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Abstract. In this work, we investigate techniques to amplify the sound-
ness of zero-knowledge proofs of knowledge for cryptographic group ac-
tions. We explore the use of a particular graph generated from the group
action of random element and provide a fully general protocol with only
minimal assumptions on the group action properties. This technique can
be seen also as generalization of MPC-in-the-head approach for the con-
text of (non-abelian) group actions. We show that a straightforward
translation of the paradigm is unlikely to provide a practical improve-
ment over the simpler construction of a 3-pass Sigma protocol. We then
describe a novel approach and show that it yields a computational ad-
vantage, therefore laying the ground for new, efficient protocols.
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1 Introduction

The recent call for signatures issued by the National Institute of Standards
and Technology (NIST) [19] has rekindled the community’s interest in trying
to produce efficient post-quantum schemes using a variety of methods. Among
these, cryptographic group actions represent one of the most powerful tools,
being the backbone of public-key cryptography ever since the seminal work of
Diffie and Hellman [8] and El Gamal [10]. Indeed, the field of post-quantum
cryptographic group actions has boomed in the last few years, with several works
based on various notions of isomorphism, be that isogenies on elliptic curves [13,
6, 4], code equivalence [5, 3], matrix equivalence [7], lattice isomorphism [9],
trilinear forms [20] and others. At the same time, a new trend to build efficient
signatures emerged, exploiting the MPC-in-the-head paradigm [18], which led
to the development of efficient schemes, again, from a variety of mathematical
assumptions [15, 11, 12], or even none (i.e. using only symmetric primitives as
in [17]).

1.1 Our Contribution

In this work, we explore the possibility of employing the MPC-in-the-head tech-
niques on top of group actions. We do this by studying what we call the action
subgraph, and we do so with only minimal assumptions; most importantly, we do
not require the commutativity property, which is often the biggest obstacle for
protocol design. We show that it is possible to translate the framework success-
fully to this case, although it requires some non-trivial modifications to enable
the secret sharing which is at its core; then, in Section 3, we provide a fully gen-
eral protocol that yields a proof of knowledge for cryptographic group actions.
We analyze the scheme’s performance, and in particular signature size; looking at
the number of required group action computations, we conclude that a straight-
forward rendition is unlikely to be competitive with traditional 3-pass zero-
knowledge identificatoin (ZK-ID) schemes which use fixed-weight challenges. In
other words, increasing soundness without additional subtlety is not better than
simply increasing the number of repetitions in a scheme with soundness 1/2.
In Section 4, therefore, we illustrate a novel technique that allows to obtain a
computational advantage during the verification phase.

Remark 1. During the write-up of this work, we became aware of another recent
preprint [16] which verges on topics closely related to this work. Upon discussion
with the author, we established that the two works are independent and con-
current, and agreed to keep them separate. We would like to thank the author
of [16] for fruitful conversations on the subject.
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2 Cryptographic Group Actions

A group action is a well-known object in mathematics. It can be described as a
function, as shown below, where X is a set and G a group.

‹ : G ˆ X Ñ X

pg, xq Ñ g ‹ x

A group action’s only requirement is to be compatible with the group; using
multiplicative notation for G, and denoting with e its identity element, this
means that for all x P X we have e ‹ x “ x and that moreover for all g, h P G,
it holds that h ‹ pg ‹ xq “ ph ¨ gq ‹ x. A group action is also said to be:

– Transitive, if for every x, y P X, there exists g P G such that y “ g ‹ x;

– Faithful, if there does not exist a g P G such that x “ g ‹ x for all x P X,
other than the identity;

– Free, if an element g P G is equal to identity whenever there exists an x P X
such that x “ g ‹ x;

– Regular, if it is free and transitive.

The adjective cryptographic is added to indicate that the group action in
question has additional properties that are relevant to cryptography. For in-
stance, a cryptographic group action should be one-way, i.e. given randomly
chosen x, y P X, it should be hard to find g P G such that g ‹ x “ y (if such a g
exists). Indeed, the problem of finding this element is known as the vectorization
problem, or sometimes Group Action Inverse Problem (GAIP).

Problem 1 (GAIP). Given x and y in X, find, if any, an element g P G such
that y “ g ‹ x.

Finally, other useful properties for group actions include those that make it
effective, such as for instance the existence of efficient (probabilistic polynomial-
time) algorithms for membership testing, sampling, computation (of the group
operation and ‹) etc. More on these properties can be read in [2].

3 Proving Equivalence via Random Paths

We now describe a first approach for a new proof-of-knowledge strategy for
cryptographic group actions. As we mentioned in the preamble, we formulate
our protocols considering the most general possible setting for group actions.
Thus, the only properties we require for our construction are that the action is
transitive and faithful.

2



3.1 The Action Graph

Let Opxq denote the orbit of x under the action of G, that is

Opxq “ tg ‹ x | x P Gu .

If the action of G is faithful, then Opxq contains |G| elements. Also, one of them
is the public key element x1 “ g ‹x for some secret g P G. We can represent such
an orbit through a simple, ordered graph G whose vertices are the elements in
Opxq. Any pair of vertices px1, x2q is connected by a pair of edges pg1, g2q such
that x2 “ g1 ‹ x1 and x1 “ g2 ‹ x1 when ‹ is faithful, g2 “ g´1

1 . We call G the
action graph of G on X “ Opxq. We observe also that G is connected: any pair
of vertices px1, x2q is connected by two edges (one for each direction).

Let us now assume that the prover performs a random walk on G, starting
from x and ending in xN . This can be done by generating N random elements of
G uniformly at random tg1, g2, ¨ ¨ ¨ , gNu, and letting them act on x sequentially,
that is

x0 “ x
g1

ÝÑ x1
g2

ÝÑ x2
g3

ÝÑ ¨ ¨ ¨
gN´1

ÝÝÝÑ xN´1
gN

ÝÝÑ xN .

Note that, for i ě 1, it holds that xi “ pgi ¨ gi´1 ¨ ¨ ¨ g2 ¨ g1q ‹ x. From now on, we
will refer to the path going from x to xN as random path. We can think that the
random path defines a subgraph S Ă G, built as follows:

- it has N ` 2 vertices tx0 “ x, x1, ¨ ¨ ¨ , xN , x1u;
- it has N edges of the form pxi´1, xiq, for i “ 1, ¨ ¨ ¨ , N . Each such edge is
labelled with gi;

- it has N edges px1, xiq, for i “ 1, ¨ ¨ ¨ , N . Each such edge is labelled with
g1
i “ gi ¨ gi´1 ¨ ¨ ¨ g1 ¨ g´1.

We will refer to S as action subgraph; an example of how this graph looks like
is shown in Figure 1. Note that the graph may be enriched with additional
edges: indeed, the vertices in S would form a connected graph, assuming one
draws all edges. However, as we describe in the following, the edges we are
considering we are considering are the only ones which can be used to build a
zero knowledge proof system, and (some) missing edges can be easily recomputed
from the information which is provided by the prover.

x x1 x2 x3 x4 x5 x6 x7 x8

x1

g1 g2 g3 g4 g5 g6 g7 g8

g

g1
1 g1

2 g1
3 g1

4 g1
5 g1

6 g1
7 g1

8

Fig. 1: Example of action subgraph, for N “ 8.
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We now observe that knowing a path x ÞÑ x1 on S is possible only if one
knows also a secret element g such that g ‹ x “ x1. Indeed, let us consider a
path x ÞÑ x1 in S along the edges P “ tpx0, x1q, px1, x2q, ¨ ¨ ¨ , pxi´1, xiq, pxi, x

1qu,
for some i P t1, ¨ ¨ ¨ , Nu. Since pxi, x

1q is labeled by g1
i “ gi ¨ ¨ ¨ g1 ¨ g´1 and each

pxj´1, xjq has label gj , then the secret g can be easily recovered. Indeed, consider
that

pg1
iq

´1 ¨ pg1 ¨ ¨ ¨ giq “
`

pgi ¨ ¨ ¨ g1q ¨ g´1
˘´1

¨ pg1 ¨ ¨ ¨ giq

“
`

g ¨ pgi ¨ ¨ ¨ g1q´1
˘

¨ pg1 ¨ ¨ ¨ giq “ g. (1)

3.2 Proofs of Knowledge from the Action Subgraph

The main idea, to build a ZK proof of knowledge, is that of proving knowledge of
a path x ÞÑ x1 without revealing all the edges. This would prevent an adversary
from recovering the secret key by applying (1). The subgraph will be constructed
in the usual fashion, so that elements g1, ¨ ¨ ¨ , gN will be sampled uniformly at
random from G and the prover will commit to the corresponding random path,
i.e., to everything that binds all the edges from x to xN . Then, the verifier will
select a random interruption, that is, an index i P t0, ¨ ¨ ¨ , Nu. The prover has to
show that the graph has been honestly obtained, i.e., it is the same regardless
of the interruption (the challenge value). To do this, he will provide:

- all the edges from x to xi: this can be done by revealing gj , for j ď i. If
i “ 0, then no edge of this type is provided;

- the path from x1 to xi`1: this can be done by revealing g1
i`1. If i “ N , no

edge of this type is provided;
- all the edges from xi`1 to xN : this can be done by revealing gj , for i ` 1 ď

j ď N . If i “ N , no edge of this type is provided.

A proof of knowledge would then be of the form P piq “

´

g1
i, tgjuj‰i`1

¯

. Note

that, if i “ N (i.e., no interruption is actually asked), the prover instead reveals
all labels tgju1ďjďN . To sum up, the proof of knowledge is a function of the sole
challenge index i P t0, ¨ ¨ ¨ , Nu, and has the following form

P piq “

#

´

g1
i`1, tgjuj‰i`1

¯

if i ă N ,

tgju1ďjďN if i “ N .
(2)

An example of how the proof of knowledge is constructed is shown in Figure 2.
Note that, from the information provided in the proof as in (2), one can also
recover all the edges g1

j with j ą i ` 1, but this is not useful to retrieve the
secret g. Indeed, the vertices in the subgraph can be divided into groups: V “

tx, x1, ¨ ¨ ¨ , xiu Ă Opxq and V 1 “ txi`1, xi`1, ¨ ¨ ¨ , xNu Ă Opx1q. What the verifier
does is checking that both V and V 1 are connected subgraphs. However, the
prover never reveals an edge connecting a vertex in V with one in V 1: this
guarantees that g cannot be recovered from the proof P piq. A representation of
the situation is depicted in Figure 3.

4



x x1 x2 x3 x4 x5 x6 x7 x8

x1

g2 g3 g4 g5 g6 g7 g8

g

g1
1 g1

2 g1
3 g1

4 g1
5 g1

6 g1
7 g1

8

✗

(a) Interruption i “ 0

x x1 x2 x3 x4 x5 x6 x7 x8

x1

g1 g2 g3 g4 g6 g7 g8

g

g1
1 g1

2 g1
3 g1

4 g1
5 g1

6 g1
7 g1

8

✗

(b) Interruption i “ 4

x x1 x2 x3 x4 x5 x6 x7 x8

x1

g1 g2 g3 g4 g5 g6 g7 g8

g

g1
1 g1

2 g1
3 g1

4 g1
5 g1

6 g1
7 g1

8

(c) Interruption i “ 8

Fig. 2: Examples of proofs of knowledge, for three cases with different interrup-
tions; the edges that are revealed by the prover are highlighted with double blue
arrows.

x

x1

x2

x3

x4 x5

x6

x7

x1
g

✗

Fig. 3: Example of all the edges learned for the case of the interruption i “ 4.
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Private Key g P G
Public Key x1

“ g ‹ x

PROVER VERIFIER
Set x0 “ x
For i “ 1, ¨ ¨ ¨ , N :

Sample Seedi
$

ÐÝ t0, 1u
λ

Generate gi P G from Seedi
Compute xi “ gi ‹ xi´1

Set ci “ CommitXpxiq

Set c “ Commitpc1, ¨ ¨ ¨ , cN q
c

ÝÝÑ

Sample i P t0, ¨ ¨ ¨ , Nu
i

ÐÝÝ

If i ă N :
Set g1

i`1 “ gi`1 ¨ gi ¨ ¨ ¨ g1 ¨ g´1

Set Response “
␣

g1
i`1, tSeedjuj‰i`1

(

Else:
Set Response “ ttSeedju1ďjďNu

Response
ÝÝÝÝÝÑ

If i ă N :
Compute xi`1 “ g1

i`1 ‹ x1

For j ‰ i ` 1:
Generate gi P G from Seedi
Compute xj “ gj ‹ xj´1

Compute cj “ CommitXpxjq

Verify Commitpc1, ¨ ¨ ¨ , cN q “ c
Else:

For j “ 1, ¨ ¨ ¨ , N :
Generate gi P G from Seedi
Compute xj “ gj ‹ xj´1

Compute cj “ CommitXpxjq

Verify Commitpc1, ¨ ¨ ¨ , cN q = c

Fig. 4: A single round of the new ZK-ID protocol based on interruptions in the
action subgraph.

The corresponding ZK-ID protocol is shown in Figure 4. Note that all group
elements g1, ¨ ¨ ¨ , gi can be compactly communicated using seeds, while for g1

i

this is not possible. When i “ N (i.e., no interruption is asked), the proof is
obtained by revealing all seeds, and each edge in the random path is verified.
Using the standard technique of using a PRNG tree, revealing the random edges
(i.e., edges labeled by some gj) costs λ log2pNq bits in case i ‰ N , and only λ
bits in case i “ N .

We consider two commitment functions. While Commit can be any generic
commitment function (say, a hash function), CommitX is specific to how elements
of X are represented. Since the element of X are the nodes of the graph we
will also refer to CommitX as node commitment. We generically assume that
CommitX requires a larger computational cost, with respect to Commit. For
example, in the code-based case [3], each commitment to a code requires to
perform a Gaussian elimination on a matrix of dimensions around 28.
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Remark 2. When N “ 1, the protocol collapses to a traditional Sigma protocol
with challenge space of size 2. Indeed, regardless of i, the prover opens only one
edge. If i “ 0, the provided edge is the one g1

1, if i “ 1, the verifier sends g1. For
what concerns seeds, the formulas we provided remain valid: for i “ 0 no seed
is required, while for i “ 1 the response contains just one seed.

The security properties of the resulting protocol are proved in Appendix A.1.
We report below the main result.

Theorem 1. Assuming the hardness of GAIP (Problem 1), the protocol in Fig-
ure 4 is a secure Zero-Knowledge identification protocol, in the random oracle
model, with soundness error:

ε “
1

N ` 1
.

3.3 Multiple Key Pairs and Unbalanced Challenges

As in [3], the soundness of the protocol can be amplified by using more secrets to
create the public values. Namely, the prover can choose M secrets gp1q, ¨ ¨ ¨ , gpMq

and compute the corresponding public values as x1
i “ gpiq ‹x, for i “ 1, 2, ¨ ¨ ¨ ,M .

We can also use the notation gp0q “ e and x1
0 “ x if required. The action subgraph

is computed in the same way, but now the verifier challenges the prover by
specifying, together with the position of the interruption, also the public value
from which the proof should be provided. In this way, the soundness error is
reduced from 1

N`1 to ε “ 1
1`MN .

Let ℓG denote the bit size of elements in G. When i ă N , the prover has
to reveal one element of G, together with N ´ 1 seeds. As we have already
seen, using a standard PRNG tree, they can be efficiently communicated using
only λ log2pNq bits. Overall, one round with an interruption has a response of
size ℓG ` λ log2pNq. Instead, when i “ N (i.e., no interruption), the response
corresponds to the unique seed that has been used to generate the tree. This
would require only λ bits: indeed, regardless of ℓG, rounds with no interruption
have a response which is much smaller than that of rounds with an interruption.
One can make use of this fact and consider, when applying the Fiat-Shamir
transformation, challenge vectors with a fixed number of entries with value N .
In other words, assuming t parallel repetitions are executed, the challenge vector
would become a vector b P t0, ¨ ¨ ¨ , Nut, such that there are only w ă t entries
with values ă N . In other words, there are always t ´ w rounds in which the
verifier chooses i “ N (i.e., no interruption), while an interruption is selected
only in w rounds. To get the most from this optimization, one can use a unique
PRNG tree to generate the seeds for each round. Namely, signature generation

starts by sampling a master seed MSeed
$

ÐÝ t0, 1uλ. This seed is used to generate

t round seeds RSeedpiq and then, for each round, Seedpiq is used as the root of

another PRNG tree, to obtain N Seed
piq
j . Let J “ ti P t1, ¨ ¨ ¨ , tu |bi ă N u: then,

the seeds which would be required in the signature are of two types:
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- the t ´ w round seeds
!

RSeedpiq
)

iRJ
;

- for each index i P J , the N ´ 1 seeds
!

Seed
piq
j

)

j‰bi`1
.

Communicating the round seeds requires only λw log2pt{wq bits while, for
each round with i R J , communicating the N ´ 1 seeds takes λ log2pNq bits.
When considering multiple public values, we pair b with another vector c P

t1, ¨ ¨ ¨ ,Mut, where ci defines the public value from which the interruption is
asked. If i is such that bi “ N , the value of ci is useless. The resulting protocol
preserves the special soundness property, with an overall soundness error of

ε “
1

`

t
w

˘

pMNqw
.

Signature Size. The formulation with M public values and a fixed-weight chal-
lenge vector encompasses all the other ones, so we make the signature size explicit
only for this version. The signature size, in bits, of the protocol is

wλ log2pt{wq
loooooomoooooon

Master seeds

`w
´

λ log2pNq
loooomoooon

Round seeds

` ℓG
loomoon

Non-random edge

¯

“ λw log2ptN{wq ` wℓG. (3)

4 Reducing Verification Time

Taking a closer look at the formulation in the previous section, one can see that
there is no practical advantage in choosing N ą 1.

In fact, consider two different instantiations of the protocol in Figure 4:

- protocol Π, having N ą 1, t rounds, w rounds with i ă N and M public
values.

- protocol Π 1, having N 1 “ 1, t1 “ tN rounds, w1 “ w rounds with i ă N and
M 1 “ M public values.

By (3), that the signature size is exactly the same for both protocols, apart from
slight differences due to roundings. For protocol Π, both signature generation
and verification require to compute CommitX for tN times. For protocol Π 1, this
function is called t1 “ tN times: hence, for the running time, we expect to have
no meaningful difference between the two protocols. Consider now the soundness
errors, which are respectively

ε “
1

`

t
w

˘

pMNqw
and ε1 “

1
`

t1

w1

˘

pM 1N 1qw
1

“
1

`

tN
w

˘

Mw
.

Then, for any w ą 1 and N ą 1, we have that ε is strictly greater than ε1.
Indeed, it is possible to show that

ˆ

t

w

˙

pMNqw ă

ˆ

tN

w

˙

Mw ùñ

ˆ

t

w

˙

Nw ă

ˆ

tN

w

˙

.
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To this end, observe that

ˆ

t

w

˙

Nw “

˜

w´1
ź

i“0

t ´ i

w ´ i

¸

Nw “

w´1
ź

i“0

Npt ´ iq

w ´ i

“

w´1
ź

i“0

tN ´ iN

w ´ i
ă

w´1
ź

i“0

tN ´ i

w ´ i
“

ˆ

tN

w

˙

.

In the end, the two protocols have the same computational complexity (for both
signing and verifying) and the same communication cost, but protocol Π 1 has
lower soundness error. So, protocol Π 1 is preferable for all relevant aspects. To
reduce the soundness error for protocol Π, we need to either use a larger value
for t and/or for w, but this would result either in an increased computational
complexity and/or in a larger communication cost. In practice, this shows that a
straightforward approach is not helpful in improving signature size with respect
to a classical Sigma protocol with challenge space of size 2; this is the case for
the protocol presented in the previous section, as well as that of [16], where the
latter corresponds to the protocol of Figure 4, with N “ 1.

In the next section, we argue that the idea of using paths in the action
graph is still useful, although in a somewhat unexpected aspect. Indeed, we
show that we can greatly reduce the computational complexity on the verifier’s
side, at the cost of a (slight) increase in signature size. We are able to reduce the
number of times a group actions needs to be computed, as well as the number of
calls to CommitX . Intuitively, this yields a considerable speed up the verification
algorithm; for instance, in schemes like [3] and [7], the computational cost is
dominated by the cost of evaluating the reduced row-echelon form of a matrix.
In principle, the same holds for schemes based on isogenies, like [4], although
in this case, the strategy used is radically different, since lG » λ, and there is
therefore no incentive in unbalancing the challenges.

4.1 Skipping Edges in the Action Graph

In Figure 5 we describe a modified version of the protocol in Figure 4. For the
sake of simplicity, the use of PRNG trees is made implicit. An example can be
seen in Figure 6. We see that computation of the group action is skipped for x1,
x2, x3 and x4: it is enough to combine g4 ¨ . . . ¨ g1 and then apply the result to
x. Analogously, we need to compute the group action and CommitX only for x4,
x5, x6, x7 and x8.

Theorem 2. Assuming the hardness of GAIP (Problem 1), the protocol in Fig-
ure 5 is a secure Zero-Knowledge identification protocol, in the random oracle
model, with soundness error:

ϵ “
1

N ` 1

Proof. As before, this proof is also found in the appendix (Appendix A.2), due
to space constraints.
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Private Key g P G
Public Key x1

“ g ‹ x

PROVER VERIFIER
Set x0 “ x
For i “ 1, ¨ ¨ ¨ , N :

Sample Seedi
$

ÐÝ t0, 1u
λ

Generate gi P G from Seedi
Compute xi “ gi ‹ xi´1

Set ci “ CommitXpxiq

Set c “ Merkle.Rootpc1, ¨ ¨ ¨ , cN q
c

ÝÝÑ

Sample i P t0, ¨ ¨ ¨ , Nu
i

ÐÝÝ

If i ă N :
Set g1

i`1 “ gi`1 ¨ gi ¨ ¨ ¨ g1 ¨ g´1

Set Response “
␣

g1
i`1, tSeedjuj‰i`1, tclulăi

(

Else:
Set Response “

␣

tSeedju1ďjďN , tclulăi

(

Response
ÝÝÝÝÝÑ

Retrieve gk from Seedk, for all k ‰ i ` 1
Compute xi “ pgi ¨ ¨ ¨ g1q ‹ x
Compute ci “ CommitXpxiq

If i ă N :
Compute xi`1 “ g1

i`1 ‹ x1

For j ą i ` 1:
Generate gi P G from Seedi
Compute xj “ gj ‹ xj´1

Compute cj “ CommitXpxjq

Verify c “ Merkle.Rootpc1, ¨ ¨ ¨ , cN q

Fig. 5: A single round of the new ZK-ID protocol, based on interruptions in the
action subgraph, that skips several part of the CommitX evaluations.

x x1 x2 x3 x4 x5 x6 x7 x8

x1

g4 ¨ ¨ ¨ g1

g6 g7 g8

g

g1
1 g1

2 g1
3 g1

4 g1
5 g1

6 g1
7 g1

8

✗

Fig. 6: Example of proof of knowledge with skipped edges, for i “ 4. The nodes
for which the verifier has to compute CommitX are given by gray circles.

Computational Complexity. On the prover’s side, this new version of the proto-
col does not modify anything. Indeed, they still need to compute both the group
action and the CommitX function for tN times. However, we can achieve signif-
icant reductions on the verifier’s side. Indeed, all rounds with no interruption
require to compute only one group action, as well as only one CommitX . For the
rounds with an interruption, on average, group actions and node commitments
are computed, on average, only around N{2 ` 1 times. In fact the challenge
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0 requires N evaluations, the challenges i ą 0 requires N ` 1 ´ i; the sum is
N ` NpN ` 1q{2 that divided by N ` 1 can be rounded to 1 ` N{2. Thus, in
the end, the average number of times node commitments are computed during
verification is

#CommitX “ pt ´ wq ` w

ˆ

N

2
` 1

˙

“ t ` w
N

2
.

The ratio between the number of node commitments during verification and
during the signature generations is the following:

η “
#CommitX

tN
“

t ` wN
2

tN
“

1

N
`

w

2t

As we shall see in the next section, this implies a significant reduction for the
computational complexity. Yet, before giving details, we render the protocol to a
signature scheme and propose a final optimization, which allows to further save
some communication cost. We also provide a precise estimate for the average
signature size.

4.2 Trading Signature Size with Computational Efficiency

Let c
puq

j denote the j-th commitment for the i-th round. In every round of the

new protocol, the verifier recomputes c
puq

N . Hence, the check on c
puq

N can be post-
poned to the end of the verification procedure; for this, it is enough that the

prover commits to Commit
`

c
p1q

N , ¨ ¨ ¨ , c
ptq
N

˘

. Starting from this consideration, we
see that the Merkle tree can be built, more conveniently, using only the interme-

diate nodes in the graph (e.g., the nodes x
puq

1 , ¨ ¨ ¨ , x
puq

N´1). Let T puq be the round

Merkle tree constructed from x
puq

1 , ¨ ¨ ¨ , x
puq

N´1, with root hpuq. Furthermore, we

consider a master Merkle tree T built from hp1q, ¨ ¨ ¨ , hptq, with root sh. The prover

computes the challenge Challenge
`

tc
puq

N u1ďuďt,sh
˘

. We parse the challenge as a

pair of vectors
`

ip1q, ¨ ¨ ¨ , iptq
˘

ˆ
`

zp1q, ¨ ¨ ¨ , zptq
˘

P t0, ¨ ¨ ¨ , Nut ˆ t1, ¨ ¨ ¨ ,Mut. The

prover will also sample a unique master seed MSeed
$

ÐÝ t0, 1uλ, which is used

to derive the round seeds ĘSeed
p1q

, ¨ ¨ ¨ ,ĘSeed
ptq

“ SeedTreepMSeedq. For round u,

the u-th round seed is further expanded into N seeds as Seedp1q, ¨ ¨ ¨ ,SeedpNq
“

SeedTreepĘSeed
puq

q.

If round u has an interruption (i.e., ipuq “ N), the verifier will locally re-

compute some of the intermediate nodes, namely, all nodes x
puq

j with j ě ipuq.

We write x
puq

0 “ x so that this is true also for ipuq “ 0. The verifier will need
the proof that these nodes are the same the prover commited to. This can be
provided with the round Merkle proof which we denote by MerkleProofpuq

“

T puq.Proof
`

1, ¨ ¨ ¨ , ipuq ´ 1
˘

. Also, the verifier will need the seeds to generate the

group elements g
puq

1 , ¨ ¨ ¨ , g
puq

ipuq , g
puq

ipuq`2
, ¨ ¨ ¨ , g

puq

N . The prover will provide the seed

path SeedPathpuq
“ SeedPath

`

ipuq ` 2, ¨ ¨ ¨ , N,ĘSeed
puq˘

.
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All rounds without an interruption can be handled together. Let U be the
set of indices for rounds without interruption, that is, U “

␣

u | ipuq “ N
(

. The
prover will need all round seeds for rounds indexed by U ; they can be efficiently
communicated through their path in the PRNG seed tree generated by MSeed;
the path is computed by the function SeedPath

`

U,MSeed
˘

.

For the sake of completeness, in Figure 7 we report the version of the protocol
with this last modification. In the figure, we have included all the relevant details,
such as using salt and indexing the commitments (to prevent pre-image collisions
attacks). Also, we have used Hash to indicate the generic Commit function. Before
deriving the signature size we consider that, for the trees we are employing, sizes
of proofs and paths are smaller: this is due to the fact that the seeds we do not
need to reveal, or the nodes for which we need to provide a Merkle proof, are
always adjacent.

Size of Merkle Proofs and Seed Paths. For the master Merkle proof, we cannot
make any assumption on the positions of the nodes for which the proof is pro-
vided. Taking into account multiple paths, the size of the master Merkle proof
would be 2wλ log2pt{wq, and, for the master seed path, the number of required
bits is wλ log2pt{wq. Instead, for round Merkle proofs and seed paths, we know
that the relevant nodes are always adjacent; this allows to reduce sizes of proofs
and paths. We describe what happens with Merkle proofs; for seed paths, the
reasoning is analogous.

Let us first start with the simple example of an interruption on the middle of
the action graph (i.e., i “ N

2 ): in this case, the round Merkle tree is made by two
sub-trees, each with N{2 nodes in the base layer. The nodes for the tree on the
right are computed by the verifier, while the prover provides the Merkle proof
for the tree on the left. Yet, this proof would only be constituted by a single
digest. We now tackle the general case, and consider an interruption in a generic
position i: in this case, the number of nodes for which we need to provide the
Merkle proof is

spiq “

#

0 if i ă 2,

i ´ 1 if i ď 2.

Let spiq denote the binary representation of spiq: then, the Merkle proof will
contain a unique hash for each one in spiq. Let wt

`

spiq
˘

be the Hamming weight
of spiq; since each specific value for i happens with probability 1{N , the average
size of the round Merkle proof is

ℓMerklepNq “
2λ

N

N´1
ÿ

i“0

wt
`

spiq
˘

. (4)
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Private Key gp1q, ¨ ¨ ¨ , gpMq
P G

Public Key set elements x1
i “ gi ‹ x, for i “ 1, ¨ ¨ ¨ ,M

//Generate commitments

Sample Salt, MSeed
$

ÐÝ t0; 1u
λ

Generate
!

ĘSeed
puq

)

1ďuďt
“ SeedTreepMseed, Saltq //Round seeds from master seed

Set tx
puq

0 u1ďuďt “ x
For u “ 1, ¨ ¨ ¨ , t:

Generate
!

Seed
puq

j

)

1ďjďN
“ SeedTreepĘSeed

puq, Saltq //Seeds for round u

For j “ 1, ¨ ¨ ¨ , N ´ 1:

Sample g
puq

j “ PRNG
`

Seed
puq

j

˘

Compute x
puq

j “ g
puq

j ‹ x
puq

j´1

Compute c
puq

j “ CommitX
`

x
puq

j , Salt, u, j
˘

Set T puq
“ MerkleTree

`

c
puq

1 , ¨ ¨ ¨ , c
puq

N´1

˘

//Round Merkle tree

Compute hpuq
“ T puq.Root //Round Merkle root

Sample g
puq

N “ PRNG
`

Seed
puq

N

˘

Compute x
puq

N “ g
puq

N ‹ x
puq

N´1

Compute c
puq

N “ CommitX
`

x
puq

N , Salt, u,N
˘

Set sT “ MerkleTree

ˆ

!

hpuq
)

1ďuďt

˙

//Master Merkle tree

Compute h “ sT .Root //Master Merkle root

Compute c “ Hash

ˆ

!

c
puq

N

)

1ďuďt
, h

˙

//Generate challenge vector

Set
!

ipuq, zpuq
)

1ďuďt
“ Challengepc, Salt,mq

Set U “ tu | ipuq
“ Nu //Indices of rounds with no interruption

Compute MSeedPath “ SeedPathpU, Mseed, Saltq //Master seed path

Compute MMerkleProof “ sT .Proof pUq //Master Merkle proof

For u such that ipuq
ă N :

Set g
1puq

ipuq`1
“ g

puq

ipuq`1
¨ g

puq

ipuq ¨ ¨ ¨ g
puq

1 ¨ g´1

zpuq

Set SeedPathpuq
“ SeedPath

´

ipuq, ĘSeedpuq, Salt
¯

//Round seed path

Compute MerkleProofpuq
“ T puq.Proof

´

ipuq, ¨ ¨ ¨ , N ´ 1
¯

//Round Merkle proof

Salt,c,

"

g
1puq

ipuq`1
,SeedPathpuq,MerkleProofpuq

*

uRU
,MSeedPath,MMerkleProof

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

Fig. 7: The generic signature algorithm based on the action subgraph with
skipped node commitments.

In practice, this is always slightly less than λ log2pNq. For instance, if N “

128, we get that the average size is 6.9λ. For the seed path the reasoning is the
same, but now each node in the tree is a binary string with length λ; so, the
average size of the round seed path is

ℓSeedpNq “
λ

N

N´1
ÿ

i“0

wt
`

spiq
˘

. (5)

This, in practice, is always slightly less than λ
2 log2pNq bits.
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Private Key gp1q, ¨ ¨ ¨ , gpMq
P G

Public Key set elements x1
i “ gi ‹ x, for i “ 1, ¨ ¨ ¨ ,M

Input signature Salt, c,
!

g
1puq

ipuq`1
, SeedPathpuq, MerkleProofpuq

)

uRU
, MSeedPath, MMerkleProof

Set
!

ipuq, zpuq
)

1ďuďt
“ Challengepc, Salt,mq //Retrieve challenges

Set U “ tu | ipuq
“ Nu //Indices of rounds with no interruption

For u “ 1, ¨ ¨ ¨ , t:

If ipuq
“ N : //Ephemeral case

Retrieve ĘSeed
puq from MSeedPath

Retrieve
!

Seed
puq

j

)

1ďjďN
“ SeedTreepĘSeed

puq, Saltq

Sample g
puq

j “ PRNG
`

Seed
puq

j

˘

for j “ 1, ...N

Compute x
puq

N “ pg
puq

N ¨ ¨ ¨ g
puq

1 q ‹ x

Compute c
puq

N “ CommitX
`

x
puq

N , Salt, u,N
˘

Else : //Non ephemeral case

Retrieve
!

Seed
puq

j

)

j‰ipuq`1
from SeedPathpuq

Sample g
puq

j “ PRNG
`

Seed
puq

j

˘

for j ‰ ipuq
` 1

Compute x
puq

ipuq “ pgipuq ¨ ¨ ¨ g1q ‹ x

Compute c
puq

ipuq “ CommitX
`

x
puq

ipuq , Salt, u, i
puq

` 1
˘

Compute x
puq

ipuq`1
“ g

1puq

ipuq`1
‹ x1

zpuq

Compute c
puq

ipuq`1
“ CommitX

`

x
puq

ipuq`1
, Salt, u, ipuq

` 1
˘

For ipuq
` 1 ă j ď N :

Compute x
puq

j “ g
1puq

ipuq`1 ‹ x
puq

j´1

Compute c
puq

j “ CommitX
`

x
puq

j , Salt, u, j
˘

Compute hpuq
“ T puq.Root from MerkleProofpuq and

!

c
puq

j

)

jěipuq

Compute h “ sT .Root from MMerkleProof and
!

hpuq
)

uRU
//Master Merkle root

Compute cVer “ Hash

ˆ

!

c
puq

N

)

1ďuďt
, h

˙

Return Valid if cVer “ c

Fig. 8: The generic signature verification algorithm based on the action subgraph
with skipped node commitments.

Signature Size. We are finally ready to derive the corresponding average signa-
ture size, which is

w
´

ℓSeedpNq
looomooon

Round seeds

` ℓMerklepNq
loooomoooon

Round Merkle proof

` ℓG
loomoon

Non random edge

¯

` wλ log2pt{wq
loooooomoooooon

Master seed path

` 2wλ log2pt{wq
looooooomooooooon

Master Merkle proof

` 3λ
loomoon

Hash and Salt

. (6)
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A Proofs of Security

We provide here the proofs of security that have been omitted in the main body
of the paper. Recall also that, by using Fiat-Shamir [1, 14], we can transform the
described ZK-ID protocols into signature schemes secure against chosen-message
attacks in the random oracle model.

A.1 Protocol of Figure 4

The completeness of the protocol is trivial from the description in Section 3.1;
we therefore proceed to prove Zero-Knowledge and 2-Special Soundness.

Zero Knowledge. We want to show that a simulator that knows, in advance, the
challenge value can produce a valid transcript which is statistically distributed
as the one that would be produced by an honest prover. To this end, we consider
a simulator that, on input i P t0, ¨ ¨ ¨ , Nu, proceeds as follows:

- if i “ N , it samples seeds Seed1, ¨ ¨ ¨ , SeedN and generates the random path
and the commitments; then, outputs all the seeds. Obviously, this output is
statistically distributed as the one of the honest prover;

- if i ă N , it selects random seeds Seed1, ¨ ¨ ¨ , Seedi and uses them to compute
tgjujďi and txjujďi inductively as xj “ gj ‹xj´1. Then, the simulator selects
uniformly at random rg P G and uses it to compute rxi`1 “ rg ‹ x1. Finally,
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if i ` 1 ă N , it selects the remaining random seeds Seedi`2, ¨ ¨ ¨ , SeedN , it
uses them to compute tgjujěi`2 and to inductively compute rxi`2 “ gi`2 ‹

rxi`1, . . . , rxN “ gN ‹ rxN´1. The simulator hashes x1, . . . , xi, rxi`1, . . . , rxN to
produce the commitments, which indistinguishable from those of a honest
execution. As output, the simulator provides Response “ trg, tSeedjuj‰i`1u.
The elements rg and tSeedjuj‰i`1 are independent and uniformly distributed
over G. This is also the case of the response of an honest prover because g1

i`1

has the form
g1
i`1 “ gi`1

loomoon

Secret and
ephemeral

¨ gi ¨ gi´1 ¨ ¨ ¨ g1
looooooomooooooon

Public and
ephemeral

¨ g´1
loomoon

Secret

.

Since gi`1 is independent from the tgjujďi`1, g
1
i`1 is also distributed uni-

formly at random independently from tSeedjuj‰i`1u. One can immediately
check that the simulator’s response leads to a valid transcript.

2-Special Soundness. Let us consider two accepting transcripts with the same
commitment, but different challenge values, say, i0 ‰ i1. Without loss of gener-
ality, let i0 ă i1. We show that there is an efficient extractor that can compute a
witness. The idea of the proof is that of showing that, using the edges contained
in the two transcripts, the extractor is always able to obtain the element g such
that x1 “ g ‹ x.

From the response to i1, using the walk x ÞÑ xi1 , we get r̃ such that ci0`1 “

CommitXpr̃ ‹ xq since i0 ` 1 ď i1. From the response to i0 we have g1
i0`1 that

satisfies ci0`1 “ CommitXpg1
i0`1 ‹x1q. By the collision resistance of the CommitX

function we have that r̃ ‹ x “ g1
i0`1 ‹ x1 that implies x1 “ pg1´1

i0`1r̃q ‹ x, thus we
have obtained the secret g and solved the GAIP.

The 2-Special Soundness immediately implies that the soundness error is the
reciprocal of the cardinality of the challenge space (N ` 1), as claimed by the
Theorem.

A.2 Protocol of Figure 5

As before, the completeness of the protocol is trivial from the description in
Section 3.1. To prove Zero-Knowledge, we can use the same simulator of Ap-
pendix A.1 to generate the seeds and the group elements. To generate the com-
mitment values tclulăi, we can simply consider random values on the CommitX
co-domain, since we are in the random oracle model.

The 2-Special Soundness can also be proven with similar strategies as in
Appendix A.1, with the difference of focusing on the final tail. For clarity, we
still include here a detailed proof with an example.

2-Special Soundness. Let us consider two accepting transcripts with the same
commitment, but different challenge values, say, i0 ‰ i1. Without loss of gener-
ality, let i0 ă i1. We show that there is an efficient extractor that can compute a

17



witness. The idea of the proof is that of showing that, using the edges contained
in the two transcripts, the extractor is always able to obtain the element g such
that x1 “ g ‹ x.

By the collision resistance of Merkle.Root, we get the same committed values
c1, ..., cN . From the response to i1, we get r̃ such that ci1 “ CommitXpr̃‹xq. From
the response to i0, we have r̂ “ g1

i0`1 for i1 “ i0 ` 1 or r̂ “ gi1 ¨ ¨ ¨ gi0`2 ¨ g1
i0`1

otherwise (observe that in this case i1 ą i0 `1), that satisfies ci1 “ CommitXpr̂‹

x1q. By the collision resistance of the CommitX function we have that r̃‹x “ r̂‹x1

that implies x1 “ pr̂´1r̃q‹x, thus we have obtained the secret g and solved GAIP.

Once again, the 2-Special Soundness immediately implies that the soundness
error is the reciprocal of the cardinality of the challenge space, as claimed by the
Theorem.

Example. A graphical representation of the extractor’s behavior is given in Fig-
ure 9. For instance, for the case i0 “ 4 and i1 “ 6, which is reported in the top
half of the figure, the extractor can recover the secret g using the following path
x ÞÑ x6 ÞÑ x5 ÞÑ x1. For the case i0 “ 4, i1 “ 8, the secret can be extracted from
the path

x ÞÑ x8 ÞÑ x7 ÞÑ x6 ÞÑ x5 ÞÑ x1.

Note that commitment verification after the interruption plays a crucial role,
since his implies that there are common nodes in the paths associated to the two
transcripts. Without this, the knowledge extractor would not work. existence of
these paths For instance, let us consider again the case depicted in Figure (a)
and assume that only the final element x8 is verified. Elements for the transcript
i1 are denoted with ˚. In this case, the extractor would know the following two
paths

x1 ÞÑ x5 ÞÑ x6 ÞÑ x7 ÞÑ x8,

x1 ÞÑ x˚
7 ÞÑ x˚

8 .

Notice that the transcripts also contains paths of the form x ÞÑ x4 and x ÞÑ x˚
6 ,

but there is no guarantee that indeed x6 “ x˚
6 . The extractor knows only that

x8 “ x˚
8 (since the last commitment is checked in both transcripts), but this

would give only information about a circular loop that starts and ends in x1.
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x x1 x2 x3 x4 x5 x6 x7 x8

x1

g4 ¨ . . . ¨ g1

g6 ¨ . . . ¨ g1

g6 g7 g8

g

g1
5 g1

7

✗ ✗

(a) Case i0 “ 4, i1 “ 6

x x1 x2 x3 x4 x5 x6 x7 x8

x1

g4 ¨ . . . ¨ g1

g8 ¨ . . . ¨ g1

g6 g7 g8

g

g1
5

✗

(b) Case i0 “ 4, i1 “ N “ 8

Fig. 9: Representation of the action graph available to the knowledge extractor,
for two pairs of accepting transcripts. Colors have the following meaning: blue is
associated to knowledge provided only in transcript i0, red to knowledge provided
only in transcript i1, violet (red + blue) to knowledge that is common for both
transcripts. Analogously, nodes with double outline are commitments that are
common for both transcripts.
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