
SMAUG: Pushing Lattice-based Key
Encapsulation Mechanisms to the Limits

Jung Hee Cheon1,2, Hyeongmin Choe1, Dongyeon Hong2, and MinJune Yi1

1 Seoul National University
{jhcheon, sixtail528, yiminjune}@snu.ac.kr

2 CryptoLab Inc.
{decenthong93}@cryptolab.co.kr

Abstract. Recently, NIST has announced Kyber, a lattice-based key en-
capsulation mechanism (KEM), as a post-quantum standard. However,
it is not the most efficient scheme among the NIST’s KEM finalists.
Saber enjoys more compact sizes and faster performance, and Mera et
al. (TCHES ’21) further pushed its efficiency, proposing a shorter KEM,
Sable. As KEM are frequently used on the Internet, such as in TLS proto-
cols, it is essential to achieve high efficiency while maintaining sufficient
security.
In this paper, we further push the efficiency limit of lattice-based KEMs
by proposing SMAUG, a new post-quantum KEM scheme submitted to
the Korean Post-Quantum Cryptography (KPQC) competition, whose
IND-CCA2 security is based on the combination of MLWE and MLWR
problems. We adopt several recent developments in lattice-based cryp-
tography, targeting the smallest and the fastest KEM while maintain-
ing high enough security against various attacks, with a full-fledged use
of sparse secrets. Our design choices allow SMAUG to balance the de-
cryption failure probability and ciphertext sizes without utilizing error
correction codes, whose side-channel resistance remains open.
With a constant-time C reference implementation, SMAUG achieves ci-
phertext sizes up to 12% and 9% smaller than Kyber and Saber, with
much faster running time, up to 103% and 58%, respectively. Compared
to Sable, SMAUG has the same ciphertext sizes but a larger public key,
which gives a trade-off between the public key size versus performance;
SMAUG has 39%-55% faster encapsulation and decapsulation speed in
the parameter sets having comparable security.

Keywords: Key Encapsulation Mechanism, Public Key Encryption, Post-
Quantum Cryptography, Module Learning With Errors, Module Learn-
ing With Roundings.

1 Introduction

Recent advances in quantum computers raise the demand for quantum-resistant
cryptographic protocols, i.e., the Post-Quantum Cryptographic (PQC) schemes.
As the demand for quantum-secure cryptographic protocols has increased, the

American National Institute of Standards and Technology (NIST) has estab-
lished a standardization process focusing on Public Key Encryption (PKE), dig-
ital signature, and Key Encapsulation Mechanism (KEM). In particular, KEM
is one of the most widely used algorithms over the Internet, such as in Trans-
port Layer Security (TLS) protocols; however, the KEM currently used in the
protocol is considered vulnerable to quantum attacks.

Various lattice-based KEMs [6,13,17,18,21,25,49,58] have been proposed and
submitted to NIST standardization to secure the Internet in the quantum world.
Also, diverse techniques related to the lattice-based KEMs have been suggested,
significantly improving the efficiency or security. Recently NIST announced that
the lattice-based KEM scheme Kyber [17] is selected as a future standard. Other
candidates, such as Saber [58] or NTRU [21], have enough security and efficiency;
however, the standardization restrictions forced NIST and the community to
choose only one of them.

As of independent interest to NIST’s standardization, the KEM’s efficiency
is crucial since it is executed and transmitted frequently on the Internet. In
particular, the TLS protocols are also necessary for embedded devices, so the
efficiency requirement has become even more pressing with the proliferation of
the Internet of Things (IoT). To this end, some variants of Saber focusing on
efficiency, Scabbard [53], have been recently proposed by Mera et al. Scabbard
consists of three schemes based on the R/MLWR problem, Floreta, Espada, and
Sable, each targeting HW/SW-efficient, parallelizable, and shorter KEM than
Saber. In particular, Sable achieves the smallest public key and ciphertext sizes
among the KEM schemes targetting the NIST’s security level 1 and low enough
decryption failure probability (DFP). Keep in mind that the public key and
ciphertext sizes must be as small as possible, as they are transmitted frequently;
this question comes naturally:

What is the “efficiency limit” of the lattice-based KEMs?

1.1 Our results

In this work, we answer the above question by proposing a new lattice-based
KEM, SMAUG, constructed based on both MLWE and MLWR problems. By
bringing the MLWE-based public key generation and the sparse secret to Sable,
SMAUG exploits a remaining room for efficiency. SMAUG tends to have the short-
est ciphertext among the LWE/LWR-based KEM schemes while maintaining the
high security and even better performance.

The SMAUG. The design rationale of SMAUG aims to achieve small ciphertext
and public key with low computational cost while maintaining security against
a variety of attacks. In more detail, we target the following practicality and
security requirements considering real applications:

2

Practicality:

• Both the public key and ciphertext, especially the latter, which is transmitted
more frequently, need to be short in order to minimize communication costs.

• As the key exchange protocol is frequently required on various personal de-
vices, a KEM algorithm with low computational costs is more feasible than
a high-cost one.

• A small secret key is desirable in restricted environments such as embedded
or IoT devices since managing the secure zone is crucial to prevent physical
attacks on secret key storage.

Security:

• The shared key should have a large enough entropy, at least ≥ 256 bits, to
prevent Grover’s search [35].

• Security should be concretely guaranteed concerning the attacks on the un-
derlying assumptions, say lattice attacks.

• The low enough decryption failure probability (DFP) is essential to avoid the
attacks boosting the failure and exploiting the decryption failures [27,41].

• As KEMs are widely used in various devices and systems, countermeasures
against implementation-specific attacks should also be considered. Especially
combined with DFP, using error correction code (ECC) on the message to
reduce decryption failures should be avoided since masking ECC against
side-channel attacks is a very challenging problem.

Sizes (bytes) Security Cycle
Scheme sk pk ct Lvl. Sec. DFP KeyGen Encap Decap

SMAUG-128 176 672 672 1 120 2−120 77k 77k 92k
SMAUG-192 236 1088 1024 3 181 2−136 153k 136k 163k
SMAUG-256 218 1792 1472 5 264 2−167 266k 270k 305k

Table 1: Parameter sets of SMAUG for NIST’s security levels 1, 3, and 5. Security
(Sec.) is given in classical core-SVP hardness. One core of an Intel Core i7-10700k
is used for cycle counts.

To achieve this goal, we exploit the possible combination of the known tech-
niques in lattice-based cryptography, such as underlying lattice assumptions,
ciphertext compression, Fujisaki-Okamoto (FO) transforms, and the sparse se-
cret.

Among the possibilities on the choice of lattice assumptions, we conclude to
use LWE-based key generation and LWR-based encapsulation with sparse se-
crets, following the construction of Lizard [25] and RLizard [49], but adapted to
module lattices. This choice allows SMAUG to enjoy the conservative secret key
security based on the hardness of the un-rounded module learning-with-errors

3

(MLWE) problem while exploring more efficiency on encapsulation and decap-
sulation by using the module learning with roundings (MLWR)-based approach.

Note that other possibilities, such as Kyber or Saber using sparse secrets,
are also considered, but they reported worse results than SMAUG. For Kyber
with the sparse secret, it has an expensive Gaussian error sampling, making
Saber with the sparse secret a more appealing candidate. However, the modules
should be decreased to maintain security, which makes DFP higher. Bringing the
MLWE-based key generation lowers the noise introduced in the key generation
and significantly reduces the overall error in the ciphertext. As the noise is mul-
tiplied by the ephemeral secret during encapsulation, the one last combination–
the KEM with MLWR-based key generation, MLWE-based encapsulation, and
sparse secret–can not avoid suffering from a more significant overall error.

Sparse secret allows SMAUG to enjoy fast polynomial multiplications and
small secret keys. The sparse secret is widely used in homomorphic encryption
(HE) schemes to speed up the expensive homomorphic operations and to reduce
the noise [23, 37], whose ability is attractive for efficient KEMs. By using the
SampleInBall algorithm of Dilithium [30], we can efficiently sample the sparse
ternary secrets. Regarding security, the hardness reductions for sparse LWE and
LWR problems [24,25] from LWE problem exists; however, the concrete security
should be treated carefully3.

We take the recent approaches in Fujisaki-Okamoto (FO) transform for key
exchange in the quantum random oracle model (QROM) [40] and apply it to our
IND-CPA PKE, SMAUG.PKE. Precisely, we use the FO transform with implicit
rejection and no ciphertext contributions (FO 6⊥m).

We delicately choose three parameter sets for SMAUG regarding NIST’s se-
curity levels 1, 3, and 5 (classical core-SVP hardness of 120, 180, and 260, re-
spectively) and having smaller DFP than Saber.

Comparison to other KEMs. We compare SMAUG with the NIST-selected
Kyber, one of the round 3 finalists Saber, and its variant Sable in Table 2.

Compared to Kyber-512 [17], the NIST-selected standard targeting the se-
curity level 1, SMAUG-128, has 16% and 12% smaller public key and ciphertext,
respectively. The secret key size of SMAUG is tiny and ready to use, which enable
efficient management of secure zone in restricted IoT devices. With high enough
security and low enough decryption failure probability, SMAUG further achieves
110% and 103% speed up in encapsulation and decapsulation.

Compared to LightSaber [58], one of the round 3 finalists with the security
level 1, SMAUG-128, has 9% smaller ciphertext and the same public key size.
The secret key is, again, significantly smaller than LightSaber, with a 58% and
44% speed up in encapsulation and decapsulation, respectively.

When compared to Sable [53], SMAUG-128 has the same ciphertext size but
a larger public key size. It can be seen as a trade-off as SMAUG achieves 48% and

3 We use the lattice-estimator [3], from https://github.com/malb/

lattice-estimator, commit 9687562. We also consider some attacks not im-
plemented in the lattice-estimator.

4

Sizes (bytes) Security Cycle (ratio)
Schemes sk pk ct Classic. DFP KeyGen Encap Decap

NIST’s security level 1 (120)

Kyber512 [17] 1632 800 768 118 2−139 1.70 2.10 2.03
LightSaber [58] 832 672 736 118 2−120 1.21 1.58 1.44
LightSable [53] 800 608 672 114 2−139 1.10 1.48 1.39
SMAUG-128 176 672 672 120 2−120 1 1 1

NIST’s security level 3 (180)

Kyber768 [17] 2400 1184 1088 183 2−164 1.38 1.84 1.75
Saber [58] 1248 992 1088 189 2−136 1.21 1.64 1.47
Sable [53] 1152 896 1024 185 2−143 1.10 1.48 1.39
SMAUG-192 236 1088 1024 181 2−136 1 1 1

NIST’s security level 5 (260)

Kyber1024 [17] 3168 1568 1568 256 2−174 1.25 1.38 1.36
FireSaber [58] 1664 1312 1472 260 2−165 1.21 1.58 1.44
FireSable [53] 1632 1312 1376 223 2−208 1.03 1.25 1.22
SMAUG-256 218 1792 1472 264 2−167 1 1 1

Table 2: Comparison of KEM schemes with comparable efficiency and security.
Security is given in the classical core-SVP hardness with DFP. The cycle counts
are given relative to that of SMAUG’s, reported in the same machine.

39% faster encapsulation and decapsulation speed with a significantly smaller
secret key and 6 bits higher security.

In NIST’s security levels 3 and 5, SMAUG similarly outperforms Kyber and
provides a trade-off with Saber and Sable. For instance, SMAUG-128 has the
same ciphertext size as level-3 Sable, a larger public key but a smaller secret
key, and is faster than Sable. Note that FireSable has a smaller ciphertext than
SMAUG-256; however, it has a classical core-SVP hardness way lower than 260.
We refer to Section 6.2 for detailed comparisons.

1.2 Related work: LWE/LWR-based PKEs

We focus on the LWE/LWR-based IND-CPA secure PKEs, which can be turned
into IND-CCA4 secure KEM by applying FO transforms. The original Regev’s
public key encryption [55], followed by most recent LWE-LWR-based PKE con-
structions, bases its security on the LWE assumption. It generates an LWE
sample as a public key and returns a ciphertext of a binary message by scal-
ing and adding a public key multiplied by a random vector. In more detail, the
public key is (A,b = A · s + e mod q) ∈ Zk×`q × Zkq , where s is a secret key
and e is an error term. The encryption of a binary message µ is a ciphertext
(r> ·A, r> ·b+bq/2 · µe), where r is a random vector, called an ephimeral secret.
The ciphertext is then statistically uniform over the range due to the leftover

4 In this paper, we only consider the adaptive IND-CCA attacks, i.e., often called as
IND-CCA2 attacks.

5

hash lemma; however, it makes the size of the matrix A too massive for even a
binary message to be used efficiently.

The approaches thereafter tried to gain more efficiency. Lindner and Peik-
ert [50] introduce an encryption using an LWE sample as a ciphertext, i.e.,
(r> ·A + e1, r

> · b + e2 + bq/2 · µe) = r> · pk + e + (0, bq/2 · µe). Frodo [18], an
instantiation of [50], introduces a narrower error for more efficiency. Lizard [25]
uses LWR-based encryption, which can be viewed as an LWE sample with deter-

ministic rounding error:
(⌊

p
q · r

> ·A
⌉
,
⌊
p
q · r

> · b + p
2 · µ

⌉)
= p

q · (r
> ·A+e, r> ·

b + q
2 · µ + e), where the coefficients of e and e are in Z ∩ (− q

2p ,
q
2p]. The scal-

ing factor reduces the ciphertext size and the running time since the encryption
process skips a complex error sampling procedure.

More efficient approaches are usually based on the assumptions over struc-
tured lattices such as NewHope [6] over RLWE, RLizard [49] over RLWR, and
Kyber [17] over MLWE assumptions. Additionally, Kyber uses a centered bi-
nomial distribution (CBD) as an MLWE error instead of a complex discrete
Gaussian error, which makes the encryption much faster. Saber [28] expands the
use of LWR also to the public key generation as (A,b = bp/q ·A · se mod p) ∈
Zk×`q × Zkp over module lattices. The extensions to rings and modules provide a
wider message space, smaller sizes, and faster implementation based on the ring
structure but with larger decryption failure probabilities.

Paper organization. The rest of the paper is organized as follows. Section 2
defines the notations and summarizes the formal definitions of key encapsulation
mechanisms with the relevant works. In Section 3, we introduce the design choices
of SMAUG. In Section 4, we introduce SMAUG and its security proofs. We provide
concrete security analysis and the recommended parameter sets in Section 5.
Lastly, we give the performance result with comparisons to recent KEM schemes
and the implementation details in Section 6.

Code availability. We place all software, consisting of the constant-time C
reference code of SMAUG and the Python scripts used for security estimation,
into the public domain. They are available on the team SMAUG website: https:
//kpqc.cryptolab.co.kr/smaug.

2 Preliminaries

We start with the notations, formal definitions of PKE and KEM, and relevant
works.

2.1 Notation

We denote matrices with bold and upper case letters (e.g., A) and vectors with
bold type and lower case letters (e.g., b). Unless otherwise stated, the vector is
a column vector.

6

We define a polynomial ring R = Z[x]/(xn + 1) where n is a power of 2
integers and denote a quotient ring by Rq = Z[x]/(q, xn + 1) = Zq[x]/(xn + 1)
for a positive integer q. For an integer η, we denote the set of polynomials of
degree less than n with coefficients in [−η, η] ∩ Z as Sη. Let S̃η be a set of
polynomials of degree less than n with coefficients in [−η, η) ∩ Z.

2.2 Lattice assumptions

We recall the lattice assumptions MLWE and MLWR in the structured Euclidean
lattices, which security of SMAUG underlies.

Definition 1 (Decisional MLWE). For positive integers q, k, `, η and the di-
mension n of R, we say that the advantage of an adversary A solving the
decision-MLWEn,q,k,`,χs,χe problem is

AdvMLWE
n,q,k,`,χs,χe(A) =

∣∣Pr
[
b = 1 | A← Rk×`q ; b← Rkq ; b← A(A,b)

]
−Pr

[
b = 1 | A← Rk×`q ; s← χs; e← χe; b← A(A,A · s + e mod q)

] ∣∣
Definition 2 (Decisional MLWR). For positive integers p, q, k, `, η with q ≥
p ≥ 2 and the dimension n of R, we say that the advantage of an adversary A
solving the decision-MLWRn,p,q,k,`,χr problem is

AdvMLWR
n,p,q,k,`,χr (A) =

∣∣Pr
[
b = 1 | A← Rk×`q ; b← Rkp; b← A(A,b)

]
− Pr

[
b = 1 | A← Rk×`q ; s← χr; b← A(A, bp/q ·A · se mod p)

] ∣∣
2.3 Public key encryption and key encapsulation mechanism

Definition 3 (PKE). A public key encryption scheme is a tuple of PPT algo-
rithms (KeyGen,Enc,Dec) with the following specifications:

• KeyGen: a probabilistic algorithm that outputs a public key pk and a secret
key sk;

• Enc: a probabilistic algorithm that takes as input a public key pk and a mes-
sage µ and outputs a ciphertext ct;

• Dec: a deterministic algorithm that takes as input a secret key sk and a
ciphertext ct and outputs a message µ.

Let 0 < δ < 1. We say that it is (1− δ)-correct if for any (pk, sk) generated from
KeyGen and µ,

Pr[Dec(sk,Enc(pk, µ)) 6= µ] ≤ δ,

where the probability is taken over the randomness of the encryption algorithm.
We call the above probability decryption failure probability (DFP). In addition,
we say that it is correct in the (Q)ROM if the probability is taken over the ran-
domness of the (quantum) random oracle, modeling the hash function.

7

Definition 4 (KEM). A key encapsulation mechanism scheme is a tuple of
PPT algorithms (KeyGen,Encap,Decap) with the following specifications:

• KeyGen: a probabilistic algorithm that outputs a public key pk and a secret
key sk;

• Encap: a probabilistic algorithm that takes as input a public key pk and out-
puts a sharing key K and a ciphertext ct;

• Decap: a deterministic algorithm that takes input a secret key sk and a ci-
phertext ct and outputs a sharing key K.

The correctness of KEM is defined similarly to that of PKE.

We give the advantage function with respect to the attacks against PKE,
namely the indistinguishability under chosen plaintext attacks (IND-CPA).

Definition 5 (IND-CPA security of PKE). For a (quantum) adversary A
against a public key encryption scheme PKE = (KeyGen,Enc, Dec), we define
the IND-CPA advantage of A = (A1,A2) as follows:

AdvIND-CPA
PKE (A) =

∣∣∣∣ Pr
(pk,sk)

[
b = b′

∣∣∣∣ (µ0, µ1, st)← A1(pk); b← {0, 1};
ct← Enc(pk, µb); b

′ ← A2(pk, ct, st)

]
− 1

2

∣∣∣∣ .
The probability is taken over the randomness of A and (pk, sk)← KeyGen(1λ).

We then define two advantage functions with respect to the attacks against
KEM, namely the indistinguishability under chosen plaintext attacks (IND-CPA)
as in PKE and the indistinguishability under (adaptively) chosen ciphertext at-
tacks (IND-CCA).

Definition 6 (IND-CPA and IND-CCA security of KEM). For a (quan-
tum) adversary A against a key encapsulation mechanism KEM = (KeyGen,Encap,
Decap), we define the IND-CPA advantage of A as follows:

AdvIND-CPA
KEM (A) =

∣∣∣∣ Pr
(pk,sk)

[
b = b′

∣∣∣∣ b← {0, 1}; (K0, ct)← Encap(pk);
K1 ← K; b′ ← A(pk, ct,Kb)

]
− 1

2

∣∣∣∣ .
The probability is taken over the randomness of A and (pk, sk) ← KeyGen(1λ).
The IND-CCA advantage of A is defined similarly except that the adversary can
query Decap(sk, ·) oracle on any ciphertext ct′(6= ct).

Finally, we define the (quantum) security of PKE and KEM.

Definition 7 ((Q)ROM security of PKE and KEM). For T, ε > 0, we
say that a scheme S ∈ {PKE,KEM} is (T, ε)-ATK secure in the (Q)ROM if for
any (quantum) adversary A with runtime ≤ T given classical access to O and
(quantum) access to a random oracle H, it holds that AdvATKS (A) < ε, where

O =

Enc if S = PKE and ATK ∈ {OW-CPA, IND-CPA},
Encap if S = KEM and ATK = IND-CPA,
Encap,Decap(sk, ·) if S = KEM and ATK = IND-CCA.

8

2.4 Fujisaki-Okamoto transform

Fujiskai and Okamoto proposed a novel generic transform [33, 34] that turns a
weakly secure PKE scheme into a strongly secure PKE scheme in the random
oracle model (ROM), and various variants have been proposed to deal with
tightness, non-correct PKEs, and in the quantum setting, i.e., QROM. Here, we
recall the FO transformation for KEM as introduced by Dent [29] and revisited
by Hofheinz et al. [39] and Hövelmanns et al. [15, 40].

The original FO transforms FO⊥m constructs a KEM from a deterministic
PKE, i.e., a de-randomized version. The encapsulation randomly samples a mes-
sage m and uses the message’s hash value G(m) as randomness for encryption,
generating a ciphertext. The sharing key K = H(m) is generated by hashing
(with different hash functions) the message. In the decapsulation, it first de-
crypts the ciphertext and recovers the message, m′. If it fails to decrypt or fails
to“re-encrypt” the ciphertext equals the received one, and it outputs ⊥. The
sharing key can be generated by hashing the recovered message.

In the quantum setting, however, the FO transform with “implicit rejection”
(FO 6⊥m) is proven more secure than the original version, which implicitly outputs
a pseudo-random sharing key if the re-encryption fails.

We recap the QROM proof of Hövelmanns et al. [15] allowing the KEMs
constructed over non-perfect PKEs to have IND-CCA security:

Theorem 1 ([15], Theorem 1 & 2). Let G and H be quantum-accessible
random oracles, and the deterministic PKE is ε-injective. Then the advantage
of IND-CCA attacker A with at most QDec decryption queries and QG and QH
hash queries at depth at most dG and dH , respectively, is

AdvIND-CCA
KEM (A) ≤ 2

√
(dG + 2)

(
AdvIND-CPA

PKE (B1) + 8(QG + 1)/|M|
)

+AdvDF
PKE(B2) + 4

√
dHQ/|M|+ ε,

where B1 is an IND-CPA adversary on PKE and B2 is an adversary against
finding a decryption failing ciphertext.

3 Design choices

In this section, we explain the design choices for SMAUG.

3.1 FO transform, FO 6⊥
m

We choose to construct SMAUG upon the FO transform with implicit rejection
and without ciphertext contribution to the sharing key generation, say FO 6⊥m.
This choice makes the encapsulation and decapsulation algorithm efficient since
the sharing key can be directly generated from a message. The public key is
additionally fed into the hash function with the message to avoid multi-target
decryption failure attacks.

9

3.2 MLWE public key and MLWR ciphertext

One of the core designs of SMAUG uses the MLWE hardness for its secret key se-
curity and MLWR hardness for its message security. This choice is adapted from
Lizard and RLizard, which use LWE/LWR and RLWE/RLWR, respectively.
The use of both LWE and LWR variant problems makes the conceptual security
distinction between the secret key and the ephemeral sharing key: a more con-
servative secret key with more efficient en/decapsulations. This can be viewed
as a trade-off between the “conservativity” and “efficiency.” Combined with the
sparse secret, bringing the LWE-based key generation to the LWR-based scheme
enables balancing the speed and the DFP.

Public key. Public key of SMAUG consists of a vector b over a polynomial ring
Rq and a matrix A, which can be viewed as an MLWE sample,

(A,b = −A>s + e) ∈ Rk×kq ×Rkq ,

where s is a ternary secret polynomial with hamming weight hs and e is an error
sampled from discrete Gaussian distribution with standard deviation σ. Since
the matrix A is sampled uniformly, it can be stored and transmitted as a seed
of an extendable output function (XOF).

Ciphertext. The ciphertext of SMAUG is a tuple of a vector c1 ∈ Rkp and
a polynomial c2 ∈ Rp′ . The ciphertext is generated by multiplying a random
vector r to the public key; then it is scaled and rounded as,

c =

[
c1
c2

]
=

⌊
p

q
·
(

A
b>

)
· r
⌉

+
p

t
·
[

0
µ

]
,

Along with the public key, it can be treated as an MLWR sample added by a
scaled message as (A′, bp/q ·A′ · re)+(0, µ′), where A′ is a concatenated matrix
of A and b>.

The ciphertext can be further compressed by scaling the second component
c2 by p′/p, resulting in a shorter ciphertext but a larger error. We note that the
public key can be compressed with the same technique. However, it introduces
a more significant error, so we do not compress the public key in SMAUG.

3.3 Sampling algorithms

We use the following algorithms for sampling the randomnesses used in SMAUG:
expandA for sampling a uniform random matrix A; HWTh for sampling sparse
secrets, i.e., the secret key s and the ephimeral secret r with fixed hamming
weights hs and hr, respectively; and dGaussianσ for sampling a discrete Gaussian
error with standard deviation σ for MLWE sample.

10

expandA(seed): . seed ∈ {0, 1}256

1: buf← XOF(seed)
2: for i from 0 to k − 1 do
3: A[i] = bytes to Rq(buf + polybytes · i) . Convert to ring elements

4: return A

Fig. 1: Uniform random matrix sampler, expandA.

Uniform random matrix sampler, expandA. We adopt the gen algorithm in
Saber [58] for our uniform random matrix sampler expandA, given in Figure 1.
This pseudorandom generator samples a public matrix A from uniformly random
distribution over Rk×kq .

Hamming weight sampler, HWTh. The hamming weight sampler, HWTh in
Figure 2, is adapted from the SampleInBall algorithm in Dilithium [30], having a
secret-independent running time. It samples a ternary polynomial vector having
a hamming weight of h.

HWTh(seed): . seed ∈ {0, 1}256

1: count = 0
2: buf ← XOF(seed)
3: for i from n− h to n− 1 do
4: repeat
5: degree = buf[idx] ∧ mask
6: until degree < i
7: res[i] = res[degree]
8: res[degree] = ((buf[idx] � 14) ∧ 0x02)− 1

9: return convToIdx(s) . Storing the indexes

Fig. 2: Hamming weight sampler, HWTh.

Discrete Gaussian sampler, dGaussian. Karmakar et al. [45] suggested a
constant-time discrete Gaussian sampling using the Knuth-Yao algorithm [47]
and logic minimization. Motivated by this, we deployed the Quine-McCluskey
method5 and applied logic minimization technique on a cumulative distribution
table (CDT). As a result, even though our dGaussian is constructed upon CDT
tables, it is expressed with minimized bit operations and is constant-time. We
give the algorithm with σ = 1.0625 in Figure 3, with σ = 1.453713 in Figure 4. It
is easily parallelizable and also suitable for IoT devices as its memory requirment
is low.

5 We use the python package, from https://github.com/dreylago/logicmin.

11

dGaussianσ(x):

Require: x = x0x1x2x3x4x5x6x7x8x9 ∈ {0, 1}10
1: s = s1s0 = 00 ∈ {0, 1}2
2: s0 = x0x1x2x3x4x5x7x8
3: s0 += (x0x3x4x5x6x8) + (x1x3x4x5x6x8) + (x2x3x4x5x6x8)
4: s0 += (x2x3x6x8) + (x1x3x6x8)
5: s0 += (x6x7x8) + (x5x6x8) + (x4x6x8) + (x7x8)
6: s1 = (x1x2x4x5x7x8) + (x3x4x5x7x8) + (x6x7x8)
7: s = (−1)x9 · s . · is the arithmetic multiplication
8: return s

Fig. 3: Discrete Gaussian sampler with σ = 1.0625, dGaussianσ.

dGaussianσ(x):

Require: x = x0x1x2x3x4x5x6x7x8x9x10 ∈ {0, 1}11
1: s = s2s1s0 = 000 ∈ {0, 1}3
2: s0 = (x0x1x2x3x5x7x8) + (x1x2x3x5x6x7x9) + (x1x2x3x6x7x8)
3: s0 += (x1x2x3x5x8x9) + (x0x2x3x5x8x9)
4: s0 += (x4x5x6x7x9) + (x3x4x8x9) + (x5x6x7x8) + (x4x6x7x8) + (x4x5x8x9)
5: s0 += (x5x8x9) + (x6x8x9) + (x7x8x9) + (x7x8x9) + (x6x8x9)
6: s1 = (x0x1x4x5x6x7x9) + (x2x4x5x6x7x9) + (x3x4x5x6x7x9) + (x5x6x7x8x9)
7: s1 += (x1x2x3x8x9) + (x7x8x9) + (x6x8x9) + (x5x8x9) + (x4x8x9)
8: s2 = (x1x4x5x6x7x8x9) + (x2x4x5x6x7x8x9) + (x3x4x5x6x7x8x9)
9: s = (−1)x10 · s . · is the arithmetic multiplication

10: return s

Fig. 4: Discrete Gaussian sampler with σ = 1.453713, dGaussianσ.

3.4 Polynomial multiplication using sparsity

SMAUG uses the power-of-two moduli to ease the correct scaling and round-
ings. However, this makes the polynomial multiplications hard to benefit from
Number Theoretic Transform (NTT). As a result, we propose a new polynomial
multiplication benefit from the sparsity, adapted from [1,49]. Our new multipli-
cation, given in Figure 5, is constant-time and is faster than the original ones.
Our secret storing method is similar to that of RLizard. The secret key stores
only the degrees of non-zero coefficients, and the degrees are directly used in the
polynomial multiplications.

4 The SMAUG

4.1 Specification of SMAUG.PKE

We now describe the public key encryption scheme SMAUG.PKE in Figure 6 with
the following building blocks:

• Hash function H for generating the seeds seedA and seedsk,

12

poly mult add(a, b, neg start): . a ∈ Rq, b ∈ Sη
1: for i from 0 to neg start - 1 do
2: degree = b[i]
3: for j from 0 to n do
4: a[degree + j] = a[degree + j] + a[j];

5: for i from neg start to len(b) do
6: degree = b[i]
7: for j from 0 to n do
8: a[degree + j] = a[degree + j]− a[j];

9: for j from 0 to n do
10: a[j] = a[j]− a[n+ j];

11: return a

Fig. 5: Polynomial multiplication using sparsity.

• Uniform random matrix sampler expandA for deriving A from seedA,

• Discrete Gaussian sampler dGaussianσ for deriving a MLWE error e with
standard deviation σ from seedsk,

• Hamming weight sampler HWTh for deriving a sparse ternary s (resp. r)
with hamming weight h = hs (resp. h = hr) from seedsk (resp. seedr).

We now prove the completeness of SMAUG.PKE.

Theorem 2 (Completeness of SMAUG.PKE). Let A, b, s, e, and r are de-
fined as in Figure 6. Let the moduli t, p, p′, and q satisfy t | p | q and t | p′ | q. Let
e1 ∈ RkQ and e2 ∈ RQ be the rounding errors introduced from the scalings and

roundings of A · r and bT · r. That is, e1 = q
p (bpq ·A · re mod p)− (A · r mod q)

and e2 = q
p′ (b

p′

q · 〈b, r〉e mod p′)− (〈b, r〉 mod q). Let

δ = Pr
[
‖〈e, r〉+ 〈e1, s〉+ e2‖∞ >

q

2t

]
,

where the probability is taken over the randomness of the encryption. Then
SMAUG.PKE in Figure 6 is (1 − δ)-correct. That is, for every message µ and
every key-pair (pk, sk) returned by KeyGen(1λ), the decryption fails with a prob-
ability less than δ.

Proof. By the definition of e1 and e2, it holds that

c1 =
p

q
· (A · r + e1) mod p and c2 =

p′

q
· (〈b, r〉+ e2) +

p′

t
· µ mod p′,

where the coefficients of e1 and e2 are in Z ∩ (− q
2p ,

q
2p] and Z ∩ (− q

2p′ ,
q
2p′],

respectively. Thus, the decryption of ciphertext with respect to the message µ

13

KeyGen(1λ):

1: seed← {0, 1}256
2: (seedA, seedsk)← H(seed)
3: A← expandA(seedA) ∈ Rk×kq

4: s← HWThs(seedsk) ∈ Skη
5: e← dGaussianσ(seedsk) ∈ Rk
6: b = −A> · s + e ∈ Rkq
7: return pk = (seedA,b), sk = s

Enc(pk, µ; seedr): . pk = (seedA,b), µ ∈ Rt
1: A = expandA(seedA)
2: if seedr is not given then seedr ← {0, 1}256

3: r← HWThr (seedr) ∈ Skη
4: c1 = bp/q ·A · re ∈ Rkp
5: c2 = bp′/q · 〈b, r〉+ p′/t · µe ∈ Rp′
6: return ct = (c1, c2)

Dec(sk, c): . sk = s, c = (c1, c2)

1: µ′ = bt/p · 〈c1, s〉+ t/p′ · c2e ∈ Rt
2: return µ′

Fig. 6: Description of SMAUG.PKE

and the randomness r can be written as⌊
t

p
· 〈c1, s〉+

t

p′
· c2
⌉

mod t =

⌊
t

q
(〈A · r, s〉+ 〈e1, s〉+ 〈b, r〉+ e2) + µ

⌉
mod t

=

⌊
t

q

(
〈A> · s + b, r〉+ 〈e1, s〉+ e2

)
+ µ

⌉
mod t

= µ+

⌊
t

q
(〈e, r〉+ 〈e1, s〉+ e2)

⌉
mod t.

Thus, the decryption result is equal to µ if and only if every coefficient of 〈e, r〉+
〈e1, s〉+ e2 is in the interval [− q

2t ,
q
2t). This concludes the proof of completeness

of SMAUG.PKE. ut

4.2 Specification of SMAUG.KEM

We now introduce the key encapsulation mechanism SMAUG.KEM in Figure 7.
SMAUG.KEM is designed following the Fujisaki-Okamoto transform with implicit
rejection using the non-perfectly correct PKE, whose security in the QROM is
well-studied in [15,39,40]. It is constructed using SMAUG.PKE as an underlying
IND-CPA secure PKE with the following building blocks, which can be imple-
mented with symmetric primitives:

• hash function H for hashing a public key,

14

KeyGen(1λ):

1: (pk, sk′)← SMAUG.PKE.KeyGen(1λ)
2: d← {0, 1}256
3: return pk, sk = (sk′, d)

Encap(pk): . pk = (seedA,b)

1: µ← {0, 1}256
2: (K, seed)← G(µ,H(pk))
3: ct← SMAUG.PKE.Enc(pk, µ; seed)
4: return ct, K

Decap(sk, ct): . sk = (sk′, d)

1: µ′ = SMAUG.PKE.Dec(sk′, ct)
2: (K′, seed′)← G(µ,H(pk))
3: ct′ = SMAUG.PKE.Enc (pk, µ′; seed′)
4: if ct 6= ct′ then
5: (K′, ·)← G(d,H(ct))

6: return K′

Fig. 7: Description of SMAUG.KEM

• hash function G for deriving a sharing key and a seed.

The Fujisaki-Okamoto transform depicted in Figure 7 has some differences
from FO 6⊥m transform in [40] in encapsulation and decapsulation methods. Encap
of SMAUG uses the hashed public key when generating the sharing key and the
randomness. This prevents some multi-target attacks on SMAUG. In Decap, the
sharing key is alternatively re-generated if ct 6= ct′ holds for efficiency, and side-
channel attacks (SCA) may leak the failure information. However, security can
rely on the explicit FO transform FO⊥m even in the case of rejection leakages,
which is treated in [42] with a competitive bound.

We remark that the randomly chosen message µ should be hashed addition-
ally in the environments using a non-cryptographic system RNG. Using a true
random number generator (TRNG) is recommended for sampling the message
µ.

We now show the completeness of SMAUG.KEM based on the completeness
of the underlying public key encryption scheme, SMAUG.PKE.

Theorem 3 (Completeness of SMAUG.KEM). We borrow the notations and
assumptions from Theorem 2 and Figure 7. Then SMAUG.KEM in Figure 7 is
also (1−δ)-correct. That is, for every key-pair (pk, sk) generated by KeyGen(1λ),
the shared keys K and K ′ are identical with probability larger than 1− δ.

Proof. The shared keys K and K ′ are identical if the decryption succeeds. As-
suming the pseudorandomness of the hash function G, the probability of being
K 6= K ′ can be bounded by the decryption failure probability of SMAUG.PKE.
The completeness of SMAUG.PKE (Theorem 2) concludes the proof. ut

15

4.3 Security proof

When proving the security of the KEMs constructed using FO transform in
the (Q)ROM, on typically relies on the generic reductions from one-wayness
or IND-CPA security of the underlying PKE. In the ROM, SMAUG has a tight
reduction from the IND-CPA security of the underlying PKE, SMAUG.KEM.
However, as with other lattice-based constructions, the underlying PKE has a
positive probability of decryption failures, which makes the generic reduction
unapplicable [56] or non-tight [15,39,40] in the QROM. We, therefore, prove the
IND-CCA2 security of SMAUG based on the non-tight QROM reduction of [15]
as explained in Section 2, by proving the IND-CPA security of SMAUG.KEM.

Theorem 4 (IND-CPA security of SMAUG.PKE). Assuming pseudoran-
domness of the underlying sampling algorithms, the IND-CPA security of SMAUG.
PKE can be tightly reduced to the decisional MLWE and MLWR problems. Specifi-
cally, for any IND-CPA-adversary A of SMAUG.PKE, there exist adversaries B0,
B1, B2, and B3 attacking the pseudorandomness of H and the sampling algo-
rithms, MLWE, and MLWR problems, such that,

AdvIND-CPA
SMAUG.PKE(A) ≤ AdvPRH (B0) + AdvPRexpandA,HWT,dGaussian(B1)

+ AdvMLWE
n,q,k,k,HWThs ,dGaussianσ

(B2) + AdvMLWR
n,p,q,k+1,k,HWThr

(B3).

Proof. The proof proceeds by a sequence of hybrid games from G0 to G4 defined
as follows:

• G0: the genuine IND-CPA game,
• G1: identical to G0, except that the public key is changed into (A,b),
• G2: identical to G1, except that the sampling algorithms are changed into

truly random samplings,
• G3: identical to G2, except that b is randomly chosen from Rkq ,
• G4: identical to G3, except that the ciphertext is randomly choosen from
Rkp ×Rp′ . As a result, the public key and the ciphertexts are truly random.

We denote the advantage of the adversary on each game Gi as Advi, where
Adv0 = AdvIND-CPA

SMAUG.PKE(A) and Adv4 = 0. Then, it holds that

|Adv0 − Adv1| ≤ AdvPRH (B0),

for some adversary B0 against the pseudorandomness of the hash function. Since
the view of the transcripts in the hybrid games G1 and G2 are different only in
the randomness sampling, it holds that

|Adv1 − Adv2| ≤ AdvPRexpandA,HWT, dGaussian(B1),

for some adversary, B1 attacking the pseudorandomness of at least one of the
samplers. The difference in the games G2 and G3 is that the polynomial vec-
tor b is sampled as a part of an MLWE sample in G2 or randomly in G3.
Thus, the difference between the advantages Adv2 and Adv3 can be bounded

16

by AdvMLWE
n,q,k,k,HWThs ,dGaussianσ

(B2), where B2 is an adversary against decisional
MLWE problem, distinguishing the MLWE samples from random. Lastly, the
only difference in the hybrids G3 and G4 is that the ciphertexts are generated
in different ways: random over Rkp ×Rp′ versus (c1, bp′/p · c2e), where[

c1
c2

]
=

⌊
p

q
·
(

A
b>

)
· r
⌉

+
p

t
·
[

0
µ

]
.

If A distinguishes the two ciphertexts, then we can construct an adversary B3
distinguishing the MLWR sample from random, as follows: for given a sample

(A,b) ∈ R(k+1)×k
q × Rk+1

p , B3 rewrites b as (b1, b2) ∈ Rkp × Rp, computes
(b1, bp′/p · b2e), and use A to decide the ciphertext type, which will be the output
of B3. Thus, it holds that

|Adv3 − Adv4| ≤ AdvMLWR
n,p,q,k+1,k,HWThr

(B3).

This concludes the proof. ut

The IND-CPA security of SMAUG.PKE and Theorem 1 implies the IND-CCA
security of SMAUG KEM scheme in the QROM.

5 Parameter selection and concrete security

In this section we first give a concret security analysis of SMAUG and the recom-
manded parameter sets.

5.1 Concrete security estimation

To estimate the concrete security of SMAUG, we exploit the best-known lattice
attacks.

Core-SVP methodology. Most of the known attacks are essentially finding a
nonzero short vector in Euclidean lattices, using the Block–Korkine–Zolotarev
(BKZ) lattice reduction algorithm [22, 38, 57]. The time complexity is generally
estimated as a core-SVP hardness, which was first introduced in [6] and used in
the subsequent lattice-based schemes [5,17,30,32,58]. It is based on the best BKZ
block size β which will find a good-quality lattice basis. The β-BKZ algorithm
takes ≈ 20.292β+o(β) as estimated in [11] time with a classical solver, and ≈
20.257β+o(β) as given in [20], in the quantum setting. We ignore the polynomial
factors and the o(β) terms in the exponent. We use the lattice estimator [3] to
concretely estimate security of SMAUG.

17

Beyond Core-SVP methodology. We also analyze the cost of the attacks
other than the lattice reduction attacks. Algebraic attacks like Arora-Ge attack
and the variants [2, 9] using Gröbener’s basis or Coded-BKW attacks [36, 46]
should be also considered. Though, they have much higher attack costs than the
previously introduced attacks, with significantly higher memory requirements.
We use the lattice estimator [3] for estimating such attacks.

We also focus on the attacks that are not considered in the lattice-estimator [3],
targeting sparse secrets, such as Meet-LWE [52] attack. Motivated from the
Meet-in-the-Middle approach of Odlyzko’s, it uses the representations of the
ternary secret in additive shares. We use a python script to estimate the cost of
Meet-LWE attack, following the original description in [52].

MLWE hardness. We estimated the cost of the best-known attacks for MLWE,
namely primal attack, dual attack, and their hybrid variants with the Core-SVP
hardness of the attacks. We remark that any MLWEn,q,k,`,η instance can be
viewed as an LWEq,nk,n`,η instance. Even though MLWE problem has some extra
algebraic structure compared to the LWE problem, we do not currently have
any attack advantaged by this structure. Hence we analyze the hardness of the
MLWE problem over the structured lattices as the hardness of the corresponding
LWE problem over the unstructured lattices.

MLWR hardness. For the hardness of the MLWR problem, we treat it as an
MLWE problem since there are no known attacks that use the deterministic error
term in MLWR structure. Further more, the reduction from the MLWE problem
to the MLWR problem were given by Banerjee et al. [10] and were improved
in [7, 8, 16]. Basically, an MLWR sample given by (A, bp/q ·A · se mod p) for
uniformly chosen A ← Rkq and s ← R`p can be rewritten as (A, p/q · (A · s
mod q) + e mod p). This sample can be transformed to an MLWE sample over
Rq by multiplying q/p as (A,b = A·s+q/p·e mod q). We assume that the error
term in the resulting MLWE sample is a random variable, uniform in the interval
(−q/2p, q/2p] so that we can estimate the hardness of the MLWR problem as
the hardness of the corresponding MLWE problem.

5.2 Parameter sets

Table 3 shows the three parameter sets of SMAUG, with NIST’s security levels
1, 3, and 5. SMAUG is parameterized by integers n, k, q, p, p′, t, hs and hr, and
the standard deviation σ > 0 for the discrete Gaussian error in the key. We
use the same ring dimension n = 256 and the message modulus t = 2 for every
parameter set.

The core-SVP hardness is estimated6 via the lattice estimator [3] using the
cost model “ADPS16” introduced in [6] and “MATZOV” [51], the smaller one

6 There are some suspect on the unsubstantiated dual-sieve attacks which are as-
summing the flawed heuristic [31]. However, we hereby estimate security of SMAUG
following the methods in Kyber, Saber, and Sable for a fair comparison.

18

Parameters sets SMAUG-128 SMAUG-192 SMAUG-256
Security level I III V

n 256 256 256
k 2 3 5
q 1024 2048 2048
p 256 256 256
p′ 32 256 64
t 2 2 2
hs 140 198 176
hr 132 151 160
σ 1.0625 1.453713 1.0625

Classical core-SVP 120.0 181.7 264.5
Quantum core-SVP 105.6 160.9 245.2

Beyond core-SVP 144.7 202.0 274.6

DFP -119.6 -136.1 -167.2

Secret key 176 236 218
Public key 672 1,088 1,792
Ciphertext 672 1,024 1,472

Table 3: The NIST security level, selected parameters, classical and quantum
core-SVP hardness and security beyond core-SVP (see Section 5.1), decryption
failure probability (in log2), and sizes (in bytes) of SMAUG.

among them. We assumed that the number of 1 is equal to the number of −1
for simplicity, which conservatively underestimates security.

The security beyond core-SVP is estimated via the lattice estimator [3] and
the python script implementing the Meet-LWE attack cost estimation. It shows
the lowest attack costs among the variants of coded-BKW, Arora-Ge, and Meet-
LWE attacks, having memory requirement of 2130 to 2260, at least.

We also give three additional parameter sets SMAUG-128*, SMAUG-192*,
and SMAUG-256* having higher DFP and smaller ciphertexts. Most of the pa-
rameters are shared with the original ones, but with smaller p′ = 16, 64, and
32, respectively. The DFP gap is not significant, hence these sets could be a
good alternatives, as a size-DFP trad-off. We summarize their DFP and sizes in
Table 4.

Parameters sets SMAUG-128* SMAUG-192* SMAUG-256*
Security level I III V

p′ 16 64 32

DFP -104.5 -131.1 -156.4

Secret key 176 236 218
Public key 672 1,088 1,792
Ciphertext 640 960 1,440

Table 4: Additional parameter sets with higher DFP and shorter ciphertexts.

19

6 Implementation

In this section, we give the parameter sets of SMAUG implementation the per-
formance. We compare the sizes and the reported performance with prior work
such as Kyber, Saber, and Sable. The constant-time reference implementation of
SMAUG and the supporting scripts can be found on the team SMAUG website:
https://kpqc.cryptolab.co.kr/smaug.

6.1 Performance

We instantiate the hash functions G,H and the extendable function XOF with
the following symmetric primitives: G is instantiated with SHAKE256, H is in-
stantiated with SHA3-256, and XOF is instantiated with SHAKE128.

The resulting performance of SMAUG is reported in Table 5. For a fair com-
parison, we also performed measurements on the same system with identical
settings of the reference implementation of Kyber7, Saber8, and Sable9.

6.2 Comparison to prior/related work

In this section, we compare the sizes, security, and performance of the recent
lattice-based KEM schemes.

Using unstructured lattices. Most recent KEM schemes are designed over
the ring lattices or module lattices. The schemes based on unstructured lattices
such as Lizard [26] or FrodoKEM [18] have much larger sizes; e.g., Lizard has
a 10,896-byte ciphertext, and FrodoKEM has a 9,752-byte ciphertext for the
lowest level (≈ 150 classical core-SVP hardness) whereas the security level-2
KEM RLizard [26] has a 4,144-byte ciphertext.

Ring-based KEMs and decryption failures. However, a straightforward
adaptation of KEMs over the unstructured lattices to the ring variants intro-
duces a much higher probability of decryption failure. To ensure security against
the decryption failure attacks [41], a high enough decryption failure probabil-
ity (DFP) is necessary; otherwise, it is vulnerable to the attacks such as failure
boosting in [27]. As a result, the ring-based schemes should take large parame-
ters like RLizard or additionally use an error correction code (ECC) to reduce
the failure rate. However, using ECC makes it vulnerable to side-channel attacks
(SCA) since masking ECC against probing the decryption failure is yet an open
problem.

7 https://github.com/pq-crystals/kyber, commit 518de24.
8 https://github.com/KULeuven-COSIC/SABER, commit f7f39e4.
9 https://github.com/josebmera/scabbard, commit 4b2b5de.

20

Cycles Cycles (ratio)
Schemes KeyGen Encap Decap KeyGen Encap Decap

Kyber512
med 131,560 162,472 189,030 1.70 2.10 2.03
ave 131,857 162,773 189,377 1.69 2.11 2.04

LightSaber
med 93,752 122,176 133,764 1.21 1.58 1.44
ave 94,062 122,294 133,811 1.21 1.59 1.44

LightSable
med 85,274 114,822 128,990 1.10 1.48 1.39
ave 85,462 114,914 129,231 1.10 1.49 1.39

SMAUG-128
med 77,220 77,370 92,916 1 1 1
ave 77,940 77,063 93,046 1 1 1

Kyber768
med 214,160 251,308 285,378 1.38 1.84 1.75
ave 214,544 251,686 285,657 1.38 1.84 1.73

Saber
med 187,022 224,686 239,590 1.21 1.64 1.47
ave 187,309 224,777 239,685 1.21 1.64 1.45

Sable
med 170,400 211,290 237,024 1.10 1.55 1.45
ave 170,601 211,332 237,158 1.10 1.55 1.44

SMAUG-192
med 154,862 136,616 163,354 1 1 1
ave 155,311 136,702 164,782 1 1 1

Kyber1024
med 332,470 371,854 415,498 1.25 1.38 1.36
ave 333,144 372,404 416,007 1.23 1.38 1.37

FireSaber
med 289,278 347,900 382,326 1.08 1.29 1.25
ave 289,631 348,010 382,462 1.07 1.29 1.26

FireSable
med 275,156 337,322 371,486 1.03 1.25 1.22
ave 275,491 337,329 371,814 1.02 1.25 1.22

SMAUG-256
med 266,704 270,123 305,452 1 1 1
ave 270,123 270,672 304,292 1 1 1

Table 5: Median and average cycle counts of 1000 executions for Kyber, Saber,
Sable, and SMAUG. Their relative comparison to SMAUG’s is also given. Cycle
counts are obtained on one core of an Intel Core i7-10700k, with TurboBoost
and hyperthreading disabled.

Shared key entropy. Moreover, for the ring-based KEMs with NIST’s security
levels 1 and 3, achieving a message space of 256 bits with a compact ciphertext
size and low decryption failure probability is challenging. The ring of dimension
≈ 500 is commonly used for the security level 1, and it is hard to balance between
DFP and the message space size in the underlying PKE. As a result, Round5 [14]
or Tiger [54] has only a 128-bit message, which gives a low sharing key entropy
for latter quantum-secure protocols. Round5 achieves a short ciphertext size of
859 bytes with NIST’s security level 3, restricting the message space size to 192
bits.

Module-based KEMs. The above limitations for the KEMs constructed over
unstructured lattices or the ring-variants make the module-based KEMs an at-
tractive candidate in their practical usage. The module-based KEMs have more
scalable options when considering their security, sizes, and DFP. The NIST’s

21

selection, Kyber [17], and the finalist Saber [58] have the module structure and
achieve ciphertext sizes of 768 and 736 bytes for the security level 1.

Sizes (bytes) Sizes (ratio) Security
Schemes sk pk ct sk pk ct Classic. DFP

Kyber512 1,632 800 768 9.4 1.2 1.1 118 -139
LightSaber 832 672 736 4.8 1 1.1 118 -120
LightSable 800 608 672 4.6 0.9 1 114 -139
SMAUG-128 176 672 672 1 1 1 120 -120

Kyber768 2,400 1,184 1,088 10.4 1.1 1.1 183 -164
Saber 1,248 992 1,088 5.4 0.9 1.1 189 -136
Sable 1,152 896 1,024 5 0.8 1 185 -143
SMAUG-192 236 1,088 1,024 1 1 1 181 -136

Kyber1024 3,168 1,568 1,568 15.2 0.9 1.1 256 -174
FireSaber 1,664 1,312 1,472 8 0.7 1 260 -165
FireSable 1,632 1,312 1,376 7.8 0.7 0.9 223 -208
SMAUG-256 218 1,792 1,472 1 1 1 264 -167

Table 6: Comparison of Kyber, Saber, Sable, and SMAUG. Sizes are given in
bytes and the ratios are also given relative to the sizes of SMAUG. Security is
provided in the classical core-SVP hardness with DFP (in logarithm base two).

Kyber and SMAUG. As shown in Tables 5 and 6, SMAUG outperforms Kyber in
every aspect except for the DFP and the public key size in level 5. Compared to
Kyber-512 [17], SMAUG-128 has 16% and 12% smaller public key and ciphertext,
respectively. The secret key size of SMAUG is significantly smaller than Kyber’s.
It is tiny and ready to use10, which enables efficient management of secure zone
in restricted IoT devices. With high enough security and low enough decryption
failure probability, SMAUG-128 further achieves 110% and 103% speed up in
encapsulation and decapsulation.

Similar phenomena are observed in the security levels 3 and 5, except that the
public key size of Kyber is shorter than SMAUG’s in the level 5. The speed-ups
also decrease in higher security parameters.

Saber, Sable, and SMAUG. Compared to Saber, one of NIST’s round 3 final-
ists, SMAUG-128 has 9% smaller ciphertext and the same public key size than
LightSaber. The secret key is significantly smaller, with a 58% and 44% speed up
in encapsulation and decapsulation, respectively. compared to Sable, an efficient
variant of Saber, SMAUG-128 has the same ciphertext size but a larger public
key size. This is since we use small modulus and sparse secret, which allows

10 Most of the KEMs can store a secret key as a seed, having 32 bytes, and Saber
can also compress the secret to 256 to 384 bytes. However, this gives an additional
chance to the side-channel attackers during the decapsulation process.

22

SMAUG-128 to achieve 48% and 39% faster encapsulation and decapsulation,
samller secret key, and a bit higher security. Thus, it can be seen as a trade-off
between smaller public key versus faster running time.

Again, similar phenomena are observed in NIST’s security levels 3 and 5.
SMAUG provides a trade-off with Saber and Sable, between the public key size
versus secret key size and running time. In NIST’s level 3, the size of ciphertext of
SMAUG-192 is smaller than Saber, and is the same with Sable. The encapsulation
and decapsulation speed outperforms by 44% to 64% with much smaller, ready-
to-use secret key.

In the scurity level 5, we first note that FireSable has a classical core-SVP
hardness of 223, which is much lower than 260. It achieves smaller public key
and ciphertext than SMAUG-256, but still with slower speeds. In the strongest
security level, SMAUG-256 has the same cihertext size with FireSaber, and a
similar trade-off is observed.

6.3 Security against physical attacks

We consider the security against physical attacks based on the profiled Differ-
ential Power Analysis (DPA). In particular, the key generation and the encap-
sulation can be profiled with the Simple Power Analysis (SPA) since they are
executed once or without a secret key. For the decapsulation, however, due to
the existence of “re-encryption”, multi-trace attacks are possible. As SMAUG
and Kyber, or SMAUG and Saber share many aspects in design, we can follow
the recent works masking Kyber and Saber [12, 19], adding SCA countermea-
sure. For our new sampler dGaussian, as it can be expressed with bit operations,
it is easy to add the SCA countermeasures such as boolean masking. For the
fixed hamming weight sampler, Krausz et al. [48] have recently proposed mask-
ing methods; however, the lack of efficiency lets us put it as a future work. The
new multiplication method can be suffered from attacks focusing on the memory
access patterns; however, it can be masked using coefficient-wise shuffling. We
set the detailed analysis and the masked implementation as future works.

Acknowledgments. Part of this work was done while MinJune Yi was in
CryptoLab Inc.

References

1. Akleylek, S., Alkım, E., Tok, Z.Y.: Sparse polynomial multiplication for lattice-
based cryptography with small complexity. The Journal of Supercomputing 72,
438–450 (2016)

2. Albrecht, M.R., Cid, C., Faugère, J.C., Perret, L.: Algebraic algorithms for lwe.
Cryptology ePrint Archive, Paper 2014/1018 (2014), https://eprint.iacr.org/
2014/1018

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015)

23

4. Alkim, E., Avanzi, R., Bos, J., Ducas, L., de la Piedra, A., Pöppelmann, T.,
Schwabe, P., Stebila, D.: Algorithm specifications and supporting documentation
Version 1.1

5. Alkim, E., Barreto, P.S.L.M., Bindel, N., Kramer, J., Longa, P., Ricardini, J.E.:
The lattice-based digital signature scheme qtesla. Cryptology ePrint Archive, Paper
2019/085 (2019), https://eprint.iacr.org/2019/085

6. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- A new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 2016. pp. 327–343.
USENIX Association (Aug 2016)

7. Alperin-Sheriff, J., Apon, D.: Dimension-preserving reductions from lwe to lwr.
Cryptology ePrint Archive, Paper 2016/589 (2016), https://eprint.iacr.org/

2016/589, https://eprint.iacr.org/2016/589
8. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited.

In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology – CRYPTO 2013. pp.
57–74. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

9. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) Automata, Languages and Programming. pp.
403–415. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

10. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology – EUROCRYPT
2012. pp. 719–737. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

11. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor
searching with applications to lattice sieving, pp. 10–24. Society for Industrial and
Applied Mathematics (2016). https://doi.org/10.1137/1.9781611974331.ch2,
https://epubs.siam.org/doi/abs/10.1137/1.9781611974331.ch2

12. Beirendonck, M.V., D’anvers, J.P., Karmakar, A., Balasch, J., Verbauwhede, I.:
A side-channel-resistant implementation of saber. J. Emerg. Technol. Comput.
Syst. 17(2) (apr 2021). https://doi.org/10.1145/3429983, https://doi.org/

10.1145/3429983

13. Bernstein, D.J., Chuengsatiansup, C., Lange, T., Van Vredendaal, C.: Ntru prime.
IACR Cryptol. ePrint Arch. 2016, 461 (2016)

14. Bhattacharya, S., Garcia-Morchon, O., Laarhoven, T., Rietman, R., Saarinen,
M.J.O., Tolhuizen, L., Zhang, Z.: Round5: Kem and pke based on glwr. Cryptol-
ogy ePrint Archive, Paper 2018/725 (2018), https://eprint.iacr.org/2018/725,
https://eprint.iacr.org/2018/725

15. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter
proofs of CCA security in the quantum random oracle model. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 61–90. Springer, Hei-
delberg (Dec 2019). https://doi.org/10.1007/978-3-030-36033-7_3

16. Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of
learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.)
Theory of Cryptography. pp. 209–224. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2016)

17. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: Crystals-kyber: a cca-secure module-lattice-
based kem. In: 2018 IEEE European Symposium on Security and Privacy (Eu-
roS&P). pp. 353–367. IEEE (2018)

18. Bos, J.W., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghu-
nathan, A., Stebila, D.: Frodo: Take off the ring! Practical, quantum-secure key
exchange from LWE. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,

24

A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 1006–1018. ACM Press (Oct 2016).
https://doi.org/10.1145/2976749.2978425

19. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking ky-
ber: First- and higher-order implementations. IACR TCHES 2021(4), 173–214
(2021). https://doi.org/10.46586/tches.v2021.i4.173-214, https://tches.

iacr.org/index.php/TCHES/article/view/9064

20. Chailloux, A., Loyer, J.: Lattice sieving via quantum random walks. In: Tibouchi,
M., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT. pp. 63–91 (2021)

21. Chen, C., Danba, O., Hoffstein, J., Hülsing, A., Rijneveld, J., Schanck, J.M.,
Schwabe, P., Whyte, W., Zhang, Z.: Algorithm specifications and supporting doc-
umentation. Brown University and Onboard security company, Wilmington USA
(2019)

22. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (Dec 2011). https://doi.org/10.1007/978-3-642-25385-0_1

23. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part I. LNCS, vol. 10820, pp. 360–384. Springer, Heidelberg (Apr / May 2018).
https://doi.org/10.1007/978-3-319-78381-9_14

24. Cheon, J.H., Han, K., Kim, J., Lee, C., Son, Y.: A practical post-quantum public-
key cryptosystem based on spLWE. In: Hong, S., Park, J.H. (eds.) ICISC 16. LNCS,
vol. 10157, pp. 51–74. Springer, Heidelberg (Nov / Dec 2017). https://doi.org/
10.1007/978-3-319-53177-9_3

25. Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: Cut off the tail! A practical post-
quantum public-key encryption from LWE and LWR. In: Catalano, D., De Prisco,
R. (eds.) SCN 18. LNCS, vol. 11035, pp. 160–177. Springer, Heidelberg (Sep 2018).
https://doi.org/10.1007/978-3-319-98113-0_9

26. Cheon, J.H., Park, S., Lee, J., Kim, D., Song, Y., Hong, S., Kim, D., Kim, J.,
Hong, S.M., Yun, A., et al.: Lizard public key encryption. NIST PQC Round 1, 4
(2018)

27. D’Anvers, J.P., Guo, Q., Johansson, T., Nilsson, A., Vercauteren, F., Verbauwhede,
I.: Decryption failure attacks on ind-cca secure lattice-based schemes. In: Lin, D.,
Sako, K. (eds.) Public-Key Cryptography – PKC 2019. pp. 565–598. Springer In-
ternational Publishing, Cham (2019)

28. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: Module-
LWR based key exchange, CPA-secure encryption and CCA-secure KEM.
In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 18. LNCS, vol.
10831, pp. 282–305. Springer, Heidelberg (May 2018). https://doi.org/10.1007/
978-3-319-89339-6_16

29. Dent, A.W.: A designer’s guide to kems. In: Cryptography and Coding: 9th IMA
International Conference, Cirencester, UK, December 16-18, 2003. Proceedings 9.
pp. 133–151. Springer (2003)

30. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR TCHES
2018(1), 238–268 (2018). https://doi.org/10.13154/tches.v2018.i1.238-268,
https://tches.iacr.org/index.php/TCHES/article/view/839

31. Ducas, L., Pulles, L.: Does the dual-sieve attack on learning with errors even work?
Cryptology ePrint Archive, Paper 2023/302 (2023), https://eprint.iacr.org/

2023/302, https://eprint.iacr.org/2023/302

25

32. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon: Fast-fourier lattice-based
compact signatures over ntru. Submission to the NIST’s post-quantum cryptogra-
phy standardization process 36(5) (2018)

33. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (Aug 1999). https://doi.org/10.1007/3-540-48405-1_34

34. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. Journal of Cryptology 26(1), 80–101 (Jan 2013). https://doi.
org/10.1007/s00145-011-9114-1

35. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing.
pp. 212–219 (1996)

36. Guo, Q., Johansson, T., Stankovski, P.: Coded-bkw: Solving lwe using lattice codes.
In: Annual Cryptology Conference. pp. 23–42. Springer (2015)

37. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg
(Apr 2015). https://doi.org/10.1007/978-3-662-46800-5_25

38. Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the shortest and closest lattice
vector problems. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H.,
Xing, C. (eds.) Coding and Cryptology. pp. 159–190. Springer Berlin Heidelberg,
Berlin, Heidelberg (2011)

39. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS,
vol. 10677, pp. 341–371. Springer, Heidelberg (Nov 2017). https://doi.org/10.
1007/978-3-319-70500-2_12

40. Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key
exchange in the quantum random oracle model. In: Kiayias, A., Kohlweiss,
M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111,
pp. 389–422. Springer, Heidelberg (May 2020). https://doi.org/10.1007/

978-3-030-45388-6_14

41. Howgrave-Graham, N., Nguyen, P.Q., Pointcheval, D., Proos, J., Silverman, J.H.,
Singer, A., Whyte, W.: The impact of decryption failures on the security of ntru
encryption. In: Boneh, D. (ed.) Advances in Cryptology - CRYPTO 2003. pp.
226–246. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

42. Hövelmanns, K., Hülsing, A., Majenz, C.: Failing gracefully: Decryption failures
and the fujisaki-okamoto transform. Cryptology ePrint Archive, Paper 2022/365
(2022), https://eprint.iacr.org/2022/365, https://eprint.iacr.org/2022/

365

43. Jin, Z., Zhao, Y.: Optimal key consensus in presence of noise. Cryptology ePrint
Archive, Paper 2017/1058 (2017), https://eprint.iacr.org/2017/1058, https:
//eprint.iacr.org/2017/1058

44. Jung, C.G., Lee, J., Ju, Y., Kwon, Y.B., Kim, S.W., Paek, Y.: Lizarmong: Excellent
key encapsulation mechanism based on rlwe and rlwr. In: Seo, J.H. (ed.) Informa-
tion Security and Cryptology – ICISC 2019. pp. 208–224. Springer International
Publishing, Cham (2020)

45. Karmakar, A., Roy, S.S., Reparaz, O., Vercauteren, F., Verbauwhede, I.: Constant-
time discrete gaussian sampling. IEEE Transactions on Computers 67(11), 1561–
1571 (2018)

26

46. Kirchner, P., Fouque, P.A.: An improved bkw algorithm for lwe with applications to
cryptography and lattices. In: Annual Cryptology Conference. pp. 43–62. Springer
(2015)

47. Knuth, D., Yao, A.: Algorithms and Complexity: New Directions and Recent Re-
sults, chap. The complexity of nonuniform random number generation. Academic
Press (1976)

48. Krausz, M., Land, G., Richter-Brockmann, J., Güneysu, T.: A holistic approach
towards side-channel secure fixed-weight polynomial sampling. In: Public-Key
Cryptography–PKC 2023: 26th IACR International Conference on Practice and
Theory of Public-Key Cryptography, Atlanta, GA, USA, May 7–10, 2023, Pro-
ceedings, Part II. pp. 94–124. Springer (2023)

49. Lee, J., Kim, D., Lee, H., Lee, Y., Cheon, J.H.: Rlizard: Post-quantum key encap-
sulation mechanism for iot devices. IEEE Access 7, 2080–2091 (2018)

50. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (Feb 2011). https://doi.org/10.1007/978-3-642-19074-2_21

51. MATZOV: Report on the Security of LWE: Improved Dual Lattice Attack (Apr
2022). https://doi.org/10.5281/zenodo.6493704, https://doi.org/10.5281/

zenodo.6493704

52. May, A.: How to meet ternary LWE keys. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 701–731. Springer, Heidelberg,
Virtual Event (Aug 2021). https://doi.org/10.1007/978-3-030-84245-1_24

53. Mera, J.M.B., Karmakar, A., Kundu, S., Verbauwhede, I.: Scabbard: a suite of
efficient learning with rounding key-encapsulation mechanisms. IACR TCHES
2021(4), 474–509 (2021). https://doi.org/10.46586/tches.v2021.i4.474-509,
https://tches.iacr.org/index.php/TCHES/article/view/9073

54. Park, S., Jung, C.G., Park, A., Choi, J., Kang, H.: Tiger: Tiny bandwidth key
encapsulation mechanism for easy migration based on rlwe(r). Cryptology ePrint
Archive, Paper 2022/1651 (2022), https://eprint.iacr.org/2022/1651, https:
//eprint.iacr.org/2022/1651

55. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC. pp. 84–93. ACM Press
(May 2005). https://doi.org/10.1145/1060590.1060603

56. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mecha-
nism in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 520–551. Springer, Heidel-
berg (Apr / May 2018). https://doi.org/10.1007/978-3-319-78372-7_17

57. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical programming 66(1), 181–199
(1994)

58. Vercauteren, I.F., Sinha Roy, S., D’Anvers, J.P., Karmakar, A.: Saber: Mod-lwr
based kem (round 3 submission)

A Comparison result

Focusing on the sizes and the decryption failure probability, we compare the
recent KEM schemes having ehough core-SVP hardness, i.e., roughly NIST’s se-
curity levels 1, 3, and 5, in Table 7. Among the recent KEM schemes summarized
in Table 7, SMAUG has the most petite ciphertext and secret key sizes among

27

the KEMs with a low enough DFP; without ECC; and enough entropy for the
shared key.

The sizes are given in bytes and the decryption failure probability (DFP) is
given in − log2(prob). Some of the schemes have not specified on their secret key
sizes, so we left them as a blank. “∞” implies that it uses a perfectly correct
PKE scheme as a building block. Security (simply, Sec.) is given in the classical
core-SVP hardness reported/claimed in the speciification/paper of each scheme.
The shared key entropy (simply, |K|) are given in bits if they are less than 256
bits. The required assumptions are given as “A+B” (A for key generation, B for
ecapsulation) or “A”, if A=B. The last column shows whether the scheme uses
an error correction code (ECC) to pull down the DFP or not.

We note that in each security level, the parameter sets used for comparison
are (if there are multiple options) chosen among the proposed parameter sets,
having the most petite sizes and decryption failure probability. For Round5,
all the parameter sets “R5ND {1,3,5}KEM {0,5}c” are used. For NTRU, the
parameter sets “ntruhps 2048509” and “ntruhps4096821” are used. For RLizard,
the parameter sets “RING CATEGORY{1,5}” and “RING CATEGORY3 N10
24” are used.

11 As estimated in our script implementing the cost calculation of Meet-LWE attack.
The claimed security was 200.

12 See footnote 11. The claimed security was 256.

28

Scheme sk pk ct ↑ DFP Sec. |K| Assumption no ECC

LizarMong [44] 640 544 544 179 133 RLWE+RLWR 7

Round5 [14] 445 549 88 128 128 GLWR 7

Sable [53] 800 608 672 139 114 MLWR X
SMAUG (ours) 176 672 672 120 120 MLWE+MLWR X
Round5 [14] 634 682 65 128 128 GLWR X
NTRU [21] 699 935 699 ∞ 106 NTRU X
Saber [58] 832 672 736 120 118 MLWR X
Kyber [17] 1632 800 768 139 118 MLWE X
Tiger [54] 528 480 768 128 130 128 RLWR+RLWE 7

RLizard [26] 385 4096 2080 188 147 RLWE+RLWR X

(a) Lattice-based KEMs with ≈ NIST’s security level I (120).

Scheme sk pk ct ↑ DFP Sec. |K| Assumption no ECC

Round5 [14] 780 859 117 193 192 GLWR 7

Round5 [14] 909 981 71 192 192 GLWR X
Sable [53] 1152 896 1024 143 185 MLWR X
SMAUG (ours) 236 1088 1024 136 181 MLWE+MLWR X
Tiger [54] 1056 800 1024 154 11161 RLWR+RLWE 7

Saber [58] 1248 992 1088 136 189 MLWR X
Kyber [17] 2400 1184 1088 164 183 MLWE X
NTRU [21] 1230 1590 1230 ∞ 178 NTRU X
RLizard [26] 641 4096 4144 245 195 RLWE+RLWR X

(b) Lattice-based KEMs with ≈ NIST’s security level III (180).

Scheme sk pk ct ↑ DFP Sec. |K| Assumption no ECC

Round5 [14] 972 1063 64 256 GLWR 7

LizarMong [44] 1280 1056 1088 302 12226 RLWE+RLWR 7

Tiger [54] 1056 928 1152 200 263 RLWR+RLWE 7

Round5 [14] 1178 1274 64 256 GLWR X
Saber [58] 1664 1312 1472 165 260 MLWR X
SMAUG (ours) 218 1792 1472 167 264 MLWE+MLWR X
Kyber [17] 3168 1568 1568 174 256 MLWE X
AKCN-SEC [43] 2240 1792 70 255 RLWE 7

OKCN-SEC [43] 2336 1792 70 255 RLWE 7

NewHope [4] 3680 1824 2208 216 257 RLWE X
RLizard [26] 769 8192 8256 305 318 RLWE+RLWR X

(c) Lattice-based KEMs with ≈ NIST’s security level V (260).

Table 7: Comparison of lattice-based KEM schemes with comparable security
and sizes.

29

