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Abstract. Lattice gadgets and the associated algorithms are the essen-
tial building blocks of lattice-based cryptography. In the past decade,
they have been applied to build versatile and powerful cryptosystems.
However, the practical optimizations and designs of gadget-based schemes
generally lag their theoretical constructions. For example, the gadget-
based signatures have elegant design and capability of extending to more
advanced primitives, but they are far less efficient than other lattice-
based signatures.
This work aims to improve the practicality of gadget-based cryptosys-
tems, with a focus on hash-and-sign signatures. To this end, we develop
a compact gadget framework in which the used gadget is a square ma-
trix instead of the short and fat one used in previous constructions. To
work with this compact gadget, we devise a specialized gadget sampler,
called semi-random sampler, to compute the approximate preimage. It
first deterministically computes the error and then randomly samples
the preimage. We show that for uniformly random targets, the preimage
and error distributions are simulatable without knowing the trapdoor.
This ensures the security of the signature applications. Compared to the
Gaussian-distributed errors in previous algorithms, the deterministic er-
rors have a smaller size, which lead to a substantial gain in security and
enables a practically working instantiation.
As the applications, we present two practically efficient gadget-based sig-
nature schemes based on NTRU and Ring-LWE respectively. The NTRU-
based scheme offers comparable efficiency to Falcon and Mitaka and a
simple implementation without the need of generating the NTRU trap-
door. The LWE-based scheme also achieves a desirable overall perfor-



mance. It not only greatly outperforms the state-of-the-art LWE-based
hash-and-sign signatures, but also has an even smaller size than the
LWE-based Fiat-Shamir signature scheme Dilithium. These results fill
the long-term gap in practical gadget-based signatures.

1 Introduction

Lattice-based cryptography is a promising post-quantum cryptography family
having attractive features in both theory and practice. It has been shown to
provide powerful versatility leading to various advanced cryptosystems including
fully homomorphic encryption [Gen09], attribute-based encryption [GVW13],
group signatures [GKV10] and much more [GVW15, BVWW16, Agr17, PS19].
For the basic encryption and signatures, lattice-based schemes are the most
practically efficient among post-quantum cryptosystems and three of four post-
quantum algorithms selected by NIST for standardization are lattice-based: Ky-
ber [SAB+20] for public key encryption/KEMs; Dilithium [LDK+22] and Fal-
con [PFH+22] for digital signatures.

At the core of many lattice-based schemes is the so-called Ajtai’s func-
tion fA(x) = Ax mod Q where A ∈ Zn×m

Q is a short and fat random ma-
trix. Ajtai showed in his seminal work [Ajt96] that the inversion of fA, i.e.
finding a short preimage x, is as hard as some worst-case lattice problems.
With a lattice trapdoor for A, one can efficiently compute a short preimage.
In some applications, e.g. signatures, the preimage distribution is required to
be simulatable without knowing the trapdoor. This is essential for security:
some early proposals [GGH97, HHP+03] were indeed broken by statistical at-
tacks [NR06, DN12, YD18], since the preimages leak information of the trap-
door. To get rid of such leaks, Gentry, Peikert and Vaikuntanathan proposed a
provably secure trapdoor framework, known as the GPV framework [GPV08],
in which the preimage is sampled from a distribution statistically close to some
publicly known discrete Gaussian. In the past decade, the GPV framework has
been continuously enriched by new Gaussian sampling algorithms and trapdoor
constructions. This leads to a series of efficient instantiations that can be basi-
cally classified into two families: NTRU trapdoor based and gadget based.

NTRU trapdoor based GPV instantiations. The NTRU trapdoor, that
is a high-quality basis of the NTRU lattice, was originally used in [HHP+03].
In [DLP14], Ducas, Lyubashevsky and Prest first discovered that the lengths of
the NTRU trapdoors can be within a small constant factor of optimal by choosing
proper parameters, which gives a compact instantiation of the GPV framework
over NTRU lattices. As an application, they presented the first lattice-based
identity-based encryption (IBE) scheme with practical parameters. This instan-
tiation was further developed as the Falcon signature scheme by integrating
the fast Fourier sampler [DP16]. Falcon is now selected by NIST for the post-
quantum standaradization, due to its good performance in terms of bandwidth
and efficiency. However, the signing and key generation algorithms of Falcon are
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rather complex. Recently, Espitau et al. proposed a simplified variant of Falcon,
called Mitaka [EFG+22]. Mitaka uses the hybrid sampler [Pre15] for easier im-
plementation at the cost of a substantial security loss. To mitigate the security
loss, Mitaka adopts some techniques to improve the trapdoor quality, which fur-
ther complicates the key generation. Overall, Falcon and Mitaka are currently
the most efficient lattice-based signatures, but their complex algorithms may be
difficult to implement in constrained environments. Furthermore, the security
of NTRU is shown to be significantly reduced in the overstretched parame-
ter regime [KF17, DvW21], thus the NTRU trapdoor based instantiations are
mainly used in signature and IBE applications.

Gadget based GPV instantiations. The gadget based instantiation was first
proposed by Micciancio and Peikert [MP12]. In the Micciancio-Peikert frame-
work, the public matrixA = [Ā | G−ĀR] where the trapdoorR is a matrix with
small entries and the gadget G = In⊗gt with g = (1, b, · · · , bk−1), k = ⌈logb(Q)⌉.
The inversion of fA is converted into the inversion of fG with R. The latter boils
down to the Gaussian sampling over the lattice Λ⊥

Q(g) = {u | ⟨u,g⟩ = 0 mod Q}
that is easy and fast [MP12, GM18, ZY22]. Compared to the NTRU trapdoor
based GPV instantiations, the gadget based framwork offers significant advan-
tages in terms of implementation and turns out to be extremely versatile for
the constructions of advanced primitives. However, the gadget based schemes
suffer from rather large preimage and public key sizes. To improve the prac-
ticality of gadget based schemes, Chen, Genise and Mukherjee introduced the
notion of approximate trapdoor [CGM19] and proposed to use a truncated gad-
get f = (bl, · · · , bk−1) for the trapdoor construction. While the improvement is
substantial, the size of their gadget-based signature scheme is still far larger than
that of Falcon and Dilithium.

As seen above, both NTRU trapdoor based schemes and gadget based ones
occupy fairly different positions in lattice-based cryptography, but they also have
own limitations. Particularly, the practical designs of gadget-based cryptosys-
tems still lag far behind their theoretical constructions. It is therefore important
to improve the practical efficiency of gadget-based cryptosystems including the
hash-and-sign signatures.

Our Contributions. We develop some new technique to reduce the size of
the gadget-based schemes. Using our compact gadget, we propose two hash-and-
sign signature schemes based on NTRU and Ring-LWE respectively. They both
offer a desirable performance and an easy implementation. This fills the gap in
practical gadget-based signatures.

Compact gadget with semi-random sampler. In our construction, the used gadget
is P ∈ Zn×n along withQ ∈ Zn×n such that PQ = Q·In, and the trapdoor T for
the public matrix A ∈ Zn×m

Q satisfies AT = P mod Q. The main technique to
enable this compact gadget is a new gadget sampler for approximate trapdoors,
called semi-random sampler. Given the target u, this sampler computes a short
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approximate preimage x such that u = Px + e mod Q with a short error e. In
our sampler, only the preimage is randomly generated and the error is fixed by
the target, which is why we name “semi-random”. More concretely, the semi-
random sampler consists of two steps respectively performed over the lattices
defined by P and Q:

1. Deterministic error decoding: The sampler first computes an error e such
that u− e = Pc ∈ Λ(P) with deterministic lattice decoding.

2. Random preimage sampling: Then the sampler generates a short preimage
x ∈ Λ(Q) + c with Gaussian sampling.

It is easy to verify that Px = u− e mod Q. Despite the deterministic errors, we
show that the distribution of (x, e) is simulatable for uniformly random targets.
This is sufficient for the applications of digital signatures.

Our general construction can be instantiated with various lattices Λ(P)
and Λ(Q) with specialized decoding and sampling algorithms. This opens up
interesting avenues in the designs of lattice trapdoors. This paper showcases
the merit of our gadget construction with a natural and simple instantiation:
(P = pIn,Q = qIn). We now contrast this simple instantiation with the trun-
cated gadget In ⊗ (bl, · · · , bk−1)t in [CGM19]. Indeed, the gadget in our in-
stantiation has the same structure with the special case of [CGM19] in which
l = k − 1, bl = p and Q = bl+1, but the associated sampling algorithms in
two cases are quite distinct, which yields the differences in size and efficiency
(see Table 1). For uniformly random targets, the error in our gadget sampler
is uniformly distributed over Zn

p and the preimage is distributed as Gaussian

of width q · ω(
√
log n). Then the error size is ≈ p

√
n√

12
and the preimage size is

≈ Q
p · ω(

√
n log n). When it comes to the case of [CGM19], the error and the

preimage are distributed as Gaussian of width σ
√

b2l−1
b2−1 and σ respectively where

σ ≥
√
b2 + 1 · ω(

√
log n). Then the error size is ≈ p · ω(

√
n log n) and the preim-

age size is ≈ Q
p · ω(

√
n log n) when bl = p and Q = bl+1. As a consequence, our

technique reduces the error size by a factor of
√
12 · ω(

√
log n) while keeping

the preimage size. This gives a noticable gain in concrete security and enables
a practically working instantiation with the compact gadget. In addition, our
semi-random sampler only needs n times integer Gaussian sampling along with
n times modulo operations, whereas the sampler in [CGM19] needs nk times
integer Gaussian sampling along with O(nk) additions and multiplications. Our
sampler is therefore simpler and more efficient. To sum up, our technique sub-
stantially improves the practical performance of the gadget-based schemes.
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Table 1. Comparisons with our gadget sampler with the special case of [CGM19] in
which l = k − 1, bl = p and Q = bl+1.

preimage size error size #integer sampling

[CGM19] Q
p
· ω(
√
n logn) p · ω(

√
n logn) nk

This work Q
p
· ω(
√
n logn) p

√
n√

12
n

Simpler NTRU-based hash-and-sign signatures. We use the new gadget algo-
rithms to build a new NTRU-based hash-and-sign signature scheme Robin. It
achieves high efficiency comparable to Falcon [PFH+22] and Mitaka [EFG+22]
that are two representative NTRU trapdoor based signatures (see Table 2). The
main advantage of Robin is its convenient implementation. Firstly, Robin uses
one NTRU vector instead of a full NTRU trapdoor basis as the signing key,
which avoids the highly complex key generation. Secondly, like most of gadget-
based signatures, the signing procedure of Robin has an online/offline structure
and the online sampling only consists of D8Z+c,r for c = 0, 1, · · · , 7, which al-
lows an easier and more efficient implementation and side-channel protection.
Additionally, the whole Robin algorithm including key generation, signing and
verification can be conveniently implemented without using floating-point arith-
metic. Therefore, Robin can be seen as an attractive post-quantum signature
scheme especially for constrained devices.

Table 2. Comparison between Robin with Falcon [PFH+22] and Mitaka [EFG+22] at
NIST-I and NIST-V security levels.

NIST-I level NIST-V level

Falcon Mitaka Robin Falcon Mitaka Robin

Sig. size (bytes) 643 807 992 1249 1376 1862

Pub. key size (bytes) 896 972 1227 1792 1792 2399

Shorter LWE-based hash-and-sign signatures. We also propose a Ring-LWE-
based instantiation of signatures based on our gadget, called Eagle. While
Eagle is less efficient than its NTRU-based counterpart Robin, it still has a
desirable performance and a simple implementation. Compared to other LWE-
based hash-and-sign signatures, Eagle offers a significantly smaller bandwidth.
Specifically, the signature (resp. public key) size of Eagle is ≤ 55% (resp.
≤ 35%) of that of the scheme from [CGM19] with refined parameters and security
estimates for both 80-bits and 192-bits of security levels. In fact, Eagle is even
more compact than Dilithium that is a representative LWE-based Fiat-Shamir
signature scheme: for 192-bits of security level, the signature size of Eagle is

5



smaller by ≈ 8% compared with Dilithium. To the best of our knowledge, Eagle
is the first LWE-based hash-and-sign signature scheme of key and signature sizes
on par or better than practical LWE-based Fiat-Shamir signatures.

Table 3. Comparison between Eagle with [CGM19] at 80-bits and NIST-III (192-
bits) security levels.

80-bits security NIST-III level

[CGM19] Eagle [CGM19] Eagle

Sig. size (bytes) 2753 1406 7172 3052

Pub. key size (bytes) 2720 928 7712 1952

Roadmap. We start in Section 2 with preliminary materials, followed by re-
calling the existing gadget trapdoors in Section 3. Section 4 introduces our new
gadget and the corresponding approximate trapdoor framework. We present con-
crete NTRU-based and Ring-LWE-based hash-and-sign signatures instantiated
with our compact gadget framework in Section 5 and Section 6 respectively.
Finally, we conclude in Section 7.

2 Preliminaries

Notations Let R and Z denote the set of real numbers and integers respectively.
For a positive integer q, let Zq = {−⌊q/2⌋,−⌊q/2⌋ + 1, · · · , q − ⌊q/2⌋ − 1}. For
a real-valued function f and a countable set S, we write f(S) =

∑
x∈S f(x)

assuming this sum is absolutely convergent. We write a ← D to represent the
sample a drawn from the distribution D. For a finite set S, let U(S) be the

uniform distribution over S and a
$← S denote the sample a← U(S).

2.1 Linear algebra and lattices

A vector is denoted by a bold lower case letter, e.g. x = (x1, . . . , xn), and in
column form. The concatenation of x1,x2 is denoted by (x1,x2). Let ⟨x,y⟩ be
the inner product of x,y ∈ Rn and ∥x∥ =

√
⟨x,x⟩ be the ℓ2 norm of x. A

matrix is denoted by a bold upper case letter, e.g. A = [a1 | · · · | an], where ai
denotes the ith column of A. Let Ã = [ã1 | · · · | ãn] denote the Gram-Schmidt
orthogonalization of A. Let A ⊕B denote the block diagonal concatenation of

A and B. The largest singular value of A is denoted by s1(A) = maxx̸=0
∥Ax∥
∥x∥ .

Let At be the transpose of A.
We write Σ ≻ 0, when a symmetric matrix Σ ∈ Rm×m is positive definite,

i.e. xtΣx > 0 for all nonzero x ∈ Rm. We write Σ1 ≻ Σ2 if Σ1 − Σ2 ≻ 0. For
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any scalar s, we write Σ ≻ s if Σ − s · I ≻ 0. If Σ = BBt, we call B a square
root of Σ. We use

√
Σ to denote any square root of Σ when the context permits

it.
Given B = [b1 | · · · | bn] ∈ Rm×n with each bi linearly independent, the

lattice generated by B is Λ(B) = {Bz | z ∈ Zn}. The dimension of Λ(B) is n
and B is called a basis. Let Λ∗ = {y ∈ span(Λ) | ⟨x,y⟩ ∈ Z,∀x ∈ Λ} be the dual
lattice of a lattice Λ.

In lattice-based cryptography, the q-ary lattice is of special interest and de-
fined for some A ∈ Zn×m

q as

Λ⊥
q (A) = {x ∈ Zm : Ax = 0 mod q}.

The dimension of Λ⊥
q (A) is m and (q · Z)m ⊆ Λ⊥

q ⊆ Zm. Each u ∈ Zn
q defines a

lattice coset
Λ⊥
q,u(A) = {x ∈ Zm : Ax = u mod q}.

Given a matrix A ∈ Zn×m
q , let fA(x) = Ax mod q be the associated Ajtai’s

function [Ajt96] where x is usually short. We simply denote by f−1
A the inversion

procedure, namely finding a short preimage x.

2.2 Gaussians

The Gaussian function ρ : Rm → (0, 1] is defined as ρ(x) = exp(−π · ⟨x,x⟩).
Applying a linear transformation given by an invertible matrix B yields

ρB(x) = ρ(B−1x) = exp(−π · xtΣ−1x),

where Σ = BBt. Since ρB is exactly determined by Σ, we also write it as ρ√Σ .
For a lattice Λ and c ∈ span(Λ), the discrete Gaussian distribution DΛ+c,

√
Σ is

defined as: for any x ∈ Λ+ c,

DΛ+c,
√
Σ(x) =

ρ√Σ(x)

ρ√Σ(Λ+ c)
.

Let ηϵ(Λ) = min{s > 0 | ρ(s ·Λ∗) ≤ 1 + ϵ} be the smoothing parameter with
respect to a lattice Λ and ϵ ∈ (0, 1). We write

√
Σ ≥ ηϵ(Λ), if ρ√Σ−1(Λ

∗) ≤ 1+ϵ.

Lemma 1 ([GPV08]). Let Λ be an m-dimensional lattice with a basis B, then

ηϵ(Λ) ≤ maxi ∥b̃i∥ ·
√

log (2m(1 + 1/ϵ))/π, where b̃i is the i-th vector of B̃.

Lemma 2 ([MR07]). Let Λ be a lattice, c ∈ span(Λ). Then for any ϵ ∈ (0, 1
2 )

and s ≥ ηϵ(Λ), ρs(Λ+ c) ∈
[
1−ϵ
1+ϵ , 1

]
ρs(Λ).

Lemma 3 ([GPV08], Corollary 2.8). Let Λ,Λ′ be two lattices such that Λ′ ⊆
Λ. Let s ≥ ηϵ(Λ

′). Then for any ϵ ∈ (0, 1
2 ) and c ∈ span(Λ), the distribution of

(DΛ+c,s mod Λ′) is within statistical distance at most 2ϵ of U(Λ mod Λ′).

Theorem 1 ([GMPW20]). For any ϵ ∈ [0, 1) defining ϵ̄ = 2ϵ/(1−ϵ), a matrix
S of full column rank, a lattice coset A = Λ+a ⊂ span(S), and a matrix T such
that ker(T) is a Λ-subspace and ηϵ(Λ ∩ ker(T)) ≤ S, we have

T ·DA,S ≈ϵ̄ DTA,TS.
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2.3 The ring Z[x]/(xn ± 1)

We work with two polynomial rings in the paper. The first one is the convolution
ring R−

n = Z[x]/(xn − 1) where n is a prime. For any a =
∑n−1

i=0 aix
i ∈ R−

n , let
v(a) = (a0, a1 · · · , an−1) be its coefficient vector and the circulant matrix

M(a) =


a0 an−1 · · · a1
a1 a0 · · · a2
...

...
...

...
an−1 an−2 · · · a0

 = [v(a), v(a · x), · · · , v(a · xn−1)].

be its matrix form. The second ring in the paper is the power-of-2 cyclotomic
ring, i.e. R+

n = Z[x]/(xn + 1) with n a power of 2. For a =
∑n−1

i=0 aix
i ∈ R+

n ,
its coefficient vector is also written as v(a) and the matrix form becomes an
anticirculant matrix

M(a) =


a0 −an−1 · · · −a1
a1 a0 · · · −a2
...

...
...

...
an−1 an−2 · · · a0

 = [v(a), v(a · x), · · · , v(a · xn−1)].

In the rest of the paper, we identify a with v(a) when the context is clear.

Let ā = a(x−1) for a ∈ R, then ā = a0 +
∑n−1

i=1 an−ix
i when R = R−

n and

ā = a0 −
∑n−1

i=1 an−ix
i when R = R+

n . More generally, let σk(a) = a(xk) for
k ∈ Z∗

n. For both R−
n and R+

n , the following properties hold:

– M(a) +M(b) =M(a+ b)
– M(a) · M(b) =M(ab).
– M(ā) =M(a)t

2.4 NTRU

The NTRU module determined by h ∈ R is given by

Λh
NTRU = {(u, v) ∈ R2 : uh− v = 0 mod Q}.

Our NTRU-based scheme mainly uses R = R−
n , and the NTRU module is seen

as a lattice of dimension 2n.
In typical NTRU-based cryptosystems, the secret key is composed of two

short polynomials f, g ∈ R, while the public key is h = f−1g mod Q. Then (f, g)
is a short vector of Λh

NTRU . In addition, an inhomogeneous version of NTRU was
introduced in [GGH+19]. In this version, the public key h = f−1(g + e) mod Q
where e is a public constant. The corresponding problems are defined as follows.

Definition 1 (NTRU and inhomogeneous NTRU). Let R = Z[x]/(xn−1)
with n a prime. Let Q > 0 be an integer and χ be a distribution over R. Let Dχ

(resp. Dχ,e) be the distribution of the NTRU public key h = f−1g mod Q (resp.
h = g+e

f mod Q) with f, g ← χ.

– NTRUR,Q,χ: Given h← Dχ, find short (f, g) such that h = f−1g mod Q.
– iNTRUR,Q,χ,e: Given h← Dχ,e, find short (f, g) such that h = g+e

f mod Q.
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2.5 LWE

The LWE (learning with errors) problem is defined as follows.

Definition 2 (LWE). Let n,m,Q > 0 be integers and χ be a distribution over

Z. Given s ∈ Zn
Q, let As,χ be the distribution of (a, b) where a

$← Zn
Q and

b = ⟨a, s⟩+ e mod Q with e← χ.

– Decision-LWEn,m,Q,χ: Given m independent samples from either As,χ with
s ← χ (fixed for all m samples) or U(Zn

Q × ZQ), distinguish which is the
case.

– Search-LWEn,m,Q,χ: Given m independent samples from As,χ with s ← χ,
find s.

To improve the efficiency and key sizes, some algebraic variants of LWE were
proposed and used to build practical lattice-based cryptosystems. In this paper,
we mainly use the ring variant proposed in [LPR10].

Definition 3 (Ring-LWE). Let R = Z[x]/(xn + 1) with n a power of 2. Let
m,Q > 0 be integers and χ be a distribution over R. Let RQ = R/(Q ·R). Given

s ∈ RQ, let As,χ be the distribution of (a, b) where a
$← RQ and b = as+e mod Q

with e← χ.

– Decision-RLWER,m,Q,χ: Given m independent samples from either As,χ with
s ← χ (fixed for all m samples) or U(RQ × RQ), distinguish which is the
case.

– Search-RLWER,m,Q,χ: Given m independent samples from As,χ with s← χ,
find s.

2.6 SIS

We recall the SIS (short integer solution) problem and its inhomogeneous variant.

Definition 4 (SIS and inhomogeneous SIS). Let n,m,Q > 0 be integers
and β > 0.

– SISn,m,Q,β: Given a uniformly random A ∈ Zn×m
Q , find a non-zero integer

vector x such that Ax = 0 mod Q and ∥x∥ ≤ β.
– ISISn,m,Q,β: Given a uniformly random A ∈ Zn×m

Q and y ∈ Zn
Q, find a non-

zero integer vector x such that Ax = y mod Q and ∥x∥ ≤ β.

The public matrix A in SIS and ISIS problems can be in the Hermite normal
form (HNF), i.e. A = [In | A′]. This gives the HNF version of SIS problems,
HNF.SIS and HNF.ISIS. Such variants are as hard as the standard version.

The ring variants of SIS and ISIS are immediate. We only show the definition
of Ring-ISIS.
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Definition 5 (Ring-ISIS, RISISR,m,Q,β). Let R = Z[x]/(xn + 1) with n a
power of 2. Let m,Q > 0 be integers and β > 0. Let RQ = R/(Q · R). Given a
uniformly random A ∈ Rm

Q and y ∈ RQ, find a non-zero integer vector x ∈ Rm

such that Ax = y mod Q and ∥x∥ ≤ β.

The approximate version of ISIS was introduced in [CGM19]. It can be imme-
diately adapted to the ring version ApproxRISISR,m,Q,α,β and the HNF version
HNF.ApproxISISR,m,Q,α,β .

Definition 6 (Approximate ISIS, ApproxISISn,m,Q,α,β). Let n,m,Q > 0 be

integers and β > 0. Given a uniformly random A ∈ Zn×m
Q and a random y ∈ Zn

Q,
find an integer vector x such that Ax = y−e mod Q with ∥e∥ ≤ α and ∥x∥ ≤ β.

We will also use an NTRU version of SIS. It is the underlying assumption of
NTRU-based signatures [PFH+22, EFG+22, DDLL13]. The NTRU-SIS problem
can be immediately adapted to the inhomogeneous version NTRUISISR,Q,χ,β and
the approximate version ApproxNTRUISISR,Q,χ,α,β .

Definition 7 (NTRU-SIS, NTRUSISR,Q,χ,β). Let R = Z[x]/(xn − 1) with n
a prime. Let Q > 0 be an integer, χ be a distribution over R and β > 0. Given
a random NTRU public key h of either NTRUR,Q,χ or iNTRUR,Q,χ,e, find a
non-zero vector (x0, x1) such that ∥(x0, x1)∥ ≤ β and x0 + hx1 = 0 mod Q.

3 Recall the Gadget Trapdoors

While Ajtai’s function fA is hard to invert for a random matrix A, the inversion
f−1
A can be easily computed with a short trapdoor. The most famous and efficient
lattice trapdoors are based on the lattice gadget framework developed in [MP12].
In a gadget trapdoor scheme, the inversion of fA is converted into the gadget
inversion, i.e. the inversion of fG for a gadget matrix G. The gadget inversion
turns out to be highly simple and fast for some well-designed G. For better
completeness and contrast, let us briefly recall the classical gadget trapdoor
from [MP12] and its approximate variant from [CGM19].

3.1 Exact gadget trapdoor from [MP12]

The earliest and most widely used gadget trapdoor is proposed by Micciancio
and Peikert in [MP12]. In the Micciancio-Peikert trapdoor, the gadget matrix is
G = In ⊗ gt ∈ Zn×m′

where g = (1, b, · · · , bk−1), k = ⌈logb(Q)⌉ and m′ = nk.
The public matrix is

A = [Ā | G− ĀR] ∈ Zn×m
Q

where Ā ∈ Zn×m̄
Q ,m = m̄ + m′ and R is a secret matrix of small entries such

that ĀR is either statistically near-uniform or computationally pseudorandom
under certain assumptions. In this paper, we are interested in the pseudorandom
case that offers better practicality due to the smaller dimension of A.
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Let T = [RI ], then AT = G mod Q. This linear relation gives a direct trans-
formation from f−1

A to the gadget inversion f−1
G : given a target u ∈ Zn

Q, x = Tx′

is a short preimage of f−1
A (u) when x′ is a short preimage of f−1

G (u). Many ap-
plications, e.g. digital signatures, also need the preimage distribution to be sim-
ulatable without using the trapdoor for uniformly random targets for security
purpose. To this end, a common approach is to make the preimage distribution
statistically close to some Gaussian independent of the trapdoor by adding some
perturbation following the idea of [Pei10]. More concretely, the inversion f−1

A (u)
in the Micciancio-Peikert framework proceeds as follows:

1. (Perturbation sampling) Sample p from DZm,
√

Σp
where Σp = s2Im−r2TTt

2. Compute u′ = u−Ap mod Q
3. (Gadget sampling) Sample x′ from DΛ⊥

Q,u′ (G),r

4. Output the preimage x = p+Tx′ mod Q

The required parameter conditions by the Gaussian sampling include r ≥ ηϵ(Λ
⊥
Q(G))

and s ≥ r · s1(T).

3.2 Approximate gadget trapdoor from [CGM19]

In [CGM19], Chen, Genise and Mukherjee introduced the notion of approximate
trapdoor. Such a trapdoor allows to approximately invert Ajtai’s function fA, i.e.
to find a short preimage x of f−1

A (u) such thatAx = u−e mod Q for some short
e. The vector e is termed approximate error or simply error. An approximate
variant of the Micciancio-Peikert gadget trapdoor was given in [CGM19]. In the
Chen-Genise-Mukherjee trapdoor, the gadget matrix is F = In ⊗ f t ∈ Zn×m′

where f = (bl, bl+1, · · · , bk−1) is truncated from the gadget g in the exact case,
and m′ = n(k − l). The public matrix accordingly becomes

A = [Ā | F− ĀR] ∈ Zn×m
Q ,

where m = m̄ + m′. Compared to the exact gadget, the approximate variant
substantially reduces the dimension of A and thus leads to more practical hash-
and-sign signatures.

Let T = [RI ] and D = In ⊗ dt where d = (1, b, · · · , bl−1). Then the exact
gadget G = In ⊗ [dt | f t]. The approximate inversion follows the spirit of trans-
forming f−1

A to the (approximate) gadget inversion. Given a target u, it proceeds
as follows:

1. (Perturbation sampling) Sample p from DZm,
√

Σp
where Σp = s2Im−r2TTt

2. Compute u′ = u−Ap mod Q
3. (Gadget sampling) Sample x′ from DΛ⊥

Q,u′ (G),r

4. (Preimage truncation) Let x′ = (x′
1, . . . ,x

′
n) with x′

i ∈ Zk. Set x′′
i as the last

(k − l) entries of x′
i and x′′ = (x′′

1 , . . . ,x
′′
n)

5. Output the preimage x = p+Tx′′ mod Q

11



Let x′ := (x′′′,x′′), then the approximate error is

e = u−Ax = u−Ap− Fx′′ = u′ − Fx′′ = Dx′′′ mod Q.

For uniformly random u, the distribution of (u,x, e) can be simulated by sam-
pling x ← DZm,s and e ← DZn,r·∥d∥ and then setting u = Ax + e mod Q. The

required parameter conditions include r ≥ ηϵ(Λ
⊥
Q(G)) and s ≥ C ·r ·s1(T) where

C is a small constant for commonly-used trapdoors.

3.3 Equivalence between exact and approximate trapdoors

Recall that the approximate trapdoor allows to sample a short preimage x such
that Ax + e = u mod Q with a short error e. When A = [In | A′], one can
transform the approximate preimage x = (x0,x1) and the error e into an exact
preimage x′ = (x0 + e,x1) such that Ax′ = u mod Q. Hence the exact and
approximate trapdoors are somewhat equivalent from an algorithmic aspect.
This equivalence is characterized in the reduction form as follows.

Lemma 4 ([CGM19], Lemma 3.5, adapted). For n,m,Q ∈ Z, α, β ≥ 0

– HNF.ApproxISISn,m,Q,α,β ≤p HNF.ISISn,m,Q,β for any α ≥ 0
– HNF.ISISn,m,Q,α+β ≤p HNF.ApproxISISn,m,Q,α,β

Remark 1. Lemma 4 simply takes (α+ β) as the bound of the size of the exact
preimage x′ = (x0 + e,x1). When it comes to concrete security estimate, this
additive bound is loose and a more accurate approach is to estimate ∥x0+e∥ and
∥x1∥ separately. The term ∥x0 + e∥ can be estimated based on the Pythagorean
additive property when x0 and e are Gaussian-like. Moerover, we consider the
unbalanced sizes of x0 + e and x1 in later security estimates.

4 Compact Gadget for Approximate Trapdoor

We present a new gadget for approximate trapdoors in this section. In contrast
with existing gadgets from [MP12, CGM19], our gadget matrix is of size only
n-by-n, which allows more compact public keys and trapdoors. At the core of our
construction is a new type of approximate gadget sampler that we term semi-
random sampler. In this sampler, the preimage is randomly sampled, whereas
the error is deterministically fixed by the target. While the semi-random sampler
loses some randomness of the error part, the distributions of the preimages and
the errors can be still simulatable for uniformly random targets. This suffices for
the need of the application of hash-and-sign signatures.

4.1 Description of our gadget trapdoor

This section gives a general description of our gadget trapdoor and the semi-
random sampler. We believe that such a general description can guide further
study of new gadget designs.
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Let P ∈ Zn×n denote the gadget matrix used in our trapdoor construction
and Q ∈ Zn×n such that

PQ = Q · In.

The public matrix is A ∈ Zn×m
Q with m > n and the approximate trapdoor for

A is defined as a matrix T ∈ Zm×n such that

AT = P mod Q.

Then the approximate trapdoor inversion is transformed to the approximate
gadget inversion implemented by our semi-random sampler.

Remark 2. Our trapdoor can be instantiated under different assumptions:

– LWE-based: A = [I | Ā | P+ ĀS+E] and T = [−Et | −St | I]t;
– NTRU-based: A = [I | (P− F) ·G−1] and T = [Ft | Gt]t.

See Sections 5 and 6 for more details.

Given a target u′, the semi-random gadget sampler outputs a preimage x′

such that Px′ = u′ − e mod Q for some small error e. It proceeds in two steps:
(1) deterministic error decoding and (2) random preimage sampling. In the first
step, the sampler computes the error e such that u′ − e = Pc ∈ Λ(P). This can
be done by lattice decoding algorithms, e.g. Babai’s CVP algorithms [Bab86].
We denote by LatticeDecoder the deterministic lattice decoder and use it in a
black-box way. Typically, the output errors are identical for all vectors in a
coset t + Λ(P). We denote by E(P) the set of all possible errors and write
e = (u′ mod Λ(P)) the error for u′. The next step is to sample the preimage x′

from DΛ(Q)+c,r. Let x
′ = Qv + c for v ∈ Zn. One can verify that

Px′ = PQv +Pc = u′ − e mod Q. (1)

A formal description is given in Algorithm 1.

Algorithm 1: ApproxGadget(u′, r,P,Q)

Input: matrices P,Q ∈ Zn×n such that PQ = Q · In and r ≥ ηϵ(Λ(Q))
Output: a sample x′ ∼ DZn,r conditioned on Px′ = u′ − e mod Q and e ∈ E(P).
1: (c, e)← LatticeDecoder(u′,P) such that c ∈ Zn and u′ − e = Pc
2: x′ ← DΛ(Q)+c,r

3: return x′

The correctness of Algorithm 1 is shown in Lemma 5.

Lemma 5. Algorithm 1 is correct. More precisely, let P,Q ∈ Zn×n such that
PQ = Q · In and r ≥ ηϵ(Λ(Q)). Then the output x′ of ApproxGadget(u′, r,P,Q)
follows the distribution of DZn,r conditioned on Px′ = u′ − e mod Q with e ∈
E(P).
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Proof. Given u′, there exists a unique error e = (u′ mod Λ(P)) satisfying e ∈
E(P) and u′− e = Pc ∈ Λ(P). For x′ such that Px′ = u′− e mod Q, let Px′ =
u′− e+Qv, then Px′ = P(c+Qv) and thus x′ ∈ Λ(Q)+ c. For x′ ∈ Λ(Q)+ c,
let x′−c = Qv for some v ∈ Zn, then Px′ = u′−e mod Q as shown by Eq. (1).
Therefore Px′ = u′ − e mod Q holds if and only if x′ ∈ Λ(Q) + c. The proof is
completed. ⊓⊔

We now prove that for uniformly random u′, the preimage and error distri-
butions of ApproxGadget(u′, r,P,Q) can be simulated.

Lemma 6. Let P,Q ∈ Zn×n such that PQ = Q · In and r ≥ ηϵ(Λ(Q)) with
some negligible ϵ > 0. Let χe be the distribution of (v mod Λ(P)) ∈ E(P) where
v← U(Zn

Q). Then the following two distributions are statistically close.

1. First sample u′ ← U(Zn
Q), then sample x′ ← ApproxGadget(u′, r,P,Q),

compute e = (u′ mod Λ(P)), output (x′,u′, e);

2. First sample e ← χe, then sample x′ ← DZn,r, set u′ = e + Px′ mod Q,
output (x′,u′, e).

Proof. The supports of two distributions are identical as follows:

{(x′,u′, e) ∈ Zn × Zn
Q × E(P) | u′ = e+Px′ mod Q}.

Distribution 1 outputs (x′,u′, e) with probability

P1[(x
′,u′, e)] =

1

Qn
P1[x

′|u′] =
1

Qn
· ρr(x

′)

ρr(Λ(Q) + c)

and Distribution 2 with

P2[(x
′,u′, e)] =

1

det(P)
· ρr(x

′)

ρr(Zn)
=

det(Q)

Qn
· ρr(x

′)

ρr(Zn)
.

Since r ≥ ηϵ(Λ(Q)) and ρr(Zn) =
∑

c∈P(Q)∩Zn ρr(c+ Λ(Q)), Lemma 2 shows

ρr(Λ(Q) + c) ∈
[
1− ϵ

1 + ϵ
,
1 + ϵ

1− ϵ

]
· ρr(Z

n)

det(Q)
.

Hence P1[(x
′,u′, e)] ∈

[
1−ϵ
1+ϵ ,

1+ϵ
1−ϵ

]
· P2[(x

′,u′, e)] and we complete the proof. ⊓⊔

Algorithm 2 illustrates the approximate trapdoor inversion algorithm by us-
ing our gadget. The output preimage x satisfies that

Ax = Px′ +Ap = u′ − e+Ap = u− e mod Q.

Therefore the approximation error e in ApproxPreSamp(A,T,u, r, s) is exactly
the one in ApproxGadget(u′, r,P,Q): for uniformly random u, the error e follows
the distribution χe defined in Lemma 6.
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Algorithm 2: ApproxPreSamp(A,T,u, r, s)

Input: (A,T) ∈ Zn×m
Q × Zm×n such that AT = P mod Q, a vector u ∈ Zn

Q,

r ≥ ηϵ(Λ(Q)) and s2Im ≻ r2TTt

Output: an approximate preimage x of u for A.
1: p← DZm,

√
Σp

where Σp = s2Im − r2TTt

2: u′ = u−Ap mod Q
3: x′ ← ApproxGadget(u′, r,P,Q)
4: return x = p+Tx′

Let L = [Im | T]. The next lemma characterizes the distribution of the linear
transformation on the concatenation of p ← DZm,

√
Σp

and x′ ← DZn,r, which

represents the convolution step, i.e.,

x = p+Tx′ = L · (p,x′).

Lemma 7. Let r ≥ ηϵ(Zn). The distribution L ·DZm+n,
√

Σp⊕r2In
is statistically

close to DZm,s, if s
2 ≥

(
r2 + ηϵ(Zn)2

)
·
(
s1(T)2 + 1

)
.

Proof. Let ΛL = Zm+n ∩ ker(L) that is an integer lattice. By Theorem 1, it
suffices to show

√
Σp ⊕ r2In ≥ ηϵ

(
ΛL

)
. Let B =

[
T

−In

]
, then B is a basis of ΛL.

The dual basis of B is

B∗ = B(BtB)−1 =

[
T
−In

] (
TtT+ In

)−1
.

According to the definition of smoothing parameter, we need to show√
Σp ⊕ r2In ≥ ηϵ

(
Λ(B)

)
i.e.,

(B∗)t(Σp ⊕ r2 · In)B∗ ≻ η2ϵ (Zn).

This reduces to showing(
TtT+ In

)−t ·
(
s2TtT− r2(TtT)2 + r2In

)
·
(
TtT+ In

)−1 ≻ η2ϵ (Zn).

LetTtT = UVU−1 be the eigenvalue decomposition whereV = diag(λ1, . . . , λn)
with λi being the eigenvalues. The left-hand side can be rewritten as

U(V + In)
−t
(
s2V − r2V2 + r2In

)
(V + In)

−1U−1,

and we need to prove
s2λi − r2λ2

i + r2

(λi + 1)2
≥ η2ϵ (Zn),

i.e.

s2 ≥ (r2 + ηϵ(Zn)2) · λi + 2 · ηϵ(Zn)2 +
ηϵ(Zn)2 − r2

λi
.

By some rountine computation, one can check that this condition is satisfied
when r ≥ ηϵ(Zn) and

(
r2 + ηϵ(Zn)2

)
·
(
s1(T)2 + 1

)
. ⊓⊔
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We now prove that the preimage and error distributions are simulatable
without knowing the trapdoor. This property is needed in most trapdoor based
use cases. Our argument only holds for uniformly random u as in [CGM19].

Theorem 2. Let P,Q ∈ Zn×n such that PQ = Q · In. Let (A,T) be a matrix-
approximate trapdoor pair, (r, s) satisfying s2 ≥

(
r2 + ηϵ(Zn)2

)
·
(
s1(T)2 + 1

)
and r ≥ ηϵ(Λ(Q)). Then the following two distributions are statistically indis-
tinguishable:{
(A,x,u, e) : u← U(Zn

Q), x← ApproxPreSamp(A,T,u, r, s), e = u−Ax mod Q
}

{(A,x,u, e) : x← DZm,s, e← χe, u = Ax+ e mod Q} .

Proof. Let

– p← DZm,
√

Σp
be a perturbation,

– u ∈ Zn
Q be the target of ApproxPreSamp(A,T,u, r, s),

– u′ = u−Ap mod Q be the target of ApproxGadget(u′, r,P,Q),
– χe be the distribution of (v mod Λ(P)) ∈ E(P) where v← U(Zn

Q).

Real distribution: The real distribution of (A,x,u, e) is

A,u← U(Zn
Q),p← DZm,

√
Σp

,u′ = u−Ap,

x′ ← ApproxGadget(u′, r,P,Q),x = p+Tx′, e = u−Ax mod Q.

Hybrid 1: Instead of sampling u ← U(Zn
Q), we sample u′ ← U(Zn

Q) and p ←
DZm,

√
Σp

, then compute u = u′ + Ap. We keep (x′,x, e) unchanged. Clearly,

the real distribution and Hybrid 1 are the same.

Hybrid 2: Instead of sampling u′,x′ and computing e as in Hybrid 1, we sample
x′ ← DZn,r and e ← χe, then compute u′ = Px′ + e. All other terms (p,x,u)
remain unchanged. By Lemma 6, Hybrid 1 and Hybrid 2 are statistically close.

Hybrid 3: Instead of sampling p,x′ and computing x = p +Tx′ in Hybrid 2,
we sample directly x← DZm,s and compute u = Ax+ e mod Q, where e← χe

is as before. Note that in Hybrid 2,

u = u′ +Ap = e+Px′ +Ap = e+A(Tx′ + p) = Ax+ e mod Q

and x = p+Tx′ follows the distribution [Im | T]·DZm+n,
√

Σp⊕r2In
. By Lemma 7,

Hybrid 3 and Hybrid 2 are statistically close. Now we complete the proof. ⊓⊔

4.2 Simple instantiation and comparisons

Our new gadget trapdoor has a very simple instantiation by using

(P,Q) = (pIn, qIn)
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where p, q ∈ Z such that Q = pq. In this case, LatticeDecoder is implemented
by coefficient-wise mod p operations and E(P) = Zn

p , χe = U(Zn
p ). Hence for

uniformly random targets, the standard deviation of error coefficients is
√

p2−1
12 .

Since ηϵ(Λ(Q)) = q · ηϵ(Zn), the preimage size is about
√
n · q · ηϵ(Zn). Table 4

shows the comparisons between previous gadgets and ours.

Table 4. Comparisons with the gadgets from [MP12] and [CGM19]. Here m′ is the

column number of the gadget matrix, x′ ∈ Zm′
is the preimage, e ∈ Zn is the error

and η = ηϵ(Z).

Gadget Q m′ ∥x′∥/
√
m′ ∥e∥/

√
n

[MP12] In ⊗ gt,
g = (1, b, · · · , bk−1)

(bk−1, bk] nk ≈
√

(b2 + 1)η 0

[CGM19] In ⊗ f t,
f = (bl, · · · , bk−1)

(bk−1, bk] n(k−l) ≈
√

(b2 + 1)η ≈ blη

This work p · In pq n ≈ qη ≈
√

p2−1
12

The above instantiation of our approximate gadget offers significant advan-
tages in terms of compactness, efficiency and parameter selection:

Compactness. Our gadget vector consists of only one entry, i.e. p, while to the
best of our knowledge, the gadget from [CGM19] requires at least three entries
in practical applications. As a direct consequence, the hash-and-sign signatures
based on our gadget have much shorter key and signatures. The reduced trap-
door size also results in a smaller Gaussian width and thus supports a smaller
modulus.

Efficiency. Due to the semi-random sampler, the error in this simple instantia-
tion is deterministically generated by modulo, which is highly efficient in terms
of speed and randomness. The preimage sampling boils down to only n times
sampling of DqZ+c,r. By contrast, although [CGM19] proposed to replace the
gadget g = (1, b, · · · , bk) with a truncated version (bl, · · · , bk), the gadget sam-
pling is still performed over the gadget lattice defined by g and thus requires k
times integer sampling. In addition, our gadget allows smaller trapdoors, which
also reduces the cost of perturbation sampling.

Parameter selection. As mentioned before, the modulus associated with our gad-
get is Q = pq and the preimage and error sizes are linear in q and p respectively.
This is convenient for flexible and tight parameter choices. However, for the
gadget in [CGM19], its error size is roughly proportional to bl−1 and such an
exponential growth heavily limits optimal parameter selection.

In the rest of the paper, we will use the above simple gadget instantiation
to build hash-and-sign signatures. Nevertheless, the design space can be further
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expanded by taking some lattices with efficient decoding or sampling9 into ac-
count. More practical instantiations definitely need much efforts. We leave this
to future works.

5 Efficient Hash-and-Sign Signatures over NTRU Lattices

This section presents an NTRU-based hash-and-sign signature scheme, named
Robin, that is instantiated with the compact gadget in Section 4.Robin achieves
good performance comparable to Falcon [PFH+22] and its variant Mitaka [EFG+22].
It also offers significant advantages from an implementation standpoint. Its sign-
ing procedure is considerably simpler and easier to implement without floating
point arithmetic. Its secret key is one short vector instead of one short basis as
in Falcon and Mitaka, which dramatically simplifies and accelerates the trap-
door generation. Robin can therefore be an attractive choice particularly in
constrained environments.

5.1 Description of the Robin signature scheme

Parameters. The underlying NTRU is parameterized by the ring R = R−
n =

Z[x]/(xn − 1) and the modulus Q. Let

T (n, a, b) =

v ∈ R
∣∣∣ a coefficients equal to 1;

v has exactly b coefficients equal to − 1;

n− a− b coefficients equal to 0.

 .

The secret key (f, g) are uniformly sampled from T (n, a, b). The gadget matrix is
P = pIn and the associated Q = qIn such that pq = Q. Let α be the parameter
controlling the quality of the trapdoor such that√

s1
(
M(ff̄ + gḡ)

)
≤ α∥(f, g)∥ = α

√
2(a+ b).

Let r̄ = ηϵ(Zn) and r ≥ qr̄ be the width for the approximate gadget sampler. Let

s ≥
√

1+q2

q rα
√
2(a+ b) be the width for approximate preimages. Let β be the

acceptance bound of ∥(z0 + e, γz1)∥ where (z0, z1) is the approximate preimage,

e is the approximate error and γ =

√
s2+(p2−1)/12

s such that ∥z0 + e∥ ≈ γ∥z1∥.

Key generation. The key generation of Robin is very different from that
of other NTRU-based hash-and-sign signatures Falcon and Mitaka. Instead, it
is similar to that of BLISS [DDLL13] which is an NTRU-based Fiat-Shamir
signature scheme. More concretely, Robin uses an inhomogeneous NTRU key
pair in which the secret key is composed of two short polynomials (f, g) and
the public key is h = (p − g)/f mod Q, then hf + g = p mod Q. In addition,
we partially apply the techniques suggested in [EFG+22] to get a high-quality
trapdoor in a short time. The whole key generation is formally described in
Algorithm 3.

9 Such remarkable lattices are listed in [DvW22].
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Algorithm 3: Robin.KeyGen

Input: the ring R = R−
n with n a prime, Q = pq, (a, b) ∈ Z2 and α > 0.

Output: public key h ∈ R/(Q · R), secret key (f, g) ∈ R2

1: f1, · · · , fK , g1, · · · , gK
$← T (n, a, b) with K = 5

2: for i = 1 to K do
3: for j = 1 to K do

4: find k ∈ Z∗
n minimizing s1

(
M

(
fif̄i + σk(gj)σk(gj)

))
5: (f, g)← (fi, σk(gj))

6: if
√

s1
(
M(ff̄ + gḡ)

)
≤ α

√
2(a+ b) then

7: h← (p− g)/f mod Q
8: return (h, (f, g))
9: end if
10: end for
11: end for
12: restart

Signing procedure. Algorithm 4 shows the signing procedure that is in essence
the approximate preimage sampling (Algorithm 2). Given the hashed message
u, Algorithm 4 samples a preimage (z0, z1) such that z0 + hz1 = u − e mod Q
for small e. Only z1 is used as the actual signature, as the short term (z0 + e) =
u−hz1 mod Q can be recovered during verification. We set the acceptance bound
β = 1.04 ·E[∥(z0+ e, γz1)∥]. We experimentally verified that the restart happens
with probability ≈ 1% for this setting.

Algorithm 4: Robin.Sign

Input: a message msg, the NTRU key pair (h, (f, g)), r ≥ qηϵ(Zn),

s ≥ rα
√

2(a+ b), γ =

√
s2+(p2−1)/12

s
, β > 0.

Output: a signature (salt, z)

1: A← [In | M(h)],T←
[
M(g)
M(f)

]
2: salt

$← {0, 1}320, u← H(msg, salt)
3: (z0, z1)← ApproxPreSamp(A,T, u, r, s)
4: e← u− (z0 + z1h) mod Q
5: if ∥(z0 + e, γz1)∥ > β then
6: restart
7: end if
8: return (salt, z1)

Verification. The preimage (z0 + e, z1) is short and (z0 + e) + hz1 = u mod Q.
The verification is to check the shortness of (u − hz1, z1). To balance the sizes
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of u − hz1 = z0 + e and z1, we scale z1 by a factor γ =

√
s2+(p2−1)/12

s in the
shortness check. A formal description is given in Algorithm 5.

Algorithm 5: Robin.Verify

Input: a signature (salt, z) of a message msg, the public key h,

γ =

√
s2+(p2−1)/12

s
, β > 0.

Output: Accept or Reject
1: u← H(msg, salt), z′ ← (u− hz) mod Q
2: Accept if ∥(z′, γz)∥ ≤ β, otherwise Reject

5.2 Security analysis

We now give a security proof for Robin. To start with, we need some treatment
on the scaling factor γ which modified the shortness condition for better concrete
security. To this end, we introduce a variant of NTRU-SIS in the twisted norm
as follows.

Definition 8 (NTRU-SIS in the twisted norm, NTRUSIS
∥·∥γ

R,Q,χ,β). Let R =
Z[x]/(xn − 1) with n a prime. Let Q > 0 be an integer, χ be a distribution over
R and β > 0, γ ≥ 1. Given a random NTRU public key h of either NTRUR,Q,χ

or iNTRUR,Q,χ,e, find a non-zero vector (x0, x1) such that ∥(x0, γx1)∥ ≤ β and
x0 + hx1 = 0 mod Q.

It is easy to verify that

NTRUSISR,Q,χ,βγ ≤p NTRUSIS
∥·∥γ

R,Q,χ,β ≤p NTRUSISR,Q,χ,β/γ ,

which shows the equivalence between NTRU-SIS and its twisted-norm version.
To prove the strong EU-CMA security of Robin, we follow the same argu-

ments for the GPV signatures [GPV08] and combine Theorem 2 showing that
the preimage and error output by ApproxPreSamp is simulatable for uniformly
random targets.

Theorem 3. The Robin signature scheme is strongly existentially unforgeable
under a chosen-message attack in the random oracle model assuming the hard-

ness of NTRUSIS
∥·∥γ

R,Q,χ,2β.

Proof. Suppose, for contradiction, that there is an adversary A that breaks the
strong EU-CMA security of Robin with non-negligible probability ε. We con-

struct a polynomial time algorithm S that solves NTRUSIS
∥·∥γ

R,Q,χ,2β with proba-
bility close to ε. Given a random NTRU public key h, S runs A and simulates
the random oracle H and signing oracle as follows:
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– for the query to H on (salt,msg), if H(salt,msg) is not queried, then S samples
(z = (z0, z1), e)← DZ2n,s × U(Zn

p ), returns u = z0 + z1h+ e mod Q as the
random oracle response and stores ((salt,msg), z0, z1, e, u). Otherwise S looks
up ((salt,msg), z0, z1, e, u) and returns u to A.

– for every signing query onmsg, S samples salt
$← {0, 1}320, (z = (z0, z1), e)←

DZ2n,s × U(Zn
p ), then outputs (salt, z1) to A as the signature, and stores

((salt,msg), z0, z1, e, u = z0 + z1h+ e mod Q) in the random oracle storage.

Without loss of generality, assume that before outputting the signature forgery
(salt∗, z1) for the message msg∗, A queries H on (salt∗,msg∗). Then S computes
z′0 = H(salt∗,msg∗)−z1h mod Q and looks up ((salt∗,msg∗), z∗0 , z

∗
1 , e

∗, u∗) in its
local storage. Finally, S outputs (z∗0 + e∗ − z′0, z

∗
1 − z1) as a solution.

By Theorem 2, the view of A in the real scheme is indistinguishable from the
view provided by S except with negligible probability Q2

sign/2
320, in which case

repeated signature queries on the same message msg use the same salt. It remains
to prove that z∗1 ̸= z1. In fact, if msg∗ has been queried to the signing oracle
before, then the above inequality holds by the definition of a successful forgery; if
msg∗ has not been queried to the signing oracle, then z1 is with high min-entropy
for appropriate parameters, so z∗1 ̸= z1 with overwhelming probability. ⊓⊔

5.3 Concrete parameters

We provide 3 parameter sets for Robin in Table 5 for the NIST security levels
1, 3 and 5 respectively. In all parameter sets, Q is a power of 2 and n is a prime
such that the order of 2 in Zn is either n−1 or n−1

2 as suggested in [HPS+17]. Let
b = a− 1 = ⌊n4 ⌋. We choose α ≈ 1.7 to guarantte the key generation terminate
with a small number of trials. The parameter r̄ = ηϵ(Zn) uses ϵ = 2−36 that
suffices to ensure a security level ≤ 256 bits with up to 264 signature queries as
per [Pre17].

In Table 5, the numbers of signature sizes are made according to the entropy
of the preimage. This can be efficiently obtained by using batch encoding with
ANS (Asymetric Numeral System) as in [ETWY22]. The concrete security is
estimated by the usual cryptanalytic methods for lattice-based cryptography.
Details are provided in Supplementary Material A.
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Robin-701 Robin-1061 Robin-1279

Target security level NIST-I NIST-III NIST-V

n 701 1061 1279

(Q, p, q) (16384, 2048, 8) (32768, 4096, 8) (32768, 4096, 8)

(a, b) (176, 175) (266, 265) (320, 319)

α 1.65 1.7 1.75

r 10.22 10.28 10.31

s 449.8 573.8 650.4

γ 1.65 2.29 2.07

β 28928.7 62965.5 70983.7

Public key size (in bytes) 1227 1990 2399

Signature size (in bytes) 992 1527 1862

Key recovery security (C/Q) 116 / 105 181 / 165 228 / 207

Forgery security (C/Q) 130 / 118 214 / 195 264 / 240

Table 5. Suggested parameters for Robin.

5.4 Comparison with Falcon and Mitaka

Implementation. Robin has significant advantages from the implementation
standpoint. First, Robin uses only one vector as the NTRU secret and avoids
the notoriously complex NTRU trapdoor generation. This can be crucial to the
implementations and the key storage, especially when the key management for
the entire lifecycle is required (e.g. by the FIPS 140-2 [NIS]). Second, Robin
has an online/offline structure as Mitaka, and its online operations are simple
and fully over integers, which surpasses Mitaka. In particular, base samplings in
the online phase are in the form DqZ+c,r with c ∈ Z. This is beneficial for fur-
ther optimization and side-channel protections. Third, the offline sampling can
also be implemented without resorting floating-point numbers by the technique
in [DGPY20]. The integral implemenation seems more convenient compared to
the integer version of Mitaka.

Performance. The size of Robin is comparable to that of Falcon and Mitaka:
the total bandwidth (i.e. public key size + signature size) of Robin is larger by
≈ 40% than that of Falcon and by 25% − 35% than that of Mitaka. Detailed
comparisons are shown in Table 6.

6 Shorter LWE-based Hash-and-Sign Signatures

The LWE-based hash-and-sign signatures are rarely seen as a competitive post-
quantum candidate in contrast to their NTRU and Fiat-Shamir counterparts,
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Table 6. Comparisons in terms of sizes with Falcon and Mitaka. For a fair compari-
son, all signature sizes are estimated as per the entropic bound, which can be closely
obtained by entropic encoding as shown in [ETWY22].

Security level Pub. Key size (in bytes) Sig. size (in bytes)

Falcon-512 NIST-I 896 643

Mitaka-648 NIST-I 972 807

Robin-701 NIST-I 1227 992

Mitaka-864 NIST-III 1512 1148

Robin-1061 NIST-III 1990 1527

Falcon-1024 NIST-V 1792 1249

Mitaka-1024 NIST-V 1792 1376

Robin-1279 NIST-V 2399 1862

mainly due to their large sizes. In this section, we fill the gap in practical LWE-
based hash-and-sign signatures with a new scheme Eagle. Eagle is instantiated
with our compact gadget and based on Ring-LWE. It achieves a desirable per-
formance: Eagle is substantially smaller than the state-of-the-art LWE-based
hash-and-sign signatures [CGM19], and even smaller than the LWE-based Fiat-
Shamir signature scheme Dilithium [LDK+22]. While Eagle is less efficient than
the NTRU-based instantiation Robin, we believe it is of practical interest given
the preference for using LWE to NTRU sometimes.

6.1 Description of the Eagle signature scheme

Parameters. Eagle is based on the Ring-LWE assumption over R = R+
n =

Z[x]/(xn + 1) with n a power of 2 and the modulus Q = pq. Eagle uses
the secret with a fixed hamming weight in T (n, a, b) (defined in Section 5.1),
and let α be the parameter controlling the quality of the trapdoor such that√
s1
(
M(ff̄ + gḡ)

)
≤ α∥(f, g)∥ = α

√
2(a+ b). Let r̄ = ηϵ(Zn) and r ≥ qr̄

be the width for the approximate gadget sampler. Let s ≥
√

1+q2

q rα
√

2(a+ b)
be the width for approximate preimages. Let β be the acceptance bound of
∥(z0 + e, γz1, γz2)∥ where (z0, z1, z2) is the approximate preimage, e is the ap-

proximate error and γ =

√
s2+(p2−1)/12

s such that ∥z0 + e∥ ≈ γ∥z1∥ ≈ γ∥z2∥.

Key generation. The public key is essentially (a, b = p − (af + g) mod Q)

where a is uniformly random over RQ = R/(Q · R) and f, g
$← T (n, a, b). The

polynomial a is stored as a seed (of length 32 bytes), which halves the public
key size. We apply the techniques in [EFG+22] as in Robin to refine the quality
of (f, g). A formal description of the key generation is given in Algorithm 6.

23



Algorithm 6: Eagle.KeyGen

Input: the ring R = R+
n with n a power of 2, Q = pq, and α > 0.

Output: public key (seeda, b), secret key (f, g) ∈ R2

1: seeda
$← {0, 1}256, a← Expand(seeda) {Expand maps a seed to an element in R}

2: f1, · · · , fK , g1, · · · , gK
$← T (n, a, b) with K = 5

3: for i = 1 to K do
4: for j = 1 to K do

5: find k ∈ Z∗
n minimizing s1

(
M

(
fif̄i + σk(gj)σk(gj)

))
6: (f, g)← (fi, σk(gj))

7: if
√

s1
(
M(ff̄ + gḡ)

)
≤ α

√
2(a+ b) then

8: b← p− (af + g) mod Q
9: return ((seeda, b), (f, g))
10: end if
11: end for
12: end for
13: restart

Signing procedure. Given the hashed message u, the signing procedure shown
in Algorithm 7 samples a short preimage (z0, z1, z1) such that z0 + az1 + bz1 =
u − e mod Q for a small e. Only (z1, z2) is used as the actual signature, as the
short term (z0 + e) = u− az1 − bz2 mod Q can be recovered during verification.
Again, the acceptance bound β = 1.04·E[∥(z0+e, γz1)∥], which makes the restart
happen with low probability.

Verification. The preimage (z0 + e, z1, z2) is short and (z0 + e) + az1 + bz2 =
u mod Q. The verification is to check the shortness of (u − az1 − bz2, z1, z2). A
formal description is given in Algorithm 8.

Algorithm 7: Eagle.Sign

Input: a message msg and the key pair ((seeda, b), (f, g))
Output: a signature (salt, (z1, z2))

1: a← Expand(seeda), salt
$← {0, 1}320, u← H(msg, salt)

2: A← [In | M(a) | M(b)],T←

M(g)
M(f)
In


3: (z0, z1, z2)← ApproxPreSamp (A,T, u, r, s)
4: e← u− (z0 + az1 + bz2) mod Q
5: if ∥(z0 + e, γz1, γz2)∥ > β then
6: restart
7: end if
8: return (salt, (z1, z2))
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Algorithm 8: Eagle.Verify

Input: a signature (salt, (z1, z2)) of a message msg, the public key (seeda, b),

γ =

√
s2+(p2−1)/12

s
, β > 0.

Output: Accept or Reject
1: u← H(msg, salt), a← Expand(seeda), z

′ ← (u− az1 − bz2) mod Q
2: Accept if ∥(z′, γz1, γz2)∥ ≤ β, otherwise Reject

6.2 Security analysis

Similar to Robin, the security of Eagle is based on a variant of Ring-SIS in
the twisted norm.

Definition 9 (Ring-SIS in the twisted norm, RSIS
∥·∥γ

R,m,Q,β). Let R = Z[x]/(xn+
1) with n a power of 2. Let m,Q > 0 be integers and β > 0. Let RQ = R/(Q ·R).
Given a uniformly random A ∈ Rm

Q , find a non-zero x = (x0,x1) ∈ R ×Rm−1

such that Ax = 0 mod Q and ∥(x0, γx1)∥ ≤ β.

Theorem 4 shows the strong EU-CMA security of Eagle. We omit the proof,
as it follows the same argument with that of Theorem 3.

Theorem 4. The Eagle signature scheme is strongly existentially unforgeable
under a chosen-message attack in the random oracle model assuming the hard-

ness of RSIS
∥·∥γ

R,m,Q,β and RLWER,1,Q,χ with χ = U(T (n, a, b)).

6.3 Concrete parameters

We provide 2 parameter sets for Eagle in Table 7. The public key size is com-
puted as n · log2(Q)/8 + 32 and the signature size is estimated as the entropic
bound of the preimage plus 40 bytes for the salt. The details of concrete security
estimate is shown in Supplementary Material A.

6.4 Comparison with LWE-based signatures

Thanks to the compact gadget, Eagle has much better compactness than ex-
isting LWE-based hash-and-sign signatures. We first compare Eagle with the
Ring-LWE-based construction from [CGM19]. For a fair comparison, we re-
parameterize the scheme in [CGM19] such that the used secret has the same
size with that in Eagle and the overall size is nearly optimal for the target
security level. Nevertheless, for 80-bits (resp. 192-bits) of classical security level,
the bandwidth of Eagle is only about 30 − 40% of that of the instantiation
from [CGM19]. Eagle is even smaller than Dilithium that is a representative
LWE-based Fiat-Shamir signature scheme. Detailed numbers are shown in Ta-
ble 8.

25



Eagle-512 Eagle-1024

Target security level 80-bit NIST-III

n 512 1024

(Q, p, q) (16000, 2000, 8) (32400, 2700, 12)

(a, b) (128, 128) (256, 256)

α 1.7 1.7

r 10.17 15.42

s 394.2 841.5

γ 1.36 1.19

β 28493.5 66118.5

Public key size (in bytes) 928 1952

Signature size (in bytes) 1406 3052

Key recovery security (C/Q) 79 / 71 176 / 160

Forgery security (C/Q) 83 / 75 189 / 172

Table 7. Suggested parameters for Eagle.

Table 8. Comparisons in terms of sizes with Dilithium [LDK+22] and [CGM19]. The
bit-security for Dilithium corresponds to the strongly-unforgeable version. The signa-
ture sizes for [CGM19] and Eagle are estimated as per the entropic bound.

Security
(C/Q)

Pub. Key size
(in bytes)

Sig. size
(in bytes)

Dilithium 1− 89 / 81 992 1843

[CGM19] 79 / 71 2720 2753

Eagle-512 79 / 71 928 1406

Dilithium 3 176 / 159 1952 3293

[CGM19] 180 / 164 7712 7172

Eagle-1024 176 / 160 1952 3052

6.5 Comparison with Robin

As readers may have noticed, the Ring-LWE-based instantiation Eagle is less
efficient than the NTRU-based instantiation Robin in Section 5. For the NIST-
III security level, while Eagle and Robin have roughly the same public key size,
the Eagle signatures are about 2 times the size of Robin signatures. This is
an inherent gap, as the signatures in NTRU-based schemes are one ring element
whereas the signatures in LWE-based schemes require at least two ring elements
to recover the preimage. In addition, the forgery security of Eagle-1024 is lower
than that of Robin-1061 by more than 20-bits, although the degrees of the used
ring are close. The main cause is as follows. While the public matrix A in Eagle
is n-by-3n, the best forgery attack would only use its submatrix of size n-by-2n,
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which is the same with the case of Robin. In constrast to Robin, the acceptance
bound of the Eagle signature size is larger due to the wider A. This lowers the
forgery security.

Despite the worse performance than Robin, Eagle still occupies a fairly
important position within the practical design of lattice signatures. The under-
lying Ring-LWE assumption could receive some preference to NTRU, especially
for more powerful applications with overstretched parameters. Furthermore, Ea-
gle can be more conveniently adapted to the unstructured setting, thanks to
the absence of costly matrix inversions in the key generation. This may be a
merit given the emphasis of post-quantum signatures not based on structured
lattices raised by NIST10.

7 Conclusion

We develop a new lattice gadget construction of better compactness than the
state-of-the-art. The main technique is a novel approximate gadget sampler,
called semi-random sampler, in which the approximate error is deterministically
generated and the preimage distribution is still simulatable without using the
trapdoor. As an application, we present two practical hash-and-sign signature
schemes instantiated with our compact gadget respectively based on NTRU and
Ring-LWE. Our NTRU-based instantiation Robin offers a quite simple imple-
mentation and high efficiency comparable to Falcon and Mitaka. This makes
Robin an attractive post-quantum signature for constrained environments. Our
Ring-LWE-based scheme Eagle is significantly smaller than the one [CGM19]
and even smaller than Dilithium. This demonstrates that LWE-based hash-and-
sign signatures have much more potential than previously considered for practical
applications.

7.1 Future works

Our gadget framework actually supports diverse instantiations beyond the one
used in Robin and Eagle. It would be interesting to explore more efficient con-
structions by combining different gadget matrices, lattice decoders and Gaussian
samplers. It is also worthy to develop more algorithms for our gadget and then
to build a complete toolkit as in [GMP19].

Our gadget-based schemes are simpler than the NTRU trapdoor based ones
and easily implemented fully over integers with the technique of [DGPY20]. We
leave the optimized implementation and the provable side-channel protections
as future works. In addition, our technique can be applied in advanced lattice
cryptosystems. Evaluating its impact on the performance of advanced schemes
needs a thorough investigation.

Our proposals of Robin and Eagle do not fully integrate some recent tech-
niques [JHT22, EFG+22, ETWY22] to improve the performance and security,

10 https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/

call-for-proposals-dig-sig-sept-2022.pdf

27

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf


as we would like to focus more on the new gadget itself. Hence there shall be
some room to improve the performance by adding these optimizations.
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[Bab86] László Babai. On lovász’ lattice reduction and the nearest lattice
point problem. Combinatorica, 6(1):1–13, 1986.

[BVWW16] Zvika Brakerski, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel
Wichs. Obfuscating conjunctions under entropic ring lwe. In ITCS
2016, pages 147–156, 2016.

[CGM19] Yilei Chen, Nicholas Genise, and Pratyay Mukherjee. Approximate
trapdoors for lattices and smaller hash-and-sign signatures. In ASI-
ACRYPT 2019, pages 3–32, 2019.

[CN11] Yuanmi Chen and Phong Q Nguyen. Bkz 2.0: Better lattice security
estimates. In ASIACRYPT 2011, pages 1–20, 2011.
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A Concrete Security Estimates

We estimate the concrete bit-security of our signature schemes according to
the usual cryptanalytic methodology. To recap, we analyze the cost of the best
attacks against key recovery and signature forgery, then translate the analysis
into concrete bit-security using the Core-SVP model.

A.1 Lattice reduction and the Core-SVP model

Lattice reduction is the task of finding a basis consisting of short and nearly
orthogonal vectors. It is an important cryptanalytic tool used in lattice attacks.
The most practical lattice reduction algorithms are BKZ [SE94] and its optimized
variant [CN11, MW16]. The BKZ algorithm is parameterized by the blocksize
β. For a d-dimensional lattice Λ, BKZ-β would find some v ∈ Λ with

∥v∥ ≤ δdβ vol(Λ)
1/d and δβ ≈

(
(πβ)

1
β β

2πe

) 1
2(β−1)

for β > 50. The Core-SVP model estimates the cost of running BKZ-β as 20.292β

in the classical setting and 20.265β in the quantum setting. This is seen as a
conservative concrete bit-security estimate.

A.2 Key recovery attack

The key recovery against our signature schemes consists in finding the short
secret (f ,g) such that Af + g = b mod Q where A ∈ Zn×n

Q and b ∈ Zn
Q are

publicly known. The primal attack is a primary method for this task. It runs
BKZ-β on the lattice Λ = Λ⊥

Q([A | In | b]) of dimension d = 2n + 1 to find the
short (f ,g,−1). As shown in [ADPS16], a successful key recovery can be done
when the blocksize β satisfies

∥(f ,g,−1)∥
√

3β

4d
≤ δ2β−d−1

β ·Qn
d

where
√

3/4 is set for a conservative estimate as in [PFH+22]. To optimize the
attack, we also apply some known strategies prior to running BKZ:

1. we guess the positions of k zeros of f as suggested in [ETWY22];

2. we remove l rows of (A,b) when constructing the lattice.

We choose (k, l) to minimize the cost of the attack, which offers a few bits of
improvement.



A.3 Forgery attack

The signature forgery in our schemes is essentially to solve an approximate-
CVP instance over the q-ary lattice. The nearest-colattice algorithm [EK20] is a
primary approximate-CVP algorithm. To address the twisted norm, we use the
treatment of [ETWY22] in the nearest-colattice framework. Specifically, given
(A,u) ∈ Zn×d

Q ×Zn
Q and β > 0, a preimage (x0,x1) := x ∈ Zn×Zd−n such that

Ax = u mod Q and ∥(x0, γx1)∥ ≤ β can be computed by BKZ with blocksize β
satisfying

β ≥ min
k≤d−n

(
δd−k
β Q

n
d−k γ

d−k−n
d−k

)
.

We observe by experiments that for our LWE-based scheme, the best attack
corresponds to k ∈ [n, 2n], thus the associated CVP instance has a dimension
d − k ∈ [n, 2n] as in the NTRU case. That is, the wider public matrix in the
LWE setting does not seem to enhance the forgery security.
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