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Abstract. Functional encryption (FE) is a primitive where the holder of a master secret key can control
which functions a user can evaluate on encrypted data. It is a powerful primitive that even implies indis-
tinguishability obfuscation (iO), given sufficiently compact ciphertexts (Ananth-Jain, CRYPTO’15 and
Bitansky-Vaikuntanathan, FOCS’15). However, despite being extensively studied, there are FE schemes,
such as function-hiding inner-product FE (Bishop-Jain-Kowalczyk, AC’15, Abdalla-Catalano-Fiore-
Gay-Ursu, CRYPTO’18) and compact quadratic FE (Baltico-Catalano-Fiore-Gay, Lin, CRYPTO’17),
that can be only realized using pairings. This raises whether there are some mathematical barriers
which hinder us from realizing these FE schemes from other assumptions.
In this paper, we study the difficulty of constructing lattice-based compact FE. We generalize the
impossibility results of Ünal (EC’20) for lattice-based function-hiding FE, and extend it to the case
of compact FE. Concretely, we prove lower bounds for lattice-based compact FE schemes which meet
some (natural) algebraic restrictions at encryption and decryption, and have messages and ciphertexts
of constant dimensions. We see our results as important indications of why it is hard to construct lattice-
based FE schemes for new functionalities, and which mathematical barriers have to be overcome.

1 Introduction

Functional encryption (FE) [BSW11, O’N10] is an advanced encryption primitive that allows fine-grained
access control over the encrypted data. In contrast to conventional encryption schemes, which are all-or-
nothing, in (secret-key) FE there is a master secret key msk that allows to generate constrained functional
secret keys. More precisely, every secret key skf is associated with a function f , and given an encryption
Enc(msk, x) of some message x (under the master secret key msk), the decryption with skf only reveals f(x),
and nothing more about x.

Since its introduction, FE has been subject to intense study, which resulted in both FE schemes for general
functionalities [GGH+13, AR17, CVW+18, AV19], thereby entailing feasibility results, and FE schemes for
limited classes of functions that are of particular interest for practical applications, e.g., (function-hiding)
inner-product FE (IPFE) [ABDP15, BJK15, ALS16, Lin17, Tom19, ALMT20] and compact FE for quadratic
functions [BCFG17, Lin17, AS17, Gay20, Tom23]. Furthermore, IPFE and quadratic FE have been extended
to multi-input [AGRW17, ACF+18, AGT21a, AGT22], (decentralized) multi-client [CDG+18, ABKW19,
LT19, ABG19, AGT21b], and identity/attribute-based [ACGU20, CRS+22] settings.

We also know that FE is a powerful primitive that even implies indistinguishability obfuscation (iO).
More precisely, we know that a compact (i.e., sublinear ciphertext size) single-key FE together with plausible
assumptions imply iO [AJ15, BV15, LT17, KNT18, Agr19, AP20, JLS21, JLS22].

Moreover, we know that FE for general functionalities with bounded number of secret keys (that an
adversary can learn), can be achieved from minimal assumptions [AV19], such as public-key encryption
(PKE) and one-way functions (OWFs). However, if we want to achieve security for an unbounded number
of secret keys, then we either need to rely on heavy-machinery, such as iO [GGH+13], or restrict ourselves
to (function-hiding) IPFE, linearly compact quadratic FE or FE for constant-degree polynomials which are
obtained by relinearization. Even so, for linearly compact quadratic FE and function-hiding FE the only
known constructions are pairing-based [BJK15, BCFG17, Lin17, Gay20].

In a recent work, Ünal [Üna20] showed implausibility of constructing lattice-based function-hiding IPFE.
More precisely, Ünal [Üna20] extracted the common properties (of decryption and encryption algorithms) of
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known lattice-based FE schemes, and showed that under these properties an FE scheme cannot be function-
hiding. Given this result and the usefulness of compact FE for constructing advanced primitives, such as iO,
in this work we ask the following question:

What hinders us from constructing lattice-based compact FE?

1.1 Lattice-Based Functional Encryption Framework

To investigate the above question, we need to capture lattice-based FE schemes in a non-black box way. For
this end, we reintroduce here the framework of Ünal [Üna20]:

Definition 1 (Lattice-Based FE Scheme). Let FE = (Setup,KeyGen,Enc,Dec) be an FE scheme. Let
q be a prime and p < q be the modulus of the message space. We call FE lattice-based if the following
conditions are met:

1. Enc computes ciphertexts as follows: On input a master secret key msk and a message x ∈ Zn
p , Enc first

generates random polynomials r1, . . . , rm ∈ Zq[X1, . . . , Xn] of constant degree without looking at x. It
then evaluates r1, . . . , rm at x and outputs the ciphertext

ctx := (r1(x), . . . , rm(x)) ∈ Zm
q .

2. Each secret key output by KeyGen is a polynomial in Zq[Z1, . . . , Zm] of constant degree.
3. On input a secret key sk ∈ Zq[Z1, . . . , Zm] and a ciphertext ct ∈ Zm

q , the decryption algorithm Dec
evaluates sk on ctx and rounds the result to the nearest integer modulo p, i.e.,

Dec(sk, ct) = ⌈sk(ct) · p/q⌋ ∈ Zp .

The lattice-based FE framework makes strong restrictions on the encryption and decryption algorithm of
FE schemes. However, since compact and function-hiding FE schemes do exist assuming the security of
pairing groups [BJK15, Gay20], it is necessary to restrict the computational model of an FE scheme at some
points. We argue that the restrictions made by the framework of [Üna20] are the right ones, in the sense that
they are loose enough to capture all relevant FE schemes (including identity-based (IBE), attributed-based
(ABE) and predicate encryption (PE) schemes), whose security rely on the Learning With Errors-assumption
(LWE). Moreover, these restrictions are decisive enough to make impossibility results for schemes captured
by this framework provable. Let us discuss this in more detail:

First, a closer look at existing lattice-based FE/IBE/ABE/PE schemes [ABB10, GVW13, BGG+14,
GVW15, ALS16, AR17, AP20] reveals that the restrictions imposed in Definition 1 are quite natural and
fulfilled by almost3 all of those schemes. As a prime example, we can present here the encryption algorithm
of the FE scheme due to Agrwal, Libert and Stehlé [ALS16]: The public key consists of two matrices A ∈
Zm×n
q , B ∈ Zℓ×n

q . To encrypt input vectors x ∈ Zℓ
p, ciphertexts are generated by sampling a uniformly

random vector s← Zn
q , two Gaussian noise vectors e0 ← DZm,σ, e1 ← DZℓ,σ and computing

ct = (As+ e0, Us+ e1 + f · x),

where f is the scaling factor (commonly ⌊q/K⌋, for some integer K). Now observe that we can rewrite this
in two parts:

- a complex offline part, where m+ ℓ multivariate degree-1 polynomials

g1(X), . . . , gm(X), h1(X), . . . , hℓ(X) ∈ Zq[X1, . . . , Xℓ]

are sampled using only the public values (p, q, f, A,B) (and without looking at the input x),

gi(X1, . . . , Xℓ) := ⟨ai | s⟩+ e0,i,

hi(X1, . . . , Xℓ) := ⟨bi | s⟩+ e1,i + f ·Xi

3 An exception is the decryption algorithms of some ABE schemes [GVW13, BGG+14], that need to evaluate a
predicate of high depth at decryption. If those ABE schemes are only instantiated with constant depth predicates,
then their decryption algorithm also fits our framework.
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- a simple online part, where the previously sampled polynomials are evaluated on input x in order to
compute the ciphertext,

ct = (g1(x), . . . , gm(x), h1(x), . . . , hℓ(x)).

This shows that the encryption algorithm of [ALS16] fits into our framework (their decryption algorithm
falls into our framework too, which is easy to see).

For our restrictions at decryption, we point out that it was already noted by Brakerski et al. [BDGM19]
that even all lattice-based fully homomorphic encryption (FHE) schemes4 decrypt by evaluating a low-degree
polynomial at the ciphertext and then rounding to the nearest result.

Second, we note that since the publication of [Üna20] there has been no construction of function-hiding FE
from LWE (or any other lattice-based assumption). While the results of [Üna20] only hold in the aforemen-
tioned lattice-based FE framework, they (up to now) correctly predicted that constructing function-hiding
FE from LWE is almost impossible. This justifies to see the framework of [Üna20] as gauge for measuring
the hardness of lattice-based FE schemes and understanding the mathematical barriers that are needed to
be overcome.

Third, we believe that one advantage of the lattice-based FE framework is that it allows stripping down
unnecessary details of concrete lattice-based FE schemes, and reduce them to only a few relevant details.
Take for example the noisy linear FE scheme of Agrawal and Pellet-Mary [AP20]. Their construction is
highly convoluted and lacks a security proof, however it is easy to check that it fits into our framework5.
Therefore, instead of analysing this noisy linear FE scheme, one can rather investigate if the notion of noisy
correctness and noisy security is impossible in the lattice-based FE framework, which allows one to focus
solely on the relevant details. However, we do not study the scheme of [AP20] here and instead leave it as
an interesting open problem.

1.2 Contribution

We generalize the results of Ünal [Üna20] for lattice-based function-hiding FE, and extend them to the
setting of lattice-based compact FE. Our main contribution is captured with the following informal theorem.

Theorem 1 (Informal Main Theorem 5). Let q > p be s.t. q is prime, q/p ∈ poly(λ) and p is greater
than some constant.

Let n,m ∈ O(1) and let FE be a lattice-based functional encryption scheme for quadratic polynomials
with input space Zn

p where each ciphertext is contained in Zm
q .

We assume that FE is compact i.e., the inequality

m <

(
n

2

)
=
n2 − n

2
.

for the dimension n of the message space and the dimension m of the ciphertext space of FE does hold.
If FE is correct, then it cannot be selectively IND-CPA secure.

At a high level, our proof idea consists of deriving a (special) SKE scheme from a lattice-based FE scheme
and using the compactness of the FE scheme to prove correctness of the aforementioned SKE scheme. This
in turn leads to a contradiction of a theorem specified in [Üna20] and gives us implicitly an attack on
lattice-based compact FE scheme.
4 However, it should be noted that most FHE schemes use an inverse gadget matrix at encrypting integers, which

circumvents our restrictions at encryption.
5 The decryption algorithm of [AP20] applies the modulo operation twice, which is equivalent to rounding twice.

This is one more rounding than the lattice-based FE framework allows. However, this is not an issue, since in both
cases decryptions to zero must imply that the scalar product of secret key and ciphertext is small.

In fact, for our result and the result of [Üna20] the decryption restriction of the framework can be relaxed to
the requirement that the evaluation of the polynomial skf on the ciphertext ctx must be small if f(x) = 0.
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1.3 Interpretation, Limitations and Open Problems

Parameter Restrictions. We have analogous parameter restrictions as in [Üna20]. More precisely, in order
to prove Theorem 1, we require that the exterior modulus q of the FE scheme is prime. Furthermore, the
fraction q/p is bounded by a polynomial in the security parameter λ, where p is the interior modulus, such
that p is for almost all λ greater than some constant that depends on the depth of the FE scheme. These
parameter restrictions are usual for schemes whose security is implied by LWE.

Additionally, we require that the input space dimension n and ciphertext space dimension m are both
constants, i.e., we restrict ourselves to constant-dimension messages and ciphertexts in this work. While this
is a non-standard restriction of parameters (most lattice-based schemes have ciphertexts of non-constant
dimensions), generalizing our results here for ciphertexts of non-constant dimension is highly non-trivial,
which will become apparent in Section 1.5.

Interpretation and Open Problems. We view the results in this paper as a useful argument in understanding
the difficulties in constructing lattice-based compact FE schemes. We leave it as an interesting open problem
to derive similar lower bounds for other types of FE schemes, such as the aforementioned noisy linear
FE [AP20] or FE for attribute-weighted sums [AGW20].

A potential approach to circumvent the lower bounds introduced here is to consider gadget matrices (as in
the FHE schemes). More precisely, if during encryption we compute a bit-decomposition, G−1(x), of an input
vector x, then our techniques are not applicable anymore, and one would need to develop more advanced
techniques. However, it is still unclear if inverse gadget sampling is helpful in constructing lattice-based FE
schemes.

Note on Algebraic LWE. A natural question to ask is whether more algebraically structured variants of LWE,
such as Ring-LWE [LPR10] or Module-LWE [LS15], can be used to overcome the lower bounds introduced
in this work. Analogous to the results of [Üna20], in our case also the additional algebraic structure does
not help, as long as the requirements of Theorem 1 are met. The reason for this is that the rings and
modules considered in algebraic LWE variants are vector spaces over Zq with the natural addition whose
multiplication operation can be modelled by quadratic polynomials.

1.4 Related Work

Ananth and Vaikuntanathan [AV19] showed that FE for P/poly with a bounded number of secret keys can be
achieved from minimal assumptions, i.e., PKE in public-key setting and OWFs in secret-key setting. Though,
the ciphertexts in their schemes are growing linearly with the number of secret keys handed out to the ad-
versary. This is not surprising given that a bounded public-key FE scheme with compact ciphertexts, i.e.,
sublinear6 ciphertext size, implies iO [AJ15, BV15] 7 . Similarly, Kitagawa, Nishimaki and Tanaka [KNT18]
showed that a bounded and compact secret-key FE scheme implies iO. Moreover, Ananth, Jain and Sa-
hai [AJS15] showed how to transform any collusion-resistant FE into a single-key FE scheme with compact
encryption circuit.

De Caro, Iovino, Jain, O’Neill, Paneth and Persiano [DIJ+13] showed that that compact FE with
simulation-based security is impossible for general functions [AGVW13, DIJ+13], however for construct-
ing iO from compact FE using the aforementioned works selective indistinguishability security suffices.

As explained in Section 1.5, in this work we consider that the encryption algorithm can be decomposed into
simple online and complex offline parts. Such a decomposition has been previously used both for constructing
new FE schemes [HW14, AR17] and showing impossibility results [Üna20]. However, none of these works
considered the compact FE case.
6 By “sublinear” we mean that the ciphertext size is sublinear in the number of function secret keys requested by

the FE adversary.
7 Technically, [AJ15] and [BV15] define compactness with respect to the running-time of the encryption algorithm.

More precisely, the running time of the encryption algorithm must only be a polynomial in the security parameter
and input message length, and has only sublinear dependence on the function size, i.e., poly(λ, |x|) · |f |1−e for some
constant e ∈ (0, 1].
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Other Models of Computation. Computational models are a popular approach in cryptography to prove
lower bounds for solving certain problems. However, the most well-known models, such as the generic group
model [Mau05, Sho97], the algebraic group model [FKL18] and the random oracle model [BR93] only deal
with group-based resp. hash-based problems and primitives. In fact, we are not aware of any other model
than [Üna20] for capturing lattice-based problems and primitives.

One model that potentially comes close is the model of arithmetic circuits of Applebaum, Avron and
Brzuska [AAB17]. They consider primitives and protocols where each party resp. primitive is computed by
an algebraic circuit that can be evaluated over any finite field. In their work, they prove several lower bounds
for protocols and primitives that arithmetizes. However, the model of arithmetic circuits falls short to capture
the lattice-based setting we consider here. In comparison with the lattice-based FE framework, we note three
differences:

1. In lattice-based FE schemes, encryption algorithms come in fact close to arithmetic circuits: they sample
some randomness and then apply an algebraic low-degree circuit on it. However, in the model of [AAB17],
the arithmetic circuit can only sample random bits and random field elements, while our framework allows
the circuit to sample any randomness that may depend on the field Zq (for example, arithmetic circuits
are unable to sample a uniformly random integer from {0, . . . , ⌈q/2⌋} ⊂ Zq).

2. We do not make any restrictions on the Setup and KeyGen algorithms of the FE schemes, while the model
of [AAB17] requires these algorithms to be arithmetic circuits.

3. The most crucial differences are our restrictions at decryption: at decryption our FE schemes apply
an arithmetic low-depth circuit at secret key and ciphertext and then round the result from Zq to Zp.
However, rounding is a prime example of a function that does not arithmetize, at all. In fact, the algebraic
degree of the rounding function grows with the size of the field.

Taking all these three points together, we see that the model of arithmetic circuits [AAB17] is not able to
capture typical characteristics of lattice-based primitives.

1.5 Technical Overview

In this subsection, we will sketch a proof for Theorem 1. To this end, we will first introduce the framework
of Ünal [Üna20] for modelling lattice-based FE schemes, which we use in this work. Next, we will revisit the
strategy of [Üna20] for proving lower bounds for lattice-based function-hiding FE schemes and generalize it.
Finally, we will attempt to adapt the generalized strategy on compact lattice-based FE schemes. Unfortu-
nately, our first attempt will fail, however we will be able to fix the strategy for compact lattice-based FE
schemes with ciphertexts and messages of constant dimensions.

Our Framework. A (secret-key) functional encryption (FE) scheme consists of four algorithms: Setup,KeyGen,
Enc and Dec. On input the security parameter λ, Setup computes a master secret key msk. On input msk
and a suitable function f : Zn

p → Zp, KeyGen generates a secret key skf for f . On input msk and a message
x ∈ Zn

p , Enc outputs a ciphertext ctx. Finally, on input skf and ctx, Dec outputs f(x).
In this work, we want to prove lower bounds for lattice-based FE schemes. In order to do that we adapt

the framework from [Üna20], i.e., we focus on FE schemes FE = (Setup,KeyGen,Enc,Dec) that are subject
to the following two restrictions:

– Enc is of constant depth, i.e., the output of Enc(msk, x) is computed in two phases: in the complex offline
phase, Enc only knows msk and computes arbitrarily complicated randomness (r1, . . . , rm). In the simple
online phase, Enc sees the message x ∈ Zn

p and the randomness (r1, . . . , rm) from the previous phase.
However, in this phase Enc must compute the ciphertext by an arithmetic circuit of constant depth.
Formally, we require that there exists an offline algorithm Encoff that on input msk outputs random
polynomials r1, . . . , rm ∈ Zq[X1, . . . , Xn] of constant degree. Enc(msk, x) is then expected to work by first
sampling (r1, . . . , rm)← Encoff(msk), and then outputting the ciphertext ctx = (r1(x), . . . , rm(x)) ∈ Zm

q .
We call the maximum degree of r1, . . . , rm the depth of Enc.
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– Each secret key skf is a polynomial in Zq[Y1, . . . , Ym] of constant degree and Dec works in a typical
lattice-based manner: it evaluates skf on the ciphertext ctx and rounds the result to the next number
modulo p. Formally, we require

Dec(skf , ctx) =

⌈
p

q
· skf (ctx)

⌋
.

For simplicity, we call FE schemes that adhere to these restrictions lattice-based.

Lower Bounds for Function-Hiding FE. Implausibility of lattice-based function-hiding FE schemes has al-
ready been shown in [Üna20]. We explain here the strategy used in [Üna20], before we generalize it and
adapt it to the compact FE case.

First, remember that in a function-hiding FE scheme the secret key skf hides the function f it evaluates
at decryption, i.e., given skf and ctx an adversary learns nothing about x and f besides f(x). If we are
given a function-hiding FE scheme FE = (Setup,KeyGen,Enc,Dec) for computing linear functions over Zn

p ,
we can construct a secret-key encryption scheme SKE′ = (Setup′,Enc′,Dec′) for messages in Zp from FE
s.t. its encryption algorithm Enc′ is of constant depth and produces short ciphertexts. In fact, consider the
following setup and encryption algorithms:

Setup′: On input 1λ, Setup′ samples msk← Setup(1λ). Then, it derives secret keys sk1, . . . , skQ−1 ← KeyGen(msk, 0)
for the zero function and one secret key skQ ← KeyGen(msk, f) for the function f that maps a vector
x ∈ Zn

p to its first coordinate x1. It returns msk′ := (msk, sk1, . . . , skQ).
Enc′: On input msk′ = (msk, sk1, . . . , skQ) and a message x1 ∈ Zp, Enc′ computes the ciphertext ct ←

Enc(msk, (x1, 0, . . . , 0)) and then applies the polynomials sk1, . . . , skQ−1 on it and outputs

ct′ = (sk1(ct), . . . , skQ−1(ct)) ∈ ZQ−1
q .

Since FE is a lattice-based FE scheme in the sense of our framework, its encryption algorithm Enc is of-
fline/online of constant depth. It follows that Enc′ is of constant depth, too, since Enc′ first runs Enc and
then again evaluates Q − 1 fixed polynomials sk1, . . . , skQ−1 ∈ Zq[Y1, . . . , Ym] of constant degree on the
output of Enc. Therefore, the depth of the online phase of Enc′ is bounded by the depth of Enc times the
maximum degree of sk1, . . . , skQ.

Additionally, each ciphertext output by Enc′ is short, i.e.,

ct′ ∈ [−q/p, q/p]Q−1.

This is because the decryption algorithm of FE works as Dec(sk, ct) = ⌈sk(ct) · p/q⌋. Now for i ∈ [Q − 1],
we know that Dec(ski, ct) must be zero, because ski is a secret key for the zero function. It follows that
ski(ct) · p/q must be rounded to zero in Zp, which implies that the absolute value of ski(ct) cannot be larger
than q/p.

Normally, extracting the message x1 out of ct′ would be impossible. However, since FE is function-
hiding and lattice-based, decryption with non-trivial success probability is possible. In fact, the distributions
KeyGen(msk, 0) and KeyGen(msk, f) must look indistinguishable for a PPT adversary. If Q is large enough,
one can show that the polynomial skQ must lie in the span of the polynomials sk1, . . . , skQ−1 with probability
1− o(1), i.e., for Q ∈ poly(λ) large enough, we have that

Pr
sk1,...,skQ−1←KeyGen(msk,0)

skQ←KeyGen(msk,f)

[
skQ ∈ spanZq

{sk1, . . . , skQ−1}
]
= 1− o(1).

This property gives rise to the following decryption algorithm Dec′ for SKE′:

Dec′: On input msk′ = (msk, sk1, . . . , skQ) and a ciphertext ct′ = (c1, . . . , cQ−1) ∈ ZQ−1
q , Dec′ checks if

skQ ∈ spanZq
{sk1, . . . , skQ−1} .
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If that is the case, Dec′ computes scalars α1, . . . , αQ−1 s.t. skQ = α1 · sk1 + . . .+αQ−1 · skQ−1, otherwise
Dec′ aborts. Dec′ can now reconstruct skQ(ct) by computing

skQ(ct) = (α1 · sk1 + . . .+ αQ−1 · skQ−1)(ct)
= α1 · sk1(ct) + . . .+ αQ−1 · skQ−1(ct)
= α1 · c1 + . . .+ αQ−1 · cQ−1.

Given skQ(ct), Dec′ can now output

Dec(skQ, ct) = ⌈skQ(ct) · p/q⌋ ∈ Zp .

Assuming that FE is correct, the probability of Dec′ to return the correct message is 1− o(1).
In summary, by assuming a lattice-based correct function-hiding FE scheme FE, we can construct an

SKE scheme SKE′ = (Setup′,Enc′,Dec′) with the following properties:

– Enc′ encrypts messages in Zp and is of constant depth.
– Each ciphertext output by Enc′ is short, i.e., lies in [−q/p, q/p]Q−1.
– The probability of Dec′ decrypting correctly is at least 1− o(1).
– Additionally, if FE is selectively IND-CPA secure, it can be shown – by a direct reduction – that SKE′ is

selectively IND-CPA secure, too.

The key observation of [Üna20] is that such a secret-key encryption scheme cannot exist, if q/p ∈ poly(λ).
In fact, the following result has been proven:

Theorem 2 ([Üna20] (Informal Corollary 3)). Let SKE be a secret-key encryption scheme of depth
d ∈ O(1) (with prime modulus q). Let B ∈ poly(λ) s.t. q/B is larger than some constant and assume that
each ciphertext of SKE lies in [−B,B]Q−1. Let {0, . . . , 2d} be the message space of SKE.

SKE is selectively IND-CPA secure iff for each pair of messages x, y ∈ {0, . . . , 2d} the statistical distance
of the distributions (msk,Enc(msk, x)) and (msk,Enc(msk, y)) is negligible.

This yields a contradiction to the scheme SKE′ we constructed, because Dec′ cannot have a successful
decryption probability of 1−o(1) when ciphertexts ct′x ← Enc′(msk, x) and ct′y ← Enc′(msk, y) are statistically
very close to each other.

It follows that one of the premises must have been wrong. Hence, if FE is lattice-based, correct and
function-hiding, it cannot be selectively IND-CPA secure.

Generalization. In the following, we generalize the previous strategy to show lower bounds for arbitrary
lattice-based FE schemes. We adapt the idea to construct a special secret-key encryption scheme SKE′′ =
(Setup′′,Enc′′,Dec′′) from a given lattice-based FE scheme FE = (Setup,KeyGen,Enc,Dec). Since FE is lattice-
based and correct, SKE′′ will have an encryption algorithm of constant depth and short ciphertexts. Fur-
thermore, if FE is selectively IND-CPA secure, then SKE′′ will be too (by a direct reduction). By Theorem 2,
it follows that Dec′′ can have no meaningful success at decrypting ciphertexts of SKE′′. A contradiction to
the security of FE now follows if we can show that Dec′′ will have indeed a non-trivial success probability at
decryption.

Concretely, SKE′′ contains the following algorithms:

Setup′′: Let F denote the space of functions supported by FE. On input 1λ, Setup′′ chooses Q functions f1, . . . , fQ
from F . Additionally, it chooses an index i∗ ∈ [Q] and an affine linear function νi∗ : Zp → Zn

p s.t. we
have for each x1 ∈ Zp

∀i ̸= i∗ : fi(νi∗(x1)) = 0

fi∗(νi∗(x1)) = x1.

Then, Setup′′ samples msk← Setup(1λ) and ski ← KeyGen(msk, fi) for i ∈ [Q], and outputs

msk′′ := (msk, sk1, . . . , skQ, νi∗ , i∗).
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Enc′′: Given msk′′ and x1 ∈ Zp, Enc′′ computes ct← Enc(msk, νi∗(x1)). It applies the polynomials sk1, . . . , ski∗−1,
0, ski∗+1, . . . , skQ at ct and returns

ct′′ := (sk1(ct), . . . , ski∗−1(ct), 0, ski∗+1(ct), . . . , skQ(ct)) ∈ ZQ
q .

Dec′′: On input msk′′ and ct′′ = (c1, . . . , cQ), Dec′′ computes the set

S :=
{
ski∗(w) | w ∈ Zm

q ,∀i ̸= i∗ : ski(w) = ci
}
. (1)

It chooses a uniformly random element ski∗(w)← S and outputs

⌈ski∗(w) · p/q⌋ = Dec(ski∗ , w) ∈ Zp .

Note that SKE′′ generalizes the ideas of SKE′ and does not fully specify Setup′′. In fact, the choice of the
functions f1, . . . , fQ in Setup′′ will depend on the concrete FE scheme. Similarly to SKE′, SKE′′ is of constant
depth if FE is lattice-based. Moreover, it has short ciphertexts if FE is lattice-based and correct, and SKE′′

is selectively IND-CPA secure if FE is so. We prove these properties in detail in Section 3.
Because of Theorem 2, we know that SKE′′ cannot be correct if FE is lattice-based, correct and selectively

IND-CPA secure. However, in the case of a function-hiding FE scheme, it can be shown that Dec′′ has a
high probability in correctly decrypting a ciphertext. The idea in this text is to prove that Dec′′ also has a
high success probability at decryption in the case of compact FE schemes. However, as it turns out, grasping
and using the compactness property of a lattice-based FE scheme is way more complicated than using the
function-hiding property and requires a more algebraic approach.

Compact Case. In the following, we outline our strategy for the case of compact FE and sketch a proof
attempt to show why Dec′′ – intuitively – has a non-trivial advantage at decrypting compact ciphertexts.
However, as we explain later, this proof attempt has some gaps. In this work, we fill these gaps in the case
of messages and ciphertexts of constant dimensions.

First, we give an informal definition of compactness (resp. succinctness):

Definition 2. Let FE = (Setup,KeyGen,Enc,Dec) be an FE scheme with ciphertexts in Zm
q and function

space F . We call FE compact (resp. succinct) if there is a constant e > 0 s.t.

log(q) ·m ∈ O(log(#F)1−e).

In other words, we demand that the binary representation of a ciphertext grows polynomially smaller than
the average binary representation of a function f ∈ F . In the literature, there are different definitions of
compactness and succinctness (c.f. [BV15, AJ15, AV19, KNT18]). We note that Definition 2 is comparatively
weaker and is implicitly fulfilled by the notions of the aforementioned works.

Now, let FE = (Setup,KeyGen,Enc,Dec) be a compact lattice-based FE scheme that supports the evalu-
ation of quadratic polynomials, i.e., the function space of FE is given by

F = {f ∈ Zp[X1, . . . , Xn] | deg f ≤ 2} ,

while its message space is Zn
p . Compactness now states that we have

log(q)m ∈ O(log(#F)1−e) = O((log(p) · n2)1−e) = O(log(p)1−e · n2−2e) (2)

for a constant e > 0. In particular, since p < q, we have m ∈ O(n2−2e), which means that the number
of coordinates of a ciphertext of FE is significantly smaller than the number of secret keys for linearly
independent functions of F . Our idea is to combine this together with a result of [Üna23] to achieve a
non-trivial success probability at decryption.

First, we will specify how Setup′′ chooses the functions f1, . . . , fQ ∈ F , the index i∗ ∈ [Q] and the function
νi∗ : Zp → Zn

p . Setup′′ enumerates all pairs (a, b) with 1 ≤ a < b ≤ n and indexes them by

(ai1 , bi1), . . . , (aiQ , biQ)
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for Q :=
(
n
2

)
= n2−n

2 . For i ∈ [Q], it sets fi to be the monomial of the ai-th and bi-th variable, i.e.,

fi(X1, . . . , Xn) := Xai ·Xbi ∈ F .

It draws i∗ ← [Q] uniformly at random and defines νi∗ to be the affine linear map

νi∗ : Zp −→ Zn
p

x 7−→ x · eai∗
+ ebi∗

where eai∗
and ebi∗ denote the ai∗ -th and bi∗ -th unit vectors. More precisely, the vector νi∗(x) has the value

x at position ai∗ , 1 at position bi∗ and 0 at every other position. It now follows for all i ∈ [Q],

fi(νi∗(x)) =

{
x, if i = i∗,

0, if i ̸= i∗.

To prove that Dec′′ has non-trivial advantage at decryption when receiving msk′′ and a ciphertext ct′′, we
need to show that the set S computed by Dec′′ in Equation (1) is small. Let ct′′ := (sk1(ct), . . . , ski∗−1(ct), 0,
ski∗+1(ct), . . . , skQ(ct)) for some ct← Enc(msk′′, νi∗(x)). Then, S must contain the correct value ski∗(ct) be-
sides other values ski∗(w). Algebraically, showing that S is small boils down to the problem of polynomial pre-
diction: we do not know ct, but we know its evaluations ski(ct) for many polynomials sk1, . . . , ski∗−1, ski∗+1, . . . ,
skQ ∈ Zq[Y1, . . . , Ym] of constant degree. Therefore, we can substantially bound the number of possible values
of ski∗(ct). We illustrate this with the following simple toy example:

Example 1. In our toy example, we assume that ciphertexts of FE have two coordinates ct = (c1, c2). Fur-
thermore, assume that i∗ = 3 and that the first three secret keys are given by

sk1(Y1, Y2) = Y1 + Y2, sk2(Y1, Y2) = Y 2
2 , sk3(Y1, Y2) = Y1 ∈ Zq[Y1, Y2].

Now, when we are given a ciphertext ct′′ of SKE′′, the values a := sk1(ct) = c1 + c2 and b := sk2(ct) = c22 are
fixed. In this situation, can we limit the number of possible values of sk3(ct)?

The answer turns out to be yes. Indeed, set h(T1, T2, T3) := T 4
1 +T 2

2 +T 4
3 − 2T 2

1 T2− 2T 2
1 T

2
2 − 2T 2

2 T
2
3 and

note that we have

h(sk1(Y1, Y2), sk2(Y1, Y2), sk3(Y1, Y2)) = 0. (3)

Now, if we plug in the values a, b ∈ Zp, we get the univariate degree-4 polynomial

h(sk1(ct), sk2(ct), T3) = h(a, b, T3) = T 4
3 − 2(a2 + b)T 2

3 + (a4 + b2 − 2a2b).

Because of Equation (3), we know that h(sk1(ct), sk2(ct), T3) must vanish at sk3(ct). In fact, sk3(ct) is a root
of h(a, b, T3) and S is contained in the zero locus of h(a, b, T3). Since h(a, b, T3) is of degree 4, there are at
most 4 possible values for sk3(ct). Hence, the probability of Dec′′ to draw the correct value sk3(ct) from S
and decrypting correctly is at least 1/4, which is noticeably larger than 1/p.

In general, the polynomials sk1, . . . , skQ are of some constant degree, let’s say d ∈ O(1), and their number
Q =

(
n
2

)
is substantially larger than the number of coordinates m ∈ O(n2−2e) of a ciphertext ct of FE. It has

been shown in [Üna23] that in such cases there exists a polynomial h of sublinear degree that algebraically
relates the polynomials sk1, . . . , skQ:

Theorem 3 (Adapted from [Üna23]). Let Q ∈ Ω(n2) and m ∈ O(n2−2e) for a constant e > 0. Let
g1, . . . , gQ ∈ Zq[Y1, . . . , Ym] be of degree d ∈ O(1).

Then, there exists a polynomial h ∈ Zq[T1, . . . , TQ] with the following properties:

h(T1, . . . , TQ) ̸= 0,

h(g1(Y1, . . . , Ym), . . . , gQ(Y1, . . . , Ym)) = 0,

deg h ∈ O(m1− e
(1−e)(d−1) ).
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Given this polynomial h, we can show that each element of the set S computed by Dec′′ in Equation (1)
must be a root of the polynomial

h(sk1(ct), . . . , ski∗−1(ct), Ti∗ ski∗+1(ct), . . . , skQ(ct)) ∈ Zq[Ti∗ ]. (4)

Hence, the size of S is bounded by deg h ∈ O(m1− e
(1−e)(d−1) ). Therefore, the success probability of Dec′′ to

decrypt correctly is at least 1

m
1− e

(1−e)(d−1)
, which is significantly larger than the trivial success probability

1/p, if p ∈ ω(m1− e
(1−e)(d−1) ).

The above reasoning shows how we can use the compactness of FE, which is considerably harder to grasp
than other properties like function-hiding, to construct a correct and secure SKE scheme SKE′′ with special
properties to ultimately derive a contradiction to Theorem 2 and an attack on the security of FE.

However, there is a gap in the above reasoning. What happens if the univariate polynomial in Equation (4)
is zero? In this case, the size of S does not need to be bounded by deg h and S could contain each element
of Zq. Now, what happens if the polynomial in Equation (4) is zero for almost all ciphertexts generated by
ct ← Enc(msk, νi∗(x))? In this case, we cannot guarantee a relevant success probability anymore for Dec′′.
Subsequently, SKE′′ is not sufficiently correct anymore, and we fail to reach a contradiction with Theorem 2.

In an attempt to fix this problem, one can consider the coefficients of the polynomial in Equation (4).
Each coefficient is computed by a polynomial in the variables T1, . . . , Ti∗−1, Ti∗+1, . . . , Tm of lower degree.
Concretely, we have

h(T1, . . . , Tm) =

deg h∑
j=0

hi(T1, . . . , Ti∗−1, Ti∗+1, . . . , Tm) · T j
i∗

for fitting polynomials h0, . . . , hdeg h ∈ Zq[T1, . . . , Ti∗−1, Ti∗+1, . . . , Tm] of sublinear degree. We can assume
that the highest degree coefficient hdeg h is non-zero. If the polynomial in Equation (4) is almost always zero
for ct← Enc(msk, νi∗(x)), it follows that hdeg h will almost always vanish on ct, and we could replace h with its
coefficient hdeg h. If hdeg h does always vanish on sk1(ct), . . . , ski∗−1(ct), ski∗+1(ct), . . . , skQ(ct), but does not
become zero when we plug in sk1(ct), . . . , ski∗−1(ct), ski∗+1(ct), . . . , skQ−1(ct), we could use it to bound the
number of possible values of skQ(ct) while fixing the values of sk1(ct), . . . , ski∗−1(ct), ski∗+1(ct), . . . , skQ−1(ct).
However, skQ(ct) will not be of great help to us if ct encrypts νi∗(x), since we have Dec(skQ, ct) = fQ(νi∗(x)) =
0. In fact, we need that hdeg h “behaves well” for a different distribution of ciphertexts, namely Enc(msk, νQ(x)).
This yields the following problem: it may happen that hdeg h(sk1(ct), . . . , ski∗−1(ct), ski∗+1(ct), . . . , skQ−1(ct))
is always zero when we sample ct← Enc(msk, νi∗(x)), but does not become zero when ct encrypts a “useful”
message and comes from Enc(msk, νQ(x)).

To solve this problem, we need that some kind of homogeneity among ciphertexts of FE for different
messages does hold. In particular, we need that if some polynomial g vanishes with overwhelming probability
on the distribution Enc(msk, x), for some x ∈ Zn

p , then for each y ∈ Zn
p , g vanishes with overwhelming

probability on the distribution Enc(msk, y). However, this kind of homogeneity can only be proven in cases
where g has a constant degree and each ciphertext only has a constant number of entries. This leads to the
result of our paper, which shows lower bounds for lattice-based compact FE schemes where the dimensions
of messages and ciphertexts are constant.

Messages and Ciphertexts of Constant Dimension. Let FE be lattice-based with support for quadratic poly-
nomials and messages and ciphertexts of constant size, by which we mean that their lengths n,m as vectors
are constant (p and q do not need to be constant). Note that in this case Definition 2 does not make any
sense, since Equation (2) cannot be fulfilled when n,m are constant, since q > p. Instead, we demand – in
the spirit of Definition 2 – that we have the sharp inequality

m <

(
n

2

)
=
n2 − n

2
. (5)
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Note that, if n and m would not be constant, Definition 2 would imply that m ∈ O(n2e−2) and Equation (5)
would be fulfilled in the non-constant case for λ large enough. This justifies the plausibility of Equation (5)
for an FE scheme with ciphertexts of constant dimension.

If n and m are constant, then the degree of the algebraic relation h ∈ Zq[T1, . . . , TQ] among the poly-
nomials sk1, . . . , skQ is constant too. If x, y ∈ Zn

p are two different messages, we can sufficiently relate the
probability of any constant-degree polynomial g ∈ Zq[Y1, . . . , Ym] vanishing on ciphertexts of x with the
probability of g vanishing on ciphertexts of y. In fact, let ctx ← Enc(msk, x) and cty ← Enc(msk, y), then for
each ℓ ∈ poly(λ) there is an εℓ ∈ negl(λ) s.t.

Pr [g(ctx) = 0] ≥ ℓ · Pr [g(cty) = 0]− (ℓ− 1)−O(1/(ℓ+ 1))− εℓ. (6)

In particular, Pr [g(ctx) = 0] must be overwhelming iff Pr [g(cty) = 0] is overwhelming. This homogeneity
among ciphertexts of FE allows us to fix the flaws of our previous attempt and reach a contradiction, which
results in an attack for lattice-based FE schemes for quadratic polynomials with messages and ciphertexts
of constant size that adhere to Equation (5). We detail this in Section 4.

On Difficulty of Overcoming Constant Dimensions. To extend the proof strategy here to FE schemes with
ciphertexts of non-constant dimensions m, one would need to extend the statements of Lemmas 6 and 7.

For Lemma 7, a non-constant dimension m would mean, the inequality (6) becomes

Pr [g(ctx) = 0] ≥ ℓ · Pr [g(cty) = 0]− (ℓ− 1)−O(mdeg g/(ℓ+ 1))− εℓ, (7)

where the degree deg g is sublinear in m. However, since the term ℓ, which stems from the runtime of a
potential IND-CPA adversary, must always be polynomial, and O(mdeg g) grows significantly larger than
each polynomial, inequality (7) does not give us a meaningful connection between the behaviour of g on
ciphertexts of different messages anymore.

Furthermore, an extension of Lemma 6 to the non-constant case would imply that each chain 0 = p0(λ) ≤
. . . ≤ pQ(λ) = 1 of probabilities has, for non-constant Q, a function I : N → N s.t. we have for infinitely
many λ

I(λ) ≤ Q(λ), pI(λ)(λ) ≥ 1− negl(λ) and pI(λ)(λ)− pI(λ)−1(λ) /∈ negl(λ).

However, for non-constant Q this is impossible. In fact, a counter-example is given by

pi(λ) :=

{
0, if i /∈ [Q],

1− 2i−Q, if i ∈ [Q].

2 Preliminaries

Notation. In this text, we will always denote the security parameter by λ ∈ N = {1, 2, . . .}, by which each
scheme and adversary is parametrized. For n ∈ N, set [n] = {1, 2, . . . , n}. Define

poly(λ) :=
{
p : N→ N | ∃d ∈ N : p(λ) ∈ O(λd)

}
,

negl(λ) :=

{
ε : N→ R | ∀d ∈ N : lim sup

λ→∞
ε(λ) · λd = 0.

}
.

In this text, we will work with two moduli p, q > 2 s.t. q is always prime and we always have p < 2q. We will
identify the finite field with the corresponding sets of integers centered around zero, Zq =

{−q+1
2 , . . . , q−12

}
,

and embed Zp into Zq as the non-negative numbers Zp = {0, . . . , p− 1} ⊂ Zq.
For two distributions A,B with the same support S, we define their statistical distance by

∆(A,B) :=
1

2

∑
s∈S

∣∣∣∣ Pra←A
[a = s]− Pr

b←B
[b = s]

∣∣∣∣ .
We will denote by ∀∞, resp. ∃∞, the quantifiers ’for almost all’ and ’for infinitely many’.
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2.1 Mathematical Preliminaries

Lemma 1 ([Üna20]). Let k be a field and let s ∈ N. Let C ⊂ ks be a memoryless distribution. For each
m ∈ N, we have

Pr
v1,...,vm←C

[vm ∈ spank {v1, . . . , vm−1}] ≥ 1− s

m
.

Lemma 2. Let d,m,Q ∈ N and let q be a prime. Let Y1, . . . , Ym be m variables and let T1, . . . , TQ be
Q additional fresh variables. Set t :=

(
m+d
d

)
and let Y I1 , . . . , Y It be an enumeration of all monomials of

Zq[Y1, . . . , Ym] of degree ≤ d. Let

ψd : Zm
q −→ Zt

q

y 7−→ (yI1 , . . . , yIt)

be the map that assigns to each point y a vector of all products of its entries of degree ≤ d.
We have for all ℓ ∈ N, y1, . . . , yℓ+1 ∈ Zm

q and h ∈ Zq[Y1, . . . , Ym, T1, . . . , Tm] of degree ≤ d the implication

ψd(yℓ+1) ∈ spanZq
{ψd(y1), . . . , ψd(yℓ)} ,∀i ∈ [ℓ] : h(yi, T1, . . . , TQ) = 0

=⇒ h(yℓ+1, T1, . . . , TQ) = 0.

Proof. Since h ∈ Zq[Y1, . . . , Ym, T1, . . . , TQ] is of degree ≤ d, there are polynomials c1, . . . , ct ∈ Zq[T1, . . . , TQ]
s.t. it can be written as

h(Y1, . . . , Ym, T1, . . . , TQ) =

T∑
i=1

ci(T1, . . . , TQ) · Y Ii .

Assume that we have ψd(yℓ+1) ∈ spanZq
{ψd(y1), . . . , ψd(yℓ)} and h(yi, T1, . . . , TQ) = 0 for each i ∈ [ℓ]. Then,

there are scalars γ1, . . . , γℓ ∈ Zq s.t.

ψd(yℓ+1) = γ1 · ψd(y1) + . . .+ γℓ · ψd(yℓ).

In particular, we have for each multi-index Ii

yIiℓ+1 = γ1 · yIi1 + . . .+ γℓ · yIiℓ .

We now have

h(yℓ+1, T1, . . . , TQ) =
T∑

i=1

ci(T1, . . . , TQ) · yIiℓ+1

=

T∑
i=1

ci(T1, . . . , TQ) ·

 ℓ∑
j=1

γjy
Ii
j

 =

ℓ∑
j=1

γj ·

(
T∑

i=1

ci(T1, . . . , TQ) · yIij

)

=

ℓ∑
j=1

γj · h(yj , T1, . . . , TQ) =
ℓ∑

j=1

γj · 0 = 0.

⊓⊔

Lemma 3. Let m, d ∈ N. For D = (m+ 1)dm, we have
(
m+1+D
m+1

)
>
(
m+dD

m

)
.

Proof. We have the following equivalent inequalities:(
m+ 1 +D

m+ 1

)
>

(
m+ dD

m

)
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⇐⇒ (m+ 1 + (m+ 1)dm) · (m+ (m+ 1)dm) · · · (1 + (m+ 1)dm)

> (m+ 1) · (m+ (m+ 1)dm+1) · · · (1 + (m+ 1)dm+1)

⇐⇒ (1 + dm) · (m+ (m+ 1)dm) · · · (1 + (m+ 1)dm)

> (m+ (m+ 1)dm+1) · · · (1 + (m+ 1)dm+1)

⇐⇒ 1 + dm >
m+ (m+ 1)dm+1

m+ (m+ 1)dm
· · · 1 + (m+ 1)dm+1

1 + (m+ 1)dm
. (8)

Equation (8) does hold since we have i+(m+1)dm+1

i+(m+1)dm ≤ d for i ≥ 0. ⊓⊔

2.2 Functional Encryption

Definition 3. Let X = (X λ)λ be a family of sets. We call X a message space (or value space) if there
is an s ∈ poly(λ) s.t. each xλ ∈ X λ has a binary representation of size #xλ ≤ s(λ). A subspace X̃ ⊂ X is a
family of sets X̃ = (X̃ λ)λ s.t. X̃ λ ⊆ X λ for all λ. X is called constant if we have X λ = X λ+1 for all λ ∈ N.

If X = (X λ)λ is a message space and Y = (Yλ)λ is a value space, we call F = (Fλ)λ a function space
if each fλ ∈ Fλ is a function of type fλ : Xλ → Yλ and if there is an s ∈ poly(λ) s.t. each fλ ∈ Fλ has a
binary representation of size #fλ ≤ s(λ). In this case, we will write F : X → Y.

Definition 4 (Functional Encryption). A (secret-key) functional encryption (FE) scheme for the
function space (Fλ)λ is a tuple of four algorithms FE = (Setup,KeyGen,Enc,Dec) that are described as
follows:

Setup: On input a (unary encoded) security parameter 1λ, it outputs a master secret key msk.
KeyGen: On input a master secret key msk and a description of a function f in the function space F of FE,

it outputs a secret key skf for f ∈ Fλ.
Enc: On input a master secret key msk and a message x of the message space X of FE, it outputs a ciphertext

ctx of x ∈ X λ.
Dec: On input a secret key skf and a ciphertext ctx, it outputs a value y ∈ Yλ.

We call FE correct, if there is an ε ∈ negl(λ) s.t. we have Pr[Dec(skf , ctx) ̸= fλ(xλ)] ≤ ε(λ) for all (fλ)λ ∈ F
and (xλ)λ ∈ X where msk← Setup(1λ), skf ← KeyGen(msk, fλ), ctx ← Enc(msk, xλ).

Definition 5 (Selective IND-CPA Security). Let FE = (Setup,KeyGen,Enc,Dec) be an FE scheme
for the function space (Fλ)λ. We define the selective IND-CPA security game of FE as an experiment
Expind-cpaFE (A, 1λ) between an adversary A and a challenger C that proceeds in the following steps:

Experiment Expind-cpaFE (A, 1λ)

1. A computes two lists of candidate messages (x01, . . . , x
0
N ), (x11, . . . , x

1
N ) ∈ XN

λ and a list of functions
(f1, . . . , fQ) ∈ FQ

λ , and submits all three lists to the challenger C.
2. C draws a random bit b← {0, 1}, computes msk← Setup(1λ) and

cti ← Enc(msk, xbi ) for i = 1, . . . , N,

skj ← KeyGen(msk, fj) for j = 1, . . . , Q.

C sends the lists (ct1, . . . , ctN ) and (sk1, . . . , skQ) to A.
3. A outputs a guess bit b′.
4. If b = b′ and if for each i ∈ [N ] and j ∈ [Q]

fj(x
0
i ) = fj(x

1
i ),

the experiment outputs 1, else 0.
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For a fixed algorithm A and an FE scheme FE, the advantage of A is defined by

Advind-cpaFE

(
A, 1λ

)
:= Pr[Expind-cpaFE (A, 1λ) = 1]− 1/2.

We call FE selectively IND-CPA secure if any PPT adversary A has negligible advantage in the above
game.

2.3 Lattice-Based Encryption Algorithms

In the following, we will recapitulate the definition of offline-/online-encryption of constant depth that has
been used in [Üna20].

Definition 6. Let FE = (Setup,KeyGen,Enc,Dec) be a functional encryption scheme with messages space
X = Zn

p .
Let further q = q(λ) be a primes.t. each ciphertext output by Enc is a vector in Zm

q .
Let d ∈ N be constant. We say that Enc is of depth d if there is an offline algorithm Encoff that on input

msk outputs m polynomials r1, . . . , rm ∈ Zq[X1, . . . , Xn] of degree ≤ d s.t. the following distributions are
identical for each msk← Setup(1λ) and x ∈ Zn

p :

{(r1(x), . . . , rm(x)) | (r1, . . . , rm)← Encoff(msk)}

and

{ct | ct← Enc(msk, x)} .

Note, that we don’t impose any bounds on the computational complexity of Encoff .

In other words, an encryption algorithm of constant depth works in two phases: In an offline phase, it first
sees the secret key, but doesn’t get to know the message that is to be encrypted. It can then use any amount
of time to compute polynomially bounded randomness for the second step. In the online phase, the algorithm
gets the randomness from the first phase and gets to see the message. It must now compute each entry of the
ciphertext vector in an arithmetically very simple way, i.e., by applying constant degree polynomials over
the randomness from the offline phase and the coordinates of the message vector.

Since we want to build upon the results of [Üna20], we also need to introduce the notion of encryption
of polynomial width.

Definition 7. Let Enc be an encryption algorithm that outputs vectors in Zm
q .

We say that Enc is of width B = B(λ) < q/2 if there is an ε ∈ negl(λ) s.t. we have for all (xλ)λ ∈ X

Pr
msk←Setup(1λ)
ct←Enc(msk,xλ)

[||ct||∞ > B] ≤ ε(λ),

where ||ct||∞ is defined as the largest absolute value among entries of ct ∈
{
− q−1

2 , . . . , q−12
}m

= Zm
q .

When we speak of lattice-based FE schemes, we will make the same restrictions on FE schemes that have
been made in [Üna20].

Definition 8 (Lattice-Based FE Scheme). Let FE = (Setup,KeyGen,Enc,Dec) be an FE scheme. Let q
be prime and n,m ∈ poly(λ). Let d1, d2 ∈ N be constants.

We call FE lattice-based if the following conditions are met:

1. The message space of FE is X = Zn
p .

2. Each ciphertext of FE is an element of Zm
q for prime q.

3. Enc is of depth d1.
4. Each secret key output by KeyGen is a polynomial in Zq[Z1, . . . , Zm] of total degree ≤ d2
5. We have p < q and the decryption algorithm Dec works as follows:

Dec(sk, ct) = ⌈sk(ct) · p/q⌋ ∈ Zp .

We call d1 the encryption depth and d2 the decryption depth of FE.
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2.4 Secret-Key Encryption

We will define here secret-key encryption schemes as a special case of functional encryption schemes where
the function spaces only contain the identity function.

Definition 9 (Secret-Key Encryption). A secret-key encryption (SKE) scheme is an FE scheme
SKE = (Setup,KeyGen,Enc,Dec) for a function space F , where each Fλ only contains the identity function
id : X λ → X λ.

For an SKE SKE = (Setup,KeyGen,Enc,Dec), we will always assume that the master secret key msk and
the derived key skid of the identity are identical and that KeyGen(msk, id) will always output msk. Subsequently,
we will omit the algorithm KeyGen from the list of algorithms (Setup,Enc,Dec) of SKE.

For convenience, we will also introduce the notion of partial secret-key encryption schemes. A partial
SKE is essentially a normal SKE without a decryption algorithm.

Definition 10 (Partial Secret-Key Encryption). A partial secret-key encryption scheme SKE =
(Setup,Enc,_) is a pair of algorithms Setup and Enc with fitting message space X that adhere to the syntax
in Definition 4.

A fitting decryption algorithm for (Setup,Enc,_) is an algorithm Dec s.t. the tuple (Setup,Enc,Dec) is
an SKE in the sense of Definition 9.

Note that the notion of selective IND-CPA security in the sense of Definition 5 is well-defined for partial
SKEs. Additionally, the notions of bounded encryption depth and width in the sense of Definitions 6 and 7
are well-defined for partial SKEs.

3 General Approach

We present here a general approach for showing lower bounds of lattice-based FE schemes in the sense of
Definition 8. This approach generalizes the strategy of Ünal [Üna20] for function-hiding FE schemes and will
be applied by us again on compact FE schemes.

The key element for showing IND-CPA insecurity in [Üna20] was the following theorem.

Theorem 4 ([Üna20]). Let q be a prime, d constant and B ∈ poly(λ). Let M = M(λ) ∈ N be such that
M ≥ 2d and c ·Md ·B < q for some constant8 c ∈ N that depends on d.

Let SKE = (Setup,Enc,_) be a partial SKE scheme with message space X = {0, . . . ,M} s.t. Enc is of
depth d and width B. Then, the following are equivalent:

1. SKE is selectively IND-CPA secure against PPT adversaries.
2. SKE is selectively IND-CPA secure against unbounded adversaries (that get to know the secret key of

SKE).
3. For each polynomial r ∈ poly(λ) there is an ε ∈ negl(λ) s.t. for msk← Setup(1λ)

Pr

[
∀x, y ∈ X λ : ∆(Enc(msk, x),Enc(msk, y)) <

1

r(λ)

]
≥ 1− ε(λ).

4. There is an ε ∈ negl(λ) s.t. we have ∆(Cx, Cy) ≤ ε(λ) for all x, y ∈ X , where Cx is the distribution that
computes msk← Setup(1λ), ctx ← Enc(msk, xλ) and outputs (msk, ctx).

In [Üna20], only the equivalence of the first and third statement has been shown. However, it is easy to see
that the second and fourth statement are equivalent to the third statement.

Given a lattice-based FE scheme FE of encryption depth d1 ∈ O(1) and decryption depth d2 ∈ O(1), we
want to use Theorem 4 as follows to deduce lower bounds for FE. To this end, we construct a partial SKE
for integer messages from FE as follows:
8 More precisely, we have that c = 2(d+ 1)2(d!)3dd as shown in [Üna20].
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Definition 11. Let FE = (Setup,KeyGen,Enc,Dec) be a functional encryption scheme with message space
X = Zn

p . Let M ∈ poly(λ). We construct a partial SKE SKE′ = (Setup′,Enc′,_) with message space X ′ :=
{0, . . . ,M} with the following algorithms:

SetupPre
′: There is a preceding setup algorithm that on input 1λ chooses functions f1, . . . , fQ ∈ F . Then, it chooses

an index i∗ ∈ [Q] and a linear map

ν : Zp −→ Zn
p

s.t. we have for all x ∈ Zp

∀i ̸= i∗ : fi(ν(x)) = 0,

fi∗(ν(x)) = x.

It outputs (f1, . . . , fQ, ν, i∗).
Setup′ : On input 1λ, Setup′ runs (f1, . . . , fQ, ν, i∗)← SetupPre

′(1λ).
Then, Setup′ computes msk ← Setup(1λ) and ski ← KeyGen(msk, fi) for i ∈ [Q], and outputs the new
master secret key

msk′ := (msk, sk1, . . . , skQ, ν, i∗).

Enc′ : On input msk′ := (msk, sk1, . . . , skQ, ν, i∗) and a message x ∈ {0, . . . ,M}, Enc′ runs ctx ← Enc(msk, ν(x))
and outputs the new ciphertext

ct′x := (sk1(ctx), . . . , ski∗−1(ctx), 0, ski∗+1(ctx), . . . , skQ(ctx)).

We demand that SetupPre
′ can be computed by a PPT algorithm.

We now have the following result:

Lemma 4. In the scheme SKE′ = (Setup′,Enc′,_) from Definition 11, Enc′ is of depth d1 · d2, if FE is
lattice-based with encryption depth d1 and decryption depth d2.

If FE is correct and lattice-based, then Enc′ is of width ⌈q/p⌋, and, if FE is selectively IND-CPA secure,
then SKE′ is selectively IND-CPA secure.

Proof. 1. Let FE be lattice-based with encryption depth d1 and decryption depth d2. Then, there is an
algorithm Encoff that on input msk outputs m polynomials r1, . . . , rm ∈ Zq[X1, . . . , Xn] of degree ≤ d1
s.t. Enc(msk, x) is equally distributed as (r1(x), . . . , rm(x)) for each x ∈ Zn

p .
We now define Encoff

′ as follows. On input msk′ := (msk, sk1, . . . , skQ, ν, i∗), Encoff
′ first computes

(r1, . . . , rm)← Encoff(msk) and then returns the polynomials

∀i ̸= i∗ : r
′
i(X) := ski(r1(ν(X)), . . . , rm(ν(X))) ∈ Zq[X],

r′i∗(X) := 0.

The degree of each ski(r1(ν(X)), . . . , rm(ν(X))) is bounded by d1 · d2 · 1, since each ski is a polynomial
in Zq[Z1, . . . , Zm] of degree ≤ d2 and ν is a linear function i.e., a degree-1 polynomial.
Moreover, for each x ∈ {0, . . . ,M} and msk′, the output of Enc′(msk′, x) is identically distributed as
(r′1(x), . . . , r

′
Q(x)) for (r′1, . . . , r

′
Q)← Encoff

′(msk′).
2. Let FE be correct, i.e., there is an ε ∈ negl(λ) s.t. for each (gλ)λ ∈ F and (xλ)λ ∈ X we have

Pr
msk←Setup(1λ)
sk←Dec(msk,gλ)
ct←Enc(msk,xλ)

[Dec(sk, ct) = gλ(xλ)] ≥ 1− ε(λ).

Since FE is lattice-based, we know that Dec works by Dec(sk, ct) = ⌈sk(ct) · p/q⌋ .
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Assume, for the sake of contradiction, that Enc′ is not of width q/p. This implies that there is one λ ∈ N
and an x′ ∈ {0, . . . ,M(λ)} s.t.

ε(λ) < Pr
msk′←Setup′(1λ)
ct′←Enc′(msk′,x′)

[
||ct′||∞ >

q

p

]

= Pr
(f1,...,fQ,ν,i∗)←SetupPre

′(1λ)

msk←Setup(1λ)
∀i: ski←KeyGen(msk,fi)

ct←Enc(msk,ν(x′))

[
∃i ̸= i∗ : |ski(ct)| >

q

p

]

= Pr
(f1,...,fQ,ν,i∗)←SetupPre

′(1λ)

msk←Setup(1λ)
∀i: ski←KeyGen(msk,fi)

ct←Enc(msk,ν(x′))

[∃i ̸= i∗ : Dec(ski, ct) ̸= 0 = fi(ν(x
′))] .

In particular, for this λ ∈ N, there exists an f ∈ Fλ and an x ∈ X λ s.t.

Pr
msk←Setup(1λ)

sk←KeyGen(msk,f)
ct←Enc(msk,x)

[Dec(sk, ct) ̸= f(x)] > ε(λ).

This contradicts the correctness of FE. Hence, our assumption must be wrong and Enc′ must be of width
q/p.

3. Let FE be selectively IND-CPA secure. We reduce the selective IND-CPA security of SKE′ to the one
of FE by constructing a reduction that transforms a PPT adversary A′ against the selective IND-CPA
security of SKE′ to a PPT adversary A against the security of FE.
If A′ is a selective IND-CPA adversary against SKE′ and C′ is a challenger for the selective IND-CPA
security of FE, then A proceeds as follows:
(a) On input 1λ, A computes (f1, . . . , fQ, ν, i∗)← SetupPre(1

λ).
(b) A runs A′(1λ) to receive two lists (x′1

0
, . . . , x′N

0
), (x′1

1
, . . . , x′N

1
) ∈ {0, . . . ,M}N of candidate mes-

sages.
(c) For each i ∈ [N ], β ∈ {0, 1}, A computes

xβi := ν(x′i
β
) ∈ Zn

p .

(d) A submits the lists (x01, . . . , x
0
N ), (x11, . . . , x

1
N ), (f1, . . . , fi∗−1, fi∗+1, . . . , fQ) to C′ and receives se-

cret keys sk1, . . . , ski∗−1, ski∗+1, . . . , skQ for the functions f1, . . . , fi∗−1, fi∗+1, . . . , fQ and ciphertexts
ct1, . . . , ctN for the messages xb1, . . . , xbN with unknown b.

(e) For each i ∈ [N ], A computes

ct′i := (sk1(cti), . . . , ski∗−1(cti), 0, ski∗+1(cti) . . . , skQ(cti))

and sends the list (ct′1, . . . , ct
′
N ) to A′.

(f) A′ responds with a guess b′ ∈ {0, 1}. A forwards b′ to C′.
The view of A′ in the interaction with A is identical to its view in Expind-cpaSKE′ . Furthermore, A wins exactly
iff A′ wins. This is, because we have for all i ∈ [N ] and j ̸= i∗

fj(x
0
i ) = fj(ν(x

′
i
0
)) = 0 = fj(ν(x

′
i
1
)) = fj(x

1
i ).

In other words, A is a valid adversary, and hence, does not submit to C′ any combination of function and
message pairs that would help him to win trivially. In conclusion, the advantage of A in the selective
IND-CPA security game of FE is equal to the advantage of A′ in the selective IND-CPA security game
of SKE′.

⊓⊔
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Corollary 1. Let FE be a lattice-based, correct and selectively IND-CPA secure FE scheme of constant
encryption depth d1 ∈ O(1) and decryption depth d2 ∈ O(1) s.t. the message space of FE is Zn

p and each
ciphertext of FE is a vector in Zm

q for q > p > 2, where q is prime.
Let M ∈ poly(λ) and assume that we have q/p ∈ poly(λ), M ≥ 2d1 · d2 and c ·Md1·d2 < p for some

constant c that depends on d1 · d2.
Let SKE′ = (Setup′,Enc′,_) be the partial SKE scheme from Definition 11 that is constructed from FE

with message space {0, . . . ,M}.
Then, there is no algorithm Dec′ s.t. the scheme (Setup′,Enc′,Dec′) has a non-negligible advantage at

correctly decrypting ciphertexts, i.e., there is an ε ∈ negl(λ) s.t. we have

Pr
x←{0,...,M},

msk′←Setup′(1λ),
ct′←Enc′(msk′,x),
y←Dec′(msk′,ct′)

[x = y] ≤ 1

M + 1
+ ε(λ).

Proof. Set X ′ := {0, . . . ,M}. Because of Lemma 4, we can apply Theorem 4 on SKE′. Therefore, there is an
ε ∈ negl(λ) s.t. the distributions

(msk′, ct′x) with msk′ ← Setup′(1λ), ct′x ← Enc′(msk′, x),

for all x ∈ X ′λ, have negligible distance ε(λ) to each other. It follows that the distributions Dec′(msk′, ct′x), for
all x ∈ X ′λ, are in statistically negligible distance to each other. In particular, there is a negligible ε′ ∈ negl(λ)
s.t.

∆(Dec(msk′1, ct
′
x),Dec(msk′2, ct

′
y)) ≤ ε′ (9)

for all x, y ∈ X ′λ where we sample msk′1,msk′2 ← Setup′(1λ), ct′x ← Enc′(msk′, x), ct′y ← Enc′(msk′, y).
Assume for the sake of contradiction, that there would be an r ∈ poly(λ) s.t.

Pr
x←{0,...,M}

msk′←Setup′(1λ)
ct′←Enc′(msk′,x)

[
Dec′(msk′, ct′) = x

]
≥ 1

#X ′λ
+

1

r(λ)
. (10)

for infinitely many λ ∈ N. For those λ, we have, when we sample x ← X ′λ,msk′ ← Setup′(1λ), ct′ ←
Enc(msk′, x)

Pr
[
Dec′(msk′, ct′x) ∈ X

]
=

∑
y∈X ′

λ

Pr
[
Dec′(msk′, ct′x) = y

]
Eq. (9)

≥
∑
y∈Xλ

(
Pr
[
Dec′(msk′, ct′x) = x

]
− ε′(λ)

)
= (M + 1)Pr

[
Dec′(msk′, ct′x) = x

]
− (M + 1)ε′(λ)

Eq. (10)

≥ 1 +
M + 1

r(λ)
− (M + 1)ε′(λ).

However, 1 + M+1
r(λ) − (M + 1)ε′(λ) becomes larger than 1 for ε′(λ) small enough. Hence, we reach a contra-

diction. ⊓⊔

18



4 Lower Bounds for Compact Functional Encryption

In this section we prove the main result of this paper, which is captured with the following theorem:

Theorem 5. Let q > p > 2 with q prime and n,m ∈ O(1) with n < m < Q :=
(
n
2

)
.

Let FE = (Setup,KeyGen,Enc,Dec) be a lattice-based functional encryption scheme with message space
X = Zn

p and function space

F = {f ∈ Zp[X1, . . . , Xn] | deg f ≤ 2} .

Let each ciphertext of FE be contained in Zm
q , and let d1 ∈ O(1) be the encryption depth and d2 ∈ O(1) be

the decryption depth of FE. Set M := 2(m+ 1) · dm2 and assume that the following inequalities hold:

q/p ∈ poly(λ), c ·Md1·d2 < p and M ≥ 2d1d2

for some constant c that depends on d1d2.
If FE is correct and if there exist pseudorandom functions (which are pseudorandom against PPT adver-

saries), then FE is not selectively IND-CPA secure.

Remark 1. We remark two things about the requirements of Theorem 5:

1. Although requiring the existence of pseudorandom functions may seem odd, we note that we need this
solely because we want to assume – without loss of generality – that the key generation algorithm KeyGen
of FE is deterministic (which eases some technicalities of our proof). In fact, if KeyGen is probabilistic we
can use a pseudorandom function PRF to derandomize it: we replace the algorithms Setup and KeyGen
of FE by new algorithms Setupdet and KeyGendet. Setupdet runs Setup to get the master secret key msk,
and additionally, samples a random key k for PRF and outputs (msk, k) as the new master secret key.
KeyGendet receives (msk, k) and the description of a function f ∈ F . It evaluates PRF with key k on a
binary description of f to generate pseudorandom coins r for KeyGen. With these pseudorandom bits,
KeyGendet can simulate the probabilistic algorithm KeyGen in a deterministic way.
The IND-CPA security of the scheme (Setupdet,KeyGendet,Enc,Dec) follows via a hybrid argument.
Assuming the existence of pseudorandom functions is not a restriction for our theorem, since their
existence is implied by standard assumptions, such as LWE with super-polynomial noise ratio [BPR12].

2. In Theorem 5, we do not specify if there is an arithmetic reduction modulo p when evaluating the
polynomials in F ⊂ Zp[X1, . . . , Xn] on messages in X = Zn

p . The reason is it is irrelevant for our
proof. In fact, our proof only considers quadratic monomials Xi · Xj ∈ F as functions and simple
vectors x = (0, . . . , 0, x′, 0, . . . , 0, 1, 0, . . . , 0) as messages where x′ is bounded by the constant M . Hence,
evaluations f(x) will always be bounded by a constant smaller than p.
In fact, the requirements of our theorem can be strongly relaxed. We only need that for constants m,Q
there are functions f1, . . . , fQ ∈ F and degree-1 polynomials ν1, . . . , νQ : Zp → X s.t. we have for all
i, j ∈ [Q] and x ∈ {0, . . . ,M}

fi(νj(x)) =

{
x, if i = j,

0, if i ̸= j.

Our proof idea for Theorem 5 is to assume that FE is secure and then to use Corollary 1 to deduce a
contradiction. To this end, we define the following SetupPre

′ algorithm for the FE scheme in Theorem 5:

SetupPre
′: On input 1λ, SetupPre

′ computes the set of all pairs of numbers in [n]

I := {{a, b} | a, b ∈ [n], a < b} .

Let {a1, b1}, . . . , {aQ, bQ} be an enumeration of all elements of I where Q =
(
n
2

)
= n2−n

2 . For each i ∈ [Q],
SetupPre

′ outputs the polynomial

fi(X1, . . . , Xn) := Xai
·Xbi ∈ Zp[X1, . . . , Xn].
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Then, SetupPre
′ draws i∗ ← [Q] and outputs i∗ together with the linear function

ν : Zp −→ Zn
p

x 7−→ x · eai∗
+ ebi∗

where eai∗
, ebi∗ denote the ai∗ -th and bi∗ -th unit vectors.

Note that we have for all x ∈ Zp

fi∗(ν(x)) = x

∀i ̸= i∗ : fi(ν(x)) = 0.

Given SetupPre
′, we can now define the partial SKE SKE′ = (Setup′,Enc′,_) as in Definition 11. To prove

Theorem 5, we assume that FE is IND-CPA secure and, subsequently, construct a fitting decryption algorithm
Dec′ that has a non-negligible advantage in decrypting ciphertexts of SKE′. This in turn yields a contradiction
to Corollary 1, therefore, proving that FE cannot be secure. To construct Dec′, we prove necessary algebraic
properties of FE in Lemmas 5 to 7:

Lemma 5. Let msk′ = (msk, sk1, . . . , skQ, ν, i∗) be a master secret key outputted by Setup′. Then, there exists
a polynomial hmsk ∈ Zq[T1, . . . , TQ] with the following properties:

hmsk ̸= 0 ∈ Zq[T1, . . . , TQ],

hmsk(sk1, . . . , skQ) = 0 ∈ Zq[Y1, . . . , Ym],

deg hmsk ≤ (m+ 1) · dm2 =M/2.

Proof. Note that Q > m, hence, without loss of generality, we can assume that Q = m + 1. Let A :=
{h ∈ Zq[T1, . . . , TQ] | deg h ≤ (m+ 1) · dm2 } be the space of all polynomials in T1, . . . , TQ of degree ≤ (m+
1) · dm2 and let B :=

{
g ∈ Zq[Y1, . . . , Ym] | deg g ≤ (m+ 1) · dm+1

2

}
be space of all polynomials in Y1, . . . , Ym

of degree ≤ d2 · (m+ 1) · dm2 .
To show existence of an algebraic dependence hmsk of sk1, . . . , skQ, we will follow the idea of [Üna23] and

use Lemma 3. It suffices to show that the linear map

Φ : A −→ B

h(T1, . . . , TQ) 7−→ h(sk1, . . . , skQ)

that replaces each occurrence of Ti with the polynomial ski of degree ≤ d2 has a non-trivial kernel. Indeed,
we can lower-bound the dimension of kerΦ by

dimkerΦ =dimA− dimB

=

(
Q+ (m+ 1) · dm2

Q

)
−
(
m+ (m+ 1) · dm+1

2

m

)
=

(
m+ 1 + (m+ 1) · dm2

m+ 1

)
−
(
m+ (m+ 1) · dm+1

2

m

)
.

We have that the last term is at least 1 according to Lemma 3. ⊓⊔

As explained in Remark 1, we assume – without loss of generality – that KeyGen is deterministic. Hence,
hmsk only depends on msk outputted by Setup. In particular, there is a deterministic mapping that assigns
to each master secret key msk of FE a polynomial hmsk with the properties in Lemma 5.

Note that hmsk(sk1(Y ), . . . , skm(Y )) is the zero polynomial of Zq[Y1, . . . , Ym] and that it will vanish on
each ciphertext of FE. If we choose hmsk of minimal degree, we know that hmsk(sk1(Y ), . . . , skm−1(Y ), Tm) ∈
Zq[Y1, . . . , Ym, Tm] cannot be zero. However, it may happen that hmsk(sk1(Y ), . . . , skm−1(Y ), Tm) vanishes
on all or almost all ciphertexts of FE. For our decryption algorithm Dec′ it will be important that we have

Pr
ct←Enc(msk,x)

[hmsk(sk1(ct), . . . , ski∗(ct), Ti∗+1, . . . , Tm) = 0] ∈ 1− negl(λ), (11)
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Pr
ct←Enc(msk,x)

[hmsk(sk1(ct), . . . , ski∗−1(ct), Ti∗ , . . . , Tm) ̸= 0] /∈ negl(λ). (12)

Because, if there is a ciphertext ct ∈ Zm
q s.t. hmsk(sk1(ct), . . . , ski∗(ct), Ti∗+1, . . . , Tm) = 0, but hmsk(sk1(ct), . . . ,

ski∗−1(ct), Ti∗ , . . . , Tm) ̸= 0, then ski∗(ct) is a root of the polynomial hmsk(sk1(ct), . . . , ski∗−1(ct), Ti∗ , Ti∗+1 . . . ,
Tm), which we consider as a univariate polynomial with coefficients in Zq[Ti∗+1, . . . , Tm] and unknown Ti∗ .
Since this polynomial is non-zero, it has at most deg hmsk ≤ M/2 different roots. In such cases Dec′ can
limit the number of potential values for fi∗(x) to M/2, which gives Dec′ a non-negligible advantage at de-
cryption. In the next two lemmas, we will show that the inequalities Equation (11) and (12) will hold in a
non-negligible number of cases.

Lemma 6. For i ∈ {0, . . . , Q}, define

pi(0) := Pr
msk′←Setup′(1λ)
ct←Enc(msk,0)

[hmsk(sk1(ct), . . . , ski(ct), Ti+1, . . . , TQ) = 0] .

Then, there is an i† ∈ [Q], an ε′ ∈ negl(λ) and an r′ ∈ poly(λ) s.t.

pi†(0) ≥ 1− ε′,

∃∞λ ∈ N : pi†(0)− pi†−1(0) ≥
1

r′(λ)
.

Proof. Note that 0 = p0(0) ≤ p1(0) ≤ . . . ≤ pQ(0) = 1. Now, let i† ∈ [Q] be maximal s.t. there is an
r′ ∈ poly(λ), r′ > 0, with

∃∞λ ∈ N : pi†(0)− pi†−1(0) ≥
1

r′(λ)
.

Since Q is constant, such an i† must exist. Since i† is maximal, we have for i > i†

pi(0)− pi−1(0) ∈ negl(λ).

In particular, 1− pi†(0) = pQ(0)− pQ−1(0) + pQ−1(0)− pQ−2(0) + . . .+ pi†+1(0)− pi†(0) ≥ 1− negl(λ). ⊓⊔

Lemma 7. Let X̃ ⊂ X be a constant subspace. For y ∈ X̃ , i ∈ {0, . . . , Q}, set

pi(y) := Pr
msk′←Setup′(1λ)
ct←Enc(msk,y)

[hmsk(sk1(ct), . . . , ski(ct), Ti+1, . . . , TQ) = 0] .

Then, for each ℓ ∈ poly(λ), there is a function εℓ ∈ negl(λ) s.t. we have for each i ∈ {0, . . . , Q} and each
pair y, z ∈ X̃

pi(z) ≥ ℓ · pi(y)− (ℓ− 1)− 1

ℓ+ 1

(
m+ d2D

m

)
− εℓ.

In particular, if pi(y) ≥ 1 − ε′ for some ε′ ∈ negl(λ), then there is one ε ∈ negl(λ) s.t. pi(z) ≥ 1 − ε for all
z ∈ X̃ .

Proof. Let D = (m+1)·dm2 be the upper bound of the degree of hmsk from Lemma 5. Set t :=
(
m+d2D

m

)
∈ O(1)

and let y, z ∈ X̃ .
Let ℓ ∈ poly(λ), we prove the statement by constructing a PPT adversaryA against the selective IND-CPA

security of FE:

1. A defines two lists (x0i )i=1,...,ℓ+1 and (x1i )i=1,...,ℓ+1 by

x0i := y and x1i :=

{
y, if i ∈ [ℓ],

z, if i = ℓ+ 1.
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2. A submits both lists to C and receives a list of ciphertexts ct1, . . . , ctℓ of y and ctℓ+1 of xbℓ+1 for unknown
b ∈ {0, 1}.

3. Let ψD : Zm
q → Zt

q be the map from Lemma 2. A computes

V := spanZq
{ψD(ct1), . . . , ψD(ctℓ)} ⊆ Zt

q .

4. If ψD(ctℓ+1) ∈ V , then A outputs b = 0. Otherwise, A outputs b = 1.

Since FE is IND-CPA secure, the advantage of A can be bounded by∣∣∣∣ Pr
cty←Enc(msk,y)

[ψD(cty) ∈ V ] + Pr
ctz←Enc(msk,z)

[ψD(ctz) /∈ V ]− 1

∣∣∣∣
=

∣∣∣∣ Pr
cty←Enc(msk,y)

[ψD(cty) ∈ V ]− Pr
ctz←Enc(msk,z)

[ψD(ctz) ∈ V ]

∣∣∣∣ ≤ εℓ(λ)
for some εℓ ∈ negl(λ). Because of Lemma 1, we have

Pr
cty←Enc(msk,y)

[ψD(cty) ∈ V ] ≥ 1− t

ℓ+ 1
.

Hence, we get

Pr
ctz←Enc(msk,z)

[ψD(ct) ∈ V ] ≥ 1− t

ℓ+ 1
− εℓ(λ). (13)

Fix a master secret key msk← Setup(1λ) and define for i ∈ [Q] the polynomial

hi(Y1, . . . , Ym) := hmsk(sk1(Y1, . . . , Ym), . . . , ski(Y1, . . . , Ym), Ti+1, . . . , TQ)

with coefficients in Zq[T1, . . . , TQ] and variables Y1, . . . , Ym. The degree of hi is at most deg ski ·deg hmsk ≤
d2 ·D.

For ctℓ+1 ← Enc(msk, z), we have according to Lemma 2 the following implication of events in the
IND-CPA game between A and challenger C:

ψD(ctℓ+1) ∈ spanZq
{ψD(ct1), . . . , ψD(ctℓ)} , hi(ct1) = . . . = hi(ctℓ) = 0

=⇒ hi(ctℓ+1) = 0.

For a fixed msk and i ∈ [Q], we therefore have the following inequalities:

Pr
ctz←Enc(msk,z)

[hi(ctz) = 0] (14)

≥ Pr
ctz←Enc(msk,z)

ct1,...,ctℓ←Enc(msk,y)

[
ψD(ctz) ∈ spanZq

{ψD(ct1), . . . , ψD(ctℓ)}

hi(ct1) = . . . = hi(ctℓ) = 0

]

≥ Pr
ctz←Enc(msk,z)

ct1,...,ctℓ←Enc(msk,y)

[
ψD(ctz) ∈ spanZq

{ψD(ct1), . . . , ψD(ctℓ)}
]

+ Pr
ct1,...,ctℓ←Enc(msk,y)

[hi(ct1) = . . . = hi(ctℓ) = 0]− 1

≥ Pr
ctz←Enc(msk,z)

ct1,...,ctℓ←Enc(msk,y)

[
ψD(ctz) ∈ spanZq

{ψD(ct1), . . . , ψD(ctℓ)}
]

+ ℓ · Pr
cty←Enc(msk,y)

[hi(cty) = 0]− ℓ.
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We now sample msk according to Setup(1λ), and get for each ℓ ∈ poly(λ)

Pr
msk←Setup(1λ)
ctz←Enc(msk,z)

[hi(ctz) = 0]

Eq. (14)

≥ Pr
msk←Setup(1λ)
ctz←Enc(msk,z)

ct1,...,ctℓ←Enc(msk,y)

[
ψD(ctz) ∈ spanZq

{ψD(ct1), . . . , ψD(ctℓ)}
]

+ ℓ · Pr
msk←Setup(1λ)
cty←Enc(msk,y)

[hi(cty) = 0]− ℓ.

Eq. (13)

≥
(
1− t

ℓ+ 1
− εℓ

)
+ ℓ · Pr

msk←Setup(1λ)
cty←Enc(msk,y)

[hi(cty) = 0]− ℓ

≥ ℓ · Pr
msk←Setup(1λ)
cty←Enc(msk,y)

[hi(cty) = 0]− (ℓ− 1)− t

ℓ+ 1
− εℓ.

⊓⊔

Proof (Theorem 5). Assume for the sake of contradiction that FE is IND-CPA secure. If that was the case,
then SKE′ would be IND-CPA secure, too. We lead this assumption to a contradiction by constructing a
(computationally unbounded) decryption algorithm Dec′ for SKE′ that has a non-negligible advantage in
decrypting correctly, i.e., there is a non-negligible function ρ(λ) s.t. we have

Pr
x′←{0,...,M},

msk′←Setup′(1λ),
ct′←Enc′(msk′,x′),
y′←Dec′(msk′,ct′)

[x′ = y′] ≥ 1

M + 1
+ ρ(λ).

This directly contradicts Corollary 1 and proves that the assumption is wrong, and hence, FE must be
insecure.

First, we sketch the strategy of Dec′. To this end, let msk′ = (msk, sk1, . . . , skQ, ν, i∗) ← Setup′(1λ),
x′ ∈ X ′ and let ct← Enc(msk, ν(x′)). Then, a ciphertext ct′ = (c1, . . . , cQ)← Enc′(msk′, x′) is given by

ci =

{
ski(ct), if i ̸= i∗,

0, if i = i∗.

On input (msk′, ct′), Dec′ proceeds as follows:

1. Dec′ computes i† ∈ [Q] from Lemma 6. If i† ̸= i∗, Dec′ outputs a uniformly random element of X ′ =
{0, . . . ,M} and stops.

2. Dec′ computes the set

A(msk′) :=
{
w ∈ Zm

q | hmsk(sk1(w), . . . , ski∗(w), Ti∗+1, . . . , TQ) = 0
}
.

The original ciphertext ct of Enc(msk, ν(x′)) lies in A(msk′) with overwhelming probability 1−ε. However,
since Dec′ does not know ct, it cannot check if ct lies in A(msk′). However, Dec assumes from here on
that ct lies in A(msk′).

3. Dec′ computes the subset

B(msk′) :=
{
w ∈ A(msk′) | hmsk(sk1(w), . . . , ski∗−1(w), Ti∗ , . . . , TQ) ̸= 0

}
.

ct lies with non-negligible probability ρ in B(msk′). Under the assumption that ct lies in A(msk′), Dec′

can now check if ct lies in B(msk′). If ct does not lie in B(msk′), Dec′ outputs a uniformly random
element of X ′ and stops.
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4. At this point, Dec′ knows that ct lies in B(msk′) and can compute the set

S(msk′, ct′) :=
{
ski∗(w) | w ∈ B(msk′),∀i ̸= i∗ : ski(w) = ski(ct)

}
.

It is clear that S(msk′, ct′) must contain ski∗(ct). We will show that S(msk′, ct′) contains at most
deg hmsk ≤ M/2 different values. Dec′ chooses a uniformly random value ski∗(w) from S(msk′, ct′) and
outputs ⌈

p

q
· ski∗(w)

⌋
= Dec(ski∗ , w) ∈ Zp .

Let y′ be the value outputted by Dec′(msk′, ct′). We can lower-bound the probability of Dec′ to return the
correct message x′ as follows:

Pr [y′ = x′]

≥ 1

Q
· Pr [y′ = x′ | i∗ = i†] +

Q− 1

Q
Pr [y′ = x′ | i∗ ̸= i†]

=
1

Q
· Pr [y′ = x′ | i∗ = i†] +

Q− 1

Q
· 1

M + 1

≥ 1

Q
· (1− ε) · Pr

[
y′ = x′ | i∗ = i†, ct ∈ A(msk′)

]
+
Q− 1

Q
· 1

M + 1

≥ 1

Q
· Pr

[
y′ = x′ | i∗ = i†, ct ∈ A(msk′)

]
+
Q− 1

Q
· 1

M + 1
− ε

≥ 1

Q
· ρ · Pr

[
y′ = x′ | i∗ = i†, ct ∈ B(msk′)

]
+

1

Q
· (1− ρ) · Pr

[
y′ = x′ | i∗ = i†, ct ∈ A(msk′) \B(msk′)

]
+
Q− 1

Q
· 1

M + 1
− ε

≥ ρ

Q
· Pr

[
y′ = x′ | i∗ = i†, ct ∈ B(msk′)

]
+

1− ρ
Q(M + 1)

+
Q− 1

Q
· 1

M + 1
− ε

≥ ρ

Q
· 2

M
+

1− ρ
Q(M + 1)

+
Q− 1

Q
· 1

M + 1
− ε

≥ ρ

Q ·M
+

1

M + 1
− ε.

This yields a contradiction with the statement of Corollary 1.
Next, we give the details of Dec′. To this end, set X̃ := {0, . . . ,M}n ⊂ X . Note that X̃ is constant, since

M and n are constant. For x ∈ X̃ and i ∈ [Q], pi(x) is given by

pi(x) = Pr
msk′←Setup′(1λ)
ct←Enc(msk,x)

[hmsk(sk1(ct), . . . , ski(ct), Ti+1, . . . , TQ) = 0] .

Let i† ∈ [Q] be the index from Lemma 6, i.e., there is an ε′ ∈ negl(λ), an r′ ∈ poly(λ), r′ > 0 and an
infinite set Λ ⊆ N s.t.

pi†(0) ≥ 1− ε′

∀λ ∈ Λ : pi†(0)− pi†−1(0) ≥
1

r′(λ)
.
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According to Lemma 7, there is an ε ∈ negl(λ) and r ∈ poly(λ), r > 0, s.t. we have for all x ∈ X̃

pi†(x) ≥ 1− ε (15)

∀λ ∈ Λ : pi†(x)− pi†−1(x) ≥
1

r(λ)
. (16)

For λ ∈ N, we define the non-negligible function

ρ(λ) :=


1

r(λ)
, if λ ∈ Λ,

0, if λ /∈ Λ.

When we sample msk′ = (msk, sk1, . . . , skQ, ν, i∗) ← Setup′(1λ), we have i∗ = i† with probability 1
Q . In the

following, we assume that i∗ = i†.
For a fixed message x′ ∈ X ′, let ct′ ← Enc′(msk′, x′). ct′ is given as (sk1(ct), . . . , ski∗−1(ct), 0, ski∗+1(ct),

. . . , skQ(ct)) for some ct← Enc(msk, ν(x)). Because of Equation (15), ct lies in A(msk′) = {w | hmsk(sk1(w),

. . . , ski∗(w), Ti∗+1, . . . , TQ) = 0} with probability 1 − ε. However, Dec′ cannot verify this, since it does
not know ski∗(ct). Under the assumption ct ∈ A(msk′), Dec′ can check if ct is contained in B(msk′) ={
w ∈ A(msk′) | hmsk(sk1(w), . . . , ski∗−1(w), Ti∗ , . . . , TQ) ̸= 0

}
, since Dec′ does not need to know ski∗(w) for

this. Because of Equation (16), we know that ct must lie in B(msk′) with probability ≥ ρ. We claim that
in the case ct ∈ B(msk′) the set S(msk′, ct′) =

{
ski∗(w) | w ∈ B(msk′),∀i ̸= i∗ : ski(w) = ci

}
cannot contain

more than deg hmsk′ ≤M/2 elements. In fact, set

g(Ti∗) = hmsk′(sk1(ct), . . . , ski∗−1(ct), Ti∗ , . . . , Tm) ∈ Zq[Ti∗+1, . . . , Tm][Ti∗ ].

We consider g as a univariate polynomial with coefficients in Zq[Ti∗+1, . . . , Tm]. Since ct ∈ B(msk′), we
know that g is not the zero polynomial. On the other hand, we know that g(sk∗(ct)) = 0, since we assume
ct ∈ A(msk′). In fact, each element of S(msk′, ct′) is a root of g. It follows that S(msk′, ct′) has at most
deg g ≤ deg hmsk′ ≤M/2 elements. Since x′ ∈ X ′ was chosen arbitrary, the non-negligible advantage of Dec′

at decryption follows. ⊓⊔
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