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Abstract

This work introduces Private Eyes the first zero-leakage biometric database. The only leakage of the system
is unavoidable: 1) the log of the dataset size and 2) the fact that a query occurred. Private Eyes is built from
symmetric searchable encryption. Proximity queries are the required functionality: given a noisy reading of a
biometric, the goal is to retrieve all stored records that are close enough according to a distance metric.

Private Eyes combines locality sensitive-hashing or LSHs (Indyk and Motwani, STOC 1998) and oblvious
maps. One searches for the disjunction of the LSHs of a noisy biometric reading. The underlying encrypted map
needs to efficiently answer disjunction queries.

We focus on the iris biometric. Iris biometric data requires a large number of LSHs, approximately 1000. The
most relevant prior work is in zero-leakage k-nearest-neighbor search (Boldyreva and Tang, PoPETS 2021), but
that work is designed for a small number of LSHs.

Our main cryptographic tool is a zero-leakage disjunctive map designed for the setting when most clauses
do not match any records. For the iris, on average at most 6% of LSHs match any stored value. Our scheme
is implemented and open-sourced. For the largest tested parameters of a 5000 iris database, search requires 26
rounds of communication and 26 minutes of single-threaded computation.

To evaluate we use a simple generative adversarial network to produce synthetic irises. Accurate statistics
on sizes beyond available datasets is crucial to optimizing the cryptographic primitives. This tool may be of
independent interest.
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1 Introduction

Biometrics are collected into large databases for search [BBOH96|,[DauldlFou]. Learning stored biometric values
enables an attacker to break authentication and privacy for a user’s lifetime |[GRGB™12, MCYJ18,|AF20, VS11,
HWKL18,[SDDN19|. To reduce this risk, this article develops new searchable encryption techniques for biometric
databases [SWP00,/CGKO11][T]

Consider the setting where a client outsources a database DB to an honest but curious server. To be efficient,
the server may learn some information known as leakage. Prior work exploits such leakage to reveal sensitive
information about the database or queries [IKK12,/CGPR15,KKNO16,WLD"17/GSB™17/GLMP18,/KPT19a,MT19,
KE19, KPT20, FMC™20, FP22,|GPP23|. Since biometrics cannot be replaced or revoked, we focus on a zero-leakage
system. A zero-leakage system leaks only unavoidable information: 1) that a query occurs and 2) |DB| (which can
be padded to a power of 2).

‘We present PrivateEyes, the first zero-leakage iris proximity search system. Our system is implemented
and tested on datasets of up to 5000 records with a search time of at most 26 minutes and 26 round tripsE| Throughout,
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we focus on the iris (we briefly discuss the face in Section . Recently, Boldyreva and Tang [BT21| built a zero-
leakage k-nearest-neighbor system. Boldyreva and Tang did not build proximity search; our comparison is based on
adapting their scheme. On the 5000 record dataset, this adaptation has a search time of approximately 7.9 hours.

Like prior secure proximity search systems (starting with [KIK12]), our system combines locality-sensitive hashes [IM98],
LSHs, and (a variant of) encrypted maps. Our design results from improving the efficiency gaps present in databases
over actual biometrics. As such, the Introduction first reviews 1) how to use LSHs to build proximity search, 2)
describes the critical efficiency gaps, and then 3) presents the new cryptography and implementation [CHF22|.

Proximity Search from LSHs A database is a list of biometrics DB = wy, ..., wy where each w; € {0,1}". The
goal of a biometric database is given some w* to find all values w; € DB that are similar enough to w*. For the
Hamming metric D and distance threshold ¢, the goal is to find all w; such that D(w;, w*) < tﬂ A LSH maps similar
items to the same value more frequently than it maps far items to the same value. Let H be a family of LSHs then

LSELH[LSH(wi) = LSH(w™)|w;, w* are near] > 1 — py,

LSELH[LSH(u}j) = LSH(w")|w;, w* are far] <1 — ps.

where p; < ps. Maps associate keys to a value and are used to build inverted indices. For a database of size /,
parameter 8 € Z*, maps My, ..., Mg, and LSH family , one achieves proximity search as follows:

1. Sample 8 LSHs, LSHy, ..., LSHg < H.
2. For j =1,..., 8, set M;[v] = {w;|LSH;(w;) = v}.
3. To search for value w*, compute LSH; (w*), ...., LSHg(w*) and retrieve U]ﬁ.lej[LSHj(w*)].

Notice that the query is a disjunction.

If multiple records share the same LSH value our implementation concatenates the matching values. This allows
us to handle a constant number of values associated to each key. This condition is satisfied for the accuracy
regimes discussed in this work. Boldyreva and Tang [BT21] constructed a zero-leakage encrypted map scheme called
an oblivious map with encryption or OMapE. Each clause is submitted to the relevant OMapE, the results are
concatenated as in Step [3| above.

Proximity search on biometrics is tricky using the above construction. Due to their large noise, biometrics
require one to sample hundreds or thousands of LSHs to achieve reasonable accuracy (see analysis in Sec-
tion and Section @ At the same time, very few of these LSHs will match anything in the corresponding
map. Most of the time the construction above performs heavy oblivious operations to hide the null value.

1.1 Our Design

Our design is a two-part approach:

1. Find a small number, §, of LSHs values that exist in some map,
2. Query only those § maps in a way that hides which § maps are being queried.
For the above design to be successful, one needs to demonstrate:

Obliviousness Sec. [3] One can hide the queried § maps,
Accuracy Sec. High accuracy with § < 3, and
Speed Sec. The two-stage approach results in a faster overall system.

Below we present a more formal description of these two components. Our evaluation focuses on showing the above
three properties.

3This functionality differs from k-nearest neighbors where the goal is to retrieve the k closest records |[BT21]. There have been
leakage abuse attacks against k-nearest neighbor systems that reveal access pattern [KPT19a,[KPT19b,[LMWY20| and resulting sys-
tems [CCD120]. These attacks do not apply to our leakage profile.



Oblivious Membership Check An object to check which of the LSHs have matches. For an encrypted stored set
X the oblivious membership check or OMC takes in a set W and returns W/ C W N X where |W’'| < 4. Our
analysis finds a parameter ¢ that is unlikely to remove hurt accuracy. One can easily build OMC using private
set intersection and pseudorandom permutations (there are many approaches), see discussion in Sections
and We benchmark this design using VolePSI [RS21]; the resulting implementation is orders of magnitude
faster than our oblivious map implementation.

Disjunctive Oblivious Map An object that directly searches for the disjunction of exactly ¢ items (if |WW'| < 6 we
search for dummy values to search for exactly § values). This object has the same functionality as an oblivious
map that takes multiple clauses but the fact that all clauses are presented together is crucial for security. We
call this object a DOMapE for disjunctive oblivious map with encryption. Our focus is on designing a DOMapE.

Building DOMapE Our focus is on the efficient design of Disjunctive Oblivious Maps for § < 5. Recall
Boldyreva and Tang |[BT21] build 5 separate maps and search each one for an LSH clause. This approach does not
work if one only queries § clauses because it reveals which LSHs matched. We present the following contributions:

1. A DOMapE based on oblivious tree traversal building on the design principles of Wang et al. [WNL714]. We
show how to convert a DOMapE into proximity search.

2. A thorough parameter analysis on real, synthetic, and random data. As part of this analysis, we present a novel
tool for generating larger synthetic iris datasets based on generative adversarial networks or GANs [CWD™18|
GPAMT™20].

3. A prototype implementation of proximity search and benchmarking on real, synthetic, and random datasets of
up to 5 thousand irises.

Organization The rest of this paper is organized as follows: Section [2]introduces preliminaries, Section [3| presents
our designs for DOMapE, Section [ presents the datasets, Section [5] describes our implementation, Section [ our
evaluation methodology, and Section [7] concludes. Appendix [A] describes the architecture used to generate synthetic
irises.

2 Preliminaries

Let A be the security parameter throughout the paper. We use poly(A) and negl(\) to denote unspecified functions
that are polynomial and negligible in A, respectively. All definitions are indexed by A but this indexing is omitted

for notational clarity. For some n € N, [n] denotes the set {1,--- ,n}. Let x &S denote sampling = uniformly at
random from the finite set S. Hamming distance is defined as the distance between the bit vectors = and y of length
n: D(x,y) = |{i | z; # y;}| and the fractional Hamming distance is D(z,y)/n. For a map M, let M.Keywords output
the set of all stored keywords. Locality sensitive hashes (LSH) frequently map similar values to the same hash.

Definition 1 (Locality-sensitive Hashing (LSH)). Let t € N, ¢ > 0 and p1,p2 € [0,1]. H defines a (t,ct,p1,p2)-
sensitive hash family if for any x,y € {0,1}", we have:

1. If D(z,y) <t then Prisney [LSH(z) = LSH(y)] > p1 and
2. If D(z,y) > ct then Prispey [LSH(2z) = LSH(y)] < po,

where D(x,y) denotes the Hamming distance between binary vectors x and y. For x,y if D(x,y) < t they are said to
be near, if D(x,y) > ct they are said to be far.

Composing LSHs The error rates p1, p2 can be increased by randomly sampling several LSHs and checking that
they all match. That is, taking the logical AND of LSHs. Similarly, p1, p2 can be decreased by randomly sampling
several LSHs and checking that at least one of them matches. That is, the logical OR of LSHs. We use « to indicate
the number of LSHs in a logical AND. We will separately search for each LSH in the logical OR, we use [ for this
parameter.

If one takes the logical AND of oo LSHs the probability of them all matching is at least pj > p¢ for near things
and at most py < p§ for far things. For the 8 OR of LSHs the bounds are pj > 1— (1 —p;)? and p) < 1— (1 —p2)”.
We use the LSH that selects a bits of the input, a common approach for Hamming data.
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Figure 1: The number of maps returning a value when searching similar values with o = 15, 8 = 225 trees and 356
records from the ND-0405 dataset.

2.1 The need for many LSHs in biometric proximity search

We focus on the iris biometric using the ND-0405 dataset which has an average distance t/n ~ .21
using a state-of-the-art feature extractor [AF19]. There are 712 different irises in the ND0405 dataset which is a
superset of the NIST Iris Evaluation Challenge [PBFT08]. Half of these records are used for training the used feature
extractor |[AF18//Ahm20, AF19,JACD"22] which produces features of length 1024. The remaining 356 right irises
are suitable for experimentation. Section [4] describes other datasets used in this work. Our discussion applies to
other biometrics with substantive noise such as the face. See face noise histograms on a modern feature extractor
in Figure 6].

Let w; be a noisy reading of w;. When using w} as input to search, a true accept is when w; is returned and the
true accept rate (TAR) is the fraction of queries where this happens. The false accept rate (FAR) is the fraction
of DB\ {w;} that is returned on average. If one assumes that all readings of the same biometric have p; = .79
(corresponding to distance exactly ¢/n = .21) then achieving TAR= p} = .95 and a FAR of p, = .01 requires the
number of LSHs 65 < 8 < 80 for the minimum « = 13. For a dataset of size 106 if one seeks at most 100 false accepts
this requires 680 < 8 < 835 at the minimum a = 23. Even though the mean distance between readings of the same
biometric is t/n = .21 there is substantial variance in this distance (see Figure , requiring 8 to be larger as we
show in Table |1} Boldyreva and Tang tested on datasets with g < 10.

Furthermore, most of the LSHs will return 1. We call an LSH match good if it ensures the query results in a
true accept and bad otherwise. For the ND-0405 dataseta histogram of the number of good and bad LSH matches is
in Figure The average number of total LSH matches is 23.4. Boldyreva and Tang’s design queries all 3 OMapE
despite the fact that most will return no records.

2.2 Cryptographic Definitions

This work also relies on oblivious RAM, to achieve zero-leakage.

Definition 2 (Oblivious RAM |[GMP16]). An Oblivious RAM (ORAM) scheme is two protocols, Setup and OracleAccess:

4This uses the following experiment:

1. Storage of a single feature extracted reading for the right eye for each of the 356 persons in the ND-0405 dataset. Sample 8 = 225
LSHs of size oo = 15.

2. Use the second stored template in the ND-0405 dataset to create a search corpus wf, ..., wéSG'

3. Search for each record wj. Record the number of good and bad LSH matches.



ReaIA’q(l)‘):

1. A chooses Mem.
2. Run (09, EMemg) < Setup((1*, Mem), ).
3. For1<i:<q:

(a) y; <+ A(EMem;_1).
(b) Run ((v;,0;), EMem;) < OracleAccess((o;-1,y;), EMem;_1).

(c) Set ts;, as the server’s view of the above computation.
4. Output (EMemyg,tsq,. .., tsg).
IdeaIA7S;m7q(1’\):

1. Output (EMemg, tsi,...,ts;) < Sim(g, |Mem|, 1%).

Figure 2: Definition of ORAM security.

e (0,EMem) < Setup((1*,Mem), L): Setup takes the security parameter, and an array Mem and outputs a secret
state for the client o and an encrypted memory object EMem for the server.

e ((v,0"),EMem’) < OracleAccess((c,i), EMem): OracleAccess is a protocol between the client and the server,
where the client provides as input o and an index i. The server provides as input EMem. The client receives
back v and an updated o’ and the server receives an updated EMem’.

Correctness Consider the following correctness experiment:
1. An adversary A chooses memory Mem.
2. Consider EMemq and o generated from Setup((1*, Mem), 1).
3. For1<i<gq:
(a) Run y; <+ A(EMem;_1).
(b) Run (v;,0;, EMem;) + OracleAccess((o;—1,y;), EMem;_1).

The adversary wins if for some i,v; # Memly;]. The ORAM scheme is correct if the probability of A winning the
game is negl(\).

Security An ORAM scheme is secure in the semi-honest model if for any PPT adversary A, there exists a PPT
simulator Sim such that for any PPT distinguisher D we have

|Pr[D(Real 4,4(1")) = 1] — Pr[D(Ideal 4 sim,q(1")) = 1]| < negl()\)
with Real 4,4 and deal g sim,q as described in Figure[3,

The above is an adaptive simulation definition of ORAM, all of our proofs work naturally for the standard non-
adaptive definition as well. This would yield a non-adaptive searchable encryption scheme, Definition [3| below is
adaptive.

Definition 3 (Oblivious Searchable Encryption (OSE)). Let DB = (w1, ..., w¢) be a database where each w; € {0,1}™.
Let t € N be a parameter. For an inputy € {0,1}" The algorithms OSE = (Setup, BuildIndex, Searchjen:, Searchgenver)
define an interactive searchable encryption scheme:

e (sk,pp) < Setup(1%),

o Ipp = (Lserver; Lelient) < BuildIndex(sk, DB),

® (S, Ljient) s Leerver) < [S€archciient(PP, sk, ¥, Leiient), Searchserver(PP; Lserver)]-
We require the scheme to satisfy the following:



ReaIA’q(l)‘):

1. Compute (sk, pp) < OSE.Setup(1*).
2. A(pp) outputs DB.
3. Compute (I} s Iner) < OSE.Buildindex(sk, DB) and give I, to A.
4. For 1 <j<¢q:
(a) A sends query y’ € (X x [1,4])".
(b) Run

(77, 2o0) Tk ) < | OSE Searchen: (PP 5K, U Ijens)s OSE-Searchever (PP, Frver) | -

’» “client

(c) Send search transcript ts’ and updated index IZL, to A.

server

5. Output (ts, ..., ts?, I I, ..).

) ~server? ***) ~server
IdeaIAysiqu(l)‘):

1. Compute pp < Sim(1%, q).
2. A(pp) outputs DB.
3. Compute and output (ts!, ..., ts?, I 14, e;) < Sim(Lpuildindex(DB)).

server’ °*°) ~server

Figure 3: Definition of Expggi_sm.

Security: Let ¢ = poly(\) and Lose = {Lpuildindex; Lsearch =L} be the leakage profile describing the leakage of
OSE’s algorithms. For any PPT adversary A, there exists a simulator Sim such that for any PPT distinguisher D
we have

’Pr[D(ReaIA’q(l’\)) = 1] — Pr[D(ldeal 4 sim 4 (1)) = 1]| < negl(\)
with Real 4,4 and ldeal g sim,q as described in Figure[3

We additionally say that OSE is approzimately correct if:

(e,t)-Approximate Correctness: For all DB,y define

JDB near,y := {wi|D(ws, y) < t}.
Let ¢ = poly(A) and € > 0. We say that OSE is e-approximately correct if for all DB for all y1, ..., y,:
(sk,pp)+Setup(1*)

o IéBeBuildlndex(sk,DB) ’ >1—e
(J9, 5 < [Searcherent (PP,sk, Y I ne ) -S€arChserver (PP1 Tiepyer )|

server

Pr |J’ 2 JDB,near,y

In the above definition, we don’t explicitly limit the number of false matches. In Section 3} we never show that
our construction satisfies approximate correctness. Proving formal bounds requires many assumptions about the
data. Instead, we evaluate approximate correctness including the number of false matches empirically in Section [6}

Definition 4 (Disjunctive Oblivious Map with Encryption). Let A € N be the security parameter, let X be a
universe of keywords and let M : X — {0,1}" be a map. Let B,v,0 € N,§ < v < 8 be parameters. A set of protocols
DOMapE = (Setup, Encrypt, Getgjient, Getserver) has the following functionality:

e (pp,sk) < Setup(1*, 3,v,0).



Real4,q.8.,5(1%):

1. Run (pp,sk) +~ DOMapE.Setup(1*, 3, 6).
2. A(pp) chooses maps My, ...,Mg. Compute EM <— DOMapE.Encrypt(sk, M1, ..., Mg).
3. For1<:<q:
(a) A outputs query Y,
(b) Run (r*, EM"T!) « [DOMapE.Getcjient (PP, sk, Y'*), DOMapE. Getserver (PP, EMi)].
(c) Set ts’ to be the transcript of the above computation.

4. Output (ts',...,ts?, EM', ...,EMY,).

IdeaIAVSiquﬁ’V,(;(l)‘):
Compute and output (ts',...,ts?, EM', ..., EMY) < Sim(q, 3, v, 6, {[log IM; 1}, 1Y),

Figure 4: Definition of DOMapE security.

e EM <« Encrypt(sk, M1, ...,Mg), takes the secret key sk and maps My, ..., Mg as inputs and outputs an encrypted
map EM.

o (r,EM’) «+ [Getgjient(sk,y = (71,k1, ., 0, k), Getserer(pp, EM)] , an interactive protocol between a client and
a server. The client takes the secret key sk and a query y € (X x [1,£])" as inputs and the server takes
the encrypted map EM. The client receives a response r € ({0,1}"U L)% and the server receives an updated
encrypted map EM'.

Security: Let A be a security parameter and let q,3,v,5 = poly(A). A DOMapE scheme is secure in the semi-
honest model if for any PPT adversary A, there exists a PPT simulator Sim such that for any PPT distinguisher D
we have

’PI‘[D(Rea|A)q)5}V)5(1>\)) = 1] — PI‘[D(ldea|A)Sim7q)5)V75(1)\)) = 1” < neg/(/\)

with Real a,q,8,0,5 and |deala sim q.5,0,5 as described in Figure [4)

Correctness: Let € > 0, ¢,(,0,v = poly(A\) and 06 < v < B. DOMapE is e-correct if for all ({Mi}le,{yj €
(X x [1,€])"}]_,) there exists a set T C [v] where |Z| <& such that :
(sk,pp)<+—Setup(1*,5)
EMl(—Encrypt(sk,Ml,...,Mg)
i| (r7 EMIT1) [Getd;e,,t(pp,sk,yj),
Getsever(pp,EM? )]

>1—e

2

Pr (Uﬂ“f) \@ - UiEIMki [.’lﬁj

As described in the Introduction, our scheme follows a two stage approach: first find a list of candidate LSH
matches, and then use an appropriate oblivious match to find the relevant records using the candidate LSH matches.
We formalize this first stage as an oblivious membership checking or OMC object. The functionality of this object is
to find the matches that exist (in the corresponding maps). There are many ways to implement this object including
private set intersection (PSI), client storage, and full set retrieval (see Section ). We are not offering constructions
of OMC as a technical contribution. We benchmark separately using PSI, see discussion in Section [f] In our full
implementation we use a local Bloom filter to simplify evaluation.

OMC only handles sets, that is, a collection of values without repeats. In our search system, these values will be
LSH outputs. It is possible for two distinct LSHs to have the same output. To avoid this, we prepend the LSH id to
each LSH output value. For LSH j, the corresponding values to use would then be {j || LSH;(z)}.

Definition 5 ((3,4,v)-Oblivious Membership Checking Object). Let 8,6 € N such that 6 < . An oblivious
membership checking object OMC is a set of two interactive algorithms between a client and server. Let X be a set
of objects where | X| = .



Real 4,4,5.5(1"):

1. A receives 1* and outputs X C X where |X| = 7.
2. Compute (EC, ES) +~ OMC.Setup(1*, X).
3. A adaptively makes ¢ search queries, for 1 < j < ¢:
(a) A sends query set Y7, abort if |Y7| # 3.
(b) Run (I;, 1) + OMC.MemCheck(ES, EC,Y7).
(c) Send the transcript ts; of the check execution to A.

4. Return ts', ..., ts?, ES.

Ideal 4 sim.q,8,6(1*): Compute and output ts', ..., ts?, ES < Sim(1*, ¢,7, 3, 6).

Figure 5: Definition of OMC security.

e (EC,ES) < OMC.Setup(1*, X) takes as input the set of objects to be stored X and returns EC and ES to the
client and server, respectively.

o (I, 1)+ OMC.MemCheck(ES, EC,Y) where |Y| = . Outputs a set I to the client where |I| <6 and I C XNY

and L to the server.

Correctness: Correctness is one-sided. For I + OMC.MemCheck(ES, EC,Y), for (EC, ES) <~ OMC.Setup(1*, X):
Prli e INi ¢ X NY] < negl(\).
Security: Let parameters 9§, 3,q = poly(A). OMC is secure if for any PPT adversary A there exists a simulator
Sim such that for any PPT distinguisher D we have
|Pr[D(Real s q,,5(1)) = 1] — Pr[D(Ideal 4 sim,q,8,5(1)) = 1]| < negl(\)
with Real 4 48,5 and ldeal 4 sim,q,3,5 as described in Figure @

We defer discussion of constructions of OMC to Section

3 Oblivious Proximity Search for Biometrics

This section presents our technical designs, focusing on the design of DOMapE. We describe constructions of OMC
in Section The most relevant related work is by Boldyreva and Tang [BT21], whose construction is for the
approximate k-nearest neighbors search problem. While Boldyreva and Tang discuss two ways of implementing
OMapE, one using a tree and the other using a skip list [Pug90|, we present only a tree based construction. Similar
modifications can be made to the skip list construction. In this work, we consider static data. For static data, B-trees
and skip lists are equivalent data structures [LNT96]. However, updates and the resulting performance differ.

3.1 Overview of DOMapE design

Recall the unprotected solution for proximity search from the Introduction (adapted from Boldyreva and Tang [BT21]):
1. Sample 8 LSHs, LSHy, ...,LSHg < H.
2. For j =1,..., 8, set M;[v] = {w;|LSH; (w;) = v}.
3. To search w*, compute LSH;(w*), ...., LSHg(w*), and retrieve

Us

j=1M; [LSH; (w™)].



BuildIndex(M, u):
1. Sort M; using the comparator <.
Let Leaves = (z;, M;[x;]) be the sorted result.
2. Pad Leaves to length 2# with pairs (L, 1).

3. Build balanced binary search tree Tree over the values of x; and for each internal node, attach pointers to
its left and right child, LChild and RChild.

4. Set M;[x;] as data associated with the leaf node with identifier x;.

Figure 6: Build tree index algorithm
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Figure 7: Basic access strategy of Boldyreva and Tang [BT21]. Each shaded region represents data stored together
in a single oblivious RAM.

Boldyreva and Tang’s design focuses on building M;. The maps consists of y;, {w;} pairs. The values placed into
the map are sorted (lexographically) and used as nodes in a binary tree. Internal nodes are given the value of the
minimum value in the right subtree and the location of the two children LChild, RChild. We show the design of this
BuildIndex algorithm in Figure @ Let Treey, ..., Treeg be the output of Buildindex on maps My, ..., Mg respectively.
They then place each tree in an ORAM. Their construction fully traverses every tree Tree; meaning that there is
a constant number of accesses to each ORAM with every search. Let v; be the number of elements in M;, define
1 = [logmax; v;], by padding each ORAM to length 2# each ORAM receives exactly p accesses with each query
(1B across the B trees). The design is shown visually in Figure [7| with each shaded region representing a separate
ORAM. Since the tree is fully traversed on each access one does not need to hide the level. As such one can use one
ORAM per tree level. This is shown visually in Figure

Our approach Recall that our goal is a two part construction: First one queries the OMC to find out which §
LSHs have matches. Then one queries the relevant § M; to find records. In this new design, one does not query every
Mi,...,Mg. As such, the set of queried Ms is potential leakage. We merge the ORAMs across maps to prevent this.
However, we retain a separate ORAM for each level of the maps. This is shown visually in Figure [0] This means
that each query now has § accesses of each ORAM level. There are p levels in total resulting in ju ORAM accesses
(in place of Su accesses in Boldyreva and Tang [BT21|). Throughout our efficiency analysis, we view the number of
ORAM accesses as our atomic unit.

3.2 Detailed design of DOMapE
3.2.1 (B,v=p4,6 = [F)-DOMapE construction
First, we show how to build (8,v = 3,6 = §)-DOMapE from binary trees and ORAM.

Construction 1. Let X and M be the domain and range of a map, such that elements in X are comparable with the
< operator. We define B maps My, ..., Mg. Let ORAM = (ORAM.Setup, ORAM.OracleAccess) be an oblivious RAM
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Figure 8: The first optimization to Boldyreva and Tang’s construction, where each ORAM is applied per level.
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Figure 9: Our design of DOMapE each level across binary trees is stored in a single ORAM.

as defined in Definition and let ORAM; denote its instantiation for level 1 < i < p. Consider the DOMapE
construction shown in Figure [10}
Theorem 1. C’onstruction describes an (B,v = (3,0 = 3)-DOMapE for p := Lauidindex(M1, ..., Mg) = max; [log |M;|].

Proof. We need to show that for every adversary Apomape there exists simulator Simpomape for (8,v = 8,6 = B)-
DOMapE such that

RealADOMapE»QvBanﬂ(A) ~ Idea|A7SimDOMapE7(J767/Bvﬂ(A)
where Real 4pouse,q,6,6,6 and deal 4 simpouape.q,5,6,6 are defined as in Definition [4]

Let Simorawm,; denote the simulator for the jt" level ORAM, 1 < j < p . We build Simpomape, the simulator for
(B8,v = 5,6 = 8)-DOMapE, as follows:

1. Receive inputs (¢, 8, 3, 3, i, 1*).

2. For 1 <i<q:
(a) For 1 <j < u, run ORAM; simulator (EMem;,ts}"DRA,\,l’L17 -+ tSoraM.;.8) ¢ Simoraw; (8, [Levely], ).
(b) Set EM’ = (EMem{, -+ ,EMem),) and ts' = (tshram.1.1: " » SSoRAM.u.5)-

3. Return (ts!,--- ,ts9, EM' ... [EMY).

We then use a hybrid argument where at each step, we replace an ORAM by its corresponding simulator. We obtain
the following games

e Game 0: ORAMy,--- ,ORAM,,
e Game _] SimORAMl, ce ,SimORAM], y ORAMj_,.l, e, ORAMN,

10



DOMapE.Encrypt(My, - -- ,Mg):

1. Let 7; be the number of elements in M;, define u = [logmax; 7;].

2. For i € [B]: set Tree; < BuildIndex(M;, ).

3. Output (EMemy,...,EMem,,) < ApplyORAM(Tree, ..., Treeg).
ApplyORAM(Treey, ..., Treeg):

1. For j € [1, u]:
(a) Level; =L. For all Tree;c(g), Level; = Level;||Level(Tree;, j).
(b) EMem; = ORAM.Setup(1*, Level;), L)
2. Return EMemy, ..., EMem,,.
Level(Tree, j): Return all nodes at level j in Tree.

DOMapE.Getgjient (sk, y € (X x [1,£])¥):

1. Parse y = (21, k1,..., %y, ky). Set Nodes; = ((k1,1),..., (ky, 1)), Res =L.
2. For j=[1,u— 1] and for 7 in 1 to v:

(a) Run ORAM.OracleAccess(Nodes;[i], L) with server.

(b) Let 2/, LChild, RChild denote the result.

(c) If 2/ < x;, Nodes; ;1 = Nodes;1]|(k;, LChild).

(d) Else Nodes;i1 = Nodes;1]||(k;, RChild).

3. For 7in 1 to v:

(a) Initiate ORAM.OracleAccess(Nodes,,[i], L) with server.
(b) Let 2/, M[2’] denote the result.
(c) If 2’ = x;, Res = Res U M[z'].

4. Return Res.

Figure 10: (8,v,6 = v)-DOMAPE Construction. The BuildIndex algorithm is shown in Figure [6]

[ ] G’ame M SimORAMN e 7SimoRAMH,

with 0 < j < p.

Note that Game 0 contains ;4 ORAM instantiations, which corresponds to the real world Real4yoy,.e.q.5.8,5-
Also note that Game p, contains ¢ ORAM simulators, which is equivalent to Simpomape and to the ideal world
Ideal 4 simpomape.a,8,8,5- Lhen for each Game, we show indistinguishability with the previous one by relying on the

security of the underlying ORAM;.

Lemma 1. For 1 <i < u, Game 1 is indistinguishable from Game i — 1.

Proof. By security of ORAM;, we have ORAM; ~ Simogram,. Since Game i — 1 and Game ¢ only differ at index i, we

conclude that these two games are indistinguishable.

By applying Lemma [I] to each game, we obtain that Games 0 and p are indistinguishable, which implies that
Real Apomape.0,8,8,5 and Ideal 4 simpouase,q,8,8,5 are also indistinguishable and concludes this proof.
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3.2.2 (B,v = f,§)-DOMapE construction

Recall that in Boldyreva and Tang’s construction [BT21], each tree is in its own ORAM, and every tree is traversed
during search. This works for their setting, which has a smaller number of trees. Our setting requires many more
trees, traversing every one of them during search would dramatically decrease efficiency. Thus, we want to only
traverse a fixed number of trees. To identify which trees to traverse we add an OMC layer on top of the tree-based
construction. We then show that combining a (3, )-OMC scheme and a (3, 4, §)-DOMapE yields a (8, 3, §)-DOMapE.

Construction 2. Let OMC be an (8, d)-oblivious membership check and let DOMapE be an (8,v = §,0)-DOMapE,
then we can build a (8,v = 3,§)-DOMapE = (Setup™, Encrypt”, Getl. i, Getaener) as follows:

server.
e (pp,sk) < Setup*(1*, 3, 3,0): Run DOMapE.Setup(1*, 3,9,9) and output pp, sk.
e EM" < Encrypt*(sk, My, -+ ,Mg): Run
ES <~OMC.Setup(M;.Keywords, - - - , Mg.Keywords)
EM <-DOMapE.Encrypt(sk, My, - -+, Mg).

Output EM* = (ES, EM).
b (Tv EMI*) A [Getzlient(Sk’ y)v Get:erver(ppv EM*)]:

1. Run I + OMC.MemCheck(ES,y,d). View I as a list.

2. Forj=1tod, if |[Y]| <j set zj =(1,1), else set z; = (yli], I[i]).

3. Run (r,EM’) <— [DOMapE.Get jient(sk, z), DOMapE.Getserer(pp, EM)].
4. Output r and EM"™ = (ES,EM").

Theorem 2. Let OMC be a (5,0)-oblivious membership check and DOMapE be an (8,v = §,6)-DOMapE scheme,
then Constmction describes a (8,v = ,9)-DOMapE.

Proof. Let Sim(g 5 5-pomape be the simulator for (3,4, 5)-DOMapE. This simulator will run as follows:

1. Upon input (¢, 8,v = 8,9, i, 1*), run the simulator for the (3, §)-oblivious membership check, (E.S, tséMc’ e tsde)
Simg,5)-omc(|M1l, 4, 8, ).

2. Run (tshomapes*** + tSBomape: EM s+ EM?) <= Sim 5.5 5)-pomape (; 3, 6, 8, 1, 1%).

3. For 1 <i < g, set EM™* = (ES,EM’) and ts! = (tsomc,i, tSDOMapE, )-

4. Output transcripts ts™*, - - - ,ts?* and encrypted maps EMY* ...  EM?*.

We use a hybrid argument to show security of (8,v = f3,6)-DOMapE. Consider the following games:
1. Real(,,—3,5)-DOMapEs

2. Sim{3,,,—3.5)-DoOMape, Which Tuns Sim(g 5)-omc and Real(s , =5 5)-DoMapE>

3. Sim(g -3 5)-DOMapE, Which runs Sim(g 5)-omc and Sim(g,,—s 5)-pomape as described above.

We want to show that game 1 is indistinguishable from game 3.

Lemma 2. Game 1 and Game 2 are indistinguishable.

Proof. Between games 1 and 2, the only difference is Simfﬂ,yzﬁyé)_DOMapE’s use of Simomc instead of Realomc. Then
by security of the OMC scheme, game 1 and 2 are indistinguishable. O

Lemma 3. Game 2 and Game 3 are indistinguishable.

Proof. Between games 2 and 3, the only difference is Simg ,—g 5)-Domape’s use of Sim(g ,—s 5-pomape instead of
Real(s,,—s,5)-pDomape- Then by security of the (3,v = d,0)-DOMapE scheme, game 2 and 3 are indistinguishable. []
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Combining lemmas [2] and [3] we obtain that games 1 and 3 are indistinguishable, which conclude our proof. O
(B,v = ,6)-DOMapE can implement oblivious searchable encryption.

Construction 3. Let DOMapE = (DOMapE.Setup, DOMapE.Encrypt, DOMapE.Getjienr, DOMapE.Getserver) be a (8, v =
B, 0)-disjunctive oblivious map with encryption, let H be a family of functions mapping records to arbitrary values.
For a DB = (wy, ..., wy), define OSE = (OSE.Setup, OSE.BuildIndex, OSE.Search jien:, OSE.Searchgerer) as

e OSE.Setup(1*, 3,9):

1. Run LSHy, ...,LSHz <+ H(1%).
2. Run (PPpomape» Sknomape) <~ DOMapE Setup(1*).
3. Output pposg = PPpoMape: SKose = (skpomape, LSH1, ..., LSHp).

OSE.BuiIdIndex(sk = (SkDQMapE, LSHl, ceey LSHIg), Wiy -eny wg).'

1. For1<i<p:
(a) Initialize map M;.
(b) For 1< j </{ set M;lkeyword] = {w;|LSH;(w,) = keyword}.
(c) Add dummy values to M; until it is of size L.

2. Set Ijient,0sE =-L, Lserver,0se = DOMapE.Encrypt(sk, My, ..., Mg).

e OSE.Searchjient(sk = (skpomape, LSH1, ..., LSHg), y):

1. Compute 1 < (DOMapE.Get jient(Skpomape, LSH1(y), ..., LSHz(y))).
2. Output (U2_,7)\ L.

OSE.Searchgever(pp) = DOMapE.Getgerve(pp)-

(s L. iont) s Lherver) <= [Searcheiient(pp, sk, ¥, Icjient), Searchserver (PP, Lserver)|-

Theorem 3. Let DOMapE = (DOMapE.Setup, DOMapE.Encrypt, DOMapE.Get jient, DOMapE.Getgerver) be a (5, =
B, 0)-disjunctive oblivious map with encryption then Constmction@ is an oblivious searchable encryption scheme with
leakage Layidindex(M1, ...Mg) = [log /] = max’_, {[log |M;[1}.

Proof. The simulator for (8, v = §,0)-disjunctive oblivious map with encryption Simpomape is a valid simulator. [

Theorem [3| does not handle correctness. Since there is an overlap between the histograms for real data in
Figure|13| one cannot make strong correctness claims. We evaluate correctness empirically using our implementation
in Section [Gl

3.3 Oblivious membership check constructions

In this section, we discuss with more details a few options to implement OMC. We briefly cover approaches based
on Bloom filter lookups. In Section we describe how to build OMC from private set intersection. This is the
tool that we use for microbenchmarks. In our implementation, we use a Bloom filter to emulate an OMC.

3.3.1 Oblivious Bloom Filter Lookups

The client’s set can be stored in a Bloom filter [Blo70] which is then stored on the server in an ORAM. The client
will request the relevant bits from the ORAM. This prevents the client from having to store the entire Bloom Filter
on their side, but requires the client to request multiple ORAM accesses to query the relevant bits.

BlindSEER [PKV ™ 14,FVK™ 15| built a tree of encrypted Bloom filters for general Boolean search. Search of each
node uses Garbled circuits to decide whether to proceed to children. One can use a single level of their tree as an
OMC as long as only the client learns the response. This requires some modification as their system was optimized
for circuits that output a bit, we would need the set of matching locations. Their system was evaluated on datasets
with 108 records [FMC™15].
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Real gy (1):

1. A receives 1* and outputs sets X C X and Y C X.
2. If | X| > nx or |Y| > ny, return L.
3. Output transcript ts of (Z, L) <= [PSlcient (X ), PSlserver (Y)].

Ideal 4 Sim,nx ny (11):

1. A receives 1* and outputs sets X C X and Y C X.
2. Output transcript ts < Sim(1*, | X/, |Y]).

Figure 11: Definition of PSI security.

3.3.2 Building OMC from PSI and pseudorandom permutations

Private set intersection (PSI) [FNP04] is a form of secure multi-party computation (MPC) where a client and server
hold sets Y and X respectively. They run an interactive computation, at the end, the client learns X NY. No other
information is leaked. Current implementations of PSI depend on one of two tools: oblivious polynomial evaluations
(OPE) and oblivious pseudorandom functions (OPRF)H

We show how to build OMC from honest-but-curious PSI as follows:

1. At initialization the client applies a pseudorandom permutation to the elements of set X.
2. The client sends the set of permuted elements to the server.
3. Later when the client has a set Y, the client applies the pseudorandom permutation to each element of Y, and

uses the resulting values as their set for the PSI protocol.

Recall in the definition of OMC the simulator learns the size of both sets X,Y. Assuming an ideal PSI, in the
above protocol, only the size of X is leaked to the server. We also note in our setting the size of Y is a global
parameter while the size of X depends on the dataset size (which is leaked to the server).

The rest of this subsection is dedicated to formalizing the above construction. First, let us re-state the PSI
definition used for VOLE-PSI [RS21} Figure 5].

Definition 6 (Private Set Intersection (PSI)). Let X denote a set. Let the client hold a set X C X and the server
hold a set Y C X. Consider
(Z, J—) A [PSICIient(X)a PSIserver(Y)] )

the PSI protocol between the client and the server. At the end, the client learns Z and the server learns nothing.
Correctness: Correctness is determined by the following probability statement,

Pr[Z £ XY | (Z, L) + [PSleient(X), PSlserer (Y)]] < negl(\).

Security: PSI is secure if for any PPT adversary A, there exists a simulator Sim, such that the distributions
Real 4,4 and ldeal 4 sim,q, described in Fz'gure are computationally indistinguishable ﬂ

Remark We consider PSI where both X and Y are constant size sets so we ignore the case when a party provides
too large a set.

Our construction also requires a definition of pseudorandom permutations.

5Cristofaro et al. [CT09| construct efficient PSI procotols, under the restriction that the server can do some precomputation or the
client is weak. Dong et al. [DCW13| present an efficient PSI protocol based on a variant of Bloom Filters called garbled Bloom Filters.
Dachman-Soled et al. [DSMRY09] present an efficient PSI protocol utilizing secret sharing and Reed-Soloman codes. Malicious secure
implementations of PSI utilizing OPE also depend on zero-knowledge proofs to prevent parties from deviating from the protocol.

6 [RS21) uses a different security definition for PSI, their definition implies ours.
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e OMC.Setup(1*, X):

Client randomly samples a PRP key sk & {0,137
Initialize ES = ().

For each x; € X, ES = ES U F(sk, z;).

Client sends ES to server.

5. Client keeps EC' = sk.

- W=

e OMC.MemCheck(ES, EC,Y):

For each y; € Y, client computes permutation F'(sk,y;).

Client initializes a map M and inserts M[F'(sk, y,)] = y;.

Client sets EQ = {F(sk,y;)}.

Run (EQ N ES, 1) < [PSlgient(FQ), PSlserver (ES)].

At client

(a) Initialize Res = ). For each ¢ € EQ N ES set Res = Res U M[c].
(b) If |Res| > 0 set Res to be ¢ random elements of Res.

(¢) Output Res.

SL e

Figure 12: Construction of OMC from PSI and PRP.

Definition 7 (Pseudorandom Permutation (PRP)). Let F : {0,1}* x X — X be an efficient keyed permutation and
Fn denote the set of all permutations on X. F is a pseudorandom permutation if for any PPT adversary A,

Pro [AROY) =1] = Pr [A/00%) =1]| < negl(\)
k&{o.;}A fﬁﬂ

Construction 4 (OMC from PSI and PRP). Let PSI denote a PSI scheme and F : {0,1}* x X — X be a
pseudorandom permutation. Let X and Y be sets, such that X C X and Y C X. Then we build OMC as in

Figure[13

Theorem 4. Let PSI be a secure private set intersection scheme and F be a pseudorandom permutation, then
Construction[{] describes a secure (B,5)-OMC.

Proof. Correctness is straightforward and follows from correctness of the PSI and PRP schemes. Security follows
from the security of the PRP (values seen by the server are indistinguishable from random) and the security of the
PSI scheme (server learns nothing about FQ and EQ N ES). Formally, we build the simulator Simomc as follows:

1. Receive inputs 1*, number of queries ¢ and server’s set size .
For 1 < i <#, sample a random value z; &

Define the server set as ES = {z;}]_;.

For 1 < k < ¢: run the PSI simulator ts* < Simps;(1*, 7, ).
Output ES and ts!, ..., ts?.

ork LN

We then use a hybrid argument to show security of OMC. Consider the following games:
1. Realomc,
2. Replace the PRP F by a random permutation f & Fun,
3. Simowmc.

Games 1 and 2 are indistinguishable by the security of the PRP scheme, and games 2 and 3 are indistinguishable by
the security of the PSI scheme. We note that sampling a random output value is equivalent to sampling a random
input value as inputs are guaranteed to be a set. O
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(a) Histogram of comparisons for ND0405 (b) Histogram of comparisons for synthetic (c¢) Histogram of comparisons for random
dataset. dataset. data.

Figure 13: Histograms of Hamming distance between readings of the same iris (in blue) and different irises (in red).
Different irises are stored in the database and queries are drawn from a different reading of an iris in the database.
The gaps in the synthetic and random blue histograms are caused by the query generation technique used (see
paragraph on random and synthetic queries generation).

4 Datasets

We test and evaluate our implementation on three datasets:

ND-0405 dataset This dataset is a superset of the NIST Iris Evaluation Challenge [PBFT08]. It
consists of the readings of left and right irises from 356 individuals, each iris having at least 4 distinct readings. We
use state-of-the-art feature extractors called ThirdEye that is available at https://github.com/sohaib50k/
to obtain 1024 bits feature vectors from the original iris readings. Since the left irises were used to train the feature
extractor, we use the right ones for testing and evaluation. The first reading of each right iris will be the stored value
and queries will be drawn from the remaining readings. The Hamming distance distributions for same and different
irises can be seen on Figure [T3h.

Synthetic dataset Available irises datasets are of limited size, often no more than a few hundreds records (356
individuals for ND-0405). However, real world systems would probably require datasets in the thousands to millions
individuals, depending on the application. It is thus desirable to be able to run our systems on larger datasets. Our
solution is to generate synthetic irises templates, that mimic actual ones. As can be seen in Figure [I3p, synthetic
data same and different distributions are similar to the ND-0405 ones. The details on synthetic data generation can
be found in Appendix|Al The high level approach is a generative adversarial network (GAN) |[GPAM™20] as in prior
approaches on synthetic iris generation [AF20].

Random dataset This dataset is made from randomly generated 1024 bits vectors. As such, the Hamming
distance between any two of those vectors should be close to 0.5 with a much smaller variance than other datasets.
This is visible in the red histogram from Figure [[3.

Random and synthetic queries generation Contrary to the ND0405 dataset , the random and synthetic
datasets do not include queries. To make comparison more natural, we want to sample queries from a distribution
that resembles the one for ND-0405.

To generate queries we use the common observation that like irises comparisons have a distribution close to a
binomial across different feature extractors [Dau09,[Dau05,SSF19]. From Figure [L3h, we extract: the mean p = 0.21
and the standard deviation, o = 0.056. This yields a distribution B(n,u)/n binomial distribution for n = 53. This
is because for B(n, i) it is true that 02 = u(1 — u)n. Thus, by linearity of expectation for B(n, uu)/n it is true that
02 = u(1 — p)/n, thus one can compute n = [u(1 — pu)/0?] = [52.9] = 53.

We can then generate queries for the random and synthetic datasets as follows:
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1. First we generate a binomial distribution using the mean and standard deviation of the same iris distribution
for the ND-0405.

2. For each feature vector in the dataset, we create a corresponding query by sampling an error fraction from the
frac < B(53,.21)/53.

3. We flipping the corresponding number of error bits in the original feature vector, that is, frac « 1024.

Using this technique, we obtain the same iris distributions (in blue) for synthetic and random data shown in
Figures[I3p and [I3f. Since ther