
1

Efficient Accelerator for NTT-based Polynomial Multiplication
Raziyeh Salarifard and Hadi Soleimany

Abstract—The Number Theoretic Transform (NTT) is used
to efficiently execute polynomial multiplication. It has become
an important part of lattice-based post-quantum methods and
the subsequent generation of standard cryptographic systems.
However, implementing post-quantum schemes is challenging
since they rely on intricate structures. This paper demonstrates
how to develop a high-speed NTT multiplier highly optimized
for FPGAs with few logical resources. We describe a novel
architecture for NTT that leverages unique precomputation. Our
method efficiently maps these specific pre-computed values into
the built-in Block RAMs (BRAMs), which greatly reduces the
area and time required for implementation when compared to
previous works. We have chosen Kyber parameters to implement
the proposed architectures. Compared to the most well-known
approach for implementing Kyber’s polynomial multiplication
using NTT, the time is reduced by 31%, and AT (area × time) is
improved by 25% as a result of the pre-computation we suggest
in this study. It is worth mentioning that we obtained these
improvements while our method does not require DSP.

Keywords— Post quantum cryptography, latticed-based
cryptography, Crystals-Kyber, Number Theoretic Transform,
polynomial multiplication.

I. INTRODUCTION

Various applications have utilized modern public-key cryp-
tosystems to guarantee secrecy, data integrity, and authentica-
tion. Conventional public-key cryptography techniques derive
their security from the hardness of NP-complete problems such
as factorization or discrete logarithms of large integers. Still,
if large-scale quantum computers are built, Shor’s algorithm
could be used to solve these mathematical problems. The
National Institute of Standards and Technology (NIST) started
a standardization process in 2016 to identify post-quantum
public-key cryptography algorithms. This was done because
research and development of quantum computers had made
significant progress. The NIST announced the winners on
July 5, 2022. Lattice-based cryptography (LBC) is a viable
alternative because it provides robust security and a trade-
off between efficiency and security that is suitable for a wide
range of applications. The only key encapsulation mechanism
(KEM) accepted for standardization by NIST is Kyber. Ky-
ber’s security is built on module learning with errors (M-
LWE). Kyber is thought to be quantum-resistant while main-
taining the efficiency advantages of lattice-based approaches.
Kyber is a part of “Cryptographic Suite for Algebraic Lattices”
(CRYSTALS), which shares a framework with the Dilithium
signature scheme. NTT-based multiplication is a fast way to
perform n element vector multiplication, reducing the number

R. Salarifard is with the Faculty of Computer Science and Engineering,
Shahid Beheshti University, Tehran, Iran. Email: r salarifard@sbu.ac.ir

H. Soleimany is with Cyber Research Center, Shahid Beheshti University,
Tehran, Iran, e-mail: h soleimany@sbu.ac.ir

of required calculations from O(n2) to O(n). Since NTT-
based multiplication is an expensive operation, a great deal of
focus has recently been placed on its implementation. While
substantial research has been conducted on the software im-
plementation of NTT for multiple architectures, the hardware
implementation has gotten less attention.

A. Related Work

[1] proposed the first hardware implementation of the
ideal lattice-based cryptographic scheme, which is a fully
parallel architecture and requires a large area. [2] proposed
using negative-wrapped convolution for Zq[x]/< xn + 1 >
arithmetic to reduce the number of evaluations in NTT. The
authors propose a sequential polynomial multiplier, the ROM
component of which contains all of the twiddle factors re-
quired for the NTT computation. However, using negative
wrapped convolution incurs pre- and post-computing costs. In
a subsequent paper [3], the authors included the polynomial
multiplier [1] into a ring-LWE-based encryption system and
proposed a number of system-level improvements.

The authors of [4] proposed a compact implementation in
which the twiddle factors are computed on demand rather than
being stored in ROM in order to reduce the space. In [5], the
authors reduced the number of multiplications by rearranging
the loops within the NTT computation and combining the
pre-processing of NTT with butterfly operations. In addition,
[6] introduces low-complexity NTT and inverse NTT (INTT)
by incorporating the pre-processing of NTT and the post-
processing of INTT into the Fast Fourier Transform (FFT)
algorithm.

Longa et al. [7] developed two novel modular reduction
techniques, KRED and KRED-2X, to accelerate the NTT
computation at the expense of an increase in memory re-
quirements. [8] proposed an energy-efficient modular arith-
metic implementation by employing Cooley-Tukey (CT) and
Gentleman-Sande (GS) butterfly configurations [7] in order to
avoid bit-reverse operation by using CT for NTT and GS for
INTT. The authors of [9] presented a processor that reduces
memory access overhead by optimizing the NTT algorithm
with GS butterfly. In [10, 11], a parametric NTT architecture
that is adaptable and scalable was presented. In addition, [12]
provides an efficient and flexible NTT architecture on RISC-V.
[13] proposes a low-power-optimized NTT.

A compact implementation of NTT based on a single
butterfly core guarantees a small footprint, but cannot achieve
the high throughput demanded by particular applications.
Four butterfly cores are utilized to propose a pipelined poly-
nomial multiplication architecture in [14]. This architecture
provides a high-speed implementation for Ring-LWE-based
cryptosystems by increasing memory accesses. To address this

2

challenge, the authors of [15] merged NTT layers based on
a 2 × 2 butterfly structure, which was subsequently used in
follow-up works for the implementation of NewHope and
Kyber [16, 17, 18]. These designs employ the KRED and
KRED-2X reductions, which roughly double the hardware area
and necessitate additional memory to store two sets of pre-
computed values.

B. Our Contributions
Due to the limited resources available to the reconfig-

urable hardware, an efficient implementation of post-quantum
schemes is crucial in an FPGA. The FPGA resources are not
always utilized properly. For example, BRAMs are utilized
less frequently compared to other sources, such as DSPs.
We provide a novel implementation of NTT multiplication
that makes effective use of FPGA resources. Our architecture
possesses the following attributes:

• We provide an innovative implementation of NTT mul-
tiplication that employs particular precomputations. The
overhead of our method for storing pre-computed values
consists of utilizing Block RAMs (BRAMs), which are
building blocks available in nearly every implementation
using an FPGA.

• Rather than being used as stand-alone primitives, cryp-
tographic schemes are frequently employed as building
blocks for larger secure systems. While BRAMs are not
commonly employed in the implementation of secure
systems, DSPs are in great demand. Our architecture’s
lack of DSPs is a clear indication of its minimal resource
consumption, which is suitable for FPGA. Compared
to the most common method for implementing NTT
multiplication, our architecture reduces area and time
complexity.

• We introduce a novel, unified module that can be re-
configured to execute CT butterfly (useful for NTT), GS
butterfly (helpful for INTT), and point-wise multiplica-
tion utilizing pre-computation. This unified module takes
up less area and can be run in a single clock cycle.

• A pipeline architecture for the NTT multiplier with
several stages is given (three pipeline stages). In addition,
the pipeline architecture employs four butterfly cores in
parallel, which divides the input by four. With three stages
and divided inputs, the latency is decreased in comparison
to earlier works.

The rest of this paper is organized as follows. Section
II presents preliminaries about Kyber, NTT and reduction
algorithm. The proposed NTT multiplication algorithm is pre-
sented in Section III. Additionally, an efficient and high-speed
multiplier architecture is presented in Section IV. Section V
presents the experimental results. Finally, we conclude the
paper in Section VI.

II. PRELIMINARIES

We have chosen Kyber’s parameter to implement our pro-
posed architecture; hence, in the following, Kyber is briefly
described. Then the details of Number Theoretic Transform
(NTT) and modular reduction (which is frequently called in
NTT) are discussed.

A. Kyber

Kyber is an IND-CCA-secure technique for key encapsula-
tion (KEM), which is designed to be secure in the presence
of large quantum computers. Kyber is the only KEM selected
for standardization at the conclusion of NIST’s standardization
competition. Kyber’s security relies on the difficulty of solving
the learning-with-errors (LWE) problem over module lattices.
As a result, it possesses the typical advantages of lattice-based
schemes, including a short runtime and a small ciphertext size.
Kyber provides three different levels of security, each with
its own set of settings. Kyber512, Kyber768, and Kyber1024
are Kyber variants that offer a level of security comparable
to AES-128, AES-192, and AES-256, respectively. Kyber
employs polynomials with 256 coefficients over k-dimensional
vectors, where k is one of 2, 3, or 4 dimensions, based on the
post-quantum security level.

The implementation of Kyber includes all Keccak vari-
ations, additions, and multiplications in Zq and the NTT
over the Zq[X]/(X256 + 1) ring, where q is 3329. Like
other key-encapsulation mechanisms, Kyber’s KEM consists
of three probabilistic algorithms: key generation (KeyGen),
encapsulation (Encaps), and decapsulation (Decaps). KeyGen
generates both public and private keys (pk, sk). Encaps takes
the public key pk as an input and returns a ciphertext c
and a key K. Decaps accepts as inputs the secret key sk
and the ciphertext c and returns either K or the sign to
indicate rejection. KeyGen samples a matrix A from a uniform
distribution, a secret key s, and a noise e from a binomial
distribution. We refer interested readers to [19] for additional
information.

B. The Number Theoretic Transform

NTT is a variation of the Discrete Fourier Transform
which is defined over the ring Zq . NTT can be viewed as a
generalization of FTT, which is defined in a finite field. NTT
transforms an (n− 1) degree polynomial A(x) =

∑n−1
i=0 aix

i

to an (n − 1) degree polynomial Â(x) =
∑n−1

i=0 âi where
âi =

∑n−1
j=0 ajω

ij
n mod q and ωn ∈ Zq denotes the n-th

primitive root of unity in Zq . ω is a constant that is usually
called the twiddle factor. Similarly, the inverse of NTT (INTT)
employs a similar formula with ω−1 mod q and a multiplica-
tion of coefficients with n−1 mod q, i.e. a = INTT (â) where
ai = n−1

∑n−1
j=0 âjω

−ij
n mod q.

In a general case, the multiplication of two polynomi-
als A(x) and B(x) in Rq requires the doubling of input’s
sizes by n zero padding and the computation of an explicit
reduction modulo q: INTT2n(NTT2n(a)NTT2n(b)) mod q.
To avoid such padding, the negative wrapped convolution
(NWC) is presented, which requires a pre-processing step
for NTT and a post-processing step for INTT. The coeffi-
cients of input and output polynomials should be multiplied
by [ψ0, ψ1, · · · , ψ(n−1)] and [ψ0, ψ−1, · · · , ψ−(n−1)], respec-
tively, where ψ is 2n-th root of unity (ψ =

√
ωn). By

precomputing and storing these values in memory, substantial
savings can be realized. Prior studies demonstrate how to mix
multiplications by powers of ψ and powers of ψ−1 within
the NTT calculation. Using the Cooley-Tukey butterfly, which

3

was leveraged in the early implementations of R-LWE-based
schemes, [5] demonstrates how to reduce the overhead of
memory access. Similarly, [20] explains how to combine the
powers of ψ−1 and the power of ωn in the INTT using the
Gentleman-Sande (GS) butterfly. As we will explain later, our
design incorporates both CT and GS techniques.

Algorithm 1 Computing NTT Based on Cooley-Tukey butter-
fly.
Require: A polynomial a(x) ∈ Zq[X]/(Xn + 1)
Ensure: â(x) = NTT (a(x))

1: t = n
2: for m = 1,m < n,m = 2m do
3: t = t/2
4: for i = 0, i < m, i++ do
5: j1 = 2 · i · t
6: j2 = j1 + t− 1
7: S = ψbr(m+i)

8: for j = j1, j ≤ j2; j ++ do
9: u = aj

10: v = aj+t

11: aj = u+ S · v mod q
12: aj+t = u− S · v
13: end for
14: end for
15: end for
16: return â← a

An n-poit NTT operation can be carried out in log2(n)− 1
steps, with each step consisting of n

2 butterfly operations (see
lines 4 through 14 of the Algorithm 1). Thus, it is possible
to calculate an n-point NTT by performing (log2(n) − 1) ·
n
2 butterfly operations. Using u = aj , v = aj+t, and S as
inputs, a butterfly operation computes (u+ S · v) mod q and
(u − S · v) mod q where S is a power of ψ (lines 9-12 of
Algorithm 1). A similar method, called GS butterfly, can be
utilized for performing INTT. Using u, v, and S as inputs,
the GS butterfly operation computes (u+v) mod q and ((u−
v)S) mod q where S is a power of ψ. We refer interested
readers to [8] for more details.

C. Modular Reduction

Let us assume that q = k · 2m + 1 where k ≥ 3 is an odd
and small integer. These numbers are known as Proth numbers
in the literature. As described before, the computation of NTT
can be done based on the 2n-th root of unity, which implies
that 2n|2m. Consider two integers: 0 ≤ a, b ≤ q. Then for the
integer product of these integers, we have: 0 ≤ C = a · b ≤
q2 = k222m + k2m+1 +1. [7] makes use of a special form of
q to reduce C in the module of q. Let us consider C as C =
Cl + 2mCh, where 0 ≤ Cl < 2m. Since k2m = −1 mod q,
then 0 ≤ Ch = (C−Cl)

2m < k22m + 2k + 1
2m = kq + k + 1

2m .
salari: ? It is easy to see that kC ≡ kCl − Ch holds where
|kCl −Ch|< (k+ 1

2m)q by considering the above bounds for
Cl and Ch. [7] introduced the K-RED function, which takes
C = Cl + 2mCh as input and computes D = kCl − Ch

as described in Algorithm 2. While D does not necessarily

reduce C to C mod q, the K-RED function is usually called
a reduction in the literature as D is quite close to the desired
range. In the proposed method in this paper, we use the K-RED
function.

Algorithm 2 K-RED function
Require: An integer C = Cl + 2mCh

Ensure: kC
1: Cl = C mod 2m

2: Ch = C
2m

3: return kCl − Ch

III. THE PROPOSED LOW-COMPLEXITY NTT
MULTIPLICATION ALGORITHM

We describe a new computation of the butterfly operation
that makes use of a particular pre-computation and can signif-
icantly improve the performance of the NTT implementation.
In this regard, we provide two techniques, which are explained
in Section III-A and Section III-B. Moreover, in Section III-C,
a novel NTT algorithm using four butterfly cores is proposed.

A. A Cooley-Tukey Butterfly using Pre-computation and K-
RED

We aim to implement CT butterfly, which takes u, v ∈ Zq

as inputs and computes the outputs u′ = (u+S ·v) mod q and
v′ = (u−S · v) mod q where S is a power of ψ as described
in Section II-B. In the first step of our technique, we divide
v into two equal parts, vh and vl, each consisting of |q|

2 bits,
where |q| represents the size of q. In Kyber, vh and vl each
contain six bits since |q|= 12. If the size of q is odd, a zero is
added to the msb of q. Hence, vh and vl represent the v’s |q|

2

most significant bits and |q|
2 least significant bits. To compute

u′ and v′, it is necessary to find the value of v ·S = (vh ·2
|q|
2 +

vl) · S. To reduce computational complexity, we pre-compute
the values of vh · S and vl · S. Actually, we pre-compute the
values of z · ψbr(ℓ) · k−1 mod q for all 0 ≤ z < 2

|q|
2 and

1 ≤ ℓ ≤ n
2 − 1, where br(ℓ) is the bit-reversed representation

of ℓ (ψbr(ℓ) instances for S) and q = k · 2m + 1 (k−1 is
multiplied to allow using the K-RED function for reduction).
Since n = 256 and q = 3329 in the instance of Kyber, we
have 0 ≤ ℓ ≤ 127, and k = 13.

Our proposed method for performing CT butterfly makes
use of Algorithm 3. The values of z · ψbr(ℓ) · k−1 mod q are
computed in the pre-computation step and stored in memory.
The notation M [ℓ∥z] in Algorithm 3 instances for reading each
of the z ·ψbr(ℓ) · k−1 mod q values from the memory. Instead
of passing the value of S as input for the butterfly, only the
value of ℓ is passed as input. To compute the value of C, vh
should first be multiplied by 2

|q|
2 (i.e., shifted by |q|

2 bits) and
then be added to the corresponding value of vl. After applying
K-RED reduction to C, which consists of (|q|+ |q|

2 + 1) bits,
C ′ can be calculated. Finally, u′ = u⊕C ′ and v′ = u⊖C ′ are
computed. The operations ⊕ and ⊖ are modular addition and
modular subtraction, respectively. These operations are slightly
more complicated than regular addition and subtraction.

4

ψ
br(2)

ψbr(2)

ψ
br(3)

ψbr(3)

ψbr(4)

ψbr(5)

ψ
br(6)

ψbr(7)

ψbr(1)

Stage 0 Stage 1 Stage 2

NTTCT

ψ
br(1)

ψbr(1)

ψ
br(1)

a0

a1

a2

a3

a4

a6

a7

a5

a0

a1

a2

a3

a4

a6

a7

a5

â0

â4

â2

â6

â1

â3

â7

â5

â0

â4

â2

â6

â1

â3

â7

â5

× ×

× ×

× ×

× ×

× ×

× ×

× ×

× ×

ψ
br(7)

ψbr(6)

ψbr(5)

ψbr(4)

ψ
br(3)

ψbr(3)

ψbr(2)

ψbr(2)

ψbr(1)

ψ
br(1)

ψ
br(1)

ψ
br(1)

Stage 0 Stage 1 Stage 2

INTTGS

ψ
br(2)

ψbr(2)

ψ
br(3)

ψbr(3)

ψbr(4)

ψbr(5)

ψ
br(6)

ψbr(7)

ψbr(1)

Stage 0 Stage 1 Stage 2

NTTCT

ψ
br(1)

ψbr(1)

ψ
br(1)

a0

a1

a2

a3

a4

a6

a7

a5

â0

â4

â2

â6

â1

â3

â7

â5

×

×

×

×

×

×

×

×

ψ
br(7)

ψbr(6)

ψbr(5)

ψbr(4)

ψ
br(3)

ψbr(3)

ψbr(2)

ψbr(2)

ψbr(1)

ψ
br(1)

ψ
br(1)

ψ
br(1)

Stage 0 Stage 1 Stage 2

INTTGS

+++

---×××

u

v

S

(u+Sv) mod q

(u-Sv) mod q

+

-×

u

v

S

(u+Sv) mod q

(u-Sv) mod q

CT Butterfly

+

-×

u

v

S

(u+Sv) mod q

(u-Sv) mod q

CT Butterfly

+++

u

v ×××
S

(u+v) mod q

(u-v)S mod q

+

-

u

v ×
S

(u+v) mod q

(u-v)S mod q

GS Butterfly

+

-

u

v ×
S

(u+v) mod q

(u-v)S mod q

GS Butterfly

+

-×

u

v

S

(u+Sv) mod q

(u-Sv) mod q

CT Butterfly

+

-

u

v ×
S

(u+v) mod q

(u-v)S mod q

GS Butterfly

ψ
br(2)

ψbr(2)

ψ
br(3)

ψbr(3)

ψbr(4)

ψbr(5)

ψ
br(6)

ψbr(7)

ψbr(1)

Stage 0 Stage 1 Stage 2

NTTCT

ψ
br(1)

ψbr(1)

ψ
br(1)

a0

a1

a2

a3

a4

a6

a7

a5

â0

â4

â2

â6

â1

â3

â7

â5

×

×

×

×

×

×

×

×

ψ
br(7)

ψbr(6)

ψbr(5)

ψbr(4)

ψ
br(3)

ψbr(3)

ψbr(2)

ψbr(2)

ψbr(1)

ψ
br(1)

ψ
br(1)

ψ
br(1)

Stage 0 Stage 1 Stage 2

INTTGS

+

-×

u

v

S

(u+Sv) mod q

(u-Sv) mod q

CT Butterfly

+

-

u

v ×
S

(u+v) mod q

(u-v)S mod q

GS Butterfly

a0

a1

a2

a3

a4

a6

a7

a5

a0

a1

a2

a3

a4

a6

a7

a5

Fig. 1. NTT Multiplication of Two 8-degree polynomials using CT and GS Butterfly[21].

Algorithm 3 Proposed Cooley-Tukey Butterfly using Pre-
computation and K-RED.
Require: u = (u|q|−1, u|q|−2, . . . , u1, u0)2, v =

(v|q|−1, v|q|−2, . . . , v1, v0)2, ℓ, q = k × 2m + 1.
Ensure: u′ and v′

1: vl = (v |q|
2 −1

, · · · , v1, v0)2
2: vh = (v|q|−1, v|q|−2, · · · , v |q|

2
)2

3: C =M [ℓ∥vh]× 2
|q|
2 + M [ℓ∥vl]

4: Cl = (Cm−1 · · · , C1, C0)2
5: Ch = (C|q|+ |q|

2
, · · · , Cm)2

6: C ′ = k · Cl − Ch

7: u′ = u⊕ C ′

8: v′ = u⊖ C ′

9: return u′, v′.

B. A Cooley-Tukey Butterfly without Reduction

In this part, we present a method for implementing CT but-
terfly without reduction. Similar to Algorithm 3, we make use
of a pre-computation for performing CT butterfly to compute
the outputs u′ = (u+S ·v) mod q and v′ = (u−S ·v) mod q
for the inputs u and v. Algorithm 4 describes our implemen-
tation of CT butterfly, which requires no reduction. We pre-
compute the values of z·ψbr(ℓ)·k−1 mod q for all 0 ≤ z < 2

|q|
2

and 1 ≤ ℓ ≤ n
2 − 1, and store them in memory. The notation

Ml[ℓ∥z] in Algorithm 4 instances is for reading these values
from the memory. In addition, we pre-compute the values
of z · ψbr(ℓ) · k−1 · 2

|q|
2 mod q for all 0 ≤ z < 2

|q|
2 and

1 ≤ ℓ ≤ n
2 − 1, and store them in memory. The notation

Mh[ℓ∥z] in Algorithm 4 instances for reading these values
from the memory.

According to Algorithm 4, initially, the input v is divided
into two |q|

2 -bit parts, vh and vl. C can be obtained by
computing the modular addition of Mh[ℓ∥vh] and Ml[ℓ∥vl].
Finally, u′ = u⊕ C ′ and v′ = u⊖ C ′ are computed.

Algorithm 4 Proposed Cooley-Tukey Butterfly without Re-
duction.
Require: u = (u|q|−1, u|q|−2, . . . , u1, u0)2, v =

(v|q|−1, v|q|−2, . . . , v1, v0)2, ℓ.
Ensure: u′ (a 12-bit number), v′ (a 12-bit number)

1: vl = (v |q|
2 −1

, · · · , v1, v0)2
2: vh = (v|q|−1, v|q|−2, · · · , v |q|

2
)2

3: C =Mh[ℓ∥vh]⊕Ml[ℓ∥vl]
4: u′ = u⊕ C
5: v′ = u⊖ C
6: return u′, v′.

C. Proposed Algorithm for NTT based on 4 Butterfly Cores

In this part, using the proposed butterflies, an algorithm for
NTT is proposed. It is assumed that four CT butterfly cores are
utilized (which we refer to as BFC0, BFC1, BFC2, BFC3)
to execute four butterfly operations in each stage concurrently.
As seen in Algorithm 1, the computation of NTT consists of
multiple stages (7 stages in Kyber). All butterflies’ S values
in the first stage are ψbr(1). In the second stage, the S value
for the first half of butterflies is ψbr(2) and for the second
half, is ψbr(3). Similar characteristics apply to later stages.
That means the S value of several consecutive butterflies in
each stage is comparable. Using this observation, we propose
a method for performing the butterfly operations in parallel
and in a memory-efficient manner with four cores, as shown
in Algorithm 5. Each stage contains n

2 butterfly operations
(in the case of Kyber, 128 butterfly operations). The butterfly
operation c is assigned to BFC⌊ c

n
8
⌋ where 0 ≤ c < n

2 .
Thus, Algorithm 5 reduces the redundancy and size of the
dedicated memory required by each butterfly core (for storing
pre-computed values).

IV. EFFICIENT AND HIGH-SPEED MULTIPLIER
ARCHITECTURE

In this section, using Algorithm 3 and Algorithm 4 a
unified CT/GS butterfly core is proposed. Then, using the

5

Algorithm 5 NTT based on four CT Butterfly Cores.
Require: A polynomial a(x) ∈ Zq[X]/(Xn + 1).
Ensure: â(x) = NTT (a(x)) ∈ Zq[X]/(Xn + 1)

1: ℓ = 1
2: for s = n

2 , s ≥ 2, s = s≫ 1 do
3: c = 0
4: for i = 0, i < n, i = j + s do
5: for j = i, j < i+ s, j = j + 4 do
6: if c < n

8 then
7: (aj , aj+s)← BFC0(aj , aj+s, ℓ)
8: c = c+ 1
9: else if c < 2 · n8 then

10: (aj , aj+s)← BFC1(aj , aj+s, ℓ)
11: c = c+ 1
12: else if c < 3 · n8 then
13: (aj , aj+s)← BFC2(aj , aj+s, ℓ)
14: c = c+ 1
15: else
16: (aj , aj+s)← BFC3(aj , aj+s, ℓ)
17: c = c+ 1
18: end if
19: end for
20: ℓ = ℓ+ 1
21: end for
22: end for
23: return â(x) = a(x).

proposed butterfly core and Algorithm 5, a high-speed and
low-complexity NTT multiplier is suggested. Finally, the area
and time complexity of the proposed multiplier are described.

A. Proposed Unified CT/GS Butterfly Core

We design a reconfigurable architecture capable of perform-
ing both CT and GS in a single module, as illustrated in
Figure 2-a. As we will explain later in this part, this module
can perform point-wise multiplication using Type-0 and Type-
1 of butterfly, as illustrated in Figure 2-a. The Type-0 of the
butterfly core requires five multiplexers, one modular addition,
one modular subtraction, one modular multiplier, and three 12-
bit registers for storing the outputs. This design is executable
using either Algorithm 3 or Algorithm 4. The type of selected
algorithm affects the modular multiplier design.

Figure 2-b depicts the application of Algorithm 3 in this
scenario. The modular multiplier (lines 3-6 in Algorithm 3)
includes the following operations: (|q|+ |q|

2)-bit addition (line
3), multiplication by a constant number (k) and (|q|+|k|)-
bit subtraction (line 6). In the case of Kyber, the opera-
tions are an 18-bit adder (line 3), 10-bit, 11-bit and 13-bit
adders/subtractors (line 6). The design based on Algorithm 3,
has a light reduction. Besides, the multiplier is realized by a
|q|-bit adder.

Figure 2-c depicts the application of Algorithm 4. The
modular multiplier (line 3 of Algorithm 4) includes a single
|q|-bit modular adder. This design consists of addition and sub-
traction operations with almost the same level of complexity
as conventional addition and subtraction. However, the overall

design complexity is very low due to the absence of a reduction
module.

For the proposed core to allow point-wise multiplication,
it must be able to multiply two arbitrary |q|-bit numbers as
follows:

C = A ·B = (Ah · 2
|q|
2 +Al) · (Bh · 2

|q|
2 +Bl) =

Ah ·Bh · 2|q| +Ah ·Bl · 2
|q|
2 +Al ·Bh · 2

|q|
2 +Al ·Bl =

(Ah ·Bh · 2
|q|
2 + (Ah ·Bl +Al ·Bh)) · 2

|q|
2 +Al ·Bl.

(1)

According to Equation (1), each point-wise multiplication
consists of two modular multiplications, as shown in Algo-
rithm 3 and Algorithm 4. We should precompute and store
a × b × k−1 where 0 < a, b < 2

|q|
2 when the modular

multiplication of Algorithm 3 is used. We should precompute
and store a × b where 0 < a, b < 2

|q|
2 when the modular

multiplication of Algorithm 4 is used.
We consider a 2-bit control signal. When the control signal

is ”1x”, (u + ψv) mod q and (u − ψv) mod q are computed
using the CT butterfly. (u + v) mod q and (u − v)ψ mod q
are computed using the GS butterfly When the control signal
is ”x1”. When the control signal is ”00”, the point-wise
multiplication is performed. Taking Equation (1) into consid-
eration, this point-wise multiplication requires two proposed
modular multiplier (Figure 2-b or Figure 2-c). For this pur-
pose, we consider type-0 and type-1 butterfly architectures.
Type-0 performs the inner multiplication in Equation (1)
(Ah × Bh × 2

|q|
2 + (Ah × Bl + Al × Bh)). Type-1 performs

the outer multiplication. Hence, two consecutive butterflies
perform one point-wise multiplication.

B. NTT Multiplier

In this part, using four proposed reconfigurable butterfly
cores and algorithm 5 a high-speed and low-complexity NTT
multiplier is suggested. In the following, each part of the
multiplier is described.

Pipelined architecture: Our architecture is illustrated in
Figure 3. In order to perform an NTT multiplication, the ar-
chitecture is capable of performing all NTT/INTT conversions,
and polynomial base multiplication.

Butterfly cores: We consider an implementation of NTT
proposed in Algorithm 5, which has four butterfly cores.
In order to let the butterfly cores operate in parallel, eight
instances of memory are necessary (to read eight inputs). Each
butterfly core has its own ROM memory, which includes some
precomputed values (a×ψbr(i) (×k−1) mod q for NTT/INTT
and a× b (×k−1) mod q for the point-wise multiplier).

ROM Memories: As described in Algorithm 5, all the
butterfly operations of the first stage work with ψbr(1). Hence,
each butterfly core for the first stage requires (1×2|q|×|q|)-bit
memory. Half of the butterfly operations of the second stage
work with ψbr(2), the other ones work with ψbr(3). So, each
butterfly core for the second stage requires (1× 2

|q|
2 × |q|)-bit

memory. Similarly, the butterfly operations of the i-th stage
work with 2i−1 various powers of ψ. Hence, each butterfly

6

Fig. 2. The Proposed Re-configurable CT/GS Butterfly Core. a) Type-0 and
Type-1 of the re-configurable butterfly. b) The proposed modular multiplier
with a light reduction. c) The proposed modular multiplier without reduction.

core for the i-th stage requires (⌈ 2
i−1

4 ⌉×2
|q|
2 ×|q|)-bit memory.

So, each butterfly requires (
∑ |q|

2
1 ⌈ 2

i

4 ⌉ × 2
|q|
2 × |q|)-bit ROM

memory in total for all the stages.
Multiplexers: After performing butterfly operations, the

outputs (v
′
u

′
) of each butterfly core should be stored in RAM.

These results will be used by a butterfly core in the next round.
Hence, the RAM should be attached to the corresponding
butterfly core in the next round. To this en, the butterfly cores
are routed to the corresponding RAM by means of eight 8-to-1
multiplexers.

Control Unit: We designed the control unit using an FSM.
All control signals, including multiplexer selection signals, and
the read/write address of the precomputed values are calculated
in this unit, which is not illustrated for the sake of brevity.

C. Area and Time Complexity Analysis

The area and time complexity of butterfly cores, NTT/INTT
modules, and point-wise multipliers are reported in Table I.
The area and time complexity of the modular multipliers,
which are designed based on Figure 2-b and Figure 2-c are
illustrated on rows 1 and 2 of the table, respectively. Table I

Fig. 3. The Proposed Pipelined NTT Multiplier.

7

TABLE I
AREA AND TIME COMPLEXITIES ESTIMATION OF NTT MULTIPLIER USED IN KYBER

#Butterfly Core # 12-bit Modular Multiplier # 12-bit Modular Adder # 12-bit Modular subtractor # 12-bit 4-to-1 Multiplexer # FFs CPD Latency
#Modular Multiplier1 - - 3 1 0 0 3adder+1subtractor -
#Modular Multiplier2 - - 1 0 0 0 1adder -

#Butterfly Core - 1 1 1 4 36 3mux+1mult+1sub 1
NTT 4 4 4 4 4× 4 + 4× 2.5 4× 2× 2× 12 Butterfly Core (7× 32) + (6× 4) + 4− 1 = 251
INTT 4 4 4 4 4× 4 + 8× 2.5 4× 2× 2× 12 Butterfly Core (7× 32) + (6× 4) + 4− 1 = 251

Point-Wise Multiplication 4 4 4 4 4× 4 + 8× 2.5 4× 2× 2× 12 Butterfly Core 128×5
2

= 640

TABLE II
COMPARISON OF NTT MULTIPLIER IMPLEMENTATION RESULT ON FPGA (USING KYBE PARAMETER; N = 265, Q = 3,329)

Reference Platform Butterfly NTT/INTT cycles Freq MHz Time (µs) LUTs FFs DSP BRAM Speedup (latency) A× C A× T
[22] Zynq-7000 2 1,935/1,930 - - 2,908 170 9 0 7.71 5.6 (94.6%) 25.3 (96.4%)
[12] Virtex-7 1 43,756/- - - 417 462 0 0 174.33 18.2 (98.4%) 82.2 (98.9%)
[23] Artix-7 1 6,868/6,367 59 116.41 - - - - 27.36 - -
[24] Artix-7 2 1,834/- 155 11.83 - - - - 7.31 - -
[25] Artix-7 2 512/576 161 3.18 1.737 1.167 2 3 2.04 0.9 (77.8%) 5.5 (83.6%)
[21] Artix-7 2× 2 324/324 222 1.46 801 717 4 2 1.30 0.3 (33.3%) 1.2 (25%)

proposed2 Artix-7 4 251/251 285 0.88 644 260 0 28 1.00 0.2 0.6
proposed1 Virtex-7 4 251/251 250 1.00 912 260 0 16 1.00 0.2 0.9

indicates that each butterfly core contains one modular multi-
plier, one modular adder, one modular subtractor, four 4-to-1
multiplexers, and three 12-bit registers. Moreover, according to
the butterfly presented in Algorithm 3 and Algorithm 3, each
modular multiplier can consist of only one adder (Figure 2-c)
or four adders/subtractors (Figure 2-b).

The unified architecture of NTT/INTT and point-wise mul-
tiplier is depicted in Figure 3. The architecture contains four
butterfly cores. Each core requires two RAMs for reading the
coefficients of the polynomial and one ROM for reading the
precomputed values (i.e. a×ψbr(i)×k−1 mod q for NTT/INTT
and a×b×k−1 mod q for point-wise multiplier). After butterfly
computations, eight 8-to-1 multiplexers (can be implemented
using almost 2.5 4-to-1 multiplexers) will direct the results (v′

and u′) to the appropriate RAMs. Namely, the RAMs from
which the butterfly core will read in the subsequent rounds.

Our NTT multiplier architecture is a pipeline architecture
with four stages: reading from BRAMs, butterfly operation,
direct the results to the appropriate RAMs (using multi-
plexers), and writing to BRAMs. Each NTT includes seven
levels, each of which performs 128 butterflies. Given that
our architecture has four cores, this multiplier must be called
128×7

4 = 7 × 32 times to perform one NTT. Considering the
four stages of the proposed pipeline architecture and delaying
four clock cycles between each NTT level to unload the
pipeline (6 × 4), the latency of this pipeline architecture is
(7× 32) + (6× 4) + 4− 1 = 251.

The critical path delay (CPD) of the NTT design and the
unified butterfly core are identical. Figure 2-a depicts the
crucial path in the butterfly core in red: a multiplexer, a
multiplier, another multiplexer, and finally an addition.

V. RESULTS

We chose FPGA to implement our proposed architecture
because FPGA is reconfigurable hardware and offers an ac-
ceptable trade-off between flexibility and performance. It has
also been the focus of the majority of research. FPGA contains
a variety of resources, including LUTs, Flip-Flops, DSPs,
distributed RAMs, Block RAMs (BRAMs), and others. Using
BRAMs is restricted by read-write bandwidth limitations,

read-write times, and other factors. As a result, BRAMs
are utilized less frequently compared to the other sources.
The overhead of our method for storing pre-computed values
consists of utilizing Block RAMs (BRAMs) which are utilized
less frequently compared to other sources.

The proposed methods in the literature cannot be directly
compared due to the fact that they employ different FPGA
target devices and have different optimization aims. As a
basis for comparison, we have chosen earlier works that
implemented NTT on the FPGA platform. The results of
resource consumption and performance are given in Table II.
Table II displays A× T and A×C for each implementation,
where A, T , and C stand for the utilized LUT, time in µs, and
latency, respectively. Our suggested architecture is synthesized
with Xilinx Vivado 2019.2 and implemented on a NIST-
recommended Xilinx Artix-7 FPGA chip.

The proposed design in [12] does not require DSP, albeit
at the expense of a large increase in latency. Both of our
proposed designs in this study have a latency of 251 cycles,
which is significantly smaller than 43,756 cycles (the latency
of [12]). Compared to other DSP-required architectures, ours
offers reduced latency. Furthermore, our design’s frequency
is superior to previous works. The best-known architecture
is that proposed in [21]. Relative to [21], our architecture
with fewer BRAMs has reduced latency, improved time by
31%, and increased frequency by 13%. Our architecture has a
smaller area than [21] since it does not require DSP, and the
number of registers is reduced while the number of LUTs is
somewhat increased. Our design employs additional BRAMs,
which are not essential for the majority of applications.

VI. CONCLUSION

The Number Theoretic Transform (NTT) is able to ef-
fectively execute polynomial multiplication. Hence, NTT has
become an essential feature in the implementation of lattice-
based post-quantum algorithms, which are the next generation
of standard cryptography systems. In this research, we showed
how to make a fast NTT multiplier that is highly optimized for
FPGAs with limited logical resources. Our method for storing
intermediate results makes use of Block RAMs (BRAMs),

8

which are commonplace in the majority of the FPGAs. As a
result of our novel architecture, the time required to perform
polynomial multiplication using NTT is decreased by 28%,
and the A× T (area × time) is improved by 25%, compared
to the best-known technique. It is also worth noting that we
were able to achieve these enhancements without requiring
DSP.

REFERENCES

[1] N. Göttert, T. Feller, M. Schneider, J. Buchmann, and
S. A. Huss, “On the design of hardware building blocks
for modern lattice-based encryption schemes,” in CHES,
ser. Lecture Notes in Computer Science, vol. 7428.
Springer, 2012, pp. 512–529.

[2] T. Pöppelmann and T. Güneysu, “Towards efficient arith-
metic for lattice-based cryptography on reconfigurable
hardware,” in LATINCRYPT, ser. Lecture Notes in Com-
puter Science, vol. 7533. Springer, 2012, pp. 139–158.

[3] ——, “Towards practical lattice-based public-key encryp-
tion on reconfigurable hardware,” in Selected Areas in
Cryptography, ser. Lecture Notes in Computer Science,
vol. 8282. Springer, 2013, pp. 68–85.

[4] A. Aysu, C. Patterson, and P. Schaumont, “Low-cost
and area-efficient FPGA implementations of lattice-based
cryptography,” in HOST. IEEE Computer Society, 2013,
pp. 81–86.

[5] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and
I. Verbauwhede, “Compact ring-lwe cryptoprocessor,” in
CHES, ser. Lecture Notes in Computer Science, vol.
8731. Springer, 2014, pp. 371–391.

[6] N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and
L. Liu, “Highly efficient architecture of newhope-nist on
FPGA using low-complexity NTT/INTT,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 2, pp. 49–
72, 2020.

[7] P. Longa and M. Naehrig, “Speeding up the number
theoretic transform for faster ideal lattice-based cryptog-
raphy,” in CANS, ser. Lecture Notes in Computer Science,
vol. 10052, 2016, pp. 124–139.

[8] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, “Sap-
phire: A configurable crypto-processor for post-quantum
lattice-based protocols,” IACR Trans. Cryptogr. Hardw.
Embed. Syst., vol. 2019, no. 4, pp. 17–61, 2019.

[9] Z. Chen, Y. Ma, T. Chen, J. Lin, and J. Jing, “Towards
efficient kyber on fpgas: A processor for vector of
polynomials,” in ASP-DAC. IEEE, 2020, pp. 247–252.

[10] A. C. Mert, E. Karabulut, E. Öztürk, E. Savas, M. Bec-
chi, and A. Aysu, “A flexible and scalable NTT hard-
ware : Applications from homomorphically encrypted
deep learning to post-quantum cryptography,” in DATE.
IEEE, 2020, pp. 346–351.

[11] A. C. Mert, E. Karabulut, E. Öztürk, E. Savas, and
A. Aysu, “An extensive study of flexible design methods
for the number theoretic transform,” IEEE Trans. Com-
puters, vol. 71, no. 11, pp. 2829–2843, 2022.

[12] E. Karabulut and A. Aysu, “RANTT: A RISC-V archi-
tecture extension for the number theoretic transform,” in
FPL. IEEE, 2020, pp. 26–32.

[13] T. Fritzmann and J. Sepúlveda, “Efficient and flexi-
ble low-power NTT for lattice-based cryptography,” in
HOST. IEEE, 2019, pp. 141–150.

[14] Y. Xing and S. Li, “An efficient implementation of the
newhope key exchange on fpgas,” IEEE Trans. Circuits
Syst. I Regul. Pap., vol. 67-I, no. 3, pp. 866–878, 2020.

[15] C. Du, G. Bai, and X. Wu, “High-speed polynomial
multiplier architecture for ring-lwe based public key
cryptosystems,” in ACM Great Lakes Symposium on
VLSI. ACM, 2016, pp. 9–14.

[16] P. Kuo, Y. Chen, Y. Hsu, C. Cheng, W. Li, and B. Yang,
“High performance post-quantum key exchange on fp-
gas,” J. Inf. Sci. Eng., vol. 38, no. 4, pp. 1211–1229,
2022.

[17] D. T. Nguyen, V. B. Dang, and K. Gaj, “A high-level
synthesis approach to the software/hardware codesign
of ntt-based post-quantum cryptography algorithms,” in
FPT. IEEE, 2019, pp. 371–374.

[18] ——, “High-level synthesis in implementing and bench-
marking number theoretic transform in lattice-based post-
quantum cryptography using software/hardware code-
sign,” in ARC, ser. Lecture Notes in Computer Science,
vol. 12083. Springer, 2020, pp. 247–257.

[19] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint,
V. Lyubashevsky, J. M. Schanck, P. Schwabe, G. Seiler,
and D. Stehlé, “Crystals-kyber algorithm specifications
and supporting documentation,” NIST PQC Round,
vol. 2, no. 4, pp. 1–43, 2017.

[20] T. Pöppelmann, T. Oder, and T. Güneysu, “High-
performance ideal lattice-based cryptography on 8-bit
atxmega microcontrollers,” in LATINCRYPT, ser. Lecture
Notes in Computer Science, vol. 9230. Springer, 2015,
pp. 346–365.

[21] M. Bisheh-Niasar, R. Azarderakhsh, and M. M. Kermani,
“Area-time efficient hardware architecture for signature
based on ed448,” IEEE Trans. Circuits Syst. II Express
Briefs, vol. 68, no. 8, pp. 2942–2946, 2021.

[22] T. Fritzmann, G. Sigl, and J. Sepúlveda, “RISQ-V: tightly
coupled RISC-V accelerators for post-quantum cryptog-
raphy,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol.
2020, no. 4, pp. 239–280, 2020.

[23] E. Alkim, H. Evkan, N. Lahr, R. Niederhagen, and
R. Petri, “ISA extensions for finite field arithmetic ac-
celerating kyber and newhope on RISC-V,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 3, pp. 219–
242, 2020.

[24] Y. Huang, M. Huang, Z. Lei, and J. Wu, “A pure
hardware implementation of CRYSTALS-KYBER PQC
algorithm through resource reuse,” IEICE Electron. Ex-
press, vol. 17, no. 17, p. 20200234, 2020.

[25] Y. Xing and S. Li, “A compact hardware implementation
of cca-secure key exchange mechanism CRYSTALS-
KYBER on FPGA,” IACR Trans. Cryptogr. Hardw. Em-
bed. Syst., vol. 2021, no. 2, pp. 328–356, 2021.

9

Raziyeh Salarifard received the B.Sc. degree from
the Sharif University of Technology ,Tehran, Iran,
in 2012, the M.Sc. and PhD degrees from the
same university, in 2014 and 2019 respectively, all
in computer engineering (hardware). She is now
working as an Assistant Professor at the Faculty of
Computer Science and Engineering, Shahid Beheshti
University. Her research interests include hardware
security, cryptographic engineering, and secure, ef-
ficient computing and architectures.

Hadi Soleimany has been working as an Assistant
Professor at Cyberspace Research Institute at Shahid
Beheshti University, Iran since 2015. He received his
PhD in Theoretical Computer Science from Aalto
University, Finland in 2015. He was also a postdoc-
toral researcher at Technical University of Denmark
(DTU), Denmark in Summer 2016 and 2017. His
main research interests are practical aspects of cryp-
tography.

	Introduction
	Related Work
	Our Contributions

	Preliminaries
	Kyber
	The Number Theoretic Transform
	Modular Reduction

	The Proposed Low-complexity NTT Multiplication Algorithm
	A Cooley-Tukey Butterfly using Pre-computation and K-RED
	A Cooley-Tukey Butterfly without Reduction
	Proposed Algorithm for NTT based on 4 Butterfly Cores

	Efficient and High-speed Multiplier Architecture
	Proposed Unified CT/GS Butterfly Core
	NTT Multiplier
	Area and Time Complexity Analysis

	Results
	Conclusion
	Biographies
	Raziyeh Salarifard
	Hadi Soleimany

