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Abstract. Code-based cryptography has received a lot of attention re-
cently because it is considered secure under quantum computing. Among
them, the QC-MDPC based scheme is one of the most promising due to
its excellent performance. QC-MDPC based schemes are usually subject
to a small rate of decryption failure, which can leak information about
the secret key. This raises two crucial problems: how to accurately esti-
mate the decryption failure rate and how to use the failure information
to recover the secret key. However, the two problems are challenging due
to the difficulty of geometrically characterizing the bit-flipping decoder
employed in QC-MDPC, such as using decoding radius.

In this work, we introduce the gathering property and show it is
strongly connected with the decryption failure rate of QC-MDPC. Based
on this property, we present two results for QC-MDPC based schemes.
The first is a new construction of weak keys obtained by extending the
keys that have gathering property via ring isomorphism. For the set
of weak keys, we present a rigorous analysis of the probability, as well
as experimental simulation of the decryption failure rates. Considering
BIKE’s parameter set targeting 128-bit security, our result eventually
indicates that the average decryption failure rate is lower bounded by
DFRavg ≥ 2−116.61. The second entails two key recovery attacks against
CCA secure QC-MDPC schemes using decryption failures in a multi-
target setting. The two attacks consider whether or not it is allowed
to reuse ciphertexts respectively. In both cases, we show the decryption
failures can be used to identify whether a target’s secret key satisfies
the gathering property. Then using the gathering property as an extra
information, we present a modified information set decoding algorithm
that efficiently retrieves the target’s secret key. For BIKE’s parameter
set targeting 128-bit security, we show a key recovery attack with com-
plexity 2116.61 can be mounted if ciphertexts reusing is not permitted,
and the complexity can be reduced to 298.77 when ciphertexts reusing is
permitted.

Keywords: Post-quantum cryptography · Code-based cryptography ·
Decryption failure · BIKE · QC-MDPC · Information set decoding

1 Introduction

Shor’s algorithm [45] can solve the problems of integer factorization and discrete
logarithm in quantum polynomial time. Then once large-scale quantum com-
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puter that implements Shor’s algorithm becomes a reality, traditional public-key
systems based on factorization and discrete logarithm will run the risk of being
broken. As a result, developing public-key systems that can withstand quantum
attacks has become a pressing concern. In 2016, NIST (National Institute of
Standards and Technology) was motivated to start a process of standardizing
post-quantum public-key cryptographic algorithms [1]. In this process, code-
based cryptography plays an important role.

Code-based cryptography can be traced back to the invention of McEliece
public-key encryption scheme [38] and its variation Niederreiter scheme [41].
These schemes are built on Goppa codes, and their security can be reduced to
the hardness of decoding binary linear codes [6]. Other types of codes can also be
used to construct public key encryption schemes, and those based on QC-MDPC
(quasi-cyclic moderate density parity check) codes are in an competitive class in
terms of efficiency and bandwidth [39]. BIKE [3] is a representative QC-MDPC
based scheme that has advanced to the fourth round of the NIST standardization
process [2].

QC-MDPC based schemes are typically subject to decryption failures, which
means that even when the protocol is correctly executed, it is still possible for
the decryption to fail to recover the intended message. It is well known that de-
cryption failures can leak information about the secret key, and different types
of decryption failure attacks have been proposed for various lattice-based and
code-based schemes. One type of such attacks was introduced by Jaulmes and
Joux in [34] and extended in [33,26], which is against CPA (chosen plaintext at-
tack) secure schemes and recovers the secret key by choosing certain ciphertexts
that fail based on characteristics of the secret key. Another type of decryption
failure attack can be carried out against CCA (chosen ciphertext attack) secure
schemes, which is typically mounted in three stages: a precomputation stage in
which special ciphertexts are generated randomly, a decryption stage in which
the ciphertexts are submitted for decryption and some decryption failures are
observed, and a key recovery stage in which the secret key is retrieved based
on a statistical analysis of the decryption failures. In [28], Guo et al. presented
such an attack against the CCA secure QC-MDPC based scheme in [39] by us-
ing the “distance spectrum” to retrieve the secret key. Later, decryption failure
attacks against other code-based schemes were also proposed for, e.g., HQC [27],
QC-LDPC [23] and LRPC [4]. In [14,13], D’Anvers et al. investigated the de-
cryption failure attacks for LWE-based schemes and proposed a technique called
“directed failure boosting”, which significantly speeds up the ciphertext search
when several decoding failures have already been obtained. In addition to focus-
ing solely on how to recover the secret key, Bindel and Schanck [7] demonstrated
that successful decryption can also be utilized to speed up the search for ci-
phertexts. D’Anvers et al. [15] used the correlation of individual mistake bits
to demonstrate that the decryption failure rate for specific algorithms could be
underestimated.

To protect a scheme against decryption failure attacks, a natural solution is
to reduce the probability of decoding failure so that it is unlikely to occur for



Exploring Decryption Failures of BIKE 3

an allowed number of decryptions. In QC-MDPC based schemes, the bit-flipping
decoding algorithm [25] is employed to handle the errors involved in the decryp-
tion procedure. Since the bit-flipping algorithm is originally developed to decode
LDPC (Low Density Parity Check) codes, numerous efforts have been made to
enhance it to handle slightly denser errors in MDPC codes [39,30,36,11,10,9]. An-
other major problem is how to accurately estimate the failure rate of QC-MDPC
based schemes. In [46], an asymptotic upper bound on the decoding failure rate
is derived for MDPC codes. Sendrier and Vasseur [43] propose a framework
to estimate the failure rate by adopting a Markov chain model. On the other
hand, weak keys that result in higher decryption failure rate in QC-MDPC based
schemes were also studied [44,47].

In BIKE, the Black-Gray-Flip (BGF) decoder [18] is adopted, and the de-
cryption failure rate is believed to be low enough to make the scheme δ-correct,
that is, the decryption failure rate δ is less than 2−λ for λ-bit security. Under
this condition, the CCA security of BIKE can be guaranteed via the Fujisaki-
Okamoto transformation [24,31].

1.1 Our results

In this work, we reinvestigate the decryption failure rate for QC-MDPC based
schemes by introducing the gathering property. (y0, y1) ∈ R2 is said to satisfy
the (m, ϵ)-gathering property if there are (wH(y0) − ϵ) 1’s of y0 gathering in
some m consecutive positions (see Fig. 1), where R = F2[x]/(x

r − 1). The gath-
ering property exhibits a strong connection with the decryption failure rate of
QC-MDPC. Experimental result demonstrates that when both the secret keys
and the errors satisfy the gathering property, the decryption failure rate is sig-
nificantly higher than the average. Based on the gathering property, we are able
to give the following two results on the decryption failure rate for QC-MDPC
based schemes.

(y0, y1) =

m positions
with (wH(y0)− ϵ) 1’s︷ ︸︸ ︷

Fig. 1. An illustration of the gathering property.

A New Construction of Weak Keys. Our first contribution is a new con-
struction of weak keys for QC-MDPC based schemes. Let Km,ϵ(w) be the set
of secret keys satisfying the (m, ϵ)-gathering property. Through experiments, it
can be proved that the decryption failure rate for the keys drawn from Km,ϵ(w)
is higher than the average. Furthermore, Km,ϵ(w) can be extended to a larger
set of weak keys Kunion

m,ϵ (w) by using the ring isomorphisms of R.
We provide a rigorous approach to calculate the probability that a random

key is in Kunion
m,ϵ (w), as well as experimental simulations of the decryption failure

rates for keys drawing from Kunion
m,ϵ (w). These directly lead to a lower bound on
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the average decryption failure rate for BIKE’s parameter set targeting 128-bit
security, i.e.,

DFRavg ≥ 2−116.61 . (1)

Taking the simulation error into account, we can still conclude that DFRavg ≥
2−117.77 at 95% confidence level by using the normal approximation framework.

Key Recovery Attack. Our second contribution entails two key recovery at-
tacks using decryption failures against CCA secure QC-MDPC schemes. The
attacks are carried out in the multi-target setting, i.e., numerous targets are
queried with the goal of recovering the secret key for at least one of these tar-
gets.

First, we consider an attack model that assumes multi-target protection
where ciphertexts reusing is not allowed. For each target, the attacker randomly
generates a set of ciphertexts, and then queries the target’s decryption oracle to
decrypt these ciphertexts. Once a decryption failure occurs for a target T , the
attacker has an advantage of identifying whether T ’s secret key belongs the set of
weak keys Kunion

m,ϵ (w), i.e., there exists an isomorphism of R such that the secret
key satisfies the (m, ϵ)-gathering property after the action of isomorphism. Then
we propose a modified information set decoding algorithm, which can efficiently
recover T ’s secret key from the public key by using the gathering property as
extra information. On the other hand, the current version of BIKE does not
offer multi-target protection, prompting us to explore an attack model where
ciphertexts reusing is permissible. In this model, the attacker first constructs a
set of ciphertexts such that the errors satisfying the (m, ϵ)-gathering property.
Then the attacker queries each target’s decryption oracle to decrypt the same
set of ciphertexts. For a target T that has a decryption failure, the attacker has
an advantage of identifying whether T ’s secret key satisfies the (m, ϵ)-gathering
property and can thus be efficiently recovered by the modified information set
decoding algorithm.

Again we focus on BIKE’s parameter set targeting 128-bit security. For the
attack model that ciphertexts reusing is not allowed, we show that a key recovery
attack can be performed with complexity

Ctotal = 2116.61. (2)

Furthermore, when considering the attack model allowing for ciphertexts reusing,
we show that the complexity of the key recovery attack can be reduced to 298.77.
Table 1 lists more detailed attack complexity of our attacks.

The source code for our experiments on decryption failure rates is available
at https://github.com/1234wangtr/BIKE_weakey

1.2 Related Works

Guo et al’s Attack on MDPC. In [28], Guo et al. find a strong correlation
between the decryption failure rate and the secret key’s distance spectrum, which

https://github.com/1234wangtr/BIKE_weakey
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Table 1. The time complexity of the key recovery attacks against BIKE’s parameter set
targeting 128-bit security. The complexity of identifying failures is primarily determined
by the complexity of accessing decryption oracles for all targets. The complexity of
the key recovery step is determined by the total time complexity associated with all
calls made to the ISD algorithm. The preprocessing complexity is associated with
constructing the set of ciphertexts that satisfy the (m, ϵ)-gathering property.

Attack model without
ciphertexts reusing

Attack model with
ciphertexts reusing

Total Complexity 2116.61 298.77

Number of Targets 287.28 276.69

Queries per Target 229.33 222.08

Complexity of
Identifying Failures

2116.61 298.77

Complexity of
the Key Recovery Step

2111.96 294.81

Complexity of
Preprocessing

— 297.66

is defined to be the set of distances between any two 1’s in the secret key. From
decryption failures, one can collect enough information about the secret key’s
distance spectrum, and then recover the secret key from the distance spectrum
by the algorithm given in [28].

Weak Keys in QC-MDPC Schemes. In [17,44], the authors figure out that
there exist weak secret keys in QC-MDPC for which the decryption failure rates
are higher than the average. Vassuer [48] gives a classification of known weak
keys in QC-MDPC, and presents simulation results for BIKE with parameter
set targeting 128-bit security. In fact, lower bounds on the average decryption

failure rate can be deduced via the formula DFRavg ≥ |W||K| ·DFRW where K is the

set of keys and W is a set of weak keys, DFRW represents the decryption failure
rate for the keys drawn uniformly from W. However, the lower bounds provided
in [48] are all below 2−128, which has no effect on BIKE’s CCA security [2].

1.3 Summary of Our Work

As noted in [2,3], BIKE’s security under decryption failures raises two critical
questions: whether there exist weak keys that can affect the current estimate
of the average decryption failure rate, and whether it is possible to launch a
successful attack by utilizing the decryption failures. Our work confirms positive
answers to both questions.
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Weak Keys & Average DFR. We present a set of weak keys that impacts
BIKE’s current estimate of the average decryption failure rate for the first time.
For BIKE’s parameter set targeting 128-bit security, our results indicate that the
average decryption failure rate is higher than 2−128. This is concerning because
the CCA security of BIKE relies on the δ-correctness assumption, which our
findings suggest is not fully established.

Decryption Failure Attacks. Applying previous decryption failure attacks,
such as [28], to BIKE faces a major challenge due to the low average decryp-
tion failure rate. Our new attack framework provides a solution by utilizing
the gathering property. The gathering property exhibits a significant impact on
the decryption failure rate, making our attack framework effective. Moreover,
our framework permits a rigorous derivation or experimental confirmation of
the relevant probability and decryption failure rates. This enables us to calcu-
late the explicit attack complexity, and can give some insight into the concrete
security of BIKE under decryption failure attacks.

1.4 Organizations

Section 2 introduces some preliminary concepts. In Section 3, we define the
gathering property and provide experimental results on the decryption failure
rate, assuming both the secret key and error satisfy this property. Section 4
presents a new construction of weak keys and derives lower bounds on the average
decryption failure rate based on these weak keys. Section 5 and Section 6 describe
key recovery attacks leveraging the gathering property, while Section 7 offers
concluding remarks.

2 Preliminary

The following notations will be used in this paper.

– For a vector y = (y0, · · · , yn−1) ∈ Fn
2 , denote wH(y) to be the Hamming

weight of y, denote Supp(y) to be the support of y, and denote y[a,b) :=
(ya, ya+1, · · · , yb−1), where the subscripts are taken mod n.

– Let R := F2[x]/(x
r − 1). An element in the ring R is represented in a

polynomial form, i.e, y = y0 + y1x+ · · ·+ yr−1x
r−1, and the bold-case letter

y = (y0, · · · , yr−1) will be used to denote the coefficient vector of y. A
circulant matrix corresponding the coefficients of y can be defined as

rot(y) =


y0 yr − 1 · · · y1
y1 y0 · · · y2
...

...
. . .

...
yr−1 yr−2 ... y0

 . (3)

Then for any y, z ∈ R, the coefficient vector of yz equals to rot(y) · z.
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– Suppose i is co-prime to r, then the map

ϕi : y(x)→ y(xi) (4)

defines an isomorphism of R to R. Particularly, this isomorphism preserves
the Hamming weight.

– Denote
• K(w) := {(h0, h1) ∈ R2|wH(h0) = wH(h1) = w/2},
• E(t) := {(e0, e1) ∈ R2|wH(e0) + wH(e1) = t},
• E(t0, t1) := {(e0, e1) ∈ R2|wH(e0) = t0, wH(e1) = t1}.

Let Km,ϵ(w) and Em,ϵ(t0, t1) to be subsets of K(w) and E(t0, t1) respectively,
such that their elements satisfy the (m, ϵ)-gathering property in Definition 1.
Denote

pm,ϵ :=
|Km,ϵ(w)

|K(w)|
and qm,ϵ :=

|Em,ϵ(t/2, t/2)|
|E(t)|

. (5)

2.1 Estimate of the Probability from the Frequency

How to estimate the probability from the frequency is a basic problem in statis-
tics. In this paper, we mainly focus on the simulation of the decryption failures,
which can be treated as a Bernoulli trial. Suppose we repeat the decryption for
N times and find F failures while the actual decryption failure rate is p. Then
the ratio F/N is an estimate of p. In the framework of normal approximation,
the standard deviation of this estimate is

σ =

√
F (N − F )

N
√
N

≈
√
F

N
for F ≪ N. (6)

Then it has
Pr[F/N − 2σ < p < F/N + 2σ] ≈ 95%, (7)

and the confidence level will increase to 99.7% if 3σ is adopted in (7).

2.2 BIKE

In this work, we use BIKE to demonstrate our results. The gathering property
and the key recovery attack can be directly applied to the QC-MDPC based
schemes such as [40]. BIKE is built by first constructing a PKE (public-key
encryption) using the Niederreiter framework, and then obtaining a KEM (key
encapsulation encapsulation) following the method proposed in [19]. Let n =
2r, w = 2v = O(

√
n), t = O(

√
n) be a set of parameters, and let H, L, K be hash

functions with proper outputs. Then BIKE KEM can be described as follows.

– KeyGen ():
• Randomly generate h0, h1 ∈ R such that wH(h0) = wH(h1) = w/2.
• Compute h = h1h

−1
0 ∈ R.

• Output (h0, h1, σ) as the secret key, and h as the public key.
– Encaps (h):



8 T. Wang, A. Wang, X. Wang

• Randomly choose m ∈ {0, 1}256.
• Compute (e0, e1) = H(m) ∈ R2 such that wH(e0) + wH(e1) = t.
• Output the ciphertext c = (e0+e1h,m⊕L(e0, e1)), and the shared secret
K = K(m, c).

– Decaps ((h0, h1, σ), c):
• Compute e′ = decoder(c0h0, h0, h1) ∈ R2.
• Compute m′ = c1 ⊕ L(e′).
• If e′ = H(m′) then output K(m′, c), else output K(σ, c).

The decoder in BIKE is the Black-Gray-Flip (BGF) algorithm proposed in [18].
BIKE provides three classes of parameters targeting 128-bit, 192-bit and 256-bit
security respectively, which are listed in Table 2.

Table 2. BIKE parameter sets.

Security Level r w t Decryption Failure Rate

128-bit 12323 142 134 2−128

192-bit 24659 206 199 2−192

256-bit 40973 274 264 2−256

2.3 The Bit-Flipping Algorithm

The bit-flipping algorithm is initially introduced in [25] for the decoding of LDPC
codes. Taking inputs as an LDPC matrix H ∈ Fm×n

2 and a syndrome vector
s ∈ Fm

2 , it iteratively finds the error vector e ∈ Fn
2 s.t. He = s as follows. The

algorithm starts with a zero vector e = 0. In each iteration, it computes the
number of unsatisfied parity checks

UPC(e, i) := |Supp(He+ s) ∩ Supp(hi)| (8)

for each position i ∈ [0, n − 1], where hi is the i-th column of H, and flips
the i-th position of e if UPC(e, i) exceeds a pre-set threshold τ . The algorithm
terminates when the maximum number of iterations NIter is achieved. We refer
to Algorithm 1 for the details.

When dealing with QC-MDPC codes, the bit-flipping algorithm takes s, h0, h1 ∈
R as inputs and finds the error vector e0, e1 ∈ R by solving[

rot(h0) rot(h1)
] [e0

e1

]
= s (9)

via Algorithm 1. Several optimizations have been proposed for MDPC codes,
such as improved selection of the threshold and flipping the bits in parallel. The
BGF algorithm in BIKE adopts a BG iteration, in which the positions with
UPCs that exceed a high threshold (black) are flipped and checked first, and
the positions with UPCs that are close but below a high threshold (gray) are
flipped afterwards. Then some standard bit-flipping iterations are performed.
The complete BGF algorithm can be found in Appendix D.
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Algorithm 1: The Bit Flipping Algorithm

Input: H ∈ Fm×n
2 , s ∈ Fm

2

Output: e ∈ Fn
2 s.t. He = s

1: e = 0
2: while i < NIter do
3: for j from 0 to n− 1 do
4: if UPC(e, j) ≥ τ then
5: Flip the j-th position of e
6: end if
7: end for
8: i = i+ 1
9: end while
10: return e

3 The Gathering Property for QC-MDPC

In this section we focus on the decryption failure rate of QC-MDPC based
schemes when both the secret key (h0, h1) and the error (e0, e1) satisfy the
gathering property defined as below.

Definition 1 (gathering property). Let m < r be a positive integer and let
ϵ ≥ 0 be a small integer, then (y0, y1) ∈ R2 is said to have the (m, ϵ)-gathering
property if there exists an integer a such that

wH(y
[a,a+m)
0 ) = wH(y0)− ϵ. (10)

The gathering property means that all but ϵ 1’s of y0 gather in some m
consecutive positions (in the cyclic sense). We note that there is no requirement
on the right side element y1. In this paper, we are particularly interested in the
case ϵ = 0, 1.

3.1 The Frequency of Decryption Failures

The gathering property has a significant impact on the decryption failure rates
of QC-MDPC based schemes. We experimentally simulate the decryption failure
rates for BIKE with BGF algorithm and parameter set targeting 128-bit secu-
rity. In the experiment, we sample (h0, h1) from Km,ϵ(w) and sample (e0, e1)
from Em,ϵ(t/2, t/2) uniformly at random, where the specific sampling method is
discussed in Section 3.1. By taking (s = h0e0 + h1e1, h0, h1) as input, the BGF
algorithm outputs a vector e. Then we count a decryption failure if and only if
e ̸= (e0, e1). For 4500 ≤ m ≤ 5100 and ϵ = 0, 1, the frequency of decryption fail-
ures in our experiment is listed in Table 3, and their trend is depicted in Fig. 2.
From the figure, we can see that the decryption failure rates are significantly
higher than the average when both the secret key (h0, h1) and the error (e0, e1)
satisfy the gathering property.
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ϵ=0

ϵ=1

4600 4800 5000 5200
m

-25

-20

-15

-10

Log2[DFR]

Fig. 2. The decryption failure rates for (h0, h1) and (e0, e1) satisfy the (m, ϵ)-gathering
property.

How to Sample Keys and Errors. Directly sampling (h0, h1), (e0, e1) from
Km,ϵ(w) and Em,ϵ(t/2, t/2) uniformly is difficult. We observe that the decryption
failures are preserved by cyclic shifting. That is, (h0, h1), (e0, e1) gives a decryp-
tion failure if and only if (xih0, x

ih1), (x
je0, x

je1) gives a decryption failure for
any i, j ∈ Z. As a result, we can take the following strategy, which samples the
keys and errors such that the 1’s of h0 and e0 roughly gather in [0,m). Note that
we are interested in m ≤ r/2, ϵ ∈ {0, 1} in the experiment.

Firstly, we focus on the case ϵ = 0. To sample (h0, h1), we first set the 0-th
position of h0 to 1 and then randomly choose (w/2− ϵ−1) positions from [1,m)
and set them to 1. Denoting j to be the last position of h0 whose value of 1,
then we randomly choose ϵ positions from [j+1, r) and set them to 1.1 h1 is just
generated randomly such that wH(h1) = w/2. Such procedure is summarized in
Algorithm 2. (e0, e1) is sampled in the same way as (h0, h1), while the input of
the algorithm is set to be (t,m, ϵ = 0).

It can be proved that the decryption failure rate for keys and errors sampled

as above equals to that for Km,ϵ(w) and Em,ϵ(t/2, t/2). Let K
(0)
m,ϵ(w) and E

(0)
m,ϵ(t)

denote the set of (h0, h1) and (e0, e1) generated as above respectively. Denote

K
(b)
m,ϵ(w) = {(xbh0, x

bh1) : (h0, h1) ∈ K
(0)
m,ϵ(w)} and E

(b)
m,ϵ(t) = {(xbe0, x

be1) :

(e0, e1) ∈ E
(0)
m,ϵ(t)}. Then it is clear that

DFR
(h0,h1)

$←K(0)
m,ϵ(w)

(e0,e1)
$←E(0)

m,ϵ(t)

= DFR
(h0,h1)

$←K(b)
m,ϵ(w)

(e0,e1)
$←E(b′)

m,ϵ(t)

(11)

1 For ϵ = 0 there is nothing to do in this step.
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Table 3. The frequency of decryption failures for (h0, h1) and (e0, e1) satisfying the
(m, ϵ)-gathering property. N represents the number of decryptions performed, and F
represents the number of decryption failures observed.

(m, ϵ) (4500, 0) (4600, 0) (4700, 0) (4800, 0) (4900, 0) (5000, 0) (5100, 0) (5200, 0)

N 240393 595827 1496235 3330070 952115 2507712 6605312 19727185

F 160 160 160 160 16 16 16 16

(m, ϵ) (4500, 1) (4600, 1) (4700, 1) (4800, 1) (4900, 1) (5000, 1) (5100, 1)

N 139443 491647 911967 2957650 9176502 19197539 28910000

F 15.5∗ 14 15 13.5∗ 15 14.5∗ 6.5∗

∗ The ‘.5’ comes from the rejection sampling in Algorithm 2, where a decryption failure
in the overlapping area counts as 0.5.

for any b, b′ ∈ Z because of the cyclic property. Additionally, for ϵ = 0, Km,ϵ(w)

is exactly the disjoint union of K
(b)
m,ϵ(w), 0 ≤ b < r, and Em,ϵ(t/2, t/2) is the

disjoint union of E
(b)
m,ϵ(t), 0 ≤ b < r. As a result, for ϵ = 0 we can deduce that

DFR
(h0,h1)

$←Km,ϵ(w)

(e0,e1)
$←Em,ϵ(t/2,t/2)

= DFR
(h0,h1)

$←K(0)
m,ϵ(w)

(e0,e1)
$←E(0)

m,ϵ(t)

. (12)

For ϵ = 1, Equation (11) still holds. However, the sets K
(b)
m,ϵ(w), 0 ≤ b <

r, intersect with each other, which makes Equation (12) no longer holds. We
solve this issue by rejection sampling. Specifically, we observe that there is no

(h0, h1) simultaneously drops into more than 2 of K
(b)
m,ϵ(w), i.e., each element in

the overlapping area K
(0)
m,ϵ(w) ∩ (∪1≤b<rK

(b)
m,ϵ(w)) appears exactly twice in the

full union ∪0≤b<rK
(b)
m,ϵ(w). A similar conclusion also holds for the sets E

(b)
m,ϵ(t).

Therefore, by accepting the (h0, h1) and (e0, e1) that drop in the overlapping
area with probability 1/2 (see Algorithm 2),2 we can obtain a result similar to
Equation (12). A complete proof can be found in Appendix A.

Lemma 1. Denote F(w,m, ϵ) to be the random function corresponding to Algo-
rithm 2. Then for m ≤ r

2 and ϵ ∈ {0, 1}, it has

DFR
(h0,h1)

$←Km,ϵ(w)

(e0,e1)
$←Em,ϵ(t/2,t/2)

= DFR(h0,h1)←F(w,m,ϵ)
(e0,e1)←F(t,m,ϵ)

. (13)

For m > r
2 or ϵ ≥ 2, the rejection sampling approach may be extended by

first determining how many sets K
(b)
m,ϵ(w) an element (h0, h1) drops in, and then

accepting it with proper probability. However, determining such number of sets
is complicated and time consuming, and better solutions to this problem have
yet to be devised.

2 An equivalent way is to not perform reject sampling but to count each decryption
failure in the overlapping area as 0.5.
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Algorithm 2: Sampling the keys and errors

Input: w,m and ϵ = 0 or 1
Output: (h0, h1) ∈ R2

1: Randomly generate h1 ∈ R such that wH(h1) = w/2
2: h0 ← 0 ∈ R
3: Set the 0-th position of h0 to 1
4: Randomly choose w/2− ϵ− 1 positions ⊆ [1,m) and set them to 1
5: j ← the last position of h0 whose value is 1
6: Randomly choose ϵ positions ⊆ [j + 1, r) and set them to 1.
7: if ϵ = 1 then
8: if (h0, h1) is in the overlapping area then
9: Accept (h0, h1) with probability 1/2
10: end if
11: end if
12: return (h0, h1)

3.2 An Explanation of the Gathering Property

Our basic observation is that the gathering property considerably raises the
numbers of unsatisfied parity checks for partial positions. Then the number of
bits that are incorrectly flipped can be increased for these positions, which makes
the decoding more likely to fail.

...
[rot(h0)|rot(h1)] =

[eT
0 |eT

1 ] = s

=

Fig. 3. An explanation of the gathering property. The shadow parts represent that the
1’s gather in these positions.

Specifically, we consider an example that both (h0, h1), (e0, e1) ∈ R2 satisfy
the (m, ϵ)-gathering property such that ϵ = 0 and all the 1’s of h0 and e0 gather
in their first m positions. As depicted in Fig. 3, there is a diagonal area of the
matrix H = [rot(h0)|rot(h1)] in which the 1’s gather. As a result, the syndrome
s = h0e0 + h1e1 will be denser around the m-th position. Now we consider the
first iteration of the bit-flipping algorithm, in which the number of unsatisfied
parity checks UPC(0, i) = |Supp(s) ∩ Supp(hi)| is computed at first. Due to the
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property of s, the numbers of unsatisfied parity checks UPC(0, i), 0 ≤ i ≤ m− 1,
are more likely to be greater than other positions. This eventually increases the
risk of a correct bit being mistakenly flipped in the first m positions. In fact, this
phenomenon does happen when decryption failure occurs. For BIKE’s parameter
set targeting 128-bit security, we set m = 4500 and test the average unsatisfied
parity check number of the first m positions and that of all positions, and find
that the local unsatisfied parity check number is much higher than the global
one in each iteration of the BGF algorithm, see Table 4.

Table 4. A comparison of the local UPC and the global UPC.

Iteration
Average UPC Average UPC

of the first m positions of all positions

0 31.3864 26.4111
1 57.2082 42.7164
2 83.5507 56.5557
3 114.588 73.0108
4 148.179 93.1936

3.3 Number of Keys & Errors Satisfying the Gathering Property

The purpose of this subsection is to prove the following statement.

Lemma 2. Suppose m < r/2 and ϵ ∈ {0, 1}, then it has

1

1 + ξ
≤ |Km,ϵ(w)|

τ(w/2,m, ϵ)
≤ 1 and

1

1 + ξ
≤ |Em,ϵ(t/2, t/2)|

τ(t/2,m, ϵ)
≤ 1 , (14)

where

τ(x,m, ϵ) := r

m∑
d=x−ϵ

(
d− 2

x− 2− ϵ

)(
r − d

ϵ

)(
r

x

)
. (15)

For ϵ = 0 it has ξ = 0, and for ϵ = 1 the exact formula of ξ is in Appendix B.

Proof. For ϵ = 0, Km,ϵ(w) is the disjoint union of K
(b)
m,ϵ(w), 0 ≤ b < r, then it has

|Km,ϵ(w)| =
∑

0≤b<r |K
(b)
m,ϵ(w)| = r|K(0)

m,ϵ(w)|. To count the number of (h0, h1)

in K
(0)
m,ϵ(w), we enumerate the position d ∈ (0,m) such that the d-th position

of h0 is 1 and there are exactly (w/2 − ϵ − 2) 1’s in the (0, d) positions of h0.

Clearly for a fixed d there are
(

d−2
w/2−2−ϵ

)(
r−d
ϵ

)(
r

w/2

)
distinct (h0, h1) in K

(0)
m,ϵ(w),

and then the lemma follows directly.

For ϵ = 1, ∪0≤b<rK
(b)
m,ϵ(w) is not a disjoint union. Then counting the overlap-

ping area gives an estimate of Km,ϵ(w), where the complete proof can be found
in Appendix B.
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In this paper, we only consider BIKE’s parameter set with 128-bit security,
and focus on the parameters ϵ = 1,m ≤ 5200 or ϵ = 0. For ϵ = 1,m = 5500,
it can be calculated from Lemma 2 that ξ < 0.05, which means that the error
is no more than log2(1 + ξ) < 0.08 bits. The error is further reduced when m
decreases. Using Lemma 2, we calculate the probability pm,ϵ = |Km,ϵ(w)|/|K(w)|
and qm,ϵ = |Em,ϵ(t/2, t/2)|/|E(t)| for the (m, ϵ) involved in our experiment of
Section 3.1, which are listed in Table 5.

Table 5. The probability pm,ϵ and qm,ϵ for the (m, ϵ) involved in our experiment and
BIKE’s parameter set targeting 128-bit security. The numbers are presented in their
logarithmic form.

(m, ϵ) (4500, 0) (4600, 0) (4700, 0) (4800, 0) (4900, 0) (5000, 0) (5100, 0) (5200, 0)

pm,ϵ −96.09 −93.86 −91.67 −89.53 −87.43 −85.37 −83.36 −81.39
qm,ϵ −94.17 −92.06 −90.0 −87.98 −86.0 −84.06 −82.16 −80.3

(m, ϵ) (4500, 1) (4600, 1) (4700, 1) (4800, 1) (4900, 1) (5000, 1) (5100, 1)

pm,ϵ −89.13 −86.95 −84.81 −82.72 −80.67 −78.66 −76.69
qm,ϵ −87.29 −85.23 −83.22 −81.25 −79.32 −77.43 −75.58

4 A New Class of Weak Keys

In this section, we focus on the construction of weak keys that have decryption
failure rate higher than the average. Our basic observation is that the set of
keys satisfying the (m, ϵ)-gathering property (i.e., Km,ϵ(w)) may have higher
decryption failure rate. Specifically, denote

DFRK
m,ϵ := DFR

(h0,h1)
$←Km,ϵ(w),(e0,e1)

$←E(t)
(16)

as the decryption failure rate for the key drawn from Km,ϵ(w) and the error
drawn from E(t). Then we can deduce a lower bound by

DFRK
m,ϵ ≥ DFR

(h0,h1)
$←Km,ϵ(w)

(e0,e1)
$←Em,ϵ(

t
2 ,

t
2 )

· Pr
(e0,e1)

$←E(t)

[(e0, e1) ∈ Em,ϵ(
t

2
,
t

2
)] . (17)

For example, using the experimental results in Section 3.1, we have DFRK
m,ϵ ≥

2−22.08 ·2−75.58 = 2−97.66 for m = 5100 and ϵ = 1, which is much higher than the
average decryption failure rate 2−128 given in BIKE. However, the probability
of a random key (h0, h1) falling in Km,ϵ(w) is too small to impact the average
decryption failure rate. In the following, we focus on the case ϵ = 1, and show
the following two facts.

(i) The set of weak keys Km,ϵ(w) can be extended by using the isomorphisms
of the ring R.
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(ii) Based on the extended weak keys, a lower bound greater than 2−128 on
the average decryption failure rate can be derived for BIKE’s parameter set
targeting 128-bit security.

4.1 Extending Weak Keys Using Isomorphism

Suppose ϕi is an isomorphism of R, and denote Kϕi
m,ϵ(w) to be the set of keys

obtained by applying ϕi to Km,ϵ(w), i.e.,

Kϕi
m,ϵ(w) := {(ϕi(h0), ϕi(h1)) : (h0, h1) ∈ Km,ϵ(w)}. (18)

Note that ϕi preserves decryption failures, i.e., (h0, h1), (e0, e1) gives a decryption
failure if and only if (ϕi(h0), ϕi(h1)), (ϕi(e0), ϕi(e1)) gives a decryption failure.
Thus we have the following lemma.

Lemma 3. For any isomorphism ϕi : R → R, it has

DFR
(h0,h1)

$←K
ϕi
m,ϵ(w)

(e0,e1)
$←E(t)

= DFR
(h0,h1)

$←Km,ϵ(w)

(e0,e1)
$←E(t)

= DFRK
m,ϵ . (19)

Next we focus on the decryption failure rate for the keys drawn uniformly
from the union

Kunion
m,ϵ (w) :=

⋃
1≤i<r/2

Kϕi
m,ϵ(w). (20)

Note that only half of the isomorphisms are considered due to Kϕi
m,ϵ(w) =

K
ϕ−i
m,ϵ(w). To begin with, we show for proper choices of (m, ϵ), the above union

is ‘roughly’ disjoint. That is, denote Koverlap
m,ϵ (w) = ∪i,j(Kϕi

m,ϵ(w) ∩ K
ϕj
m,ϵ(w)) as

the overlapping area of the union in (20), then it has

|Koverlap
m,ϵ (w)|
|Kunion

m,ϵ (w)|
≤
|Kϕi

m,ϵ(w) ∩Koverlap
m,ϵ (w)|

|Kϕi
m,ϵ(w)|

≤ δ , (21)

where δ is a small number. The detailed proof is in Appendix C. For example,
when m = 4000, ϵ = 1, δ is as small as 2−35. Based on this observation, we can
prove the following result.

Theorem 1. Suppose the error (e0, e1) is drawn from E(t) uniformly at random,
then for the set of keys Kunion

m,ϵ (w) = ∪1≤i<r/2K
ϕi
m,ϵ(w) it has

DFR
(h0,h1)

$←Kunion
m,ϵ (w)

≥ DFR
(h0,h1)

$←Km,ϵ(w)
− δ , (22)

and |Kunion
m,ϵ (w)| ≥ (1− δ)(r − 1)/2 · |Km,ϵ(w)|.

Proof. Since |Kunion
m,ϵ (w)| ≥

∑
i(|Kϕi

m,ϵ(w)| − |Kϕi
m,ϵ(w) ∩ Koverlap

m,ϵ (w)|), then it
follows directly from (21) that |Kunion

m,ϵ (w)| ≥ (1 − δ)(r − 1)/2 · |Km,ϵ(w)|. It
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remains to show (22). Denote h̄ = (h0, h1), K̃
ϕi
m,ϵ(w) = Kϕi

m,ϵ(w) ∩ Koverlap
m,ϵ (w)

and K̄ϕi
m,ϵ(w) = Kϕi

m,ϵ(w)− K̃ϕi
m,ϵ(w), then

DFR
h̄

$←Kunion
m,ϵ (w)

≥
∑

1≤i≤ r
2

DFR
h̄

$←K̄
ϕi
m,ϵ(w)

· Pr
h̄

$←Kunion
m,ϵ (w)

[h̄ ∈ K̄ϕi
m,ϵ(w)] . (23)

Note that

DFR
h̄

$←K
ϕi
m,ϵ(w)

= DFR
h̄

$←K̄
ϕi
m,ϵ(w)

· Pr
h̄

$←K
ϕi
m,ϵ(w)

[h̄ ∈ K̄ϕi
m,ϵ(w)]

+ DFR
h̄

$←K̃
ϕi
m,ϵ(w)

· Pr
h̄

$←K
ϕi
m,ϵ(w)

[h̄ ∈ K̃ϕi
m,ϵ(w)]

≤ DFR
h̄

$←K̄
ϕi
m,ϵ(w)

· Pr
h̄

$←K
ϕi
m,ϵ(w)

[h̄ ∈ K̄ϕi
m,ϵ(w)] + δ ,

then it follows from (23) that

DFR
h̄

$←Kunion
m,ϵ (w)

≥
∑

1≤i≤ r
2

( DFR
h̄

$←K
ϕi
m,ϵ(w)

− δ ) · Pr
h̄

$←Kunion
m,ϵ (w)

[h̄ ∈ Kϕi
m,ϵ(w)]

= ( DFR
h̄

$←Km,ϵ(w)

− δ ) ·
∑

1≤i≤ r
2

Pr
h̄

$←Kunion
m,ϵ (w)

[h̄ ∈ Kϕi
m,ϵ(w)]

≥ DFR
h̄

$←Km,ϵ(w)

− δ,

which completes the proof.

4.2 Lower Bound on the Average DFR

In this subsection we give lower bounds on the average decryption failure rate
by using Theorem 1 and the formula

DFRavg ≥ 2 ·DFR
(h0,h1)

$←Kunion
m,ϵ (w)

·
|Kunion

m,ϵ (w)|
|K(w)|

, (24)

where the ‘2×’ comes from the gathering property defined for the right side
of (h0, h1), i.e, the 1’s of h1 are gathering while h0 is chosen freely. We note
that there is a very little chance that both sides of (h0, h1) have the property
that their 1’s gathering. However, the probability is too small to have any effect
on (24), and a rigorous treatment can be performed in a way similar to that of
Theorem 1.

Next, we consider BIKE’s parameter set targeting 128-bit security, and fo-
cus on 2900 ≤ m ≤ 4000, ϵ = 1. By Theorem 1, DFR

(h0,h1)
$←Kunion

m,ϵ (w)
can be

estimated by simulating the decryption failure rate DFR
(h0,h1)

$←Km,ϵ(w)
. In our

experiments, we sample (h0, h1) and (e0, e1) from Km,ϵ(w) and E(t) uniformly at
random. For each (m, ϵ), the number of decryption performed and the number



Exploring Decryption Failures of BIKE 17

of decryption failures are listed in Table 6. Note that for these set of parame-
ters, it has δ ≈ 2−35, which is negligible with respect to DFR

(h0,h1)
$←Km,ϵ(w)

.

On the other hand, lower bound on |Kunion
m,ϵ (w)|/|K(w)| can be derived by using

Theorem 1 and Lemma 2.

Table 6. Estimates of the decryption failure rates for the set of weak keys Kunion
m,ϵ (w).

N represents the number of decryptions, and F represents the number of decryption
failures. p is 2 times the probability that a random key (h0, h1) is in Kunion

m,ϵ (w).

(m, ϵ) (2900, 1) (3100, 1) (3200, 1) (3400, 1) (3500, 1) (3600, 1) (4000, 1)

N 2996871 5459695 32903584 165860000 214960000 315470000 8745860000

F 16 16 31.5∗ 25.5∗ 13.5∗ 11 13

DFR −17.52 −18.38 −19.99 −22.63 −23.92 −24.77 −29.33
p −119.45 −112.76 −109.58 −103.51 −100.62 −97.80 −87.28

∗ The ‘.5’ comes from the rejection sampling in Algorithm 2, where a decryption failure
in the overlapping area counts as 0.5.

Combining the above results, we can give estimated lower bounds on the
average decryption failure rate by using (24). Fig. 4 depicts the corresponding
results. From the figure, (m = 4000, ϵ = 1) yields an estimated lower bound for
the average decryption failure rate such that

DFRavg ≥ 2−29.33 · 2−87.28 = 2−116.61. (25)

Taking the simulation error into consideration, we note that 13 decryption fail-
ures are observed from 8745860000 decryptions. Then using the framework in
Section 2.1, we have

DFR
(h0,h1)

$←Km,ϵ(w)
≥ F/N − 2 ·

√
F/N ≈ 2−30.49 (26)

at 95% confidence level. As a result, we can deduce that the average decryption
failure rate for BIKE’s parameter set targeting 128-bit security is lower bounded
by DFRavg ≥ 2−30.49 ·2−87.28 = 2−117.77 at 95% confidence level. For larger m >
4000, we should expect better lower bounds according to Fig. 4. However, in this
case DFR

(h0,h1)
$←Kunion

m,ϵ (w)
is very small and difficult to simulate experimentally.

5 A Key Recovery Attack Using Decryption Failures

In this section, we demonstrate how the class of weak keys introduced in Section 4
can be utilized to launch a key recovery attack against QC-MDPC schemes with
CCA security. The attack is in a multi-target mode, which means that numerous
targets are queried, each with its own query limit, with the goal of recovering the
key for at least one of these targets. Additionally, we assume that a ciphertext is
only valid for a single target, i.e., the scheme provides multi-target protection.
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Fig. 4. Lower bounds on the average decryption failure rate for BIKE’s parameter set
targeting 128-bit security.

5.1 Attack Model

The attack can be modeled as follows.
Step 0 (Setup). To begin with, we choose the proper parameters m, ϵ. Let

Kweak
m,ϵ (w) to be the set of weak keys defined in Section 4, i.e., the set of all

(h0, h1) ∈ Km,ϵ(w) such that (h0, h1) or (h1, h0) satisfying the (m, ϵ)-gathering
property. Denote

pweakm,ϵ :=
|Kweak

m,ϵ (w)|
|K(w)|

(27)

to be the probability that a random secret key is in Kweak
m,ϵ (w), and denote DFRweak

m,ϵ

to be the decryption failure rate for key drawn from Kweak
m,ϵ (w) and error drawn

from E(t).
Step 1 (Construct Ciphertexts for a Target). For a target T , initialize the set

of ciphertexts to be CT = {}. Randomly generate 1/DFRweak
m,ϵ seedsm ∈ {0, 1}256,

then compute (e0, e1) = H(m) according to the error generation step of BIKE,
and add the corresponding ciphertext to CT . Clearly |CT | = 1/DFRweak

m,ϵ .
Step 2 (Query and Collect Decryption Failures). Query the target T ’s de-

cryption oracle to decrypt all ciphertexts in CT . If a decryption failure occurs,
then go to the key recovery step. Else, choose another target and then repeat
the ciphertexts construction and query steps.

Step 3 (Recover the Secret Key). For a target T that has a decryption failure,
there is a probability ptrue that T ’s secret key (h0, h1) is in Kweak

m,ϵ (w). In the case
that (h0, h1) ∈ Kweak

m,ϵ (w), there exists an isomorphism ϕi, 1 ≤ i < r/2, such that

(ϕ−1i (h0), ϕ
−1
i (h1)) or (ϕ−1i (h1), ϕ

−1
i (h0)) satisfying the (m, ϵ)-gathering prop-
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erty. With the gathering property as extra information, the secret key can be effi-
ciently recovered using a modified information set decoding (ISD) algorithm pre-
sented in the next subsection. Then the attacker enumerates the isomorphisms
ϕi, 1 ≤ i < r/2 and tries to recover (ϕ−1i (h0), ϕ

−1
i (h1)) or (ϕ−1i (h1), ϕ

−1
i (h0))

from
ϕ−1i (h) = ϕ−1i (h1) · (ϕ−1i (h0))

−1 (28)

utilizing the modified ISD algorithm. If T ’s secret key (h0, h1) is in Kweak
m,ϵ (w),

then for some ϕi the modified ISD algorithm can efficiently recovers T ’s secret
key and the attack terminates. If T ’s secret key (h0, h1) is not in Kweak

m,ϵ (w), it
is unlikely the modified ISD algorithm can efficiently recover the secret key for
any 1 ≤ i < r/2. Then the attacker chooses another target and repeats the
ciphertexts construction, query and key recovery steps.

Analysis of the Probability ptrue. Let ‘FAIL’ denote the event that a decryp-
tion failure occurs for the secret key h̄ := (h0, h1), and denote X := K(w)×E(t).
Then it can be deduced that

ptrue = Pr
(h̄,ē)

$←X
[h̄ ∈ Kweak

m,ϵ (w) | FAIL]

= Pr
(h̄,ē)

$←X
[FAIL | h̄ ∈ Kweak

m,ϵ (w)] · Pr(h̄,ē) $←X
[h̄ ∈ Kweak

m,ϵ (w)]/Pr(h̄,ē) $←X
[FAIL]

= DFRweak
m,ϵ · pweakm,ϵ /DFRavg

by Bayes’ theorem, where DFRavg = Pr
(h̄,ē)

$←X
[FAIL] is the average decryption

failure rate.

5.2 Information Set Decoding using Extra Information

Efficiently retrieving the secret key given extra information is a well-known topic
in public key cryptography [12,8,16,29,49]. Several effects have been developed
to address this issue in code-based cryptography. Horlemann et al. [32] present a
general framework for recovering the key by employing hint information such as
certain erroneous or error-free locations, or the Hamming weight of error blocks.
Esser et al. [21] demonstrate that when a fraction of the secret key bits are erased
or faulty, the key recovery for BIKE can be greatly accelerated. Kirshanova and
May [35] show that a small portion of the secret key at any known positions can
be used to successfully recover the entire secret key for McEliece. The purpose
of this subsection is to develop an effective approach for using the gathering
property to improve the key recovery in QC-MDPC.

Our goal is to recover a target’s secret key (h0, h1) from the public key
h = h1h

−1
0 using the fact that (h0, h1) satisfies the (m, ϵ)-gathering property.

Denote H = (Ir, rot(h)), e = (hT
1 ,h

T
0 )

T and s = 0. Then the problem can be
stated as follows.

Problem 1. Given H ∈ Fr×2r
2 , s ∈ Fr

2 and positive integers w,m and ϵ ≥ 0, find
e = (hT

1 ,h
T
0 )

T such that He = s, wH(h0) = wH(h1) = w/2 and there exists an

integer a such that wH(h
[a,a+m)
0 ) = w/2− ϵ.
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Without the extra information of the gathering property, the above problem
is typically solved using the information set decoding (ISD) algorithm.

Classical ISD Algorithm. The ISD algorithm iteratively finds a vector e such
that He = s and wH(e) = w. Suppose l, p are two integers, each iteration of the
ISD algorithm is as follows.

– Random Permutation: Choose a random permutation matrix P, and com-
pute HP−1.

– Gauss Elimination: Apply Gauss elimination to the matrixHP−1 and obtain
a matrix of the form

H′ := THP−1 =

[
Ir−l H1

O H2

]
, (29)

where T is the corresponding Gauss elimination matrix, O is an l × (r − l)
zero matrix. Denote Pe = (eT1 , e

T
2 )

T and Ts = (sT1 , s
T
2 )

T such that e1, s1 ∈
Fr−l
2 , e2 ∈ Fr+l

2 and s2 ∈ Fl
2. Then the problem can be written as

H2e2 = s2, e1 = H1e2 + s1. (30)

– Column Match: In this step, an algorithm COLUMNMATCH(H2, s2, p) is called
to generate a set L = {e2 : H2e2 = s2,wH(e2) = p}. The COLUMNMATCH

algorithm differs depending on the ISD algorithms, e.g., Stern-Dumer [20],
MMT[37], BJMM[5], etc.

– Recover e: For all e2 ∈ L, compute e1 = H1e2 + s1. If wH(e1) = w − p,
then the algorithm returns e = P−1 · (eT1 , eT2 )T . Else goes to the Random
Permutation step and try another permutation matrix.

For a random P, the probability that the Hamming weight of Pe = (eT1 , e
T
2 )

T

splits to w − p and p is

PISD =

(
r−l
w−p

)(
n−r+l

p

)(
n
w

) . (31)

Thus the ISD algorithm outputs the vector e after P−1ISD iterations in average. For
each iteration, the time and space costs are mainly the costs of COLUMNMATCH,
which we denote by TMATCH and SMATCH respectively. For example, in the Stern-

Dumer ISD algorithm [20], it has TMATCH = SMATCH = max{
(
(r+l)/2

p/2

)
,
(
(r+l)/2

p/2

)2
/2l}.

The total time complexity of the ISD algorithm can be represented as TMATCH·P−1ISD

and the space complexity is SMATCH.

Remark 1. It is required that the Hamming weight of e can be split into w/2 and
w/2 in Problem 1, whereas the ISD algorithm just returns a vector of Hamming
weight w. In the context of key recovery, w is usually small enough such that
the vector e is unique (up to cyclic shifting in the quasi-cyclic case), making the
two conditions equivalent.
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Using the Extra Information. Our basic idea is to use the extra information
to increase the probability PISD. We note that the permutation P actually gives
a random partition of all the positions [0, 2r) = Ql ∪ Qr such that |Ql| = r − l
and |Qr| = r+ l, and the ISD algorithm outputs the vector e if wH(eQl) = w−p
and wH(eQr ) = p.

Suppose p ≥ ϵ and l ≤ r −m. By using the extra information, we construct
the partition as follows. First, randomly choose b ∈ [0, r − 1), then put the m

positions h
[b,b+m)
0 into Ql, and put the other r−m positions of h0 into Qr. After

that, randomly choose r − l−m positions of h1 and put them into Ql, and put
the other l +m positions of h1 into Qr. The next steps are then carried out in
the same manner as the classical ISD algorithm.

Note that with probability at least 1/r, it has wH(h
[b,b+m)
0 ) = w/2 − ϵ. In

this case, the ISD algorithm outputs the correct vector e whenever the r− l−m
positions of h1 have exactly (w/2 − p + ϵ) 1’s and the other l +m positions of
h1 have (p − ϵ) 1’s. As a result, the success probability when using the extra
information is

Pextra =
1

r

(
l+m
p−ϵ

)(
r−l−m

w/2−p+ϵ

)(
r

w/2

) , (32)

And the total complexity is as follows.

Proposition 4 (ISD with extra information). The above algorithm gives a so-
lution to Problem 1 in average time complexity TMATCHP

−1
extra and space complexity

SMATCH. When using the COLUMNMATCH in the Stern-Dumer ISD algorithm, it has

TMATCH = SMATCH = max{
(
(k+l)/2

p/2

)
,
(
(k+l)/2

p/2

)2
/2l}.

For the quasi-cyclic case, each cyclic shift of (h0, h1) is also a solution to
h = h1h

−1
0 [22,42]. As a result, the step that randomly chooses b ∈ [0, r− 1) can

be skipped, and we just put the first m positions h
[0,m)
0 into Ql, and put the

other r −m positions of h0 into Qr. This enables us to obtain an r× speedup
for the quasi-cyclic case.

Corollary 5. Given h ∈ R, then (h0, h1) satisfying h = h1h
−1
0 and the (m, ϵ)-

gathering property can be recovered in time complexity TMATCHP
−1
extra/r and space

complexity SMATCH.

5.3 Complexity Analysis

We present an analysis of the complexity of the key recovery attack in Section 5.1.
The total complexity can be divided into two parts: the complexity of identifying
decryption failures (Step 1 and Step 2) and the complexity of the key recovery
step (Step 3).

The complexity of identifying decryption failures. On average, 1/pweakm,ϵ targets
are required to obtain a secret key falling in Kweak

m,ϵ (w), which should result in
a successful key recovery in Step 3. Thus both Step 1 and Step 2 are called
1/pweakm,ϵ times. On the other hand, for a single target, the complexity of the
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ciphertexts construction and the decryption query is |CT | = 1/DFRweak
m,ϵ . Thus

the complexity of identifying decryption failures is

1/pweakm,ϵ · 1/DFRweak
m,ϵ . (33)

The complexity of the key recovery step. For the key recovery step, the at-
tacker calls the ISD algorithm 2·r/2 times for each secret key, and the probability
that a secret key (in this step) falls in Kweak

m,ϵ (w) is ptrue. Thus the complexity of
the key recovery step is

1/ptrue · r · TISD , (34)

where ptrue = pweakm,ϵ ·DFRweak
m,ϵ /DFRavg and TISD is the time complexity of a single

call of the ISD algorithm as in Corollary 5.
Besides, note that Step 1 and Step 2 can be performed in polynomial space

complexity, thus the total space complexity of the key recovery attack is SISD,
which is the space complexity of a single call of the ISD algorithm. Therefore,
the total complexity of the key recovery attack is as follows.

Theorem 2. The key recovery attack in Section 5.1 can be mounted in time
complexity

Ctotal = (DFRweak
m,ϵ · pweakm,ϵ )

−1 + p−1true · r · TISD, (35)

and space complexity SISD, where ptrue = pweakm,ϵ ·DFRweak
m,ϵ ·DFR−1avg. The number of

targets required is 1/pweakm,ϵ , and the number of queries required for a single target

is 1/DFRweak
m,ϵ .

Concrete Attack Complexity for BIKE. Next, we consider BIKE’s param-
eter set targeting 128-bit security, and give the concrete complexity of the key
recovery attack. We should note that the precise value of the average decryption
failure rate DFRavg is yet unknown for BIKE. Nonetheless, an upper bound on
DFRavg suffices for estimating the total complexity using Theorem 2. In the
following analysis we assume that DFRavg < 2−80 for BIKE’s parameter set tar-
geting 128-bit security. We believe this upper bound is almost certain because
the estimated value of DFRavg is about 2−128 in [3]. Despite the fact that our
conclusion in Section 4 indicates that DFRavg ≥ 2−116.61, there is no evidence
that DFRavg can be as large as 2−80.

In this attack, we initialize (m, ϵ) such that (2900 ≤ m ≤ 4000, ϵ = 1).
The DFRweak

m,ϵ and pweakm,ϵ have been simulated experimentally in Section 4.2, and
their values are listed in Table 6. In Fig. 5, we illustrate the complexity of
identifying a decryption failure and the complexity of the key recovery step.
The complexity of the key recovery attack can be viewed as their maximum. It
can be deduced from the figure that the total complexity is less than 2128 for
3300 ≤ m ≤ 4000. For example, when m = 4000, it has DFRweak

m,ϵ = 2−29.33,
pweakm,ϵ = 2−87.28, TISD = 275.35 and the total complexity is

Ctotal = 2116.61. (36)
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Complexity of identifying failures
Complexity of the key recovery step
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Fig. 5. The complexity of identifying a decryption failure and the complexity of ISD.
The complexity of the key recovery attack can be viewed as their maximum.

In this case, the number of targets required is 1/pweakm,ϵ = 287.28, and the number

of queries required for a single target is 1/DFRweak
m,ϵ = 229.33 (see Table 1 for the

details).
Moreover, it can be observed from Fig. 5 that both the complexity of identify-

ing failures and the complexity of the key recovery step decrease as m increases.3

So better total complexity can be expected when (m, ϵ)-gathering property is
considered for m slightly larger than 4000. However, large m leads to low de-
cryption failure rate which is difficult to be simulated via experiment.

6 A Key Recovery Attack with Ciphertexts Reusing

We note that BIKE does not offer protection against multiple targets in its cur-
rent version. As described in Section 2.2, each target shares the same generation
of error (e0, e1) = H(m) without binding to the public key. Thus it is possible
to mount an attack by reusing the ciphertexts. Specifically, the results in Sec-
tion 3.1 demonstrate that the decryption failure rate is greatly increased when
both the secret key (h0, h1) and the error (e0, e1) satisfy the (m, ϵ)-gathering
property. Thus the attacker first constructs a set of ciphertexts C of which the
corresponding errors satisfy the (m, ϵ)-gathering property. Then by querying
a target T ’s decryption oracle to decrypt the ciphertexts C, the attacker has

3 To be more specific, the complexity of the key recovery step is the product of p−1
true

and r ·TISD. For m around 4000, ptrue increases faster than TISD, leading to a drop in
the complexity of the key recovery step. But as m becomes very large, the complexity
of the key recovery step will eventually approaches to 2128.
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an advantage of identifying whether T ’s secret key (h0, h1) satisfies the (m, ϵ)-
gathering property by identifying whether a decryption failure occurs. Then use
the (m, ϵ)-gathering property as an extra information, the attacker is able to
recover T ’s secret key by using the ISD algorithm in Section 5.2.

6.1 Attack Model (with Ciphertexts Reusing)

The attack can be modeled as follows.
Step 0 (Setup). To begin with, we choose the proper parameters m, ϵ. Let

DFRm,ϵ denote the decryption failure rate when both the secret key and error
satisfying the (m, ϵ)-gathering property. Denote

pm,ϵ :=
|Km,ϵ(w)|
|K(w)|

and qm,ϵ :=
|Em,ϵ(t/2, t/2)|

|E(t)|
(37)

to be the probability that a random secret key (or a random error) satisfies the
(m, ϵ)-gathering property.

Step 1 (Ciphertexts Construction). Initialize the set of ciphertexts to be
C = {}. Randomly generate 1/(DFRm,ϵ ·qm,ϵ) seeds m ∈ {0, 1}256, then compute
the errors (e0, e1) = H(m) according to the error generation step of BIKE. If an
error (e0, e1) satisfies wH(e0) = wH(e1) = t/2 and the (m, ϵ)-gathering property,
then add the corresponding ciphertext to C. On average, there will be 1/DFRm,ϵ

ciphertexts in C.
Step 2 (Query and Collect Decryption Failures). For a target T , query T ’s

decryption oracle to decrypt the ciphertexts in C. If a decryption failure occurs,
then go to the key recovery step. Else, choose another target T ′, and repeat the
query step.

Step 3 (Recover the Secret Key). For a target T that has a decryption
failure, there is a probability ptrue that T ’s secret key (h0, h1) satisfies the (m, ϵ)-
gathering property. In this case, (h0, h1) can be efficiently recovered by using the
modified ISD algorithm in Section 5.2. On the other hand, if (h0, h1) does not
satisfy the (m, ϵ)-gathering property, it is unlikely the modified ISD algorithm
can efficiently recover (h0, h1). Thus the attacker simply try to recover (h0, h1)
by using the modified ISD algorithm. If (h0, h1) is recovered successfully, the
attack terminates. Otherwise, the attacker chooses another target and repeats
the query and key recovery steps.

Analysis of the Probability ptrue. Let ‘FAIL’ denote the event that a de-
cryption failure occurs for the secret key h̄ := (h0, h1), and denote X := K(w)×
Em,ϵ(t/2, t/2). Then it can be deduced that

ptrue = Pr
(h̄,ē)

$←X
[h̄ ∈ Km,ϵ(w) | FAIL]

= Pr
(h̄,ē)

$←X
[FAIL | h̄ ∈ Km,ϵ(w)] · Pr

(h̄,ē)
$←X

[h̄ ∈ Km,ϵ(w)]/Pr
(h̄,ē)

$←X
[FAIL]

= DFRm,ϵ · pm,ϵ/DFRe∼(m,ϵ)
avg
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by Bayes’ theorem, where DFRe∼(m,ϵ)
avg = Pr

(h̄,ē)
$←X

[FAIL] is the average decryp-

tion failure rate for error drawn from Em,ϵ(t/2, t/2) and random key.

6.2 Complexity Analysis

The total complexity consists of three parts: the complexity of preprocessing
(Step 1), the complexity of identifying decryption failures (Step 2) and the com-
plexity of the key recovery step (Step 3).

The complexity of preprocessing. The complexity of preprocessing is deter-
mined by the total number of errors computed in Step 1, which is equal to

1/(DFRm,ϵ · qm,ϵ) . (38)

The complexity of identifying decryption failures. On average, 1/pm,ϵ targets
are required to obtain a secret key satisfying the (m, ϵ)-gathering property, which
should result in a successful key recovery in Step 3. Thus Step 2 is called 1/pm,ϵ

times. On the other hand, the number of decryption queries for a single target
is |C| = 1/DFRm,ϵ. Thus the complexity of identifying decryption failures is

1/pm,ϵ · 1/DFRm,ϵ . (39)

The complexity of the key recovery step. For the key recovery step, the prob-
ability that a secret key satisfying the (m, ϵ)-gathering property is ptrue. Thus
the complexity of the key recovery step is

1/ptrue · TISD , (40)

where ptrue = DFRm,ϵ · pm,ϵ/DFRe∼(m,ϵ)
avg and TISD is the time complexity of a

single call of the ISD algorithm as in Corollary 5.
Besides, note that the space complexity of Step 1 is (DFRm,ϵ)

−1, thus the
total space complexity of the key recovery attack is (DFRm,ϵ)

−1 + SISD, where
SISD is the space complexity of a single call of the ISD algorithm. Therefore, the
total complexity of the key recovery attack is as follows.

Theorem 3. The key recovery attack in Section 6.1 can be mounted in time
complexity

Ctotal = (DFRm,ϵ · qm,ϵ)
−1 + (DFRm,ϵ · pm,ϵ)

−1 + p−1true · TISD, (41)

and space complexity SMATCH+DFR−1m,ϵ where ptrue = DFRm,ϵ ·pm,ϵ/DFRe∼(m,ϵ)
avg .

The number of targets required is 1/pm,ϵ, the number of queries required for a
single target is 1/(DFRm,ϵ).

Concrete Attack Complexity for BIKE. Next, we consider BIKE’s param-
eter set targeting 128-bit security. In this attack, we initialize m = 5100, ϵ = 1.
Then from Table 3 and Table 5 it has pm,ϵ = 2−76.69, qm,ϵ = 2−75.58, DFRm,ϵ =
2−22.08, TISD = 275.86. To determine the concrete complexity of the key recovery
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attack, an upper bound on DFRe∼(m,ϵ)
avg must be established. Our experiments

suggest that DFRe∼(m,ϵ)
avg is very close to the average decryption failure rate

DFRavg for small parameters. Additionally, through extrapolation method it

can be deduced that DFRe∼(m,ϵ)
avg < 2−80 for BIKE’s parameter set targeting

128-bit security. We refer to Appendix E for further details. Therefore, it can be
deduced from Theorem 3 that the total complexity is

Ctotal = 298.77, (42)

where the number of targets required is 1/pm,ϵ = 276.69, and the number of
queries required for a single target is 1/(DFRm,ϵ) = 222.08 (see Table 1 for the
details).

7 Conclusion

We propose the gathering property for QC-MDPC and demonstrate its strong
correlation with the decryption failure rate. By considering the secret keys sat-
isfying the gathering property, we construct a new set of weak keys by using iso-
morphisms of the ringR. For BIKE’s parameter set targeting 128-bit security, we
derive a lower bound on the average decryption failure rate DFRavg ≥ 2−116.61.

We present two multi-target key recovery attacks against QC-MDPC based
schemes with CCA security, as well as an analysis of their complexity for BIKE’s
parameter set targeting 128-bit security. The first attack prohibits ciphertexts
reusing and has a complexity of 2116.61, while the second attack allows ciphertexts
reusing and can attain a complexity of 298.77.

There are many issues should be addressed in future work. For example,
we exclusively consider ϵ = 0, 1 due to the need for rigorous calculations of
probability. A natural concern is whether ϵ ≥ 2 leads to stronger results on
weak keys and better key recovery attacks. Besides, for the sake of simplicity,
in our attack the filtered ciphertexts will satisfy wH(e0) = wH(e1) = t/2. It
is expected that the gathering property performs better for unbalanced error
weights, resulting in attacks with improved complexity.
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quasi-cycliques. Ph.D. thesis, Paris 6 (2017)

10. Chaulet, J., Sendrier, N.: Worst case QC-MDPC decoder for mceliece
cryptosystem. In: IEEE International Symposium on Information Theory,
ISIT 2016, Barcelona, Spain, July 10-15, 2016. pp. 1366–1370. IEEE
(2016). https://doi.org/10.1109/ISIT.2016.7541522, https://doi.org/10.1109/

ISIT.2016.7541522

11. Chou, T.: QcBits: Constant-time small-key code-based cryptography. In: Gier-
lichs, B., Poschmann, A.Y. (eds.) Cryptographic Hardware and Embedded Sys-
tems – CHES 2016. Lecture Notes in Computer Science, vol. 9813, pp. 280–300.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17–19, 2016).
https://doi.org/10.1007/978-3-662-53140-2 14

12. Coppersmith, D.: Small solutions to polynomial equations, and low expo-
nent RSA vulnerabilities. Journal of Cryptology 10(4), 233–260 (Sep 1997).
https://doi.org/10.1007/s001459900030

13. D’Anvers, J., Batsleer, S.: Multitarget decryption failure attacks and their ap-
plication to saber and kyber. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.)
Public-Key Cryptography - PKC 2022 - 25th IACR International Conference
on Practice and Theory of Public-Key Cryptography, Virtual Event, March 8-
11, 2022, Proceedings, Part I. Lecture Notes in Computer Science, vol. 13177,
pp. 3–33. Springer (2022). https://doi.org/10.1007/978-3-030-97121-2 1, https:

//doi.org/10.1007/978-3-030-97121-2_1

14. D’Anvers, J.P., Rossi, M., Virdia, F.: (One) failure is not an option: Bootstrapping
the search for failures in lattice-based encryption schemes. In: Canteaut, A., Ishai,
Y. (eds.) Advances in Cryptology – EUROCRYPT 2020, Part III. Lecture Notes in
Computer Science, vol. 12107, pp. 3–33. Springer, Heidelberg, Germany, Zagreb,
Croatia (May 10–14, 2020). https://doi.org/10.1007/978-3-030-45727-3 1

15. D’Anvers, J.P., Vercauteren, F., Verbauwhede, I.: The impact of error dependen-
cies on ring/mod-LWE/LWR based schemes. In: Ding, J., Steinwandt, R. (eds.)
Post-Quantum Cryptography - 10th International Conference, PQCrypto 2019.

https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1007/978-3-030-44223-1_12
https://doi.org/10.1007/978-3-540-45146-4_2
https://doi.org/10.1109/ISIT.2016.7541522
https://doi.org/10.1109/ISIT.2016.7541522
https://doi.org/10.1109/ISIT.2016.7541522
https://doi.org/10.1007/978-3-662-53140-2_14
https://doi.org/10.1007/s001459900030
https://doi.org/10.1007/978-3-030-97121-2_1
https://doi.org/10.1007/978-3-030-97121-2_1
https://doi.org/10.1007/978-3-030-97121-2_1
https://doi.org/10.1007/978-3-030-45727-3_1


28 T. Wang, A. Wang, X. Wang

pp. 103–115. Springer, Heidelberg, Germany, Chongqing, China (May 8–10, 2019).
https://doi.org/10.1007/978-3-030-25510-7 6

16. den Boer, B., Bosselaers, A.: An attack on the last two rounds of MD4. In: Feigen-
baum, J. (ed.) Advances in Cryptology – CRYPTO’91. Lecture Notes in Computer
Science, vol. 576, pp. 194–203. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA (Aug 11–15, 1992). https://doi.org/10.1007/3-540-46766-1 14

17. Drucker, N., Gueron, S., Kostic, D.: On constant-time qc-mdpc decoding with
negligible failure rate. Cryptology ePrint Archive (2019)

18. Drucker, N., Gueron, S., Kostic, D.: QC-MDPC decoders with several shades of
gray. In: Ding, J., Tillich, J.P. (eds.) Post-Quantum Cryptography - 11th Inter-
national Conference, PQCrypto 2020. pp. 35–50. Springer, Heidelberg, Germany,
Paris, France (Apr 15–17, 2020). https://doi.org/10.1007/978-3-030-44223-1 3

19. Drucker, N., Gueron, S., Kostic, D., Persichetti, E.: On the appli-
cability of the fujisaki-okamoto transformation to the BIKE KEM.
Int. J. Comput. Math. Comput. Syst. Theory 6(4), 364–374 (2021).
https://doi.org/10.1080/23799927.2021.1930176, https://doi.org/10.1080/

23799927.2021.1930176

20. Dumer, I.: On minimum distance decoding of linear codes. In: Proc. 5th Joint
Soviet-Swedish Int. Workshop Inform. Theory. pp. 50–52 (1991)

21. Esser, A., May, A., Verbel, J.A., Wen, W.: Partial key exposure attacks on
bike, rainbow and NTRU. In: Dodis, Y., Shrimpton, T. (eds.) Advances in
Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology Con-
ference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Pro-
ceedings, Part III. Lecture Notes in Computer Science, vol. 13509, pp. 346–
375. Springer (2022). https://doi.org/10.1007/978-3-031-15982-4 12, https://

doi.org/10.1007/978-3-031-15982-4_12

22. Esser, A., May, A., Zweydinger, F.: McEliece needs a break - solving McEliece-
1284 and quasi-cyclic-2918 with modern ISD. In: Dunkelman, O., Dziembowski,
S. (eds.) Advances in Cryptology – EUROCRYPT 2022, Part III. Lecture Notes
in Computer Science, vol. 13277, pp. 433–457. Springer, Heidelberg, Germany,
Trondheim, Norway (May 30 – Jun 3, 2022). https://doi.org/10.1007/978-3-031-
07082-2 16

23. Fabsic, T., Hromada, V., Stankovski, P., Zajac, P., Guo, Q., Johansson, T.: A
reaction attack on the QC-LDPC McEliece cryptosystem. In: Lange, T., Takagi, T.
(eds.) Post-Quantum Cryptography - 8th International Workshop, PQCrypto 2017.
pp. 51–68. Springer, Heidelberg, Germany, Utrecht, The Netherlands (Jun 26–28,
2017). https://doi.org/10.1007/978-3-319-59879-6 4

24. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption at
minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC’99: 2nd International Workshop
on Theory and Practice in Public Key Cryptography. Lecture Notes in Computer
Science, vol. 1560, pp. 53–68. Springer, Heidelberg, Germany, Kamakura, Japan
(Mar 1–3, 1999). https://doi.org/10.1007/3-540-49162-7 5

25. Gallager, R.: Low-density parity-check codes. IRE Transactions on information
theory 8(1), 21–28 (1962)

26. Gama, N., Nguyen, P.Q.: New chosen-ciphertext attacks on NTRU. In: Okamoto,
T., Wang, X. (eds.) PKC 2007: 10th International Conference on Theory and Prac-
tice of Public Key Cryptography. Lecture Notes in Computer Science, vol. 4450,
pp. 89–106. Springer, Heidelberg, Germany, Beijing, China (Apr 16–20, 2007).
https://doi.org/10.1007/978-3-540-71677-8 7

https://doi.org/10.1007/978-3-030-25510-7_6
https://doi.org/10.1007/3-540-46766-1_14
https://doi.org/10.1007/978-3-030-44223-1_3
https://doi.org/10.1080/23799927.2021.1930176
https://doi.org/10.1080/23799927.2021.1930176
https://doi.org/10.1080/23799927.2021.1930176
https://doi.org/10.1007/978-3-031-15982-4_12
https://doi.org/10.1007/978-3-031-15982-4_12
https://doi.org/10.1007/978-3-031-15982-4_12
https://doi.org/10.1007/978-3-031-07082-2_16
https://doi.org/10.1007/978-3-031-07082-2_16
https://doi.org/10.1007/978-3-319-59879-6_4
https://doi.org/10.1007/3-540-49162-7_5
https://doi.org/10.1007/978-3-540-71677-8_7


Exploring Decryption Failures of BIKE 29

27. Guo, Q., Johansson, T.: A new decryption failure attack against HQC. In: Moriai,
S., Wang, H. (eds.) Advances in Cryptology – ASIACRYPT 2020, Part I. Lec-
ture Notes in Computer Science, vol. 12491, pp. 353–382. Springer, Heidelberg,
Germany, Daejeon, South Korea (Dec 7–11, 2020). https://doi.org/10.1007/978-3-
030-64837-4 12

28. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with
CCA security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) Advances
in Cryptology – ASIACRYPT 2016, Part I. Lecture Notes in Computer Science,
vol. 10031, pp. 789–815. Springer, Heidelberg, Germany, Hanoi, Vietnam (Dec 4–8,
2016). https://doi.org/10.1007/978-3-662-53887-6 29

29. Henecka, W., May, A., Meurer, A.: Correcting errors in RSA private keys. In: Ra-
bin, T. (ed.) Advances in Cryptology – CRYPTO 2010. Lecture Notes in Computer
Science, vol. 6223, pp. 351–369. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 15–19, 2010). https://doi.org/10.1007/978-3-642-14623-7 19
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Supplementary Material

A Proof of Lemma 1

First, we are going to prove that one vector with gathering property (m, ϵ) is
calculated no more than twice when m < r/2. Let a0, a1, ..., av−1 be indexes
for the nonzero elements and suppose 0 = a0 < a1 < ... < av−2 < m and
av−2 < av−1. We call av−1, the element out of gathering area, as out element.

If this vector is counted more than once, the new out element must be a0 or
av−2. Otherwise, a0, av−2, av−1 are in another gathering area whose length longer
than |av−1 − av−2| + |a0 − av−1| ≥ r −m > m which causes an contradiction.
If the new out element is a0, the begin index of new gathering area is between
[1, a1] thus the end index is between (m+1,m+a1). So we have av−1 < m+a1.
Under this condition, if av−2 is represented as a out element in another way, the
end index of new gathering area is larger than av−3, thus the begin index of new
gathering area is larger than r −m + av−3. So we have av−1 ≥ r −m + av−3.
Then m+a1 > r−m+av−3 which is in conflict with 2m < r and a1 < av−3. For
Em,ϵ(t/2, t/2), the proof is same by replacing v with t/2. As a result, we have
proved that a vector is counted no more than twice.

Let Bb = K
(b)
m,ϵ(w)∩ (

⋃
i̸=b K

(i)
m,ϵ(w)) and Ab = K

(b)
m,ϵ(w)−Bb. Let pa denotes

to the DFR when (h0, h1)
$← Ab, (e0, e1)

$← Em,ϵ(t/2, t/2) and pb denotes to the

DFR when (h0, h1)
$← Bb, (e0, e1)

$← Em,ϵ(t/2, t/2).

DFR
(h0,h1)

$←Km,ϵ(w)

(e0,e1)
$←Em,ϵ(t/2,t/2)

(43)

=
1

|Km,ϵ(w)|
(

r∑
b=0

pa|Ab|+
1

2

r∑
b=0

pb|Bb|) (44)

=
rpa|A0|+ r

2pb|B0|
r|A0|+ r

2 |B0|
(45)

On the other hand,

DFR (h0,h1)←F(w,m,ϵ)

(e0,e1)
$←Em,ϵ(t/2,t/2)

=
pa|A0|+ 1

2pb|B0|
|A0|+ 1

2 |B0|
= DFR

(h0,h1)
$←Km,ϵ(w)

(e0,e1)
$←Em,ϵ(t/2,t/2)

(46)

We can also prove

DFR (h0,h1)←F(w,m,ϵ)

(e0,e1)
$←Em,ϵ(t/2,t/2)

= DFR(h0,h1)←F(w,m,ϵ)
(e0,e1)←F(t,m,ϵ)

(47)

for the same reason. The proof is completed using (46) and (47).
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B Proof of Lemma 2

Let a0, a1, ..., av−1 be indexes for the nonzero elements and suppose a0 < a1 <
... < av−2 < m and av−2 < av−1. We call av−1 as the out element when the
indexes are expressed like this. Let a0 = 0 and we enumerate all a1, av−3, av−2.
If a vector is counted more than once, either a0 or av−2 is out of the gathering
area in certain expressions according to the proof in Appendix A. If a0 is out,
the new gathering area contains a1, av−1. So av−2 < av−1 < a1 +m. If av−1 is
out, the new gathering area contains av−1, av−3. So r− (m− av−3) < av−1 < r.
As a result, av−1 has (m− av−3− 1)+ (a1 +m− av−2− 1) available values. Let

Bb = K
(b)
m,ϵ(w) ∩ (

⋃
i ̸=b Ki) and Ab = K

(b)
m,ϵ(w)− Bb.

|Bb| =
∑

0<a1,av−3,av−2<m

(2m− av−3 + a1 − av−2 − 2)

(
av−3 − a1 − 1

v − 5

)
(48)

As for those in Em,ϵ(t/2, t/2), we have similar equation by replacing v with

t/2. We found |Bb|
|Ab| is lower than 5% when m ≤ 5500. When calculating the

complexity in theorem 2, the approximate error is lower than

max(|log2(0.95)|, |log2(1.05)|) < 0.08

bit. So we can use the approximate equation when counting vectors with gath-
ering property (m, ϵ).

C Proof of Inequality (21)

Denote v = w/2, K̃ϕi
m,ϵ(w) = Kϕi

m,ϵ(w) ∩ Koverlap
m,ϵ (w) and K̄ϕi

m,ϵ(w) = Kϕi
m,ϵ(w) −

K̃ϕi
m,ϵ(w). Observe that

|Koverlap
m,ϵ (w)|
|Kunion

m,ϵ (w)|
= 1−

∑
i |K̄ϕi

m,ϵ(w)|
|Kunion

m,ϵ (w)|
(49)

≤ 1−
∑

i |K̄ϕi
m,ϵ(w)|∑

i |K
ϕi
m,ϵ(w)|

(50)

= 1−
|K̄ϕi

m,ϵ(w)|
|Kϕi

m,ϵ(w)|
, (51)

thus the left half of (21) holds.
Next we give an upper bound on |K̃ϕi

m,ϵ(w)|. Our idea is to give upper bound

on |Kϕi
m,ϵ(w) ∩ K

ϕj
m,ϵ(w)|, and then use the fact that |K̃ϕi

m,ϵ(w)| ≤ ( r−12 − 1) ·
|Kϕi

m,ϵ(w) ∩ K
ϕj
m,ϵ(w)|. By symmetry, we only consider |Kϕ1

m,ϵ(w) ∩ Kϕi
m,ϵ(w)| for

1 < i < r/2. The following claim will be used in the estimation.
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Claim. Suppose r = 12323 and 2900 ≤ m ≤ 4000. Then for any affine map
f(x) = ax+ b defined over Zr such that a, b ∈ Z and 1 < a < r/2, it has

|f([0,m)) ∩ [0,m)| ≤ m/2 . (52)

This claim has been verified by enumerating a, b for r = 12323 and all m’s
involved in our experiment/deduction. For general m and r, it is still unknown
whether the claim holds.

Note that Kϕ1
m,ϵ(w) = Km,ϵ(w) = ∪0≤b<rK

(b)
m,ϵ(w), where K

(b)
m,ϵ(w) is defined

in Section 3.1. Then |Kϕ1
m,ϵ(w) ∩Kϕi

m,ϵ(w)| ≤
∑

0≤b<r |K
(b)
m,ϵ(w) ∩Kϕi

m,ϵ(w)|. Sup-
pose (h0,h1) ∈ K

(b)
m,ϵ(w)∩Kϕi

m,ϵ(w). Our counting starts by choosing the position
j ∈ [b, b+m) such that

– the j-th position of h0 is 1,
– the positions [i−1j, i−1j +m) of ϕ−1i (h0) contains the most possible 1’s, (at

least (v − ϵ) 1’s).

Then there are at least (v − 2ϵ) 1’s of h0 in [b, b + m) ∩
(
i · [i−1j, i−1j +m)

)
,

and by the above claim it has |[b, b+m) ∩
(
i · [i−1j, i−1j +m)

)
| ≤ m/2. There

are two cases for j. First, if j = b, the other (v − 2ϵ − 1) positions must be in

[b, b+m)∩
(
i · [i−1j, i−1j +m)

)
, which has at most

(
m/2

v−2ϵ−1
)
choices. Second, if

j ̸= b, then there are at most (m−1) choices for j, and at most
(

m/2
v−2ϵ−2

)
choices

for the other (v − 2ϵ− 2) positions. For the remaining 2ϵ 1’s of h0, there are at
most

(
r
2ϵ

)
choices. It follows that

|K(b)
m,ϵ(w) ∩Kϕi

m,ϵ(w)|

≤ρ(w,m, ϵ) :=

(
v − ϵ

v − 2ϵ

)
[

(
m/2

v − 2ϵ− 1

)
+ (m− 1)

(
m/2

v − 2ϵ− 2

)
]

(
r

2ϵ

)(
r

v

)
.

Then is follows directly that

|K̃ϕi
m,ϵ(w)| ≤ (

r − 1

2
− 1)r · ρ(w,m, ϵ), (53)

On the other hand, by Lemma 2,

|Km,ϵ(w)| ≥ (1 + ξ) · τ(w/2,m, ϵ). (54)

Thus δ can be set to be

δ =
r(r − 3)

2(1 + ξ)
· ρ(w,m, ϵ)

τ(w/2,m, ϵ)
. (55)

For ϵ = 1,m = 4000, it can be calculated that δ ≤ 2−35. Form ∈ [2900, 4000),
δ is even smaller, which is negligible with respect to our simulated decryption
failure rates.

D Black Gray Flipping
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Algorithm 3: Black Gray Flipping

Input: H ∈ Fr×n
2 , s ∈ Fr

2

Output: A vector e such that He = s
1: e←− 0n

2: for i=1,2,...,NbIter do
3: T =threshold(wH(s+He),i)
4: e, black, gray ←− BFIter(s+He, e, T,H)
5: if i = 1 then
6: e←− BFMaskedIter(s+He, e, black, (v + 3)/2,H)
7: e←− BFMaskedIter(s+He, e, gray, (v + 3)/2,H)
8: end if
9: end for
10: if He = s then
11: return e
12: else
13: return ⊥
14: end if

procedure BFIter(s,e,T,H)
15: for j=0,1,...,n-1 do
16: if |s ∩ hj| ≥ T then
17: ej ←− ej + 1
18: blackj ←− 1
19: else if |s ∩ hj| ≥ T − τ then
20: grayj ←− 1
21: end if
22: return e, black, gray
23: end for

procedure BFMaskedIter(s,e,mask,T,H)
24: for j=0,1,...,n-1 do
25: if |s ∩ hj| ≥ T then
26: ej ←− ej +maskj
27: end if
28: end for
29: return e
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Table 7. The parameters in the BGF algorithm.

Security NbIter τ threshold(S,i)

Level 1 5 3 max(⌊0.0069722S + 13.530⌋, 36)
Level 3 5 3 max(⌊0.005265S + 15.2588⌋, 52)
Level 5 5 3 max(⌊0.00402312S + 17.8785⌋, 69)

E Experiments under Small Parameters

According to the deduction in Section 6.1, it has

ptrue = DFRm,ϵ · pm,ϵ/DFRe∼(m,ϵ)
avg . (56)

As pm,ϵ and DFRm,ϵ have already been determined through previous deduc-
tions or experiments, the estimation of ptrue is effectively identical to estimat-
ing DFRe∼(m,ϵ)

avg . Our experimental design focuses on BIKE’s parameter set tar-

geting 128-bit security, but we opt to measure DFRe∼(m,ϵ)
avg directly by setting

10009 ≤ r ≤ 10179. We conduct two sets of experiments. The first set measures
both DFRe∼(m,ϵ)

avg and DFRavg, which allows us to demonstrate that these values
are close, indicating that ptrue is not excessively small. The second set directly
tests ptrue under small parameters and observes the resulting trend.

Table 8. The DFRavg and DFR
e∼(m,ϵ)
avg for m = 6000 and ϵ = 0. The data are displayed

both in fractions and exponents.

r 10009 10019 10029 10039

DFRavg
50

300000
(2−12.55) 80

700000
(2−13.10) 188

2059468
(2−13.42) 50

800000
(2−13.97)

DFR
e∼(m,ϵ)
avg

160
1120506

(2−12.77) 84
700000

(2−13.02) 183
2363499

(2−13.66) 61
900000

(2−13.85)

r 10049 10059 10069

DFRavg
77

1700000
(2−14.43) 100

3602726
(2−15.14) 100

4029708
(2−15.30)

DFR
e∼(m,ϵ)
avg

74
1600000

(2−14.40) 100
3356234

(2−15.03) 100
4100118

(2−15.32)

E.1 Experiments for DFRe∼(m,ϵ)
avg

For r = 12323, we have observed in Section 4 that weak keys exhibiting the
gathering property result in a high decryption failure rate. However, when con-
sidering errors that have the gathering property but random keys, we discovered
that the resulting decryption failure rate is too low to detect. Despite conduct-
ing numerous experiments in the range of 2000 ≤ m ≤ 3500, we have yet to
identify any failures. For instance, when (m, ϵ) = (3100, 1), we do not encounter
any failure while conducting 225 decryptions, which is significantly lower than
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the DFR = 2−18.38 we identified for weak keys. Even with m = 2000, we note
that the decryption failure rate with keys satisfying the gathering property is
approximately 0.1%, while the decryption failure rate with errors satisfying the
gathering property remains below 2−25.

On the other hand, for 10009 ≤ r ≤ 10069 we estimate DFRe∼(m,ϵ)
avg and

DFRavg and present the values in Table 8. Through the table we can infer that

the discrepancy between DFRe∼(m,ϵ)
avg and DFRavg is very small. We believe that

this fact is also true for r = 12323.

E.2 Experiments for ptrue

For 10129 ≤ r ≤ 10179 we simulated the value of ptrue, and the results are
listed in Table 9. As r increases, there is a clear downward trend for log2(p

−1
true),

exhibiting strong linearity. This encouraged us to employ linear regression to
compute the value of ptrue for larger r. Specifically, we were able to fit the data
using the equation y = −0.030x + 350.364 with a related coefficient of 0.985.
Hence, we estimated that ptrue ≈ 2−18.59 when r = 12323.

Table 9. The pm,ϵ, DFRm,ϵ and DFR
e∼(m,ϵ)
avg for (m, ϵ) = (5100, 1). The data is pro-

vided in its logarithmic form.

r DFRm,ϵ DFR
e∼(m,ϵ)
avg pm,ϵ p−1

true

10129 -7.87 -18.11 -57.35 47.11

10139 -8.05 -18.59 -57.44 46.90

10149 -8.31 -19.46 -57.54 46.40

10159 -8.48 -20.04 -57.64 46.07

10169 -8.66 -20.39 -57.73 46.01

10179 -8.81 -21.03 -57.83 45.61
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