and y = Wx. We have the fused weight W and the

fused bias b satisfying y = Wx+ b = γ√
ν+ϵ

Wx+ (β − µγ√
ν+ϵ

). Therefore, we can consider the integrated convolution as
having altered weights and biases.

B.3.2. CONVOLUTION

We present our convolution algorithm as a part of the CBC Conv. Actually, the special architecture of CBC Conv consists of
its pre-masked kernels and Merge step. So the convolution in CBC Conv just follows the description of SISO convolution
method as in Gazelle (Juvekar et al., 2018).

C. Approximate ReLU Evaluation
C.1. Lazy Baby-Step Ginat-Step alogirhtm

Here, we explain a lazy Baby-Step Giant-Step (lazy BSGS) algorithm. The original BSGS algorithm is a well-known
evaluation algorithm. Although we will explain Odd lazy-BSGS algorithm with a monimial base, if we change the monomial
base to another base then we can also use this algorithm in the same manner with only different base elements. In some
cases, it is better to use another base element than a power base approximation.

In our cases, we use odd version of lazy-BSGS algorithm. Odd version is not different from the original ones. The only
difference is that we use only evaluate with odd degree parts. Our odd lazy-BSGS consists of three parts, which are
OddSetUp,OddBabyStep, and OddGiantStep. OddSetUp is a section that pre-calculate encrypted base elements with the
given ciphertext. OddBabyStep is an evaluation part for the given encrypted base elements, which are constructed in SetUp
if the evaluation polynomial degree is less than something. Giant Step is an evaluation part using a division algorithm
with an already-made base element. As stated before, The lazy BSGS is similar to BSGS algorithm. The difference is that
we postpone ReLin timing. There is an additional step after multiplication in this algorithm. In general, we add already
relinearized objects. If we add two elements without ReLin then we can reserve one ReLin for each multiplication. By using
this idea, we can reserve many ReLin in the whole evaluation. This is a crucial idea in the lazy sense BSGS. Algorithm6
gives us a pseudo-code of our algorithm. we need a ciphertext ct and a polynomial we want to evaluate. Corresponding to its
polynomial degree and ct, we can evaluate a polynomial with ct.

In BSGS algorithm, we have to choose two parameters k,l where l is the smallest positive integer and k is an even number
satisfying 2lk > n, where n is the degree of the given polynomial. Because there is no restricted choosing method of k,l, we
can take such parameters corresponding to our cases. By using this choice, we can make a more useful evaluation algorithm
in our inference. More detailed story about this, we will explain in the next subsection.

12

High-Throughput Deep Convolutional Neural Networks on Fully Homomorphic Encryption Using Channel-By-Channel Packing

Algorithm 1 ImagePacking

Input: Given image vector img
Output: encrypted image vector
procedure ImagePacking(img)

num← slot number
for i = 0 ; i < 32 ; i = i+ 1

input1← insert(img, . . . , img3072∗i+1024)
input2← insert(img3072∗i+1024 , . . . , img3072∗i+2048)
input3← insert(img3072∗i+2048 , . . . , img3072∗i+3072)

end for
for i = 0 ; i < num ; i = i+ 1

msg1i ← REncode(input1i)
msg2i ← REncode(input2i)
msg3i ← REncode(input3i)

end for
for i = 0 ; i < 3 ; i = i+ 1

ctres,i← Enc(msgi)
end for

return ctres
end procedure

Algorithm 2 KernelPackingSummands

Input: kernel value = m, level = l
Output: summand for any convolution.
procedure KernelPackingSummands(m, l)
Initialize message vector msg(num slots)
Initialize plaintext pt(num slots)
for i = 0 ;i <num slots;i = i+ 1

msg[i] = m
end for
pt = Encode(msg, l)
return pt

13

High-Throughput Deep Convolutional Neural Networks on Fully Homomorphic Encryption Using Channel-By-Channel Packing

Algorithm 3 KernelPackingMultiplicands (in case of 1× 1 and 3× 3 kernel)
Input: image size = img, kernel value = m, gap = g, stride = s, row index = idxr, column index = idxc, level = l
Output: multiplicand for stride s convolution with gap g.
procedure KernelPackingMultiplicands(img, m, g , s, idxr, idxc, l)
Initialize message vector msg(num slots)
Initialize plaintext pt(num slots)
if s == 1

for i = 0 ;i <num slots;i = i+ 1
msg[i] = m

end for
else

for i = 0 ; i <num slots/(img)2 ; i = i+ 1
for j = 0 ; j < img ; j = j + 1

for k = 0 ; k < img ; k = k + 1
if m%2 ∗ g ∗ s < g ∗ s && l%2 ∗ g ∗ s < g ∗ s
msg[i ∗ (img)2 + j ∗ img + k] = m

else
msg[i ∗ (img)2 + j ∗ img + k] = 0

end for
end for

end for
end if
if idxr == -1

for i = 0 ; i <num slots/(img)2 ; i = i+ 1
for j = 0 ; j < img ∗ g ; j = j + 1

msg[i ∗ (img)2 + j]=0
end for

end for
else if idxr == 1

for i = 0 ; i <num slots/(img)2 ; i = i+ 1
for j = 0 ; j < img ∗ g ; j = j + 1

msg[i ∗ (img)2 + ((img)2 − img ∗ g) + j]=0
end for

end for
end if
if idxc == -1

for i = 0 ; i <num slots/(img)2 ; i = i+ 1
for j = 0 ; j < img ; j = j + 1

for k = 0 ; k < g ; k = k + 1
msg[i ∗ (img)2 + j ∗ img + k]=0
end for

end for
end for

else if idxc == 1
for i = 0 ; i <num slots/(img)2 ; i = i+ 1

for j = 0 ; j < img ; j = j + 1
for k = 0 ; k < g ; k = k + 1
msg[i ∗ (img)2 + j ∗ img + (img − k)]=0
end for

end for
end for

end if
pt = Encode(msg, l)
return pt

14

High-Throughput Deep Convolutional Neural Networks on Fully Homomorphic Encryption Using Channel-By-Channel Packing

Algorithm 4 ConvBN (in case of 1× 1, 3× 3 kernel)
Input: imagesize = img , gap = g , stride = s, input channel = in ch , output channel = out ch , ciphertext bundle = ct ,
3-dim output kernel bundle = kernel, corresponding summand vector = sum.
Output: convolutioned ciphertext vecotor ctres adding summands.
procedure ConvBN(img, g , s, in ch, out ch, ct,kernel ,sum)
ks← size(kernel0,0)
If ks = 9

for i = 0 ; i < in ch ; i = i+ 1
for j = 0 ; j < 3 ; j = j + 1

for k = 0 ; k < 3 ; k = k + 1
cti,3∗j+k

rot ← Rot(cti , −(j − 1) ∗ img ∗ g − (k − 1) ∗ g)
end for

end for
end for
for i = 0 ; i < out ch ; i = i+ 1

for j = 0 ; j < in ch ; j = j + 1
cttemp1← multWithoutRescale (cti,0rot , kerneli,j,0)
for k = 1 ; k < 9 ; k = k + 1

cttemp2← multWithoutRescale (cti,krot , kerneli,j,k)
cttemp1← ctAdd(cttemp1,cttemp2)

end for
if i = 0

ctres,i← cttemp1

else
ctres,i← ctAdd(cttemp1, ctres,i)

end if
end for
ctres,i← ReScale(ctres,i)

end for
else

for i = 0 ; i < out ch ; i = i+ 1
for j = 0 ; j < in ch ; j = j + 1

cttemp ← multWithoutRescale(ctres,j , kerneli,j,0)
If i = 0

ctres,i← cttemp

else
ctres,i← ctAdd(cttemp, ctres,i)

end if
end for
ctres,i← ReScale(ctres,i)

end for
ctres← ptAdd(ctres,sum)
return ctres
end procedure

15

High-Throughput Deep Convolutional Neural Networks on Fully Homomorphic Encryption Using Channel-By-Channel Packing

Algorithm 6 Odd lazy Baby-Step Giant-Step (Lee et al., 2022c)
Input: A ciphertext ct of x and polynomial degree n with coefficients {ai}.
Output: An encryption of given polynomial p(x).
Let k be an even integer and l is the smallest postitive integer satisfying 2lk > n.
procedure OddSetUP(ct, k, l)

for i = 1 ; i ≤ log2(k) ; i = i+ 1
ct2i← ctMult(cti,cti)

end for
for i = 1 ; i < k/2 ; i = i+ 1
α := ⌊log2(2i+ 1)⌋
j := 2α−1

ct2i+1← ctMult(ctα, cti−j)
end for
for i = 1; i < l ; i = i+ 1
ct2ik ← ctMult(ct2i−1k, ct2i−1k)

end for
return {cti}

end procedure

procedure OddBabyStep({ai} , {cti} , k)
ctres← CMult(ct0 , a1)
for i = 1 ; i < k/2 and 2 < k ; i = i+ 1
ctres← ctAdd (ctres , CMult (cti, a2i+1)

end for
return

∑
i aicti

end procedure

procedure OddGiantStep({ai} , {cti}, k, l)
if 0 < ⌊log2(n/k)⌋ then

OddBabyStep({ai}, {cti} , k)
else

m := k ∗ log2(n/k)
r := {a0, ..., am−1}
q := {am, ..., an}
if (n+ 1)−m ≤ k then
ctql ← OddGiantStep(q, {ct2ik} ,k, l)

else
ctq ← OddGiantStep(q , {ct2ik} ,k, l)
ctql ← ReLin(ctq)

end if
ctr ← OddGiantStep(r , {ct2ik}, k ,l)
ctres← multWithoutRelin(ctα, ctql)
ctres← ctAdd(ctres , ctr)

end if
return ctres
end procedure

C.2. ApproxReLU algorithm

Here we explain our ApproxReLU algorithm with a basic polynomial evaluation algorithm. Because OddGiantStep makes
some part of polynomial evaluation with the given its coefficients, we can evaluate by using this algorithm. Since we use
multWithOutRelin operation in Lazy BSGS and we have to match between objects to operate some particular ones in
HEAAN, we have to ReLin before the ending of the evaluation algorithm. As stated before, we can save 4 ReLin times in

16

High-Throughput Deep Convolutional Neural Networks on Fully Homomorphic Encryption Using Channel-By-Channel Packing

one AppReLU.

AppReLU algorithm in Algoritm7 is our polynomial evaluation algorithm with the composition of low-degree polynomials.
Since we only use the real part of the message, if we encrypt this message and implement an inferences model, errors
will stack on the imaginary part and this makes our model fall into the catastrophic situation((Lee et al., 2022a). So,
we use immaginary-BTS the first BTS in AppReLU. After that, we evaluate each polynomial sequentially. As stated in
Algoritm6, we need to choose two parameters, k and l corresponding to each polynomial degree. We can handle the
trade-off between the number of ReLin and consuming depth. That is, if we want to reduce more consuming depth then, we
can choose such parameters satisfying our needs. From this property, we can save more ReLin times than the original lazy
BSGS case.

Algorithm 7 ApproxReLU

Input: Encrypted basis elements , given polynomial degree n and its coefficients
Output: An evaluating polynomial with the given ciphertext.
Let k be an even integer and l is the smallest positive integer satisfying 2lk > n.

procedure OddEvalPoly(ct, {ai}, k, l)
GS basis← OddSetUP(ct, k, l)
ctpoly ← OddGiantStep({ai}, GS basis, k, l)
p(ct)← ReLin(ctpoly)

return p(ct)
end procedure

procedure ApproxReLU(ct, {ai},{bi},{ci})
Note that both ki and li are selected corresponding to each polynomial degree and trade-off(need to explain in the above
sentence).
ctimg ← imaginary BTS(ct)
p1(ct)← OddEvalPoly(ctimg ,{ai}, k1,l1)
p2(p1(ct))← OddEvalPoly(p1(ct),{bi}, k2,l2)
p2(p1(ct))← BTS(p2(p1(ct)))
p3(p2(p1(ct)))← OddEvalPoly(p2(p1(ct)),{ci},k3,l3)

return p3(p2(p1(ct)))
end procedure

17

High-Throughput Deep Convolutional Neural Networks on Fully Homomorphic Encryption Using Channel-By-Channel Packing

Algorithm 5 MergeCiphertext

Input: ciphertext vector = ct, imagesize = img , stride = s and gap = g
Output: rotated sum ciphertext ctsum
Note that ctres is an initialized ciphertext vector and ctsum is an initialized ciphertext which is an encryption of zero
message.
procedure MergeCiphertext(ct, img , s , g)

for i = 0 ; i < s ; i = i+ 1
for j = 0 ; j < s ; j = j + 1

cts∗i+j
res ← Rot(cts∗i+j , −(img ∗ g ∗ i)− j ∗ g)

ctsum ← ctAdd(cts∗i+j
res , ctsum)

end for
end for

return ctsum
end procedure

18

