
Private Eyes: Zero-Leakage Iris Searchable Encryption

Julie Ha∗ Chloe Cachet† Luke Demarest‡ Sohaib Ahmad§ Benjamin Fuller¶

May 25, 2023

Abstract

This work introduces Private Eyes the first zero-leakage biometric database. The only leakage of the system
is unavoidable: 1) the log of the dataset size and 2) the fact that a query occurred. Private Eyes is built from
symmetric searchable encryption. Proximity queries are the required functionality: given a noisy reading of a
biometric, the goal is to retrieve all stored records that are close enough according to a distance metric.

Private Eyes combines locality sensitive-hashing or LSHs (Indyk and Motwani, STOC 1998) and oblvious
maps. One searches for the disjunction of the LSHs of a noisy biometric reading. The underlying encrypted map
needs to efficiently answer disjunction queries.

We focus on the iris biometric. Iris biometric data requires a large number of LSHs, approximately 1000. The
most relevant prior work is in zero-leakage k-nearest-neighbor search (Boldyreva and Tang, PoPETS 2021), but
that work is designed for a small number of LSHs.

Our main cryptographic tool is a zero-leakage disjunctive map designed for the setting when most clauses
do not match any records. For the iris, on average at most 6% of LSHs match any stored value. Our scheme
is implemented and open-sourced. For the largest tested parameters of a 5000 iris database, search requires 26
rounds of communication and 26 minutes of single-threaded computation.

To evaluate we use a simple generative adversarial network to produce synthetic irises. Accurate statistics
on sizes beyond available datasets is crucial to optimizing the cryptographic primitives. This tool may be of
independent interest.

Keywords: Searchable Encryption, Biometrics, Proximity Search

1 Introduction

Biometrics are collected into large databases for search [BBOH96, Dau14, Fou]. Learning stored biometric values
enables an attacker to break authentication and privacy for a user’s lifetime [GRGB+12, MCYJ18, AF20, VS11,
HWKL18, SDDN19]. To reduce this risk, this article develops new searchable encryption techniques for biometric
databases [SWP00,CGKO11].1

Consider the setting where a client outsources a database DB to an honest but curious server. To be efficient,
the server may learn some information known as leakage. Prior work exploits such leakage to reveal sensitive
information about the database or queries [IKK12,CGPR15,KKNO16,WLD+17,GSB+17,GLMP18,KPT19a,MT19,
KE19, KPT20,FMC+20, FP22,GPP23]. Since biometrics cannot be replaced or revoked, we focus on a zero-leakage
system. A zero-leakage system leaks only unavoidable information: 1) that a query occurs and 2) |DB| (which can
be padded to a power of 2).

We present PrivateEyes, the first zero-leakage iris proximity search system. Our system is implemented
and tested on datasets of up to 5000 records with a search time of at most 26 minutes and 26 round trips.2 Throughout,

∗Boston University. Email hajulie@bu.edu
†University of Connecticut. Email chloe.cachet@uconn.edu
‡University of Connecticut. Email luke.h.demarest@gmail.com
§University of Connecticut. Email sohaib.ahmad@uconn.edu
¶University of Connecticut. Email benjamin.fuller@uconn.edu
1A full review of searchable encryption is out of scope. See previous reviews [BHJP14,FVY+17,KKM+22].
2We report on the single threaded execution time and parallelized number of round trips for our system. Our approach and relevant

prior work are embarrassingly parallel.

1

we focus on the iris (we briefly discuss the face in Section 2.1). Recently, Boldyreva and Tang [BT21] built a zero-
leakage k-nearest-neighbor system. Boldyreva and Tang did not build proximity search; our comparison is based on
adapting their scheme. On the 5000 record dataset, this adaptation has a search time of approximately 7.9 hours.

Like prior secure proximity search systems (starting with [KIK12]), our system combines locality-sensitive hashes [IM98],
LSHs, and (a variant of) encrypted maps. Our design results from improving the efficiency gaps present in databases
over actual biometrics. As such, the Introduction first reviews 1) how to use LSHs to build proximity search, 2)
describes the critical efficiency gaps, and then 3) presents the new cryptography and implementation [CHF22].

Proximity Search from LSHs A database is a list of biometrics DB = w1, ..., w` where each wi ∈ {0, 1}n. The
goal of a biometric database is given some w∗ to find all values wi ∈ DB that are similar enough to w∗. For the
Hamming metric D and distance threshold t, the goal is to find all wi such that D(wi, w

∗) ≤ t.3 A LSH maps similar
items to the same value more frequently than it maps far items to the same value. Let H be a family of LSHs then

Pr
LSH←H

[LSH(wi) = LSH(w∗)|wi, w∗ are near] ≥ 1− p1,

Pr
LSH←H

[LSH(wj) = LSH(w∗)|wj , w∗ are far] ≤ 1− p2.

where p1 < p2. Maps associate keys to a value and are used to build inverted indices. For a database of size `,
parameter β ∈ Z+, maps M1, ...,Mβ , and LSH family H, one achieves proximity search as follows:

1. Sample β LSHs, LSH1, ..., LSHβ ← H.

2. For j = 1, ..., β, set Mj [v] = {wi|LSHj(wi) = v}.

3. To search for value w∗, compute LSH1(w∗),, LSHβ(w∗) and retrieve ∪βj=1Mj [LSHj(w
∗)].

Notice that the query is a disjunction.
If multiple records share the same LSH value our implementation concatenates the matching values. This allows

us to handle a constant number of values associated to each key. This condition is satisfied for the accuracy
regimes discussed in this work. Boldyreva and Tang [BT21] constructed a zero-leakage encrypted map scheme called
an oblivious map with encryption or OMapE. Each clause is submitted to the relevant OMapE, the results are
concatenated as in Step 3 above.

Proximity search on biometrics is tricky using the above construction. Due to their large noise, biometrics
require one to sample hundreds or thousands of LSHs to achieve reasonable accuracy (see analysis in Sec-
tion 2.1 and Section 6). At the same time, very few of these LSHs will match anything in the corresponding
map. Most of the time the construction above performs heavy oblivious operations to hide the null value.

1.1 Our Design

Our design is a two-part approach:

1. Find a small number, δ, of LSHs values that exist in some map,

2. Query only those δ maps in a way that hides which δ maps are being queried.

For the above design to be successful, one needs to demonstrate:

Obliviousness Sec. 3 One can hide the queried δ maps,

Accuracy Sec. 6.1 High accuracy with δ < β, and

Speed Sec. 6.2 The two-stage approach results in a faster overall system.

Below we present a more formal description of these two components. Our evaluation focuses on showing the above
three properties.

3This functionality differs from k-nearest neighbors where the goal is to retrieve the k closest records [BT21]. There have been
leakage abuse attacks against k-nearest neighbor systems that reveal access pattern [KPT19a, KPT19b, LMWY20] and resulting sys-
tems [CCD+20]. These attacks do not apply to our leakage profile.

2

Oblivious Membership Check An object to check which of the LSHs have matches. For an encrypted stored set
X the oblivious membership check or OMC takes in a set W and returns W ′ ⊆ W ∩X where |W ′| ≤ δ. Our
analysis finds a parameter δ that is unlikely to remove hurt accuracy. One can easily build OMC using private
set intersection and pseudorandom permutations (there are many approaches), see discussion in Sections 2.2
and 3.3. We benchmark this design using VolePSI [RS21]; the resulting implementation is orders of magnitude
faster than our oblivious map implementation.

Disjunctive Oblivious Map An object that directly searches for the disjunction of exactly δ items (if |W ′| < δ we
search for dummy values to search for exactly δ values). This object has the same functionality as an oblivious
map that takes multiple clauses but the fact that all clauses are presented together is crucial for security. We
call this object a DOMapE for disjunctive oblivious map with encryption. Our focus is on designing a DOMapE.

Building DOMapE Our focus is on the efficient design of Disjunctive Oblivious Maps for δ < β. Recall
Boldyreva and Tang [BT21] build β separate maps and search each one for an LSH clause. This approach does not
work if one only queries δ clauses because it reveals which LSHs matched. We present the following contributions:

1. A DOMapE based on oblivious tree traversal building on the design principles of Wang et al. [WNL+14]. We
show how to convert a DOMapE into proximity search.

2. A thorough parameter analysis on real, synthetic, and random data. As part of this analysis, we present a novel
tool for generating larger synthetic iris datasets based on generative adversarial networks or GANs [CWD+18,
GPAM+20].

3. A prototype implementation of proximity search and benchmarking on real, synthetic, and random datasets of
up to 5 thousand irises.

Organization The rest of this paper is organized as follows: Section 2 introduces preliminaries, Section 3 presents
our designs for DOMapE, Section 4 presents the datasets, Section 5 describes our implementation, Section 6 our
evaluation methodology, and Section 7 concludes. Appendix A describes the architecture used to generate synthetic
irises.

2 Preliminaries

Let λ be the security parameter throughout the paper. We use poly(λ) and negl(λ) to denote unspecified functions
that are polynomial and negligible in λ, respectively. All definitions are indexed by λ but this indexing is omitted

for notational clarity. For some n ∈ N, [n] denotes the set {1, · · · , n}. Let x
$←− S denote sampling x uniformly at

random from the finite set S. Hamming distance is defined as the distance between the bit vectors x and y of length
n: D(x, y) = |{i | xi 6= yi}| and the fractional Hamming distance is D(x, y)/n. For a map M, let M.Keywords output
the set of all stored keywords. Locality sensitive hashes (LSH) frequently map similar values to the same hash.

Definition 1 (Locality-sensitive Hashing (LSH)). Let t ∈ N, c > 0 and p1, p2 ∈ [0, 1]. H defines a (t, ct, p1, p2)-
sensitive hash family if for any x, y ∈ {0, 1}n, we have:

1. If D(x, y) ≤ t then PrLSH∈H [LSH(x) = LSH(y)] ≥ p1 and

2. If D(x, y) ≥ ct then PrLSH∈H [LSH(x) = LSH(y)] ≤ p2,

where D(x, y) denotes the Hamming distance between binary vectors x and y. For x, y if D(x, y) ≤ t they are said to
be near, if D(x, y) ≥ ct they are said to be far.

Composing LSHs The error rates p1, p2 can be increased by randomly sampling several LSHs and checking that
they all match. That is, taking the logical AND of LSHs. Similarly, p1, p2 can be decreased by randomly sampling
several LSHs and checking that at least one of them matches. That is, the logical OR of LSHs. We use α to indicate
the number of LSHs in a logical AND. We will separately search for each LSH in the logical OR, we use β for this
parameter.

If one takes the logical AND of α LSHs the probability of them all matching is at least p′1 ≥ pα1 for near things
and at most p′2 ≤ pα2 for far things. For the β OR of LSHs the bounds are p′1 ≥ 1− (1− p1)β and p′2 ≤ 1− (1− p2)β .
We use the LSH that selects α bits of the input, a common approach for Hamming data.

3

Figure 1: The number of maps returning a value when searching similar values with α = 15, β = 225 trees and 356
records from the ND-0405 dataset.

2.1 The need for many LSHs in biometric proximity search

We focus on the iris biometric using the ND-0405 dataset [PSO+09,BF16] which has an average distance t/n ≈ .21
using a state-of-the-art feature extractor [AF19]. There are 712 different irises in the ND0405 dataset which is a
superset of the NIST Iris Evaluation Challenge [PBF+08]. Half of these records are used for training the used feature
extractor [AF18, Ahm20, AF19, ACD+22] which produces features of length 1024. The remaining 356 right irises
are suitable for experimentation. Section 4 describes other datasets used in this work. Our discussion applies to
other biometrics with substantive noise such as the face. See face noise histograms on a modern feature extractor
in [DGXZ19, Figure 6].

Let w′i be a noisy reading of wi. When using w′i as input to search, a true accept is when wi is returned and the
true accept rate (TAR) is the fraction of queries where this happens. The false accept rate (FAR) is the fraction
of DB \ {wi} that is returned on average. If one assumes that all readings of the same biometric have p1 = .79
(corresponding to distance exactly t/n = .21) then achieving TAR= p′1 = .95 and a FAR of p′2 = .01 requires the
number of LSHs 65 ≤ β ≤ 80 for the minimum α = 13. For a dataset of size 106 if one seeks at most 100 false accepts
this requires 680 ≤ β ≤ 835 at the minimum α = 23. Even though the mean distance between readings of the same
biometric is t/n = .21 there is substantial variance in this distance (see Figure 13), requiring β to be larger as we
show in Table 1. Boldyreva and Tang [BT21] tested on datasets with β ≤ 10.

Furthermore, most of the LSHs will return ⊥. We call an LSH match good if it ensures the query results in a
true accept and bad otherwise. For the ND-0405 dataseta histogram of the number of good and bad LSH matches is
in Figure 1.4 The average number of total LSH matches is 23.4. Boldyreva and Tang’s design queries all β OMapE
despite the fact that most will return no records.

2.2 Cryptographic Definitions

This work also relies on oblivious RAM, to achieve zero-leakage.

Definition 2 (Oblivious RAM [GMP16]). An Oblivious RAM (ORAM) scheme is two protocols, Setup and OracleAccess:

4This uses the following experiment:

1. Storage of a single feature extracted reading for the right eye for each of the 356 persons in the ND-0405 dataset. Sample β = 225
LSHs of size α = 15.

2. Use the second stored template in the ND-0405 dataset to create a search corpus w′
1, ..., w

′
356.

3. Search for each record w′
i. Record the number of good and bad LSH matches.

4

RealA,q(1
λ):

1. A chooses Mem.

2. Run (σ0,EMem0)← Setup((1λ,Mem),⊥).

3. For 1 ≤ i ≤ q:

(a) yi ← A(EMemi−1).

(b) Run ((vi, σi),EMemi)← OracleAccess((σi−1, yi),EMemi−1).

(c) Set tsi, as the server’s view of the above computation.

4. Output (EMemq, ts1, . . . , tsq).

IdealA,Sim,q(1
λ):

1. Output (EMemq, ts1, . . . , tsq)← Sim(q, |Mem|, 1λ).

Figure 2: Definition of ORAM security.

• (σ,EMem)← Setup((1λ,Mem),⊥): Setup takes the security parameter, and an array Mem and outputs a secret
state for the client σ and an encrypted memory object EMem for the server.

• ((v, σ′),EMem′) ← OracleAccess((σ, i),EMem): OracleAccess is a protocol between the client and the server,
where the client provides as input σ and an index i. The server provides as input EMem. The client receives
back v and an updated σ′ and the server receives an updated EMem′.

Correctness Consider the following correctness experiment:

1. An adversary A chooses memory Mem.

2. Consider EMem0 and σ0 generated from Setup((1λ,Mem),⊥).

3. For 1 ≤ i ≤ q:

(a) Run yi ← A(EMemi−1).

(b) Run (vi, σi,EMemi)← OracleAccess((σi−1, yi),EMemi−1).

The adversary wins if for some i, vi 6= Mem[yi]. The ORAM scheme is correct if the probability of A winning the
game is negl(λ).

Security An ORAM scheme is secure in the semi-honest model if for any PPT adversary A, there exists a PPT
simulator Sim such that for any PPT distinguisher D we have∣∣Pr[D(RealA,q(1

λ)) = 1]− Pr[D(IdealA,Sim,q(1
λ)) = 1]

∣∣ ≤ negl(λ)

with RealA,q and IdealA,Sim,q as described in Figure 2.

The above is an adaptive simulation definition of ORAM, all of our proofs work naturally for the standard non-
adaptive definition as well. This would yield a non-adaptive searchable encryption scheme, Definition 3 below is
adaptive.

Definition 3 (Oblivious Searchable Encryption (OSE)). Let DB = (w1, ..., w`) be a database where each wi ∈ {0, 1}n.
Let t ∈ N be a parameter. For an input y ∈ {0, 1}n The algorithms OSE = (Setup, BuildIndex, Searchclient, Searchserver)
define an interactive searchable encryption scheme:

• (sk, pp)← Setup(1λ),

• IDB = (Iserver, Iclient)← BuildIndex(sk,DB),

• ((J, I ′client), I
′
server)← [Searchclient(pp, sk, y, Iclient),Searchserver(pp, Iserver)].

We require the scheme to satisfy the following:

5

RealA,q(1
λ):

1. Compute (sk, pp)← OSE.Setup(1λ).

2. A(pp) outputs DB.

3. Compute (I1client, I
1
server)← OSE.BuildIndex(sk,DB) and give I1server to A.

4. For 1 ≤ j ≤ q:

(a) A sends query yj ∈ (X × [1, `])ν .

(b) Run (
(Jj , Ij+1

client), I
j+1
server

)
←
[
OSE.Searchclient(pp, sk, yj , I

j
client),OSE.Searchserver(pp, I

j
server)

]
.

(c) Send search transcript tsj and updated index Ij+1
server to A.

5. Output (ts1, ..., tsq, I1server, ..., I
q
server).

IdealA,Sim,q(1
λ):

1. Compute pp← Sim(1λ, q).

2. A(pp) outputs DB.

3. Compute and output (ts1, ..., tsq, I1server, ..., I
q
server)← Sim(LBuildIndex(DB)).

Figure 3: Definition of ExpOSE
ADA-SIM.

Security: Let q = poly(λ) and LOSE = {LBuildIndex,LSearch =⊥} be the leakage profile describing the leakage of
OSE’s algorithms. For any PPT adversary A, there exists a simulator Sim such that for any PPT distinguisher D
we have ∣∣Pr[D(RealA,q(1

λ)) = 1]− Pr[D(IdealA,Sim,q(1
λ)) = 1]

∣∣ ≤ negl(λ)

with RealA,q and IdealA,Sim,q as described in Figure 3.

We additionally say that OSE is approximately correct if:

(ε, t)-Approximate Correctness: For all DB, y define

JDB,near,y := {wi|D(wi, y) ≤ t}.

Let q = poly(λ) and ε > 0. We say that OSE is ε-approximately correct if for all DB for all y1, ..., yq:

Pr

[
Jj ⊇ JDB,near,y

∣∣∣∣∣ (sk,pp)←Setup(1λ)

I1DB←BuildIndex(sk,DB)
(Jj ,Ij+1

DB)←[Searchclient(pp,sk,yj ,Ijclient),Searchserver(pp,I
j
server)]

]
≥ 1− ε.

In the above definition, we don’t explicitly limit the number of false matches. In Section 3, we never show that
our construction satisfies approximate correctness. Proving formal bounds requires many assumptions about the
data. Instead, we evaluate approximate correctness including the number of false matches empirically in Section 6.

Definition 4 (Disjunctive Oblivious Map with Encryption). Let λ ∈ N be the security parameter, let X be a
universe of keywords and let M : X → {0, 1}n be a map. Let β, ν, δ ∈ N, δ ≤ ν ≤ β be parameters. A set of protocols
DOMapE = (Setup,Encrypt,Getclient,Getserver) has the following functionality:

• (pp, sk)← Setup(1λ, β, ν, δ).

6

RealA,q,β,ν,δ(1
λ):

1. Run (pp, sk)← DOMapE.Setup(1λ, β, δ).

2. A(pp) chooses maps M1, ...,Mβ . Compute EM← DOMapE.Encrypt(sk,M1, ...,Mβ).

3. For 1 ≤ i ≤ q:

(a) A outputs query Y i,

(b) Run (ri,EMi+1)←
[
DOMapE.Getclient(pp, sk, Y

i),DOMapE.Getserver(pp,EM
i)
]
.

(c) Set tsi to be the transcript of the above computation.

4. Output (ts1, . . . , tsq,EM1, ...,EMq,).

IdealA,Sim,q,β,ν,δ(1
λ):

Compute and output (ts1, . . . , tsq,EM1, ...,EMq)← Sim(q, β, ν, δ, {dlog |Mi|e}qi=1, 1
λ).

Figure 4: Definition of DOMapE security.

• EM← Encrypt(sk,M1, ...,Mβ), takes the secret key sk and maps M1, ...,Mβ as inputs and outputs an encrypted
map EM.

• (r,EM′) ← [Getclient(sk, y = (x1, k1, ..., xν , kν)), Getserver(pp,EM)] , an interactive protocol between a client and
a server. The client takes the secret key sk and a query y ∈ (X × [1, `])ν as inputs and the server takes
the encrypted map EM. The client receives a response r ∈ ({0, 1}n∪ ⊥)δ and the server receives an updated
encrypted map EM′.

Security: Let λ be a security parameter and let q, β, ν, δ = poly(λ). A DOMapE scheme is secure in the semi-
honest model if for any PPT adversary A, there exists a PPT simulator Sim such that for any PPT distinguisher D
we have ∣∣Pr[D(RealA,q,β,ν,δ(1

λ)) = 1]− Pr[D(IdealA,Sim,q,β,ν,δ(1
λ)) = 1]

∣∣ ≤ negl(λ)

with RealA,q,β,ν,δ and IdealA,Sim,q,β,ν,δ as described in Figure 4.

Correctness: Let ε > 0, q, β, δ, ν = poly(λ) and δ ≤ ν ≤ β. DOMapE is ε-correct if for all ({Mi}βi=1, {yj ∈
(X × [1, `])ν}qj=1) there exists a set I ⊆ [ν] where |I| ≤ δ such that :

Pr

(∪irji) \ ∅ ⊆ ∪i∈IMki

[
xji

] ∣∣∣∣∣∣∣
(sk,pp)←Setup(1λ,β)

EM1←Encrypt(sk,M1,...,Mβ)

(rj ,EMj+1)←
[
Getclient(pp,sk,y

j),

Getserver(pp,EM
j)
]

 ≥ 1− ε.

As described in the Introduction, our scheme follows a two stage approach: first find a list of candidate LSH
matches, and then use an appropriate oblivious match to find the relevant records using the candidate LSH matches.
We formalize this first stage as an oblivious membership checking or OMC object. The functionality of this object is
to find the matches that exist (in the corresponding maps). There are many ways to implement this object including
private set intersection (PSI), client storage, and full set retrieval (see Section 3.3). We are not offering constructions
of OMC as a technical contribution. We benchmark separately using PSI, see discussion in Section 6. In our full
implementation we use a local Bloom filter to simplify evaluation.

OMC only handles sets, that is, a collection of values without repeats. In our search system, these values will be
LSH outputs. It is possible for two distinct LSHs to have the same output. To avoid this, we prepend the LSH id to
each LSH output value. For LSH j, the corresponding values to use would then be {j || LSHj(x)}.

Definition 5 ((β, δ, γ)-Oblivious Membership Checking Object). Let β, δ ∈ N such that δ ≤ β. An oblivious
membership checking object OMC is a set of two interactive algorithms between a client and server. Let X be a set
of objects where |X| = γ.

7

RealA,q,β,δ(1
λ):

1. A receives 1λ and outputs X ⊆ X where |X| = γ.

2. Compute (EC,ES)← OMC.Setup(1λ, X).

3. A adaptively makes q search queries, for 1 ≤ j ≤ q:

(a) A sends query set Y j , abort if |Y j | 6= β.

(b) Run (Ij ,⊥)← OMC.MemCheck(ES,EC, Y j).

(c) Send the transcript tsj of the check execution to A.

4. Return ts1, ..., tsq, ES.

IdealA,Sim,q,β,δ(1
λ): Compute and output ts1, ..., tsq, ES ← Sim(1λ, q, γ, β, δ).

Figure 5: Definition of OMC security.

• (EC,ES)← OMC.Setup(1λ, X) takes as input the set of objects to be stored X and returns EC and ES to the
client and server, respectively.

• (I,⊥)← OMC.MemCheck(ES,EC, Y) where |Y | = β. Outputs a set I to the client where |I| ≤ δ and I ⊆ X∩Y
and ⊥ to the server.

Correctness: Correctness is one-sided. For I ← OMC.MemCheck(ES,EC, Y), for (EC,ES)← OMC.Setup(1λ, X):

Pr[i ∈ I ∧ i 6∈ X ∩ Y] ≤ negl(λ).

Security: Let parameters δ, β, q = poly(λ). OMC is secure if for any PPT adversary A there exists a simulator
Sim such that for any PPT distinguisher D we have∣∣Pr[D(RealA,q,β,δ(1

λ)) = 1]− Pr[D(IdealA,Sim,q,β,δ(1
λ)) = 1]

∣∣ ≤ negl(λ)

with RealA,q,β,δ and IdealA,Sim,q,β,δ as described in Figure 5.

We defer discussion of constructions of OMC to Section 3.3

3 Oblivious Proximity Search for Biometrics

This section presents our technical designs, focusing on the design of DOMapE. We describe constructions of OMC
in Section 3.3. The most relevant related work is by Boldyreva and Tang [BT21], whose construction is for the
approximate k-nearest neighbors search problem. While Boldyreva and Tang discuss two ways of implementing
OMapE, one using a tree and the other using a skip list [Pug90], we present only a tree based construction. Similar
modifications can be made to the skip list construction. In this work, we consider static data. For static data, B-trees
and skip lists are equivalent data structures [LN+96]. However, updates and the resulting performance differ.

3.1 Overview of DOMapE design

Recall the unprotected solution for proximity search from the Introduction (adapted from Boldyreva and Tang [BT21]):

1. Sample β LSHs, LSH1, ..., LSHβ ← H.

2. For j = 1, ..., β, set Mj [v] = {wi|LSHj(wi) = v}.

3. To search w∗, compute LSH1(w∗),, LSHβ(w∗), and retrieve

∪βj=1Mj [LSHj(w
∗)].

8

BuildIndex(M, µ):

1. Sort Mi using the comparator ≤.
Let Leaves = (xi,Mi[xi]) be the sorted result.

2. Pad Leaves to length 2µ with pairs (⊥,⊥).

3. Build balanced binary search tree Tree over the values of xi and for each internal node, attach pointers to
its left and right child, LChild and RChild.

4. Set Mi[xi] as data associated with the leaf node with identifier xi.

Figure 6: Build tree index algorithm

ORAM root

y14

y12

y8y7

y11

y6y5

y13

y10

y4y3

y9

y2y1

ORAM root

y′14

y′12

y′8y′7

y′11

y′6y′5

y′13

y′10

y′4y′3

y9

y′2y′1

Figure 7: Basic access strategy of Boldyreva and Tang [BT21]. Each shaded region represents data stored together
in a single oblivious RAM.

Boldyreva and Tang’s design focuses on building Mj . The maps consists of yi, {wi} pairs. The values placed into
the map are sorted (lexographically) and used as nodes in a binary tree. Internal nodes are given the value of the
minimum value in the right subtree and the location of the two children LChild,RChild. We show the design of this
BuildIndex algorithm in Figure 6. Let Tree1, ...,Treeβ be the output of BuildIndex on maps M1, ...,Mβ respectively.
They then place each tree in an ORAM. Their construction fully traverses every tree Treei meaning that there is
a constant number of accesses to each ORAM with every search. Let νi be the number of elements in Mi, define
µ = dlog maxi νie, by padding each ORAM to length 2µ each ORAM receives exactly µ accesses with each query
(µβ across the β trees). The design is shown visually in Figure 7 with each shaded region representing a separate
ORAM. Since the tree is fully traversed on each access one does not need to hide the level. As such one can use one
ORAM per tree level. This is shown visually in Figure 8.

Our approach Recall that our goal is a two part construction: First one queries the OMC to find out which δ
LSHs have matches. Then one queries the relevant δ Mi to find records. In this new design, one does not query every
M1, ...,Mβ . As such, the set of queried Ms is potential leakage. We merge the ORAMs across maps to prevent this.
However, we retain a separate ORAM for each level of the maps. This is shown visually in Figure 9. This means
that each query now has δ accesses of each ORAM level. There are µ levels in total resulting in δµ ORAM accesses
(in place of βµ accesses in Boldyreva and Tang [BT21]). Throughout our efficiency analysis, we view the number of
ORAM accesses as our atomic unit.

3.2 Detailed design of DOMapE

3.2.1 (β, ν = β, δ = β)-DOMapE construction

First, we show how to build (β, ν = β, δ = β)-DOMapE from binary trees and ORAM.

Construction 1. Let X andM be the domain and range of a map, such that elements in X are comparable with the
≤ operator. We define β maps M1, ...,Mβ. Let ORAM = (ORAM.Setup,ORAM.OracleAccess) be an oblivious RAM

9

ORAM root

y14

y12

y8y7

y11

y6y5

y13

y10

y4y3

y9

y2y1

ORAM root

y′14

y′12

y′8y′7

y′11

y′6y′5

y′13

y′10

y′4y′3

y9

y′2y′1

Figure 8: The first optimization to Boldyreva and Tang’s construction, where each ORAM is applied per level.

OMC((1, y1), ..., (1, y8), (2, y′1), ..., (2, y′8))

root

y′14

y′12

y′8y′7

y′11

y′6y′5

y′13

y′10

y′4y′3

y′9

y′2y′1

root

y14

y12

y8y7

y11

y6y5

y13

y10

y4y3

y9

y2y1

Figure 9: Our design of DOMapE each level across binary trees is stored in a single ORAM.

as defined in Definition 2.2, and let ORAMi denote its instantiation for level 1 ≤ i ≤ µ. Consider the DOMapE
construction shown in Figure 10.

Theorem 1. Construction 1 describes an (β, ν = β, δ = β)-DOMapE for µ := LBuildIndex(M1, ...,Mβ) = maxidlog |Mi|e.

Proof. We need to show that for every adversary ADOMapE there exists simulator SimDOMapE for (β, ν = β, δ = β)-
DOMapE such that

RealADOMapE,q,β,β,β(λ) ≈ IdealA,SimDOMapE,q,β,β,β(λ)

where RealADOMapE,q,β,β,β and IdealA,SimDOMapE,q,β,β,β are defined as in Definition 4.

Let SimORAMj denote the simulator for the jth level ORAM, 1 ≤ j ≤ µ . We build SimDOMapE, the simulator for
(β, ν = β, δ = β)-DOMapE, as follows:

1. Receive inputs (q, β, β, β, µ, 1λ).

2. For 1 ≤ i ≤ q:

(a) For 1 ≤ j ≤ µ, run ORAMj simulator (EMemi
j , ts

i
ORAM,j,1, . . . , ts

i
ORAM,j,β)← SimORAMj (β, |Levelj |, 1λ).

(b) Set EMi = (EMemi
1, · · · ,EMemi

µ) and tsi = (tsiORAM,1,1, · · · , tsiORAM,µ,β).

3. Return (ts1, · · · , tsq,EM1, · · · ,EMq).

We then use a hybrid argument where at each step, we replace an ORAM by its corresponding simulator. We obtain
the following games

• Game 0: ORAM1, · · · ,ORAMµ,

• Game j: SimORAM1 , · · · ,SimORAMj ,ORAMj+1, · · · ,ORAMµ,

10

DOMapE.Encrypt(M1, · · · ,Mβ):

1. Let ηi be the number of elements in Mi, define µ = dlog maxi ηie.

2. For i ∈ [β]: set Treei ← BuildIndex(Mi, µ).

3. Output (EMem1, ...,EMemµ)← ApplyORAM(Tree1,,Treeβ).

ApplyORAM(Tree1, ...,Treeβ):

1. For j ∈ [1, µ]:

(a) Levelj =⊥. For all Treei∈[β], Levelj = Levelj ||Level(Treei, j).
(b) EMemj = ORAM.Setup(1λ, Levelj),⊥)

2. Return EMem1, ...,EMemµ.

Level(Tree, j): Return all nodes at level j in Tree.

DOMapE.Getclient(sk, y ∈ (X × [1, `])ν):

1. Parse y = (x1, k1, ..., xν , kν). Set Nodes1 = ((k1, 1), ..., (kν , 1)), Res =⊥.

2. For j = [1, µ− 1] and for i in 1 to ν:

(a) Run ORAM.OracleAccess(Nodesj [i],⊥) with server.

(b) Let x′, LChild,RChild denote the result.

(c) If x′ ≤ xi, Nodesj+1 = Nodesj+1||(ki, LChild).

(d) Else Nodesj+1 = Nodesj+1||(ki,RChild).

3. For i in 1 to ν:

(a) Initiate ORAM.OracleAccess(Nodesµ[i],⊥) with server.

(b) Let x′,M[x′] denote the result.

(c) If x′ = xi, Res = Res ∪M[x′].

4. Return Res.

Figure 10: (β, ν, δ = ν)-DOMAPE Construction. The BuildIndex algorithm is shown in Figure 6.

• Game µ: SimORAM1 , · · · ,SimORAMµ ,

with 0 < j < µ.
Note that Game 0 contains µ ORAM instantiations, which corresponds to the real world RealADOMapE,q,β,β,β .

Also note that Game µ, contains µ ORAM simulators, which is equivalent to SimDOMapE and to the ideal world
IdealA,SimDOMapE,q,β,β,β . Then for each Game, we show indistinguishability with the previous one by relying on the
security of the underlying ORAMi.

Lemma 1. For 1 ≤ i ≤ µ, Game i is indistinguishable from Game i− 1.

Proof. By security of ORAMi, we have ORAMi ≈ SimORAMi . Since Game i− 1 and Game i only differ at index i, we
conclude that these two games are indistinguishable.

By applying Lemma 1 to each game, we obtain that Games 0 and µ are indistinguishable, which implies that
RealADOMapE,q,β,β,β and IdealA,SimDOMapE,q,β,β,β are also indistinguishable and concludes this proof.

11

3.2.2 (β, ν = β, δ)-DOMapE construction

Recall that in Boldyreva and Tang’s construction [BT21], each tree is in its own ORAM, and every tree is traversed
during search. This works for their setting, which has a smaller number of trees. Our setting requires many more
trees, traversing every one of them during search would dramatically decrease efficiency. Thus, we want to only
traverse a fixed number of trees. To identify which trees to traverse we add an OMC layer on top of the tree-based
construction. We then show that combining a (β, δ)-OMC scheme and a (β, δ, δ)-DOMapE yields a (β, β, δ)-DOMapE.

Construction 2. Let OMC be an (β, δ)-oblivious membership check and let DOMapE be an (β, ν = δ, δ)-DOMapE,
then we can build a (β, ν = β, δ)-DOMapE = (Setup∗,Encrypt∗,Get∗client,Get

∗
server) as follows:

• (pp, sk)← Setup∗(1λ, β, β, δ): Run DOMapE.Setup(1λ, β, δ, δ) and output pp, sk.

• EM∗ ← Encrypt∗(sk,M1, · · · ,Mβ): Run

ES ←OMC.Setup(M1.Keywords, · · · ,Mβ .Keywords)

EM←DOMapE.Encrypt(sk,M1, · · · ,Mβ).

Output EM∗ = (ES,EM).

• (r,EM′∗)← [Get∗client(sk, y), Get∗server(pp,EM
∗)]:

1. Run I ← OMC.MemCheck(ES, y, δ). View I as a list.

2. For j = 1 to δ, if |Y | < j set zj = (1, 1), else set zj = (y[i], I[i]).

3. Run (r,EM′)← [DOMapE.Getclient(sk, z), DOMapE.Getserver(pp,EM)].

4. Output r and EM′∗ = (ES,EM′).

Theorem 2. Let OMC be a (β, δ)-oblivious membership check and DOMapE be an (β, ν = δ, δ)-DOMapE scheme,
then Construction 2 describes a (β, ν = β, δ)-DOMapE.

Proof. Let Sim(β,δ,δ)-DOMapE be the simulator for (β, δ, δ)-DOMapE. This simulator will run as follows:

1. Upon input (q, β, ν = β, δ, µ, 1λ), run the simulator for the (β, δ)-oblivious membership check, (ES, ts1OMC, · · · , ts
q
OMC)←

Sim(β,δ)-OMC(|M1|, δ, β, q).

2. Run (ts1DOMapE, · · · , ts
q
DOMapE,EM

1, · · · ,EMq)← Sim(β,δ,δ)-DOMapE(q, β, δ, δ, µ, 1λ).

3. For 1 ≤ i ≤ q, set EMi,∗ = (ES,EMi) and ts∗i = (tsOMC,i, tsDOMapE,i).

4. Output transcripts ts1,∗, · · · , tsq,∗ and encrypted maps EM1,∗, · · · ,EMq,∗.

We use a hybrid argument to show security of (β, ν = β, δ)-DOMapE. Consider the following games:

1. Real(β,ν=β,δ)-DOMapE,

2. Sim∗(β,ν=β,δ)-DOMapE, which runs Sim(β,δ)-OMC and Real(β,ν=δ,δ)-DOMapE,

3. Sim(β,ν=β,δ)-DOMapE, which runs Sim(β,δ)-OMC and Sim(β,ν=δ,δ)-DOMapE as described above.

We want to show that game 1 is indistinguishable from game 3.

Lemma 2. Game 1 and Game 2 are indistinguishable.

Proof. Between games 1 and 2, the only difference is Sim∗(β,ν=β,δ)-DOMapE’s use of SimOMC instead of RealOMC. Then
by security of the OMC scheme, game 1 and 2 are indistinguishable.

Lemma 3. Game 2 and Game 3 are indistinguishable.

Proof. Between games 2 and 3, the only difference is Sim(β,ν=β,δ)-DOMapE’s use of Sim(β,ν=δ,δ)-DOMapE instead of
Real(β,ν=δ,δ)-DOMapE. Then by security of the (β, ν = δ, δ)-DOMapE scheme, game 2 and 3 are indistinguishable.

12

Combining lemmas 2 and 3, we obtain that games 1 and 3 are indistinguishable, which conclude our proof.

(β, ν = β, δ)-DOMapE can implement oblivious searchable encryption.

Construction 3. Let DOMapE = (DOMapE.Setup,DOMapE.Encrypt, DOMapE.Getclient,DOMapE.Getserver) be a (β, ν =
β, δ)-disjunctive oblivious map with encryption, let H be a family of functions mapping records to arbitrary values.
For a DB = (w1, ..., w`), define OSE = (OSE.Setup,OSE.BuildIndex, OSE.Searchclient,OSE.Searchserver) as

• OSE.Setup(1λ, β, δ):

1. Run LSH1, ..., LSHβ ← H(1λ).

2. Run (ppDOMapE, skDOMapE)← DOMapE.Setup(1λ).

3. Output ppOSE = ppDOMapE, skOSE = (skDOMapE, LSH1, ..., LSHβ).

• OSE.BuildIndex(sk = (skDOMapE, LSH1, ..., LSHβ), w1, ..., w`):

1. For 1 ≤ i ≤ β:

(a) Initialize map Mi.

(b) For 1 ≤ j ≤ ` set Mi[keyword] = {wj |LSHi(wj) = keyword}.
(c) Add dummy values to Mi until it is of size `.

2. Set Iclient,OSE =⊥, Iserver,OSE = DOMapE.Encrypt(sk,M1, ...,Mβ).

• OSE.Searchclient(sk = (skDOMapE, LSH1, ..., LSHβ), y):

1. Compute r ← (DOMapE.Getclient(skDOMapE, LSH1(y), ..., LSHβ(y))).

2. Output (∪δi=1ri)\ ⊥.

• OSE.Searchserver(pp) = DOMapE.Getserver(pp).

• ((J, I ′client), I
′
server)← [Searchclient(pp, sk, y, Iclient),Searchserver(pp, Iserver)].

Theorem 3. Let DOMapE = (DOMapE.Setup,DOMapE.Encrypt, DOMapE.Getclient,DOMapE.Getserver) be a (β, ν =
β, δ)-disjunctive oblivious map with encryption then Construction 3 is an oblivious searchable encryption scheme with

leakage LBuildIndex(M1, ...Mβ) = dlog `e = maxβi=1{dlog |Mi|e}.

Proof. The simulator for (β, ν = β, δ)-disjunctive oblivious map with encryption SimDOMapE is a valid simulator.

Theorem 3 does not handle correctness. Since there is an overlap between the histograms for real data in
Figure 13 one cannot make strong correctness claims. We evaluate correctness empirically using our implementation
in Section 6.

3.3 Oblivious membership check constructions

In this section, we discuss with more details a few options to implement OMC. We briefly cover approaches based
on Bloom filter lookups. In Section 3.3.2, we describe how to build OMC from private set intersection. This is the
tool that we use for microbenchmarks. In our implementation, we use a Bloom filter to emulate an OMC.

3.3.1 Oblivious Bloom Filter Lookups

The client’s set can be stored in a Bloom filter [Blo70] which is then stored on the server in an ORAM. The client
will request the relevant bits from the ORAM. This prevents the client from having to store the entire Bloom Filter
on their side, but requires the client to request multiple ORAM accesses to query the relevant bits.

BlindSEER [PKV+14,FVK+15] built a tree of encrypted Bloom filters for general Boolean search. Search of each
node uses Garbled circuits to decide whether to proceed to children. One can use a single level of their tree as an
OMC as long as only the client learns the response. This requires some modification as their system was optimized
for circuits that output a bit, we would need the set of matching locations. Their system was evaluated on datasets
with 108 records [FMC+15].

13

RealA,nX ,nY (1λ):

1. A receives 1λ and outputs sets X ⊂ X and Y ⊆ X .

2. If |X| > nX or |Y | > nY , return ⊥.

3. Output transcript ts of (Z,⊥)← [PSIclient(X),PSIserver(Y)].

IdealA,Sim,nX ,nY (1λ):

1. A receives 1λ and outputs sets X ⊂ X and Y ⊆ X .

2. Output transcript ts← Sim(1λ, |X|, |Y |).

Figure 11: Definition of PSI security.

3.3.2 Building OMC from PSI and pseudorandom permutations

Private set intersection (PSI) [FNP04] is a form of secure multi-party computation (MPC) where a client and server
hold sets Y and X respectively. They run an interactive computation, at the end, the client learns X ∩ Y . No other
information is leaked. Current implementations of PSI depend on one of two tools: oblivious polynomial evaluations
(OPE) and oblivious pseudorandom functions (OPRF).5

We show how to build OMC from honest-but-curious PSI as follows:

1. At initialization the client applies a pseudorandom permutation to the elements of set X.

2. The client sends the set of permuted elements to the server.

3. Later when the client has a set Y , the client applies the pseudorandom permutation to each element of Y , and
uses the resulting values as their set for the PSI protocol.

Recall in the definition of OMC the simulator learns the size of both sets X,Y . Assuming an ideal PSI, in the
above protocol, only the size of X is leaked to the server. We also note in our setting the size of Y is a global
parameter while the size of X depends on the dataset size (which is leaked to the server).

The rest of this subsection is dedicated to formalizing the above construction. First, let us re-state the PSI
definition used for VOLE-PSI [RS21, Figure 5].

Definition 6 (Private Set Intersection (PSI)). Let X denote a set. Let the client hold a set X ⊂ X and the server
hold a set Y ⊆ X . Consider

(Z,⊥)← [PSIclient(X),PSIserver(Y)] ,

the PSI protocol between the client and the server. At the end, the client learns Z and the server learns nothing.

Correctness: Correctness is determined by the following probability statement,

Pr [Z 6= X ∩ Y | (Z,⊥)← [PSIclient(X),PSIserver(Y)]] ≤ negl(λ).

Security: PSI is secure if for any PPT adversary A, there exists a simulator Sim, such that the distributions
RealA,q and IdealA,Sim,q, described in Figure 11, are computationally indistinguishable 6.

Remark We consider PSI where both X and Y are constant size sets so we ignore the case when a party provides
too large a set.

Our construction also requires a definition of pseudorandom permutations.

5Cristofaro et al. [CT09] construct efficient PSI procotols, under the restriction that the server can do some precomputation or the
client is weak. Dong et al. [DCW13] present an efficient PSI protocol based on a variant of Bloom Filters called garbled Bloom Filters.
Dachman-Soled et al. [DSMRY09] present an efficient PSI protocol utilizing secret sharing and Reed-Soloman codes. Malicious secure
implementations of PSI utilizing OPE also depend on zero-knowledge proofs to prevent parties from deviating from the protocol.

6 [RS21] uses a different security definition for PSI, their definition implies ours.

14

• OMC.Setup(1λ, X):

1. Client randomly samples a PRP key sk
$←− {0, 1}λ.

2. Initialize ES = ∅.
3. For each xi ∈ X, ES = ES ∪ F (sk, xi).

4. Client sends ES to server.

5. Client keeps EC = sk.

• OMC.MemCheck(ES,EC, Y):

1. For each yj ∈ Y , client computes permutation F (sk, yj).

2. Client initializes a map M and inserts M[F (sk, yj)] = yj .

3. Client sets EQ = {F (sk, yj)}.
4. Run (EQ ∩ ES,⊥)← [PSIclient(EQ),PSIserver(ES)].

5. At client

(a) Initialize Res = ∅. For each c ∈ EQ ∩ ES set Res = Res ∪M[c].

(b) If |Res| > δ set Res to be δ random elements of Res.

(c) Output Res.

Figure 12: Construction of OMC from PSI and PRP.

Definition 7 (Pseudorandom Permutation (PRP)). Let F : {0, 1}λ×X → X be an efficient keyed permutation and
Fn denote the set of all permutations on X . F is a pseudorandom permutation if for any PPT adversary A,∣∣∣∣∣∣ Pr

k
$←−{0,1}λ

[
AFk(·)(1λ) = 1

]
− Pr
f

$←−Fn

[
Af(·)(1λ) = 1

]∣∣∣∣∣∣ ≤ negl(λ)

Construction 4 (OMC from PSI and PRP). Let PSI denote a PSI scheme and F : {0, 1}λ × X → X be a
pseudorandom permutation. Let X and Y be sets, such that X ⊆ X and Y ⊆ X . Then we build OMC as in
Figure 12.

Theorem 4. Let PSI be a secure private set intersection scheme and F be a pseudorandom permutation, then
Construction 4 describes a secure (β, δ)-OMC.

Proof. Correctness is straightforward and follows from correctness of the PSI and PRP schemes. Security follows
from the security of the PRP (values seen by the server are indistinguishable from random) and the security of the
PSI scheme (server learns nothing about EQ and EQ ∩ ES). Formally, we build the simulator SimOMC as follows:

1. Receive inputs 1λ, number of queries q and server’s set size γ.

2. For 1 ≤ i ≤ γ, sample a random value xi
$←− X .

3. Define the server set as ES = {xi}γi=1.

4. For 1 ≤ k ≤ q: run the PSI simulator tsk ← SimPSI(1
λ, γ, β).

5. Output ES and ts1, ..., tsq.

We then use a hybrid argument to show security of OMC. Consider the following games:

1. RealOMC,

2. Replace the PRP F by a random permutation f
$←− Fn,

3. SimOMC.

Games 1 and 2 are indistinguishable by the security of the PRP scheme, and games 2 and 3 are indistinguishable by
the security of the PSI scheme. We note that sampling a random output value is equivalent to sampling a random
input value as inputs are guaranteed to be a set.

15

(a) Histogram of comparisons for ND0405
dataset.

(b) Histogram of comparisons for synthetic
dataset.

(c) Histogram of comparisons for random
data.

Figure 13: Histograms of Hamming distance between readings of the same iris (in blue) and different irises (in red).
Different irises are stored in the database and queries are drawn from a different reading of an iris in the database.
The gaps in the synthetic and random blue histograms are caused by the query generation technique used (see
paragraph on random and synthetic queries generation).

4 Datasets

We test and evaluate our implementation on three datasets:

ND-0405 dataset This dataset [PSO+09,BF16] is a superset of the NIST Iris Evaluation Challenge [PBF+08]. It
consists of the readings of left and right irises from 356 individuals, each iris having at least 4 distinct readings. We
use state-of-the-art feature extractors called ThirdEye [AF19] that is available at https://github.com/sohaib50k/
to obtain 1024 bits feature vectors from the original iris readings. Since the left irises were used to train the feature
extractor, we use the right ones for testing and evaluation. The first reading of each right iris will be the stored value
and queries will be drawn from the remaining readings. The Hamming distance distributions for same and different
irises can be seen on Figure 13a.

Synthetic dataset Available irises datasets are of limited size, often no more than a few hundreds records (356
individuals for ND-0405). However, real world systems would probably require datasets in the thousands to millions
individuals, depending on the application. It is thus desirable to be able to run our systems on larger datasets. Our
solution is to generate synthetic irises templates, that mimic actual ones. As can be seen in Figure 13b, synthetic
data same and different distributions are similar to the ND-0405 ones. The details on synthetic data generation can
be found in Appendix A. The high level approach is a generative adversarial network (GAN) [GPAM+20] as in prior
approaches on synthetic iris generation [AF20].

Random dataset This dataset is made from randomly generated 1024 bits vectors. As such, the Hamming
distance between any two of those vectors should be close to 0.5 with a much smaller variance than other datasets.
This is visible in the red histogram from Figure 13c.

Random and synthetic queries generation Contrary to the ND0405 dataset [BF16], the random and synthetic
datasets do not include queries. To make comparison more natural, we want to sample queries from a distribution
that resembles the one for ND-0405.

To generate queries we use the common observation that like irises comparisons have a distribution close to a
binomial across different feature extractors [Dau09,Dau05,SSF19]. From Figure 13a, we extract: the mean µ = 0.21
and the standard deviation, σ = 0.056. This yields a distribution B(n, µ)/n binomial distribution for n = 53. This
is because for B(n, µ) it is true that σ2 = µ(1− µ)n. Thus, by linearity of expectation for B(n, µ)/n it is true that
σ2 = µ(1− µ)/n, thus one can compute n = dµ(1− µ)/σ2e = d52.9e = 53.

We can then generate queries for the random and synthetic datasets as follows:

16

https://github.com/sohaib50k/

1. First we generate a binomial distribution using the mean and standard deviation of the same iris distribution
for the ND-0405.

2. For each feature vector in the dataset, we create a corresponding query by sampling an error fraction from the
frac← B(53, .21)/53.

3. We flipping the corresponding number of error bits in the original feature vector, that is, frac ∗ 1024.

Using this technique, we obtain the same iris distributions (in blue) for synthetic and random data shown in
Figures 13b and 13c. Since there are only 54 possible outcomes for a fraction of error bits, this leads to discontinuities
in the histograms presented in Figures 13b and 13c.

5 Implementation

We present a full open-source implementation of our algorithms including the LSH parameter finding, tree building,
and oblivious search [CHF22]. This implementation is in Python 3.9 and uses the PathORAM [SDS+18] mod-
ule [Hac18]. Our experiments use a simple Bloom filter cache on the client as an OMC to focus on the performance
of the developed DOMapE. We evaluate a OMC candidate based on PSI at the end of Section 6. Our implementation
supports two main conclusions:

1. One can set a δ < β size of the query to DOMapE that supports a high true accept rate. In our implementation
we set δ to be 1 more than the observed number of bad matches on 95% of queries across the dataset. See
Table 1 for a comparison of true accept rate for the setting when δ = β and when δ < β. In all analyzed
parameters δ/β < .06. We note that δ is higher for real and synthetic data than random data due in large part
to the much larger variance of distances between readings of different irises. This greatly increases the number
of bad matches.

2. We show that for δ parameters that produced a reasonable true accept rate, one can achieve search with
reasonable performance. While setup takes several hours, search completes in at most a couple of minutes on
all tested parameters. For these parameters we execute at most 1000 ORAM accesses and the average time
for an ORAM access is approaching 1 second indicating a more optimized implementation would ensure that
network delay remains the bottleneck.

Our cryptographic implementation is not parallel due to the use of a serial ORAM module (building the trees is
done in parallel.) We see two mechanisms for achieving better performance as datasets grow:

1. Use ORAM that supports sending multiple queries in parallel (this is a weaker object than a parallel ORAM [WST12,
BCP16,CLT16]).

2. Group LSHs into groups that are placed into a single RAM and analyze the required δ for each group. As
δ/β ≈ .06 one can use standard concentration bounds to argue about δ for each group as long as the data and
queries are independent of the LSHs.

Dataset Modifications Our construction does not allow for insertion after the initial building of the tree. How-
ever, nothing about our techniques prohibits rebuilding and rebalancing methods that are presented in the original
description of an oblivious AVL tree by Wang et al. [WNL+14].

6 Evaluation

Evaluation is split into two parts: 1) parameter analysis and accuracy, and 2) efficiency of the resulting cryptographic
construction. Our parameter analysis focuses on the TAR and number of matches. Our efficiency analysis focuses
on network roundtrips, storage, and single-threaded computation time.

17

TAR
Dataset Dataset Matches (β, β, β) (β, β, δ)

size type α β # FA Avg bad Max bad Avg good DOMapE δ DOMapE
356 random 15 630 7.5 7.2 16 32.1 0.98 13 0.94
356 ND 18 850 14.4 16.8 55 21.6 0.95 37 0.89
356 synthetic 18 850 15.5 12.2 37 22.6 0.96 26 0.92

1000 random 18 850 3.6 3.5 11 21.2 0.96 8 0.96
1000 synthetic 19 1000 3.7 22.7 82 20.2 0.95 47 0.96
2500 random 19 1000 5.7 5.6 13 25 0.94 11 0.89
2500 synthetic 21 1200 35.3 24 70 20.7 0.92 56 0.82
5000 random 20 1200 6.9 6.7 14 21.7 0.92 12 0.87
5000 synthetic 22 1300 50.7 31 112 19.7 0.91 72 1.0

Table 1: TAR/FAR and the number of matches for random, ND0405, and synthetic datasets of different sizes.

6.1 Accuracy - Parameter analysis

We first discuss we set parameters. Datasets were discussed in Section 4. Each experiment is conducted on each
dataset. Recall the relevant parameters:

• The number of concatenated LSHs α in a logical AND (an extended LSH),

• The number of maps and number of LSHs, β,

• The maximum number of matching maps of the DOMapE, δ. Recall one uses the OMC to find LSH matches
and then obliviously looks up exactly δ maps, δ is critical for efficiency.

Finding α, β, δ The first part of the experiment consisted in a brute force search across α, β and measuring the
TAR and number of bad matches. This search did not involve any cryptographic protections, records were simply
stored in a standard map. Selected parameters had TAR of at least 90%. The average number of bad matches was
at most 10 for random data and at most 50 for ND and synthetic data. Once α, β were selected we recorded the
histogram of bad matches and set δ to be one more than the 95 percentile of this histogram.

Measuring accuracy We then measured accuracy for both a (β, ν = β, δ = β) − DOMapE and a (β, ν = β, δ) −
DOMapE. That is, setting δ to restrict the number of LSH values provided to the oblivious map to be δ. For these
tests, we only measure the TAR to understand the impact of restricting the number of searched values on accuracy.

Discussion Even with random data, β is substantially higher than predicted in Section 2.1. In proximity search,
one wishes to capture most of the tail of the comparisons between different readings of the same iris (the blue
distribution in Figure 13). For example, for distance t = .21n and a TAR of .01, Section 2.1 proposed β = 65 and
α = 13. However, our experimental results show that even for random data, to sustain high TAR and low FAR, we
require β = 630 and α = 15 trees. These parameters increase further on the ND and Synthetic datasets.

Parameters vary widely between random and synthetic data. This is due to a much larger variance in the
Hamming distance difference between different templates. This is shown in Figure 13 and is directly observable in
larger variance in the number of bad matches in Figure 14. This is in contrast to the histogram of good matches
across datasets in Figure 15 which are consistent across datasets.This leads to an increase in the selected δ which
will directly impact the efficiency of the cryptographic algorithms. As we increase dataset sizes, δ for synthetic data
is about 5 times δ for random data.

The ND and synthetic data statistics align well, requiring the same parameters of α = 18 and β = 850. This gives
some indication that parameters for larger synthetic dataset sizes would yield comparable performance on real irises.
More evaluation of real data is necessary before deployment. Across all parameter settings δ/β < .06 validating the
basic design of using an OMC to reduce the number of clauses as input to the DOMapE.

Restricting to only δ accesses in the DOMapE has an effect on the TAR of the system. Note that the real system
does not know which matches are good so even in the case when many matches are bad it is possible for a single
good match to be included in the arbitrarily selected δ traversals. The worst degradation of TAR is for synthetic
data with 2500 records where TAR drops from .92 to .82.

18

(a) ND-0405 (b) Synthetic Data (c) Random Data

Figure 14: Number of bad matches across datasets of size 356.

(a) ND-0405 (b) Synthetic Data (c) Random Data

Figure 15: Number of good matches across datasets of size 356.

6.2 Speed - Cryptographic Efficiency

Efficiency was evaluated in terms of storage, timing, and network roundtrips of the implemented algorithms. The
machine is a RHEL 7.9 with:

1. An Intel(R) Xeon(R) CPU E5-2630 v3 with 32 cores at 2.40GHz,

2. 64 GB (4x16GB) 2400MHz DDR4 RDIMM ECC RAM, and

3. Two 2TB SATA 7.2K RPM HDD in Raid1.

The results are reported in Table 2. Before reporting on results we note that we did not attempt to model network
delay in our experiments. This is because the underlying PathORAM implementation does not support batching
ORAM requests into a single roundtrip. Thus, any implementation would have an inflated number of rounds trips,
as shown in the sequential round trips column of Table 2.

Storage efficiency Feature vectors are 1024 bit vectors. So for a dataset of size 5000, this represents approximately
640 KB. The unprotected (same structure as DOMapE but without ORAM) index takes approximately 122.3 MB.7

As shown in Table 2, for our encrypted storage this amounted to 35.6 GB in storage. This represents a storage
increase factor of around 22 between raw data and unprotected index, and ORAM increases storage again approxi-
mately 291 times. As we discuss in the Conclusion, one can more efficiently pack ORAM blocks using trees with a
branching factor > 2.

7Internal node consists of an LSH number, a 22 LSH values, and 2 child identifiers (either the node id or the position of the child in
the next ORAM). Leaf nodes consist of a single 32 node identifier.

19

Dataset Dataset # ORAM # Roundtrips Time (s) Size
size, ` type α β δ Queries Reads sequential parallel O.Init Search O.Read (GB)

356 random 15 630 13 356 117 334 18 3.8× 103 11 .051 1.1
356 ND 18 850 37 356 333 666 18 13.8× 103 39 .062 1.1
356 synthetic 18 850 26 356 234 468 18 12.3× 103 27 .061 1.1

1000 random 18 850 8 500 80 160 20 11× 103 17 .122 2.2
1000 synthetic 19 1000 47 500 470 940 20 13× 103 113 .135 2.2

2500 random 19 1000 11 500 132 262 24 59× 103 90 .353 8.9
2500 synthetic 21 1200 56 100 672 1344 24 202× 103 553 .420 17.8

5000 random 20 1200 12 500 156 312 26 166× 103 235 .757 35.6
5000 synthetic 22 1300 72 10 936 1872 26 904× 103 1570 .849 35.6

Table 2: Efficiency results. O.Init is time to initialize all ORAMs. O.Read is average read time (across ORAM
layers). Search is time per query and includes tree traversals. Size EDB denotes the size of the ORAM files that
are stored on the server (OMC storage is ignored since it is much smaller). Sequential number of roundtrips is
2 ∗#ORAM Reads and Parallel Rounds trips is dlog2 `e ∗ 2. All timing numbers are averaged across the number of
queries in # Queries.

Time efficiency We time the two main OSE algorithms: BuildIndex and Search. The time to build the encrypted
index is largely dominated by the ORAM setup time so we only report the later (column “O.Init”). For small datasets
(356 records), ORAM setup takes between 1 and 4 hours, respectively for random and real data. For larger datasets
of size 5000, ORAM setup takes almost 2 days for random data and approximately 11 days for synthetic data. While
these timings are not prohibitive yet, they will be for very large datasets. We believe that part of this problem is
caching of the large data structures to virtual memory and the use of a spinning disk hard drive that perform poorly
with ORAM workloads [WST12, Section 2.3]. To check this hypothesis, we ran the synth dataset of size 356 on a
M1 Mac mini desktop with 16GB of memory and a 2TB SSD, and observed a 4 fold reduction in ORAM setup time.

Search time (per query) takes only a few dozen seconds for datasets of size 356 and it reaches a few minutes
for larger datasets (approximately 4 minutes for 5000 random and 26 minutes for 5000 synthetic). Although these
timings for larger datasets are not ideal, they are a vast improvement compared to previous works. In particular,
search for ND-0405 (356 records) takes only 39 seconds compared to Cachet et al’s search time of approximately 1
hour [CAD+20].8 Furthermore, if one had to search all β trees, search time would increase by a factor of at least
1/.06 ≈ 16.

Network Round Trips Our primary network measurement is number of roundtrips. We report on two figures,
the number of round trips using a purely sequential PathORAM implementation and the number of roundtrips if
one is able to fully batch all requests at the same level. For the largest synthetic parameter sizes, if one assumes a
fast network with 60ms responses and unbounded bandwidth then network delays result in 1.56 seconds in parallel
rounds trips, but slower 1s responses results in 26 seconds. If one assumes sequential round trips and 60ms responses
the network delay alone is 112s. For comparison, we note that our local ORAM read operation took .849s on this
dataset, indicating the spinning hard disk was substantially slower than a fast network.

Parallelization The current implementation does not use parallelization because of the non-parallel ORAM mod-
ule. Many existing ORAM schemes including PathORAM naturally supported batched read/write operations where
the client keeps a larger stash. In the case of PathORAM, the client repeatedly reads and writes a “random” path
on a tree. One can naturally perform all reads first and then perform all writes, simulating the intermediate storage
that would be held by the server. Parallel ORAM is a more complex solution for when the reads are coming from
different clients [WST12,BCP16,CLT16]

Evaluation of OMC implementation using private set intersection On the same hardware as the rest of the
evaluation we deployed the VolePSI implementation [RS21]. We deployed this with a server set of size 6.5 million
items and a client set of 1300 items. This corresponds to the largest set of parameters in Table 2. VolePSI is based
on OT extension and requires a setup phase. We benchmarked 32 PSI iterations with the first taking 766ms and the
rest taking 2ms of computation. We note that VolePSI requires 7 messages of communication. These results justify
the focus on the design of DOMapE.

8Their system does have a better accuracy tradeoff with a TAR of .99 with an average of 15 false positives in comparison to our TAR
of .89, see [ACD+22, Table 2].

20

7 Conclusion

This work presents Private Eyes the first zero-leakage biometric database. Our system is tested with response times
in minutes on databases of thousands of irises. Our construction combines LSHs and oblivious maps. The unique
aspect of our design is the recognition and mitigation of the cryptographic inefficiencies caused by the high noise in
biometric data. In particular, we use the statistics of biometric data to create our two-stage approach which filters
which LSHs to query using a lighter-weight membership checking primitive before the heavy-weight oblivious map.

More work is needed to help zero-leakage biometric database scale to the level of national biometric identity
databases which have millions of records. Cachet et al. [ACD+22] proposed two non-interactive iris proximity search
schemes based on inner-product encryption. Both of their constructions have more leakage than our system. The first
one leaks the distance between all returned points and the query. The other leaks whether returned records are the
same distance from the query. For the solution with more leakage, their search took 4 minutes on a dataset of size 356.
For the solution with less leakage, search took 4 hours (later reduced to an 1 hour in an ePrint revision [CAD+20]).
Our search time on the same dataset is 14 seconds.

Here we present a couple of challenges and opportunities for future work for dealing with that scale:

1. Existing ORAM implementations do not support batching of read/write requests, such a capability is important
for practical zero-leakage disjunctive search with a large number of clauses.

2. We relied on binary trees which mean that each tree traversal requires 10 − 20 ORAM lookups. Naturally,
one can use trees with a higher branching factor (or skiplists as in [BC14]) to reduce the number of ORAM
lookups. Ideally, each node would correspond to a single ORAM block which is commonly a multiple of 256
bytes. Our current estimate is that internal nodes account for ≤ 128 bits of storage out of the 256 byte block
size. As such, one could make the tree into a 18-ary tree (32 bits for LSH number, 32 bits for left most child,
and 22 + 32 bits for each additional comparison node). This would reduce the depth of the trees and required
number of round trips by log2 18 ≈ 4.

References

[ACD+22] Sohaib Ahmad, Chloe Cachet, Luke Demarest, Benjamin Fuller, and Ariel Hamlin. Proximity searchable
encryption for the iris biometric. In AsiaCCS, 2022. https://ia.cr/2020/1174.

[AF18] Sohaib Ahmad and Benjamin Fuller. Unconstrained iris segmentation using convolutional neural net-
works. In Asian Conference on Computer Vision, pages 450–466. Springer, 2018.

[AF19] Sohaib Ahmad and Benjamin Fuller. Thirdeye: Triplet-based iris recognition without normalization.
In IEEE International Conference on Biometrics: Theory, Applications and Systems, 2019.

[AF20] Sohaib Ahmad and Benjamin Fuller. Resist: Reconstruction of irises from templates. In 2020 IEEE
International Joint Conference on Biometrics (IJCB), pages 1–10. IEEE, 2020.

[Ahm20] Sohaib Ahmad. Sohaib ahmad github, 2020. Accessed: 2020-07-23.

[BBOH96] Christopher M Brislawn, Jonathan N Bradley, Remigius J Onyshczak, and Tom Hopper. The FBI
compression standard for digitized fingerprint images. In Proc. SPIE, volume 2847, pages 344–355,
1996.

[BC14] Alexandra Boldyreva and Nathan Chenette. Efficient fuzzy search on encrypted data. In International
Workshop on Fast Software Encryption, pages 613–633. Springer, 2014.

[BCP16] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel ram and applications. In Theory of
Cryptography Conference, pages 175–204. Springer, 2016.

[BF16] Kevin W Bowyer and Patrick J Flynn. The ND-IRIS-0405 iris image dataset. arXiv preprint
arXiv:1606.04853, 2016.

[BHJP14] Christoph Bösch, Pieter Hartel, Willem Jonker, and Andreas Peter. A survey of provably secure
searchable encryption. ACM Computing Surveys (CSUR), 47(2):1–51, 2014.

21

https://ia.cr/2020/1174

[Blo70] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of the
ACM, 13(7):422–426, 1970.

[BT21] Alexandra Boldyreva and Tianxin Tang. Privacy-preserving approximate k-nearest-neighbors search
that hides access, query and volume patterns. PoPETS Proceedings on Privacy Enhancing Technologies,
2021.

[CAD+20] Chloe Cachet, Sohaib Ahmad, Luke Demarest, Serena Riback, Ariel Hamlin, and Benjamin Fuller. Multi
random projection inner product encryption, applications to proximity searchable encryption for the iris
biometric. Cryptology ePrint Archive, Paper 2020/1174, 2020. https://eprint.iacr.org/2020/1174.

[CCD+20] Hao Chen, Ilaria Chillotti, Yihe Dong, Oxana Poburinnaya, Ilya Razenshteyn, and M Sadegh Riazi.
{SANNS}: Scaling up secure approximate {k-Nearest} neighbors search. In 29th USENIX Security
Symposium (USENIX Security 20), pages 2111–2128, 2020.

[CGKO11] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric encryption:
Improved definitions and efficient constructions. Journal of Computer Security, 19:895–934, 01 2011.

[CGPR15] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks against search-
able encryption. In Proceedings of the 22nd ACM SIGSAC conference on computer and communications
security, pages 668–679, 2015.

[CHF22] Chloe Cachet, Julie Ha, and Benjamin Fuller. An implementation of oblivious proximity searchable
encryption. https://github.com/hajulie/searchable_biometric, 2022.

[CLT16] Binyi Chen, Huijia Lin, and Stefano Tessaro. Oblivious parallel ram: improved efficiency and generic
constructions. In Theory of Cryptography Conference, pages 205–234. Springer, 2016.

[CT09] Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection protocols with lin-
ear computational and bandwidth complexity. Cryptology ePrint Archive, Paper 2009/491, 2009.
https://eprint.iacr.org/2009/491.

[CWD+18] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and Anil A
Bharath. Generative adversarial networks: An overview. IEEE signal processing magazine, 35(1):53–
65, 2018.

[Dau05] John Daugman. Results from 200 billion iris cross-comparisons. 01 2005.

[Dau09] John Daugman. How iris recognition works. In The essential guide to image processing, pages 715–739.
Elsevier, 2009.

[Dau14] John Daugman. 600 million citizens of India are now enrolled with biometric id,”. SPIE newsroom, 7,
2014.

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big data: an ef-
ficient and scalable protocol. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 789–800, 2013.

[DGXZ19] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin loss
for deep face recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4690–4699, 2019.

[DSMRY09] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Efficient robust private set
intersection. In International Conference on Applied Cryptography and Network Security, pages 125–
142. Springer, 2009.

[FMC+15] Benjamin Fuller, Darby Mitchell, Robert Cunningham, Uri Blumenthal, Patrick Cable, Ariel Hamlin,
Lauren Milechin, Mark Rabe, Nabil Schear, Richard Shay, et al. Security and privacy assurance research
(spar) pilot final report. Technical report, MIT Lincoln Laboratory Lexington United States, 2015.

22

https://eprint.iacr.org/2020/1174
https://github.com/hajulie/searchable_biometric
https://eprint.iacr.org/2009/491

[FMC+20] Francesca Falzon, Evangelia Anna Markatou, David Cash, Adam Rivkin, Jesse Stern, and Roberto
Tamassia. Full database reconstruction in two dimensions. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, pages 443–460, 2020.

[FNP04] Michael J Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and set intersection.
In International conference on the theory and applications of cryptographic techniques, pages 1–19.
Springer, 2004.

[Fou] Electronic Frontier Foundation. Mandatory national ids and biometric databases.

[FP22] Francesca Falzon and Kenneth G. Paterson. An efficient query recovery attack against a graph encryp-
tion scheme. In Vijayalakshmi Atluri, Roberto Di Pietro, Christian D. Jensen, and Weizhi Meng, editors,
Computer Security – ESORICS 2022, pages 325–345, Cham, 2022. Springer International Publishing.

[FVK+15] Ben A Fisch, Binh Vo, Fernando Krell, Abishek Kumarasubramanian, Vladimir Kolesnikov, Tal Malkin,
and Steven M Bellovin. Malicious-client security in blind seer: a scalable private dbms. In 2015 IEEE
Symposium on Security and Privacy, pages 395–410. IEEE, 2015.

[FVY+17] Benjamin Fuller, Mayank Varia, Arkady Yerukhimovich, Emily Shen, Ariel Hamlin, Vijay Gadepally,
Richard Shay, John Darby Mitchell, and Robert K Cunningham. SoK: Cryptographically protected
database search. In 2017 IEEE Symposium on Security and Privacy (SP), pages 172–191. IEEE, 2017.

[GLMP18] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. Pump up the volume:
Practical database reconstruction from volume leakage on range queries. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, pages 315–331, 2018.

[GMP16] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. Tworam: efficient oblivious ram in
two rounds with applications to searchable encryption. In Annual International Cryptology Conference,
pages 563–592. Springer, 2016.

[GPAM+20] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the ACM,
63(11):139–144, 2020.

[GPP23] Zichen Gui, Kenneth G. Paterson, and Sikhar Patranabis. Rethinking searchable symmetric encryption.
In IEEE Security and Privacy, 2023. https://eprint.iacr.org/2021/879.

[GRGB+12] Javier Galbally, Arun Ross, Marta Gomez-Barrero, Julian Fierrez, and Javier Ortega-Garcia. From the
iriscode to the iris: A new vulnerability of iris recognition systems. Black Hat Briefings USA, 1, 2012.

[GSB+17] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Naveed, and Thomas Ristenpart.
Leakage-abuse attacks against order-revealing encryption. In Security and Privacy (SP), 2017 IEEE
Symposium on, pages 655–672. IEEE, 2017.

[Hac18] Gabriel Hackebeil. Path oram python module, 2018.

[HWKL18] Yi Huang, Adams Kong Wai-Kin, and Kwok-Yan Lam. From the perspective of CNN to adversarial iris
images. In 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems
(BTAS), pages 1–10. IEEE, 2018.

[IKK12] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern disclosure on search-
able encryption: ramification, attack and mitigation. In NDSS, volume 20, page 12. Citeseer, 2012.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages
604–613, 1998.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by re-
ducing internal covariate shift. In Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37, ICML’15, page 448–456. JMLR.org, 2015.

23

https://eprint.iacr.org/2021/879

[JM19] Alexia Jolicoeur-Martineau. The relativistic discriminator: a key element missing from standard GAN.
In International Conference on Learning Representations, 2019.

[KB15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

[KE19] Evgenios M Kornaropoulos and Petros Efstathopoulos. The case of adversarial inputs for secure similar-
ity approximation protocols. In 2019 IEEE European Symposium on Security and Privacy (EuroS&P),
pages 247–262. IEEE, 2019.

[KIK12] Mehmet Kuzu, Mohammad Saiful Islam, and Murat Kantarcioglu. Efficient similarity search over
encrypted data. In 2012 IEEE 28th International Conference on Data Engineering, pages 1156–1167.
IEEE, 2012.

[KKM+22] Seny Kamara, Abdelkarim Kati, Tarik Moataz, Thomas Schneider, Amos Treiber, and Michael Yonli.
Sok: Cryptanalysis of encrypted search with leaker–a framework for leakage attack evaluation on real-
world data. In 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P), pages 90–108.
IEEE, 2022.

[KKNO16] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. Generic attacks on secure out-
sourced databases. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1329–1340, 2016.

[KPT19a] Evgenios M Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia. Data recovery on
encrypted databases with k-nearest neighbor query leakage. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 1033–1050. IEEE, 2019.

[KPT19b] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia. The state of the
uniform: Attacks on encrypted databases beyond the uniform query distribution. Cryptology ePrint
Archive, Report 2019/441, 2019.

[KPT20] Evgenios M Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia. The state of the uni-
form: attacks on encrypted databases beyond the uniform query distribution. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 1223–1240. IEEE, 2020.

[KYV+17] Naman Kohli, Daksha Yadav, Mayank Vatsa, Richa Singh, and Afzel Noore. Synthetic iris presentation
attack using idcgan. In 2017 IEEE International Joint Conference on Biometrics (IJCB), pages 674–
680. IEEE, 2017.

[LMWY20] Kasper Green Larsen, Tal Malkin, Omri Weinstein, and Kevin Yeo. Lower bounds for oblivious near-
neighbor search. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 1116–1134. SIAM, 2020.

[LN+96] Michael Lamoureux, Bradford Nickerson, et al. On the equivalence of b-trees and deterministic skip
list. 1996.

[MCYJ18] Guangcan Mai, Kai Cao, Pong C Yuen, and Anil K Jain. On the reconstruction of face images from
deep face templates. IEEE transactions on pattern analysis and machine intelligence, 41(5):1188–1202,
2018.

[MHN13] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural network
acoustic models. In Proc. icml, volume 30, page 3, 2013.

[MT19] Evangelia Anna Markatou and Roberto Tamassia. Full database reconstruction with access and search
pattern leakage. In International Conference on Information Security, pages 25–43. Springer, 2019.

[PBF+08] P Jonathon Phillips, Kevin W Bowyer, Patrick J Flynn, Xiaomei Liu, and W Todd Scruggs. The
iris challenge evaluation 2005. In 2008 IEEE Second International Conference on Biometrics: Theory,
Applications and Systems, pages 1–8. IEEE, 2008.

24

[PKV+14] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Seung Geol Choi, Wesley
George, Angelos Keromytis, and Steve Bellovin. Blind seer: A scalable private dbms. In 2014 IEEE
Symposium on Security and Privacy, pages 359–374. IEEE, 2014.

[PSO+09] P Jonathon Phillips, W Todd Scruggs, Alice J O’Toole, Patrick J Flynn, Kevin W Bowyer, Cathy L
Schott, and Matthew Sharpe. FRVT 2006 and ICE 2006 large-scale experimental results. IEEE trans-
actions on pattern analysis and machine intelligence, 32(5):831–846, 2009.

[Pug90] William Pugh. Skip lists: a probabilistic alternative to balanced trees. Communications of the ACM,
33(6):668–676, 1990.

[RS21] Peter Rindal and Phillipp Schoppmann. Vole-psi: Fast oprf and circuit-psi from vector-ole. In Anne
Canteaut and François-Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT 2021, pages
901–930, Cham, 2021. Springer International Publishing.

[SDDN19] Sobhan Soleymani, Ali Dabouei, Jeremy Dawson, and Nasser M Nasrabadi. Adversarial examples to
fool iris recognition systems. In 2019 International Conference on Biometrics (ICB), pages 1–8. IEEE,
2019.

[SDS+18] Emil Stefanov, Marten Van Dijk, Elaine Shi, T-H Hubert Chan, Christopher Fletcher, Ling Ren, Xi-
angyao Yu, and Srinivas Devadas. Path oram: an extremely simple oblivious ram protocol. Journal of
the ACM (JACM), 65(4):1–26, 2018.

[SSF19] Sailesh Simhadri, James Steel, and Benjamin Fuller. Cryptographic authentication from the iris. In
International Conference on Information Security, pages 465–485. Springer, 2019.

[SWP00] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. Practical techniques for searches on encrypted
data. In Proceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000, pages 44–55. IEEE,
2000.

[VS11] Shreyas Venugopalan and Marios Savvides. How to generate spoofed irises from an iris code template.
IEEE Transactions on Information Forensics and Security, 6(2):385–395, 2011.

[WLD+17] Guofeng Wang, Chuanyi Liu, Yingfei Dong, Hezhong Pan, Peiyi Han, and Binxing Fang. Query recovery
attacks on searchable encryption based on partial knowledge. In International Conference on Security
and Privacy in Communication Systems, pages 530–549. Springer, 2017.

[WNL+14] Xiao Shaun Wang, Kartik Nayak, Chang Liu, TH Hubert Chan, Elaine Shi, Emil Stefanov, and Yan
Huang. Oblivious data structures. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, pages 215–226, 2014.

[WST12] Peter Williams, Radu Sion, and Alin Tomescu. Privatefs: A parallel oblivious file system. In Proceedings
of the 2012 ACM conference on Computer and communications security, pages 977–988, 2012.

[YCR19] Shivangi Yadav, Cunjian Chen, and Arun Ross. Synthesizing iris images using RaSGAN with application
in presentation attack detection. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 2019.

Acknowledgements

The authors thank the anonymous reviewers for their help in improving the manuscript. The authors also thank
Mayank Varia for helpful discussions. J.H. is supposed by NSF Award #1950600. C.C. is supported by NSF Award
#2141033. L.D. is supported by the Harriott Fellowship. S.A. is supported by a fellowship from Synchrony Inc. and
the State of Connecticut. B.F. is supported by NSF Awards # 2141033 and 2232813 and ONR Grant N00014-19-1-
2327.

This research is based upon work supported in part by the Office of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activity (IARPA), via Contract No. 2019-19020700008. This material is
based upon work supported by the Defense Advanced Research Projects Agency, DARPA, under Air Force Contract

25

Layer OutputSize Kernels
Input 1x128 -
G1 64 64
G2 128 128
G3 64 64
G4 128 128
G5 1024 1024
D1 16 16
D2 128 128
D3 1 1

Table 3: Generator architecture

No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of DARPA. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official policies, either expressed
or implied, of ODNI, IARPA, or the U.S. Government.

The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstand-
ing any copyright annotation therein.

A Synthetic Data Generation

We now describe the neural network used to produce our synthetic templates. Our synthetic templates are built
using a generative adversarial network or GAN. A GAN trains two networks in competition, a generator which
should produce synthetic irises and a discriminator which classifies irises as real or synthetic. Yadav et al. [YCR19]
uses RaSGAN (relativistic average standard GAN) [JM19] to generate synthetic irises for the purpose of studying
their effects on presentation attack detection (PAD) algorithms. Irises from the RaSGAN perform well against PAD
and follow real iris statistics well. Kohli et al. [KYV+17] use the DCGAN architecture to generate synthetic irises.
Synthetic irises can be viewed as irises that must closely resemble bonafide irises as discussed in [YCR19,KYV+17].

Our synthetic data generator is also trained using the ND-0405 dataset [BF16]. We follow the approach of
RESIST [AF20] which takes inspiration from synthetic data generation to invert iris templates into realistic looking
images.

We denote the network as SYNTH. In a GAN formulation, noise is sampled from a multivariate normal distribu-
tion (Pz) with a mean of 0 and a variance of 1. The generator converts this noise vector into a synthetic template. Let
Py denote the distribution of real templates and Pŷ denote the distribution of synthetic templates. We use a recently
proposed relativistic average discriminator [JM19] as our discriminator. To build up to the relativistic discriminator
we first start with the original GAN loss functions:

L(D) =− Ey∼Py [log(D(y))]− Eŷ∼Pŷ [log(1−D(ŷ))]

L(G) =− Eŷ∼Pŷ [log(D(ŷ))].

L(D) is called the discriminator loss and L(G) is called the generator loss, y is an actual template and ŷ is a synthetic
template generated by the generator.

The L(D) and L(G) losses are minimized using gradient descent. The generator and discriminator play a zero
sum game. The generator weights are updated based on how good its synthetic irises are while the discriminator
weights are updated on how well it differentiates between real and synthetic templates.

The last layer of the generator is the hyberbolic tangent (tanh) with output ranging from -1 to 1, this is done to
generate binary synthetic templates by substituting 0,1 with -1,1. The real templates are also converted to -1,1 for
conformity.

Architecture SYNTH architecture is a small neural network having only dense (fully connected) layers as shown in
Table 3 where Gx are generator layers and Dx are discriminator layers. Each layer is followed by a LeakyReLU [MHN13]
activation and a batch normalization [IS15] layer. The last layers of both sub-networks are unique, the generator has
a tanh activation while the discriminator has a Sigmoid activation.

26

Training SYNTH is trained in two stages. First, the generator produces a synthetic template and second, the
discriminator outputs how real this synthetic template is. This training is done till convergence of the weights of
both networks. Both training stages use the Adam optimizer [KB15]. We randomly flip 2% bits of a real template as
noise to aid in network convergence. The networks is trained over 100 epochs. Each epoch having 100 steps. Each
step updates weights once by either 1) discriminating a pair of vectors or 2) generating a single synthetic template.

Once trained the SYNTH network can produce an unbounded number of distinct templates. We described how to
produce different readings from the same template in Section 4.

27

	Introduction
	Our Design

	Preliminaries
	The need for many LSHs in biometric proximity search
	Cryptographic Definitions

	Oblivious Proximity Search for Biometrics
	Overview of DOMapE design
	Detailed design of DOMapE
	(,= , =)-DOMapE construction
	(,= ,)-DOMapE construction

	Oblivious membership check constructions
	Oblivious Bloom Filter Lookups
	Building OMC from PSI and pseudorandom permutations

	Datasets
	Implementation
	Evaluation
	Accuracy - Parameter analysis
	Speed - Cryptographic Efficiency

	Conclusion
	Synthetic Data Generation

