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Abstract. In multi-tenant cloud environments, physical resources are shared between var-
ious parties (called tenants) through the use of virtual machines (VMs). Tenants can verify
the state of their VMs by means of deep-attestation: a process by which a (physical or vir-
tual) Trusted Platform Module –TPM – generates attestation quotes about the integrity
state of the VMs. Unfortunately, most existing deep-attestation solutions are either: limited
to single-tenant environments, in which tenant privacy is irrelevant; are inefficient in terms
of linking VM attestations to hypervisor attestations; or provide privacy and/or linking, but
at the cost of modifying the TPM hardware.
In this paper, we propose a privacy preserving TPM-based deep-attestation solution in multi-
tenant environments, which provably guarantees: (i) Inter-tenant privacy: a tenant is
unaware of whether or not the physical machine hosting its VMs also contains other VMs
(belonging to other tenants); (ii) Configuration privacy: the hypervisor’s configuration,
used in the attestation process, remains private with respect to the tenants requiring a hyper-
visor attestation; and (iii) Layer linking: our protocol enables tenants to link hypervisors
with the VMs, thus obtaining a guarantee that their VMs are running on specific physical
machines.
Our solution relies on vector commitments and ZK-SNARKs. We build on the security model
of Arfaoui et al. and provide both formalizations of the properties we require and proofs that
our scheme does, in fact attain them. Our protocol is scalable, and our implementation results
prove that it is viable, even for a large number of VMs hosted on a single platform.
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1 Introduction

The use of virtualization has fundamentally revolutionized infrastructures, in terms of both dynam-
ics and flexibility. This is perhaps most visible in the context of mobile networks, where Network
Function Virtualization (NFV) allows operators to use continuously-evolving networks, in which
Virtual Network Functions (VNFs) can easily be added, removed, or migrated. Such VNFs (which
are virtual machines – VMs – managed by a hypervisor) implement services like routing and au-
thentication, allowing servers to scale up, scale out, or deploy new services on demand. A similar
use-case appears in cloud-computing environments.

The attractive flexibility of virtualization, however, induces an inevitable loss of control and
trust in the resulting infrastructure. A solution recommended by the European Telecommunica-
tions Standards Institute (ETSI) is the use of remote attestation [15] for the verification of the
components of a virtualized infrastructure. Remote attestation enables a prover, typically a compo-
nent on a virtual platform (e.g., a VM) to prove to an authorized verifier that it conforms to some
specifications (and thus that it has specific properties). The verifier will then trust this component
and later extend its service. In this paper, we specifically focus on the type of attestation that
verifies the integrity state of a component.

Attesting a virtual component usually implies attesting the underlying virtualization infras-
tructure: a process called deep attestation. To implement deep attestation, ETSI first proposed
single-channel attestation [16, 17], which verifies, simultaneously, the integrity of the VM, that of
its associated hypervisor, and their layer binding, i.e., the fact that the VM is managed by the
designated hypervisor. While sound from the point of view of security, this approach scales badly
for a large number of VMs. Hence, ETSI’s second proposal, multiple-channel attestation [16, 17]
sacrifices the layer-binding property to provide more efficient attestation.
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At ACNS 2022, Arfaoui et al. [2] proposed a solution which achieves the best of both worlds,
achieving layer-binding with practically the same efficiency as multiple-channel attestation. Unfor-
tunately, like other solutions before it [13, 2, 25], Arfaoui et al.’s protocol is unsuited to multi-tenant
environments [14], in which virtual components situated on various platforms may belong to dif-
ferent entities called tenants, with possibly-different (and conflicting) security goals.

The aim of this work is to address the topic of deep-attestation in multi-tenant environments.
We specifically consider a use-case similar to that of Keylime [23, 32], a solution employed in use-
cases such as cloud infrastructures, which provides system-integrity monitoring based on TPM
attestations. Keylime allows for the deployment of an agent on each target VM; the agent sends,
every few seconds, an attestation to a cloud verifier. Keylime is efficient and works well even in very
large cloud-infrastructures [20], but is unfortunately limited to VM attestations (rather than to
linked hypervisor/VM attestation) and moreover provides no tenant- or hypervisor-configuration-
privacy.

Ideally, we would like to provide linkable attestation in multi-tenant settings, such that the
resulting solution is practical (scalable and efficient), secure, and provides strong privacy for both
the tenants and for the provider of the physical infrastructure.

1.1 Our contribution

We consider a typical multi-tenant architecture as shown in Figure 1. The hypervisor is equipped
with a hardware Trusted Platform Module (TPM) [37] and spawns a virtual TPM (vTPM) [3] for
each VM it manages. VMs can be operated by tenants, and one tenant can have multiple VMs.
Every tenant has a dedicated verifier to check the attestation (and layer-binding) of its VMs and
the hypervisor.

Fig. 1. A multi-tenant environment with three VMs, each belonging to a different tenant. Each tenant has
its own verifier for attestation.

Our work makes a triple contribution:

A new protocol. We propose a primitive called privacy-preserving multi-channel attestation
(PP-MTA), which has the attractive security of single-channel attestation, but the scalability of
multiple-channel attestation in a multi-tenant environment. As described in Section 1.3, we instan-
tiate PP-MTA with a protocol that guarantees attestation, layer-binding, and in addition:
Inter-tenant privacy: No tenant can learn whether other tenants share the same resources that

host its VMs using our scheme.
Configuration privacy: The hypervisor attestation basically convinces a verifier that the hypervisor

has a valid configuration. However, since the hypervisor might not belong to the tenant, we
allow the hypervisor to keep that configuration private.
Moreover, our scheme achieves these strong properties –for the first time in the literature–

without requiring modifications to generic TPMs. As described in the technical overview, our
construction relies on vector-commitment schemes and ZK-SNARKs [5].

Formal analysis. We formally model and prove the security and privacy of our protocol. We
extend the layer-binding properties presented in [2] to a multi-tenant environment, then define, for
the first time in the literature, the properties of inter-tenant privacy and hypervisor configuration-
privacy.
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We then prove that our PP-MTA scheme guarantees these properties. Our proofs rely on the
security of the ZK-SNARKs, vector-commitment scheme, and (minimally) on an ACCE-secure
secure-channel establishment protocol. Interestingly (and contradicting naïve intuition), our proofs
require stronger-than-standard binding properties for the vector commitment, and also a stronger
privacy property for the secure-channel establishment property. Thus, we formally define: (i)
collision-resistance as a new property of vector-commitment schemes; and (ii) partner-hiding as a
property of authenticated key-exchange schemes. We also prove that the vector commitment we
employ in our PP-MTA scheme (relying on Merkle trees) is collision-resistant, while the TLS 1.3
handshake that we use guarantees a flavour of partner-hiding, namely initiator-hiding.

Both properties, and their impact in providing privacy, are of independent interest.

Implementation. We show the feasibility of our solution by providing a proof-of-concept imple-
mentation of our protocol, for which we describe several benchmarks. Despite relying on SNARKs,
known to have poor performance, our scheme remains fast enough for real use application, with
the hypervisor attestation requiring 2.5s and the attestation-verification, 25ms.

1.2 Background and Related work

Apart from prior work already mentioned on deep attestation, our work builds on a vast literature
of TPM-based remote-attestation, for which we recall some basics below. We then review existing
work on property-based attestation, and attestation in cloud-based environments. Finally, at the
end of this section, we single out two papers which we discuss in more detail: the layer-linking
single-tenant protocol of Arfaoui et al. [2] and the privacy-preserving AKE definition in the work
of Schäge et al. [31].

TPM Remote Attestation. This type of attestation, which allows the verification of the integrity
state of a target, has two main phases: (1) the TPM measures all the code involved in the boot
process and securely stores the measurements in the Platform Configuration Registers (PCR); (2)
Upon request, the TPM signs, with an attestation key (AK), the target configuration (PCR values)
and sends the result.

Property-based attestation. Classical TPM attestations follow a binary approach that reveals
the configuration of the target (notably, a function of the PCR values), which is both a privacy
threat and impractical, as the verifier must know all possible trusted configurations to validate
the attestation. Property-based Attestation (PBA) [29] overcomes some limitations by verifying
that the target satisfies some high-level properties instead of binary measurements. A specific
property can be achieved by different configurations. We can distinguish two main families of
PBAs: (1) PBAs like [27, 9], which use a Trusted Third Party (TTP), whose existence cannot
always be guaranteed; (2) PBAs like [10, 18], for which the hypervisor uses a zero-knowledge proof
of membership, confirming that its configuration belongs to a set of valid configurations – at the
expense of modifying TPM specifications.

TPM attestation in the cloud. Multi-tenant attestation is particularly useful in cloud-like
environments, where multiple tenants share physical resources. Several techniques allow a tenant
to check and monitor their cloud nodes, [23, 32] or the trusted state of the virtualization platform,
while preventing the full disclosure of the platform configuration[40]. In the Keylime scenario
presented above, we face a multi-tenant privacy-sensitive scenario, in which potentially thousands of
attestation quotes must be computed by the resource-constrained TPM. Whereas Keylime provides
no privacy and no layer-linking, and PBA offers privacy, but at the expense of TPM modifications
or a TTP, we present a solution for provable privacy, layer-linking, which is effcient and scalable.

Other solutions, like Scalable Attestation [4] enables to assess the trust level of either guest or
host environments by combining trusted and secure boot, but without linking.

When evaluating the trust level of a guest environment, a common approach is to centralize
attestation in the cloud through a cloud verifier – either providing attestation of both host and
guest [33] or combining this approach with PBA [42]. Policy-Sealed Data [30] is an alternative to
our approach, but which requires a trusted cloud verifier.

The same centralized attestation pattern exists when multiple nodes must attest one another.
Examples include privacy-preserving attestation [28], or attestation frameworks for container-based
service function chains [24, 12].
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While similar to ours, such approaches either require TPM modifications, do not apply to the
generic use-case depicted in Figure 1, require unrealistic trust assumptions (like a trusted verifier),
or do not provide the strong privacy we desire.

Comparison to [2, 31]. Our work comes closest to [2, 31]. We provide a comparison to these
recent publication below.

Comparison to [2]. Arfaoui et al.’s recent publication allows to understand, model, and prove
the security of single-tenant, linkable deep-attestation. In their scenario, an authorized verifier can
request the attestation of VMs and the hypervisor supposedly hosted on the same platform. The
protocol proposed in [2] provides linkable attesstation without modifications to the standard TPM,
by ensuring that hypervisor attestations also incidentally attest the public keys corresponding to
the VMs hosted on the same machine. The protocol provides the following properties (cf. [2]:
– Authentication: No quotes are issued to any entity excepting the verifier;
– Authorization: Quote contents are confidential except to an authorized verifier (which, how-

ever, will learn a function of the hypervisor’s configuration);
– Linking: A hypervisor quote and a VM quote are only linkable if the two are hosted on the

same physical machine.
Unfortunately, this solution is not practical in multi-tenant environments for which, addition-

ally, no tenant is also the platform owner (the use case of Keylime[23]). The protocol designed
by Arfaoui et al. embeds in the hypervisor attestation the public keys of all the VMs hosted on
the platform, which provides linkability, but not privacy – for either the tenants (as they learn
attestation keys belonging to other tenants’ VMs), nor for the platform owner (the hypervisor’s
configuration is leaked).

While our solution reuses parts of the layer-linking of [2], our main focus is on privacy – and
as a consequence, our protocol uses vector commitments and ZK-SNARKs in order to provide
scalable, privacy-preserving, efficient, linkable attestation

Comparison to [31]. Schäge et al. considered privacy-preservation in authenticated key-exchange
(AKE). While not related to attestation, their notion of PPAKE is similar to the property of
Partner-Hiding AKE defined here – which we need to prove inter-tenant privacy.

There is, however, a subtle difference between partner-hiding AKE and the left-or-right pri-
vacy indistinguisability described by [31]. The guarantee defined by [31] ensures that a Person-
in-the-Middle, situated between the initiator and the responder in an AKE protocol, cannot link
sessions featuring say the same initiator (out of a set of possible initiators). By contrast, we need
a deniability-like notion: a legitimate responder must be unable to tell whether it is interacting
with a real or a simulated initiator. Our ultimate goal is to guarantee that no collusion of mali-
cious tenants can tell whether other VMs (corresponding to other, honest tenants) are hosted on
a specific platform as their VMs.

1.3 Technical Overview

In our scenario, various tenants may own VMs, hosted on a platform owned by a platform-owner.
Each tenant knows identifying data on its own VMs and may request either a VM or a hypervisor
attestation. We want the following properties:

– Inter-tenant privacy: A collusion of tenants cannot tell whether that platform contains other
VMs than their own, or not;

– Hypervisor-configuration privacy: A collusion of tenants or other parties cannot learn the
configuration of the platform (out of a set of configurations);

– Linking: Hypervisor and VM attestations are only linkable if the VM is hosted on the machine
managed by the hypervisor.

We reuse the layer-linking strategy of the protocol of [2]: We embed auxiliary information
in the hypervisor’s attestation quote, making it linkable to VM quotes. However, we want to
simultaneously guarantee strong privacy, both for the tenants and the platform-owner. We also
want our solution to scale well, even in cloud environments such as Keylime, for which many
attestation requests are made simultaneously by various tenants.
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Solution outline. A naïve approach is to create a single-channel deep-attestation quote every
time a tenant requests the attestation of their VMs. This approach provides two of the three
properties above: inter-tenant privacy and layer-linking. However, two problems remain: hypervisor-
configuration and also scalability.

Hypervisor-configuration is highly desirable when tenants and their VMs are hosted on a plat-
form whose owner wants to retain the privacy of each machine’s configuration even with respect
to tenants whose VMs run on those machines. If, during attestation, (a function of) the attested
PCR values leaks to a tenant, this reveals part of the hypervisor’s configuration. In order to
guarantee that property, the attestation quotes need (simultaneously) to: (i) be signed by a phys-
ical root of trust (TPM); (ii) only provide a proof that the measurement on the PCR values has a
“correct" value, rather than directly giving away that value. In our solution, we provide hypervisor-
configuration privacy by including a zero-knowledge proof of knowledge, called a SNARK. Whereas
we could make the TPM compute the ZKP itself rather than relying on SNARKs, this would require
TPM modifications, which we want to avoid.

The second problem with our naïve solution is scalability. Single-channel deep-attestation re-
quires a (slow) physical TPM to generate linkable attestations. In a use-case like that of Keylime,
hundreds of clients may request attestations every second, so the use of single-channel attestation
is impractical. We in fact include a way of batching hypervisor attestations for multiple tenants
together.

Unfortunately, batching is difficult when it must guarantee both inter-tenant privacy and layer-
linking. Since layer-linking requires the hypervisor attestation to be linkable to independent VM
attestation: thus, the hypervisor has to leak some information regarding which VMs it is managing.
For batched hypervisor attestations, we will want a single attestation to allow one tenant, say
Tenant A, to link the hypervisor with all of its VMs on that machine – but simultaneously, that
attestation must allow a different tenant (Tenant B) to do the same with its own VMs. This is
challenging when we want Tenant A to know nothing about Tenant B’s VMs – or even the very
existence of Tenant B.

To bridge the gap between layer-linking and inter-tenant privacy, we leverage vector-commitment
schemes, which will store (in a hidden form) linking information to all the VMs hosted on the hy-
pervisor. The vector is artificially padded so that, irrespective of the number of VMs hosted, each
tenant will be faced with the same commitment size. Each tenant will only open the positions
of the vector commitment corresponding to its own VMs, learning nothing about any other VMs
potentially stored on them.

System model. In this work we will distinguish between attestation and privacy adversaries.
For attestation, we consider the generally adopted generic system model of [34] for hardware-
assisted computing platforms. This model distinguishes several classes of adversaries of increasing
strengths, including: application-level (e.g., unprivileged) attackers; co-residents (e.g., VM-to-VM
threats); system-level adversaries (e.g., untrusted OS/hypervisor); network-level threats (e.g., ,
untrusted I/O peripherals); and the invasive attacker with access to the physical infrastructure,
an all-powerful threat to confidentiality and integrity. In this work the most relevant types of
adversaries are co-resident and system-level ones, capturing VM-to-VM (or tenant-to-tenant) and
VM to/from hypervisor threats. However, we do not consider side-channel attacks.

In the case of privacy we only consider network adversaries and malicious verifiers, since any
adversary with direct access to other tenants’ VMs or the hypervisor will immediately break privacy.
We discuss more on privacy below.

Scheme overview. Our scheme begins with an initial setup, allowing parties to register long-term
credentials and set up the virtualization platform. When a tenant wants a new VM, it registers
with the platform, which allows the tenant to learn some information on that VM (and enable
them to later establish secure-channels and to link attestations).

Attestations are of two types. Whenever a tenant tries to simply attest a VM, it will send
a request to the VM (over a secure channel), and another request to the hypervisor, along with
a nonce for each. The VM attestation proceeds as in [2] (since individual VM attestations are
autonomous and do not jeopardize inter-tenant privacy). The hypervisor attestation will proceed
in the following way. When receiving the request the hypervisor buffers it if the TPM is busy.
As soon as the TPM is free, the hypervisor can retrieve linking information for the tenant and
concatenate it with that tenant’s nonces. It does the same for every other buffered tenant request.
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Then it assigns a random position in a vector for each tenant, places the concatenated linking-values
for each tenant at the assigned position, and commits to this obtained vector. If the number of
requesting tenants is smaller than the number of positions in the vector (recall, we made the vector
constant size), the empty positions are filled with dummy random data. The hypervisor can now
request a quote to the TPM, sending the commitment as the nonce. When it receives the answer, it
computes a SNARK confirming the validity of the quote without revealing the precise configuration.
It also computes for each tenant an opening to the vector for its attributed position. Each tenant
will receive the SNARK proof and the opening to the positions in the vector-commitment to which
it can access. The verification and linking of the two attestations then proceeds as in [2].

Remark. Our work is motivated by the privacy problems which occur for deep attestation in multi-
tenant environments. While we do not set out to create privacy within the physical platform (this
must be enforced by correct separations of resources), we do, however preserve those properties at
the attestation layer.

2 Preliminaries

Our multi-tenant attestation scheme relies on vector-commitments and ZK-SNARKs, which we
briefly describe below before presenting our contributions.

2.1 Vector commitment

A commitment scheme COM = (COM.Setup, COM.Com, COM.Ver) is a cryptographic primitive that
allows a party P to commit to a message m with some randomness r by producing a commitment
c and opening information o: (c, o) ← COM.Com(m; r) It is then possible to verify that c is a valid
commitment for message m by using the verification algorithm COM.Ver(m, c, o).

The commitment c should be hiding (it must reveal nothing about the committed message m)
and binding (a commitment c will not open to a different message than m). In particular, given
the opening information o, as well as c and m, anyone can verify the validity of c with respect to
m.

Introduced by Catalano and Fiore in 2011 [7], vector commitment schemes allow for a com-
mitment to a list of values, rather than a single message. Additionally, the opening of vector
commitments is done by position, i.e., one computes opening information for each value commit-
ted in the list, potentially separately. In this paper we will use this in order to provide tenants
(owners of VMs) to only open attestation-specific information that is relevant to the VMs they
own, and not to others. In contrast to classic commitment schemes, vector commitments do not
always have the hiding property – which we require here. Thankfully, one can obtain this prop-
erty by combining the vector-commitment scheme with a classical commitment scheme. Instead of
directly committing to vector v = (v1, v2, ..., vn), one can apply a commitment scheme COM.Com
to each value in the vector and then commit v = (COM.Com(v1),COM.Com(v2), ...,COM.Com(vn)),
then during the reveal phase the opening of the commitment at position i will be added to the
proof that mi is in the committed vector.

We note that, while the scheme of Catalano and Fiore also featured updates to both the values
committed to and to the opening information, we do not require this for our paper. Our vector
commitment schemes will be of the form VC = (VC.Setup,VC.Com,VC.Open,VC.Ver), such that:

– VC.Setup(1λ, q)→ ppar: The setup algorithm (also called Key Generation by Catalano and
Fiore) takes in input a security parameter in unary, and the length q of the vectors committed
to, and outputs public parameters ppar, which include the message space M.

– VC.Com(v)→ (c, aux) : The commitment algorithm takes in input a vector v ∈ Mq (a vector
of q entries, each entry a message in M) and outputs a commitment c and an auxiliary value
aux.

– VC.Open(m, i, aux)→ πi: The opening algorithm is run by the party that computes the com-
mitment. On input an index i ∈ {1, . . . , q}, a message m which will be at some position i within
a vector commitment, and the index i itself, this algorithm outputs a proof πi that m is the
i-th message of the vector v associated with the commitment c.
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– VC.Ver(m, c, i, πi)→ b ∈ {0, 1}: The verification algorithm takes in input a message m, a vector
commitment c an index i ∈ {1, 2, . . . q} and a proof πi, and outputs a bit that indicates either
that the message m is assumed to be the message committed to at the i-th position of v (in
this case b = 1) or not (b = 0).

Security properties. We require the following properties for our vector-commitment schemes:

Position Binding : For every i and every polynomially-bounded adversary A the advan-
tage AdvVCBindVC (A) := Pr[∃i, π, π∗ and m,m∗ ∈ M : m ̸= m∗,VC.Ver(m, c, i, π) =
VC.Ver(m∗, c, i, π∗) = 1] is negligible.
Hiding : The hiding property for the vector-commitment scheme is defined in terms of the security
experiment GVCHide(λ) presented below.

Game GVCHide(λ)

ppar← VC.Setup(1λ, q)

b
r← {0, 1}

(v0, v1 ∈Mq, ℓ ∈ (N+)
m, s.t. m ≤ q)← A(ppar)

Abort if ∃ℓj ⊂ ℓ s.t. v0ℓj ̸= v1ℓj
(cb, aux)← VC.Com(vb)
∀j ∈ {1, . . . ,m} compute πℓj ← VC.Open(vbℓj , i, aux)

d← A(cb, aux, {πℓj}
m
j=1)

A wins iff. b = d

Fig. 2. The vector-commitment hiding game.

The adversary’s advantage against the hiding game is defined as:

AdvVCHideVC (A) :=
∣∣∣∣Pr[A wins GVCHide(λ)]−

1

2

∣∣∣∣. (1)

There exist a variety of vector-commitment scheme with different characteristics, such as the
commitment or proof size. For example, a commitment scheme can be constructed using a Merkle
tree with O(1) commitment size and O(log q) proof size for a vector of size q.

2.2 ZK-SNARKs

Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge (ZK-SNARK) are generic
NIZK proof systems (permitting to prove validity of any NP statement for some witness w
without revealing w) but for which the argument of knowledge is succinct : namely the proof
grows sublinearly in the witness size and the verification time is, similarly, sublinear. For
example, given a Boolean circuit, one can prove knowledge on an assignment of values input
into the circuit that render the circuit output to TRUE, without revealing the assignment. By
converting generic computations into instances of an NP problem it is possible to prove that
inputs for some public computation yield a specific public result without revealing the inputs.
ZK-SNARKS allow to make some of those input values public, while other input values remain
private. Moreover, ZK-SNARK are non-interactive and thus only require one message from the
prover to the verifier, namely the proof, which can later be verified by multiple independent verifier.

A ZK-SNARK consists of the following algorithms:

– ZKP.Setup(R)→ (CRS, τ): The setup algorithm takes as input an NP relation R and then
ouputs a common reference string –CRS– consisting of public proving and verification param-
eters, and a simulation trapdoor τ .

– ZKP.Prove(CRS, R, xZK , wZK)→ πZK : The proving algorithm takes as input the CRS, a state-
ment xZK and a witness wZK for which (xZK , wZK) ∈ R, and output a ZK-proof πZK .
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– ZKP.SkVer(CRS, R, xZK , πZK)→ b ∈ {0, 1} : The verification algorithm takes in input a proof,
the relation, a statement, and the CRS. It outputs 1 if the proof is accepted with respect to the
CRS, relation, and statement, or 0 if the proof is rejected. An accepted (valid) proof convinces
the verifier that the prover held a witness for the statement with respect to the provided
relation.

– ZKP.SkSim(CRS, τ, R, xZK)→ πZK : On input the CRS, a simulation trapdoor, the relation,
and a statement output a simulated proof.

Thus, there are two ways of generating a valid proof: either by holding a legitimate witness and
using the ZKP.Prove algorithm, or by having access to the trapdoor τ and using ZKP.SkSim.

Properties. ZK-SNARKS have the following properties:

Completeness : For all (xZK , wZK) ∈ R with (CRS, τ) ← ZKP.Setup(R) and πZK ←
ZKP.Prove(CRS, R, xZK , wZK), Pr[ZKP.SkVer(CRS, R, xZK , πZK) = 1] = 1 (intuitively, all proofs
correctly generated using a valid witness will verify as valid).
Knowledge Soundness : For all PPT adversaries A there exists an extractor ExtA and a neg-
ligible function ϵ with (CRS, τ) ← ZKP.Setup(R) and ((xZK , π∗);wZK) ← A||ExtA such that
Pr[(xZK , wZK) /∈ R ∧ ZKP.SkVer(CRS, R, xZK , πZK) = 1] = ϵ(λ).
Zero-knowledge : For all (xZK , wZK) ∈ R with (CRS, τ) ← ZKP.Setup(R) the distributions
D0 = {π0 ← ZKP.Prove(CRS, xZK , wZK)} and D1 = {π1 ← ZKP.SkSim(CRS, τ, xZK)} are
statistically close.

Many different ZK-SNARK schemes exist and provide different properties. Notably we can
differentiate pre-processing SNARK from transparent SNARK. Pre-processing SNARK require a
trusted setup to compute the CRS as they generate a so called "toxic waste". Moreover some of the
pre-processing SNARK scheme are circuit specific meaning that a different CRS must be generated
for different circuit.

3 Model

Our security model applies to the virtualization architecture in Figure 1, in which tenants associated
with unique identities T can register3 a number of virtual machines VM on a hypervisor H.

Each hypervisor H will have a physical root of trust represented by a TPM TPM . Moreover in
order to provide a meaningful inter-tenant privacy notion, we assume that each physical machine
(with a unique hypervisor H) upper-bounds the number of tenants NT that it can host, and also
the number of VMs NVM that each tenant can have on H. Such bounds do exist in practice, usually
driven by physical constraints. In our case, for the sake of legibility, we will assume universal bounds
(all hypervisors may only have NT and NVM per tenant), rather than local, hypervisor-specific ones.

We call the list of tuples of PCR measurements and accepted values used during the hypervisor
attestation the configuration of the hypervisor, and assume the existence of a set (of more than
one element) CONF of possible configurations for each hypervisor. Note that in the quote, the
current configuration is represented as the hash of the list of PCRs.

3.1 Primitive syntax

We formally define a new primitive, called privacy-preserving multi-tenant attestation (PP-MTA),
consisting of 9 polynomial-time algorithms: PP-MTA= (Setup, HSetup, TKGen, VMReg, HAttest,
VMAttest, VfHAttest, VfVMAttest, Link) with:
Setup(1λ)→ {ppar, spar}: On input a security parameter, this algorithm outputs public param-

eters ppar (including the bounds NT , NVM , and valid configuration-set CONF), and private
parameters spar (which may be instantiated to ⊥ if not useful). The public parameters are
input implicitly for every subsequent algorithm.

3 We allow tenants (who are potential privacy adversaries) to arbitrarily choose the physical machine
and hypervisor hosting their VMs. This strong security model allows attackers to thus exploit multiple
physical platforms before choosing their target.
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HSetup(ppar)→ {H.pk,H.sk,AK.pk,AK.sk,H.Conf,H.state}:
This algorithm sets up the (honest) hypervisor H, by associating it with a public key H.pk,
a private key H.sk, public- and private- attestation credentials (AK.pk,AK.sk), and a configu-
ration H.Conf ∈ CONF . The hypervisor “inherits" the universal bounds NT and NVM from
ppar. The hypervisor maintains state H.state related to hosted tenants and their VMs; this
value is initialized to ∅.

TKGen(ppar)→ {T .pk, T .sk}: This algorithm generates public and private keys for a single tenant
T . All parties have access to all the public keys, but only the tenant has access to its private
key.

VMReg(H, T .sk,VMdesc)→ {(VM ,VAK.pk),VAK.sk,H.state} ∪ ⊥: This is the registration, by ten-
ant T , of a VM of description VMdesc on the machine with hypervisorH. If the tenant’s request
exceeds either the hypervisor’s capacity to host new tenants NT , or its capacity for VMs for
this tenant NVM , then the algorithm returns ⊥. Else, the hypervisor creates the required VM,
for which it returns a handle VM , as well as a tuple of public/private parameters, correspond-
ing to the attestation keypair for that VM, as stored by the vTPM: (VAK.pk,VAK.sk). The
algorithm also requires mutual authentication of the tenant and the hypervisor, enabling H
to update its state H.state. If the authentication fails, the algorithm returns ⊥, otherwise it
returns, to the tenant, the handle VM and the public keys and VAK.pk.

HAttest⟨T (T .sk, nonceT ),H(H.sk,AK.sk,H.state,H.Conf)⟩ → {ATTH,T }: The hypervisor attes-
tation protocol is an interactive algorithm between a tenant T which takes in input its private
key and a fresh nonce nonceT ; the hypervisor, with input its long-term credentials H.sk, AK.sk,
its current state H.state, its configuration H.Conf; and it outputs an attestation ATTH,T .

VfHAttest(ATTH,T , nonceT , linkT )→ {0, 1} : On input a hypervisor attestation ATTH,T , a nonce
nonceT and linking information linkT the hypervisor attestation-verification algorithm outputs
1 if the attestation is valid and 0 otherwise.

VMAttest⟨VM (VAK.sk), T (T .sk, nonce)⟩ → {ATTVM } ∪ ⊥: The interactive VM-attestation pro-
tocol takes place between a tenant (using its key T .sk and a fresh nonce nonce) and a VM that
the tenant owns (associated with its private key VAK.sk). The output could be ⊥ (typically if
the tenant does not own VM ) or a VM attestation ATTVM .

VfVMAttest(ATTVM , nonce, link)→ {0, 1}: On input a VM attestation ATTVM , a nonce nonce and
linking information link the VM attestation-verification algorithm outputs 1 if the attestation
is valid and 0 otherwise.

Link(ATTH,T , nonceT , linkT ,ATTVM , nonce, link)→ {0, 1}: on input a tuple consisting of a hy-
pervisor attestation quote ATTH,T and hypervisor attestation linking information linkT , and a
tuple consisting of VM attestation quote ATTVM and VM attestation linking information link,
the linking algorithm outputs 1 if the two attestation are linked and 0 if they are not.

3.2 Adversary model

Our threat model features both attestation and privacy adversaries. Privacy is usually orthogonal
to typical security notions in attestation. Attestation seeks to protect against internal adversaries,
with a direct access to the target platform and its files; however, the privacy we can aim for with
respect to insiders is only limited. Our protocol preserves privacy, but does not create it: in order
for privacy to be guaranteed, we need to ensure first that privacy attackers (such as tenants) only
have limited access to the physical platform. Tenants that share information (or VMs) with another
tenants will lose their privacy. Note that access to the platform can be gained in different ways,
some legitimate (e.g., hypervisor API calls) and some malicious (e.g., side channel).

In our privacy models, the hypervisor and VMs are honest (trusted). Our adversaries are typi-
cally collusions of malicious tenants that can actively send messages during the protocol, working
together with a Dolev-Yao network attacker, which can eavesdrop, modify, insert and delete mes-
sages.

On the other hand, layer-linking is defined with respect to classical attestation adversary – in
which the attacker has direct, insider access to the platform. In this model, the tenant and verifier
are trusted but we consider a Dolev-Yao attacker as well as software adversaries from [34] which
can compromise the software of any VM (co-resident) or hypervisor (system level). However, we
rule out hardware adversaries, including side-channel attacks.
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Remark: side-channels. Many side-channel attacks (SCAs) have been explored in the context
of virtualization, on physical, system, and application levels. Some are related to the micro-
architecture [6], controlled-channels (i.e., page-fault attacks) [36], cache-timing attacks [41] or
speculative execution [8, 39]. While numerous counter-measures exist (addressing SCAs at each
layer or in cross-layer mode), industrial platforms [34] do not consider SCAs and seldom imple-
ment counter-measures against them [26]. Although in this work we will not consider SCAs, we do
recommend the use of available counter-measures to address such threats.

Security/privacy notions. We formally define the privacy properties required for our protocol
in Sections 3.3 and 3.4. For attestation security we require an extension of the linking property
formalized by [2], adapted to the multi-tenant setting. In a nutshell, this notion requires that no
malicious party (even a malicious hypervisor) be able to fool a tenant into falsely believing that a
VM is hosted by the hypervisor when in fact it is not. The full formalization of this property is in
Appendix 3.5.

3.3 Inter-tenant Privacy

Inter-tenant privacy is defined by means of a game between a challenger G and an adversary
A. The challenger runs the setup algorithm Setup(1λ), then sets up a hypervisor H by running
HSetup(ppar). Then, G initiates LH := ∅ and LC := ∅. The challenger finally draws a random bit
b

r← {0, 1}. The adversary, given ppar and the length of the security parameter (in unary) 1λ, as
well as the handle H, can then use the following oracles:
– oHonTRegb({VMDesci}ℓi=1): this oracle depends on the bit b . On input a set of VM descriptions

VMDesci, this oracle internally runs the key-generation algorithm TKGen(ppar), receiving either
⊥ (too many tenants) or a handle T and keys T .pk, T .sk. The oracle adds T to LH and
increments a variable nT (that stores the number of tenants on that hypervisor) by 1. Assuming
that oHonTReg did not output ⊥: if b = 1, the oracle runs VMReg(H, T .sk,VMDesci) for each
VM in the input set, obtaining handles VM , keys VAK.pk,VAK.sk, and an updated hypervisor
state H.state, containing tuples of the form (T , VM i, VAK.ski, VAK.pki, REAL) for each VM. If
b = 0, then the VMs are not truly created: instead, the oracle generates random values VAK.pki
for each i = 1, . . . , ℓ, and handles VM i, updating the hypervisor state with tuples of the form
(T ,VM i,VAK.pki,FAKE). Finally, the oracle outputs the following values to the adversary:
T , {VM i}ℓi=1 as well as keys: T .pk, {VAK.pki}ℓi=1. Note that, if ℓ > NVM , then the output of
VMReg will be ⊥, forwarded to the adversary instead of the VM information. The adversary
can, in parallel, use TKGen algorithm to register malicious tenants: these will be added by the
challenger to LC .

– oVMReg(T ,VMDesc): on input a (registered) tenant T ∈ LH and a VM with description
VMDesc, this oracle internally runs VMReg(H, T .sk,VMDesc) and, if the bound NVM has still
not been reached for tenant T then the algorithm outputs (VM ,VAK.pk) as in the previous
oracle. The hypervisor state H.state is updated. Note that a malicious tenant can always
register a new VM by running the VMReg algorithm directly.

– oHAttest(T ): on input a registered tenant T ∈ LH , this oracle simulates a run of HAttest

between the honest tenant and the hypervisor H. The adversary gains a transcript τHAtt of the
communication (possibly a single symbol ⊥ in case of error – for instance if H does not exist
or if T has no VMs registered on H). Importantly, if the VMs created for this tenant were fake
(the bit b picked by the challenger is 0), the hypervisor attestation is done over the current
configuration of H and the VMs currently existing on the machine.

Definition 1 (Inter-tenant privacy). A PP-MTA scheme PP-MTA= (Setup, HSetup, TKGen,
VMReg, HAttest, VMAttest,
VfHAttest, VfVMAttest, Link) is (NT , NVM , ϵ)-inter-tenant private if, and only if, for every prob-
abilistic polynomial adversary A, the following holds:

AdvTPrivPP-MTA(A) :=
∣∣∣∣Pr[A wins GTPriv(λ)]−

1

2

∣∣∣∣ ≤ ϵ.

The value AdvTPrivPP-MTA(A) is called the advantage of A against the inter-tenant privacy of PP-MTA.
Asymptotically, we call a PP-MTA scheme inter-tenant private if ϵ is a negligible function of the
security parameter λ.
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Game GTPriv(λ)

{ppar, spar} ← Setup(1λ)
{H.pk,H.sk,HAK.pk,HAK.sk,H.Conf},
H.state← HSetup(ppar)

b
r← {0, 1}

d← AoHonTRegb(·),oVMReg(·,·),oHAttest(·)(1λ)

A wins iff.: d = b

Fig. 3. The inter-tenant privacy game.

3.4 Hypervisor Configuration Privacy

In the hypervisor configuration-privacy game, the adversary gets access to the following oracle:
oChooseConfigb(H.Conf0,H.Conf1)→ {OK}∪ ⊥: This oracle can only be called once. On input

two hypervisor configurations H.Conf0 and H.Conf1. this oracle checks that H.Conf0 ∈ CONF
and H.Conf1 ∈ CONF , then also that H has not yet been set up (e.g., through HSetup). If either
verification fails, the oracle outputs ⊥. If the verification succeed, then the oracle calls HSetup,
forcing the picked hypervisor configuration H.H.Conf to be H.Confb.

Game GCPriv(λ)

{ppar, spar} ← Setup(1λ)

b
r← {0, 1}

d← AoChooseConfigb(·)(1λ)

A wins iff.: d = b

Fig. 4. The configuration-privacy game.

The Hypervisor Privacy Game GCPriv(λ) :

Definition 2 (Configuration privacy). A PP-MTA scheme PP-MTA= (Setup, HSetup, TKGen,
VMReg, HAttest, VMAttest,
VfHAttest, VfVMAttest, Link) is ϵ-configurations-private if, and only if, for every probabilistic
polynomial adversary A, the following holds:

AdvCPrivPP-MTA(A) :=
∣∣∣∣Pr[A wins GCPriv(λ)]−

1

2

∣∣∣∣ ≤ ϵ.

The value AdvCPrivPP-MTA(A) is called the advantage of A against the configuration privacy of PP-MTA.
Asymptotically, we call a PP-MTA scheme configuration-private if ϵ is a negligible function in the
security parameter λ.

Limitations. The security definition above is limited, formalizing that an adversary cannot distin-
guish between two valid configurations. Yet, clearly, the guarantee provided by the privacy property
depends on the size of the configuration-set CONF – if it is small, then any tenant can guess the
hypervisor configuration with a decent probability (equal to 1

|CONF| ).

3.5 Linkability Security

The linking property ensures that two components, registered on two different platforms (later
denoted S1 and S2), cannot be linked. For instance, a VM’s attestation is linked to its hypervisor
if both components are on the same platform, while other links from other platforms cannot be
made and should be detected. Our model is directly inspired from [2].

We consider in our model some simplifications which ease the readability; notice that general-
izations can be made:
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– Malicious tenant: our adversary is (the only) tenant. So A has external capabilities with the
possibility of registering VM and attesting them (same as a tenant would). Note that we
consider only one tenant in our security game (or equivalently, the adversary represents all the
tenants);

– The setup is made for only two platforms, each including only one hypervisor and a maximum
of NVM VM. Since we consider only one tenant (so NT := 1 for each platform), there is
no need to let the adversary adaptively register VMs or platforms. However, each position are
created for each tenant so only one tenant would lead to only one position. Thus, the challenger
creates "dummy" tenants (which are not active) to allow more than one position in the vector
commitment.

– The adversary does not have a corrupt oracle, all the VMs are already registered during the
setup and accessible to A. In particular, we suppose that hypervisors are always honest.

The linkability property is formalized through a security game, GLink(λ,NP), played between a
challenger G and an adversary A. The challenger runs the setup algorithm Setup(1λ), returns ppar
to A, then sets up an hypervisor H by running HSetup(ppar) on both platforms S1 and S2. Then,
G initiates LAtt := ∅ which consists of a list of linkable attestations. The adversary then plays the
game using the following oracles:

– oHAttest(Si)→ (ATTH,T ): this oracle simulates a run of the HAttest algorithm between the
adversary and the hypervisor H on platform Si for i ∈ {1, 2}, allowing the adversary to gain a
transcript τHAtt of the communication. Notice that this oracle does not depend on the challenge
bit b. The output is stored in LAtt.

– oVMAttest(VM )→ (ATTVM ): this oracle simulates a run of the VMAttest algorithm on VM .
The output is stored in LAtt.

At the end of the game, A outputs a party P such that its attestation is stored in LAtt. We
say that A wins the game if the following conditions hold:

– P is registered on Si for i ∈ {0, 1};
– It exists Q ∈ Sj ̸=i such that its attestation lies in LAtt;
– Link(P||Q) = 1.

Thus the adversary wins the game if it is able to store two attestation’s component in LAtt

for two components on different platforms. The linkability property ensures that the probability
of winning, for any adversary, is negligible.

Definition 3 (Linkability security). A PP-MTA scheme PP-MTA= (Setup, HSetup, TKGen,
VMReg, HAttest, VMAttest, VfHAttest, VfVMAttest, Link) is (qatt, NP , ϵ)-linkable if, and only if,
for every probabilistic polynomial adversary A, the following holds:

AdvLinkPP-MTA(A) := Pr[A wins GLink(λ,NP)] ≤ ϵ.

The value AdvLinkPP-MTA(A) is called the advantage of A against the linkability security of PP-MTA.
Asymptotically, we call a PP-MTA scheme linkable if ϵ is a negligible function of the security
parameter λ.

4 Construction

In this section we instantiate the PP-MTA primitive using a signature scheme (SigKGen, SigSig,
SigVer), an unkeyed collision-resistant hash function H, a vector commitment scheme
(VC.Setup, VC.Com, VC.Open, VC.Ver), a ZK-SNARK scheme (ZKP.Setup, ZKP.Prove,
ZKP.SkVer, ZKP.SkSim), and a secure-channel establishment protocol (in practice TLS 1.3):
AKE=(AKE.KGen, AKE.AKE, AKE.Enc, AKE.Dec).

We present our scheme by functionality: Section 4.1 describes the setup steps; then Section 4.2
delves into the VM registration; next, in Section 4.3 we describe arguably the most important and
novel component of our scheme: the hypervisor attestation; in Section 4.4 we outline VM attesta-
tions; and in Section 4.5 we finish by describing the linking of hypervisor and VM attestations.
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4.1 Setup

In this step, we instantiate the global setup algorithm Setup and the hypervisor-setup algorithm
HSetup, then set up the tenants by generating their long-term parameters.

Global setup. The goal here is to instantiate the scheme’s global public and private parameters:
{ppar, spar} ← Setup(1λ). Universal bounds NT and NVM are chosen, according to limits allowed
by providers to tenants.

Then, a set of plausible configurations CONF is chosen (depending on the hardware). The
choice of the configuration set is independent of the tenants, malicious or honest. We will moreover
assume in the security proof that all values in CONF have equal probability of occurring on the
given machine.

We set up the vector commitment and ZK-SNARK schemes:

(pparVC)← VC.Setup(1λ, NT )

(CRS, τ)← ZKP.Setup(R)

Notice that the vector-commitment length is a constant NT . Then given the following zero-
knowledge proof:

ZK-SNARK{(quote, σ) : SigVer(AK.pk, quote, σ, c) == 1 ∧ quote.H.Conf ∈ CONF}

we fix the statement :

(xZK)← {SigVer(AK.pk, quote, σ, c) == 1;∧ quote.H.Conf ∈ CONF}

At the end of the global setup, we set ppar := (NT , NVM , CONF , pparVC, CRS, xZK) and
spar := τ .

Hypervisor setup. We instantiate the algorithm {H.pk, H.sk, H.Conf} ← HSetup(ppar) as fol-
lows. To begin with the hypervisor will require two pairs of keys, one for the AKE protocol, the
other, for attestation, as follows:

(H.pk,H.sk)← AKE.KGen(ppar)

(AK.pk,AK.sk)← SigKGen(ppar)

The hypervisor then picks uniformly at random a configuration H.Conf r← CONF and sets
H.state = ∅.

Tenant setup. The tenants generate long-term keys {T .pk, T .sk} ← TKGen(ppar) which are, in
fact, AKE keys:

(T .pk, T .sk)← AKE.KGen(ppar)

4.2 Registration

Registration is run by a tenant and a hypervisor, to register a VM of a given description on the
given hypervisor:

{(VM ,VAK.pk,VAK.sk),H.state} ∪ ⊥ ← VMReg(H, T .sk,VMdesc)

We depict in Figure 5 the registration algorithm. Note that the VM is hosted on, and managed
by the hypervisor: thus, the exchange between them is local to the device.
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Registration

Tenant T Hypervisor VM
AKE.AKE(T ,H)

VMdesc

Check NVM for T
Instantiate VM
(VAK.sk,VAK.pk)← SigKGen(ppar)

T.pk,VAK.sk

H.state(T .pk).add(VM ,VAK.pk, T )

VM ,VAK.pk

Fig. 5. Registration, the tenant (successfully) registers a new VM of description VMdesc.

When a registration request is made, H and T run AKE.AKE (using their long-term credentials)
to open an authenticated secure channel. At the end of a successful AKE protocol session, both
parties compute (a number of) session keys. All future communication takes place over a secure
channel (i.e., all future messages are encrypted using AKE.Enc on the sending end, and decrypted
using AKE.Dec on the receiving end).

Over this secure channel, T requests the registration of a VM with description VMdesc. The
hypervisor verifies it can still allow tenant to register a new VM (regarding NVM ). If this is not
so, the algorithm aborts. Otherwise, the hypervisor generates attestation (signature) keys for the
newly-registered VM: (VAK.sk,VAK.pk)← SigKGen(ppar). The keys VAK.pk and T .sk will be stored
in the vTPM corresponding to the new VM.

Once the VM created, H updates its internal state H.state with entries as (VM ,VAK.pk, T ).
Still over the secure channel, the hypervisor sends the VM handle VM and public keys VAK.pk to
T .

4.3 Hypervisor Attestation

One of the most novel procedures in our construction is the hypervisor attestation. We briefly recall
the challenge: we want to have a hypervisor attestation which will be linkable to VM attestations,
but which guarantees inter-tenant privacy and hypervisor-configuration privacy. We instantiate the
algorithm as :

{ATTH,T } ← HAttest⟨T (T .sk, nonceT ),H(H.sk,AK.sk,H.state,H.Conf⟩)
Recall that [2] shows how to achieve layer linking for a single-tenant environment. The idea is

to embed, into the hypervisor attestation, elements that uniquely characterise each VM. During
hypervisor attestation, the hypervisor retrieves public attestation key stored on each vTPM man-
aged by the hypervisor. Those values are concatenated with the nonce and hashed to obtain new
nonce.

In the multi-tenant context, that would not work, as information about all the VMs hosted on
the machine leaks to all the recipients of the attestation. We adapt the original idea of [2] to the
multi-tenant setting by the use of vector commitments, and subsequent use of SNARKs.

Authenticated key-exchange. At the beginning of the attestation process, the hypervisor and
tenant establish a secure channel with mutual authentication. All subsequent communication takes
place over a secure channel.

Preparation of vector commitment. An attestation can be requested by one or more tenants
(authenticated over a secure channel), each providing a nonce to the hypervisor. The hypervisor
randomly chooses, for each tenant, an index i between 1 and NT .

Once the indices are set, the hypervisor retrieves the VAK.pk of all the VMs registered by the
tenant(s) that requested an attestation and then concatenates, for each tenant, the nonce that
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Hypervisor Attestation

Tenant T Hypervisor TPM
AKE.AKE(T ,H)

nonceT

Wait until TPM is available

iT
r← {1, 2, ..., (NT )}

linkT ← H.state(T .pk)

v ← (..., (nonceT |linkT )iT , ...)NT

c, aux← VC.Com(v)

c

σ ← SigSig(AK.sk, quote, c)

quote, σ

πiT ← VC.Open(c, iT , aux)

wZK ← SnarkCirc(AK.pk, quote, σ, c, CONF)
πZK ← ZKP.Prove(CRS,R, xZK , wZK)

πZK , πiT , c, iT

ATTH,T ← (πZK , πiT , c, iT )

Fig. 6. Hypervisor Attestation, only the i-th tenant is represented but we can see the aggregation of all
the nonce through commitment which allow a single TPM operation.

tenant provided and each of the public keys of the VMs it owns. The list of VAK.pk of the VM
a tenant owns constitutes the linking information for that tenant (link in Fig. 6). If the number
of requesting tenants is less than NT , empty position are filled with random values. Thus, the
commitment vector is always of constant size.

The vector commitment must be hiding, in order to hide, from each tenant, all the values for
which it will not (later on) receive opening information.

Note that using multiple, diverse nonces given by multiple tenants is scalable. Say that two or
more tenants request hypervisor attestation while the TPM is busy. Without the nonce-aggregation
step, those requests would be treated separately, which is inefficient. As it is, the aggregation allows
the hypervisor to generate a single attestation that can be provided to all the tenants and still
hide everything except the content pertinent to the tenant itself!

Hypervisor attestation. The next step is to obtain an attestation quote from the TPM. This
communication is in the physical device (the tenant has no access to the communication). The
hypervisor submits to the TPM the commitment c in lieu of an attestation nonce. The TPM
computes a quote quote and a signature σ on it with the private attestation key AK.sk associated
to the hypervisor.

Proof of attestation. The hypervisor, having received the quote and signature can now compute a
proof it has a valid attestation. Note first that the attestation quote (and corresponding signature)
reveal the configuration of the hypervisor – which we want to keep private from the tenants.
Instead, the hypervisor needs to prove that it has received a valid attestation from the TPM, for
a configuration within the set CONF , with respect to the nonce c, i.e., it needs to prove that
ZK-SNARK{(quote, σ) : SigVer(AK.pk, quote, σ, c) == 1 ∧ quote.H.Conf ∈ CONF}.

Consider Algorithm 1, which consists of verifying the signature and then checking that the
content of the attestation is among the set CONF . The algorithm outputs 1 if both are true and
0 otherwise.

We can compile this computation into an arithmetic circuit. Then, a ZK-SNARK will allow
the hypervisor to prove it has run this algorithm for some public set CONF , the nonce c, with
respect to AK.pk, and that the algorithm output 1, all this without revealing the quote quote nor
the signature σ.

Opening. Finally, the hypervisor needs to provide to each tenant the vector-commitment opening
on its allowed positions. The tenant uses the opening to check its nonce and find the linking infor-
mation. The hypervisor finally sets, for each tenant: ATTH,T consisting of: the proof of attestation
πZK , the vector commitment c; the position i on which the tenant is placed; and the opening
information πt for that position.
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Algorithm 1 The snark circuit
procedure SnarkCirc(AK.pk, quote, σ, c, CONF)

if SigVer(AK.pk, quote, σ, c) == 1 and quote.H.Conf ∈ CONF then
return 1

else
return 0

end if
end procedure

Hypervisor attestation verification. Upon receiving an attestation ATTH,T , each tenant
verifies the attestation and links it with its VM attestations – by a process described in Sec-
tion 4.5. For the hypervisor attestation verification, we instantiate the algorithm {0, 1} ←
VfHAttest(ATTH,T , nonceT , linkT ). The tenant verifies that the opening information for the rele-
vant index of the vector commitment c opens to the concatenation of the nonce nonceT and linking
linkT . If this verification fails, the algorithm outputs 0; if it succeeds, the tenant will verifies the
ZK-SNARK proof:

VfHAttest(ATTH,T , nonceT , linkT )→ {0, 1} :

Parse ATTH,T as (πZK , πiT , c, iT )

VC.Ver((nonceT |linkT ), c, iT , πiT )

ZKP.SkVer(CRS,R, xZK , πZK)

If all verification pass output 1, otherwise 0

VM Attestation

Tenant VM TPM
AKE.AKE(T ,VM )

nonce

link← VAK.pk

lkaux← H(nonce|link)

lkaux

σ ← SigSig(VAK.sk, quote, lkaux)

quote, σ

quote, σ

ATTVM ← (σ, quote)

Fig. 7. VM Attestation

4.4 VM Attestation

The algorithm for VM attestation generates a quote such that only the tenant which owns the VM
can actually attest it: {ATTVM } ← VMAttest(VM (VAK.sk,VAK.pk), T (T .sk, nonce)). We achieve
this similarly to traditional attestation; however, instead of using the nonce received from the
verifier, the VM will hash the concatenation of the nonce and its public endorsement key VAK.pk.

We depict VM attestation in Figure 7. The tenant and VM run an AKE protocol to establish a
secure channel, over which T requests an attestation and forwards a nonce nonce. The VM retrieves
the linking information (specifically VAK.pk) and concatenates it with the nonce to obtain a value
later hashed to lkaux. Then, the VM requests a signed quote for lkaux and forwards the response
to the tenant over the secure channel.

Verification of VM attestation. The verification algorithm, {0, 1} ←
VfVMAttest(ATTVM , nonce, link), is straightforward: the tenant retrieves the lkaux value as
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above; then verifies the validity of the signature on the received quote. If the verification succeeds,
it outputs 1 otherwise, 0.

VfVMAttest(ATTVM , nonce, link)→ {0, 1} :

Parse ATTVM as (quote, σ)

lkaux← H(nonce|link)
SigVer(VAK.pk, quote, σ, lkaux)

If all verifications work output 1, otherwise 0

4.5 Linking attestations

The link algorithm {0, 1} ← Link(ATTH,T , nonceT , linkT , ATTVM , nonce, link) will attempt to
link the hypervisor and the VM attestation given in input. Any party in possession of the input
values can run the linking – however, note that attestation quotes are only received over mutually-
authenticated secure channels.

The party verifying the linking first verifies the two attestations – if both come through, then
the verifier checks that the linking information for the VM is included in the linking information
for the hypervisor.

Link(ATTH,T , nonceT , linkT ,ATTVM , nonce, link)→ {0, 1}:

VfHAttest(ATTH,T , nonceT , linkT )

VfVMAttest(ATTVM , nonce, link)

Check link ∈ linkT

If all verifications work output 1, otherwise 0

5 Security Analysis

5.1 Partner-hiding AKE

Our solution requires secure channels, constructed from AKE schemes. Indeed, consider the VM
attestation algorithm from Section 4. The tenant and VM use a mutually-authenticated AKE to
establish a secure channel over which attestation data is sent. This is sufficient to ensure that
attestation quotes remain confidential for an adversary that controls neither the tenant nor the
TPM.

However, channel-security is insufficient for inter-tenant privacy, where an adversary (possibly
a collusion of tenants) must be unable to know if another tenant’s VMs exist, or not, on the
same machine as the adversary’s. With regular AKE, this cannot be guaranteed even with mutual
authentication. We require a stronger assumption, which we dub Partner-Hiding, in which an
adversary not in possession of the long-term credentials of either endpoint cannot learn whether
it faces a real or simulated entity as one endpoint. This property is not trivial to guarantee: some
cipher suites of TLS 1.2 are not partner-hiding. TLS 1.3, however, does provide initiator-hiding
properties, which we will put to use in our multi-tenant attestation protocol.

Security game. We consider two-party AKE protocols, for which the endpoints are parties P ∈ P.
The protocol runs in sessions between an instance of one endpoint and an instance of the other. We
denote i-th instance of party P as πi

P . Each P is associated with a tuple of long-term parameters
(sk, pk) and each instance keeps track of the following attributes:
– πi

P .sid: the session identifier of instance πi
P is a concatenation of session-specific values, which

might be public (included in public information, such as the transcript) or secret. The session
identifier is protocol-specific.

– πi
P .pid: the partner identifier of instance πi

P , which must be a party Q ∈ P \ P.
– πi

P .α: the acceptance flag α takes three values: ⊥ (which stands for unset), 0 (reject), and 1
(accept). It models the result of the authentication performed by πi

P .pid.
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– πi
P .k: the session key of instance πi

P , which starts out as equal to a special symbol ⊥, but may
take a true value once that key has been computed.

The AKE protocol is run between an initiator (i.e., the party instance that starts the protocol)
and the responder (i.e., the party instance that goes second).

We define Partner-Hiding in terms of an adversary A that is a Person-in-the-Middle. The
security game will, in a nutshell, guarantee that an adversary is unable to tell the difference
between an interaction with a real, uncorrupted party, and an interaction with a simulator (which
only has access to the security parameter, but not to any of the private keys generated in the
game). Whereas this weak form of partner-hiding suffices for our needs, we also provide in the
appendix a stronger notion, in which arbitrary corruptions are possible.

In our weak partner-hiding game, the adversary can control honest parties and instances by
means of oracles:

– πi
P ← oNewSession(P,Q, role): the (honest) session creation oracle will initiate a new instance

πi
P with partner identifier πi

P .pid = Q, such that πi
P plays the role designated by role (either

initiator or responder) in its session.
– m∗ ← oSend(πi

P ,m): the (honest) sending oracle models sending message m to an already-
existent instance πi

P . It is expected that πi
P returns a message m∗, which is the protocol-specific

reply (potentially an error symbol ⊥) as a response. A special m = Start sent to a instance
of an initiator is used to jump-start the session (thus yielding m∗ as the first message of the
actual session).

– k ← oReveal(πi
P): the revelation oracle allows the adversary to learn already-established session

keys k.
– πi

P ← oNewSessionb,role(P,Q): this is the left-or-right version of the oNewSession oracle above,
for which the roles will be restricted according to which notion we want to guarantee between
initiator- and responder-hiding. If b = 0, this oracle creates an instance of the party P, with
partner identifier Q, such that P will have a role as either the initiator or the responder of the
session. On the i-th call to the oracle oNewSessionb(P, ∗), the created instance will be indexed
as πi

P . The oracle forwards the handle πi
P to the adversary. If b = 1, the oracle call is forwarded

to a simulator Sim, which is only given the security parameter, but no party information.
– m∗ ← oSendb(π

i
P ,m): this left-or-right version of the sending oracle allows the message m to be

either forwarded to πi
P (if b = 0) or to the simulator Sim otherwise. In both cases the adversary

expects a message m∗. As before, a special message m = Start will jump-start the session.

The security game begins with the setup of all the honest parties P ∈ P. The adversary receives
all the public keys, whereas the challenger keeps track of all the private keys. The simulator will
be given no information at all, apart from the security parameter.

There are two phases to the game. In the learning phase, the adversary will use the honest
session-creation and sending oracles, as well as the session-key revelation oracle, in order to observe
honest sessions and interact with the honest parties.

In the second phase of the game, the adversary gains access only to the left-or-right instance-
creation and sending oracles. We distinguish between the two following notions:

– Initiator-hiding. In this case, the oNewSessionb,role oracle has role set to Initiator. Hence,
in the challenge phase, the adversary will only be able to create new instances that are protocol
initiators.

– Responder-hiding. Conversely, in this case
oNewSessionb,role oracle has role set to Responder. Hence, in the challenge phase, the adversary
will only be able to create new instances that are protocol responders.

Finally, the adversary will be allowed a final learning phase, identical to the first one. When
the adversary is ready to end the game, it will output a bit d, which will be its guess for the bit b
used by the challenger during the challenge phase.

It should be noted that at the transition to each new phase, all ongoing sessions are aborted.
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Game GInitHide(λ,NP)

Game setup for all P ∈ P with |P| = NP

b
r← {0, 1}

state← AoNewSession(·,·,·),oSend(·,·),oReveal(·)(1λ)

state← AoNewSessionb,Initiator(·,·),oSendb(·,·)(1λ, state)

d← AoNewSession(·,·,·),oSend(·,·),oReveal(·)(1λ)

A wins iff.: d = b

Fig. 8. The initiator-hiding game.

Definition 4 (Initiator-Hiding security). Consider an authenticated key-exchange protocol
AKE. This protocol is (NP ,
qoNewSession, qoNewSessionb,Role , ϵ)-initiator hiding if for any PPT adversary A making at most
qoNewSession queries to the (learning) oNewSession oracle and at most qoNewSessionb,Role queries to the
(challenge) oNewSessionb,role oracle, if we denote AdvIHideAKE (A) :=

∣∣Pr[A wins GInitHide(λ,NP)]− 1
2

∣∣,
then it holds that:
AdvIHideAKE (A) ≤ ϵ.

The value AdvIHideAKE (A) is the advantage of adversary A. If ϵ is asymptotically negligible in the
security parameter, then we call the authenticated key-exchange protocol initiator-hiding.

Lemma 1. The full TLS 1.3 handshake with mutual authentication is initiator-hiding under the
following assumptions: all parties use particular configurations ( e.g., groups) and extensions with
equal probability, the protocol uses collision-resistant hash functions, and the signature scheme is
Existentially Unforgeable against Chosen Message Attacks (EUF-CMA).

Proof (proof sketch). We first note that previous work [1] proved a slightly-different (and funda-
mentally stronger) degree of privacy for the TLS 1.3 full handshake, but only for handshakes with
unilateral authentication.

The simulator we consider is fairly simple. For each call of oNewSessionb,Initiator, the simulator
presents the adversary with an instance handle, which we label πi

P (even if the simulator himself
does not actually know the instance is supposed to belong to P). Subsequent calls of oSendb will
be made to those instances that have been previously created, and notably:

– For oSendb(·,m = Start) calls, the simulator generates input consistent with the Client Hello
of any client (recall that all configurations and extensions are equally likely).

– When fed with an oSendb(·,m) call for the server’s first message (Server Hello, etc.), the
simulator follows protocol, aborting if the server’s choice of element or extension are inconsistent
with its own. If all goes well, the simulator computes the handshake secret and subsequent keys.
There is no response for this message expected from the client, so the simulator also sends no
reply m = ∅.

– When fed with an oSendb(·,m) call for the server’s second message (encrypted Certificate
Request, Certificate, CertificateVerify...), the adversary uses the computed handshake keys to
authenticate and decrypt the contents (aborting if AEAD fails). Then, the simulator proceeds
with the verification of the Certificate signatures, and also the CertificateVerify message. If any
of the verifications fail, then the simulator aborts the session. As before, the server expects no
message in response so the simulator also sends no response.

– For all other messages sent, the simulator uniformly sends no reply, and it aborts the session
at the end of the server’s final message in its suite of messages 4.

For our proof, we make the following game hops:

G0: the original initiator-privacy game.
G1: the original game, except that we eliminate collisions in the nonce and DH elements used by

instances of honest initiators (in the learning and challenge phases). This happens except with
probability

((qoNewSession+qoNewSessionb,Role
)

2

)
.

4 We note that this is a much more limited version of a simulator than we could potentially build. Indeed,
our simulator could continue to handle messages such as the encrypted Server Finished message – but
we choose not to, because this step is not necessary.
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G2: the same as G1, except that we abort if in any two of the sessions created, the hash over
the Client and Server Hellos coincide. As per G1, at least one input is unique in each session,
notably the client’s input. As a result, the two games are identical except if the content signed
in the CertificateVerify message to have no collisions. At this game hop, we lose the advantage
of the hash function against collision-resistance.

G3: this game is identical to G2 except that the adversary wins outright if it can, in the challenge
phase, produce a successful forgery of the server’s CertificateVerify message (note that in the
initiator-privacy game against TLS 1.3, the initiator is the client; hence, in the challenge phase,
the adversary will always play the role of responder, since it cannot create any responder
instances). For the reduction, at this step we have to first guess which responder the adversary
will choose to impersonate (i.e., which party), in order to inject the challenge key-pair from the
EUF-CMA game into that party. This counts for a factor 1

NP
. We also note that the challenger

and the reduction have the means of verifying successful forgeries, as they know all the public
keys and are one of the endpoints of the conversation (and can thus compute handshake keys).
The reduction essentially works as follows:
• The reduction generates keys for NP − 1 parties, but not for the one party that we denote
P∗ which it has guessed will be impersonated by the adversary.
• During the learning phases, the reduction will faithfully be able to simulate sessions because

it owns the private keys of all but the target party (which is at most one of the endpoints
of any created session).
• During the challenge phase, the reduction chooses a bit b and simulates the challenge phase

perfectly, but in addition also verifies each CertificateVerify message sent to an instance of
any party P ̸= P∗ which was created by an oNewSessionb,Initiator(P,P∗) query (i.e., P∗ is
the expected partner identifier of that instance). As soon as a forgery appears, it will be
used by the reduction to win its game.
• If no forgery appears and the adversary A ends its game, the reduction aborts.

We note that in this case, if the adversary makes no forgery, then there is no distinction between
G2 and G3, while if the adversary produces a forgery, then G3 is distinct from G2 from the
point of view of the adversary (but in that case, we violate the EUF-CMA assumption for the
signature scheme).

G4 This game is identical to G3, except that the protocol is no longer TLS 1.3, but rather, the
challenger aborts all initiator challenge sessions (i.e., sessions run by instances created by
oNewSessionb,Initiator queries) by default after the server’s first pack of messages (so when the
client’s Certificate information and Finished message is expected). As per our last game, we
have removed the possibility that the adversary produces a valid signature in any of the
challenge sessions – since those signatures are generated on unique content (as per G2) and
thus no replays from the learning phase is possible. As a result, none of the sessions created
during the challenge phase will proceed further than the verification (of the CertificateVerify
message) by the client. We thus incur no loss of security at this game hop. Thus, at this
point the two worlds (b = 0 and b = 1) are identical from the point of view of the adversary,
since the simulator follows the TLS 1.3 protocol to the letter up to, and including the server’s
CertificateVerify message. The adversary’s winning probability is 1

2 .

5.2 Inter-tenant privacy

We examine the inter-tenant privacy provided by our PP-MTA protocol. We give first the intuition
why our scheme guarantees this property, and then formalize the statement into a theorem.

Intuition. In the inter-tenant privacy game, the adversary, which represents one, or potentially a
collusion of malicious tenants, aims to distinguish whether the target machine, which the adver-
sary’s own VMs are located on, also contains VMs belonging to other tenants or not.

One way the adversary could win is by creating first a VM of its own, and then attempting
to create as many VMs as possible on behalf of another, honest tenant, until the machine is
overwhelmed. We prevent this by enforcing a bound on the maximum number NT of tenants, and
on the maximum number NVM of VMs per tenant for each machine. We ensure that the physical
machine can host at least NT ·NVM VMs.

While the adversary learns no information from requiring attestations from its own VMs, it
could potentially win by attempting to make a VM supposedly belonging to another tenant provide
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an attestation. If the VM is truly hosted on the target device, the device is aware of its existence,
its public key, and its relationship with the tenant. If the VM is not hosted on the device, then
the latter has no record of that VM’s supposed public key. As a result, the mere guarantee of
authentication in the AKE protocol does not suffice, and we need the partner-hiding property. The
latter informally guarantees that the adversary (who does not know the honest tenant’s private
key) can never get far enough into the protocol in order to identify whether that particular VM
exists, or not, on the machine.

The final source of potential information for the attacker is the hypervisor attestation process.
All tenants, honest or malicious, have the right to demand a hypervisor attestation, which will
include linking information to all the VMs present on the device (including the honest tenant’s).
There are three counter-mechanisms we employ against such attacks:

– At setup, the hypervisor sets the (fixed) size of the vector commitment to be NT . Then when
computing a hypervisor attestation, it randomly associates tenant with indices between 1 to
NT . That is to say, regardless of the order in which the adversary demands the registration
of its own and other tenants’ VMs, the adversary will have equal probability to be associated
with any given index.

– The linking information to the VMs (their public keys) is included (in a hidden form) in a
vector commitment. Opening information is provided to each authenticated tenant, for the
index it is associated with. In other words, if the adversary authenticates by using its own
credentials, the most it will find will be opening information linking the attestation to its
own VMs. Attempting to impersonate an honest tenant will not work, as the attestation is
sent over a secure channel generated upon the execution of an AKE protocol (with mutual
authentication).

– Finally, note that the security of the channel guarantees that even if the adversary uses its
hypervisor attestation oracle on behalf of a different tenant, the transcript it receives only
contains an encrypted attestation and linking information.

Formalization. We formalize the following security statement for our inter-tenant privacy scheme.

Theorem 1 (Inter-tenant privacy). Let PP-MTA be a multi-tenant attestation scheme; this
scheme provides inter-tenant privacy if: the AKE protocol used during VM attestation is initiator-
hiding, the secure-channel establishment protocol used during hypervisor attestation is ACCE-secure
(providing authentication and secure-channel properties), and if the vector commitment guarantees
the hiding property. More formally, if there exists an adversary A that breaks the inter-tenant
privacy of PP-MTA with advantage AdvTPrivPP-MTA(A), then there exist adversaries B1, . . . ,B4 such
that:

AdvTPrivPP-MTA(A) ≤ AdvIHideAKE (B1) +NT · AdvAuthAKE (B2)
+qoHAttest · AdvSCAKE(B3)
+qHAttest∗ · AdvVCHideVC (B4),

where qoHAttest represents the number of queries the adversary makes to the oHAttest oracle, and
qHAttest∗ is the number of honest hypervisor-attestation sessions started by the adversary (on its
own behalf) in its PP-MTA game.

Proof (Proof sketch). The proof will proceed in the following game hops:

G0: The original game.
G1: Identical to G0, but we modify the authenticated key-exchange protocol such that, whenever

the tenant requests the attestation of a VM that it does not own, the challenger simulates the
protocol according to the simulator in the initiator-hiding game (no knowledge of the private
or public keys is necessary). The adversary can distinguish between games G0 and G1 only
with an advantage of at most AdvIHide

AKE ().
G2: Identical to G1, except that, whenever the adversary attempts a hypervisor attestation on

behalf of an honest tenant (so by using the HAttest algorithm, rather than the oHAttest oracle),
the attestation quote is replaced by an error symbol ⊥. The adversary can only distinguish
between the two if the adversary manages to impersonate an honest tenant. The reduction will
first guess which tenant the attacker will target (losing a factor NT ), hence giving us a loss
equalling the second term of the bound above.
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G3: Identical to G2, except that, at the first oHAttest query from the adversary, the challenger
replaces the correct attestation quote and linking information by a message of the same length,
but consisting only of 1s. We claim that the adversary only notices this if it can break the
security of the channel over which the quote is sent.

G4 → G2+qoHAttest
In each game G2+i, for i ∈ {2, . . . , qoHAttest}, we proceed as in G3 for the i-th

oHAttest query. At each time we lose a term AdvSCAKE(B3).
G3+qoHAttest

: This game is identical to game G2+qoHAttest , except that, for the first direct hypervisor
demand from the adversary (i.e., uses of the HAttest algorithm rather than the oHAttest
oracle), the challenger now replaces the input for each index of the vector commitment not
corresponding to the adversary’s position by a random value, ensuring that the resulting value
in the commitment is different from the value it would have had had the challenger behaved
normally (this restricts the adversary’s choice of positions for which the opening is available
in the commitment-hiding game). The adversary cannot distinguish between games G2+qoHAttest

and G3+qoHAttest
is exactly the advantage against commitment-hiding.

G4+qoHAttest
→ G2+qoHAttest+qHAttest∗ : Proceed to modify, in game G2+qoHAttest+i the vector commitment

for the i-th hypervisor attestation demand, for i ∈ {2, 3, . . . qHAttest∗} in the same way as the
previous game. At each time the difference between each two successive games is the advantage
against the vector commitment.

Analysis: At this point, the adversary has no better means than guessing, as the two worlds will
be identical from its point of view, thus yielding the given bond.

Limitations to our guarantee. Our security model and proof holds against a broad class of
attackers – but is not universally valid. For instance, if the separation (in terms of physical re-
sources) between the tenant spaces and the VMs is not correctly set up, a tenant will naturally be
aware of other VMs on the same machine. Moreover, multiple side-channel attacks are possible,
exploiting, for instance, a longer response time than usual by the TPM (i.e., the TPM was busy on
another attestation at that time). Another avenue of attack would exploit the network, learning,
for instance, the destination of a hypervisor attestation that is not the attacker’s own. Such attacks
are valid and deserve future investigations.

5.3 Hypervisor Configuration Privacy

We now delve into the hypervisor configuration-privacy property. We recall that in multi-tenant
environments, an independent entity usually owns the physical machines hosting the VMs – and as
a result, keeping the configuration of the meachine private from the tenants is a worthwhile goal.

Intuition. To begin with, note that the only moment when the configuration-privacy of the hy-
pervisor is exposed is during the hypervisor attestation (which is generated by the physical TPM).
The hypervisor receives a signed quote from the TPM (this communication takes part within the
machine itself), then forwards a proof that it is in possession of a signed quote, which is consistent
with a configuration H.Conf ∈ CONF . In particular, the hypervisor computes (and later sends)
ZK-SNARK{(quote, σ) : SigVer(AK.sk, quote, σ, c) == 1 ∧ quote.H.Conf ∈ CONF}.

Our proof is straight-forward: by the zero-knowledge property of the ZK-SNARK, no informa-
tion is revealed about quote and in particular about the configuration of the machine. In particular,
the adversary will have no more than 1

|CONF| probability to distinguish the actual configuration.

Formalization. We formalize the following security statement for our inter-tenant privacy scheme.

Theorem 2 (Configuration privacy). Let PP-MTA be a multi-tenant attestation scheme; this
scheme provides configuration privacy if: the ZK-SNARK is zero-knowledge, and the set CONF is
large (size is exponential in the size of the security parameter). More formally, if there exists an
adversary A that breaks the inter-tenant privacy of PP-MTA with advantage AdvCPrivPP-MTA(A), then
there exists and adversary B such that: AdvCPrivPP-MTA(A) ≤ qoHAttest · AdvZKZK-SNARK(A) where qoHAttest
is the number of queries A makes to the hypervisor-attestation algorithm.

Proof (Proof sketch.). We use a hybrid argument, replacing in each game hop the true attestation
quote by a simulated attestation (using the simulator of the ZK-SNARK). This makes a total of
qoHAttest game hops, in which we lose at each time AdvZKZK-SNARK(B). At the end of this sequence of
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games, every true attestation has been replaced with a simulated one, which does not depend on
H.Conf. As a result, the adversary has no better alternative than to guess the bit b input to the
configuration-privacy game.

5.4 Collision Resistant Vector Commitment

The position-binding and hiding properties for vector commitments ensure that the verifier (i.e.,
tenant) does not learn any information about other participants. This is because the attestation’s
content regarding a given tenant is correct (position binding) and other data of the committed
vector is indistinguishable from random (hiding). However, a malicious hypervisor could replay an
old attestation by finding a collision on the vector commitment.

Those attacks do not alter the security guarantees of the tenant (i.e., position binding/hiding),
but the verifier cannot be convinced that the vector commitment has been correctly computed (the
hypervisor did not manipulate other positions). The collision resistance for vector commitment,
combined with the position binding, ensures that the vector is fresh, meaning no replays are
possible.

We thus define the collision resistance of vector commitment to avoid the above attacks. Note
that this property has not been formalized in the context of vector commitment and should be also
considered as of independent interest. We propose a security game, GVC−Coll(λ, n) (see Figure 9),
to define the collision resistance of vector commitment. This game is the same as for hash func-
tions but for vector commitment: the challenger computes the setup algorithm to send the public
parameters to A which outputs to (different) vectors. We say that A wins the game if and only if
the commitments are equal.

Game GVC−Coll(λ, n)

{ppar} ← VC.Setup(1λ, n)
(v, v′)← A(ppar)
A wins iff.: ∃i such that v[i] ̸= v′[i] and
VC.Com(v) = VC.Com(v′)

Fig. 9. The collision resistance game for vector commitment.

Definition 5 (VC collision-resistance). We say that VC is (λ, n)−collision resistant if for all
adversary A, the probability of winning game GVC−Coll(λ, n) is negligible.

Our construction uses Merkle trees, which are collision-resistant as stated by the following
lemma:

Lemma 2. A VC scheme, based on binary Merkle Tree, is collision resistant, assuming that the
hash function H is collision resistant.

Proof (sketch). The proof is done by reduction, we suppose that there exists A winning the collision
resistance game for VC and show that we can construct B, using A as a subroutine, winning the
collision resistance of H.

If such A exists, then B could simply recompute the merkle tree of v and v′ and then, starting
from the root of each tree, search for collision (which is linear complexity) and return the output.

5.5 Linkability Security

Our PP-MTA protocol has a linking property, which is stated as the following theorem.

Theorem 3 (Linkability security). Let PP-MTA be a multi-tenant attestation scheme; this
scheme provides linkability security if: the hash function H and VC are collision resistant, the
ZK-SNARK is sound, and the signature scheme SIG=(SigKGen,SigSig,SigVer) is EUF-CMA.
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More formally, if there exists an adversary A that breaks the linkability security of PP-MTA with
advantage AdvLinkPP-MTA(A), then there exist adversaries B1, . . . ,B5 such that:

AdvLinkPP-MTA(A) ≤
1

NP
+ AdvCollH (B1) + AdvCollVC (B2)

+2 · (NVM · AdvVCBindVC (B3)
+AdvZKZK-SNARK(B4) + AdvEUF−CMA

Sig (B5))

where qatt is the number of queries A makes to the oHAttest and oVMAttest oracles, and n is the
size of committed vectors.

Intuitively, this theorem states that, in order to link two components that are not on the same
platform, an adversary needs to break at least one assumption. Our model consider malicious
tenants which have (legitimate) access to all the VMs of both platforms; yet, the only possibility
for the adversary to provide attestations that will verify as being linked (i.e., Link returns 1) is
to forge an attestation from the hypervisor.

Proof (proof sketch). We give the game hops for our proof.

G0: Initial linkability game GLink(λ,NP).
G1: The challenger guesses parties P and Q outputted by A. There are two platforms composed

each of one hypervisor and NVM VM. The probability or right guess is
1

4NVM
.

G2: We rule out that lkaux = lkaux′ meaning that H(nonce∥·) = H(nonce′∥·) for nonce ̸= nonce′.
This corresponds to the collision resistance of H.

G3: We ensure the uniqueness of committed vectors by removing collisions, this corresponds to a
factor AdvCollVC (B2).
At this point, the only way for the adversary to win the game is to forge an attestation for P
or Q. The next games refer to rule out the fact that A outputs ATTP (or ATTQ) which its
attestation corresponds to a value stored in LAtt. The games G4, G5 and G6 ensure that P’s
attestation does not correspond to another one stored in LAtt.

G4: The adversary can try to forge an opening thus making a commitment opens to a different
message than the initial one. This corresponds to violating the position binding property, thus
we loose a factor NVM · AdvVCBindVC (B3).

G5: This game ensures that the soundness property of the ZK-SNARK holds. If the proof of the
committed vector verifies for other values (e.g., adding a VM from another platform into link)
then the adversary is able to forge a proof. This corresponds to AdvZKZK-SNARK(B4).

G6: We ensure that the adversary cannot forge a signature of the quote, this corresponds to lose
a factor AdvEUF−CMA

Sig (B5).
G7: We repeat games G4, G5 and G6 for party Q. At this point the adversary cannot win the

game.

6 Implementation

We provide a proof-of-concept implementation of the scheme described in Section 4 in Python,
with some parts related to the ZK-SNARK written in Rust. We used this implementation to design
benchmarks and evaluate the performance of the scheme. Specifically, we focused on the perfor-
mance of the VM attestation and hypervisor attestation compared to a traditional attestation.
The code will be open-source.

Implementation details. In what follows, we describe some of the more significant details of our
implementation.
TPM libraries: To communicate with the (physical or virtual) TPM, we used the software provided
by tpm2-software community [11], relying on TPM software stack (TSS) – an API specified by the
TCG.
Vector Commitment: We implemented our vector commitment
scheme using a binary Merkle Tree, using the pymerkletools library [38] combined with a basic
hash-based commitment scheme.
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SNARK: We used bellperson [19] which implements a preprocessing circuit-specific CRS
SNARK [21] for a rank-1 constraint system (R1CS) over a bls12-281 curve, as well as several
gadgets for circuit design. Additionally we used bellperson-nonnative [35]. a library to compute
arbitrary-precision arithmetic operations inside SNARKs.

Limitations: Our current implementation is basic and contains no network communication, as the
latter is not necessary for the basic feasibility performance measurements we aim for here. However,
we also provide a demonstration script, which simulates a use-case scenario into a single process
and gives an idea of the flow of the protocol in a real situation.

Benchmark results. Our tests and benchmarks were carried out on a laptop running Ubuntu
20.04.5 with an Intel i7-10875H CPU (16 cores), 32GB RAM and a STMicroelectronics
ST33TPHF2XSPI TPM. The VM attestation benchmarks were ran inside a KVM/QEMU 4.2.1
VM (running on the same laptop) with virtual TPM provided by swtpm 0.6.2 (libtpms 0.9).

The Rust part of the code was measured using the Criterion library [22] which run the function
to benchmark 100 times after a warm-up phase, then compute statistics over these samples. For the
Python code we implemented a custom decorator, which works in a similar fashion and provides
statistics over these runs.

VM Attestation: Table 1 presents our comparative results for the VM attestation in our protocol
versus a basic VM attestation (both are computed by vTPM). The difference between these two
procedures is that, in the case of our protocol, we have to compute the hash of the concatenation
of the linking information (the public key) and the nonce before signing and verify the signature.
Hence, the overhead introduced by our scheme is very limited.

Mean Median
Basic Attestation 103.66 103.44
VM Attestation 104.78 104.24

Basic Attestation Verification 2.53 2.50
VM Attestation Verification 2.54 2.53

Table 1. Time in ms to perform Basic vs VM Attestation.

Hypervisor Attestation: Table 2 show the difference in time between a traditional attestation and a
hypervisor attestation. In this table the results are given for a set of size 128 and a for a request of
attestation from 100 tenant each of them with one VM. In this case the TPM attestation by itself
is computed on a hardware TPM. As the table show most of the overhead is due to the ZK-SNARK
for both the attestation and the verification.

Mean Median
Basic Attestation (s) 0.94 0.94

Total Hypervisor Attestation (s) 2.40 2.40
Snark Proof (s) 1.46 1.46

Commitment and Opening (ms) 9.06 8.98
Basic Attestation Verification (ms) 2.42 2.36

Total Hypervisor Attestation Verification(ms) 25.06 25.05
Snark proof Verification (ms) 25.02 24.99

Nonce Membership Verification (ms) 0.043 0.063
Table 2. Time to perform Basic vs Hypervisor Attestation

The graph of Figure 10 shows the hypervisor attestation scaling with the number of tenants.
Although the complexity increases with the number of tenants and VMs, the overall performance
loss is not overwhelming, mostly due to our aggregation mechanism.
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Fig. 10. How hypervisor attestation scales with the number of tenants, for a configuration-set of size 128.

SNARK. The hypervisor-attestation benchmarks presented above are given for a set of 128 con-
figurations. That set size directly impacts the number of constraints in our SNARK circuit. Table 3
shows how the setup, prover, and verifier algorithm performances change with set size.

Set Size 32 64 128 256 512
Number of constraints 213565 222301 239774 274719 344609

Setup (s) 18.07 18.75 20.04 26.59 31.86
Prover(s) 1.43 1.44 1.46 2.45 2.5

Verifier(ms) 14.93 18.71 24.41 41.70 72.17
Table 3. Performance variations of the ZK-SNARK in the configuration-set size. Median value over 100
samples.

Linking Table 4 presents our measurements of the time required for the linking of a VM and a
hypervisor attestation quote. Note that the measurements below do not correspond to the full
algorithm presented in section 4.5 but only include the verification of the linking information. The
linking information inside the hypervisor attestation depends on the number of VM owned by
the tenant, which impacts the overall performance. Even in spite of such variations, our scheme
provides very fast, easy linking.

Number of VM 50 100 150
Linking time (µs ) 27.89 56.74 84.40

Table 4. Performance of the SNARK depending on the size of the set. Median value over 100 samples.

7 Conclusion and Discussion

In this work we proposed a scalable and efficient TPM attestation scheme for multi-tenant en-
vironments. The scheme requires no modifications to the TPM, no unrealistic trust assumptions
(like an attestation proxy), and provides strong privacy for both the tenants and the hypervisor.
Moreover our approach provides layer-binding.

Our scheme achieves privacy by relying on vector commitments and SNARKs. The latter prim-
itive, in particular, incurs a high overhead – but has the merit of not requiring TPM modifications.
Although our work is a stepping stone towards designing privacy-preserving multi-tenant attesta-
tion, more research is needed into aspects of present-day virtualization such as migration, which
we leave as future work.
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