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Abstract

Oblivious Pseudorandom Functions are an elementary building block
in cryptographic and privacy-preserving applications. However, while
there are numerous pre-quantum secure OPRF constructions, few options
exist in a post-quantum secure setting. Isogeny group actions and the
associated low bandwidth seem like a promising candidate to construct
a quantum-resistant OPRF. While there have been relevant attacks on
isogeny-related hardness assumptions, the commutative CSIDH is unaf-
fected. In this work, we propose OPUS, a novel OPRF with small com-
munication complexity, requiring only CSIDH as the security assumption.
Our results also revisit the Naor-Reingold OPRF from CSIDH and show
how to efficiently compute offline evaluations. Additionally, we analyze a
previous proposal of a CSIDH-based instantiation of the Naor- Reingold
construction. We report several issues with the straightforward instanti-
ation of the protocol and propose mitigations to address those shortcom-
ings. Our mitigations require additional hardness assumptions and more
expensive computations but result in a competitive protocol with low com-
munication complexity and few rounds. Our comparison against the state
of the art shows that OPUS and the repaired, generic construction are
competitive with other proposals in terms of speed and communication
size. More concretely, OPUS achieves almost two orders of magnitude less
communication overhead compared to the next-best lattice-based OPRF
at the cost of higher latency and higher computational cost.

1 Introduction

Cloud computing, authenticated key exchange and secure data sharing are ubiq-
uitous in modern-day computation. All of these high-level applications may use
Oblivious Pseudorandom Functions (OPRFs) as an underlying building block
to heighten security and guarantee privacy. Informally, OPRFs take input from
a client and a key from a server, then return a pseudorandom output to the
client. Consider password-authenticated key agreement: Authenticating against
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a server with a password usually requires transmitting the password, ideally in
a salted, hashed form. However, passwords notoriously lack entropy and may
be recovered in the event of a breach. In addition, attacks leaking cleartext
passwords are still common, for example, the PwnedPasswords web page [Hun]
lists at the time of writing this paper 91 matches when searching for plain text
breaches. All of those breaches could be prevented by never storing passwords
on a server. A great example a protocol solving this problem is OPAQUE,
an asymmetric password-authenticated key agreement protocol for which stan-
dardization efforts are ongoing at the CFRG [DFHSW22]. However, OPRFs are
not limited to passwords: Privacy Pass [DGS+18] uses OPRFs to reduce the
number of CATCHPAs required to be solved by users to browse the internet.
A related problem is private contact discovery [KRS+19], which protects the
highly sensitive social graph of messenger app users from ever being uploaded
to a server.

While there is a variety of sound and efficient constructions for classical
primitives, OPRFs from post-quantum hardness assumptions remain an open
question. To be more specific, almost all OPRFs are based on some form of the
discrete logarithm problem or, more rarely, factoring [CHL22]. A nice primitve
for quantum-resistant OPRFs are isogenies, which have small communication
complexity, but suffer from slow runtimes. Until now, there was only one OPRF
based on CSIDH [BKW20]. We show that the näıve approach to the implemen-
tation is not sufficient, and subsequently propose a fix using CSI-FiSh.

Based on the work on this OPRF, we report OPUS, a novel construction
that efficiently computes the Naor-Reingold OPRF while only using 60% of
the group actions of the previous proposal. On a practical side, we implement
and benchmark our novel OPRF, concretizing the computational, communica-
tion, and round complexity of isogeny protocols. In addition, we revisit the
Naor-Reingold PRF from CSIDH and discuss the security in-depth. Finally, we
compare against the state of the art and find that OPUS is competitive with
current proposals, as it requires no preprocessing, no trusted setup and has an
implementation available.

2 Preliminaries

We start by defining (Oblivious) Pseudorandom Functions.

Definition 1 (Pseudorandom Function) A PseudoRandom Function (PRF)
[GGM84, GGM86] is a deterministic function F which takes two inputs K and
X from distinct sets and maps them in polynomial time to the output N such
that FK : {0, 1}k × {0, 1}x → {0, 1}n. F is pseudorandom when there is no
probabilistic polynomial-time algorithm to distinguish N from a randomly cho-
sen output. F must be computable in polynomial time given the set members K
and X.

Definition 2 (Oblivious Pseudorandom Function) An Oblivious Pseudo-
random Function(OPRF) is a protocol between two parties. One party holds the
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secret key K and the other holds their secret input X. The OPRF privately
realizes the joint computation outputting FK(X) to the party holding X, and
nothing to the party holding K. [FIPR05]

2.1 CSIDH

CSIDH [CLM+18], was originally proposed as a quantum-safe replacement for
Diffie-Hellman key exchanges. It builds on the ideas of Couveignes [Cou06] and
Rostovtsev-Stolbunov [RS06](CRS), but restricts the isogeny graph to super-
singular curves over Fp. p is a prime in the form p = 4

∏n
i=1 ℓi − 1 and p ≡ 3

mod 4. For π =
√
−p and O = Z[π], each ℓi splits the endomorphism ring O

into li isogenies with degree ℓi. The isogeny ϕ : E → E′ is a map from an
elliptic curve E to another curve E′ that preserves the point at infinity and the
algebraic structure [Sil86]. Hence, both curves have the same number of rational
points. The isogeny is unique up to isomorphism. It is computed using Velu’s
formula [Vél71].

The heart of CSIDH is the group action ∗ acting on the set of elliptic curves
Eℓℓp(O, π), denoted as E . To ensure the group action is efficient, each ℓi is
required to be a small, distinct, odd prime.

2.1.1 Checking if a curve is supersingular.

For a prime p ≥ 5, an elliptic curve over Fp is supersingular if and only if
the order of E is p + 1. Therefore, verification of supersingular curves is done
by checking the order of the curve. This check has a small chance of erro-
neously classifying a supersingular curve as ordinary. More complex algorithms
prevent the wrong classification at the cost of- higher memory and time com-
plexity [Sut12].

2.1.2 Private Key

The ideal class group cl(O) acts freely and transitively on E . The element
{le11 · · · l

ek
k } of cl(O) is represented in CSIDH as the private exponent vector.

This array of k elements (e1, . . . , ek) forms the private key. From now on, we
will call a single element of the vector a key coefficient. Each key coefficient
ei is a random element in the range [−m,m]. m is a bound obtained from the

parameter generation to store approximately log2 p
2 bits. The sign of the key

coefficient describes the direction of the walk: Walking e steps from some point
and then −e steps results in returning to the starting point. This is a result
of the dual isogeny theorem, which states that for each isogeny E → E′, a
corresponding isogeny E′ → E exists. The dual isogeny can be directly used to
invert the key: negating each key coefficient ei 7→ −ei results in the inversion
of k, which we will denote as k−1. Conversely, it is also possible to add two
private keys, where their respective coefficient vectors are added, which we will
denote as k+ l, with k and l being CSIDH private keys. This will be important
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from Section 2.4 onwards, as it gives rise to significant speedups in computing
the group action.

Following the notation in [LGd21], we use s ∗ E as shorthand to denote
the class group action between s = {ls11 · · · l

sk
k } and E using the vector s =

(s1, . . . , sk).

2.1.3 Public Key.

The CSIDH public key is the Montgomery coefficient A ∈ Fp of the supersingular
curve E : y2 = x3 + Ax2 + x and deterministically obtained by repeatedly
applying the private key to the base curve E0 : y2 = x3 + 0 · x2 + x. Of p
possible public keys,

√
p of those keys are valid, meaning that they describe

supersingular curves.

2.1.4 Computational Problems.

For a clear security analysis, we now discuss the general key recovery problem
in CSIDH and present a lemma that helps argue security throughout the paper.
Problem 1 corresponds to Problem 10 in the original CSIDH paper. Lemma 1
directly follows from Problem 1.

Problem 1 (Key Recovery Problem) Given the two different supersingular
curves E,E′ ∈ E, find an s ∈ cl(O) such that s ∗ E = E′.

[LGd21] give a useful lemma showing that sampling elements of the class
group Cl(O) is statistically close to uniform. We present a slightly shortened
and modified version in Lemma 1, and will use it throughout the paper.

Lemma 1 (Computational Hiding in CSIDH) Given a curve E ∈ E and
a distribution D on Cl(O), let D ∗ E be the distribution on E of a ∗ E for for
a ← D. If D is statistically indistinguishable from the uniform distribution on
Cl(O), D ∗ E is statistically indistinguishable from the uniform distribution on
E. Therefore, we say that D statistically hides E.

2.1.5 Parameterization and Security

The size of the prime p denotes the security parameter of CSIDH. There is an
unusually heavy disagreement in the literature on the secure parameterization
of CSIDH [BLMP19, BS20, Pei20]. Several theoretical and concrete quantum
attacks with subexponential complexity dispute that a prime p which is 512 bits
long is sufficient for security. Related work on OPRFs [BKW20] recommends us-
ing 2260-bit prime numbers for aggressive parameterization and 5280-bit primes
for a conservative instantiation based on analysis of these algorithms. Recent
work analyzing and implementing CSIDH with bigger primes concludes that a
bitlength of at least 2048 bits, up to 9216 bits is necessary [CSCJR22].

For best comparability with other implementations, we use the 512-bit ref-
erence implementation of CSIDH throughout this paper, but point out that
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the prime length may not be sufficient. An additional benefit of this imple-
mentation is the use of hardware instructions, which speed up the computation
significantly.

2.2 CSI-FiSh

Building on CSIDH, the signature scheme CSI-FiSh introduces uniform repre-
sentation in the class group elements. In their paper this is necessary for the
Fiat-Shamir transformation, but the use-cases stretch beyond signatures. Intu-
itively, increasing the bound m of the key coefficient comes closer to sampling
uniformly over the class group. To sample fully uniform keys, CSI-FiSh com-
putes the class number and class group structure. From this, a relational lattice
is generated, and the basis is reduced using Babai’s nearest plane algorithm.
Due to the different distribution of the class group ideals, the group action is
around 15% slower.

2.3 Notation

We denote the sequential application of the group action
csidh(csidh(E,a),b) as b ∗ (a ∗ E). We denote the zero curve as E0 and any
other curve as E, potentially annotating it to give more context. For example,
the result of applying some key c will be denoted Ec = csidh(c, E0) = c ∗ E0.

We will use an ideal functionality keygen() to sample random, uniform

CSIDH private keys. [k1,k2]
$←− keygen() samples two random, independent

and uniform keys. Sampling several curves will sometimes be denoted as K.

We will call a curve E randomized after sampling a private key r
$←− keygen()

and computing E′ = r ∗ E. We remove the property after applying r−1 to the
curve E′, therefore removing the randomness.

We write a vector v as a bold, lowercase variable, which is used for private
exponent vectors. Adding the coefficients of two vectors is denoted as a + b,
and coefficient-wise subtraction is denoted as a − b. From this point onwards,
we denote the party holding the input X to the OPRF as the client and the
party holding the key as the server, as this makes it more which entity holds
what part of the OPRF input.

2.4 The Naor-Reingold Pseudorandom Function (NR-PRF)

The Naor-Reingold PRF [NR04] is a generic construction for PRFs from Abelian
group actions. It is widely used in the literature and practice. The PRF requires
n + 1 group elements, or keys, for n bits of PRF input. To compute the PRF,
we take the initial group element k0. For each input bit xi for i ∈ [1, n], a group
action is performed if and only if the ith bit xi is set. The abstract functionality
is outlined in Figure 1.
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2.5 Oblivious Transfer and Naor-Reingold OPRF

The NR-PRF gives rise to oblivious evaluation using oblivious transfer (OT).
In the simplest form, OT takes two messages m0,m1 from the sender, usually
the server, and a choice bit c from the receiver, usually the client. The protocol
functionality returns mc to the client. The protocol is secure when the client
learns nothing about m1−c and the server learns nothing about c.
To use OT for an algebraic OPRF, the input X = [x1, . . . , xn] is bit-decomposed
and used as the choice bit c. The server returns ki

c◦ri. The client knits together
the received elements via the group action, obtaining a blinded group element.
To finalize the computation, the server sends evaluates the inverse of all blinding
elements with the key and sends them to the client, who computes the group
action with the finalization element and the blinded group element to obtain
the NR-PRF.

3 Attacking and Repairing the Generic Naor-
Reingold OPRF from CSIDH

Previous work [BKW20] describes the generic Naor-Reingold OPRF in CSIDH
to compare against their SIDH-based proposal. While the latter has been bro-
ken [BKM+21] and subsequently repaired [Bas23], the approximations for the
Naor-Reingold OPRF from CSIDH are widely cited in the literature and have
not been studied further. We fill this gap with a thorough investigation in both
the NR-PRF and the NR-OPRF from CSIDH.

3.1 Instantiating the NR-PRF from CSIDH

To instantiate the NR-PRF with CSIDH, the protocol samples n + 1 CSIDH
private keys and computes the group action as in Figure 2. The textbook
variant of the PRF outlined in Figure 2 is prohibitively slow, requiring n + 1
sequential group actions to compute the PRF for n input bits. The CSIDH-
512 implementation takes around 20ms per group action when using Assembly
instructions. A recent paper describes an effective way to evaluate the PRF by
splitting the evaluation into two parts [ADMP20]: First, a subset-product, in
the case of CSIDH addition of all key elements where xi = 1, is computed. This
first step can be parallelized. The group action is then evaluated in a second
step on the base curve.

FNR ((k0, k1, . . . , kn, E0), (x1, . . . , xn)) := k0 ◦ kx1
1 ◦ . . . ◦ kxn

n

Figure 1: The Naor-Reingold PRF from a generic group action, denoted ◦.
Classic examples for ◦ are modular multiplication or point addition on elliptic
curves. The exponentiation with xi may be read as perform ◦ if input bit is set.
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FNR−CSIDH ((k0,k1, . . . ,kn), (x1, . . . , xn)) := k0 ∗ k1
x1 ∗ . . . ∗ kn

xn ∗ E0

Figure 2: Naor-Reingold PRF from CSIDH using E0 as a starting curve.

FNR−CSIDH−OPT ((k0,k1, . . . ,kn, E0), (x1, . . . , xn)) :=(
k0 +

n∑
i=1

ki
xi

)
∗ E0

Figure 3: Optimized two-step Naor-Reingold PRF from CSIDH. The first step
is a subset-sum of the required keys and the second step is the application of
the group action to the base curve E0.

The subset-sum computation requires a tiny tweak in the CSIDH imple-
mentation1, from 8-bit to 32-bit key elements to avoid overflows. Other than
adding addition and subtraction subroutines, the implementation is the same.
In Figure 4, we benchmark the PRF computation for input sizes between 1 and
512 bits. We see that the two-step computation approach significantly reduces
the evaluation time. The optimization also saves n−1 computations of the first
step of the algorithm, which is computing a point of the correct order. This step
is more expensive the smaller the value of ℓi, which is particularly nice for an
aggressive parameter choice in CSIDH, as the probability of sampling a correct
point is ℓi−1

ℓi
.

A nice property of this PRF is that it is updatable; that is, if parts of the
input change, updating the output requires a single group action to update the
PRF. This is useful for applications requiring to hash multiple inputs so the
individual inputs differ in less than n

2 bits. In Figure 5, we show that the effort
between recomputing the OPRF and updating a previous result holds fairly
clearly to our expectations: It is cheaper to recompute the OPRF when less
than 128 bits differ, if it is more, recomputation is more efficient. Note that the
divergence is due to the non-uniform keys in CSIDH.

3.2 Oblivious NR-PRF from CSIDH

Following Protocol 24 in [BKW20] for a NR-OPRF from CSIDH, the parties
engage in n

(
2
1

)
-OTs, where the key is blinded with a random group element.

Using our trick from Section 2.4, a correct intuition is to instantiate the OT
with (ri,ki + ri), finalizing the OT by sending k0 ∗

∑n
i=1−ri. We sketch this

protocol in Figure 6.

1All CSIDH benchmarks use the reference implementation from https://yx7.cc/code/

csidh/csidh-latest.tar.xz
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Figure 4: Runtime divergence between the traditional Naor-Reingold CSIDH
PRF in blue and the same PRF with our optimization in green for different bit
lengths.

3.3 Attacking the Construction

While producing a correct result, this OPRF leaks the server key in a passive
attack as the key is not uniformly random. 2 A passive, semi-honest adversary
can observe the distribution of the blinded keys by always choosing c = 1.
Consider blinding a key element ki = m = 5 with a random element that only
needs a few invocations to see that the blinded key is always within the range
[0, 10]. Over several iterations, this leaks the entire key, parts of it even at the
first try, as a blinded 10 and −10 immediately show that both the key and the
blinding element were 5 or −5, respectively. Some tests, where a static key is
repeatedly blinded, shows that after approximately 65 evaluations, the entire
key would be leaked. This does not take into account possible sophisticated
methods such as guessing for even more restricted settings as parts of the key
are immediately clear and, if only a few bits are missing, brute force is possible.
We provide an implementation of this simulation.

2In personal communication, authors of [BKW20] confirmed that their specific instanti-
ation of their construction using class groups (or isogenies) blinds the class group element
representing the key by multiplying a random element, but that the non-uniform key distri-
bution leads to the CSIDH instantiation of protocol [BKW20] being ”currently broken”.
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Figure 5: Runtime divergence between updating x bits of the PRF vs. recom-
puting the full 256 bits of the PRF, averaged over 100 runs.

3.4 Fixing the NR-OPRF

The non-uniform key distribution has already been discussed in the context of a
Σ-commitment scheme from CSIDH. The first solution in the signature scheme
SeaSign [DG19] is rejection sampling, concretely the Fiat-Shamir transformation
with aborts. This technique was initially proposed by Lyubashevsky [Lyu09] to
prevent leakage of the private key in lattice signatures.

To translate the Fiat-Shamir technique with aborts to the CSIDH setting,
SeaSign uses somewhat short, long-term secret keys s with coefficients si ∈
[−B,B]k and large, ephemeral secret keys r with each coefficient ri ∈ [−(δ +
1)B, (δ + 1)B]k, rejecting any r where r − s if any coefficient is outside of the
range [−(δ)B, (δ)B]. For the NR-OPRF, the long-term sender keys are then
obviously the short keys s and the ephemeral keys are sampled as r.

While using tactics from SeaSign is a good mitigation, it puts a significant
computational load on the server and introduces the drawbacks of lattice sig-
natures in the scheme. Additionally, the large ephemeral keys add significant
communication overhead to the protocol.

Instead of rejection sampling, directly sampling a uniform key would sig-
nificantly improve the protocol. Therefore, we propose to mitigate the leakage
by using the sampling algorithm from the signature scheme CSI-FiSh [BKV19].
The protocol in Figure 6 would largely remain the same, with ki + ri being a
reduced element of the class group. We give a sketch of the server and client
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Server Client

K← [0]

for i ∈ [1, N ] : for i ∈ [1, N ] :

ri
$←− keygen() (

2
1

)
-OT

cri

ki + ri ki
c + ri

K← ki
c + ri

Efin ← (k0 +

N∑
i=1

−ri) ∗ E0
Efin E ← K ∗ Efin

return E

Figure 6: Evaluating the NR-OPRF with CSIDH and N OT calls.

protocols in Figure 7 for Clarity. Note that the curve Et has an unknown
endomorphism ring.

3.4.1 Performance

The main drawback of this mitigation is the computational complexity, as the
keys are reduced using lattice computation and the overall group action is about
15% slower than the original CSIDH group action. An advantage is that the
sender only has to precompute the class structure once, and after that the
computational load on the client, aside from the OT, is relatively low.

3.4.2 Trusted Setup

The main disadvantage of this NR-OPRF is that the underlying OT protocol
based on isogenies [LGd21] requires a supersingular curve with an unknown en-
domorphism ring, also called Secuer. Currently, there are no known efficient
algorithms to construct such a curve. A recent paper [BCC+23] proposes gen-
eration for supersingular curves over Fp2 used in SIKE. For CSIDH’s Fp, the
authors [BCC+23] mention that their techniques are not well suited, and note
it as an open problem. Therefore, using the OPRF protocol either requires a
different OT protocol without a trusted setup or an efficient construction of
Secuers over Fp.

Alternate constructions of OT from CSIDH have similar problems: The semi-
honest protocol of [dSGOPS20] gives similar performance to the OT protocol
of [LGd21] while requiring two trusted curves for the setup. A good alternative
may be the single-bit OT of [ADMP20]. It requires a distribution closer to
uniform than CSIDH, however, it may be an attractive alternate choice. A
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Input:

CSI-FiSh key [k0, . . . ,kn]

curve Et from trusted setup

Algorithm:

R← [0]

for i ∈ N :

r
$←− keygen()

kir← r+ ki

kir← reduce mod(kir)

ot.send(r,kir)

R← R− r

Et ← (R+ k0) ∗ E0

send(E)

return

Input:

input bits [m1, . . . ,mn]

curve Et from trusted setup

Algorithm:

K← [0]

for i ∈ N :

ki
mir← ot.receive(mi)

K← K+ ki
mir

E ← receive(E)

E ← K ∗ E
return E

Figure 7: Server and Client algorithm for the NR-OT OPRF.

significant drawback of this protocol are the number of isogeny comutations
depending on γ. An efficient protocol may use similar techniques as [KRS+19]
to minimize the number of necessary group actions.

4 OPUS: Oblivious Pseudorandom Function using
CSIDH

We observe that the blinding of the class group elements hampers the security of
the scheme significantly: it introduces new security assumptions to the scheme
and makes the protocol less efficient. Instead of sending private keys over the
network, we propose OPUS, a novel construction that only sends evaluated
curves, that is, CSIDH public keys. In the protocol, both parties iteratively
blind their intermediate results, with the client getting anything useful only in
the end, beforehand computing over randomized curves. This eliminates the
need for a trusted setup, which is the main obstacle hampering other OPRF
protocols from CSIDH. The main operations in OPUS are blinding and key
addition. In each step, the client blinds a curve, starting with E0, with a
random class group element rc,i and sends it to the server, which returns the
curve blinded again with its own, fresh blinding element rs,i and once with the
own blinding element and the key. Now, the client decides based on the ith bit of
the input with which curve the computation should continue, blinding again to
ensure the server learns nothing about their choice. By the hiding lemma 1, this

11



perfectly protects the client input and the server keys from malicious parties.
We outline our novel OPRF in Figure 8.

Server Client

{k0,k1, · · · ,kn}
$←− keygen() input X ← {x1, · · · , xn},

rs ← [0] rc ← [0], Eclient ← E0

foreach i ∈ {1, . . . , n}: foreach i ∈ {1, . . . , n}:
Eblinded ← rc,i ∗ Eclient

rs,i
$←− keygen() Eblinded rc,i

$←− keygen()

Es,i,0 ← rs,i ∗ Eblinded if xi:

Es,i,1 ← ki ∗ Es,i,0 Eclient ← Es,i,1

rs ← rs − rs,i
Es,i,0, Es,i,1 else:

Eclient ← Es,i,0

rc ← rc − rc,i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Finalize and Unblind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rc,0 ∗ Eclient rc,0
$←− keygen()

Es ← (k0 + rs) ∗ rc,0 ∗ Eclient
Es Eclient ← (rc − rc,0) ∗ Es

return Eclient

Figure 8: The full protocol of our novel OPRF OPUS.

4.1 Efficiency

We use a similar trick as in Section 2.4 to speed up the computation, as we
aggregate the blinding keys in an element R. This reduces the necessary group
actions to 3n+2 for the OPRF computation, with 2n+1 group action compu-
tations for the server and n + 1 for the client. Experimental runtimes can be
found in Table 1, and concrete runtimes in Table 2. A nice part of OPUS is
that the server carries the highest computational load, while the client only has
to perform n+ 1 CSIDH computations.

To concretize the overhead imposed by the rounds, we rented virtual ma-
chines all over the globe and used them as clients performing OPUS with a
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Table 1: Comparison between PRF and OPRF execution time on an Intel i5-
10210U with 16 GB RAM and Ubuntu L22.04 locally, averaged over 100 runs.

Bit- Keygen OPRF OPRF OPRF
length Keygen PRF Overall User Sender

128 0.14ms 183.98ms 9.54s 3.29s 6.25s
256 0.27ms 243.55ms 18.32s 6.24s 12.08s
512 0.54ms 362.16ms 37.06s 12.54s 24.52s
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Figure 9: Online runtimes of different clients computing OPUS with a bitlength
of 128 with a server in London. All machines run on Debian 11 using the
simplest Google Cloud instance.

server in London. As clear from Figure 9, the runtime of OPUS directly corre-
sponds to the round-trip time of the ping. In a real-life setting, this overhead
may be mitigated by running several, distributed instances of a server.

4.2 Possible Extensions of OPUS

We now give intuitions for possible extensions of OPUS. Specifically, we discuss
how to potentially lift OPUS to a distributed or threshold OPRF, batch and
update the OPRF, and give other notions that may be addressed in future work,
either by refuting our intuitions or using them. Several notions were discussed
in a recent SoK [CHL22].
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Distributed and threshold OPRF To increase resilience against key com-
promise, the server key K can be distributed across several servers. Threshold
OPRFs distribute the keys such that only t out of n honest servers are required
to produce an OPRF result. A common approach is distributing the key using
Shamir’s secret sharing [Sha79]. For CSIDH, a recent paper [DM20] demon-
strates threshold key sharing. Their results should be directly applicable to
OPUS, at the penalty of requiring t more rounds.

Batched OPRF While there is no direct way to batch OPUS, evaluating
several OPRFs in one session can be used to amortize the overhead imposed by
the rounds, as sending several blinded curves for the OPRF increases the traffic,
but not the round complexity. Obviously, the blinding keys must be uniformly
random.

Updatable OPRF Only updating a part of the OPRF seems trickier. In a
simple version, the client sends the indices where two inputs X1, X2 differ. The
parties then engage in a reduced execution of OPUS, where the server responds
with (r ∗ k−1 ∗ E,k ∗ r ∗ E) for the given indices.

As the server knows the index of where two evaluations differ, another version
of this is to send some dummy indices and require the server to respond with
(r∗k−1∗E, r∗E,k∗r∗E), with r∗E being consecutively used if the index was a
dummy index. This approach may reduce the latency introduced by the rounds
as e.g. visible in Figure 9 and may be attractive for settings where several OPRF
evaluations are necessary, such as private set intersection [KRS+19].

Strong OPRF An OPRF is strong [FIPR05] when the client learns nothing
about the key from the result. If the client learns anything about the key, they
break Problem 1. Therefore, OPUS is a strong OPRF.

Partial Obliviousness Partially Oblivious Pseudorandom Functions (POPRFs)
reveal some client input to the server. This can be useful in many settings e.g. to
provide some identification marker. While OPUS does not directly provide the
functionality, this may work with an identification scheme, e.g. from CSI-FiSh.

Committed in- and outputs Protocols using the OPRF as a building block
may require that the client commits to an input or the server obtains a commit-
ment about the output [CHL22]. Both require some algebraic structure. While
we believe this is possible with zero-knowledge proofs, our current construc-
tion of OPUS does not allow commitments. There is currently no committed
NR-based OPRF [CHL22].

Key Rotation and Proactive Security Refreshing keys is necessary to
recover from a compromise, also called key rotation. OPUS is currently unable
to perform key rotation.
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5 Security Analysis

To prove our novel OPRF secure in the standard model, we will show correct-
ness, hiding, binding and one-more security, giving reductions to either the key
recovery problem in Problem 1 or the hiding lemma in Lemma 1.

5.1 Correctness

We now show that the protocol OPUS in Figure 8 generates output in corre-
spondence to the CSIDH NR-PRF FNR from Figure 1.

Proposition 1 (OPUS produces correct NR-PRF outputs) For all keys
k ∈ K and inputs x ∈ {0, 1}n, the output of an honest computation of OPUS
is an evaluation of FNR. That is P[FOPUS(k,x) = FNR(k,x)] = 1, with the
probability being over the internal randomness of OPUS.

Proof 1 (Proof: Correctness of OPUS) Given input X = (x1, . . . , xn) and
keys K = (k0, . . . ,kn), the client C generates a random key rc,i for each i ∈ [1, n]
and initializes E ← E0. For each i ∈ [1, n], C sends a randomized curve rc,i ∗E
to the server S, who samples rs,i and returns E′

0 ← rs,i∗E and E′
1 ← ki∗rs,i∗E

to C. If xi = 1, C sets E ← ki ∗ rs,i ∗ E and E ← rs,i ∗ E otherwise. Clearly,
repeating this step n times is equivalent to computing((

n∑
i=1

rs,i +

n∑
i=1

rc,i +

n∑
i=1

ki
xi

)
∗ E0

)
.

The computation is finalized by C blinding the result again with the term rc,0
and sending it to the server, which applies k0 as well as the sum of the inverse
blinding terms rs such that

(k0 −
n∑

i=1

rs,i) ∗

((
rc,0 +

n∑
i=1

rs,i +

n∑
i=1

rc,i +

n∑
i=1

ki
xi

)
∗ E0

)
,

which is equivalent to (
n∑

i=0

rc,i + k0 +

n∑
i=1

ki
xi

)
∗ E0.

The client is left to compute the inverse of their respective blinding elements
such that

n∑
i=0

−(rc,i) ∗

(
n∑

i=0

rc,i + k0 +

n∑
i=1

ki
xi

)
∗ E0,

which is equivalent to computing(
k0 +

∑
i=1

ki
xi

)
∗ E0.

Therefore, OPUS correctly evaluates the NR-PRF for honest parties.
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5.2 Interlude: Freely and Transitively Acting Class Group

Before proving hiding and binding, we revisit the necessary properties of the
class group action for our security proves. Given a group element g ∈ G and
two elements x, y ∈ cl(O), the group action is said to act freely if,

∀(x, y) ∈ cl(O)2∃g ∈ G : gx = y.

Further, the class group action is said to act transitively, if

∀x ∈ cl(O) : gx = x =⇒ g = I,

with I being the identity element of the group. This is important to capture
all isomorphic curves. A group action that acts both freely and transitively has
that

∀(x, y) ∈ cl(O)2∃!g ∈ G : gx = y.

CSIDH samples ideal classes within [−m,m]. Increasingm leads to distributions
closer to uniform. CSIDH only offers statistic indistinguishability from uniform,
as discussed in[LGd21]. For uniform sampling, CSI-FiSh[BKV19] can be used.

Proposition 2 (Randomized Transcript) We propose that the transcript of
OPUS is randomized, that is, any PPT adversary A does not learn about the
input or the key from the transcript with more than negligable probability.

Proof 2 Due to the hiding Lemma 1, the intermediate messages do not give any
information about the underlying curve as the randomized curve is statistically
indistinguishable from a random curve over E. Therefore, the transcript is sta-
tistically indistinguishable from a random transcript and therefore does not give
information to a passive PPT adversary with more than negligable probability.

5.3 Hiding

For our OPRF to be oblivious, the client input and the server keys must be
hidden both from the other party and outside observers, that is, informally, any
information obtained from an evaluation by an adversary should be as likely to
have been seen regardless of the underlying secret value.

Proposition 3 (Client-Hiding) For all K ∈ K and X ∈ {0, 1}n, let OPUS
be executed with either X or a uniformly random X ′ ∈ {0, 1}n as client input.
The probability distributions of the server-side transcript of OPUS in the two
different cases are statistically indistinguishable.

Proof 3 Let K be an arbitrary key and consider each element xi ∈ X. For
i = 1, the server learns nothing about the client input as there is no dependence,
and rc,0 ∗ E0 does not give any information. In each step i > 1, the server
receives a message dependent xi which is either rc,i ∗ Ei or rc,i ∗ Ej, where
Ei, Ej are known to the server and rc,i is a random class group element. As
the CSIDH class group action acts freely and transitively, any E ∈ E can be
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mapped to any other by exactly one group element. By Lemma 1, rc,i statistically
hides the curve Eclient in the transcript, regardless of the value of Eclient. Thus
each individual message of the client-side transcripts for inputs X and X have
distributions that are statistically indistinguishable for both the server and a
passive interceptor of the entire transcript.

Proposition 4 (Server-Hiding 1) Given the randomized server messages
{Es,i,0 ← rs,i ∗ Eblinded, Es,i,1 ← rs,i ∗ ki ∗ Es,i,0}i∈[1,n], no PPT adversary

A controlling the client can learn the partial evaluations {Ei = (
∑i

j=1 kj) ∗
E0}i∈[1,n] with more than negligible success probability. This holds for all keys
k ∈ K and inputs X ∈ {0, 1}n. That is,

P[{Êi}i∈[1,n] ← A({Es,i,0, Es,i,1}i∈[1,n], X) :

{Êi}i∈[1,n] = {Ei}i∈[1,n]] ≤ ϵ(n),

where the probability is over the internal randomness of A and OPUS.

Proof 4 The proposition follows from Problem 1 and the hiding Lemma 1. For
each i, both Es,i,0 and Es,i,1 consist of the group action performed between a
key that the client does not know and a curve that the client does know. The
hiding lemma guarantees us that knowing Es,i,1 does not help in trying to learn
ki ∗ Eblinded, since rs,i is statistically indistinguishable from uniform random.
The hardness of Problem 1 guarantees us that no PPT adversary can derive
ki from knowing Es,i,1 ← ki ∗ Es,i,0 and Es,i,0. Therefore, no PPT adversary
can with non-negligible probability derive the partial evaluation from either one
of Es,i,0 and Es,i,1, or the difference between them. Since this holds for each
iteration separately, it also holds for them as a whole due to the independence
between the randomness in each round.

Proposition 5 (Server-Hiding 2) For all K ∈ K, no PPT adversary is con-
trolling the client that, with more than negligible probability, can derive any
knowledge about K from the server messages
{Es,i,0 ← rs,i ∗ Eblinded, Es,i,1 ← ki ∗ Es,i,0}i∈[1,n]. That is, ∀K ∈ K,

P[K̂ := {k̂0, . . . , k̂n} ← A({Es,i,0, Es,i,1}i∈[1,n], X) : K̂ = K] ≤ ϵ(n),

where the probability is over the internal randomness of A and OPUS.

Proof 5 The proposition follows directly from the assumed hardness of Problem
1, due to the independence between the randomness in each iteration.

Due to the non-uniform distribution of CSIDH keys, OPUS only statisti-
cally hides the input and key. If unconditional hiding is necessary, class group
elements have to be computed as in CSIDH to obtain uniform keys.
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5.4 Binding

A secure PRF needs to be collision resistant, that is, it should be hard to find
X1, X2 such that FK(X1) = FK(X2). For Naor-Reingold PRFs, some colliding
inputs are trivially possible if certain keys of K = (k0, . . . ,kn) are weak. This
is the case if K contains the zero key, repeating keys, keys that are the inverse
of another, or additive combinations of keys that map to a distinct subsets of
other keys.

Example 1 (Trivial Collisions) If all ki = [0]k for i > 0, then all possible
client inputs will lead to a collision, and therefore finding such a collision is
trivial.

Let K = (k0, . . . ,kn). For n = 1, if k1 is the zero-key and k0 arbitrary,
both X = [0] and X ′ = [1] produce the same output. If not all round keys are
zero but only most of them, we still consider the collisions to be trivially easy
to find, in the sense of them occurring with overwhelming probability when one
selects client inputs at random.

The probability of randomly drawing the zero key is 1
(2m+1)k

, which is small

even for CSIDH-512. Additionally, it is trivial to check for this case during key
generation.

Example 2 (Combinatorial Collisons) For the case with n = 2, in addition
to trivial collisions, now there are two more possible collisions.

1. For n > 1, there is a risk of some k1,k2 that are equal. Take k1 = k2,
this produces a collision between X = [0, 1] and X ′ = [1, 0].

2. For n > 1, there is a risk of some k1,k2 that are inverses of each other,
that is, k1 − k2 = [0]k. Then, X = [0, 0] and X ′ = [1, 1] collide.

For n = 2 the probability of drawing keys that are the same are or inverses
are each again 1

(2m+1)k
. Motivated by Example 2, we now show how there are

non-trivial collisions for up to n keys.

Example 3 (Subset Collisions) Let K = (k0,k1, . . . ,kn) with k0 being ar-
bitrary. Collisions may occur if a subset of keys ki, . . . ,kj adds to zero or
another subset. For example, with k1 + k2 = k3, then X = [1, 1, 0] and
X ′ = [0, 0, 1] collide. Similarily, k1 + k2 = k3 + k4 collide on X = [0, 0, 1, 1]
and X ′ = [1, 1, 0, 0], and so on.

By continuing the examples to larger n it does seem like that, while the prob-
ability of collision-prone round keys exist, the probability of drawing two client
inputs that collide decreases as the length of tuples increase. The reason is that
as each new round key is added, there is not only the added probability that it
is the zero-key on its own, but also the added probability that it creates a subset
sum within the key set as showin in Example 3. Such a collision requires two
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client inputs X,X ′ to differ exactly so the subset-sum is found. The probabil-
ity for this is exponentially small in the length n. Therefore, the probability of
drawing a collision-prone key set in CSIDH seems to be a small factor dependent
on n, which we will denote as ν, in the form ν

(2m+1)k
= ν

2k log2(2m+1) . Therefore

it seems that the probability of drawing collision-prone keys is negligible in
k log2(2m+ 1) and therefore also in k log2(m).

Let us call a key set for which the probability of uniformly guessing two
client inputs (without replacement) such that they collide is non-negligible in n
collision-likely. Based on the intuition presented above, we conjecture that that
collision-likely key sets are rare, more precisely:

Conjecture 1 (Rarity of collision-likely Key Sets) The probability of draw-
ing a key set K, containing n+1 keys, such that K is collision-likely is negligible
in k log2 m.

Using Conjecture 1, we propose that OPUS is weakly binding.

Proposition 6 (OPUS is weakly binding) Assume the hardness of Prob-
lem 1 and that Conjecture 1 holds. Then there is no PPT adversary controlling
the client that, for a randomly sampled k ∈ K, can find a collision in OPUS
for the client input with more than negligible probability. That is, for all PPT
adversaries A, with query access to FOPUS(k, ·) and the view of the client,

P[X,X ′ ← A : FOPUS(K,X) =

FOPUS(K,X ′), X ̸= X ′|K $←− keygen()] ≤ ϵ(n).

The probability is over the internal randomness of A, and the randomness in
the key generation.

Proof 6 The simplest collision, a preimage, where A uses an evaluation E ←
FOPUS(K,X) to derive knowledge about K from E, is contradicted by Problem 1.
Picking random inputs X,X ′ is infesible given the size of Endp(E) ≈ √p. Fi-
nally, finding subset-sum collisions is hard by Conjecture 1, as there is iat most
a negligible probability (in k, log2 m) of K being such that collisions can be found
by uniform guessing with non-negligible probability in n.

5.5 OPUS is one-more unforgeable

To finally obtain a secure OPRF, we now prove one-more unforgeability, that
is, asking for r instances of the OPRF does not enable a PPT client to compute
a new, r + 1th evaluation without executing OPUS again.

Proposition 7 (One-More unforgeability) Assume the hardness of Prob-
lems 1. Then given a uniformly sampled key K ∈ K and r input-output pairs
((X1,FOPUS(K,X1)), . . . , (Xr,FOPUS(K,Xr))), with Xi ∈ {0, 1}n freely cho-
sen by a PPT adversary A. There is no such A, for which K is unknown,
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that can produce a valid new pair (Xr+1,FOPUS(K,Xr+1)) with non-negligible
probability, that is,

P((Xr+1, Ê)← A((X1,FOPUS(K,X1)), . . . , (Xr,FOPUS(K,Xr))) :

Ê = FOPUS(K,Xr+1)|K
$←− keygen()) ≤ ϵ(n).

Proof 7 Assuming both binding and randomized transcript hold, A needs to
finding a valid combination of two OPRF results E1 ← FOPUS(K,X1) and
E2 ← FOPUS(K,X2). Doing so would require the adversary to recover the path
between the two curves, contradicting Problem 1. Therefore, even if A has access
to all possible evaluations except one, the final one evaluation could still be any
possible curve, and the adversary has no way of figuring out which one with
non-negligible probability.

5.6 Security Model

Due to the above computations, we claim that OPUS is a semi-honest OPRF.
Due to all communication being realized over randomized curves we cannot
detect if a participant in the protocol behaves maliciously. However, this gives
us the guarantee of privacy against malicious users, that is, assuming Problem 1
and Lemma 1 hold, a malicious server learns nothing about the clients input
and a malicious client learns nothing about the server keys.

6 Performance

To compare the different protocols for computing the Naor-Reingold OPRF
from isogenies, we give a cost overview in Table 2. To approximate commu-
nication cost, we consider the number of bits sent as functions of the security
parameters. To approximate computation costs, we consider the most expensive
operation, the CSIDH group operation. only the total number of class group
actions performed, again as functions of the security parameters, and assume all
other operations are negligible in relation to these. For conciseness, let us denote
log2 p as σ and let γ be the security parameter (which, in practice, is equal to
n). We point out that the communication cost estimates differ from the original
estimate for the Naor-Reingold OPRF using [BKW20]. This is in part due to
an update of the OT protocols used for NR-OT in [LGd21] and partly due to
a small miscalculation in [BKW20], where they give communication complexity
as

γ · (3σ + 4
σ

2
+ γ) = 5σ · γ + γ2, (1)

where the 4σ
2 term is for the encryptions of class-group elements, which are

private keys of size log2 p
2 , see Section 2.1.2. The encryptions in question are

not of just class-group elements but these are also appended by a γ-bit random
string, and the final round of the protocol also incurs the sending of an additional
elliptic curve. Therefore the communication complexity of the NR-OT protocol
is rather
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γ · (3σ + 4(
σ

2
+ γ) + γ) + σ = 5σ · γ + 5γ2 + σ. (2)

The comparison ( Table 2) between the NR-OT protocol from Section 2.4
and OPUS from Section 4 shows that our novel proposal is more efficient in
terms of computation (and thus also time) and falls probably somewhere in
between the semi-honest and one-sided maliciously secure versions of NR-OT in
terms of communication (dependent on parameter choices).

Table 2: Cost of the oblivious evaluation of the Naor-Reingold OPRF. σ de-
notes the CSIDH/CSI-FiSh security parameter and γ the security parameter.

denotes a semi-honest party, and a malicious party.

work rounds comm. isog. model
work rounds cost comp. (C-S)

NR-OT 2 2σ · γ + 2γ2 + σ 5γ + 2 -

NR-OT 4 5σ · γ + 5γ2 + σ 11γ + 2 -

OPUS 2γ + 2 3σ · γ + 2σ 3γ + 3 -

In Table 3, we show how the communication complexity compares for dif-
ferent parameters regimes to better illustrate the concrete complexity. From
the figure it is clear that for reasonable parameter regimes such as these, OPUS
is currently the most competition efficient OPRF that is secure against semi-
honest adversaries in a post-quantum setting.

7 Related Work

OPUS and the generic NR-OPRF from isogenies are only two of several, re-
cent proposals in post-quantum cryptography. Note that the estimates for the
communication complexity may change drastically as the concrete security of
CSIDH remains an open research question, see Section 2.1.5. We give further
estimates in Table 3 and provide parameter-agnostic approximations in Table 2,
showing that OPUS is still competitive even with larger parameters.

A recent proposal [Bas23] repairs the SIDH-based OPRF [BKW20] and also
enables verifiability, that is, that the client can verify that the server used a
certain key K. OPUS lacks this property. A drawback of the SIDH-based
construction is that a trusted setup is necessary as well, which is expensive but
possible over Fp2 [BCC+23].

On the lattice side, an initial proposal for round-optimal, verifiable OPRFs [ADDS21]
has a very large overhead imposed by heavy zero-knowledge proofs. A proof-of-
concept implementation is available in Sage and takes around one second for
an offline computation, being around nine times faster than OPUS. However,
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Table 3: Communication and computation complexity estimates of the protocols
with different concrete parameters.

comm. isog. model
protocol rounds cost comp. (C-S)

γ
=

12
8

σ
=

5
12 NR-OT 2 21 kB 624 -

NR-OT 4 51 kB 1410 -

OPUS 258 25 kB 386 -

γ
=

2
56

σ
=

2
04
8 NR-OT 2 148 kB 1282 -

NR-OT 4 369 kB 2818 -

OPUS 514 197 kB 770 -

γ
=

2
56

σ
=

52
80 NR-OT 2 355 kB 1282 -

NR-OT 4 886 kB 2818 -

OPUS 514 508 kB 770 -

the implementation is not necessarily complete, as it omits proofs and samples
from a uniform distribution instead of a Gaussian distribution.

A newer lattice OPRF [ADDG23] significantly improves the communication
cost in a malicious setting. The provided implementation in Rust does not in-
clude the non-interactive zero-knowledge proofs needed for a malicious client
security and therefore is only semi-honest, while the communication estimates
in Table 4 include proofs from a malicious client. Comparing the runtime of
OPUS to [ADDG23] is a bit more nuanced. While the former needs ≈ 15s for
the key generation, CSIDH is vastly faster, as it only requires 0.14ms for the
same operation. The communication complexity of the lattice OPRF is also
largely dominated by the key generation, which accounts for 108.5 MB of the
communication cost. For the actual OPRF, only 36kB of communication are
necessary, which is slightly more than OPUS. A big advantage of the construc-
tion is the lower round complexity.

Using preprocessing and dedicated symmetric primitives, [DGH+21] produce
a very efficient, semi-honest OPRF using preprocessing. They also require a
trusted third party to generate correlated randomness. While benchmarks exist,
the implementation is unfortunately not available to the public.

A different path is taken by [SHB23], who use their result that key-recovery
of the Legendre PRF is equivalent to solving sparse multivariate equations over a
prime field to construct an OPRF. It requires a preprocessing step to distribute
correlated randomness amongst the participants of the protocol.
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Table 4: Comparison with all other post-quantum OPRF proposals. DM de-
notes the dark matter PRF [BIP+18, CCKK21]. The instances aim at a security
level of roughly 128 bits and use log2 p = 512 for the isogeny protocols.

comm. model no no trusted full impl.
work assumption rounds cost (C-S) preproc. setup available

[ADDS21] R(LWE)+SIS 2 ≈ 2MB - ✓ ✓ ✓
[ADDS21] R(LWE)+SIS 2 > 128GB - ✓ ✓ p

[SHB23] multivariate 3 γ · 13 kB - p ✓ p

[DGH+21] DM 2 308 B - p p p

[ADDG23] DM+lattices 2 ≈ 108.5MB - ✓ ✓ ✓

[ADDG23] DM+lattices 2 ≈ 211.3MB - ✓ ✓ p
[Bas23] Isogenies Fp2 2 3.0MB - ✓ p p

NR-OT CSI-FiSh 2 20.54 kB - ✓ p p

NR-OT CSI-FiSh 4 34.88 kB - ✓ p p

OPUS CSIDH 258 24.7 kB - ✓ ✓ ✓

8 Conclusion

In this paper, we have shown that the computational complexity of Naor-
Reingold OPRFs can be significantly reduced by using properties of the CSIDH
group action. We introduced OPUS, an OPRF that gains its hardness directly
from the underlying CSIDH group action. The new construction digs deeper
into the generic construction of Naor-Reingold protocols, which traditionally
use oblivious transfer to send blinded private keys. We found a generic way
to directly use oblivious transfer-style computation to save several computa-
tions and remove the need for a trusted setup. In comparison to previous work,
OPUS has three strong advantages: First, it can be used stand-alone without
requiring any trusted setup. The only hardness assumption is CSIDH, which
is fewer than in the previous generic proposal [BKW20] from CSIDH. Second,
the simple structure also makes a compelling argument for the security analy-
sis of OPUS. In addition, the extension to threshold and distributed OPRFs is
straightforward. Third, OPUS requires 40% fewer isogeny computations than
the best previous CSIDH-based OPRF proposals as shown in Table 3. This
is compelling for constrained devices, e.g. IoT devices with reasonably good
internet access.

When using no preprocessing, no trusted setup, and a semi-honest client and
server, OPUS requires 83× less communication than the next-best approach
which uses LWR. The main drawback of our construction is the large number
of rounds, which can be amortized over several executions.

We also revisited the only other previous proposal from CSIDH that survived
cryptanalysis so far [BKW20], and showed that the implementation is more com-
plex than described in the original paper: A straight-forward implementation
leaks the entire server key after a few evaluations. To secure the construction,
it is necessary to use CSI-FiSh, which introduces several new hardness assump-
tions, concretely lattice assumptions for either rejection sampling or reducing
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the private key. Besides more hardness assumptions, this also adds additional
overhead compared to the previous proposal.

Of independent interest, we also discuss the Naor-Reingold PRF in CSIDH
further and give a concrete strategy that gives rise to optimizations in all of our
protocols and also enables somewhat fast offline computation of both our novel
OPRF and the Naor-Reingold OPRF. All the measurements and the code to
obtain them are available at https://github.com/meyira/OIDA.

Future Work While our results are immediately useful for a variety of proto-
cols requiring OPRFs, the slow group action is still hindering large-scale deploy-
ment. Based on our findings, we envision future studies for the applicability of
OPUS to more advanced protocols, especially in settings with low bandwidth.
We anticipate that there may be some use having a verifiable delay both due to
the sequential computation and the physical limitations of the network.

We already discussed more nuanced possible extensions, amongst them POPRFs,
threshold OPRFs and updatable OPRFs in Section 4.2. In addition, the current
implementation of OPUS is neither optimized nor side-channel free. Concretely,
OPUS only requires side-channel free key addition and group actions, as well
as the conditional assignment of Eclient, to become side-channel free. This is
especially true for a group action with a larger security parameter. On a theo-
retical side, elliptic curves with trusted setup over Fp would greatly add to the
current research, as it eases concretizing the overhead of the OT for the NR-OT
proposal over CSIDH and would enable a variety of simpler protocols with fewer
rounds.
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[BKM+21] Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe Pe-
tit, and Antonio Sanso. Cryptanalysis of an oblivious PRF from
supersingular isogenies. In Mehdi Tibouchi and Huaxiong Wang,
editors, ASIACRYPT 2021, Part I, volume 13090 of LNCS, pages
160–184. Springer, Heidelberg, December 2021.

[BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren.
CSI-FiSh: Efficient isogeny based signatures through class group
computations. In Steven D. Galbraith and Shiho Moriai, editors,
ASIACRYPT 2019, Part I, volume 11921 of LNCS, pages 227–247.
Springer, Heidelberg, December 2019.

[BKW20] Dan Boneh, Dmitry Kogan, and Katharine Woo. Oblivious pseu-
dorandom functions from isogenies. In Shiho Moriai and Huax-
iong Wang, editors, ASIACRYPT 2020, Part II, volume 12492 of
LNCS, pages 520–550. Springer, Heidelberg, December 2020.

[BLMP19] Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz
Panny. Quantum circuits for the CSIDH: Optimizing quantum
evaluation of isogenies. In Yuval Ishai and Vincent Rijmen, edi-
tors, EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages
409–441. Springer, Heidelberg, May 2019.

25

https://eprint.iacr.org/2023/225


[BS20] Xavier Bonnetain and André Schrottenloher. Quantum security
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dre pseudorandom function as a multivariate quadratic cryptosys-
tem: security and applications. In AAECC. Springer, 01 2023.

[Sil86] Joseph H. Silverman. The arithmetic of elliptic curves, volume
106 of Graduate texts in mathematics. Springer, 1986.

[Sut12] Andrew V. Sutherland. Identifying supersingular elliptic curves.
LMS Journal of Computation and Mathematics, 15:317–325, 2012.
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A Artifact Description

We provide all benchmark-generating files as well as example instantiations of
OPUS in the artifact and plan to publicly host the code with the publishing
of this paper. A Makefile is provided in the artifact for easy compilation and
linking. The code is in the subdirectory code/ and the corresponding CSV files,
if needed, are in csv-files/

A.1 Generation of Figure 4

The data used in Figure 4 is in noopt.csv, and the code is in prf.c.
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A.2 Generation of Figure 5

The data for Figure 5 is in updatable.csv, and the code to generate it is in
updatable.c. A verification routine is commented out as it is a bit annoying
during benchmarking.

A.3 Generation of Table 1

opus.c performs local computations of OPUS. The code was used to gener-
ate Table 1.

A.4 Generation of Figure 10

The online evaluation of OPUS with different servers in London in Figure 9 was
generated with averages over a few runs. The data can be seen in online.csv

in the artifact. The client used single-threaded sockets for evaluation, as visible
in client.c. The server is multithreaded and can be seen in server.c. Due to
the high network latency and multithreading, no effect on concurrent execution
was visible, but for clear benchmarks, we refrained from concurrent execution
to have a comparable result.

The server has a KAT functionality built-in but commented out, where for
a fixed message both the client and the server should obtain the same result.
This sanity check may be of use to implementors.

We also benchmarked Sao Paulo, where the online evaluation and ping were
(34.54s, 190ms), respectively, Hongkong with (43.43s, 257ms) and Frankfurt
with (11.91s, 12.6ms). They were omitted as they made the graph unreadable,
being too close to Santiago de Chile, Sydney, and the Netherlands, respectively.

A.5 Approximation for Key Leakage

leak OPRF key csidh.py gives a rough approximation on how long it would
take for a simple attack on the NR-OT OPRF as described in Section 3.3.
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