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Abstract—We introduce large groups of quadratic transfor-
mations of a vector space over the finite fields defined via
symbolic computations with the usage of algebraic constructions
of Extremal Graph Theory. They can serve as platforms for
the protocols of Noncommutative Cryptography with security
based on the complexity of word decomposition problem in
noncommutative polynomial transformation group. The modi-
fications of these symbolic computations in the case of large
fields of characteristic two allow us to define quadratic bijective
multivariate public keys such that the inverses of public maps
has a large polynomial degree. Another family of public keys is
defined over arbitrary commutative ring with unity. We suggest
the usage of constructed protocols for the private delivery of
quadratic encryption maps instead of the public usage of these
transformations, i.e. the idea of temporal multivariate rules with
their periodical change.

I. ON POST QUANTUM, MULTIVARIATE AND
NONCOMMUTATIVE CRYPTOGRAPHY

Post-Quantum Cryptography (PQC) is an answer to a threat
coming from a full-scale quantum computer able to execute
Shor’s algorithm . With this algorithm implemented on a
quantum computer, currently used public key schemes, such
as RSA and elliptic curve cryptosystems, are no longer secure.
PQC is subdivided into Coding based Cryptography, Multivari-
ate Cryptography, Noncommutative Cryptography, Hash based
Cryptography. Isogeny based Cryptography and Lattice based
Cryptography. Each of these six areas is based on the complex-
ity of certain NP- hard problem. Noteworthy that fundamental
assumption of cryptography that there are no polynomial-time
algorithms for solving any NP-hard problem remains valid. So
all six directions are well justified theoretically.

The tender of US National Institute of Standardisation
Technology (NIST, 2017) is dedicated to the standardisation
process of possible real life Post-Qantum Public keys. Already
selected in July of 2022 four cryptosystems are developed via
methods of Lattice based Cryptography. This fact motivates
researchers from other four core areas of Post Quantum Cryp-
tography to continue design of new cryptographical primitives.
Noteworthy that during the NIST project an interesting results
on cryptanalysis of Unbalanced Rainbow Oil and Vinegar
digital signatures schemes were found (see [1], [2], [3]). This
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scheme is defined via quadratic multivariate public rule, which
refers to MiniRank problem. Examples of previously knowm
multivariate quadratic public keas reader can find in classical
monographs [4], [5], [6].

Graph based multivariate public keys with bijective encryp-
tion maps generated via special walks on incidence graph of
projective geometry were proposed in [7] this year. It can
be count as attempt to combine methods of Coding based
and Multivariate Cryptographies. Classical multivariate public
rule is a transformation of n-dimensional vector space over
finite field Fq which move vector (x1, . . . , xn) to the tuple
(g1(x1, . . . , xn), g2(x1, . . . , xn), . . . , gn(x1, . . . , xn)), where
polynomials gi are given in their standard forms, i.e. lists of
monomial terms in the lexicographical order. The degree of
this transformation is the maximal value of deg(gi). Tradi-
tionally public rule has degree 2 or 3.

We use the known family of graphs D(n, q) and A(n, q) of
increasing girth (see [8], [9] and further references) and their
analogs D(n,K) and A(n,K) defined over finite commutative
ring K with unity for the construction of our public keys.
Noteworthy to mention that for each prime power q, q > 2
graphs D(n, q), n = 2, 3, . . . form a family of graphs of
large girth (see [8]). There is well defined projective limit
of these graphs which is a q-regular forest. In fact if K
is an integral domain both families A(n,K) and D(n,K)
are approximations of infinite dimensional algebraic forests.
Cubical transformation groups GA(n,K) and GD(n, k) of
Kn (see [10], [11]), were used for the design of key exchange
protocols of Noncommutative Cryptography (see [11], [12],
[13]), elements of this groups were used for the creation of
stream ciphers.

II. ON GRAPHS, GROUPS AND QUADRATIC MAPS WITH THE
INVERSES OF HIGH DEGREE

Let K be a commutative ring .We define A(n,K) as
bipartite graph with the point set P = Kn and line set L = Kn

(two copies of a Cartesian power of K are used). We will use
brackets and parenthesis to distinguish tuples from P and L.
So (p) = (p1, p2, . . . , pn) ∈ Pn and [l] = [l1, l2, . . . , ln] ∈ Ln.
The incidence relation I = A(n,K) (or corresponding bi-
partite graph I) is given by condition pIl if and only if the
equations of the following kind hold:



p2 − l2 = l1p1,

p3 − l3 = p1l2,

p4 − l4 = l1p3,

p5 − l5 = p1l4,

. . .

pn − ln = p1ln−1 for odd n,

or pn − ln = l1pn−1 for even n.

(1)

We can consider an infinite bipartite graph A(K) with
points (p1, p2, . . . , pn, . . . ) and lines [l1, l2, . . . , ln, . . . ]. We
proved that for each odd n girth indicator of A(n,K) is at
least 2n+ 2.

Another incidence relation I = D(n,K) is defined below.
The following interpretation of a family of graphs D(n,K)
in case of general commutative ring K is convenient for the
computations. Let us use the same notations for points and
lines as in previous case of graphs A(n,K). Points and lines
are elements of two copies of the affine space over K. Point
(p1, p2, . . . , pn) is incident with the line [l1, l2, . . . , ln] if the
following relations between their coordinates hold:

p2 − l2 = l1p1,

p3 − l3 = p1l2,

p4 − l4 = l1p3,

. . .

li − pi = p1li−2 if i congruent to 2 or 3 modulo 4,

or li − pi = l1pi−2 if i congruent to 1 or 0 modulo 4.

(2)

Let Γ(n,K) be one of graphs D(n,K) or A(n,K). The
graph Γ(n,K) has so called linguistic colouring ρ of the set
of vertices. We assume that ρ(x1, x2, . . . , xn) = x1 for the
vertex x (point or line) given by the tuple with coordinates
x1, x2, . . . , xn. We refer to x1 from K as the colour of vertex
x. It is easy to see that each vertex has a unique neighbour
of the chosen colour. It means that the path in this graph
is uniquely determined by initial vertex and the sequence of
colours of the vertexes. Let Na and Ja be operators of taking
the neighbour with colour a and jump operator changing the
original colour of point or line for new colour a from K.

Let [y1, y2, . . . , yn] be the line y of Γ(n,K[y1, y2, . . . , yn])
and (α(1), α(2), . . . , α(t)) and (β(1), β(2), . . . , β(t)) are the
sequences of colours from K[y1] of the length at least 2.
We consider the sequence 0v = y, 1v = Jα(1)(

0v), 2v =
Nβ(1)(

1v), 3v = Nα(2)(
2v), 4v = Nβ(2)(

3v), . . . , 2t−2v =
Nβ(t−1)(

2t−3v),2t−1 v = Nα(t)(
2t−2v),2t v = Jβ(t)(

2t−1v).
Assume that v =2t v = [v1, v2, . . . , vn] where vi are from
K[y1, y2, . . . , yn]. We consider polynomial transformation
g(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t)), t ≥ 2 of affine
space Kn of kind y1 → y1 + β(t), y2 → v2(y1, y2), y3 →
v3(y1, y2, y3), . . . , yn → vn(y1, y2, . . . , yn).

It is easy to see that:
g(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t))·
·g(γ(1), γ(2), . . . , γ(s), σ(1), σ(2), . . . , σ(t)) =

= g(α(1), α(2), . . . , α(t), γ(1)(β(t)), γ(2)(β(t)), . . . ,
γ(s)(β(t)), β(1), β(2), . . . , β(s), σ(1)(β(t)),
σ(2)(β(t)), . . . , σ(s)(β(t)).

Proposition II.1. [11] Transformations of kind g =
g(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t)), t ≥ 2 generate
a semigroup S(Γ(n,K)) of transformations of Kn.

Lemma II.1. [11] The degree of transformation g of the II.1
is at least [deg(α(1))+deg(α(1)−α(2))+deg(α(2)−α(3))+
· · ·+deg((α(t−1)−α(t))]+[deg(β(1)+(deg(β(1)−β(2))+
(deg(β(2)− β(3)) + · · ·+ (deg(β(t− 2)− β(t− 1))].

Lemma II.2. [11] Transformation g as in the II.1 is bijective
if and only if β(t)(x) = a has a unique solution for each a
from K.

Proposition II.2. [11] Transformations of kind ng =
g(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t)), t ≥ 2 such that
deg(α(i)) = 0 and β(i) = y1 + c(i), c(i) ∈ K generate a
subgroup 2G(Γ(n,K)) of transformation of maximal degree
2.

Remark II.1. The inverse element of ng =
g(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t)), t ≥ 2 as in the
II.2 can be written as ng(α(t), α(t − 1), . . . , α(1), β(t −
1)(β(t)− 1), β(t− 2)(β(t)−1, . . . , β(1)(β(t)−1), β(t)−1).

Remark II.2. In the case of two quadratic transformations of
Kn of ‘’general position” their composition will have degree
4.

We associate with the sequence α(1), α(2), . . . , α(t),
β(1), β(2), . . . , β(t) of II.2 another quadratic transforma-
tion h = H(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t)) con-
structed via the sequence of vertices 0v, 1v, 2v, . . . , 2t−2v =
Nβ×(t−1)(

2t−3v), 2t−1v = Nα(t)(
2t−2v). We compute 2tv =

Ja(t)(
2t−1v) = v where a(t) = (y1)

2 + β(t) and define h as
the quadratic map yi → vi, i = 1, 2, . . . , n.

Theorem II.1. (see [26], [11]) Let K be the finite field Fq ,
q = 2r. Then transformation h = h(α(1), α(2), . . . , α(t),
β(1), β(2), . . . , β(t)) is a quadratic transformation of the
vector space (Fq)

n. The polynomial degree of its inverse
transformation is at least 2r−1.

Let us consider the linear projection τ : Kn + d → Kn of
deleting last d coordinates of the tuple.

The map (p) → (τ(p)), [l] → [τ(l)] is an automorphism
of the graph Γ(n + d,K) onto Γ(n,K). It induces the
homomorphism θ of S(Γ(n + d,K)) onto S(Γ(n,K)) such
that θ(2G(Γ(n+ d,K)) = 2G(Γ(n,K)).

Tame Homomorphism (TH) protocol (see [14]).
Alice selects ring K of kind Fq or Zq where q is a prime

power > 2 , parameters n and d, d > 3. She takes tuples
of elements of K of kind a(ti) = (iα(1), iα(2), . . . , iα(ti))
and b(ti) = (ib(1), ib(2), . . . , ib(ti)), i = 1, 2, . . . , t,
t ≥ 2 such that iα(j) ̸= iα(j + 1) and ib(j) ̸=
ib(j + 1), j = 1, 2, . . . , ti−1 together with affine trans-
formation T from AGLn+d(Fq) and Y from AGLn(Fq).



Alice computes the standard forms of elements ai =
Tn+dg(iα(1), iα(2), . . . , iα(ti), y1+

ib(1), y1+
ib(2), . . . y1+

ib(ti))T
−1 and bi = Y ng(iα(1), iα(2), . . . , iα(ti), y1 +

ib(1), y1 +
ib(2), . . . y1 +

ib(ti))Y
−1. She sends pairs (ai, bi),

i = 1, 2, . . . , t to Bob. Bob writes word w(z1, z2, . . . , zt)
in formal alphabet z1, z2, . . . , zt of length at least t which
uses each letter zi. He computes the specialisations wA =
w(a1, a2, . . . , at) and c = w(a1, a2, . . . , at) in the groups of
polynomial transformations of vector spaces Kn+dand Kn.
Bob sends wA to Alice and keeps c for himself. Alice com-
putes T−1wAT = 1c, uses the homomorphism θ for getting
θ(1c) = 2c. She computes the collision map as Y 2cY −1.
Noteworthy that c is a quadratic map from the group of
kind y1 → c1(y1, y2, . . . , yn), y2 → c2(y1, y2, . . . , yn),. . . ,
yn → cn(y1, y2, . . . , yn).

Remark II.3. Adversary has to decompose the standard form
wA into the word in the alphabet of generators a1, a2, . . . , at.
Solution of this task in a polynomial time even with usage of
Quantum Computer is unknown. So this is NP hard problem
of Postquantum Cryptography.

Remark II.4. The complexity is determined by the complexity
of computation of composition of two polynomial maps of
degree 2 written in their standard forms. It is O(n7).

Inverse TH protocol (see [14])
Alice selects the same data as in presented above

protocol. She computes the standard forms of elements
ai = Tn+dg(iα(1), iα(2), . . . , iα(ti), y1 + ib(1), y1 +
ib(2), . . . y1 + ib(ti))T

−1. Instead of bi Alice computes
their inverses ci = b−1

i and sends pairs (ai, ci) to Bob.
He selects j(1), j(2), . . . , j(r) , 1 ≤ j(i) ≤ t and
forms wA = aj(1)aj(2) . . . aj(r) for Alice. Bob keeps
b = cj(r)cj(r−1), . . . , cj(1) for himself. Alice computes
T−1wAT = 1c, uses the homomorphism θ for getting θ(1c) =
2c. She computes the element a as Y 2cY −1. It is easy to see
that a and b are mutually inverse quadratic transformations of
Kn.

Remark II.5. Correspondents can use the protocol as a
cryptosystem working with plaintexts from Kn. Alice can
convert her message x to ciphertext a(x) = y. Bob decrypts
y via the usage of his quadratic map b. After the usage of up
to [n2/2] sessions they renovate their encryption/decryption
tools via the new session of the inverse TH protocol.

III. CRYPTOSYSTEMS WITH QUADRATIC MULTIVARIATE
RULES

A. On the public key over Fq and its temporal form

Alice selects finite field Fq , q = 2r , dimension n of the
vector space over Fq , 1T and 2T from AGLn(Fq) defined by
matrices with most entries distinct from zero.

She chooses parameter t = O(n), elements
α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t) for which
α(i) ̸= α(i), β(i) ̸= β(i + 1), i = 1, 2, . . . , n
and compute the standard form of F =
1Th(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t))2T . She

presents F of kind yi → f(y1, y2, . . . , yn), i = 1, 2, . . . , n as
public map. Public user Bob use this transformation to encrypt
his plaintext p in time O(n3). Alice knows the decomposition
1Th2T and sequences α(i) and β(i), i = 1, 2, . . . , t. It allows
her to decrypt in time O(n2).

Remark III.1. II.1 insures that multivariate map 1Th2T has
inverse of polynomial degree at least 2r−1. So if r ≥ 16
then the cryptosystem is resistant to a differential linearisation
attacks. We implement the case with r = 32. We suggest
this classical type multivariate public key as the object for
standardisation studies.

Remark III.2. Temporal TH public rule. Alice creates
bijective F according presented above method. Together with
Bob she executes TH protocol to elaborate the collision map
and sends C+F to his partner. So correspondents can use
”public key rule” F in a private mode. The usage of F
just t(n) = [n2/2] times for the message encryption or
electronic signatures times does not allow adversary to make
the restoration of F . After the exchange of t(n) vectors
correspondents can start the new session.

B. On temporal multivariate public rules

Correspondents can execute the inverse TH protocol and get
mutually inverse outputs a and b acting on the vector space.
Alice generates the quadratic map F as it described in unit
3.1 with 1T = Y . She sends the composition Y of a and H
to Bob. He restores F as bY . They can make O(1) sessions
of the inverse protocol and get several outputs 1a, 2a, . . . , sa
and 1b, 2b, . . . , sb. After that Alice or Bob can renovate
their initial public key F via the following procedure. One
of correspondents sends the the word (i(1), i(2), . . . ., i(t)),
1 ≤ i(k) ≤ s to his/her partner. Bob uses bi(t)bi(t−1) . . . bi(1)F
for the encryption. Alice gets bi(t)bi(t−1) . . . bi(1)F (p) = c
from Bob. She computes ai(1)ai(2) . . . ai(t)(c) = d and solves
the equation F (x) = d with the usage of her knowledge on
α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t)) and affine transfor-
mations 1T and 2T of degree 1. Noteworthy that correspon-
dents do not need to compute compositions of generators ia
or ib, they will apply them consecutively.

C. Modification with direct TH protocol

Correspondents can use s-times direct TH protocol with out-
puts 1c, 2c, . . . , sc. Alice computes the standard form of kind
gi = Y g(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t))Y −1, i =
1, 2, . . . , s from Y 2G(Γ(n,K)Y −1 and sends ci + gi to Bob.
Bob restores gi in their standard forms. After the agreement on
the word (i(1), i(2), . . . , i(t)), 1 ≤ i(k) ≤ s via open channel
he encrypts with the consecutive usage of gi(1), gi(2), . . . , gi(s)
and F . Recommended period of usage of words is [n2/2].
It does not allow adversary to approximate the quadratic
encryption transformation.

D. Remark on the implementation

We use computer simulation to generate maps of kind
y = τ1h = h(α(1), α(2), . . . , α(t), β(1), β(2), . . . , β(t))τ2(x)



related to graphs A(n,K) and D(n,K). K is one of the
commutative rings: Boolean ring B(32), modular ring Z32

2 and
finite field F 32

2 . We have implemented three cases of invertible
affine transformations:

1) τ1 and τ2 are identities, its just evaluation of time
execution of core quadratic transformation,

2) τ1 and τ2 are of kind x1 → x1+a2x2+a3x3+· · ·+anxn

(linear time of computing execution of τ1 and τ2),
3) τ1 = A1x+b1 and τ2 = A2x+b2, nonsingular matrices

A1, A2 have nonzero entries and vectors b1, b2 with
mostly all coordinates differ from zero standard forms
of the maps in the cases 2 and 3.

The program is written in C++ and compiled with the gcc
compiler. We used an average PC with processor Pentium
3.00 GHz, 2GB memory RAM and system Windows 7. Tables
from I to V I presents the time of encryption with symmetric
algorithm and three different commutative ring.

IV. TREES OF INFINITE FOREST D(Fq) AND
OBFUSCATIONS OF QUADRATIC MULTIVARIATE RULES

We suggest modification quadratic D(n,K) transformations
presented before which is based on the descriptions of the
connected components of these graphs. The description uses
the following alternative definition of them.

The family of graphs D(n,K), n = 2, 3, . . . where K is
arbitrary commutative ring defines the projective limit D(K)
with points

(p) = (p10, p11, p12, p21, p22, p
′
22, . . . ,

p′ii, pi,i+1, pi+1,i, pi+1,i+1, . . . ),
(3)

and lines

[l] = [l01, l11, l12, l21, l22, l
′
22, . . . ,

l′ii, lii+1, li+1,i, li+1,i+1, . . . ].
(4)

which can be thought as infinite sequences of elements in
K such that only finitely many components are nonzero.

A point (p) of this incidence structure I is incident with
a line [l], i.e. (p)I[l], if their coordinates obey the following
relations:

pi,i − li,i = p1,0li−1,i,

p′i,i − l′i,i = pi,i−1l0,1,

pi,i+1 − li,i+1 = pi,il0,1,

pi+1,i − li+1,i = p1,0l
′
i,i,

(5)

These four relations are well defined for i > 1, p1,1 = p′1,1,
l1,1 = l′1,1.

Let D be the list of indexes of the point of the
graph D(K) written in their natural order, i. e. sequence
(1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (2, 2)′ . . . . Let kD be the list
of k first elements of D. The procedure of deleting coordinates
of points and lines of D(k,K) indexed by elements of D−kD
defines the homomorphism of D(K) onto graph D(k,K) with

the partition sets isomorphic to the variety Kn and defined by
the first k − 1 equations from the list (5).

Let k ≥ 6, t = [(k + 2)/4], and let
u = (ui, u11, . . . , utt, u

′
tt, ut,t+1, ut+1,t, . . . ) be a vertex

of D(k,K). We assume that u1 = u1,0 (u0,1) if u be
a point (a line, respectively). It does not matter whether
u is a point or a line. For every r, 2 ≤ r ≤ t, let
ar = ar(u) = Σi=0,r(uiiu

′
r−i,r−i − ui,i+1ur−i,r−i−1) and

a = a(u) = (a2, a3, . . . , at).
The following statement was proved in [17] for the case

K = Fq . Its generalization on arbitrary commutative rings is
straightforward, see [18].

Proposition IV.1. Let K be a commutative ring with unity
and u and v be vertices from the same connected component
of D(k,K). Then a(u) = a(v). Moreover, for any t− 1 ring
elements xi ∈ K, 2 ≤ i ≤ ⌊(k + 2)/4⌋ = t, there exists a
vertex v of D(k,K) for which a(v) = (x2, x3, . . . , xt) = (x).

So the classes of equivalence for the relation τ = {(u, v) |
a(u) = a(v)} on the vertexes of the graph. D(n,K) are unions
of connected components.

Theorem IV.1. [18] For each commutative ring with unity,
the graph D(k,K) is edge transitive.

Equivalences classes of τ form an imprimitivity systems
of automorphism group of D(k,K). Graph C(n,K) was
introduced in [9] as the restriction of incidence relation
of D(k,K) on a solution set of system of homogeneous
equations a2(x) = 0, a3(x) = 0, . . . , at(x) = 0. The
dimension of this algebraic variety is n − t = d. Thus
d = [4/3n]+1 for n = 0, 2, 3 mod 4, d = [4/3n]+2 for n = 1
mod 4. For convenience we assume that C(n,K) = Cd(K)
Symbol CD(k,K) stands for the connected component of
graph D(k,K). The following statement holds.

Theorem IV.2. (see [11] and further references).
The diameter of the graph Cm(K), m ≥ 2, K is a

commutative ring with unity of odd characteristic, is bounded
by parameter f(m) which does not depend on K.

Corollary IV.1. If K is a commutative ring with unity of odd
characteristics then CD(n,K) = C(n,K).

Let us rename coordinates y1,0, y1,1, y1,2, y2,1, . . . of sym-
bolic line y of D(n,K) accordingly to the natural order on
them as y1, y2, . . . , yn and write equations of the graph in
the form 5. It allows as to write connectivity invariants of the
line y = [y1, y2, . . . , yn] as ai([y]) = ai(y1, y2, . . . , yn) where
i = 2, 3, . . . , t. Similar notations we will use in the case of
points. For the nonlinear map F of Kn with bounded degree
given in its standard form we define trapdoor accelerator
F = 1TGA

2T as the triple 1T , 2T , GA of transformations of
Kn. where iT , i = 1, 2 are elements of AGLn(K), G = GA

is nonlinear map on Kn depending on the piece of information
A which allows to compute the reimage for nonlinear G in
time O(n2). (see [20]). In this paper we assume that A is given



TABLE I
GENERATION TIME FOR THE MAP (MS) D(n, F232) ,LENGTH OF THE PATH (2t− 2), CASE I

n 16 32 64 128 256
16 10 22 30 50 98

32 60 138 289 590 1189

64 1042 2259 4831 9983 20267

128 15819 33844 74338 160211 331893

TABLE II
GENERATION TIME FOR THE MAP (MS) D(n, F232) ,LENGTH OF THE PATH (2t− 2), CASE II

n 16 32 64 128 256
16 25 45 97 209 417

32 281 645 1369 2813 5709

64 3226 8394 19451 41565 85780

128 55072 139364 357359 824163 1758056

TABLE III
GENERATION TIME FOR THE MAP (MS) D(n, F232) ,LENGTH OF THE WORD, CASE III

n 16 32 64 128 256
16 71 136 263 518 1030

32 1220 2324 4535 8962 17824

64 21884 40412 77476 151587 299839

128 453793 812136 152678 2946017 5792884

TABLE IV
GENERATION TIME FOR THE MAP (MS) A(n, F232) ,LENGTH OF THE WORD, CASE I

n 16 32 64 128 256
16 4 11 22 46 93

32 53 130 286 597 1230

64 992 298 4642 10065 20931

128 15642 33487 74242 167452 364704

TABLE V
GENERATION TIME FOR THE MAP (MS) A(n, F232) ,LENGTH OF THE WORD, CASE II

n 16 32 64 128 256
16 18 57 125 257 538

32 306 786 1773 3758 7713

64 3190 8856 23228 53193 113146

128 54029 137191 368458 950847 2164035

TABLE VI
GENERATION TIME FOR THE MAP (MS) A(n, F232) ,LENGTH OF THE WORD, CASE III

n 16 32 64 128 256
16 73 146 285 573 1145

32 1266 2417 4698 9265 18403

64 2214 40945 78549 153781 304237

128 460198 819495 1532275 2970741 5836936



as a tuple of characters (d(1), d(2), . . . , d(m)) in the alphabet
K.

We use graphs D(n,K) and D(n,K[y1, y2, . . . , yn]) to
define family of quadratic multivariate maps F of kind
y1 → f1(y1, y2, . . . , yn), y2 → f2(y1, y2, . . . , yn), . . . , yn →
fn(y1, y2, . . . , yn) with trapdoor accelerator F = T1GAT2,
T1, T2 ∈ AGLn(K).

We take the line [y1, y2, . . . , yn] of the graph
D(n,K[y1, y2, . . . , yn] for the colour α1 from K we compute
[z] = Jα1([y]) = [α1y1, y2, . . . , yn] = [z1, z2, . . . , zn] and
compute ar = ar([z]) = ar(α1, y2, . . . , yn), for r = 2, 3, . . . .
We form the quadratic expression B = (ys1+C(y2, y3, . . . , yn)
where C(y2, y3, . . . , yn) = λ2a2 + λ3a3 + · · · + λtat + λ1

with nonzero λi from K and s = 2 if the order of K∗

is odd and s = 1 in all other cases. We form the walk
in the graph D(n,K[y1, y2, . . . , yn]) starting from the
line [z] of colour α1 and consecutive vertexes of colours
y1 + β1, α2, y1 + β1, α3, . . . , αl−1, y1 + βl − 1, αl such that
αi ̸= αi+1, βi ̸= βi+1 for i = 1, 2, . . . , l − 1.

We form the path with the starting line v1 = Jα1
([y]),

v2 = Ny1+β1(v1), v3 = Nα2(v2), . . . , v2t−1 = Nαt(v2t−2

and consider vt = JB(v2t−1) = u. The vertex u allows
us to define the following transformation G = GA, A =
(α1, α2, . . . , αl;β1, β2, . . . , βl−1, B(y1, y2, . . . , yn)) of Kn to
itself

y1 → (y1)
s + C(y1), y2, . . . , yn),

y2 → u2(y1, y2),
. . .
yn → u2(y1, y2, . . . , yn).
We identify A = 1A with the array

(α1, α2, . . . , αl;β1, β2, . . . , βl−1, λ1, λ2, λr)
B(y1, y2, . . . , yn))

Proposition IV.2. Let T1 and T2 are bijective transformations
from AGLn(K) and K is arbitrary commutative ring with
unity. Then the standard form of F = T1GlAT2, l = O(n)
has a trapdoor accelerator given by coefficients of T1 and T2

together with the array A described above.

Proof. We have to justify that the reimage x of v = GA(x) can
be computed in time O(n2). The procedure of its computation
is the following:

1) Let the value v of GA is given. We have to compute the
connectivity invariants a2(u), a3(u), . . . , ar(u) of the
line u = [αl, v2, v3, . . . , vn].

2) The computation of linear combination b = λ2a2(u) +
λ3a3(u) + · · ·+ λrar(u) + λ1.

3) The computation of the solution y1 = c of the equation
y1

2 + b = v1.
4) We form the parameters d1 = c + βl−1, d2 = αl−1,

d3 = c+βl−2, d4 = αl−2, . . . , d2l−2 = α1, of ‘’reverse
path” with the starting line [u].

5) Conducting recurrent computations Nd1
(u) = 1u,

Nd2(
2u), . . . , , Nd2l−1

(2l−2u).
6) Computing of the reimage Jc(

2l−2u). The complexity
of the algorithm is O(n2). So the map has a trapdoor
accelerator.

The standard forms of transformations F = T1GAT2 can
be used as a public keys. In fact this family is an obfuscation
of quadratic multivariate public keys suggested in [15].

The idea of D(n,K) based encryption with the usage of
connectivity invariants was suggested in [16].

The following cases are selected by us for the implementa-
tion K = Fq , q > 2, K = Zm, where m is large composite
positive integer and K = B(m, 2), i. e. Boolean ring of order
2m.

V. CONCLUSION

Multivariate Cryptography in wide sense is about construc-
tions and investigations of Public Keys in a form of nonlinear
Multivariate rule defined over some finite commutative ring
K. These rule F has to be written as transformation xi → fi,
i = 1, 2, . . . , n, fi ∈ K[x1, x2, . . . , xn] over commutative
ring K. Bijective F can be used for the encryption of tuples
(plaintexts) from the affine space Kn. Multivariate rules can
serve as instruments for creation of digital signatures. In the
case of bijective transformation decryption process can be
thought as application of inverse rule G. The degree of G
can be defined as maximum of degrees of polynomials G(xi),
i = 1, 2, . . . , n. For the usage of given publicly F as efficient
and secure instrument its degree of has to be bounded by some
constant c (traditionally c = 2) but the polynomial degree of
the inverse G has to be high.

The key owner (Alice) suppose to have some additional
piece T of private information about pair (F,G) to decrypt
ciphertext obtained from the public user (Bob). Recall that
family the family Fn, n = 2, 3, . . . has trapdoor accelerator
nT if the knowledge of the piece of information nT allows to
compute reimage x of y = Fn(x) in time O(n2). Of course the
concept of trapdoor accelerator is just instrument to search for
practical trapdoor functions. As you know that the existence of
theoretical trapdoor functions is just a conjecture. In fact it is
closely connected to Main Conjecture of Cryptography about
the fact that P ̸= NP . Without the knowledge of Tn one
has to solve nonlinear system of equations which generally is
NP -hard problem. Finding of the inverse for Fn is an NP -
hard problem if these maps are in so called ”general position”.
In the case of specific maps additional argumentation of the
complexity to find inverses Gn can be useful.

We present such heuristic arguments in the case of D(n,K)
based encryption defined for arbitrary commutative ring K
with unity with at least 3 elements and presented in previous
section. Graphs D(n,K) have partition sets Kn (set of points
and set of lines) and incidence relation between points and
lines is given by system of linear equations over K.

To define trapdoor accelerator for standard forms Fn,
n = 2, 3, . . . we use special walks on graphs (D(n,K)
and and D(n,K[x1, x2, . . . , xn]).The constructed map Fn

acts on the selected partition set Kn. In the case of trivial
affine transformations T1 and T2 the relation Fn(x) = y
for x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) vertices
x and y = (f(y1, y2, . . . , yn), y2, y3, . . . , yn) are joint in



the graph D(n,K) by the path of length > cn, where c
is positive constant and f ∈ K[y1, y2, . . . , yn] is known
quadratic expression. Finding the path will give us the trapdoor
accelerator for the computation of preimages. This can be
done by Dijkstra algorithm of complexity v ln(v) where v is
the order of graphs. It could not be done in polynomial time
because of v = 2|K|n and |K| ≥ 3. Noteworthy that the usage
of nontrivial T1 and T2 will complicate the cryptanalysis.

We presented D(n,K) based platform H(n,K) of
quadratic transformations. So correspondents Alice and Bob
can use H(n,K) protocols and elaborate collision map C,
C ∈ H(n,K). So Alice can create Fn and send C + Fn

to Bob instead of public announcement of this multivariate
transformation. It gives the option to change the encryption
tool periodically.

Alternatively Alice and Bob use the inverse H(n,K) proto-
col to elaborate mutually inverse elements H and H−1 in their
possessions. So Bob can change the rule Fn for the quadratic
H−1Fn via left multiplication. These actions form a basis for
algorithms with temporal public rules presented in the paper.
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