
Cassiopeia:
Practical On-Chain Witness Encryption

Schwinn Saereesitthipitak and Dionysis Zindros

Stanford University

Abstract. Witness Encryption is a holy grail of cryptography that re-
mains elusive. It asks that a secret is only revealed when a particular
computational problem is solved. Modern smart contracts and block-
chains make assumptions of “honest majority”, which allow for a social
implementation of Witness Encryption. The core idea is to make use
of a partially trusted committee to carry out the responsibilities man-
dated by these functionalities – such as keeping the secret private, and
then releasing it publicly after a solution to the computational puzzle is
presented. We propose Cassiopeia, a smart contract Witness Encryption
scheme (with public witness security) and provide an open source imple-
mentation that can be utilized as an oracle by others within the broader
DeFi ecosystem. We devise a cryptoeconomic scheme to incentivize hon-
est participation, and analyze its security under the honest majority and
rational majority settings. We conclude by measuring and optimizing gas
costs and illustrating the practicality of our scheme.

Keywords: Witness Encryption · Publicly Verifiable Secret Sharing ·
Smart Contract.

1 Introduction

Witness Encryption [16] is a cryptographic scheme where a message is encrypted
such that it can only be decrypted when a solution (also called the “witness”)
to a computational puzzle is presented. For example, a message may be witness-
encrypted such that it can only be decrypted if for some connected graph, a
Hamiltonian cycle is found. A particularly useful instantiation of Witness En-
cryption in the blockchain setting is Timelock Encryption [25, 27, 29], where
a message is encrypted such that it can only be decrypted after a set unlock
time. This enables important use cases in DeFi such as sealed bid auctions and
front-running prevention [1].

Though Witness Encryption is still impractical under standard assumptions,
the “honest majority” assumption in modern blockchains can be leveraged to
make Witness Encryption practical. We do so by asking a committee to keep
the secret and release it for us when the witness is presented. As long as a major-
ity of the committee is honest, the secret is revealed at the right time. Our goal is
to make Witness Encryption practical and composable for use in DeFi. Further-
more, we hold committee members accountable for releasing correct decryption
keys in a timely manner.

Our Contributions. We summarize our contributions as follows:

1. We put forth a smart contract-based construction for Witness Encryption.
2. We explore whether our scheme is correct and secure under the honest ma-

jority and rational majority settings.
3. We implement the construction as an open-source Solidity smart contract,

benchmark gas usage on Ethereum, and provide our parameterization of the
scheme.

Construction Overview. Suppose Alice wants to encrypt a secret with an instance
of a puzzle. Alice will entrust a fixed committee to keep her secret and release it if
someone presents a solution to the puzzle to the smart contract. She trusts that
the majority of the committee are honest. Alice splits her secret into shares,
one for each committee member, such that a majority of them are required
to reconstruct the original secret and each committee member is only able to
decrypt its own share. Alice then calls a smart contract function to publish the
encrypted shares for them to access. She also attaches a zero-knowledge proof of
knowledge of the secret (in the form of a zkSNARK) to ensure she is honest and
actually knows the secret. The contract verifies that Alice split her secret into
shares correctly. When the contract receives a solution to the puzzle, it enables
committee members to submit their decrypted shares to the contract. When a
committee member submits a share, the contract verifies that it is consistent
with the corresponding encrypted share Alice posted before accepting the share.
As long as at least a majority of the committee members revealed their shares,
Alice’s secret can be reconstructed by anyone.

We also propose an incentivized version of the above scheme which includes
fees and slashing. Each committee member deposits collateral into the contract.
If a committee member correctly reveals its decrypted shares, it is awarded a fee.
Otherwise, its collateral is slashed. We ensure the fee is sufficient to incentivize
honest committee member participation, using the risk-free rate as a benchmark
for the opportunity cost. Note that the incentivized version of the scheme requires
Alice to provide a maximum secret lifespan upfront after which the secret can
be decrypted even without a witness.

Related Work. General-purpose Witness Encryption was introduced by Garg et
al. [16]. The standard security definition of Witness Encryption is extractable se-
curity [18]. Most current Witness Encryption schemes are based on multilinear
maps [16,17] or on indistinguishability obfuscation (iO) [15]. Both construction
paths require strong assumptions and are computationally impractical. One al-
ternative is to use weaker variants of Witness Encryption that encompass only
a specific subset of NP [4].

Another alternative to build practical Witness Encryption, which we explore
in this work, is to do social witness encryption where a committee is entrusted
up to an adversarial threshold. Goyal et al. [19] were the first to propose an
extractable social Witness Encryption scheme constructed from Proactive Secret
Sharing (PSS) that leverages a blockchain and its Proof-of-Stake validators as

2

the committee. Though there have been multiple previous works proposing social
WE equivalents [8, 12, 19], we are the first to provide an incentivized smart
contract instantiation. One particularly useful application of Witness Encryption
and blockchains is Timelock Encryption [25,27,29]. Social Timelock Encryption
leveraging Identity-Based Encryption (IBE) [6] has been put forth in i-TiRE [1]
and tlock [24]. Dottling et al. [12] proposed a social Timelock Encryption scheme
using a weaker Signature-based Witness Encryption (SWE) scheme.

The critical building block for social Timelock Encryption and Witness En-
cryption is a Secret Sharing Scheme [32]. In the blockchain setting, threshold
encryption was previously explored in works by Benhamouda et al. [3] and
Goyal et al. [19]. For accountability, we use Publicly Verifiable Secret Sharing
(PVSS) [10,33]. For our implementation, we use SCRAPE [9] as the underlying
PVSS scheme.

Applications. Witness Encryption can be used to build powerful cryptographic
primitives such as succinct Functional Encryption [7,28] for Turing machines [18].
When combined with a blockchain, Witness Encryption can also be leveraged to
achieve fairness against dishonest majority in a secure multi-party computation
protocol [11]. More practically, it can also be used to instantiate Timelock En-
cryption, which can be applied towards building new forms of wallets [34] among
other applications.

2 Preliminaries

2.1 Symmetric Encryption
Let s be the secret key and m be the message to encrypt. A symmetric encryption
scheme contains an encryption algorithm Encs(m) that produces a ciphertext c
and a decryption algorithm Decs(c) that produces the original message m.

2.2 Secret Sharing
A threshold secret sharing scheme [32] consists of a dealer D, a secret s, a com-
mittee of n participants p1, p2, . . . , pn, and a threshold t. To share the secret, D
calls a function share(s) which splits s into shares s1, s2, . . . , sn and distributes
these to participants such that each participant pi only has access to si. A set
of at least t participants can work together to combine their shares si1 , si2 , . . . ,
using the function recover(si1 , si2 , . . .) to obtain the original secret. On the other
hand, if less than t participants work together to combine their shares, no infor-
mation can be learned about the secret.

2.3 Publicly Verifiable Secret Sharing (PVSS)
Publicly verifiable secret sharing schemes [9,10,23,30,31,33] are augmentations
of secret sharing schemes such that any verifier V (who does not need to be
the dealer or part of the committee) can verify that the secret shares are valid.
PVSS schemes generally follow the steps below [9]:

3

– Setup: Given a security parameter λ, each participant pi calls Gen(1λ) to
generate a public-private key pair (pki, ski) and shares pki publicly.

– Distribution: Let s be the secret to be shared by the dealer. The dealer
calls genDist(s, [pki]) to generate shares s1, . . . , sn and encrypts each share
si with pki to produce ŝi. The dealer also generates a proof πD that all ŝi
are valid and consistent with one another.

– Verification: Any external verifier V calls verifyDist([ŝi], [pki], πD) to non-
interactively verify, using all publicly available information, that the en-
crypted shares are consistent with one another.

– Reconstruction:
• Each pi publishes s′i = decrypt(ŝi, ski), along with a proof πi that s′i = si.
• V calls verifyShare(i, ŝi, s′i, πi) for every participant’s contribution to ver-

ify that all s′i = si.
• With all shares known, anybody can call reconstruct(s′i1 , . . . , s′it) on the

revealed shares to obtain the secret s.

PVSS schemes generally have the following properties [23]:

– Correctness: If the dealer is honest and a set of at least t parties are
honest, then verifyDist passes during distribution, verifyShare passes during
reconstruction for all honest parties, and reconstruct yields the original secret.

– Verifiability: If verifyDist passes, then ŝi are consistent secret shares with
overwhelming probability, and if verifyShare passes, then ŝ′i = si with over-
whelming probability.

– Secrecy: Prior to reconstruction, any set of less than t participants cannot
learn any information about the secret.

2.4 Zero-Knowledge Succinct Non-Interactive Argument of
Knowledge (zkSNARK)

Let C be an efficiently computable boolean circuit. We define the relation RC =
{(xC , wC) | C(xC , wC) = 1}, where (xC , wC) is an instance-witness pair. A zk-
SNARK consists of a triple of probabilistic polynomial time algorithms (G,P, V)
as follows [5, 21]:

– G is a generator that, upon receiving a security parameter input λ, generates
a reference string σ and a verification state τ .

– A prover P (σ, xC , wC) that outputs a proof π for the instance xC and the
witness wC .

– A verifier V (τ, xC , π) that outputs 1 if the proof is valid and 0 otherwise.

zkSNARKs have the following properties:

– Correctness: An honestly-generated proof π is always accepted by an hon-
est verifier V .

– Soundness: A proof π generated with an invalid witness will not be accepted
by an honest verifier V with overwhelming probability.

– Zero Knowledge: The interaction between prover and verifier reveals neg-
ligible information about the witness.

4

2.5 Witness Encryption

In a Witness Encryption scheme, a message is encrypted such that the cipher-
text can only be decrypted if a witness is presented as a solution to an NP
problem [16]. For example, a message can be encrypted such that it can only be
decrypted with a solution to an instance of the 3-SAT problem. Concretely, let
R be a relation of an NP language L such that for each x ∈ L, there exists some
w such that (x,w) ∈ R and for all x /∈ L such a witness does not exist. The
scheme has public witness security if the witness is public during decryption,
and the message is revealed publicly. A Witness Encryption scheme, parame-
terized by a security parameter λ, consists of PPT encryption and decryption
functions WE.EncR(1λ, x,m) and WE.DecR(c, x, w) such that the following prop-
erties hold [25]:

– Correctness: For any plaintext message m, instance x ∈ L, and witness w
such that (x,w) ∈ R, WE.DecR(WE.EncR(1λ, x,m), x, w) = m.

– Extractable Security: A PPT adversary given c = WE.EncR(1λ, x,m) is only
able to extract information about m if she can also produce a witness w such
that (x,w) ∈ R, except with negligible probability.

2.6 Risk-Free Rate

The fees awarded to committee members should be at least the return on an
exogenous risk-free source of yield, otherwise rational committee members will
stop participating in the protocol. Therefore, we assume there exists a per-block
risk-free rate r agreed upon by all parties participating in the protocol. At any
block, anyone can deposit M and earn M(1+r) after one block via an exogenous
risk-free source of yield. The opportunity cost for not earning risk-free yield on
M for k blocks is M(1 + r)k −M .

3 Construction

The Cassiopeia smart contract is instantiated for a fixed committee with known
public keys of size n and a threshold t. The threshold t is a public parameter
indicating the minimum number of honest committee members required for the
construction to be correct and secure. Correctness means that the secret can
be decrypted if the witness becomes available. Security means no information
about the secret can be obtained unless a witness becomes available.

Suppose the dealer wants to perform social Witness Encryption with public
witness security on a message m (Algorithm 1). First, the dealer chooses a rela-
tion R and a corresponding instance x. Then, the dealer generates a random bit
string s that can be simultaneously used as the secret in a PVSS scheme and the
key of a symmetric encryption scheme. The dealer runs PVSS.genDist(s, [pki])
to generate the encrypted secret shares [ŝi] along with a proof πD that the
generated encrypted secret shares are consistent with one another. Note that a
valid proof πD guarantees that Cassiopeia.encrypt prevents committee members

5

from maintaining shares of invalid secrets. It becomes vital to correctness in the
incentivized construction in Section 4.

Denote c = ([ŝi], πD) as the PVSS ciphertext. Using a symmetric encryption
scheme, the dealer encrypts m with the key s to produce ĉ = Encs(m). The
dealer calls the smart contract function encrypt to register the PVSS ciphertext
and instance on chain. The contract checks whether the proof πD is valid, and
if so, makes the encrypted secret shares available to the committee members.
A unique identifier for the secret id is returned. Subsequently, ĉ is dispersed to
public storage (using the function disperse), either off-chain to optimize gas costs
(e.g. IPFS) or on-chain for data availability.

Algorithm 1 Off-chain procedure run by dealer to witness-encrypt a secret
1: function WE.EncR(1λ, x,m)
2: s

$← {0, 1}λ
3: ĉ← Encs(m)
4: c← PVSS.genDist(s, [pki])
5: y ← H(s ∥ c ∥R∥x)
6: π ← P (σ, (c,R, x, y, [pki]), s)
7: id← Cassiopeia.encrypt(c,R, x, y, π)
8: disperse(id, ĉ)
9: end function

Anybody who obtains a valid witness w can call the smart contract function
claim to start decryption (Algorithm 2). The smart contract checks that w is
indeed a valid witness such that (x,w) ∈ R. If so, a flag Mid is set indicating
the secret has been claimed. Note that to support private decryption, one could
provide a zkSNARK proof as the witness w for a boolean circuit corresponding
to x and R [19]. This way, w reveals nothing about the actual secret witness
while still retaining the same correctness and security properties.

Now, committee members will decrypt their encrypted shares ŝi and sub-
mit the result on chain (Algorithm 3). A committee member does so by first
using PVSS.decrypt to obtain a decryption s′i and a proof πi that s′i is a valid
decryption, i.e. s′i = si. The committee member then submits the share on-chain
by calling the smart contract function submitShare, which verifies the proof and
stores s′i in the set of decrypted shares Sid inside the contract. Once |Sid| ≥ t,
anyone can reconstruct the secret s using PVSS.reconstruct. To obtain the orig-
inal message, ĉ is fetched from public storage (using the function fetch) and
decrypted using s as the key to produce m = Decs(ĉ). Note that for our correct-
ness proof to follow, we assume committee members submit their shares within
∆ blocks of the secret being claimed, where ∆ is a fixed parameter. The full
decryption procedure is written in pseudocode below.

However, this protocol still vulnerable to malleability attacks. Concretely, let
x′ be an instance of relation R′ for which the adversary already knows a valid
witness w′. The adversary can act as a malicious dealer, calling encrypt with c

6

Algorithm 2 Off-chain decryption procedure run by anyone in possession of
the witness w
1: id← identifier of secret to decrypt
2: function WE.DecR(1λ, c, x, w)
3: Cassiopeia.claim(id, w)
4: ▷ Wait for committee members to submit shares
5: upon |Cassiopeia.Sid| ≥ t do ▷ Monitor smart contract for state change
6: s← reconstruct(Cassiopeia.Sid)
7: fetch(ĉ)
8: m← Decs(ĉ)
9: end upon

10: end function

Algorithm 3 Off-chain procedure run by any committee member submitting
shares
1: i← index of own public key in [pki]
2: upon Cassiopeia.Mid = claimed do ▷ Monitor smart contract for state change
3: ([ŝi], πD)← Cassiopeia.Cid.c
4: (s′i, πi)← PVSS.decrypt(ŝi, ski)
5: Cassiopeia.submitShare(s′i, πi, id, i)
6: end upon

and x′ instead of x, then call claim with w′ to notify committee members to start
submitting their shares (and thereby start decryption). Therefore, the adversary
can bypass the requirement of finding a valid witness w for x to decrypt the
secret encoded by c.

To mitigate this issue, we ask the dealer to provide a proof in zero knowledge
that he knows s and he intends to encrypt s with the instance x. In particular,
the dealer generates a commitment to the secret and ciphertext, tying it to R
and x by computing y = H(s ∥ c ∥R∥x), where H is a hash function modeled as
a random oracle. The dealer then generates a zkSNARK proof of knowledge of
s such that if the encrypted shares were decrypted and recombined, the result
would be s, and that y = H(s ∥ c ∥R∥x). More formally, the dealer generates the
proof π = P (σ, (c,R, x, y, [pki]), s) in Line 6 of Algorithm 1 using the boolean
circuit in Algorithm 4. Without knowledge of s, an adversarial dealer cannot use
the same ciphertext c with another instance x′.

Algorithm 4 zkSNARK circuit defined by RC

Require: xC = (c,R, x, y, [pki]), wC = s
1: y′ ← H(s ∥ c ∥R, x)
2: c′ ← PVSS.genDist(s, [pki])
3: return y′ = y ∧ c′ = c

7

When the dealer calls encrypt, he must include y and π. The contract verifies
that the zero knowledge proof π is valid with respect to c, R and y, on top
of already verifying the PVSS ciphertext as outlined above. Concretely, the π
must be valid according to V (τ, (c,R, x, y, [pki]), π) = 1. Without a valid π, an
adversary would not be able to carry out a malleability attack. The Cassiopeia
smart contract is written in pseudocode in Algorithm 5.

Algorithm 5 Cassiopeia Smart Contract
1: contract Cassiopeia
2: C, S,M ← ∅
3: function encrypt(c,R, x, y, π)
4: ([ŝi], πD)← c
5: require(V (τ, (c,R, x, y, [pki]), π) = 1 ∧ PVSS.verifyDist([ŝi], [pki], πD))
6: id← H(c,R, x)
7: Cid ← (c,R, x)
8: return id
9: end function

10: function claim(id, w)
11: {R, x, . . . } ← Cid

12: require((x,w) ∈ R)
13: Mid ← claimed
14: end function
15: function submitShare(s′i, πi, id, i)
16: require(Mid = claimed)
17: ([ŝi],⊥)← Cid.c
18: PVSS.verifyShare(i, ŝi, s′i, πi)
19: Sid,i ← s
20: end function
21: end contract

4 Incentives

Here, we augment the scheme in Section 3 to incentivize committee members
to act honestly. We will create incentives for the committee to reveal on time
so that the secret is recoverable. This will be done by paying out a reward to
the committee members who reveal at the right time, while slashing committee
members who do not. If every committee member is honest, everyone will be
rewarded. This way, we will ensure correctness. Unfortunately, we cannot use
slashing to ensure security, as malicious committee members can always reveal
confidential information off-chain and the smart contract has no way of knowing
this, so our goal will only be correctness.

Initially, the dealer chooses a reparation price, which they are guaranteed to
be paid in case the secret is irrecoverable. Next, the dealer calculates a holding
fee which is a function of the reparation price. The larger the reparation price,

8

the larger the holding fee must be. He begins the Witness Encryption procedure
by paying the holding fee into the contract. The holding fee is the incentive for
committee members to participate honestly in the protocol. At the same time,
each committee member puts in a certain collateral, which is held by the contract
in escrow until the completion of protocol. If the majority of committee members
are dishonest and the secret is irrecoverable, the slashing amounts are sufficient
to add up to the reparation price which is used to appease the dealer in the case
of failure.

Consider the happy path, where the dealer and all committee members are
honest. After a call to claim with a valid witness, committee members submit
their shares. As soon as a committee member submits a valid share, they receive
their reward. Let f be the holding fee of the secret. The holding fee is split
equally amongst all committee members to cover their reward payments, so
each committee member’s reward is f

n .
Now consider the scenario where the committee has at least t honest mem-

bers, but not all of them are honest. Dishonest committee members may choose
to not submit their shares. If any committee member does not submit their
share, they do not receive their reward of f

n . Instead, it is transferred back to
the dealer.

Now consider the case where the secret is irrecoverable. In particular, there
are less than t honest committee members who submit their shares. Every dis-
honest committee member has their collateral slashed equally, on top of already
not receiving their reward. Note that we mentioned in Section 3 that the proof
πD is needed to ensure correctness incentives in this scheme. This is because
if we did not check that the PVSS output was consistent, the adversary could
generate invalid secret shares, yet the committee members would be slashed.

Suppose only t′ committee members reveal valid shares and the reparation
price is a. The sum of every dishonest committee member’s slashed collateral and
forfeited reward must add up to a. Therefore, the amount of collateral slashed
per committee member b = a

n−t′ −
f
n . The contract keeps track of the collateral

balance cli for each committee member i that is deducted when slashed and
added to when rewards are earned from submitting valid shares. We introduce a
function slash (Algorithm 6) that slashes committee members and transfers the
reparation price to the dealer as outlined above.

To ensure the contract can use a committee member’s collateral to pay the
reparation price, the committee member must have deposited at least b inside the
contract before encrypt can be called. However, the number of honest committee
members who will submit valid shares t′ is unknown at the time of an encrypt
request. Therefore, the contract must ensure that each committee member has
deposited at least the maximum slashable amount given the reparation price.
Let b̂ be the amount of funds a committee member is required to deposit.

b̂ = max
0≤t′≤t−1

b =
a

n− t+ 1
− f

n
(1)

Notice that each committee member’s collateral is locked inside the contract
for the lifetime of the secret. However, the locked funds do not earn interest,

9

Algorithm 6 Cassiopeia slash function
1: function slash(i)
2: require(Mid = claimed ∧ block.number ≥ Did)
3: {dealer, a, f, . . . } ← Cid

4: t′ ← |Sid|
5: G← 0
6: b← a

n−t′ +
f
n

7: b̂← a
n−t+1

+ f
n

▷ Equation 1
8: for i ∈ [n] do
9: if Sid,i = ⊥ then

10: if t′ < t then
11: cli ← cli − b
12: G← G+ b
13: end if
14: G← G+ f

n

15: end if
16: end for
17: dealer.send(G)
18: l← l − b̂
19: Mid ← slashed
20: end function

which introduces an opportunity cost for committee members. To incentivize
committee members to participate in the protocol honestly, the reward must be
higher than the opportunity cost. Concretely, let d be the maximum lifespan of
the secret in blocks. The opportunity cost for locking b̂ as collateral inside the
contract for d blocks is

o = b̂((1 + r)d − 1) (2)

where r is the per-block risk-free rate agreed upon by all committee members.
In fact, we will see that the reparation price a is limited by the fee and the

risk free rate. Intuitively, the higher the risk free rate is and the lower the fee is,
the lower the maximum reparation price will be. Suppose committee members
agree upon a target time-valued net profit β for honest committee members,
where β = f

n −o. Combining this with Equation 1 and Equation 2, we have that
the maximum value of a is:

a =
(fn (1 + r)d − β)(n− t+ 1)

(1 + r)d − 1
(3)

Instead of letting the user specify the reparation price, we would like the
contract to compute the reparation price a directly from the holding fee. To
do so, the maximum lifespan of the secret d must be known. However, for an
arbitrary relation R the witness may take an arbitrary amount of time to be
found. Therefore, we require the dealer to also provide the maximum number
of blocks T that committee members will keep the secret for. Let st be the
block where the encryption request was first made. We modify the original claim

10

function to start decryption at block st + T even if no valid witness has been
revealed. Alternatively, the protocol could also be defined such that all secret
shares are destroyed after time st+ T .

The lifespan of the secret d also includes the number of blocks between when
the secret is claimed and when committee members are slashed, after which the
secret can be decrypted. For the maximum lifespan of the secret to be known,
everyone must agree upon a share submission deadline Did after which commit-
tee members are slashed. The deadline Did is set to ∆ blocks (corresponding to
the liveness parameter of the blockchain [14]) after the secret is claimed. Hon-
est committee members must submit their shares by block Did. Therefore, the
secret’s maximum lifespan is d = T +∆, and is known at encryption time. We
modify the claim function as in Algorithm 7.

Algorithm 7 Modified Cassiopeia claim function
1: function claim(id, w)
2: require(Mid = ⊥)
3: {st, x, T} ← Ci

4: require(block.number ≥ st+ T ∨ (x,w) ∈ R)
5: Did ← block.number +∆
6: Mid ← claimed
7: end function

We call a secret active if slash has not been called for the secret. Because
many secrets may be active, the contract must ensure it has sufficient funds in
escrow to cover all potential reparations. Let l be the sum of b̂ for all secrets. In
encrypt, the contract ensures the remaining collateral cli − l is at least the new
secret’s b̂. The fully modified encrypt function is shown below in Algorithm 8.

Lastly, we must allow committee members to deposit and withdraw their col-
lateral to collect fees or stop participating in the protocol. The only requirement
is that the remaining collateral is sufficient to cover the worst case reparation
price for all active secrets. Concretely, committee member i can withdraw δcl
only if cli − δcl ≥ l.

5 Analysis

We assume a synchronous network model where there exists a probabilistic poly-
nomial time adversary. The adversary controls some committee members, which
can do whatever they like. Let PVSS = (genDist, verifyDist, decrypt, verifyShare,
reconstruct) be a correct and verifiable PVSS scheme that has secrecy, (G,P, V)
be a correct and extractably secure zkSNARK scheme, (Enc,Dec) be a correct
and secure symmetric encryption scheme, L be a safe and live ledger, and H
be a random oracle. We will analyze the security properties of both the non-
incentivized and incentivized constructions.

11

Algorithm 8 Modified Cassiopeia encrypt function
1: function encrypt(c,R, x, T, y, π) payable
2: ▷ Incentives
3: d← T +∆
4: f ← msg.value
5: a← (f

n
(1+r)d−β)(n−t+1)

(1+r)d−1
▷ Equation 3

6: b̂← a
n−t+1

− f
n

▷ Equation 1
7: for i ∈ [n] do
8: require(cli ≥ l + b̂)
9: end for

10: l← l + b̂
11: st← block.number
12: ▷ Verify PVSS and zkSNARK
13: ([ŝi], πD)← c
14: require(V (τ, (c,R, x, T, y, [pki]), π) = 1 ∧ PVSS.verifyDist([ŝi], [pki], πD))
15: id← H(c,R, x, T)
16: Cid ← {c,R, x, T, [ŝi], f, a, st}
17: return id
18: end function

5.1 Security Analysis of Non-incentivized Construction

Theorem 1. Correctness (Informal). Consider an honest dealer and a com-
mittee of size n such that at least t members are honest. The social Witness
Encryption construction in Section 3 is correct. See Appendix A for proof.

Theorem 2. Security (Informal). Consider an honest dealer, and a committee
of size n such that less than t members are adversarial. The social Witness
Encryption construction in Section 3 is extractably secure. See Appendix B for
proof.

At the heart of the proof of security lies the following Lemma. Intuitively,
the attack that Lemma 1 ensures protection from is a malleability attack. In
particular, an adversary may use the arguments (c,R, x, y, π) of a previous en-
crypt call to generate arguments (c′,R′, x′, y′, π′) such that the decryption of c′
can be used to infer the decryption of c (i.e. the original secret).

Lemma 1. Suppose an adversary is given the values c,R, x, y, π for secret s
generated by an honest dealer, and the adversary interacts with the contract.
The adversary cannot obtain s without a witness w such that (x,w) ∈ R. See
Appendix B for proof.

Now, we analyze the security properties of the non-incentivized scheme under
honest majority. Let h be the number of honest committee members. Assume
that a majority of committee members are honest (i.e. h ≥ n

2 + 1). If t = n
2 ,

then the construction is correct, since h ≥ t. Furthermore, the construction is
also extractably secure, because the number of adversaries n− h ≤ n

2 − 1 < t.

12

Note that the construction may be instantiated with different values of t.
Since the minimum number of honest committee members needed to ensure
correctness and security is t and n− t+1 respectively, higher t ensures a higher
degree of correctness for lower security and vice versa. When both correctness
and security are desired with the lowest possible minimum required number of
honest committee members, we optimize for argmint min(t, n − t + 1), which
occurs when t = n

2 , corresponding with the honest majority case.

5.2 Security Analysis of Incentivized Construction

We assume there exists a fixed per-block risk-free rate r, as outlined in Sec-
tion 2.6.

Lemma 2. If a committee member submits a valid share within the grace period,
its time-valued net compensation is at least β.

Proof (Sketch). Since the PVSS scheme is verifiable, the contract will only
accept the dealer’s PVSS ciphertext c if it is valid. Furthermore, the contract
will only accept a committee member’s encrypted share if it is correct. Therefore,
a committee member will only be paid its reward of f

n if it submits a valid share.
Let d be the maximum lifetime of the secret. Since the committee member also
deposits its collateral for d blocks, the committee member’s time-valued net
compensation is

f

n
− o =

f

n
− (

a

n− t+ 1
− f

n
)((1 + r)d − 1) = β

Theorem 3. Correctness (Informal). Consider an honest dealer, and a com-
mittee of size n such that all maintain sufficient collateral for the holding f and
at least t members are rational. The social Witness Encryption construction in
Section 4 is correct.

Proof (Sketch). We follow the same proof as that of Theorem 1 but with added
steps. If a committee member does not submit a valid share by the deadline, they
forfeit both their reward and are slashed. By Lemma 2, a committee member
who submits their shares will receive a net gain of β. Since we assume that β
is a sufficient reward, rational committee members will choose to submit valid
shares of the secret on time. Because we assume all committee members hold
sufficient collateral in the contract, WE.EncR completes in polynomial time.
Since there are at least t rational committee members, Sid contains at least t
valid shares. As in the proof of Theorem 1 above, the correctness of PVSS ensures
that reconstruct(Sid) = s, and by the correctness of the symmetric encryption
scheme, Decs(ĉ) = m. Therefore, WE.DecR correctly recovers m in polynomial
time.

Theorem 4. Payout (Informal). Consider an honest dealer, and a committee
of size n such that all maintain sufficient collateral for the holding f . If less than
t committee members submit valid shares, the dealer receives a.

13

Proof (Sketch). Let t′ be the number of committee members who did not submit
valid shares. Committee members who do not submit valid shares do not receive
their reward, which is given to the dealer in Line 14 of Algorithm 6, along
with their share of the reparation fee a

|t′| −
f
n . The reparation fee can always

be deducted from each committee member’s collateral because b̂ ≥ a
|t′| −

f
n .

Therefore, the dealer receives a in total.

6 Implementation

We implement all on-chain components of the non-incentivized scheme in Solid-
ity and off-chain components in Typescript and Rust. We use SCRAPE [9] as
the underlying PVSS scheme by adapting the implementation given by Gurkan
et al. [22]. Since SCRAPE relies on Type 3 pairings, our PVSS ciphertext is
instantiated using the curve BN254 [2], as at the time of writing only it is the
only curve with Type 3 pairings available as precompiles on Ethereum. Similar
to the scheme presented by Schoenmakers [31], SCRAPE’s dealer shares the se-
cret s but the committee recovers hs, where h is the generator of G2 in BN254.
Therefore, our implementation of the scheme requires the dealer to produce ĉ
by encrypting m with the truncated SHA256 hash of a hs rather than use s
directly.

Though BN254 is not a SNARK friendly curve, we have optimized the prov-
ing time of the zkSNARK circuit from Algorithm 4 by leveraging the fact
that SCRAPE’s instantiation of PVSS.verifyDist allows us to be convinced that
PVSS.genDist(s, [pki]) = c just by checking F0 = gs (where g is the generator
of G1). Since PVSS.verifyDist already checks consistency of F0 with the rest of
the ciphertext, we only need to check whether logF0 = s. This involves only one
BN254 exponentiation inside of Algorithm 4 and makes the circuit size constant,
allowing proving time to be constant. To optimize the proving time of the zk-
SNARK further, we compress the problem instance by first hashing (c,R, x) be-
fore passing it into H, and instantiate H using Poseidon [20], a SNARK friendly
hash function. The primary bottleneck of performance is PVSS.verifyDist, which
occurs on chain and has optimal O(n) complexity using SCRAPE.

We use a Hardhat node to measure the on-chain gas cost paid for by the
dealer in WE.EncryptR, relative to n and t. As can be seen in Figure 6, the
maximum committee size that does not consume more gas than the block gas
limit is 56. The code for the implementation can be found at https://github.
com/galletas1712/cassiopeia.

7 Conclusion

In this work, we propose Cassiopeia, a social Witness Encryption scheme instan-
tiated as an on-chain smart contract, along with an incentivized version of the
scheme. Our construction combines a publicly verifiable secret sharing scheme
and zkSNARKs to provide security against malleability attacks. In doing so,

14

https://github.com/galletas1712/cassiopeia
https://github.com/galletas1712/cassiopeia

Fig. 1. Gas cost of encrypt vs committee size

the scheme is also resistant to front-running attacks which are widespread when
interacting with smart contracts. We also provide a Solidity smart contract im-
plementation of the non-incentivized scheme. The non-incentivized construction
is correct and secure under honest majority, and the incentivized construction
is correct under rational majority.

Future work will focus on ensuring security for the incentivized scheme un-
der rational majority. Threshold Information Escrows have been proposed with
incentivized security [26], and could potentially be integrated with our work.
Furthermore, we could also allow for a dynamic committee by using proactive
secret sharing, which would make our protocol more robust to security attacks.

References

1. L. Baird, P. Mukherjee, and R. Sinha. i-tire: Incremental timed-release encryption
or how to use timed-release encryption on blockchains? Cryptology ePrint Archive,
Paper 2021/800, 2021. https://eprint.iacr.org/2021/800.

2. P. S. L. M. Barreto and M. Naehrig. Pairing-Friendly Elliptic Curves of Prime
Order. In B. Preneel and S. Tavares, editors, Selected Areas in Cryptography,
pages 319–331, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

3. F. Benhamouda, C. Gentry, S. Gorbunov, S. Halevi, H. Krawczyk, C. Lin, T. Rabin,
and L. Reyzin. Can a public blockchain keep a secret? Cryptology ePrint Archive,
Paper 2020/464, 2020. https://eprint.iacr.org/2020/464.

4. F. Benhamouda and H. Lin. Multiparty reusable non-interactive secure computa-
tion. Cryptology ePrint Archive, Paper 2020/221, 2020. https://eprint.iacr.
org/2020/221.

15

https://eprint.iacr.org/2021/800
https://eprint.iacr.org/2020/464
https://eprint.iacr.org/2020/221
https://eprint.iacr.org/2020/221

5. N. Bitansky, A. Chiesa, Y. Ishai, O. Paneth, and R. Ostrovsky. Succinct non-
interactive arguments via linear interactive proofs. In A. Sahai, editor, Theory of
Cryptography, pages 315–333, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

6. D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing. In
Proceedings of the 21st Annual International Cryptology Conference on Advances in
Cryptology, CRYPTO ’01, page 213–229, Berlin, Heidelberg, 2001. Springer-Verlag.

7. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and chal-
lenges. Cryptology ePrint Archive, Paper 2010/543, 2010. https://eprint.iacr.
org/2010/543.

8. M. Campanelli, B. David, H. Khoshakhlagh, A. Konring, and J. Nielsen. Encryp-
tion to the future: A paradigm for sending secret messages to future (anonymous)
committees. In Advances in Cryptology – ASIACRYPT 2022, Lecture Notes in
Computer Science. Springer, Jan. 2023.

9. I. Cascudo and B. David. Scrape: Scalable randomness attested by public entities.
Cryptology ePrint Archive, Paper 2017/216, 2017. https://eprint.iacr.org/
2017/216.

10. B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and
achieving simultaneity in the presence of faults. In 26th Annual Symposium on
Foundations of Computer Science (sfcs 1985), pages 383–395, 1985.

11. A. R. Choudhuri, M. Green, A. Jain, G. Kaptchuk, and I. Miers. Fairness in
an unfair world: Fair multiparty computation from public bulletin boards. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’17, page 719–728, New York, NY, USA, 2017. Association for Com-
puting Machinery.

12. N. Döttling, L. Hanzlik, B. Magri, and S. Wohnig. Mcfly: Verifiable encryption
to the future made practical. Cryptology ePrint Archive, Paper 2022/433, 2022.
https://eprint.iacr.org/2022/433.

13. M. Ende. Momo. Puffin, München, 2009.
14. J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis

and applications. In E. Oswald and M. Fischlin, editors, EUROCRYPT (2), volume
9057 of Lecture Notes in Computer Science, pages 281–310. Springer, 2015.

15. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 2013
IEEE 54th Annual Symposium on Foundations of Computer Science, pages 40–49,
2013.

16. S. Garg, C. Gentry, A. Sahai, and B. Waters. Witness encryption and its appli-
cations. In Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of
Computing, STOC ’13, page 467–476, New York, NY, USA, 2013. Association for
Computing Machinery.

17. C. Gentry, A. B. Lewko, and B. Waters. Witness encryption from instance
independent assumptions. Cryptology ePrint Archive, Paper 2014/273, 2014.
https://eprint.iacr.org/2014/273.

18. S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. How
to run turing machines on encrypted data. Cryptology ePrint Archive, Paper
2013/229, 2013. https://eprint.iacr.org/2013/229.

19. V. Goyal, A. Kothapalli, E. Masserova, B. Parno, and Y. Song. Storing and re-
trieving secrets on a blockchain. In Public-Key Cryptography – PKC 2022: 25th
IACR International Conference on Practice and Theory of Public-Key Cryptogra-
phy, Virtual Event, March 8–11, 2022, Proceedings, Part I, page 252–282, Berlin,
Heidelberg, 2022. Springer-Verlag.

16

https://eprint.iacr.org/2010/543
https://eprint.iacr.org/2010/543
https://eprint.iacr.org/2017/216
https://eprint.iacr.org/2017/216
https://eprint.iacr.org/2022/433
https://eprint.iacr.org/2014/273
https://eprint.iacr.org/2013/229

20. L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger. Poseidon:
A new hash function for zero-knowledge proof systems. In Proceedings of the 30th
USENIX Security Symposium, Proceedings of the 30th USENIX Security Sympo-
sium, pages 519–535, United States, 2021. USENIX Association. 30th USENIX
Security Symposium : USENIX Security 2021, USENIX Security ’21 ; Conference
date: 11-08-2021 Through 13-08-2021.

21. J. Groth. Simulation-sound nizk proofs for a practical language and constant size
group signatures. In Proceedings of the 12th International Conference on Theory
and Application of Cryptology and Information Security, ASIACRYPT’06, page
444–459, Berlin, Heidelberg, 2006. Springer-Verlag.

22. K. Gurkan, P. Jovanovic, M. Maller, S. Meiklejohn, G. Stern, and A. Tomescu. Ag-
gregatable distributed key generation. Cryptology ePrint Archive, Paper 2021/005,
2021. https://eprint.iacr.org/2021/005.

23. S. Heidarvand and J. L. Villar. Public verifiability from pairings in secret sharing
schemes. In Selected Areas in Cryptography, 2008.

24. P. Labs. tlock: Timelock encryption/decryption made practical. https://github.
com/drand/tlock.

25. J. Liu, T. Jager, S. A. Kakvi, and B. Warinschi. How to build time-lock encryption.
Des. Codes Cryptography, 86(11):2549–2586, November 2018.

26. E. V. Mangipudi, D. Lu, A. Psomas, and A. Kate. Collusion-deterrent threshold
information escrow. Cryptology ePrint Archive, Paper 2021/095, 2021. https:
//eprint.iacr.org/2021/095.

27. W. Mao. Timed-release cryptography. Cryptology ePrint Archive, Paper 2001/014,
2001. https://eprint.iacr.org/2001/014.

28. C. Mascia, M. Sala, and I. Villa. A survey on functional encryption, 2021.
29. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release

crypto. Technical report, USA, 1996.
30. A. Ruiz and J. L. Villar. Publicly verifiable secret sharing from paillier’s cryp-

tosystem. In C. Wulf, S. Lucks, and P.-W. Yau, editors, WEWoRC 2005 – West-
ern European Workshop on Research in Cryptology, pages 98–108, Bonn, 2005.
Gesellschaft für Informatik e.V.

31. B. Schoenmakers. A simple publicly verifiable secret sharing scheme and its appli-
cation to electronic. In Proceedings of the 19th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’99, page 148–164, Berlin, Hei-
delberg, 1999. Springer-Verlag.

32. A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, nov 1979.
33. M. Stadler. Publicly verifiable secret sharing. In U. Maurer, editor, Advances

in Cryptology — EUROCRYPT ’96, pages 190–199, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg.

34. D. Zindros. Hours of horus: Keyless cryptocurrency wallets. Cryptology ePrint
Archive, Paper 2021/715, 2021. https://eprint.iacr.org/2021/715.

8 Appendix A: Proof of Correctness For Non-incentivized
Construction

Theorem 5. Correctness (Informal). Consider an honest dealer and a commit-
tee of size n such that at least t are honest. The social Witness Encryption
construction in Section 3 is correct.

17

https://eprint.iacr.org/2021/005
https://github.com/drand/tlock
https://github.com/drand/tlock
https://eprint.iacr.org/2021/095
https://eprint.iacr.org/2021/095
https://eprint.iacr.org/2001/014
https://eprint.iacr.org/2021/715

Proof (Sketch). First, we will prove that WE.EncR(1λ, x,m) successfully returns
the secret identifier id in polynomial time. Since Enc,PVSS.genDist,H, P are all
PPT algorithms, they all return in polynomial time. Since the PVSS scheme
is correct and c was honestly generated, the PVSS.verifyDist check in Line 5
of encrypt passes. Similarly, since the zkSNARK scheme is correct and π was
honestly generated, the zkSNARK verifier V also accepts the proof π. Since L is
a safe and live ledger, encrypt returns id in polynomial time without reverting.
By extension, WE.EncR also returns id in polynomial time.

Now, we will prove that WE.DecR(1λ, x, id) returns m in polynomial time.
The random oracle H ensures that no secret identifiers are duplicate with over-
whelming probability, so the secret with identifier id corresponds to the same
one encrypted in WE.EncR. Since L is a safe and live ledger, claim will update
Mid will be updated to claimed in polynomial time. Furthermore, since at least
t committee members are honest, at least t of them will have submitted their
shares ∆ blocks after the secret was claimed. By the correctness of the PVSS
scheme, the shares of all honest committee members pass the PVSS.verifyShare
check in Line 18 of submitShare. Therefore, |Sid| will be at least t after all hon-
est committee members submit their shares. Furthermore, reconstruction of the
secret is also polynomial time. Since the symmetric encryption scheme is cor-
rect and ĉ was produced honestly, Decs(ĉ) returns m in polynomial time. By
extension, WE.DecR also returns m in polynomial time.

9 Appendix B: Proof of Security For Non-incentivized
Construction

Lemma 3. Suppose an adversary is given the values c,R, x, y, π for secret s
generated by an honest dealer, and the adversary interacts with the contract.
The adversary cannot obtain s without a witness w such that (x,w) ∈ R.

Proof (Sketch). The only way the adversary can obtain any information about
s interacting with the contract is to first call encrypt with (c′,R′, x′, y′, π′), then
performing WE.DecR′(1λ, c′, x′, w′) to retrieve the secret s′, where w′ is a witness
for R′ and x′ already known to the adversary. The adversary aims to deduce
non-negligible information about s from s′ and (c,R, x, y, π).

Suppose the adversary can extract non-negligible information about s. Be-
cause the PVSS scheme has secrecy, s cannot be extracted from c, since c is
an encryption of s. Since y is the output of a random oracle, all preimages are
equally probable, so y contains no information about s. By the zero knowledge
property of the zkSNARK scheme, π does not reveal any information about the
private input s. Therefore, the adversary deduces information about s using s′.

Consider when s′ = s and c′ = c. When the adversary calls encrypt, the
ledger’s safety and liveness ensures she must specify y′ = H(s ∥ c ∥R′ ∥x′) and
produce a valid zkSNARK proof π for the circuit in Algorithm 4. By the ex-
tractable soundness property of the zkSNARK, the adversary must know the
entire preimage of y′ prior to encrypt. The adversary must also provide s such

18

that c = PVSS.genDist(s, [pki]). Furthermore, since the preimage of y and y′ are
not equal, y cannot be used in place of y′, nor is it related to y′ is any way.
Therefore, the adversary must know s prior to encryption. However, since the
dealer is honest, the adversary cannot have access to s prior to encryption, which
is a contradiction.

Now consider when s′ ̸= s and c′ ̸= c. Since s′ is the decryption of c′, c′

must have encrypted some information about s. But y contains no information
about s, c′ must have been derived from c. When the adversary calls encrypt, the
ledger’s safety and liveness ensures she must specify y′ = H(s′ ∥ c′ ∥R′ ∥x′) and
produce a valid zkSNARK proof π for the circuit in Algorithm 4. Because the
zkSNARK is extractably sound, y′ is the output of a random oracle function, and
c′ = PVSS.genDist(s′, [pki]) is enforced in the zkSNARK circuit, the adversary
must know s′ prior to the computation of y′ (i.e. before the call to encrypt). But
this means the adversary can know s with knowledge of only c,R, x, y, π, which
is a contradiction.

In either case, the adversary cannot obtain s even by interacting with the
contract.

Theorem 6. Extractable Security (Informal). Consider an honest dealer, and
a committee of size n such that less than t are adversarial. The social Witness
Encryption construction in Section 3 is extractably secure.

Proof (Sketch). First, consider the case where the contract will accept only
one secret to encrypt in its lifetime. The dealer is honest, so no other party
(including the adversary) has access to s. Since s is a bit string of length λ
and the symmetric encryption scheme is secure, ĉ reveals nothing about s. Simi-
larly, since the PVSS scheme has secrecy, the PVSS ciphertext c reveals nothing
about s. Furthermore, because less than t committee members are adversarial,
no coalition of adversarial committee members can learn any information about
the secret. The random oracle H ensures that y is uniformly distributed and
Pr[y = H(s ∥ c ∥R∥x) | c,R, x] is negligible, so a PPT adversary cannot learn
anything about s from y. By the zero knowledge property of the zkSNARK, the
proof π also reveals nothing about s. Therefore, all public values reveal nothing
about s.

Now, suppose the contract may accept multiple secrets in its lifetime. By
Lemma 3, no matter what other encryption requests the adversary makes, she
cannot learn any information about s, even if she has access to the public argu-
ments of all encrypt calls that will ever occur.

Without having submitted a valid witness w, the adversary does not learn
any information about s, whether from public data or from interacting with the
contract. Therefore, if the adversary learns any information about s, they must
know a valid witness w, and the construction is extractably secure.

19

	Cassiopeia: Practical On-Chain Witness Encryption

