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Abstract. Bottleneck complexity is an efficiency measure of secure mul-
tiparty computation (MPC) introduced by Boyle et al. (ICALP 2018)
to achieve load-balancing. Roughly speaking, it is defined as the maxi-
mum communication complexity required by any player within the pro-
tocol execution. Since it is impossible to achieve sublinear bottleneck
complexity in the number of players n for all functions, a prior work
constructed MPC protocols with low bottleneck complexity for specific
functions including the AND function and general symmetric functions.
However, the previous protocol for a symmetric function needs to assume
a computational primitive of garbled circuits. Its unconditionally secure
variant has exponentially large bottleneck complexity in the depth of
an arithmetic formula computing the function, which limits the class of
symmetric functions the protocol can compute with sublinear bottleneck
complexity in n. In this paper, we propose for the first time uncondi-
tionally secure MPC protocols computing any symmetric function with
sublinear bottleneck complexity in n. Our first protocol is an application
of the one-time truth-table protocol by Ishai et al. (TCC 2013). We de-
vise a novel technique to express the truth-table as an array of two or
higher dimensions and obtain two other protocols with better trade-offs.
We also propose an unconditionally secure protocol with lower bottle-
neck complexity tailored to the AND function. It avoids pseudorandom
functions used by the previous protocol, preserving bottleneck complex-
ity up to a logarithmic factor in n. As an application, we construct an
unconditionally secure protocol for private set intersection (PSI), which
computes the intersection of players’ private sets. This is the first PSI
protocol with sublinear bottleneck complexity in n and to the best of our
knowledge, there has been no such protocol even under cryptographic as-
sumptions.

1 Introduction

Secure multiparty computation (MPC) [60] is a fundamental cryptographic prim-
itive which enables n players to jointly compute a function f(x1, . . . , xn) with-
out revealing any additional information on their private inputs xi. Commu-
nication complexity, which counts the total number of bits transmitted be-
tween players, is considered as the most fundamental metric to measure the



efficiency of MPC protocols. A number of works have made significant pro-
gresses to minimize communication complexity for various useful functions (e.g.,
[27,7,14,21,22,16,31,43,29]).

However, in practical applications where lightweight devices perform MPC
via peer-to-peer communication, the per-party communication cost is a more
effective measure than the total cost. For example, consider secure computa-
tion on a star interaction pattern, in which a central player interacts with all
the other players and computes an output. Then, while total communication
cost is possibly scalable (i.e., O(n)), the central player must bear communi-
cation proportional to the total number of players. In large-scale MPC, these
costs quickly become prohibitive. To address these concerns, Boyle et al. [11] in-
troduced a different important efficiency measure, called bottleneck complexity.
Roughly speaking, the bottleneck complexity of an MPC protocol is defined as
the maximum communication required by any player during the execution of the
protocol.

To make protocols useful in applications to large-scale secure computation,
we aim at designing MPC protocols with sublinear bottleneck complexity in the
number of players n. On the negative side, Boyle et al. [11] showed that it is
impossible to achieve sublinear bottleneck complexity for all functions — even
without any security considerations. On the positive side, they proposed a generic
transformation from any (possibly insecure) protocol computing a function f to
a secure MPC protocol for f preserving bottleneck complexity (up to polynomial
factors in a security parameter). Their results reduce in some sense the above
goal to constructing protocols with sublinear bottleneck complexity without any
privacy requirements, which is a purely complexity-theoretic question. However,
a main drawback of their compiler is that it needs to use fully homomorphic en-
cryption, which can only be instantiated from narrow cryptographic assumptions
[25,58]. Recently, Orlandi, Ravi and Scholl [50] constructed MPC protocols with
sublinear bottleneck complexity for specific functions from weaker assumptions
of one-way functions or linearly homomorphic encryption. It still remains open
whether we can construct unconditionally secure MPC protocols with sublinear
bottleneck complexity.

1.1 Our Results

In this paper, we propose for the first time unconditionally secure MPC proto-
cols for symmetric functions with sublinear bottleneck complexity in the number
of players. Following [50], we assume semi-honest adversaries, who do not de-
viate from protocols, and the preprocessing model, in which players receive in
advance input-independent correlated randomness from a trusted third party.
We also propose an MPC protocol with lower bottleneck complexity tailored to
the functionality of checking if the sum of inputs is zero. As an application, we
construct an unconditionally secure protocol for private set intersection (PSI),
which computes the intersection of players’ private sets. This is the first PSI
protocol with sublinear bottleneck complexity and to the best of our knowledge,
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there is no such protocol even under cryptographic assumptions. In what follows,
we discuss our contributions in more detail.

Protocols for General Symmetric Functions. Orlandi et al. [50] con-
structed an MPC protocol for a symmetric function h : {0, 1}n → {0, 1} assum-
ing a garbled circuit [61]. Although their original protocol was computationally
secure, it can be made unconditionally secure by replacing the underlying garbled
circuit with an information-theoretic one, which is also known as randomized
encoding [40]1. However, the unconditionally secure variant has exponentially
large bottleneck complexity in the depth of an arithmetic formula computing
the function f : {0, 1, 2, . . . , n} → {0, 1} such that f(

∑
i∈[n] xi) = h(x1, . . . , xn)

for all (x1, . . . , xn) ∈ {0, 1}n. To achieve bottleneck complexity O(n1−ϵ) for some
constant ϵ > 0, the unconditionally secure protocol needs to assume that the re-
lated function f is represented by an arithmetic formula of depth (1 − ϵ) log n.
Note that such symmetric functions only account for o(1) fraction of all sym-
metric functions (see Appendix A). We propose three kinds of unconditionally
secure protocols with sublinear bottleneck complexity for any symmetric func-
tion. There are trade-offs between online bottleneck complexity, offline bottle-
neck complexity, i.e., the amount of correlated randomness per party, and the
privacy threshold (see Table 1). The first protocol has online bottleneck com-
plexity O(log n) and offline bottleneck complexity O(n). The second is more
balanced and its online and offline bottleneck complexities are both O(

√
n). The

third protocol has lower bottleneck complexity O(n1/d log n) for any constant
d but is only secure against adversaries corrupting less than n/(d − 1) players.
The numbers of rounds of our protocols are O(n), which is the same as [50]. We
also show that the round complexity of our protocols can be made O(log n) by
increasing the online complexity by O(log n) times. Technically, our first proto-
col is an application of the one-time truth-table protocol [41]. We devise a novel
technique to express the truth-table of f as an array of two or higher dimen-
sions and obtain the two other protocols with better trade-offs (see Section 2 for
technical details).

Protocol for Checking Equality to Zero. We propose an unconditionally
secure MPC protocol realizing the functionality of checking if the sum of players’
inputs is equal to zero over a finite field F. Since the functionality is symmetric,
we can apply the above protocols computing general symmetric functions. Our
tailored protocol achieves lower bottleneck complexity O(max{λ, log |F|}), where
λ is a security parameter. It tolerates adversaries corrupting up to n−1 players.
The functionality is a generalization of the AND function if we choose a field
whose characteristic is larger than n. As a comparison, the AND protocol in [50]
is based on pseudorandom functions and hence only computationally secure. Our
protocol avoids their use of pseudorandom functions while preserving bottleneck
complexity up to a logarithmic factor in n.

1 We have not seen any work that states this fact explicitly. We show a self-contained
exposition in Appendix A.
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Table 1. Comparison of unconditionally secure MPC protocols for a symmetric func-
tion h with sublinear bottleneck complexity in the number of players n.

Bottleneck complexity

Reference Condition on h Online Offline Corruption

[50] Dh ≤ (1− ϵ) log n O(n1−ϵ) O(n1−ϵ) t < n

Ours (Theorem 1) Unnecessary O(log n) O(n) t < n

Ours (Theorem 2) Unnecessary O(
√
n) O(

√
n) t < n

Ours (Theorem 3) Unnecessary O(n1/d log n) O(n1/d log n) t < n/(d− 1)

The offline bottleneck complexity means the amount of correlated randomness per party and

t is the maximum number of players corrupted by adversaries. Let ϵ be a constant and Dh

be the minimum depth of arithmetic formulas computing the unique function f such that

f(
∑

i∈[n] xi) = h(x1, . . . , xn) for all (x1, . . . , xn) ∈ {0, 1}n.

Application to Private Set Intersection By combining our protocol for
checking equality to zero with Bloom filters [9,10], we obtain an uncondition-
ally secure PSI protocol, that is, an MPC protocol for computing X1 ∩ · · · ∩Xn

from private sets X1, . . . , Xn ⊆ U each of size at most s. The offline bottleneck
complexity is Õ(s2λ) and the online bottleneck complexity is Õ(s2λ+ s log |U |)
assuming the ideal selection of hash functions of the underlying Bloom filter,
where we omit polylogarithmic factors in λ, n and s. The bottleneck complexity
of our protocol is sublinear in the number of players. To the best of our knowl-
edge, there has been no such PSI protocol even under cryptographic assumptions
(see Section 1.2 for a more detailed comparison). The round complexity of our
protocol is O(n). It can be decreased to O(log n) by increasing the online com-
plexity by O(log n) times.

1.2 Related Work

General MPC. Since the introduction of MPC [60], a rich line of works studied
communication complexity in various settings and showed feasibility results and
many optimizations, e.g., [27,7,14,53,17,36,35,21,4,20,22,8,37,16,30,31,43,29]. How-
ever, protocols in all of the above works require full interaction among players,
that is, each player may send messages to all the other players in each round of
interaction. This feature necessarily results in high bottleneck complexity Ω(n).

MPC with Restricted Interaction Patterns. Halevi, Lindell and Pinkas
[33] initiated the study of MPC which restricts interaction among players. Halevi
et al. [32] formalized the notion in the more general setting by representing
an interaction pattern as a directed acyclic graph. MPC protocols on a star-
based interaction were proposed for general tasks and for specific tasks including
symmetric functions [23,39,5]. As we mentioned above, protocols on a star-based
interaction require a central player to bear communication proportional to n,
which results in Ω(n) bottleneck complexity. Halevi et al. [32] also studied a
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chain-based interaction, in which players interact over a simple directed path
traversing all players. Protocols on a chain-based interaction possibly achieve
low bottleneck complexity since each player communicates with only a constant
number of players. However, since the last player on the chain is allowed to
evaluate the function on every possible input of his choice, the constructions in
[32] cannot achieve the standard security of MPC, which requires that corrupted
players learn nothing but the output. The weaker security notion of MPC with
restricted interaction is formalized as residual security [33,32].

Private Set Intersection. Private set intersection (PSI) has a wide variety of
applications. For example, Kolesnikov et al. [45] pointed out real-world scenar-
ios including: targeted advertising, where several organizations wish to combine
their data to find a target audience for an ad campaign; and network monitoring,
where a set of enterprises have private audit logs of connections to their corpo-
rate networks, and wish to identify similar activities in all networks. Although
many PSI protocols were constructed based on cryptographic assumptions or
even unconditionally, to the best of our knowledge, there is no PSI protocol that
achieves sublinear bottleneck complexity in the number of players n. Indeed, the
protocols in [44,47,54,55,51,52,15,45,38,26,49] require full interaction and those
in [24,48,34,13,2,59,1,6] assume a star interaction pattern. Thus the bottleneck
complexity of these protocols must be at least linear in n. An exception is the
protocol in [19], which utilizes a “round table” structure where players are sup-
posed to be nodes in a ring network and each player only communicates with
the consecutive players around the table. The bottleneck complexity is thus in-
dependent of n. However, their protocol outputs an incorrect intersection with
constant probability. Essentially, their protocol securely finds elements x ∈ Xn

on which a polynomial p(T ) := r ·
∑

i∈[n] fi(T ) vanishes, where r is a random

element unknown to any player and each fi(T ) is a polynomial which vanishes
exactly when evaluated on the elements of the i-th player’s input set Xi.

2 It
is true that p(x) = 0 for all x ∈ X1 ∩ · · · ∩ Xn but the set of all the roots of
p(T ) may include elements outside X1 ∩ · · · ∩ Xn since

∑
i∈[n] fi(x) = 0 even

if x is not a common root of the fi’s. The authors of [19] do not show how to
make the probability of this event negligible. This is why we do not consider
their protocol for our comparison. Finally, we note that the previous protocols
have better dependency on the maximum size s of players’ input sets than ours.
Indeed, the best-known communication complexity (e.g., [1]) is linear in s while
ours is quadratic in s.

2 Technical Overview

In this section, we provide an overview of our techniques. We give more detailed
descriptions and security proofs in the following sections. We call MPC protocols
with sublinear bottleneck complexity in the number of players BC-efficient.

2 We here assume that there is an injective map from the universe U containing all
the Xi’s to some finite field.
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2.1 BC-Efficient Protocols for General Symmetric Functions

First Protocol. Let h : {0, 1}n → {0, 1} be a symmetric function. Since the
value of h depends only on the sum

∑
i∈[n] xi, there is the unique function

f : {0, 1, . . . , n} → {0, 1} such that h(x1, . . . , xn) = f(
∑

i∈[n] xi). Our starting

point is the protocol in [50]: In the setup, players receive an additive sharing
(ri)i∈[n] of a random secret r, and a garbled circuit of a circuit computing g(y) :=
f(y−r) from y, where r is hard-wired. In the online phase, each player broadcasts
yi = xi + ri, locally computes y =

∑
i∈[n] yi, and evaluates the garbled circuit

on y in a threshold manner. Due to the mask r, the value y is random and
independent of

∑
i∈[n] xi from the players’ view point, and the security of the

garbled circuit ensures that the evaluation process reveals nothing but the output
g(y) = h(x1, . . . , xn). However, to achieve unconditional security, it is necessary
to replace the garbled circuit with an information-theoretic one, which results in
exponentially large bottleneck complexity in the depth of an arithmetic formula
computing g.

Instead of using garbled circuits, our first protocol uses the idea of one-
time truth-tables (OTTT) [41]. Roughly speaking, in an OTTT protocol, players
receive an additive sharing of the truth-table of a (not necessarily symmetric)
function h permuted with a random shift r = (r1, . . . , rn) in the setup. In the
online phase, each player broadcasts yi = xi + ri and opens the component of
their share for the permuted truth-table corresponding to y = (y1, . . . , yn). Then,
players can recover the y-th component of the permuted truth-table, which is
equal to h(y − r) = h(x1, . . . , xn). We adapt the OTTT protocol to the setting
of h being symmetric. In this case, it is sufficient to prepare a shifted version of
the truth-table of the related function f : {0, 1, . . . , n} → {0, 1}. By receiving
an additive sharing of the random shift r ∈ {0, 1, . . . , n} in the setup, players
can open y =

∑
i∈[n] xi + r and the y-th component of the table, which is

f(y − r) = f(
∑

i∈[n] xi).
Now, remaining problems are how to let players open secrets and broadcast

messages in a BC-efficient way. The protocol in [50] used a round-table structure
and let each player add his share to the message from the previous player and
send the result to the next player around the table. However, the round complex-
ity of this protocol is O(n). We propose a recursive protocol that opens secrets
with O(log n) rounds at the cost of increasing the online bottleneck complexity
by O(log n) times. Assume that players are partitioned into n/2 pairs and call
the members of each pair as the right and left players of the pair. For every
pair, the right player sends his share to the left player, who then adds it to his
own share. All of the left players then execute the protocol recursively on n/2
inputs, each of which is the sum of shares of each pair. After O(log n) iterations,
the final call of the protocol outputs the aggregation of all shares. In the worst
case, a player who is chosen as the left player of a pair in every iteration needs
to communicate O(log n) elements and hence the online bottleneck complexity
increases by O(log n) times. In [50], the broadcast functionality was realized by
a similar round-table structure, in which each player simply relays a message
from the previous to the next one. We reduce it to O(log n) but now with no
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additional cost for online complexity. Our solution is simple: Represent the set
of players by a binary tree whose height is O(log n) and root is the player who
broadcasts a message. We let each player relay the message from his parent to
his children in the tree.

In summary, the amount of correlated randomness per party is O(n), the
size of the truth-table of the function f : {0, 1, . . . , n} → {0, 1} associated with
a symmetric function. In the online phase, every player broadcasts and opens
only a constant number of elements in {0, 1, . . . , n}. Depending on how to im-
plement the functionality of opening secrets, our protocol has online bottleneck
complexity O(log n) or O((log n)2). In the former case, the number of rounds is
O(n) and in the latter, it is O(log n).

Second Protocol. Although the first protocol has polylogarithmic online bot-
tleneck complexity in the number of players n, a drawback is that the offline
bottleneck complexity is linear in n. We show a novel technique to extend the
above OTTT-based approach and obtain a protocol that balances offline and
online bottleneck complexities. The core idea of the first protocol is that players
securely obtain the component of the truth table T = [f(0), f(1), . . . , f(n)] at
position s =

∑
i∈[n] xi. This can also be interpreted as securely computing the

inner product 〈T, es〉, where es is the unit vector whose entry is 1 at position s
and 0 otherwise (we identify the set indexing entries with {0, 1, . . . , n}).

The key idea of our second protocol is to represent vectors T and es as
arrays of two dimension. Assume that n+1 is the product of two distinct primes
p, q of almost equal size O(

√
n). We then have a one-to-one correspondence ϕ

between Zn+1 := {0, 1, . . . , n} and Zp×Zq from the Chinese remainder theorem.
The truth-table T then corresponds to a matrix M ∈ {0, 1}p×q whose (k1, k2)-
th entry is f(k), where (k1, k2) = ϕ(k) (we identify the set indexing rows and
columns with Zp and Zq, respectively). Furthermore, the equation 〈T, es〉 = f(s)
is rewritten as

〈es1 ,M · es2〉 = f(s), where (s1, s2) = ϕ(s). (1)

Importantly, since M is public, the computation of M · es2 can be locally done
and hence the computation players need to interactively perform is only the
inner product of vectors of dimension O(

√
n), instead of O(n).

More specifically, we cannot compute the inner product (1) for (s1, s2) = ϕ(s)
directly since we should not reveal s and can only open a value y = s− r with a
random mask r. To unmask s from y, we give players vectors eu1

∈ {0, 1}p and
eu2
∈ {0, 1}q as correlated randomness, where (u1, u2) = ϕ(r). Now, as in our

first protocol, players open y =
∑

i∈[n] xi − r, express it as ϕ(y) = (z1, z2), and
permutes eu1 and eu2 with shifts z1 and z2, respectively. They obtain eu1+z1 =
es1 and eu2+z2 = es2 , from which f(s) = h(x1, . . . , xn) can be computed via
Eq. (1). However, distributing (eu1

, eu2
) as a plaintext reveals r. We instead

give players additive shares for eu1
and eu2

as correlated randomness. Since
permuting vectors with a public shift and multiplying vectors by a constant
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matrix are linear operations, players can obtain additive shares for es1 and M ·
es2 .

A remaining problem is how to compute the inner product of es1 and M ·es2
in a secret-shared form. Our key observation is that the multiplication protocol
based on Beaver triples [3] is BC-efficient. Indeed, assume that players have
additive shares of (a, b, c), where a, b are random secrets and c = ab. They can
compute an additive sharing of xy from those for x and y as follows: (1) players
open u := x−a and v := y−b; (2) they compute [xy] = uv+v[a]+u[b]+[c], where
[w] means an additive sharing for w. Since the functionality of opening secrets can
be realized in a BC-efficient way, this multiplication protocol is also BC-efficient.
Therefore, if we additionally distribute O(

√
n) Beaver triples in the setup, we

can securely compute 〈es1 ,M · es2〉 = f(s). The overall correlated randomness
consists of additive shares for two vectors of dimension O(

√
n) and O(

√
n) Beaver

triples. The online bottleneck complexity is O(
√
n), or O(

√
n log n) depending

on the implementation of the functionality of opening secrets. The number of
rounds is O(n) in the former case while O(log n) in the latter case. Although we
assume for simplicity that n+1 is the product of two primes of almost equal size,
it is straightforward to extend it the general case since we can choose primes
such that

√
n < p < 2

√
n < q < 4

√
n thanks to Bertrand’s postulate [57].

Third Protocol. In our second protocol, we express the truth-table T of the
function f by a two-dimensional array. We further extend the technique and
use an array of higher dimension d ≥ 2. For simplicity, assume that n + 1 is
the product of d distinct primes p1, p2, . . . , pd of almost equal size O(n1/d). The
general case can be dealt with similarly. From the Chinese remainder theorem,
we have a one-to-one correspondence ϕ from {0, 1, . . . , n} to Zp1

×Zp2
×· · ·×Zpd

.
We can then equivalently express the truth-table T of f by a p1-by-q matrix M
over any field F, where q = p2 · · · pd. Indeed, fixing a one-to-one correspondence
between k ∈ Zq and (s2, . . . , sd) ∈ Zp2

× · · · × Zpd
, we embed every value f(s)

into the (s1, k)-th entry of M for (s1, s2, . . . , sd) = ϕ(s). In other words, we can
choose a matrix M such that the equation 〈T, es〉 = f(s) is rewritten as

〈es1 ,M · (es2 ⊗ · · · ⊗ esd)〉 = f(s), (2)

where (s1, s2, . . . , sd) = ϕ(s), esj ∈ Fpj is the unit vector whose entry is 1 at
position sj , and a⊗ b denotes the Kronecker product of a and b. The problem
is now reduced to securely computing the inner product (2). Again, we should
not compute (2) for the sum s =

∑
i∈[n] xi itself since we can only open a

masked value y = s − r. To remove the mask r, we try to distribute vectors
eu1

, eu2
, . . . , eud

for (u1, u2, . . . , ud) = ϕ(r). Since this trivially reveals r, we give
players shares for them. A major difference from the second protocol is that we
use the Shamir secret sharing scheme over F with a threshold t < n/(d− 1) [56]
instead of the additive one. By opening ϕ(y) = (z1, z2, . . . , zd) and permuting
each share vector with a shift zj , players can compute a Shamir sharing of
es1 , es2 , . . . , esd without recovering s. Importantly, the homomorphic property
of the Shamir scheme enables players to locally compute a Shamir sharing of
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es2 ⊗ · · · ⊗ esd with a threshold (d − 1)t since the degree of a function to be
evaluated is at most d − 1. Furthermore, since d(t − 1) < n, the shares can be
locally converted to an additive sharing of es2 ⊗ · · · ⊗ esd and to an additive
sharing of M · (es2 ⊗ · · · ⊗ esd). Finally, using p1 = O(n1/d) Beaver triples,
players interactively computes the inner product 〈e1,M · (es2 ⊗ · · · ⊗ esd)〉 in
a secret-shared form in a BC-efficient way. For any constant d, the offline and
online bottleneck complexities are both O(n1/d) field elements if we open secrets
in a round-table structure, which requires O(n) rounds. Since the Shamir scheme
needs to assume |F| > n, they are O(n1/d log n) in bits. We can reduce the round
complexity from O(n) to O(log n) if the recursive protocol is used to open secrets,
which increases the online bottleneck complexity by O(log n) times.

2.2 BC-Efficient Protocol for Checking Equality to Zero

We propose an unconditionally secure BC-efficient protocol for checking if the
sum of players’ inputs is zero or not over a finite field F. Since the function-
ality is symmetric, we can apply our protocols for general symmetric func-
tions. Our tailored protocol shown below achieves lower bottleneck complexity
O(max{λ, log |F|}), where λ is a security parameter.

First, we show a special case of our protocol, which computes the OR function
of players’ inputs. Our starting point is the previous protocol for the OR function
in [50]3. In the protocol, players receive an additive sharing (ri)i∈[n] of a random
secret r in the setup. The i-th player sets yi ← ri if he has xi = 0, and otherwise
he chooses yi uniformly at random. Players then open the sum y =

∑
i∈[n] yi,

which is equal to r if and only if OR(x1, . . . , xn) = 0 (with high probability). Note
that r should not be revealed since otherwise an adversary can learn the OR of
the honest players’ inputs by subtracting the inputs and correlated randomness
of the corrupted players, which is called a residual attack [33]. It is therefore
necessary to check the equality y = r without revealing r. In [50], this is done
by using a pseudorandom function (PRF): Players apply the PRF in a nested
manner starting from y by using their private keys, and check the final value
is equal to the value computed in the same way except that it starts from r.
To obtain an unconditionally secure protocol, we propose a different method to
check the equality y = r. Our key observation is that for two random secrets a
and b, ay+ b = ar+ b is equivalent to y = r except with a small probability that
a = 0, and the view (ay + b, ar + b) reveals nothing but whether the equality
y = r holds in the information-theoretic sense. In our protocol, players receive
additive shares (ai)i∈[n] and (bi)i∈[n] for two random secrets a and b in the setup.
We also give them r′ := ar+ b. In the online phase, after opening y, each player
computes y′i = aiy + bi and obtains the sum y′ =

∑
i∈[n] y

′
i = ay + b. Players

then check y′ = r′ and if so, output 0. The probability of failure can be made
negligible in λ if we choose r, a, b and shares for them from sufficiently large
sets.

3 The original protocol in [50] computes the AND function. The functionalities are
equivalent since OR(x1, . . . , xn) = 1−AND(1− x1, . . . , 1− xn).
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Finally, it is straightforward to extend the above protocol to a protocol for
checking whether

∑
i∈[n] xi = 0 holds. We now let every player compute yi =

xi + ri and open y =
∑

i∈[n] xi + r. Using the above technique, players can

check the equality y = r, i.e.,
∑

i∈[n] xi = 0, without learning any additional
information.

2.3 BC-Efficient PSI Protocol

We combine our protocol for checking the equality to zero with Bloom filters [9]
and construct an unconditionally secure PSI protocol with sublinear bottleneck
complexity in n. First, we show a simple protocol whose bottleneck complexity
is sublinear in n but linear in the cardinality of the universe U = {1, 2, . . . , N}
containing all the input sets. In the protocol, each player encodes his input set
Xi ⊆ U as the characteristic vector Bi ∈ {0, 1}N of its complement, i.e., the
vector whose entry at position j is 1 if and only if j /∈ Xi. They compute an
additive sharing of the sum V =

∑
i∈[n] Bi over a finite field. (We suppose that

the characteristic of the field is so large that no wrap-around occurs.) This can
be done by giving players an additive sharing (ui)i∈[n] of the N -dimensional
zero vector in the setup and letting them compute Bi + ui. Observe that x ∈
X1 ∩ · · · ∩Xn if and only if the entry V[x] at position x is 0. For each element x
of the input set of a designated player, players compute the inner product of V
and ex in a secret-shared form using N Beaver triples. While the inner products
themselves reveal elements outside X1 ∩ · · · ∩ Xn, players use our BC-efficient
protocol for checking the equality to zero and learn whether 〈V, ex〉 = 0 and
nothing else. Finally, X1 ∩ · · · ∩Xn is securely obtained if the designated player
broadcasts the x’s for which 〈V, ex〉 = 0 holds.

Since U has typically large size, we aim to achieve better dependency on
|U | by making use of Bloom filters, which provide compact encodings of sets. A
Bloom filter encodes a set X of elements as an m-bit vector with respect to λ
randomly selected hash functions H1, . . . , Hλ. All entries are initialized to 0. To
insert an element to the Bloom filter, the entries at positions H1(x), . . . , Hλ(x)
are all set to 1. We can test whether y ∈ X by checking if the entries at po-
sitions H1(y), . . . , Hλ(y) are all 1. There is a possibility of false positives but
its probability can be made negligible in λ if we choose m = Θ(sλ), where s
is the maximum size of input sets [10]. Our PSI protocol bears some similar-
ities with the previous protocols based on Bloom filters [48,1]: However, their
protocols are not BC-efficient and assume a computational primitive of homo-
morphic threshold public-key encryption. In our protocol, each player computes
a Bloom filter BF(Xi) of his input set Xi and inverts it, i.e., Bi := 1m−BF(Xi),
where 1m is the m-dimensional all-ones vector. As above, players compute an
additive sharing of V =

∑
i∈[n] Bi using additive sharings of zeros. For any

x ∈ X1 ∩ · · · ∩ Xn, the entries of Bi at positions H1(x), . . . , Hλ(x) are all zero
and hence so are the corresponding entries of V. The converse is not always true
but with overwhelming probability, for x /∈ X1 ∩ · · · ∩ Xn, at least one entry
of V at positions H1(x), . . . , Hλ(x) is non-zero due to the property of Bloom
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filters. Based on that observation, for each element x of the input set of a desig-
nated player, we let players compute the inner product of V and a Bloom filter
BF({x}) of the singleton {x} in a secret-shared form. The rest is similar to the
above: Players check whether 〈V,BF({x})〉 = 0 based on our protocol for check-
ing the equality to zero, and the designated player broadcasts the elements x for
which the equality holds. If we implement the functionality of opening secrets
based on a round-table structure, the bottleneck complexity is O(sm) = Oλ(s

2)
field elements plus O(s log |U |) bits since we have to compute s inner products of
m-dimensional vectors and m = Θ(sλ). Since no wrap-around occurs if the char-
acteristic is larger than nλ, the bottleneck complexity is Oλ(s

2 log n+ s log |U |)
in bits, omitting a polynomial factor in λ. We can also construct a PSI protocol
with O(log n) rounds if we increase the online bottleneck complexity by O(log n)
times.

3 Preliminaries

3.1 Notations

Form ∈ N, define [m] = {1, . . . ,m} and [0..m] = [m]∪{0}. Define Zm as the ring
of integers modulo m. We identify Zm (as a set) with {z ∈ Z : 0 ≤ z ≤ m− 1}.
We denote the set of all subsets of X by 2X . For a subset X of a set Y , we
define Y \ X = {y ∈ Y : y /∈ X} and simply denote it by X if Y is clear
from the context. We write u ←$ Y if u is chosen uniformly at random from a
set Y . We call a function f : N → R negligible if for any c > 0, there exists
λ0 ∈ N such that 0 ≤ f(λ) < λ−c for any λ > λ0. We call f polynomial if
there exists c > 0 and λ0 ∈ N such that 0 ≤ f(λ) ≤ λc for any λ > λ0. For
two random variables with range U , we define the statistical distance SD(X,Y )
between X and Y as SD(X,Y ) = (1/2)

∑
u∈U |Pr[X = u]−Pr[Y = u]|. For two

sequences X = (Xλ)λ∈N, Y = (Yλ)λ∈N of random variables, we write X ≈ Y if
a function f : λ 7→ SD(Xλ, Yλ) is negligible in λ. By default, the i-th element
of a vector u is denoted by ui or u[i]. For a vector s = (si)i∈Zm ∈ Xm and
r ∈ Zm, we define Shiftr(s) as the vector obtained by shifting elements by r.
Formally, Shiftr(s) = (ti)i∈Zm

is defined by ti = s(i−r) mod m for all i ∈ Zm.
Let 0m be the zero vector of dimension m and 1m be the all-ones vector of
dimension m. We simply write 0 or 1 if the dimension is clear from the context.
Let Im denote the m-by-m identity matrix and ei denote the i-th unit vector.
For two vectors u,v over a ring, we define the standard inner product of u
and v as 〈u,v〉 =

∑
i u[i]v[i]. For a tuple of m polynomials φ = (φj)j∈[m]

over F and α ∈ F, we write φ(α) = (φj(α))j∈[m] ∈ Fm. Finally, let g be a
deterministic function on Dn, where D is a set. We denote by Fg an n-input/n-
output functionality that on input x ∈ Dn, outputs Fg(x) = (g(x), . . . , g(x)).

3.2 Secure Multiparty Computation

Definitions. Let n be a polynomial in a security parameter λ. We denote the set
of n players by {P1, . . . ,Pn}, where Pi is the i-th player. Assume that each player
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Pi has a private input xi from a finite set D. Let F(x1, . . . , xn) = (y1, . . . , yn)
be an n-input/n-output randomized functionality. Let Π be a protocol between
n players. We assume the preprocessing model. That is, a protocol includes a
joint distribution D over the Cartesian product R1 × · · · × Rn of n sets, and
each player Pi receives ri ∈ Ri before he decides his input, where (r1, . . . , rn)
is sampled from R1 × · · · × Rn according to D. We assume computationally
unbounded adversaries who passively corrupt up to t players. (We do not consider
active adversaries whose corrupted players deviate from protocols arbitrarily.)
For a security parameter λ, a subset T ⊆ [n] of size at most t and any input
x = (xi)i∈[n], consider the following two processes:

Ideal process. This process is defined with respect to a simulator Sim. Let
(y1, . . . , yn)← F(x). The output of this process is

IdealF,Sim(1
λ, T,x) := (Sim(1λ, T, (xi, yi)i∈T ), (yi)i∈[n]).

Real process. Suppose that all players each holding an input xi execute Π
honestly with security parameter λ. Let ViewΠ,i(x) denote the view of Pi

at the end of the protocol execution (which consists of his local input xi,
random input, correlated randomness ri, and messages that he received or
sent during the execution of Π), and let OutputΠ,i(x) be the output of Pi.
The output of this process is

RealΠ(1λ, T,x) := ((ViewΠ,i(x))i∈T , (OutputΠ,i(x))i∈[n]).

We say that Π is a t-secure MPC protocol for F if for any subset T ⊆ [n] of size
at most t and any input x = (xi)i∈[n], it holds that

{IdealF,Sim(1
λ, T,x)}λ∈N ≈ {RealΠ(1λ, T,x)}λ∈N.

We simply say that Π is fully secure if it is (n− 1)-secure.
Let g be a deterministic function on Dn. Recall that we have defined Fg as

a functionality such that Fg(x) = (g(x), . . . , g(x)). Then we have an equivalent
definition ofΠ being a secure MPC protocol for Fg:Π is a t-secure MPC protocol
for Fg if and only if

Correctness. For any input x, it holds that

Pr
[
∃i ∈ [n] : OutputΠ,i(x) 6= g(x)

]
= negl(λ);

Privacy. For any set T ⊆ [n] of size at most t and any pair of inputs x =
(xi)i∈[n], w = (wi)i∈[n] such that (xi)i∈T = (wi)i∈T and g(x) = g(w), it
holds that

{(ViewΠ,i(x))i∈T }λ∈N ≈ {(ViewΠ,i(w))i∈T }λ∈N.

We denote by Commi(Π) the total number of bits sent or received by the
i-th player Pi during the execution of a protocol Π with worst-case inputs. We
denote by Randi(Π) the size of correlated randomness for Pi, i.e., the total
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number of bits received by Pi in the setup of Π. We define the online (resp.
offline) bottleneck complexity of Π as BCon(Π) = maxi∈[n]{Commi(Π)} (resp.
BCoff(Π) = maxi∈[n]{Randi(Π)}). We say that Π is BC-efficient if BCon(Π)
and BCoff(Π) are o(n). We denote by Round(Π) the round complexity of Π,
i.e., the number of sequential rounds of interaction.

The Hybrid Model and Universal Composability. Let G be a functionality. We
say that a protocol Π is in the G-hybrid model if players invoke G during the
execution of Π, that is, a trusted third party receives messages from players and
gives them the correct output of G. The composition theorem [28] implies that
if a protocol Π securely realizes a functionality F in the G-hybrid model and
a protocol ΠG securely realizes G, then the composition of Π and ΠG , i.e., the
protocol obtained by replacing all invocations of G in Π with ΠG , also securely
realizes F .

The above composition theorem assumes sequential composition, that is, pro-
tocols are invoked one after the other. For example, if a protocol Π internally
invokes a sub-functionality G multiple (say, m) times and ΠG implements G, the
number of rounds of the composed protocol results in Round(Π)+m·Round(ΠG).
On the other hand, it is desirable that a protocol is secure even under concurrent
general composition since we can achieve better round complexity by running
as many sub-protocols as possible in parallel. It is known that a protocol pre-
serves security even under concurrent general composition if (and only if) it
satisfies universal composability [12]. Although a protocol that is secure in the
above stand-alone model does not satisfy universal composability in general,
Kushilevitz, Lindell and Rabin [46] showed that if a protocol is secure in the
stand-alone model and has a straight-line black-box simulator4, then it is secure
under concurrent general composition with fixed inputs. In the composition with
fixed inputs, each player Pi receives a tuple of inputs (xi, wi1, . . . , wim) before
the protocol execution begins, where Pi uses xi as its input to a main protocol
and uses wij as its input to the j-th sub-protocol. In other words, the inputs to
sub-protocols are fixed before the execution of the main protocol begins.

All of the simulators for our protocols simulate messages that corrupted play-
ers see only from the input/output of a functionality, and their internal states
just by performing the same computation as the real protocol execution. Thus,
our simulators are all black-box straight-line. Furthermore, in all of our proto-
cols, the inputs to sub-protocols to be executed in parallel are independent of
each other. Therefore, the concurrent composition of the sub-protocols securely
realizes desired functionalities. For that reason, it is sufficient to provide security
proofs of our protocols in the stand-alone setting.

4 A simulator is black-box if it uses only oracle access to a real-world adverasry. Such
a simulator is straight-line if it interacts with the real-world adversary in essentially
the same way as the real protocol execution.
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3.3 Basic Algorithms

Let G be an abelian group (e.g., a finite field or a ring of integers modulo m).
Define AdditiveG(s) as an algorithm to generate additive shares over G for a
secret s ∈ G. Formally, on input s ∈ G, AdditiveG(s) chooses (s1, . . . , sn) ∈ Gn

uniformly at random conditioned on s =
∑

i∈[n] si, and outputs it. For a vector

s ∈ Gm, we define AdditiveG(s) as AdditiveG being applied to s in an element-wise
way. We simply write Additive instead of AdditiveG if G is clear from the context.

Let F be a finite field. Define MakeBeaverF() as an algorithm to generate a
Beaver triple [3]. Formally, MakeBeaverF() takes no input and does the following:

1. Let a, b←$ F and c = ab.
2. Let (ai)i∈[n] ← AdditiveF(a), (bi)i∈[n] ← AdditiveF(b) and (ci)i∈[n] ← AdditiveF(c).
3. Output (ai, bi, ci)i∈[n].

Suppose that |F| ≥ n + 1 and let α1, . . . , αn be pairwise distinct non-zero
elements of F. Define ShamirF,t(s) as an algorithm to generate shares of the
(t, n)-Shamir secret sharing scheme for a secret s ∈ F. Formally, on input s ∈ F,
ShamirF,t(s) chooses a random polynomial φ over F of degree at most t such that
φ(0) = s, and then outputs (φ(α1), . . . , φ(αn)). For a vector s ∈ Fm, we define
ShamirF,t(s) as ShamirF,t being applied to s in an element-wise way.

We can convert consistent shares of the Shamir scheme into additive shares
for the same secret. Indeed, there exist constants ℓ1, . . . , ℓn, each of which de-
pends on the αi’s only, such that

ℓ1 · φ(α1) + · · ·+ ℓn · φ(αn) = φ(0)

for any polynomial φ of degree at most n − 1. It immediately implies that∑
i∈[n] ℓivi = s for (vi)i∈[n] ← ShamirF,t(s), which means that (ℓivi)i∈[n] is a

tuple of additive shares for s. The existence of the ℓi’s follows from the fact that
a Vandermonde matrix is invertible. More explicitly, the ℓi’s are given by

ℓ1
ℓ2
...
ℓn

 =


1 1 · 1
α1 α2 · · · αn

...
...

. . .
...

αn−1
1 αn−1

2 · · · αn−1
n


−1

e1.

We call the ℓi’s Lagrange coefficients associated with α1, . . . , αn.
Finally, we recall a simple mathematical fact that also follows from the in-

vertibility of Vandermonde matrices: Let s ∈ F and T ⊆ [n] be any set of size
at most t. Then, there is a polynomial φ of degree at most t such that φ(0) = s
and φ(αi) = 0 for all i ∈ T .

3.4 Bloom Filters

Bloom filters [9] are probabilistic data structures that provide compact encodings
of sets. Formally, let U be a set and H be a set of k independent uniform hash
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functions H = {H1, . . . , Hk} such that each Hi maps elements in U to numbers
in [m]. To add an element x ∈ U , an algorithm Add takes an m-bit string
BF = (v(h))h∈[m] and an element x ∈ U as input, and sets v(h) ← 1 for all
h ∈ {H1(x), . . . , Hk(x)}. Let BF(∅) denote the string whose bits are all zero. For
X ∈ 2U , let BF(X) denote a string obtained by adding the elements of X. That
is, if X = {x1, . . . , xs}, first construct BF1, . . . ,BFs as BFj = Add(BFj−1, xj)
for all j ∈ [s], where BF0 = BF(∅), and then define BF(X) = BFs. Note
that the definition of BF(X) is independent of the order of the elements of X.
To query BF(X) for an element y ∈ U (i.e., to test whether y ∈ X), a query
algorithm Check takes anm-bit string BF = (v(h))h∈[m] and an element y ∈ U as

input, and checks if v(h) = 1 for all h ∈ {H1(y), . . . , Hk(y)}. If so, the algorithm
outputs 1 (“yes”) and otherwise it outputs 0 (“no”).

It is straightforward to see that if y is indeed in X, the query algorithm
correctly outputs yes. On the other hand, the converse is not true. Suppose
that y /∈ X. If the bits at positions H1(y), . . . , Hk(y) have by chance been set
to 1 during the insertion of the elements of X, the algorithm outputs “yes”
incorrectly, resulting in a false positive. We require a Bloom filter to satisfy
that the probability of false positives is negligible. Formally, we say that BF =
(Add,Check) is a Bloom filter for U with parametersm, k and s if for any X ∈ 2U

with |X| = s and any y ∈ U \X, the probability that Check(BF(X), y) = 1 is
negligible in k, where the probability is taken over the random choice of H.
Assuming an ideal selection of H (i.e., all Hi’s are truly random functions), the
above probability can be upper bounded by αk for a constant α < 1 if we set
m = Θ(ks) [10].

4 BC-Efficient Protocols for Basic Functionalities

Broadcast. Let FBroadcast,i be the functionality which receives a non-private
input y from the i-th player and gives y to all players (described in Fig. 1). Since
we assume that all players are semi-honest, we immediately obtain a BC-efficient
protocol realizing FBroadcast. Indeed, we just utilize a round table structure where
players are supposed to be nodes in a ring network and each player only commu-
nicates with the consecutive players around the table. Such a protocol implicitly
appears in [50]. However, the round complexity of this protocol is O(n). To re-
duce it to O(log n), assume that the set of n players is represented by a binary
tree whose height is O(log n) and root is Pi. Each player sends his two chil-
dren the element that he received from his parent node. We show the formal
description of the protocol ΠBroadcast,i in Fig. 1. The complexity of ΠBroadcast,i is

BCon(ΠBroadcast,i) = O(ℓy) and Round(ΠBroadcast,i) = O(log n),

where ℓy is the bit-length of y. Note that BCoff(ΠBroadcast,i) = 0.

Sum. In Fig. 2, we describe the functionality FSum which receives group ele-
ments x1, . . . , xn ∈ G, each from Pi, and gives s :=

∑
i∈[n] xi to all players. We
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Functionality FBroadcast,i� �
Upon receiving y from the i-th player Pi, FBroadcast,i gives every player y.� �
Protocol ΠBroadcast,i� �

Assumption. The set of n players is represented by a binary tree whose height
is h = O(log n) and root is the i-th player Pi. For each k ∈ [n], let Parentk be
the parent of Pk if k ̸= 1, and {Lk,Rk} be at most two children of Pk.

Non-private input. The i-th player Pi has y.

Output. Every player obtains y.

Protocol.
1. Pi sets yi = y and sends it to Li and Ri.
2. For each j = 1, 2, . . . , h, every player Pk at the j-th level sets yk as the

element he received from Parentk, and sends it to Lk and Rk.
3. Each player Pk outputs yk.� �

Fig. 1. The functionality FBroadcast,i and a protocol ΠBroadcast,i implementing it

show two incomparable BC-efficient implementations of FSum. The former pro-
tocol ΠSum, which implicitly appears in [50], utilizes a round table structure. We
propose a novel protocol Π ′

Sum that uses recursion. Assume that players are par-
titioned into dn/2e pairs and call the members of each pair as the right and left
players of the pair. For every pair, the right player sends his element to the left
player, who then computes the sum sk of their elements. All of the left players
then execute the protocol Π ′

Sum recursively on dn/2e inputs s1, . . . , s⌈n/2⌉. After
O(log n) iterations, the final call of the protocol outputs the aggregation of the
sum of all elements. In the worst case, a player who is chosen as the left player
of a pair in every iteration needs to communicate O(log n) elements and hence
the online bottleneck complexity increases by O(log n) times. Note that if one
naively implements the above procedures, players learn additional information,
e.g., a partial sum of inputs. We let players mask their inputs with additive
shares of 0 in advance. The formal descriptions of ΠSum and Π ′

Sum are shown in
Figs. 2 and 3. The complexities are BCoff(ΠSum) = BCoff(Π

′
Sum) = O(log |G|),

– BCon(ΠSum) = O(log |G|) and Round(ΠSum) = O(n);
– BCon(Π

′
Sum) = O((log n)(log |G|)) and Round(Π ′

Sum) = O(log n).

Multiplication. In Fig. 4, we describe the functionality FMult which takes ad-
ditive shares (xi)i∈[n], (yi)i∈[n] for x and y (resp.), and gives additive shares
(zi)i∈[n] for z = xy. We obtain a BC-efficient protocol ΠMult for FMult based on
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Functionality FSum((xi)i∈[n])� �
Upon receiving a group element xi ∈ G from each player Pi, FSum gives every
player s :=

∑
i∈[n] xi.� �

Protocol ΠSum [50]� �
Input. Each player Pi has a group element xi ∈ G.

Output. Every player obtains s =
∑

i∈[n] xi.

Setup.
1. Let (ai)i∈[n] ← AdditiveG(0).
2. Each player Pi receives ai.

Protocol.
1. Each player Pi sets yi = xi + ai.
2. For each i = 1, 2, . . . , n− 1, Pi does the following:

– If i = 1, set s1 = y1.
– If i ̸= 1, let si−1 denote the message from Pi−1. Compute si =

si−1 + yi.
– Send si to Pi+1.

3. Pn computes s = sn−1 + yn and invokes FBroadcast,n with input s.
4. Each player Pi outputs s.� �
Fig. 2. The functionality FSum and a protocol ΠSum implementing it
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Sub-Protocol Π0
� �

Input. Each player Pi has a group element yi ∈ G.

Output. Every player obtains s =
∑

i∈[n] yi.

Protocol.
1. Partitions the set of n players into ⌈n/2⌉ pairwise disjoint sets

S1, . . . , S⌈n/2⌉, each of size at most 2. Let Sk = {Pℓk ,Prk}, where ℓk < rk.
2. For each k = 1, 2, . . . , ⌈n/2⌉, Prk sends his input yrk to Pℓk .
3. For each k = 1, 2, . . . , ⌈n/2⌉, Pℓk computes sk = yℓk + yrk .
4. Players Pℓ1 , . . . ,Pℓ⌈n/2⌉ invoke Π0 on input (s1, . . . , s⌈n/2⌉) and obtain s.
5. For each k = 1, 2, . . . , ⌈n/2⌉, Pℓk sends s to Prk .
6. Each player Pi outputs s.� �

Protocol Π ′
Sum

� �
Input. Each player Pi has a group element xi ∈ G.

Output. Every player obtains s =
∑

i∈[n] xi.

Setup.
1. Let (ai)i∈[n] ← AdditiveG(0).
2. Each player Pi receives ai.

Protocol.
1. Each player Pi sets yi = xi + ai.
2. Players invoke Π0 on input (y1, . . . , yn) and obtain s =

∑
i∈[n] yi.

3. Each player Pi outputs s.� �
Fig. 3. A protocol Π ′

Sum implementing the functionality FSum
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the above BC-efficient protocols for sum and a Beaver triple. We show its formal
description in Fig. 4. The correctness and security follow from [3]. The offline
bottleneck complexity is

BCoff(ΠMult) = O(log |F|).

The protocol has different online bottleneck complexity and round complexity
depending on implementation of FSum:

– If FSum is realized by ΠSum,

BCon(ΠMult) = O(log |F|) and Round(ΠMult) = O(n);

– If FSum is realized by Π ′
Sum,

BCon(ΠMult) = O((log n)(log |F|)) and Round(ΠMult) = O(log n).

Functionality FMult((xi, yi)i∈[n])� �
1. FMult receives field elements xi, yi ∈ F from each player Pi.
2. FMult computes x =

∑
i∈[n] xi, y =

∑
i∈[n] yi and z = xy.

3. FMult runs (zi)i∈[n] ← AdditiveF(z).
4. FMult gives zi to each player Pi.� �
Protocol ΠMult

� �
Input. Each player Pi has xi, yi ∈ F.

Output. Each player Pi obtains zi ∈ F, where (zi)i∈[n] ← FMult((xi, yi)i∈[n]).

Setup.
1. Generate a Beaver triple (ai, bi, ci)i∈[n] ← MakeBeaverF().
2. Each player Pi receives (ai, bi, ci) and correlated randomness for two in-

vocations of FSum.

Protocol.
1. Each player Pi computes ui = xi − ai and vi = yi − bi.
2. Players obtain u = FSum((ui)i∈[n]) and v = FSum((vi)i∈[n]).
3. For each k = 1, 2, . . . , n, Pk does the following:

– If k = 1, output z1 = ub1 + a1v + c1 + uv.
– If k ̸= 1, output zi = ubi + aiv + ci.� �

Fig. 4. The functionality FMult and a protocol ΠMult implementing it
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Inner Product. Let F be a finite field. Define an n-input/single-output func-
tionality FIP as follows (described in Fig. 5): On input (xi,yi)i∈[n], where xi,yi ∈
Fm, FIP gives all players z = 〈x,y〉, where x =

∑
i∈[n] xi and y =

∑
i∈[n] yi. We

construct a BC-efficient protocol for FIP based on BC-efficient protocols for sum
and multiplication.

Functionality FIP((xi,yi)i∈[n])� �
1. FIP receives vectors xi,yi ∈ Fm from each player Pi.
2. FIP computes x =

∑
i∈[n] xi, y =

∑
i∈[n] yi and z = ⟨x,y⟩.

3. FIP gives z to every player Pi.� �
Protocol ΠIP

� �
Input. Each player Pi has xi = (x

(j)
i )j∈[m] ∈ Fm and yi = (y

(j)
i )j∈[m] ∈ Fm.

Output. Each player Pi obtains z = FIP((xi,yi)i∈[n]).

Setup. Players receive correlated randomness for m invocations of FMult and one
invocation of FSum.

Protocol.
1. For each j ∈ [m], players obtain (w

(j)
i )i∈[n] ← FMult((x

(j)
i , y

(j)
i )i∈[n]).

2. Each player Pi computes zi =
∑

j∈[m] w
(j)
i ∈ F.

3. Players obtain z = FSum((zi)i∈[n]).
4. Each player Pi outputs z.� �

Fig. 5. The functionality FIP and a protocol ΠIP implementing it

Proposition 1. There exists a fully secure MPC protocol ΠIP for FIP in the
{FSum,FMult}-hybrid model.

Proof. The protocol ΠIP is described in Fig. 5. The correctness follows from

z =
∑
i∈[n]

∑
j∈[m]

w
(j)
i

=
∑
j∈[m]

(
x
(j)
1 + · · ·+ x(j)n

)(
y
(j)
1 + · · ·+ y(j)n

)
=

∑
j∈[m]

x[j] · y[j]

= 〈x,y〉
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where x[j] and y[j] are the j-th elements of x and y, respectively. The second
equality follows from the functionality of FMult.

We show the privacy of ΠIP. Let T ⊆ [n] be the set of corrupted players.
Let H = T be the set of honest players. In the FMult-hybrid model, corrupted
players’ view at Step 1 (including their correlated randomness for FMult) only

contains their inputs (xi,yi)i∈T and their outputs (w
(j)
i )i∈T,j∈[m] of FMult. We

also have that for any j ∈ [m], (w
(j)
i )i∈[n] is uniformly distributed over Fn con-

ditioned on
∑

i∈[n] w
(j)
i = (x

(j)
1 + · · · + x

(j)
n )(y

(j)
1 + · · · + y

(j)
n ). In particular,

(w
(j)
i )i∈T,j∈[m] are independent and identically distributed according to the uni-

form distribution over F. The corrupted players’ views at Step 3 can be simulated
from z and (zi)i∈T by choosing (zi)i∈H uniformly at random from F|H| condi-

tioned on
∑

i∈H zi = z−
∑

i∈T zi. Since zi is locally computed from (w
(j)
i )j∈[m],

we conclude that the corrupted players’ views are simulated from their inputs
(xi,yi)i∈T and the output z. ut

The offline communication complexity is BCoff(ΠIP) = O(m log |F|). In the
online phase, the protocol ΠIP invokes FMult m times and FSum one time. It thus
has different online communication complexity and round complexity depending
on implementation of FMult and FSum:

– BCon(ΠIP) = O(m log |F|) and Round(ΠIP) = O(n);
– BCon(ΠIP) = O((log n)m log |F|) and Round(ΠIP) = O(log n).

Let F be a finite field. Define an n-input/n-output functionality F ′
IP as follows

(described in Fig. 6): On input (xi,yi)i∈[n], where xi,yi ∈ Fm, F ′
IP gives all

players additive shares (zi)i∈[n] for z = 〈x,y〉, where x =
∑

i∈[n] xi and y =∑
i∈[n] yi. The difference from FIP is that F ′

IP outputs shares for an inner product

z instead of z itself. Thus, we obtain a BC-efficient protocol for F ′
IP in a similar

way.

Proposition 2. There exists a fully secure MPC protocol Π ′
IP for F ′

IP in the
FMult-hybrid model.

Proof. The protocol Π ′
IP is described in Fig. 6. In the FMult-hybrid model, it

holds that for all j ∈ [m], (w
(j)
i )i∈[n] is a vector of random additive shares for

x[j] ·y[j], where x[j] and y[j] are the j-th element of x and y, respectively. Thus,
(zi)i∈[n] is a vector of random additive shares for

∑
j∈[m] x[j] · y[j] = z, which

implies that the outputs of Π ′
IP correctly follows the distribution of the outputs

of F ′
IP.
Let T be the set of corrupted players. In the FMult-hybrid model, the joint

view of the corrupted players at Step 1 only contains their inputs (x
(j)
i , y

(j)
i )i∈T

and outputs (w
(j)
i )i∈T of FMult. Note that (w

(j)
i )i∈T are just uniformly random

elements. We can therefore construct a simulator for Π ′
IP in the FMult-hybrid

model as follows: On input (xi,yi)i∈T and (zi)i∈T , it chooses (w
(j)
i )i∈T,j∈[m]

uniformly at random conditioned on zi =
∑

j∈[m] w
(j)
i for all i ∈ T . It outputs

(w
(j)
i )i∈T,j∈[m], (xi,yi)i∈T and (zi)i∈T . ut
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Functionality F ′
IP((xi,yi)i∈[n])� �

1. F ′
IP receives vectors xi,yi ∈ Fm from each player Pi.

2. F ′
IP computes x =

∑
i∈[n] xi, y =

∑
i∈[n] yi and z = ⟨x,y⟩.

3. F ′
IP runs (zi)i∈[n] ← AdditiveF(z).

4. F ′
IP gives zi to each player Pi.� �

Protocol Π ′
IP

� �
Input. Each player Pi has xi = (x

(j)
i )j∈[m] ∈ Fm and yi = (y

(j)
i )j∈[m] ∈ Fm.

Output. Each player Pi obtains zi, where (zi)i∈[n] ← F ′
IP((xi,yi)i∈[n]).

Setup. Players receive correlated randomness for m invocations of FMult.

Protocol.
1. For each j ∈ [m], players obtain (w

(j)
i )i∈[n] ← FMult((x

(j)
i , y

(j)
i )i∈[n]).

2. Each player Pi outputs zi =
∑

j∈[m] w
(j)
i ∈ F.� �

Fig. 6. The functionality F ′
IP and a protocol Π ′

IP implementing it

Note that Π ′
IP is the same as ΠIP except that it does not reconstruct the inner

product z. Thus the bottleneck communication complexity and round complexity
is asymptotically the same as those of ΠIP.

5 BC-Efficient Protocols for General Symmetric
Functions

5.1 First Protocol

First, we show a fully secure protocol that can achieve low online bottleneck
complexity O(log n). Recall that for a function h : {0, 1}n → {0, 1}, we denote
the functionality of giving every party h(x1, . . . , xn) by Fh.

Theorem 1. Let h : {0, 1}n → {0, 1} be a symmetric function. Then, there
exists a fully secure MPC protocol ΠSym for Fh in the FSum-hybrid model.

Proof. The protocol ΠSym is described in Fig. 7. First, we prove the correctness
of ΠSym. Let x ∈ {0, 1}n be any input. Since r =

∑
i∈[n] ri, it holds that y =

r +
∑

i∈[n] xi. It also holds that

z =
∑
i∈[n]

zi =
∑
i∈[n]

(Si)y = (S)y = T(y−r) mod (n+1)
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Protocol ΠSym� �
Notations.

– Let h : {0, 1}n → {0, 1} be a symmetric function.
– Let f : [0..n] → {0, 1} be a function such that h(x1, . . . , xn) =

f(
∑

i∈[n] xi) for all (x1, . . . , xn) ∈ {0, 1}n.
– Let F = {0, 1} be the binary field.

Input. Each player Pi has xi ∈ {0, 1}.

Output. Every player obtains z = h(x1, . . . , xn).

Setup.
1. Let r ←$ Zn+1 and (ri)i∈[n] ← AdditiveZn+1(r).
2. Define T = (Ti)i∈Zn+1 ∈ {0, 1}n+1 by Ti = f(i) for all i ∈ Zn+1.
3. Define S ∈ {0, 1}n+1 by S = Shiftr(T) and let (Si)i∈[n] ← AdditiveF(S).
4. Each player Pi receives (ri,Si) and correlated randomness for two invo-

cations of FSum.

Protocol.
1. Each player Pi computes yi = xi + ri mod (n+ 1).
2. Players obtain y = FSum((yi)i∈[n]).
3. Each player Pi sets zi = (Si)y, where (Si)y is the y-th element of Si.

Here, we identify the set indexing the entries of Si with Zn+1.
4. Players obtain z = FSum((zi)i∈[n]).
5. Each player Pi outputs z.� �
Fig. 7. The first protocol ΠSym for computing a symmetric function

23



where (S)y is the y-th element of S. Therefore, we have that z = f(
∑

i∈[n] xi) =

h(x1, . . . , xn).
Next, we prove the privacy of ΠSym. Let T ⊆ [n] be the set of corrupted

players. Let H = T be the set of honest players and fix an honest player j ∈ H.
Note that corrupted players’ view can be simulated from the following elements:

Correlated randomness. (ri,Si) for all i ∈ T ;
Online messages. yi = xi + ri and zi = (Si)y for all i ∈ H.

Let x,x′ ∈ {0, 1}n be any pair of inputs such that

xi = x′i (∀i ∈ T ) and h(x1, . . . , xn) = h(x′1, . . . , x
′
n).

It is sufficient to prove that the distribution of the above elements during the
execution of ΠSym on input x is identical to that on input x′. To show the
equivalence of the distributions, we show a bijection between the random strings
used by ΠSym on input x and the random strings used by ΠSym on input x′ such
that the correlated randomness received by T and the online messages from H
are the same under this bijection. The set of all random strings is

R =

(ri,Si)i∈[n] :
∑
i∈[n]

Si = Shiftr(T), where r =
∑
i∈[n]

ri

 .

We denote the randomness of ΠSym on input x by (ri,Si)i∈[n] and that on in-
put x′ by (r′i,S

′
i)i∈[n]. The bijection maps the randomness (ri,Si)i∈[n] ∈ R to

(r′i,S
′
i)i∈[n] ∈ R in such a way that

r′i =

{
ri, if i ∈ T,
ri + xi − x′i, if i ∈ H,

S′
i =

{
Si, if i 6= j,

Sj + Shiftr′(T)− Shiftr(T), if i = j,

where r :=
∑

i∈[n] ri and r
′ :=

∑
i∈[n] r

′
i = r+

∑
i∈H(xi−x′i). The image is indeed

a consistent random string (i.e., (r′i,S
′
i)i∈[n] ∈ R) since

∑
i∈[n] S

′
i = Shiftr′(T) if

and only if
∑

i∈[n] Si = Shiftr(T). The above map is indeed a bijection since it
has the inverse

ri =

{
r′i, if i ∈ T,
r′i + x′i − xi, if i ∈ H,

Si =

{
S′
i, if i 6= j,

S′
j + Shiftr(T)− Shiftr′(T), if i = j.

Clearly, this bijection does not change the correlated randomness (ri,Si)i∈T of T .
It can be seen that x′i+ r

′
i = x′i+(ri+xi−x′i) = xi+ ri for i ∈ H. In particular,
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the message y is the same in both executions and hence so is zi = (Si)y for
i ∈ H \ {j}. Finally, we see that

(S′
j)y = (Sj)y + (Shiftr′(T))y − (Shiftr(T))y

= (Sj)y + f(y − r′)− f(y − r)
= (Sj)y

since f(y − r′) = f(
∑

i∈[n] x
′
i) = f(

∑
i∈[n] xi) = f(y − r). ut

The offline communication complexity is BCoff(ΠSym) = O(n). The proto-
col ΠSym has different online communication complexity and round complexity
depending on implementation of FSum:

– BCon(ΠSym) = O(log n) and Round(ΠSym) = O(n);
– BCon(ΠSym) = O((log n)2) and Round(ΠSym) = O(log n).

5.2 Second Protocol

The second protocol reduces the offline bottleneck complexity of the first protocol
to O(

√
n) at the cost of increasing the online bottleneck complexity.

Theorem 2. Let h : {0, 1}n → {0, 1} be a symmetric function. Then, there
exists a fully secure MPC protocol Π ′

Sym for Fh in the {FSum,FIP}-hybrid model.

Proof. The protocol Π ′
Sym is described in Fig. 8. First, we prove the correctness

of Π ′
Sym. Let x ∈ {0, 1}n be any input. Since r =

∑
i∈[n] ri, it holds that y =∑

i∈[n] xi − r. Let a :=
∑

i∈[n] ai and b :=
∑

i∈[n] bi. We then have that

z = 〈a,b〉
= 〈Shiftσ (c1 + · · ·+ cn) ,M · Shiftτ (d1 + · · ·+ dn)〉
= 〈eu+σ,M · ev+τ 〉
= M[u+ σ, v + τ ]

= f (y + r)

= h(x1, . . . , xn),

where M[u′, v′] is the (u′, v′)-th entry of M. In the fourth equality, we use the
fact that ϕ−1(u+ σ, v + τ) = y + r =

∑
i∈[n] xi ∈ [0..n].

Next, we prove the privacy of Π ′
Sym. Let T ⊆ [n] be the set of corrupted

players. Let H = T be the set of honest players and fix an honest player j ∈
H. In the FIP-hybrid model, corrupted players’ view at Step 5 (including their
correlated randomness for FIP) only contains their inputs (ai,bi)i∈T to FIP and
the output z = h(x1, . . . , xn). Since every (ai,bi) is locally computed from y
and (ci,di), it is sufficient to show that the joint distribution of the following
elements is simulated from (xi)i∈T and z:
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Protocol Π ′
Sym

� �
Notations.

– Let h : {0, 1}n → {0, 1} be a symmetric function.
– Let f : [0..n] → {0, 1} be a function such that h(x1, . . . , xn) =

f(
∑

i∈[n] xi) for all (x1, . . . , xn) ∈ {0, 1}n.
– For a prime p, we identify the set indexing the entries of a vector of

dimension p with Zp.
– Let p, q be primes such that

√
n < p < q ≤ O(

√
n). We identify [0..n]

with a subset of Zpq.
– Let ϕ : Zpq → Zp × Zq be the ring isomorphism induced by the Chinese

remainder theorem.
– Let F = {0, 1} be the binary field.
– Define a matrix M ∈ Fp×q as follows: For (y, z) ∈ Zp × Zq, the (y, z)-th

entry of M is f(ϕ−1(y, z)) if ϕ−1(y, z) ∈ [0..n], and 0 otherwise, where
we identify the sets indexing the rows and columns of M as Zp and Zq,
respectively.

Input. Each player Pi has xi ∈ {0, 1}.

Output. Every player obtains z = h(x1, . . . , xn).

Setup.
1. Let r ←$ Zpq, (ri)i∈[n] ← AdditiveZpq (r) and (u, v) = ϕ(r).
2. Let (ci)i∈[n] ← AdditiveF(eu) and (di)i∈[n] ← AdditiveF(ev), where eu ∈

Fp (resp. ev ∈ Fq) is the vector whose entry is 1 at position u ∈ Zp (resp.
v ∈ Zq), and 0 otherwise.

3. Each player Pi receives (ri, ci,di) and correlated randomness for one
invocation of FIP and for one invocation of FSum.

Protocol.
1. Each player Pi computes yi = xi − ri mod pq.
2. Players obtain y = FSum((yi)i∈[n]).
3. Each player Pi computes ϕ(y) = (σ, τ) ∈ Zp × Zq.
4. Each player Pi computes ai = Shiftσ(ci) ∈ Fp and bi = M · Shiftτ (di) ∈

Fp.
5. Players obtain z = FIP((ai,bi)i∈[n]).
6. Each player Pi outputs z.� �
Fig. 8. The second protocol Π ′

Sym for computing a symmetric function
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Correlated randomness. (ri, ci,di) for all i ∈ T ;
Online messages. yi = xi − ri for all i ∈ H.

Let x,x′ ∈ {0, 1}n be any pair of inputs such that

xi = x′i (∀i ∈ T ) and h(x1, . . . , xn) = h(x′1, . . . , x
′
n).

It is sufficient to prove that the distribution of the above elements during the
execution of Π ′

Sym on input x is identical to that on input x′. To show the
equivalence of the distributions, we show a bijection between the random strings
used by Π ′

Sym on input x and the random strings used by Π ′
Sym on input x′

such that the above values are the same under this bijection. Note that the
randomness of Π ′

Sym on input x is uniformly distributed over a set

S =

(ri, ci,di)i∈[n] :
∑
i∈[n]

ci = eu,
∑
i∈[n]

di = ev, where (u, v) = ϕ(
∑
i∈[n]

ri)


The bijection maps the randomness (ri, ci,di)i∈[n] of Π

′
Sym on input x to the

randomness (r′i, c
′
i,d

′
i)i∈[n] of Π

′
Sym on input x′ in such a way that

r′i =

{
ri, if i ∈ T,
ri + x′i − xi, if i ∈ H,

c′i =

{
ci, if i 6= j,

cj + eu′ − eu, if i = j,

d′
i =

{
di, if i 6= j,

dj + ev′ − ev, if i = j,

where we write r :=
∑

i∈[n] ri and r
′ :=

∑
i∈[n] r

′
i, and define (u, v) := ϕ(r) and

(u′, v′) := ϕ(r′). We first see that the image is indeed a consistent random string,
i.e., (r′i, c

′
i,d

′
i)i∈[n] ∈ S. Observe that∑

i∈[n]

c′i =
∑
i∈[n]

ci + eu′ − eu and
∑
i∈[n]

d′
i =

∑
i∈[n]

di + ev′ − ev.

Therefore,
∑

i∈[n] c
′
i = eu′ and

∑
i∈[n] d

′
i = ev′ , where (u′, v′) = ϕ(r′), if and

only if
∑

i∈[n] ci = eu and
∑

i∈[n] di = ev, where (u, v) = ϕ(r). Next, the above
map is indeed a bijection since it has the inverse

ri =

{
r′i, if i ∈ T,
r′i + xi − x′i, if i ∈ H,

ci =

{
c′i, if i 6= j,

c′j + eu − eu′ , if i = j,

di =

{
d′
i, if i 6= j,

d′
j + ev − ev′ , if i = j.

27



Clearly, this bijection does not change the correlated randomness (ri, ci,di)i∈T

of T . Since x′i − r′i = x′i − (ri + x′i − xi) = xi − ri for i ∈ H, it does not change
the online messages from H. ut

We analyze the communication complexity of Π ′
Sym. We can see that

BCoff(Π
′
Sym) = O(log pq) +O((p+ q) log |F|) +O(p log |F|) = O(

√
n).

At Step 1 of the online phase, each player sends a constant number of elements in
Zpq. The bottleneck complexity of Step 5 is equal to that of a protocol realizing
FIP. The protocol Π

′
Sym thus has different online communication complexity and

round complexity depending on implementation of FIP and FSum:

– BCon(Π
′
Sym) = O(

√
n) and Round(Π ′

Sym) = O(n);

– BCon(Π
′
Sym) = O(

√
n log n) and Round(Π ′

Sym) = O(log n).

5.3 Third Protocol

The third protocol achieves lower bottleneck complexity O(n1/d log n) for any
constant d but is only secure against adversaries corrupting less than n/(d− 1)
players.

To begin with, we prepare some notations. Let h : {0, 1}n → {0, 1} be a sym-
metric function and f : [0..n] → {0, 1} be a function such that h(x1, . . . , xn) =
f(
∑

i∈[n] xi) for all (x1, . . . , xn) ∈ {0, 1}n. Let d ≥ 2 be any constant. We choose

d pairwise distinct primes p1, . . . , pd such that n1/d < pj ≤ 2n1/d for all j ∈ [d].
Such primes indeed exist for sufficiently large n since Bertrand’s postulate [57,
Theorem 5.8] ensures that there are at least M/(3 log(2M)) primes between M
and 2M . Set N := p1 · · · pd and q := N/p1 = p2 · · · pd. We identify [0..n] with
a subset of ZN . Let ϕ : ZN → Zp1

× Zq and ψ : Zq → Zp2
× · · · × Zpd

be the
ring isomorphisms induced by the Chinese remainder theorem. Define projection
maps π1 : Zp1 × Zq → Zp1 , π2 : Zp1 × Zq → Zq and π′

j : Zp2 × · · · × Zpd
→ Zpj

for j = 2, . . . , d. Also, define

ϕ1 = π1 ◦ ϕ, ψj = π′
j ◦ ψ, and ϕj = ψj ◦ π2 ◦ ϕ, (3)

where ◦ means the composition of maps. For j ∈ [d], we identify the set indexing
the entries of a vector v ∈ Fpj (resp. v ∈ Fq) with Zpj

(resp. Zq). Let eu ∈ Fpj

denote the vector whose entry is 1 at position u ∈ Zpj
and 0 otherwise. For

vectors v2 ∈ Fp2 , . . . ,vd ∈ Fpd , we define the Kronecker product v2⊗· · ·⊗vd ∈ Fq

as

(v2 ⊗ · · · ⊗ vd)[k] = v2[ψ2(k)] · · ·vd[ψd(k)]

for all k ∈ Zq. Define a matrix M ∈ Fp1×q as follows: For each (j, k) ∈ Zp1 ×Zq,
the (j, k)-th entry M[j, k] of M is

M[j, k] =

{
f(ϕ−1(j, k)), if ϕ−1(j, k) ∈ [0..n],

0, otherwise,
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where we identify the sets indexing the rows and columns of M as Zp1
and Zq,

respectively. It then holds that for all x ∈ [0..n],

〈eϕ1(x),M · (eϕ2(x) ⊗ · · · ⊗ eϕd(x))〉

=
∑

j∈Zp1

eϕ1(x)[j]

∑
k∈Zq

M[j, k] · (eϕ2(x) ⊗ · · · ⊗ eϕd(x))[k]


=

∑
k∈Zq

M[ϕ1(x), k]eϕ2(x)[ψ2(k)] · · · eϕd(x)[ψd(k)]

= M[π1 ◦ ϕ(x), π2 ◦ ϕ(x)]
= f(x).

(4)

At the third equation, we use the fact that

ψj(k) = ϕj(x) (∀j = 2, . . . , d) ⇒ π′
j(ψ(k)) = π′

j(ψ ◦ π2 ◦ ϕ(x)) (∀j = 2, . . . , d)

⇒ ψ(k) = ψ(π2 ◦ ϕ(x))
⇒ k = π2 ◦ ϕ(x).

Using the above notations, we show the following theorem.

Theorem 3. Let h : {0, 1}n → {0, 1} be a symmetric function. Let d ≥ 2 be

any constant. For any t < n/(d− 1), there exists a t-secure MPC protocol Π
(d)
Sym

for Fh in the {FSum,FIP}-hybrid model.

Proof. The protocol Π
(d)
Sym is described in Fig. 9. First, we prove the correctness

of Π
(d)
Sym. Let x ∈ {0, 1}n be any input. Since r =

∑
i∈[n] ri, it holds that y =∑

i∈[n] xi − r. We have that ϕj(
∑

i∈[n] xi) = ϕj(y) + ϕj(r) = σj + uj for all

j ∈ [d]. At Step 4 of the online phase, we have that for all j ∈ [d], (a
(j)
i )i∈[n] is a

tuple of consistent shares whose secret is the unit vector euj+σj
∈ Fpj . That is,

there is a tuple of degree-t polynomials (φ
(j)
k )k∈Zpj

such that for all k ∈ Zpj
,

φ
(j)
k (0) = euj+σj [k] and φ

(j)
k (αi) = a

(j)
i [k] (∀i ∈ [n]).

The property of Lagrange coefficients ℓi’s implies that (ai)i∈[n] is a tuple of
consistent additive shares for eu1+σ1 . That is,

a :=
∑
i∈[n]

ai = eu1+σ1
.

Also, for any k ∈ Zq and any i ∈ [n], it holds that

(a
(2)
i ⊗ · · · ⊗ a

(d)
i )[k] = a

(2)
i [k2] · · · a(d)i [kd] = (φ

(2)
k2
· · ·φ(d)

kd
)(αi),
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Protocol Π
(d)
Sym

� �
Notations.

– Let h : {0, 1}n → {0, 1} be a symmetric function.
– Let f : [0..n] → {0, 1} be a function such that h(x1, . . . , xn) =

f(
∑

i∈[n] xi) for all (x1, . . . , xn) ∈ {0, 1}n.
– Let p1, . . . , pd be d pairwise distinct primes such that n1/d < pj ≤ 2n1/d

for all j ∈ [d], and set N = p1 · · · pd and q = N/p1 = p2 · · · pd.
– Let ϕj : ZN → Zpj (j ∈ [d]) be the ring homomorphism defined in Eq. (3).
– Let M ∈ Fp1×q be a matrix such that⟨

eϕ1(x),M · (eϕ2(x) ⊗ · · · ⊗ eϕd(x))
⟩
= f(x)

for all x ∈ [0..n].
– Let F be the minimum finite field containing n pairwise distinct non-zero

elements α1, . . . , αn.
– Let ℓ1, . . . , ℓn ∈ F be Lagrange coefficients associated with the αi’s.

Input. Each player Pi has xi ∈ {0, 1}.

Output. Every player obtains z = h(x1, . . . , xn).

Setup.
1. Let r ←$ ZN , (ri)i∈[n] ← AdditiveZN (r) and uj = ϕj(r) for all j ∈ [d].

2. For each j ∈ [d], let (c
(j)
i )i∈[n] ← ShamirF,t(euj ), where euj ∈ Fpj is the

vector whose entry is 1 at position uj ∈ Zpj and 0 otherwise.

3. Each player Pi receives ri, (c
(j)
i )j∈[d], and correlated randomness for one

invocation of FIP and for one invocation of FSum.

Protocol.
1. Each player Pi computes yi = xi − ri mod N .
2. Players obtain y = FSum((yi)i∈[n]).
3. Each player Pi computes ϕj(y) = σj ∈ Zpj for all j ∈ [d].

4. Each player Pi computes a
(j)
i = Shiftσj (c

(j)
i ) ∈ Fpj for all j ∈ [d].

5. Each player Pi sets a
′
i := a

(1)
i and computes b′

i := M · (a(2)
i ⊗· · ·⊗a

(d)
i ) ∈

Fp1 .
6. Each player Pi computes ai = ℓi · a′

i and bi = ℓi · b′
i.

7. Players obtain z = FIP((ai,bi)i∈[n]).
8. Each player Pi outputs z.� �
Fig. 9. The third protocol Π

(d)
Sym for computing a symmetric function
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where kj = ψj(k) ∈ Zpj
. Since the degree of φ

(2)
k2
· · ·φ(d)

kd
is at most t(d − 1) ≤

n− 1, we have that∑
i∈[n]

ℓi · (a(2)i ⊗ · · · ⊗ a
(d)
i )[k] = (φ

(2)
k2
· · ·φ(d)

kd
)(0)

= eu2+σ2
[k2] · · · eud+σd

[kd]

= (eu2+σ2
⊗ · · · ⊗ eud+σd

)[k].

Therefore, we have that

b :=
∑
i∈[n]

bi = M ·
∑
i∈[n]

ℓi(a
(2)
i ⊗ · · · ⊗ a

(d)
i ) = M · (eu2+σ2

⊗ · · · ⊗ eud+σd
).

We obtain that

z = 〈a,b〉
= 〈eu1+σ1

,M · (eu2+σ2
⊗ · · · ⊗ eud+σd

)〉
= f(x1 + · · ·+ xn)

= h(x1, . . . , xn).

Here, we use the fact that uj + σj = ϕj(
∑

i∈[n] xi) and Eq. (4).

Next, we prove the privacy of Π
(d)
Sym. Let T ⊆ [n] be the set of t corrupted

players. Let H = T be the set of honest players and fix an honest player j ∈
H. In the FIP-hybrid model, corrupted players’ view at Step 7 (including their
correlated randomness for FIP) only contains their inputs (ai,bi)i∈T to ΠIP and
the output z = h(x1, . . . , xn). Since every (ai,bi) is locally computed from y

and (c
(j)
i )j∈[d] at Steps 3–6, it is sufficient to show that the joint distribution of

the following elements can be simulated from (xi)i∈T and z:

Correlated randomness. ri and (c
(j)
i )j∈[d] for all i ∈ T ;

Online messages. yi = xi − ri for all i ∈ H.

Let x, x̃ ∈ {0, 1}n be any pair of inputs such that

xi = x̃i (∀i ∈ T ) and h(x1, . . . , xn) = h(x̃1, . . . , x̃n).

It is sufficient to prove that the distribution of the above elements during the

execution of Π
(d)
Sym on input x is identical to that on input x̃. To show the equiv-

alence of the distributions, we show a bijection between the random strings used

by Π
(d)
Sym on input x and the random strings used by Π

(d)
Sym on input x̃ such

that the above values are the same under this bijection. Note that the random-

ness of Π
(d)
Sym on input x is uniformly distributed over a set S consisting of all

(ri, (c
(j)
i )j∈[d])i∈[n] such that for each j ∈ [d], (c

(j)
i )i∈[n] is a tuple of consistent

shares of the (t, n)-Shamir scheme for a secret euj
, where uj = ϕj(

∑
i∈[n] ri).
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We recall the fact that for any c ∈ Fp, there exists a uniquely determined
tuple of p polynomials θ(X) ∈ (F[X])p, each of degree at most t, such that

θ(0) = c and θ(αi) = 0 (∀i ∈ T )

(see Section 3.3). Now, we define a bijection map from the randomness (ri, (c
(j)
i )j∈[d])i∈[n]

of Π
(d)
Sym on input x to the randomness (r̃i, (c̃

(j)
i )j∈[d])i∈[n] of Π

(d)
Sym on input x̃ in

such a way that

r̃i =

{
ri, if i ∈ T,
ri + x̃i − xi, if i ∈ H,

c̃
(j)
i =

{
c
(j)
i , if i ∈ T,

c
(j)
i + θ(j)(αi), if i ∈ H,

where
r̃ :=

∑
i∈[n]

r̃i, r :=
∑
i∈[n]

ri, ũj := ϕj(r̃), uj := ϕj(r),

and θ(j) is the uniquely determined tuple of pj polynomials, each of degree at
most t, such that θ(j)(0) = eũj

− euj
and θ(j)(αi) = 0 for all i ∈ T .

We see that the image is indeed a consistent random string, i.e., (r̃i, (c̃
(j)
i )j∈[d])i∈[n] ∈

S. If (ri, (c(j)i )j∈[d])i∈[n] ∈ S, then (c
(j)
i )i∈[n] forms a tuple of consistent shares

for euj , i.e., there is a tuple of pj polynomials φ(j), each of degree at most t,
such that

φ(j)(0) = euj
and φ(j)(αi) = c

(j)
i (∀i ∈ [n]).

A tuple of polynomials φ̃(j) := φ(j) + θ(j) satisfies that

φ̃(j)(0) = φ(j)(0) + θ(j)(0) = euj
+ (eũj

− euj
) = eũj

,

φ̃(j)(αi) = c
(j)
i + θ(j)(αi) = c̃

(j)
i (∀i ∈ [n])

since θ(j)(αi) = 0 for any i ∈ T . Thus, we have that (r̃i, (c̃
(j)
i )j∈[d])i∈[n] ∈ S.

The above map is indeed a bijection since it has the inverse

ri =

{
r̃i, if i ∈ T,
r̃i + xi − x̃i, if i ∈ H,

ci =

{
c̃i, if i ∈ T,
c̃j − θ(j)(αi), if i ∈ H,

Clearly, this bijection does not change the correlated randomness (ri, (c
(j)
i )j∈[d])i∈T

of T . Since x′i − r′i = x′i − (ri + x′i − xi) = xi − ri for i ∈ H, it does not change
the online messages from H. ut
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We analyze the communication complexity of Π
(d)
Sym. We can see that

BCoff(Π
(d)
Sym) = O(logN) +

∑
j∈[d]

O(pj log |F|) +O(p1 log |F|) = O(n1/d log n)

since d ∈ O(1), pj ∈ O(n1/d) and |F| ∈ O(n). At Steps 1 and 2 of the online
phase, each player sends a constant number of elements in ZN . Players perform
local computation at Steps 3–6. The bottleneck complexity of Step 7 is equal

to that of a protocol realizing FIP. The protocol Π
(d)
Sym thus has different online

communication complexity and round complexity depending on implementation
of FIP and FSum:

– BCon(Π
(d)
Sym) = O(n1/d log n) and Round(Π

(d)
Sym) = O(n);

– BCon(Π
(d)
Sym) = O(n1/d(log n)2) and Round(Π

(d)
Sym) = O(log n).

6 BC-Efficient Protocol for Checking Equality to Zero

Let F be a finite field. Define an n-input/n-output functionality FCheckZero,F as
follows (described in Fig. 10): On input (xi)i∈[n] ∈ Fn, FCheckZero,F gives all
players b ∈ {0, 1} such that b = 0 if and only if

∑
i∈[n] xi = 0 in F. We show a

protocol tailored to the functionality that achieves lower bottleneck complexity
than our protocols for general symmetric functions.

Theorem 4. Let λ be a security parameter. Let F be a finite field and K be an
extension field of F such that |K| ≥ 2λ. Then, there exists a fully secure MPC
protocol ΠCheckZero,K for FCheckZero,F in the FSum-hybrid model.

Proof. The protocol ΠCheckZero,K is described in Fig. 10. First, we prove the
correctness of ΠCheckZero,K. Let x ∈ Fn be any input. Since r =

∑
i∈[n] ri, it holds

that y = r +
∑

i∈[n] xi. Since A =
∑

i∈[n]Ai and B =
∑

i∈[n]Bi, it also holds
that

Z =
∑
i∈[n]

Zi = Ay +B.

Therefore, Z = S holds if and only if y = r (i.e.,
∑

i∈[n] xi = 0) or A = 0.

If FCheckZero,F(x) = 0, the protocol ΠCheckZero,K outputs 0 with probability 1. If
FCheckZero,F(x) = 1, it outputs 1 except with negligible probability Pr[A = 0] =
|K|−1 ≤ 2−λ.

Next, we prove the privacy of ΠCheckZero,K. Let T ⊆ [n] be the set of corrupted
players and H = T be the set of honest players. It is sufficient to show that there
exists a simulator which can simulate the joint distribution of the following
elements:

Correlated randomness. (Ai, Bi, ri) for all i ∈ T and S = Ar +B;
Online messages. yi = xi + ri and Zi = Aiy +Bi for all i ∈ H.
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Functionality FCheckZero,F((xi)i∈[n])� �
1. FCheckZero,F receives a field element xi ∈ F from each player Pi.
2. FCheckZero,F sets b = 0 if

∑
i∈[n] xi = 0 in F, and b = 1 otherwise.

3. FCheckZero,F gives b to every player Pi.� �
Protocol ΠCheckZero,K� �

Input. Each player Pi has xi ∈ F.

Output. Every player obtains b = FCheckZero,F((xi)i∈[n]).

Setup.
1. Let r ←$ F and (ri)i∈[n] ← AdditiveF(r).
2. Let A,B ←$ K, (Ai)i∈[n] ← AdditiveK(A) and (Bi)i∈[n] ← AdditiveK(B).
3. Set S = Ar +B ∈ K.
4. Each player Pi receives (Ai, Bi, ri, S) and correlated randomness of two

invocations of FSum.

Protocol.
1. Each player Pi computes yi = xi + ri ∈ F.
2. Players obtain y = FSum((yi)i∈[n]) ∈ F.
3. Each player Pi computes Zi = Aiy +Bi ∈ K.
4. Players obtain Z = FSum((Zi)i∈[n]) ∈ K.
5. Each player Pi outputs b = 0 if Z = S and outputs b = 1 otherwise.� �

Fig. 10. The functionality FCheckZero,F and a protocol ΠCheckZero,K implementing it
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To this end, we analyze the distribution of the above elements during the ex-
ecution of ΠCheckZero,K on input x = (xi)i∈[n]. We can see that (Ai, Bi, ri)i∈T

and (yi)i∈H are independent and distributed according to the uniform distribu-
tions over (K×K×F)|T | and F|H|, respectively, since (ri)i∈H are independent of
(Ai, Bi, ri)i∈T . Fix any (Ai, Bi, ri)i∈T and any (ri)i∈H . Then y =

∑
i∈[n](xi+ri)

and r =
∑

i∈[n] ri are also fixed. The remaining independent random variables

are (Ai, Bi)i∈H . The distribution of (Zi)i∈H and S is determined by the following
equation: [

ZH

S

]
= M

[
AH

BH

]
+

[
0|H|
W

]
,

where ZH = (Zi)i∈H , AH = (Ai)i∈H , BH = (Bi)i∈H , W :=
∑

i∈T (Air + Bi),
and

M :=

[
y · I|H| I|H|

r · 1⊤
|H| 1⊤

|H|

]
=


y 1
. . .

. . .

y 1
r · · · r 1 · · · 1

 ∈ F(|H|+1)×(2|H|).

If
∑

i∈[n] xi 6= 0, then y 6= r and M is of full rank. Hence (Zi)i∈H and S are

independent and uniformly distributed over K. If
∑

i∈[n] xi = 0, then y = r. In

this case, (Zi)i∈H and S are uniformly distributed over a subspace of K|H|+1

consisting of (Z ′
i)i∈H and S′ such that S′ =W +

∑
i∈H Z ′

i, i.e.,

S′ =
∑
i∈T

Ai

∑
j∈[n]

(xj + rj) +
∑
i∈T

Bi +
∑
i∈H

Z ′
i.

From the above observation, the privacy follows from the following simulator
Sim: On input corrupted players’ inputs (xi)i∈T ∈ F|T | and a bit b ∈ {0, 1}:

– If b = 1, Sim chooses (Ai, Bi, ri)i∈T and (yi)i∈H uniformly at random from
(K×K×F)|T | and F|H|, respectively. It also chooses S and (Zi)i∈H uniformly
at random from K and K|H|, respectively. It then outputs all of them.

– If b = 0, Sim chooses (Ai, Bi, ri)i∈T and (yi)i∈H uniformly at random from
(K × K × F)|T | and F|H|, respectively. It also chooses (Zi)i∈H uniformly at
random from K|H| and computes

S =
∑
i∈T

Ai

∑
j∈T

(xj + rj) +
∑
j∈H

yj

+
∑
i∈T

Bi +
∑
i∈H

Zi.

It then outputs all of them.
ut

The offline communication complexity is

BCoff(ΠCheckZero,K) = O(log |K|) = O(max{λ, log |F|}).
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In the online phase, the protocol invokes FSum twice. It thus has different online
communication complexity and round complexity depending on implementation
of FSum:

– BCon(ΠCheckZero,K) = O(max{λ, log |F|}) and Round(ΠCheckZero,K) = O(n);
– BCon(ΠCheckZero,K) = O((log n)max{λ, log |F|}) and Round(ΠCheckZero,K) =
O(log n).

Remark 1. If the characteristic of F is larger than n, e.g., F = Zp for a prime
p > n, our protocol ΠCheckZero,K implies BC-efficient protocols for computing
the AND and OR of players’ inputs xi ∈ {0, 1}. Indeed, we can compute the
OR function due to the fact that if xi ∈ {0, 1},

∑
i∈[n] xi = 0 (over F) if and

only if xi = 0 for all i ∈ [n]. Furthermore, a protocol for the AND function is
immediately follows from the fact that AND(x1, . . . , xn) = 1−OR(1−x1, . . . , 1−
xn).

7 BC-Efficient Protocol for Private Set Intersection

In this section, we show a BC-efficient protocol for computing the intersection
of players’ input sets. For now, we assume that players’ input sets have the same
size s. We will show later that the protocol is extended to the general case.

To begin with, we define a functionality computing the intersection based on
a Bloom filter. Let λ be a security parameter. Let U be a finite set. Assume that
there exists a Bloom filter BF = (Add,Check) for U with parameters m = m(λ),
k = Θ(λ) and s = poly(λ). For a subset X ∈ 2U of size s, let BF(X) denote
an m-bit string obtained after adding the elements of X with Add. Define an
n-input/single-output functionality FPSI,BF as follows (described in Fig. 11): On
input (Xi)i∈[n] such that Xi is a subset of U of size s, FPSI,BF gives all players

Zλ(X1, . . . , Xn) := {x ∈ Xn : ∀i ∈ [n], Check(BF(Xi), x) = 1}. (5)

Recall that the property of the Bloom filter BF ensures that for any (x,X)
such that x /∈ X, the probability that Check(BF(X), x) = 1 is negligible in k
(and hence in λ). For any x ∈ X1 ∩ · · · ∩ Xn, it holds with probability 1 that
x ∈ Zλ(X1, . . . , Xn), while for x ∈ U \ (X1 ∩ · · · ∩ Xn), the probability that
x ∈ Zλ(X1, . . . , Xn) is negligible in λ since we suppose n = poly(λ). Thus, the
probability that

Zλ(X1, . . . , Xn) = X1 ∩ · · · ∩Xn

is at least 1 − |Xn| · negl(λ) = 1 − s · negl(λ) ≥ 1 − negl(λ) since we assume
s = poly(λ). Therefore, for any input (Xi)i∈[n], the statistical distance between
Zλ(X1, . . . , Xn) and Intλ(X1, . . . , Xn) is upper bounded by a negligible function.
Here, we abuse notation and denote the random variable over 2U defined in
Eq. (5) by Zλ(X1, . . . , Xn) and the random variable whose outcome is X1 ∩
· · · ∩ Xn with probability 1 by Intλ(X1, . . . , Xn). In the following, we show a
protocol realizing FPSI,BF . From the above observation, it also securely realizes
the functionality that directly computes Intλ(X1, . . . , Xn) = X1 ∩ · · · ∩Xn.

We now show the following theorem.
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Functionality FPSI,BF ((Xi)i∈[n])� �
1. FPSI,BF receives a subset Xi ∈ 2U of size s from each player Pi.
2. FPSI,BF gives every player

Zλ(X1, . . . , Xn) := {x ∈ Xn : ∀i ∈ [n], Check(BF(Xi), x) = 1}.� �
Protocol ΠPSI

� �
Notations.

– Let U be a set.
– Let BF = (Add,Check) be a Bloom filter for U with parameters m, k and

s.
– For a subset X ∈ 2U of size s, let BF(X) denote an m-bit string obtained

after adding the elements of X with Add.
– Let F = Zp be a prime field such that p > nk.

Input. Each player Pi has a subset Xi ∈ 2U of size s.

Output. Every player obtains Z = FPSI,BF ((Xi)i∈[n]).

Setup.
1. Let (ui)i∈[n] ← AdditiveF(0m) and (w

(j)
i )i∈[n] ← AdditiveF(0m) for j ∈ [s].

2. Each player Pi receives ui, (w
(j)
i )j∈[s] and correlated randomness for s

invocations of F ′
IP and for s invocations of FCheckZero,F.

Protocol.
1. Each player Pi computes Bi = 1m −BF(Xi) ∈ {0, 1}m.
2. Each player Pi computes Vi = Bi + ui, which is the i-th additive share

of V :=
∑

i∈[n] Bi ∈ Fm.
3. Pn permutes the elements of Xn uniformly at random and lets

x(1), . . . , x(s) be the permuted elements of Xn.
4. Each player Pi does the following:

– If i ̸= n, Pi sets W
(j)
i = w

(j)
i for all j ∈ [s].

– If i = n, Pn computes W
(j)
n = BF({x(j)}) +w

(j)
n for all j ∈ [s].

5. For each j ∈ [s], players obtain (y
(j)
i )i∈[n] ← F ′

IP((Vi,W
(j)
i )i∈[n]).

6. For each j ∈ [s], players obtain z(j) = FCheckZero,F((y
(j)
i )i∈[n]).

7. Pn computes Z = {x(j)}j∈[s]:z(j)=0 and invoke FBroadcast,n with input Z.
8. Each player Pi outputs Z.� �
Fig. 11. The functionality FPSI,BF and a protocol ΠPSI implementing it
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Theorem 5. Let λ be a security parameter. Assume that there exists a Bloom
filter BF for U with parameters m = m(λ), k = Θ(λ) and s = poly(λ). Let
F = Zp be a prime field such that p > nk. Then, there exists a fully secure MPC
protocol ΠPSI for FPSI,BF in the {FBroadcast,n,FCheckZero,F,F ′

IP}-hybrid model.

Proof. The protocol ΠPSI is described in Fig. 11. First, we prove the correctness
of ΠPSI. Let (Xi)i∈[n] ∈ (2U )n be any input. Let h ∈ [m]. At Step 1 of the
protocol, the h-th entry Bi[h] of Bi is 0 if and only if h ∈ {H1(x), . . . , Hk(x)}
for some x ∈ Xi, where H1, . . . , Hk are hash functions associated with the Bloom
filter BF . Since the characteristic p of F is larger than n, at Step 2, the h-th entry
V[h] of V is 0 if and only if h ∈

⋃
x∈Xi

{H1(x), . . . , Hk(x)} for all i ∈ [n]. Note
that 〈V,BF({x})〉 =

∑
h∈{H1(x),...,Hk(x)} V[h] for any x ∈ U . Since each V[h] is

an integer between 0 and n and the characteristic p is larger than nk, we have
that 〈V,BF({x})〉 = 0 if and only if V[h] = 0 for all h ∈ {H1(x), . . . , Hk(x)},
which is equivalent to the condition that

∀i ∈ [n] : {H1(x), . . . , Hk(x)} ⊆
⋃

x′∈Xi

{H1(x
′), . . . , Hk(x

′)}. (6)

The condition (6) is then equivalent to

∀i ∈ [n] : Check(BF(Xi), x) = 1. (7)

At Step 4 of the protocol, players compute additive shares for BF({x(j)}) for

all j ∈ [s], where Xn = {x(1), . . . , x(s)}. At Step 5, (y
(j)
i )i∈[n] is an additive

sharing for 〈V,BF({x(j)})〉. Therefore, for each j ∈ [s], z(j) = 0 if and only
if 〈V,BF({x(j)})〉 = 0, i.e., x = x(j) satisfies the condition (7). Since the
protocol invokes FCheckZero,F only s = poly(λ) times, we conclude that Z =
{x(j)}j∈[s]:z(j)=0 is equal to the output of FPSI,BF with probability at least
1− negl(λ). The correctness thus holds.

Next, we prove the privacy of ΠPSI. Let T be the set of corrupted players. The
interaction occurs only at Steps 5–7 in the online phase. In the {F ′

IP,FCheckZero,F}-
hybrid model, corrupted players’ view (including their correlated randomness)
only contains the following elements:

(Vi)i∈T , (W
(j)
i )i∈T,j∈[s], (y

(j)
i )i∈T,j∈[s], (z

(j))j∈[s], Z.

First, the vectors (Vi)i∈T , (W
(j)
i )i∈T,j∈[s] are simulated from (Xi)i∈T only since

they are obtained by local computation. Secondly, it follows from the function-

ality of F ′
IP that the elements (y

(j)
i )i∈T,j∈[s] are independent and identically dis-

tributed according to the uniform distribution over F. Thirdly, we have seen that
z(j) = 0 if and only if x(j) ∈ Z. If Pn is corrupted, i.e., Pn ∈ T , then (z(j))j∈[s]

can be simulated from Xn and Z. If Pn /∈ T , then from the corrupted players’
viewpoint, (z(j))j∈[s] is a random sequence of s bits such that the number of 1’s

is equal to |Z|, since (x(j))j∈[s] is a random permutation of the elements of Xn.
In conclusion, corrupted players’ view is simulated from the output Z and their
inputs (Xi)i∈T only. ut
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We analyze the bottleneck complexity of ΠPSI. The offline complexity is

BCoff(ΠPSI) = O(m log |F|) +O(sm log |F|) + s ·O(m log |F|) + s ·O(log |K|)
= O(sm log(nk)) +O(s log 2λ)

= O(sm log(nλ) + sλ).

Note that interaction occurs only at Steps 5–7 in the online phase. Steps 5 and 6
invokes F ′

IP and FCheckZero,F s times, respectively. In Step 7, the n-th player
broadcasts at most s elements, each of O(log |U |) bits. Thus, the protocol ΠPSI

has different online bottleneck complexity and round complexity depending on
implementation of F ′

IP and FCheckZero,F:

– Round(ΠPSI) = O(n) and

BCon(ΠPSI) = s ·O(m log |F|) + s ·O(log |K|) +O(s log |U |)
= O(sm log(nλ) + sλ+ s log |U |);

– Round(ΠPSI) = O(log n) and

BCon(ΠPSI) = O((log n)(sm log(nλ) + sλ) + s log |U |).

According to the analysis in [10], we can choose a Bloom filter BF such that
m = Θ(ks), assuming an ideal selection of hash functions. Then, the complexity
of ΠPSI is BCoff(ΠPSI) = O(s2λ log(nλ)),

– Round(ΠPSI) = O(n) and BCon(ΠPSI) = O(s2λ log(nλ) + s log |U |); or
– Round(ΠPSI) = O(log n) and BCon(ΠPSI) = O(s2λ(log λ)(log n)2 + s log |U |)

Finally, we deal with the general case where the sizes of players’ input sets
are upper bounded by s. Let V1, . . . , Vn be n sets, each of size s, such that they
are pairwise disjoint and also disjoint from U , i.e., |Vi ∩Vj | = |Vi ∩U | = ∅ for all
i 6= j. Set U ′ = U∪V1∪· · ·∪Vn. Each player Pi pads his input set Xi with s−|Xi|
elements in Vi if |Xi| < s, and lets X ′

i be the resulting set of size exactly s. Since
X ′

1 ∩ · · · ∩X ′
n = X1 ∩ · · · ∩Xn, players can compute the intersection by running

ΠPSI on input X ′
1, . . . , X

′
n ⊆ U ′. Since |U ′| = |U |+ns, this reduction only incurs

an additive factor of log(ns) to online bottleneck complexity. In particular, the
complexity is asymptotically the same as given above.
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A Unconditionally Secure Variant of the Protocol in [50]

In this section, we show an unconditionally secure variant of the protocol for
symmetric functions [50]. To this end, we replace a garbled circuit used in their
original protocol with an information-theoretically secure garbled circuit, which
is also known as randomized encoding [40].

Definition 1 (Randomized encoding). Let g : {0, 1}m → {0, 1} be a func-
tion. We say that a function ĝ : {0, 1}m × {0, 1}ρ → {0, 1}k is a randomized
encoding for g if it satisfies the following requirements:

Correctness. There exists a function Dec : {0, 1}k → {0, 1}, called a decoder,
such that for every x ∈ {0, 1}m and r ∈ {0, 1}ρ, we have Dec(ĝ(x; r)) = g(x);

Privacy. There exists a randomized function Sim, called a simulator, such that
for every x ∈ {0, 1}m, the distribution Sim(g(x)) is identical to the distribu-
tion of ĝ(x; r) induced by a uniformly random choice of r from {0, 1}ρ.

We call k the output length of ĝ.

Let h : {0, 1}n → {0, 1} be a symmetric function and f : [0..n] → {0, 1} be
the unique function such that f(

∑
i∈[n] xi) = h(x1, . . . , xn) for all (x1, . . . , xn) ∈

{0, 1}n. In the unconditionally secure variant of the protocol in [50], players first
compute a masked sum y :=

∑
i∈[n] xi+r mod (n+1) and then securely compute

g(Y ) := f(Y − r) on input Y = y using a randomized encoding for g, where r is
a random element unknown to any player. More formally, in the preprocessing
phase, a trusted third party chooses r ←$ Zn+1 and an additive sharing (ri)i∈[n]

for r. In addition, the trusted party defines a function g(y) := f(Y − r), where
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Y ∈ Zn+1 is an input variable and y = (y1, . . . , ym) ∈ {0, 1}m is the binary
representation of Y , i.e., m := dlog(n + 1)e and Y =

∑
j∈[m] yj2

j . Assume

that g can be represented by a (fan-in-2) arithmetic formula of depth D over
F2 = {0, 1}. Following the construction in [18], the trusted party then computes
a randomized encoding ĝ(y;R) = (ĝ1(y1;R), . . . , ĝm(ym;R)) for g, where R ∈
{0, 1}ρ and each ĝj(yj ;R) can be written as αj(R) ·yj+βj(R) for some functions
αj , βj : {0, 1}ρ → {0, 1}sj . The currently best-known upper bound on the output

length is
∑

j∈[m] sj = 2D+O(
√
D) [18]. The trusted party chooses a random string

R ∈ {0, 1}ρ and generates bit-wise additive shares (aji)i∈[n] (resp. (bji)i∈[n]) of
αj(R) (resp. βj(R)). Finally, the trusted party gives ri, (aji)j∈[m], and (bji)j∈[m]

to the i-th player Pi. In the online phase, each player Pi computes x′i := xi + ri
and every player then obtains Y =

∑
i∈[n] x

′
i = r+

∑
i∈[n] xi by using the protocol

ΠSum. They compute the binary representation y = (y1, . . . , ym) of Y , and zji :=
aji · yj + bji for all j ∈ [m]. Finally, they compute ĝj(yj ;R) =

∑
i∈[n] zji for all

j ∈ [m] via ΠSum and obtain an output g(y) = f(Y − r) = h(x1, . . . , xn) from
ĝ(Y ;R). The offline and online bottleneck complexities of the above protocol are

O(
∑

j∈[m] sj) = 2D+O(
√
D). Therefore, to achieve bottleneck complexity O(n1−ϵ)

for some constant ϵ > 0, the unconditionally secure protocol needs to assume
that the related function f is represented by an arithmetic formula of depth at
most (1− ϵ) log n.

We show below that such symmetric functions only account for o(1) fraction
of all symmetric functions. Technically, it follows from the following fact:

Proposition 3. For any δ > 0, there are (1 − δ)22m functions g : {0, 1}m →
{0, 1} which require arithmetic formulas of depth at least log(2m − log δ−1) −
O(log logm). In particular, setting δ = 2−m, all but 2−m = o(1) fraction of
functions require arithmetic formulas of depth at least m− O(log logm) = (1−
o(1))m.

Proof. This proof is similar to the proof of [42, Theorem 1.23]. We upper bound
the total number of arithmetic formulas with ℓ leaves. For ease of calculation,
we assume that a formula is represented by a full binary tree, i.e., every node
has either 0 or 2 children, and that every node is assigned m input literals
(the xi’s), two types of gates (addition and multiplication), or their negations
(1 − xi, 1 − (a + b) or 1 − a · b). A full binary tree with ℓ leaves has 2ℓ − 1
nodes and the number of all full binary trees with 2ℓ− 1 nodes is at most 42ℓ−1.
For each such tree, there are at most (2m + 4)2ℓ−1 possibilities to turn it into
an arithmetic formula. Hence, the total number of arithmetic formulas with ℓ
leaves is at most 42ℓ−1(2m + 4)2ℓ−1 ≤ (9m)2ℓ for m ≥ 16. Set ℓ = b(2m −
log δ−1)/(2 log(9m))c. Then, the number of functions that can be computed by
arithmetic formulas with leafsize ℓ is at most (9m)2ℓ ≤ δ · 22m . This implies that
the 1 − δ fraction of all functions require arithmetic formulas with leafsize at
least ℓ ≥ (2m− log δ−1)/(2 log(9m)). Therefore, these functions require formulas
of depth at least log ℓ ≥ log(2m − log δ−1)−O(log logm). ut

Since m = log(n + 1) in our setting, for all but o(1) fraction of symmetric
functions h, the related functions f require arithmetic formulas of depth at least
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(1 − o(1)) log n. In particular, the above unconditionally secure protocol can
only compute O(n−1) = o(1) fraction of all symmetric functions with bottleneck
complexity O(n1−ϵ) for a constant ϵ.

45


	Unconditionally Secure Multiparty Computation for Symmetric Functions with Low Bottleneck Complexity

