
Anonymous, Timed and Revocable Proxy
Signatures

Ghada Almashaqbeh1∗ and Anca Nitulescu2

1 University of Connecticut, ghada@uconn.edu
2 Protocol Labs, anca.nitulescu@protocol.ai

Abstract. A proxy signature enables a party to delegate her signing
power to another. This is useful in practice to achieve goals related
to robustness, crowd-sourcing, and workload sharing. Such applications
usually require delegation to satisfy several properties, including time
bounds, anonymity, revocability, and policy enforcement. Despite the
large amount of work on proxy signatures in the literature, none of the
existing schemes satisfy all these properties; even there is no unified
formal notion that captures them.
In this work, we close this gap and propose an anonymous, timed, and
revocable proxy signature scheme. We achieve this in two steps: First,
we introduce a tokenizable digital signature based on Schnorr signature
allowing for secure distribution of signing tokens (which could be of
independent interest). Second, we utilize a public bulletin board and
timelock encryption to support: (1) one-time usage of the signing tokens
by tracking tokens used so far based on unique values associated to them,
(2) timed delegation so that a proxy signer cannot sign outside a given
period, and (3) delegation revocation allowing the original signer to end a
delegation earlier than provisioned. All of these are done in a decentralized
and anonymous way; no trusted party is involved, and no one can tell
that someone else signed on behalf of the original signer or even that a
delegation took place. We define a formal notion for proxy signatures
capturing all these properties, and prove that our construction realizes
this notion. We also introduce several design considerations addressing
issues related to deployment in practice.

1 Introduction

Proxy signature schemes are a type of digital signatures that allows one user
(the original signer) to delegate their signing right to another party (called proxy
signer). The proxy signer can generate a proxy signature that is verified using
the original signer’s certified public key.3

Proxy signatures are useful in many applications where delegation of signing
rights is important, such as distributed systems, e-cash using smart cards, grid

∗Supported by Protocol Labs grant program RFP-013: Cryptonet network grants.
3This is not to be confused with proxy re-signatures [5, 11], in which Alice gives a

trusted third party a secret key skb→a that is used to transform Bob’s signature into
Alice’s signature. Our focus in this work is on signature delegation.



computing, and workload sharing [26,48,49,58]. For example, Alice can let her
assistant (Bob) reply to (and sign) her emails while on a vacation, or simply
to share the workload of handling emails with Bob. Anonymous delegation
guarantees that for the outsider world, everything appears to be done by Alice
and no one can tell that the task was delegated. Alice may further limit the
delegation rights to a certain task or period of time, and may retain the ability
to revoke the delegation at any moment of her choice.

The concept of proxy signatures was first introduced in [45] by Mambo, Usuda,
and Okamoto. In their seminal work, several types of delegation were presented:
full delegation—where the proxy signer and the original signer share the same
secret key, partial delegation—where the original signer generates a delegation
key from its private key that is given to the proxy signer, and delegation by
warrant—the original signer issues a policy that restricts the power of the proxy
signer with respect to which messages can be signed.

Since then, a large number of followup works emerged on the topic of proxy
signatures analyzing security and efficiency of older schemes, and devising new
constructions, e.g., [6, 22, 37, 39, 40, 46, 59]. Other foundational works focused
on formulating and unifying the security requirements of proxy signatures. For
example, Boldyreva et al. [12] proposed a comprehensive security model for the
delegation-by-warrant. Malkin et al. [44] formulated a notion for hierarchical proxy
signatures, and showed that proxy signatures are equivalent to other signature
notions. Schuldt et al. [54] strengthened security by allowing the adversary
to query arbitrary proxy signing keys. Furthermore, several works focused on
extending proxy signatures to handle different settings and support new features
such as: threshold proxy signatures [36, 56], blind proxy signatures [62], and
anonymous proxy signatures [28].

Motivation. Our motivation for this work stems from recent advances in
distributed systems and Web 3.0 applications, and their need for delegation of
signing rights. In particular, we focus on the properties and capabilities that
such systems require from delegation. We begin with two motivating applications,
outlining these properties, after which we explain how existing solutions are not
suitable as there is no single scheme that supports all the required properties.

Application 1: DeFi and wallet management. In decentralized finance (DeFi),
blockchains are used to facilitate financial services. There is always the question
of whether DeFi can replace traditional banking systems. For example, can
Alice allow a family member to spend currency from her Ethereum account in a
controlled way without giving away her secret key? (in a similar way to issuing
a credit card to a family member, such that the original account owner retains
full control of the credit limit, activation, and deactivation of the new card.)
Delegated signatures can easily enable that: Alice delegates signing rights to her
sister Eve, under a policy ensuring that only transactions with capped values can
be issued, and that delegation is valid only for a given period, e.g., next two days.
Alice can also change her mind and end the delegation earlier if desired. Given
the decentralized nature of blockchain-based systems, Alice wants to do all of
that in a decentralized way without involving any trusted party.

2



Another usecase is related to cold and hot wallets in cryptocurrencies. Cold
wallets are used to store most of the funds and, for security reasons, are not
connected to the Internet. It happens that the hot wallet (a mobile app holding
a small fund amount, for example) may need more funds than anticipated for
some activity. Transferring funds between the two wallets requires the cold
wallet to be connected to the network, which is risky. By delegating the signing
capability to the hot wallet, it can non-interactively transfer funds out of the
addresses/accounts controlled by the cold wallet, reducing security risks.

Application 2: system robusteness. Another important application is related
to system robustness and addressing targeted attacks. Take Byzantine agreement-
based consensus as an example. For each round (or epoch) there will be a
committee to agree on the next block to be mined. A party, say Alice, can
designate a few other parties as backups to sign on her behalf. If Alice’s machine
is down, Bob can sign on her behalf after a preset timeout. So, even if Alice is
a victim of a targeted attack, Bob will do the work until Alice recovers. This
improves liveness as it reduces the chances of having empty rounds which, due
to lack of enough votes or signatures, will not reach agreement on the next block.
Here anonymity is a key; outsiders must not know who the backups are to avoid
targeted attacks against Bob (and other backups) as part of attacking Alice. The
same analogy can be applied to any system in which designated parties must be
available to support particular functionalities.

The previous applications outline several desired properties that delegation
should achieve. Delegation anonymity hides that a delegation took place and
the identities of the proxies, ensuring that to an outsider everything appears
to be done by the original signer. This is particularly important for protecting
privacy and handling targeted attacks. Also, delegation should be of an ephemeral
nature; the proxy signer can exercise the delegated power during a preset time
period. Another important feature is revocability of proxy signing rights. This
could be automatic when the delegation period is over, or on-demand due to
unforeseen circumstances, e.g., punishing a misbehaving proxy or that delegation
is not needed anymore. Moreover, policy enforcement allows the original signer
to restrict the proxy signer’s power, e.g., only messages belonging to a certain
class can be signed.

Furthermore, decentralization and non-interactivity are important features
especially for large-scale distributed systems. That is, only the original signer
and proxy signer are involved; no trusted/semi-trusted entity is needed, and the
original signer can send all the delegation information in one shot; no further
interaction is needed when the proxy signer exercises the delegated rights. These
agree with the spirit of delegation—the original signer can go offline once the
delegation information is sent—and they promote scalability.

Despite the large amount of work around signature delegation in the literature,
there is no single proxy signature scheme that achieves all the properties mentioned
above, and there is no formal notion that covers all these properties (as we
detail in Section 1.2). Full delegation, by giving away the signing key, offers full
anonymity but at the price of losing control over the delegation. Many schemes

3



allow fine-grained conditions for the delegation [22,34,45], but violate anonymity.
Others [6, 28] support controlled and anonymous delegation, but without any
revocation capability or timed notion. At the same time, the schemes that support
timed delegation and/or revocation [42,43,55, 61] either do not offer anonymity,
require interaction between the involved parties, rely on trusted/semi-trusted
third party, or do not have formal security analysis.

These observations raise the following question: Can we construct a decentral-
ized and non-interactive proxy signature scheme that is anonymous, timed and
revocable? and how to formally define its security?

1.1 Contributions and Technical Overview

In this paper, we answer this question in the affirmative by defining a formal
notion for anonymous, timed and revocable proxy signature, and constructing
a proxy signature scheme satisfying all the properties discussed above. We also
discuss challenges that may arise in practice and devise solutions for them. We
elaborate on these contributions and the techniques we develop in what follows.

Formal modeling. Our notion builds on previous definitions for proxy sig-
natures [13,28,44] and extend them to cover the additional properties that we
require. In particular, we generalize the notion of delegation to produce a generic
delegation information rather than restricting these to be tokens or delegation
keys. We also introduce a new algorithm for revocation that covers two revoca-
bility flavors: automatic that ends a delegation when the preset time period is
over, and on-demand to enable the original signer to end a delegation earlier
than envisioned. For policy enforcement, we view the policy as two part: a policy
over time encapsulating the delegation period, and a policy over the message
restricting the class of messages that can be signed. Any, or even both, of these
policies can be empty allowing for unrestricted delegation on any, or both, of
these dimensions.

Our notion includes only one verification algorithm that is used for all signa-
tures regardless of whether they are generated by the original or proxy signer.
Verification is done with respect to the original signer’s public key and does
not involve the proxy signers’ identities. This ensures that signatures are indis-
tinguishable. Our verification algorithm checks compliance with the policy and
that the signature is not revoked. We formally define correctness and security of
proxy signatures, where the latter covers unforgeability under chosen message
attacks, anonymity, revocability, and policy enforcement. We note that none of
the previous definitions in the literature covered all these properties at once, and
none of them defined a time policy or revocation.

Construction. We introduce a new proxy signature scheme that realizes our
notion. Our construction combines Schnorr signature, timelock encryption, and a
public bulletin board to support token-based delegation that is anonymous and
revocable, and allow time and message policy enforcement. In detail, we introduce
a one-time tokenizable digital signature scheme based on Schnorr signatures. This

4



is done via a two-layered approach: the first layer produces a token, while the
second layer produces a signature over the intended message. The token is a
Schnorr signature (over a random value k) using the original signer’s signing
key, thus, only the original signer can produce tokens. The token is then used
as a signing key for another invocation of Schnorr in order to sign the intended
message. Thus, for delegation, the original signer can produce tokens (on her own
without interacting with the proxy) and communicate them securely to the proxy
who can use them to sign messages. Signature verification, naturally, includes
two checks, instead of one as in original Schnorr signatures, to verify correctness
of both layers. This verification is done against the public key of the original
signer, and the signature structure is identical whether it is generated by the
original or proxy signer. In terms of signature size, a signature consists of four
field elements and one group element. This means the cost of delegation consists
of one group element and two field elements compared to the size of original
Schnorr signatures.

We enforce one-time use of a token by publishing the unique value associated
to a valid signature (namely, k mentioned above) on the bulletin board. The
verifier first checks that the k value of the signature is not already on the board,
and if so, the verifier rejects the signature. After verifying a valid signature, the
verifier publishes the new k value on the board. Thus, a proxy signer cannot reuse
a token to sign several messages. This is different from the conventional notion of
one-time signatures, where if a signer signs more than one message, her signing
key will be revealed. Since we work in the delegation model, a proxy signer would
attempt to reveal the original signer’s signing key, and hence the conventional
notion does not work in our setting. Our approach does not reveal the key even
if a proxy signer (locally) uses a token to sign more than one message, and still
only one of these signatures will be accepted by the verifier.

For the timed delegation, we also utilize the public bulletin board along
with the recent notion of timelock encryption [30]. In timelock encryption, a
ciphertext is generated with respect to time ρ. When that time comes, some
public information will become available allowing for decrypting that ciphertext.
In our scheme, to enforce a time period [ρa, ρb], meaning that a proxy signer
cannot exercise the delegation outside this period, the original signer encrypts
the delegation information (composed of u signing tokens) locked to time ρa. She
sends this ciphertext privately to the proxy signer. Only when time ρa comes,
the proxy signer can access these tokens. To enforce the end of the period, which
is basically the automatic revocation of delegation, the original signer encrypts
all unique k values of these tokens in another ciphertext locked to time ρb and
publishes that on the board. When time ρb comes, the board validators will
decrypt these and publish all unused k values preventing the proxy signer from
using any unused tokens after time ρb.

For on-demand revocation, we do that in a similar way to the automatic
revocation. The difference is that the original signer publishes the unused k
values of the delegated tokens on the board. The original signer can do that at
anytime before time ρb, or even before time ρa cancelling the whole delegation.

5



So even if the proxy signer tries to use these tokens to produce signatures, these
signatures will be rejected during verification. We note that existing schemes
that tried to support revocability, and the timed notion, require a trusted third
party, thus introducing trust issues and compromising anonymity. To the best of
our knowledge, we are the first to support these properties in an anonymous and
fully decentralized way.4

For policy enforcement over messages, we follow generic approaches from the
literature [28, 34] for two cases: public policy and private one. Public policy is
enforced using the warrant approach. The original signer encodes the conditions
that message m must satisfy in policym, and signs it using a separate signing key
from the one used in the delegation. Verifying a signature in this case involves
verifying that policym is signed by the original signer and that m satisfies policym.
Private policy is enforced using a non-interactive zero knowledge proof (NIZK)
system. A signature in this case will include a proof π attesting that the signed
message satisfies a private policy policym, and that policym is signed by the
original signer. Thus, verifying a signature involves verifying the proof π.

Security. We formally prove security of our construction based on our notion
for anonymous, timed and revocable proxy signatures. Unfrogeability relies on
the unforgeability of Schnorr signatures in the random oracle model [51], and
the Schnorr knowledge of exponent assumption in the algebraic group model [20].
Anonymity is achieved by having identical signature structure and behavior (i.e.,
with respect to any information published on the board) for the original and
proxy signers, and that verification is identical for both and does not depend
on the identity of the proxy signer. The one-time property relies on the security
of the public bulletin board (by being an append-only, publicly accessible log
maintained by validators with honest majority). Revocability (both automatic
and on-demand) relies on the correctness and CCA security of timelock encryption
as well as the security of the board. Lastly, policy enforcement relies on the
security of digital signatures (for public warrants) or security of NIZKs (for private
policies), CCA security of the timelock encryption scheme, and the security of
the board.

Challenges. A few challenges arise when considering the use of our scheme
in practice. These mainly stem from relying on the bulletin board to enforce
the time notion and the one-time property. Examples include synchronization
issues of the board and whether delays in publishing the unique values of the
signatures may allow a malicious proxy signer to reuse a token several times
instead of once. Another is related to denial of service attacks against the signers,
where an attacker may intercept a signature and publish its k value before being
verified, thus invalidating a legitimate signature. This is in addition to anonymity

4Note that we assume the bulletin board to be an append-only, publicly-accessible
log that is generally instantiated as a blockchain maintained by a set of miners or
validators rather than a single trusted party. This is done to achieve decentralization
in the same spirit as in blockchain-based systems. The time ρ for us in this case is a
round number from the blockchain, i.e., a block with a given index.

6



concerns related to mass publication of k values during revocation, which may
reveal that a delegation took place. We discuss these and other challenges, along
with solutions to handle them in Section 5.

Threshold delegation. An interesting direction is to delegate signing rights
to a committee rather than a single party [36], and require that at least t parties
participate in signing a message. This trust distribution is valuable in many
applications, e.g., requiring several hot wallets (owned by the same user) to sign
in order to get funds out of a cold wallet. We briefly discuss how to realize this as
an extension to our proxy signature scheme, based on prior works on threshold
key distribution and threshold Schnorr signature.

Lastly, we note that the techniques we devise to support the timed/revocability
notion could be of independent interest; they could be used to support these
features for other cryptographic functionalities. Same for our tokenized version of
Schnorr signatures; it also could be of independent interest allowing for anonymous
delegation without requiring a bulletin board (less restricted delegation that does
not involve time or revocation). A proxy signer (or even the original signer herself)
can use a single token to sign any number of messages without compromising
security (i.e., without revealing the original signers’ signing key or the token).
Furthermore, the reliance on Schnorr signature, which is a widely studied and
used cryptographic primitive, favors construction simplicity. This could also make
it easier for our construction to be adopted in practice by systems that use
Schnorr signatures (e.g., Bitcoin is awaiting the adoption of Schnorr signatures
as proposed in BIP 340 [60]).

1.2 Related Work

We review existing proxy signature schemes in terms of the properties they
support (based on the list of properties that we aim to achieve), showing that
none of them support all these properties. Then we review works on relevant
notions, including one-time signatures and timed cryptographic primitives, and
discuss how our work is positioned with respect to these efforts.
1.2.1 Proxy signatures

Anonymity. Anonymity is usually not supported since the proxy signer’s key is
public and needed in the verification process, e.g., [45]. Fuchsbauer et al. [28, 29]
address this issue by unifying the notion of proxy and group signatures, and
they consider traceability where a trusted authority holding a trapdoor can
compromise anonymity if needed. At a high level, the signature is basically a
NIZK attesting that the signer belongs to a group (recognized by the original
signer) without revealing the group public keys. Beside introducing a centralized
entity, this scheme does not support revocation or timed delegation. Functional
signatures [15] allow deriving a secret key skf , from the original signer’s key,
so a proxy signer can sign a message m only if f(m) = 1 (where f represents
the policy). Similarly, the signature is a NIZK attesting that the proxy has skf
and that m satisfies f . Delegatable functional signatures [6] utilize signature

7



malleability to allow delegation (the original signer generates a signature over
a message m that a proxy signer can maul to become a signature over m′ that
satisfies f). Both notions support delegation anonymity (all signatures are verified
against the original signer’s key) but not timed or revocable delegation. Our
anonymous proxy signature scheme supports timed and revocable delegation.5

Time-bounded delegation. The few works that discussed a timed notion for
delegation are limited. Lu et al. [43] add the delegation period to the warrant,
and relies on a trusted server to enforce this period by issuing a timestamp
for each signature a proxy signer wants to generate. Sun et al. [55] adopt an
interactive delegation process; a verifier asks the proxy signer to sign a message,
and one of these parties generates a timestamp that the other verifies. Beside
having a trusted server and the interactivity requirement, these schemes do not
support anonymity and do not have formal security analysis. We support timed
delegation in a decentralized and non-interactive way, through the use of a public
bulletin board and timelock encryption.

Revocation. Techniques for revoking delegation rights [45, 61] are based on
changing the original signer’s key, so all delegated signatures will be rejected,
or on creating a public list of revoked proxy signers’ keys. The scheme in [61]
use revocation periods (or epochs), where for each signature, the proxy signer
generates a proof that it is not on the epoch revocation list (proxy signers’ public
keys are known). These approaches compromise anonymity. Other schemes [21,
42, 43] rely on a (semi-)trusted server to enforce revocation. The proxy signer
must contact this server when generating a signature: the original signer updates
the server with all revoked proxy signers to deny their requests. This approach
introduces centralization and trust issues, which we avoid in our scheme and
without requiring the original signer to change her signing key.

Policy enforcement. Warrants are used to enforce a policy over delegation,
and are usually public—so a verifier rejects any signature over a message that
does not obey the warrant [13, 44]. Supporting private warrants mainly relies on
non-interactive zero knowledge proofs (NIZKs) to show that a signed message
belongs to a hidden (committed) set of messages [35], on polynomial commitments
to restrict the proxy signer to sign messages following a specific template [34],
or on anonymous non-interactive credentials [22]. However, non of these scheme
offer proxy signer’s anonymity. Functional signatures and delegatable functional
signatures [6, 15], mentioned earlier, support private policy and proxy anonymity
using NIZKs to prove that message m satisfies the policy encoded as function
f . In terms of policy enforcement over the signed message, our work use these
generic approaches, namely public warrants or private ones via NIZKs, but it
adds the support of anonymous, timed and revocable delegation as mentioned
above.

5As for accountability or traceability, we leave it as a future work since we want to
avoid relying on a trusted entity to enforce that.

8



1.2.2 One-time Signatures
One-time signatures are schemes that allow signing only one message using a
given signing key [2,24,38]. The one-time notion is enforced by the fact that if
more than one signature is produced, these signatures can be used to reveal the
signing secret key. Such a notion does not work in the anonymous delegation
setting: the signing keys are tied to their own public keys (that are used in
verification) rather than to the original signer’s public key. Even if there is a
way to produce tokens tied to the original signer public key, under this one-time
security guarantee, a proxy signer could reuse a token in order to reveal the
original signer’s signing key.

One-time signatures have also been investigated in the quantum model [3,
10, 19] and permit signature tokenization; the original signer generates a signing
token that a proxy signer can use to sign a message m. The one-time is achieved
by generating an unclonable (quantum state) token that self-destructs once it is
used. Our goal is to support delegatable one-time signing tokens in the classical
model. Furthermore, none of these schemes support timed delegation; a proxy
signer can use the token at anytime. While some of these works discuss a limited
notion of revocability that is interactive; the original signer notifies the proxy
signer that she wants to revoke, and the proxy signer has to produce a proof
that the token has been used or simply return the physical token. Our revocation
notion does not require any interaction with the proxy signer.

1.2.3 Timed Cryptographic Primitives
There are many versions of conventional cryptographic primitives that support
a time notion (we briefly review some of them here). These started with time
capsules and timed commitments [7,14,52], which can be opened after performing
a sequential computation for a preset time period. More recent notions include,
for example, short lived proofs and signatures [4] that support deniability. That
is, a proof or signature is valid for a time period—the time needed to open the
capsule—after which it can be forged. Timed signatures [31, 57] allow locking
a signature on a known message for a given amount of time through means
of times capsules as well. Time-release encryption allows encrypting messages
to the future such that before that time even the designated recipient cannot
decrypt. Generally, existing constructions either relied on time capsules, e.g. [52],
or involved a trusted server, e.g. [17].

Timelock encryption (TLE) aims to avoid the high cost of opening the capsules
and the server trust assumption. TLE constructions rely on a reference time
realized by a blockchain. Liu et al. [41] use a blockchain along with witness
encryption to build a TLE scheme. In encryption to the future [16] similar tools
are used to encrypt messages that can be decrypted by a future committee to be
elected. McFLY [23] uses signature-based witness encryption combined with a
BFT (Byzantine fault tolerant) blockchain, so the decryption of the message is
piggypacked on the tasks a blockchain committee (elected at a certain time) is
doing. Another timelock encryption scheme is proposed in [30] that relies on a
(threshold) random beacon to produce decryption information at certain time
allowing anyone to decrypt. Lastly, Abadi et al. [1] uses publicly verifiable random

9



beacons to realize the notion of timestamping for signatures and zero-knowledge
proofs. Our work extends these efforts to involve a timed notion for delegation
using means of TLE that also enables us to support decentralized revocation.

2 Preliminaries

2.1 Notation

We denote the natural numbers by N, the integers by Z, and the integers modulo
some q by Zq. Elements of Zq are denoted lowercase. Elements in a multiplicative
group G of order q generated by generator G ∈ G are denoted by capital letters.
We let λ ∈ N denote the security parameter, pp denote the public parameters,
and PPT be a shorthand for probabilistic polynomial time.

We say that a function is negligible in λ, and we denote it by negl(λ), if it is a
O(λ−c) for any fixed constant c. We also say that a probability is overwhelming
in 1λ if it is 1− negl(λ).

2.2 The Schnorr Digital Signature Scheme

We recall the Schnorr digital signature scheme, which we rely on in our con-
struction as mentioned previously. Schnorr signature is obtained by applying the
Fiat-Shamir transform [25] to the Schnorr identification scheme [53]. We adopt
the formulation from [47] that mitigates related key attacks.

Related key attacks. In related key attacks (RKA), formalized by Bellare and
Kohno [8], an adversary may alter a (hardware-stored) secret key and obtain
signatures under the modified key. This notion captures security against practical
attacks such as tampering or fault injection. Morita et al. [47] showed that
the original version of Schnorr signature is vulnerable to related key attacks,
and proposed an easy fix: include the public verification key in the challenge c
component as shown below.

For a security parameter λ, let G be a cyclic group of a prime order q and
a generator G, and H : {0, 1}∗ × G2 → Zq be a hash function. The Schnorr
signature scheme is a tuple of three algorithms ΣSchnorr = (KeyGen,Sign,Verify)
defined as follows:

– Schnorr.KeyGen(1λ): On input the security parameter λ, choose uniform
x ∈ Zq and compute X = Gx. Set the secret signing key sk = x and the
public verification key vk = X.

– Schnorr.Sign(sk,m): On input the secret key sk = x and the message m,
choose uniform k ∈ Zq. Compute K = Gk, X = Gx, c = H(m,X,K), and
s = k + cx mod q. Output the signature σ = (c, s).

– Schnorr.Verify(vk,m, σ): On input the public key vk = X, the message m,
and signature σ = (c, s) over m, compute K = Gs ·X−c and c′ = H(m,X,K),
then output 1 if c = c′.

10



Correctness and security. It is easy to see that for any correctly generated
signature, Verify will always output 1. Existential unforgeability against adaptive
chosen message attacks (EUF-CMA) of Schnorr signature in the random oracle
model has been formally proved in [51] under the Discrete Logarithm assumption
by relying on the forking lemma.

2.3 Timelock Encryption

Timelock Encryption (TLE) is a cryptographic primitive in which messages can
be encrypted towards a time ρ such that they can only be decrypted after that
time. This time ρ is basically a round number (that could be realized using, e.g.,
a blockchain). A time-related information πρ is published to enable decryption at
each time ρ. We are interested in a publicly decryptable variant of TLE, where
ciphertexts can be decrypted by any party given only πρ. We adopt the definition
in [30] while using a more generalized time information production algorithm
(i.e., RoundBroadcast) as shown below.6

Definition 1 (Timelock Encryption (TLE)). A Timelock Encryption scheme
E is a tuple of five polynomial-time algorithms:

TLE.Setup(1λ)→ (pp, s): a probabilistic algorithm that takes as input the security
parameter λ, and outputs public parameters pp and a private key s.7

TLE.RoundBroadcast(s, ρ)→ πρ: a deterministic algorithm that takes as input the
round number ρ and a private key s, and outputs the round-related decryption
information πρ.

TLE.Enc(ρ,m)→ (ctρ, τ): a probabilistic algorithm that takes as input the round
number ρ and a message m, and outputs a round-encrypted ciphertext ctρ
along with trapdoor τ for early opening.

TLE.Dec(ρ, πρ, ctρ)→ m′: a deterministic algorithm that takes as input the round
number ρ, the round-related decryption information πρ, and a ciphertext ctρ,
and outputs a message m′.

TLE.PreOpen(ctρ, τ)→ m′: a deterministic algorithm that takes as input a ci-
phertext ctρ and a trapdoor τ , and outputs a message m′.

Correctness requires that for all λ, all (pp, s)← Setup(1λ), all ρ and all m, if
(ctρ, τ)← Enc(ρ,m) and πρ ← RoundBroadcast(s, ρ), then:

Dec
(
ρ, πρ, ctρ

)
= PreOpen

(
ctρ, τ

)
= m

For security, various security models have been proposed and analyzed in [18].
We require a TLE scheme to be secure against a CCA attacker (given that anyone
can decrypt once the decryption information becomes available, this implies that
the attacker has access to the decryption oracle).

6The definition in [30] capture a threshold-based algorithm definition where multiple
parties generate the timing information. We keep the definition general and leave any
such details to the instantiation.

7The public parameters pp are implicitly input to all subsequent algorithms.

11



In our proxy signature scheme, we use TLE in a blackbox way by invoking the
algorithms defined above. We leave any details of, e.g., model and security of the
blockchain and time information, to the concrete instantiation (we require this
instantiation to be fully decentralized and publicly verifiable). Gailly et al. [30]
develop a CCA-secure TLE scheme that realizes the notion above with these
requirements. Furthermore, McFly [23] in a way can be used to realize this notion
as well: the committee elected at round ρ will decrypt the ciphertext making
it available to everyone, and the original signer who knows the plaintext in our
setup can execute the PreOpen by simply revealing that plaintext.

3 Definitions

In this section, we formulate a notion for anonymous, timed and revocable proxy
signature scheme. We build on previous definitions for proxy signatures [13,28,44]
and extend them to cover the additional properties we require.

Definition 2. An anonymous, timed and revocable proxy signature scheme Σ =
(Setup, KeyGen,Sign,Delegate,DegSign,Revoke,Verify) is a tuple of seven PPT
algorithms defined as follows:

Setup(1λ)→ pp: Takes the security parameter λ as input, and outputs a set of
public parameters pp.8

KeyGen(1λ)→ (sk, vk): Takes the security parameter λ as input, and outputs a
signing key sk and a verification key vk.

Sign(sk,m, policy)→ (σ, θ): Takes the signing key sk, a message m, and a policy
policy as inputs, and outputs a signature (σ, θ) over m (where σ is the part
computed over m and θ contains information needed to verify σ).9

Delegate(sk, vk, degspec)→ (degInfo, rk): Takes as inputs the signing and verifi-
cation keys (sk, vk), and delegation specifications degspec (i.e., any auxiliary
information or policies over the time period, the messages that can be signed,
etc.). It outputs delegation information degInfo and a revocation key rk.

DegSign(m, degInfo)→ (σ, θ): Takes a message m and the delegation information
degInfo as inputs. It outputs a signature (σ, θ) over m.

Revoke(degInfo, rk)→ revState: Takes the delegation information degInfo and re-
vocation key rk as inputs, and outputs revocation state revState.

Verify(vk,m, σ, θ, revState)→ 1/0: Takes as inputs the verification key vk, a mes-
sage m, a signature (σ, θ) over m, and the revocation state revState. It outputs
1 if the signature is accepted, and 0 otherwise.

8The public parameters pp are implicitly input to all subsequent algorithms.
9Having these two parts allows us to formulate our delegation-related definitions in

a cleaner way since part of θ comes from the delegation, while σ is produced when the
message is ready to be signed.

12



We require the scheme Σ to satisfy the following properties: correctness,
existential unforgeability under chosen message attacks, anonymity, revocability,
and policy enforcement, which we define below.

As shown above, beside the message to be signed and the secret signing key,
Sign also takes a policy as input. This specifies any conditions that the produced
signature must be compliant with in order to be accepted. We view a policy
to be mainly composed of two sub-policies (policym, policyt): policym determines
which messages can be signed—so a signature over m /∈ policym will be rejected,
while policyt determines the time period—so a signature produced and verified
outside this period will be rejected. Although the latter is primarily needed for
delegation (to enforce the timed notion) we include it here to satisfy anonymity.
That is, all signatures whether produced by the original or proxy signer will have
the same structure. Our definition is general in the sense that the term policy is a
generic one that could include additional polices, other than policym and policyt,
if desired.

For delegation, Delegate takes as input the delegation specifications degspec
that include any auxiliary information needed to process the delegation, and any
policy the original signer wants to enforce over the delegation (again, we focus on
policym and policyt in this work). Delegate produces the delegation information
degInfo that contains all information a proxy signer needs to sign on behalf of the
original signer, e.g., keys or signings tokens, and the policies to be enforced. Thus,
both Sign and DegSign (the latter is used by the proxy signer to sign) take the
policy as input. The original signer can produce any policy she wishes, where the
empty policy policy = ⊥ means that any message can be signed and signatures
can be produced/verified at anytime.

The signature produced by Sign and DegSign is composed of two fields σ and
θ. These are tied to each other where σ is computed over the message m, and θ
includes all information needed to verify σ and to ensure that the signature is
compliant with the specified policy. As shown, our definition contains one verify
algorithm that is used to verify any signature, whether produced by the original
or proxy signer. This is done to support anonymity: both signatures will have
same format (so they are indistinguishable) and both are verified against the
same verification key of the original signer. Verify will reject any signature that
does not satisfy the time and message policies. Furthermore, Verify takes the
revocation state revState as input, and thus it checks that the signature is not
revoked (and so if revoked, the signature will be rejected). Combined with the
Revoke algorithm, our definition captures the capability of revoking a delegation
(using the revocation key rk produced by Delegate).

Now we define the properties listed in Definition 2. We use code-based games
(or experiments) [9] to formulate our security notions; an experiment Expsec

Σ,A is
played with respect to a security notion sec and an adversary A against a scheme
Σ. We first introduce some intuition for each security property, and then give a
formal definition.
Correctness. Informally, correctness implies that a signer holding a valid secret
key or delegation information can always produce a valid signature (σ, θ) over a

13



Exp ProxyEUF-CMA
Σ,A (λ)

1 : Lsign ← ∅, Ldeleg ← ∅

2 : pp← Setup(1λ)

3 : (sk, vk)← KeyGen(1λ)

4 : O ← {OSign, ODelegate}

5 : (m∗, σ∗, θ∗)← AO(vk)

6 : if m∗ ∈ Lsign ∨ θ∗ ∈ Ldeleg

7 : return 0

8 : if Verify(vk,m∗, σ∗, θ∗,⊥) = 0

9 : return 0

10 : return 1

OSign(m, policy)

1 : (σ, θ)← Sign(sk,m, policy)

2 : Lsign ← Lsign ∪ {m}
3 : return (σ, θ)

ODelegate(vk, degspec)

1 : (degInfo, rk)← Delegate(sk, vk, degspec)

2 : Ldeleg ← Ldeleg ∪ {degInfo}
3 : return (degInfo, rk)

Fig. 1: Existential unforgeability under chosen message attacks.

message m such that Verify will accept that signature if: the signature verifies
correctly against vk; it is not revoked based on the latest version of revState; and
that it does not violate the specified policy.

Formally, for all λ, all m ∈ {0, 1}∗, any policy policy = (policym, policyt) such
that m ∈ policym and the time of signing/verification does not violate policyt, any
delegation specifications degspec such that policy ∈ degspec, and the latest public
revocation state revState based on which the signature (σ, θ) is not revoked, the
following probability is 1:

Pr

Verify(vk,m, σ, θ, revState) = 1

pp← Setup(1λ)
(sk, vk)← KeyGen(1λ)

(degInfo, rk)← Delegate(sk, vk, degspec)
(σ, θ)← Sign(sk,m, policy) ∨
(σ, θ)← DegSign(m, degInfo)


Existential unforgeability. This property states that no adversary can produce
a valid signature without the knowledge of at least one of the following: the
signing key sk or delegation information degInfo created with respect to (sk, vk).

Formally, for all λ, all m ∈ {0, 1}∗, and any PPT adversary A, there exists a
negligible function negl such that:

Pr[ExpProxyEUF-CMA
Σ,A (λ) = 1] ≤ negl(λ)

where ExpProxyEUF-CMA
Σ,A is the experiment of existential unforgeability under cho-

sen message attacks defined in Figure 1, and the probability is taken over all
randomness used in the experiment.

We note the following in the description of ExpProxyEUF-CMA
Σ,A . First, checking if

the forged signature has been produced by a valid delegation obtained through
ODelegate is done by checking if θ∗ is in the list of delegation queries Ldeleg. That

14



Exp DegAnon
Σ,A (λ)

1 : b
$←− {0, 1}

2 : pp← Setup(1λ)

3 : (sk, vk)← KeyGen(1λ)

4 : O ← {ODelegate, OSign}

5 : (m∗, degspec)← AO(vk)

6 : (σ̄, θ̄)← Chalb(m
∗, degspec)

7 : b∗ ← AO(σ̄, θ̄)

8 : if b∗ = b

9 : return 1

10 : return 0

OSign(m, policy)

1 : (σ, θ)← Sign(sk,m, policy)

2 : return (σ, θ)

ODelegate(vk, degspec)

1 : (degInfo, rk)← Delegate(sk, vk, degspec)

2 : return (degInfo, rk)

Chalb(m
∗, degspec)

1 : if b = 0
2 : Extract policy from degspec

3 : (σ0, θ0)← Sign(sk,m∗, policy)

4 : if b = 1
5 : (degInfo, rk)← Delegate(sk, vk, degspec)

6 : (σ1, θ1)← DegSign(m∗, degInfo)

7 : return (σb, θb)

Fig. 2: Anonymity for delegation.

is, degInfo will contain (perhaps part of) θ needed to verify a corresponding σ
produced using degInfo.10 Second, the revocation state revState is empty when
verifying the forged signature. We define the security notion of the revocation
property separately, thus we do not include it here.

Anonymity. This implies that the verifier, or any adversary, will not be able
to infer any information about a delegation that took place (one that he does
not know its degInfo). In other words, all signatures will appear as if they were
produced by the original signer—they do not reveal anything about the identity
of the proxy signers or even that there are proxy signers, i.e., delegations, in the
first place. Thus, all signatures are indistinguishable and all are verified against
the original signer’s verification key vk. Given that the original signer is the one
who produces delegation in a non-interactive way, only her knows that Delegate
was invoked. Also, the produced degInfo is transmitted to the proxy signer over
a secure channel since it is secret information. Thus, outside these two parties,
no one will be able to tell that such information was produced or transferred.
Thus, by having indistinguishable signatures that are verified in an identical way,
delegation anonymity is satisfied.

10Note that this does not mean that θ can identify a delegation, thus compromising
anonymity. It just means that parts of the information required for verifying signatures
produced using a delegation are generated by the original signer.

15



Exp DegRev
Σ,A (λ)

1 : pp← Setup(1λ)

2 : (sk, vk)← KeyGen(1λ)

3 : O ← {OSign, ODelegate}

4 : degspec← AO(vk)

5 : (degInfo, rk)← Delegate(sk, vk, degspec)

6 : revState← Revoke(degInfo, rk)

7 : (m∗, σ∗, θ∗)← AO(vk, degInfo)

8 : if θ∗ /∈ degInfo

9 : return 0

10 : if Verify(vk,m∗, σ∗, θ∗, revState) = 0

11 : return 0

12 : return 1

Fig. 3: Delegation revocation (OSign and ODelegate are as defined in Figure 2).

Formally, for all λ, all m ∈ {0, 1}∗, and any PPT adversary A, there exists a
negligible function negl such that:

Pr[ExpDegAnon
Σ,A (λ) = 1] ≤ 1

2
+ negl(λ)

where ExpDegAnon
Σ,A is the experiment of delegation anonymity defined in Figure 2,

and the probability is taken over all randomness used in the experiment.
As shown in the figure, the adversary A will choose a message m∗ and

delegation specifications degspec (where the latter includes a policy denoted as
policy). The challenger, based on the value of b, signs m∗ using either delegation
information degInfo generated based on degspec, or the signing key sk (hence, no
delegation) and returns the signature to A. The adversary A is challenged to tell
which method was used for signing.

Revocability. Informally, this implies that an adversary A cannot produce a
valid signature that will convince the verifier using a revoked delegation.

Formally, for all λ, all m ∈ {0, 1}∗, and any PPT adversary A, there exists a
negligible function negl such that:

Pr[ExpDegRev
Σ,A (λ) = 1] ≤ negl(λ)

where ExpDegRev
Σ,A is the experiment of delegation revocation defined in Figure 3,

and the probability is taken over all randomness used in the experiment.
As shown in the figure, A chooses the delegation specifications for the delega-

tion that will be created. This delegation is then revoked, and A is challenged to
produce a valid signature (that will be accepted) using this revoked delegation.

16



Exp DegPolicy
Σ,A (λ)

1 : pp← Setup(1λ)

2 : (sk, vk)← KeyGen(1λ)

3 : O ← {OSign, ODelegate}

4 : degspec← AO(vk)

5 : (degInfo, rk)← Delegate(sk, vk, degspec)

6 : (m∗, σ∗, θ∗)← AO(vk, degInfo)

7 : if θ∗ /∈ degInfo

8 : return 0

9 : Extract policy = (policym, policyt) from degspec

10 : if Verify(vk,m∗, σ∗, θ∗,⊥) = 1 ∧
(m∗ /∈ policym ∨ now /∈ policyt)

11 : return 1

12 : return 0

Fig. 4: Delegation policy enforcement (OSign and ODelegate are as defined in
Figure 2).

Thus, the game checks that indeed the signature (σ∗, θ∗) returned by A is pro-
duced using the same revoked degInfo. This is done by checking that θ∗ ∈ degInfo
(where as noted earlier, the verification information θ—or part of it—is included
in degInfo).

Policy enforcement. Informally, this implies that an adversary holding a
valid delegation (based on specifications of her choice degspec including a policy
policy) cannot produce a signature, that will be accepted, such that policy is not
satisfied. This covers violating the policy over the message or the time period.

Formally, for all λ, all m ∈ {0, 1}∗, and any PPT adversary A, there exists a
negligible function negl such that:

Pr[ExpDegPolicy
Σ,A (λ) = 1] ≤ negl(λ)

where ExpDegPolicy
Σ,A is the experiment of delegation policy enforcement defined in

Figure 4, and the probability is taken over all randomness used in the experiment.
As shown in the figure, the experiment checks that the signature returned

by the adversary is produced using the delegation created based on degspec
(using the same technique in Figure 3). This is done to rule out the trivial attack
in which A submits policy and then creates a valid signature compliant with
a different policy′ ̸= policy but not compliant with policy (and hence, wins the
game). We use the variable now to refer to the current time, which is publicly

17



accessible in the system. Thus, to check that the time policy is violated we check
that now is outside the time period specified in policyt.11

4 Construction

We present a construction for an anonymous, timed and revocable proxy signature
scheme that realizes the notion defined in the previous section. It relies on
distributing one-time signing tokens to the proxy signers that they can use to sign
messages. Towards that, we introduce a modified version of Schnorr signature
that is tokenizable, and employ a public bulletin board and timelock encryption
to enforce the one-time use of signing tokens as well as the timed and revocable
properties for delegation.

The full construction is shown in Figures 5 and 6. To simplify the discussion,
we present our scheme with only the time policy, as shown in these figures, and
we defer enforcing a policy over the messages until the end. We organize the
discussion in the section based on the features our scheme supports.

One-time tokenizable signatures. We introduce a one-time tokenizable
digital signature scheme based on Schnorr signatures. This is done via a two-
layered approach: Layer 1 produces a token which is a Schnorr signature over a
fresh random value, while layer 2 uses the token to produce a signature over the
intended message. Thus, verifying a signature involves verifying the validity of
both signature layers.

For the signing algorithm, we first generate some "token" value z, using the
signing key sk = x, that is actually a Schnorr signature on a random element
k with a secret randomness r. In particular, the signature requires computing
w = H(k,X,R), where R = Gr. Looking ahead, the tuple (z, w, k) will be the
token given to the proxy signer in the delegation. To sign a message m, the original
signer uses z as a secret key and produces another Schnorr signature over m with
randomness e as shown in the figure.12 So this signature will be over the value
c = H(m,Z,E), where Z = Gz. The output signature is (σ = (w, c, s), θ = (k, Z)).

The verification algorithm (in Figure 6) use the public key vk = X to verify
a signature with the format above. In a way, it must verify the two layers of
the Schnorr signature applied to the message. This is done by computing the
randomness R and E and then verify that the signed hashes, namely, w and
c, found in the signature are indeed correct hashes based on the computed
randomness.

The one-time property is enforced in the verify algorithm as follows. Recall
that the value k is picked fresh for each new signature (and subsequently for each
signing token), meaning that it is a unique value tied to the signature. When
accepting a valid signature, the verifier will post k on the bulletin board, and
only valid signatures with fresh k values that do not appear on the board will

11As mentioned earlier, if more policies are needed, other than policym and policyt,
these can be added to the definition. In this work we focus on these two policies.

12Note that the value z is also a random element in Zp.

18



Let λ be a security parameter, S be the original signer, P be the proxy
signer, and TLE be a timelock encryption scheme as defined in Definition 1.
Construct an anonymous, timed and revocable proxy signature scheme Σ =
(Setup,KeyGen, Sign,Delegate,DegSign,Revoke,Verify) as follows:

Setup(1λ): On input the security parameter λ, set G to be a cyclic group of a prime
order q with a generator G ∈ G and H : {0, 1}∗ ×G2 → Zq to be a hash function,
initialize state = {}, and invoke TLE.Setup(1λ) to obtain the public parameters pp.

KeyGen(1λ): On input the security parameter λ, choose uniform x ∈ Zq, then
compute X = Gx. Output the signing key sk = x and the verification key vk = X.

Sign(sk,m): On input the signing key sk = x and some message m, do:
1. Choose uniform k, r, e ∈ Zq, compute R = Gr, E = Ge

2. Compute w = H(k,X,R), z = (r + wx) mod q, and Z = Gz

3. Compute c = H(m,Z,E) and s = (e + cz) mod q (if z = 0 or s = 0 start
again with fresh r and e)

4. Set σ = (w, c, s), θ = (k, Z)
5. Output the signature (σ, θ)

Every now and then, S either (1) populates a set klist from the stored k values and
fresh values, encrypts it as (ctb, τb) = TLE.Enc(klist, ρb), where ρb is some future
round number, and then posts ctb on the board. Or (2) generates some fresh klist
and posts it on the board.

Delegate(sk, vk, degspec): On input the keypair (sk = x, vk = X) and delegation
specifications degspec = (u, [ρa, ρb]), where u ∈ N and [ρa, ρb] is the delegation
period, do the following:
1. Set klist = {}
2. Do the following for i ∈ {1, . . . , u}:

(a) Choose uniform ki, ri ∈ Zq

(b) Compute Ri = Gri and wi = H(ki, X,Ri)
(c) Compute zi = (ri + wix) mod q (if zi = 0 start again with fresh ri)
(d) Set ti = (zi, wi, ki) and klist = klist ∪ {ki}

3. Compute two ciphertexts: (cta, τa) = TLE.Enc(t1 ∥ · · · ∥ tu, ρa) and (ctb, τb) =
TLE.Enc(klist, ρb)

4. Set degInfo = (ρa, ρb, cta)
5. Output (degInfo, ctb ∥ τb)

S stores the ciphertext ctb and the trapdoor τb to be used for revocation if needed
(τa is simply dropped as it is not needed), posts (ρb, ctb) on the board, and sends
degInfo to P .

Fig. 5: A construction for anonymous, timed and revocable proxy signatures—continued
in Figure 6.

be accepted. Consequently, a verifier must first check whether k is on the board
state state, and if yes, the signature will be rejected. Looking ahead, this will
allow detecting a proxy signer that tries to use the same token to sign several
messages.

19



DegSign(m, degInfo): On input a message m and delegation information degInfo, P
does the following (let ρnow be the current round number):
1. If ρnow < ρa or ρnow > ρb, then do nothing
2. If ρa ≤ ρnow ≤ ρb, then:

(a) If degInfo = (ρa, ρb, cta), then retrieve πρa from the board and set degInfo =
(ρa, ρb,TLE.Dec(ρa, πρa , cta))

(b) Pick an unused signing token t = (z, w, k) from degInfo
(c) Compute Z = Gz

(d) Choose uniform e ∈ Zq and compute E = Ge

(e) Compute c = H(m,Z,E), and s = e+ cz mod q (if s = 0 start again with
a fresh e)

(f) Set σ = (w, c, s), θ = (k, Z) and output (σ, θ)

Revoke(degInfo, rk): On input degInfo = (ρb, ctb) and revocation key rk, do (let ρnow

be the current round number):
1. If ρnow ≥ ρb, then retrieve πρb from the board and compute klist =

TLE.Dec(ρb, πρb , ctb)
2. If ρnow < ρb, then use rk = τb to compute klist = TLE.PreOpen(ctb, τb)
3. Add all k values such that k ∈ klist ∧ k /∈ state to the board state state

Verify(vk,m, σ = (w, c, s), θ = (k, Z), revState = state): On input the verification
key vk = X, the message m, signature (σ = (w, c, s), θ = (k, Z)) over m, and the
revocation information recorded on state, if k ∈ state, then output 0. Else, add k
to state and do the following:
1. Compute R = Z ·X−w and E = Gs · Z−c

2. Output 1 if and only if w = H(k,X,R) ∧ c = H(m,Z,E).

Fig. 6: A construction for anonymous, timed and revocable proxy signatures (cont.).

To preserve delegation anonymity, every now and then the original signer will
post k values (either these that he used when signing or freshly chosen values)
on the board. This also can take two forms: publishing a ciphertext (locked to a
future time) of these values on the board, or publish a fresh list directly. This is
needed to mimic the behavior of signatures produced by delegation as we will
see shortly, and thus, satisfy the indistinguishability of signatures.

Timed delegation. To delegate signing, and as shown under the Delegate
algorithm in Figure 5, the original signer picks the delegation specification
including the number of signing tokens to be generated u and the delegation
period. The original signer uses her signing key sk = x to generate u fresh signing
tokens, denoted as t1, . . . , tu, for the proxy signer. Each of these tokens contains
z (first layer Schnorr signature over k), and the corresponding w and k values.

Our goal is to enforce a time period over the delegation without the help of
any trusted/semi-trusted party. This means that the proxy signer cannot use the
signing tokens outside the time period specified by the original signer. Here we
utilize a recent notion of timelock encryption TLE (defined in Section 2) in the
blockchain model (where the bulletin board can be instantiated as a blockchain).

20



We represent the time period [a, b] in terms of block indices, or rounds, covering
the intended period. That is, this period will be [ρa, ρb], where ρa (respectively
ρb) is the round number during which the block with index a (respectively index
b) is mined. To automatically force a proxy signer to use the signing tokens only
during [ρa, ρb], we propose the following. The original signer uses the TLE scheme
to encrypt the tokens t1 ∥ · · · ∥ tu and produce cta (with a secret trapdoor τa that
will not be used) such that when ρa comes, and so the decryption information
πρa

becomes available, the proxy signer can decrypt cta to retrieve the tokens.
This enforces the beginning of the time period. To enforce the end of the period,
recall that any signature with a k value that appears in state (the board state)
will be rejected. Thus, we let the original signer use the TLE scheme to produce
another ciphertext for time ρb, denoted as ctb, encrypting the list of k values of
the tokens, denoted as klist, and post ctb on the board. When time ρb comes, and
so πρb

becomes available, the board validators will be able to decrypt ctb and
publish all unused k values in klist on the board (this is included under Revoke
in Figure 6). This will prevent the proxy signer from using any of the unused
tokens after time ρb, and thus enforcing the end of the delegation period.

The original signer stores ctb (and any additional information he might need
to identify the delegation associated with ctb) and the secret trapdoor of ctb,
denoted as τb, to be used for early revocation (if needed) as we explain shortly.
He then sends the delegation information degInfo = (ρa, ρb, cta) to the proxy
signer (over a secure channel since this is secret information), and posts (ρb, ctb)
on the board.

Delegated signing. As shown in Figure 6, once time ρa comes, the proxy signer
will be able to decrypt cta, by retrieving the decryption information πρa

that will
become publicly available. This will reveal degInfo containing the signing tokens.
The proxy signer can use any of these tokens to sign a message m. In order
to do so, the proxy signer chooses a random e and computes a signature using
any of the unused (k,w, z) in degInfo. This produces the second layer Schnorr
signature. As shown, this signature has the same structure as the signatures
that the original signer would produce, and will be verified using the same Verify
algorithm.

Revocation. We support decentralized and anonymous revocation that does
not rely on any trusted/semi-trusted party, and does not reveal the proxy signer
identity or that a delegation took place. We have two types of revocation:
automatic, when the delegation period is over and it is enforced by the timed
property discussed above, and on-demand, where the original signer can end
the delegation early (before time ρb) using the trapdoor τb associated to the
delegation. Both are done by decrypting ctb and publishing all unused k values
on the board, preventing the proxy signer from using them (recall in Verify any
signature with a k value that is already on the board will be rejected). The
difference is that for automatic revocation, decryption is done using πρb

that will
become publicly available at time ρb. While for on-demand revocation, that only

21



the original signer can execute, the trapdoor τb of degInfo (in particular ctb) will
be used to PreOpen ctb.13

Policy enforcement. The previous construction enforces a time policy but
allows signing any message. To restrict the proxy signer to sign messages that
satisfy certain policy policym, we can adopt two generic approaches from the
literature [28,34].

Public policy. If policym is public, we use the warrant approach. The original
signer encodes the conditions that message m must satisfy in policym, and signs
it using a separate signing key from the one used in the delegation (to prevent a
proxy signer from using one of the signing tokens to sign any policy she wishes).
So KeyGen will involve generating the other keypair used for policy signing and
verification (note that the signature scheme for this one could be any secure
signature scheme, no need to be a proxy scheme). Thus, each original signer in
the system will be known using two public keys: the one for the policy and the
one for the proxy signature. The original signer sends the signed policy as part of
degInfo. For Sign, the original signer can pick any policym, sign it, and have it as
input to this algorithm. Both Sign and DegSign will output this public policym
as part of θ. Verifying a signature will then be modified to include an additional
check, which is verifying that policym is signed by the original signer, and that
the signed message does not violate that policy.

Private policy. Here we can use a non-interactive zero knowledge (NIZK) proof
system. A signature now will include a proof π attesting that the signed message
m satisfies a private policy policym encoded as a function f (which represents the
circuit C that encodes the required conditions). To make sure that f is chosen
by the original signer, policym must be signed just like the warrant above. Thus,
the NIZK proof π attests that some private policym (that only the proxy and
original signers know) is signed by the original signer, and that m satisfies it. So,
now a signature, whether produced by Sign or DegSign, will include the proof π
as part of θ, and σ will be computed over m ∥ π to preserve the proof integrity.
Verifying a signature will involve verifying π to ensure that the private policym
is satisfied. Also, the public parameters of the system will include any public
parameters needed for the NIZK proof system.

Remark 1 (Threshold delegation). An interesting direction is to delegate signing
rights to a committee rather than a single party [36], and require that at least t
parties participate in signing a message. We can extend our techniques to construct
a threshold proxy signature, in the sense that the delegation information will be
distributed among n proxy signers and the proxy signing process will require t
proxy signers to sign instead of one. We can use ideas from threshold Schnorr
signature [32] to enable such threshold delegation. In Schnorr scheme, signatures

13Note that the original signer can alternatively store the klist associated with a
delegation and simply reveal this list to execute on-demand revoke, i.e., no need to
invoke PreOpen. However, storing only the trapdoor, with a pointer to ctb to locate it
on the board, may lead to a smaller internal state at the original signer side.

22



are simply linear combinations of secret values, meaning that they are threshold-
friendly by applying any of the homomorphically additive secret sharing schemes.
For the signing tokens which correspond to a group element and its discrete
logarithm, we can use the distributed key generation protocol (DKG) for discrete
logarithm based systems by Gennaro et al. [33].

5 Design Considerations

Our signature delegation scheme relies on a public bulletin board to realize the
time notion, the one-time property, and revocability. This may raise several issues
in practice, which we discuss below along with solutions to handle them.

Invoking RoundBroadcast and decrypting ctb. As mentioned in Section 2,
we employ a decentralized TLE scheme in our construction. The decryption
information is produced automatically for each round (either by relying on a
period random beacon as in [30] or a committee that will be elected at round ρ
as in [23]). This information will be publicly accessible, and we assume it will be
published on the board. For the decryption of ctb and publishing all unused k
values, we piggyback that on the tasks that the validators of the board (or simply
the miners of the underlying blockchain) do. Thus a validator will keep a record
of all ctb for each round ρ, when πρ becomes available, it will decrypt ctb and post
all unused k values on the board. Furthermore, the definition of RoundBroadcast
captured in Definition 1 involves a secret value s that is used to produce the
round decryption information. This value (and whether it is needed) is based
on the concrete instantiation of the TLE scheme (e.g., using the scheme in [30],
s will be shared among the producers of the threshold random beacon—each
producer will obtain a share).

Mass publication of unused k values and anonymity. During revocation,
or when the delegation period ends, multiple k values will be published on the
board. One may argue that such mass production, or even the existence of ctb on
the board may violate delegation anonymity. However, this is not the case since:
(1) this information does not contain anything about the identity of the proxy
signer or which delegation it is tied to, and (2) the original signer will mimic
a similar behavior for her own signatures as outlined in the Sign algorithm in
Figure 5.

Denial of service attack against signers. As noted, a signature will be
directly rejected if its k value is already published on the board. In the previous
section, we state that the k values are either published by the honest verifier
(after accepting a valid signature), by the original signer (when executing an
early revocation), or by the board validators (when a delegation period ends
after decrypting ctb). However, in practice an attacker may perform a denial of
service attack against the original or proxy signers by intercepting a signature
and publishing its k value on the board to invalidate the signature when verified.

23



We can address this attack by modifying our scheme as follows: instead of
just logging only the k value of a signature, we publish the whole signature and
the hash of the signed message. Thus, a signature will be rejected if another valid
signature (with the same k value) over a different message is already on the
board. This also means that, in this modified approach, ctb will contain valid
signatures over random hashes using the tokens instead of just a list of the k
values of these tokens. This solution will lead to increased storage cost on the
board; we leave optimizing that as a future work.

Off-chain processing risks. Recall that our scheme is similar to off-chain
processing in blockchain-based systems. That is, a signature is handed directly to
verifiers who rely on the current state of the board when verifying this signature,
i.e., based on whether a valid signature using same k value over a different message
is published. Similar to the concept of double spending in off-chain payments,
a malicious proxy signer may reuse a token to generate several valid signatures
each of which is handed to a different verifier at the same time. All these verifiers
will accept these signatures since none of these signatures is published on the
board yet.

We handle this attack by introducing the concept of delayed signature accep-
tance. A verifier will verify the signature as before, then publish it on the board
as above, but will not take any action based on this valid signature—which is
basically based on the content of the signed message—until later, e.g., a few
rounds later. If at that time a verifier finds out that more than one valid signature
(over different messages than what she has) using the same k and Z values in θ
appeared on the board, they will reject the signature.

Bulletin board synchronization issues. In the previous section we implicitly
assume that the board is instantly synced. That is, any information that is sent
to be published will appear directly and all verifiers will see the updated board
state instantly. However, this is not the case in practice, propagation delays and
other factors may prevent that. So a verifier might be checking an old state that
does not contain the updated list of k values/signatures, which allows a proxy
signer to use a token several times (with several verifiers) during this period.
This is in a sense similar to the issue of off-chain processing above. Thus, the
delayed signature acceptance technique can be used to handle this issue as well.

6 Security

Before providing the main result that states the security of our construction, we
discuss the choice of the security model and some considerations raised by prior
work. We also recall the security notions of the bulletin board and the NIZK
scheme needed to prove security of revocability, timed delegation, and policy
enforcement. This is in addition to the definition of the Schnorr knowledge of
exponent assumption that we rely on while proving unforgeability of our proxy
signature scheme.

24



As we aim to have our scheme usable by open-access distributed systems
that do not assume a public key infrastructure (PKI), we account for eventual
related key attacks (RKA) on Schnorr signatures and use the solution proposed
in [47] to mitigate this vulnerability, i.e., by hashing the public key concatenated
with the message to be signed as discussed in Section 2. Since RKA considers
a broader class of attacks than ordinary attacks, security against RKA implies
strong unforgeability for our resulting proxy signature.

Below we informally recall the security properties we require from the under-
lying public bulletin board and the NIZK system (the former is based on the
security notion of blockchains, e.g., [50]).

Definition 3 (Security of the bulletin board). A public bulletin board is
secure if it satisfies two properties: persistence and liveness, which are (informally)
defined as follows:

Persistence. For any two honest parties P1 and P2, and any two time rounds ρ1
and ρ2 such that ρ1 ≤ ρ2, with overwhelming probability the confirmed state
of the board maintained by party P1 at time ρ1 is a prefix of the confirmed
state of the board maintained by party P2 at time ρ2.

Liveness. If information info is broadcast at time round ρ (to be published on
the board), then with overwhelming probability info will be recorded on the
board at time at most ρ+ v, where v is the liveness parameter.

Note that liveness includes growth and availability (i.e., new data is being
added to the bulletin board and, this board is accessible by any party at any
time), and quality (i.e., the board records only valid information produced by
honest parties).

Definition 4 (Security of NIZK). Let R be an efficiently computable binary
relation which consists of pairs of the form (x,w), and let LR be the language
associated with R. A secure non-interactive zero-knowledge proof system (NIZK)
for R must satisfy three properties: completeness, computational soundness, and
zero-knowledge, which are (informally) defined as follows:

Completeness. An honest verifier always accepts a proof generated by an honest
prover for a valid statement x using a valid witness w.

Soundness. A PPT adversary can convince an honest verifier to accept a proof
of an invalid statement x (i.e., an x that is not in LR) with at most a
negligible probability.

Zero-knowledge. It is possible to simulate (in polynomial time) the honest
prover for any instance x ∈ LR without knowing a witness w. This insures
that a NIZK proof does not reveal any information about the witness beyond
the validity of the statement.

In our proof of ProxyEUF-CMA of our scheme, we rely on the EUF-CMA se-
curity of Schnorr signature (which holds under the discrete logarithm assumption
in the random oracle model), and on the Schnorr knowledge of exponent assump-
tion (denoted as schnorr-koe) introduced by Crites et al. [20]. The schnorr-koe

25



assumption states that an adversary A that forges a Schnorr signature with
respect to a public key of her choice must know the corresponding secret key.
In other words, there exists an extractor Ext that when given the signature, the
public key, and the random coins of A, can extract the corresponding secret key
which is basically computing the discrete logarithm of the public key. Crites et
al. show that this assumption is true under the discrete logarithm assumption
in the algebraic group model [27]. They define a security game for schnorr-koe,
denoted as Expschnorr-koe

A,Ext (λ), in which the adversary is challenged to produce a
valid Schnorr signature under a public key of her choice, and the adversary wins
the game if the extractor fails in extracting the secret key corresponding to this
public key. We informally recall the definition of the schnorr-koe assumption
below while full details can be found in [20].

Definition 5 (The schnorr-koe Assumption). Let G by a cyclic group of
order q and generator G in which the discrete logarithm assumption holds.
The schnorr-koe assumption holds with respect to G if for any PPT adversary
A, there exists a PPT extractor Ext and a negligible function negl such that
Pr[Expschnorr-koe

A,Ext (λ) = 1] ≤ negl(λ).

Theorem 1. Assuming the EUF-CMA security of the Schnorr signature scheme,
the schnorr-koe assumption, a secure bulletin board, a CCA secure TLE scheme,
a EUF-CMA secure signature scheme Π, and a secure NIZK proof system Σ, the
construction described in Figures 5 and 6 is an anonymous, timed and revocable
proxy signature scheme (cf. Definition 2).

Correctness is immediate by the correctness of the Schnorr signature scheme,
correctness and availability of the bulletin board, correctness of TLE (that allows
the proxy signer to correctly decrypt degInfo), and correctness of the building
blocks used for policy enforcement.

For security, we show that our construction satisfies the security properties
defined in Section 3 as follows.

Lemma 1 (Unforgeability). Assuming EUF-CMA security of Schnorr sig-
nature scheme and the schnorr-koe assumption, the construction described in
Figures 5 and 6 satisfies ProxyEUF-CMA security as defined in Figure 1 in the
random oracle model and the algebraic group model.

Proof. Let A be a PPT adversary attempting to break the ProxyEUF-CMA se-
curity (based on the game defined in Figure 1) of our construction. For the
sake of contradiction, consider that A can break ProxyEUF-CMA security with
non-negligible probability. This means that A can produce a valid proxy signature
(σ∗ = (w∗, c∗, s∗), θ∗ = (k∗, Z∗)) over m∗ such that OSign was not queried over
m∗, and ODelegate did not produce the token (w∗, k∗, z∗) where z∗ is such that
Z∗ = Gz∗

.
In a nutshell, the success of this forgery means that A is able to output

a valid token, i.e., layer 1 Schnorr signature, and use this token to produce a
valid proxy signature, i.e., layer 2 Schnorr signature. Thus, for the latter there

26



exists an Ext that can extract z∗ from this signature and the public key Z∗ such
that Z∗ = Gz∗

, if not, then this means that A is able to break the schnorr-koe
assumption (which is a contradiction). Then, if extraction succeeds, we have
that (z∗, w∗) is a forgery for the message k∗ with respect to layer 1, breaking the
EUF-CMA security of Schnorr signature with respect to the original signer’s key
vk (which is also a contradiction).

More formally, we construct two PPT adversaries B1 and B2. B1 attempts to
break the EUF-CMA security of Schnorr signature with respect to vk, while B2
attempts to break the schnorr-koe assumption with respect to Z∗ produced by A.
As a result, let the advantage of B1 be AdvB1

= Pr[ExpEUF-CMA
Schnorr,B1

(λ) = 1], and the
advantage of B2 be AdvB2 = Pr[Expschnorr-koe

Schnorr,B2
(λ) = 1], we have:

Pr[ExpProxyEUF-CMA
Σ,A (λ) = 1] ≤ AdvB1

+ AdvB2
+ negl(λ)

Adversary B1 has access to the signing oracle OSignSchnorrvk (·) and should
produce a forgery on a new message m∗ /∈ LSchnorrsign , i.e., not queried before to the
signing oracle. It does that by invoking A to produce a forged proxy signature
(based on the game defined in Figure 1), then it invokes the extractor Ext in
the schnorr-koe game that B2 is attempting to break to extract z∗ from the Z∗

part in the forged proxy signature. This z∗ serves as a forged Schnorr signature
over message k∗ against vk. If the extractor fails, i.e., it cannot compute the
discrete logarithm z∗ of Z∗, this means that B2 can use A’s output to break the
schnorr-koe assumption.
B1 simulates A oracle queries in Figure 1 as follows. When A requests

OSign(m), B1 answers as follows:

1. Update list Lsign ← Lsign ∪ {m}
2. Sample a random k ∈ Zq

3. Query (z, w)← OSignSchnorrvk (k)

4. Add k to LSchnorrsign

5. Sample a random e ∈ Zq

6. Compute E = Ge, Z = Gz

7. Compute c = H(m,Z,E)
8. Compute s = (e+ cz) mod q
9. Return (σ = (w, c, s), θ = (k, Z))

When A requests ODelegate(vk), B1 answers as follows:14

1. Sample a random k ∈ Zq

2. Query (z, w)← OSignSchnorrvk (k)
3. Update list Ldeleg ← Ldeleg ∪ {(degInfo = (z, w, k)}
4. Return degInfo = (z, w, k)

14Note that, to simplify the presentation and without loss of generality, we let
ODelegate generate one signing token for every query instead of generating several
tokens based on degspec that A can choose. We also do not include a time policy, which
is also a part of degspec, since we prove security of our timed notion when proving the
policy enforcement property in Lemma 4.

27



The adversary A produces a forgery (σ∗ = (w∗, c∗, s∗), θ = (k∗, Z∗)) on a
new message m∗ /∈ Lsign and new θ = (k∗, Z∗) /∈ Ldeleg that was not queried
to ODelegate. By the security of the schnorr-koe assumption, B1 can obtain the
discrete log z∗ of Z∗. This holds since the second layer of our proxy signature,
namely (c∗, s∗) is a Schnorr signature over m∗ with respect to the key Z∗ that
the adversary A chooses. Otherwise, meaning that if extraction fails, then B2
can use (c∗, s∗, Z∗) to break the schnorr-koe assumption, which is a contradiction
as the advantage of B2 in doing that is negligible.

Now, since the extractor will succeed, B1 outputs the message k∗ and the
signature σ∗ = (z∗, w∗) as a valid forgery to Schnorr signature for the verification
key vk. Given that Schnorr signature is EUF-CMA secure, the advantage of B1
is also negligible. Thus, A’s advantage in producing a valid forgery against our
proxy signature scheme is negligible, which completes the proof. ⊓⊔

Lemma 2 (Anonymity). The construction described in Figures 5 and 6
satisfies the anonymity property defined in Figure 2.

Proof. In the DegAnon security game, defined in Figure 2, A may rely on the
following to distinguish the challenge signature:

1. Case 1: signature structure. A tries to use (σ̄, θ̄) to infer any information
on whether the original or proxy signer has produced this signature.

2. Case 2: bulletin board state. A monitors the bulletin board to tell if a
new delegation has been created, and thus case b = 0 was executed by the
challenger. This allows A to guess correctly that the (σ̄, θ̄) was produced by
a proxy signer.

For case 1, note that in our construction the two signatures (σ0, θ0) and
(σ1, θ1) are identically distributed, and hence, indistinguishable for an outsider.
Both have an identical structure and are verified in the same way against the
original signer’s verification key vk. Thus, (σ̄, θ̄) will not provide A with any
information on whether this signature was produced by Sign or DegSign.

For case 2, note that degInfo in our construction, in particular the portion of
the time policy published on the board—(ρb, ctb), does not reveal any information
about the signing tokens, which delegation they are tied to (if any), or the identity
of the proxy signer. Moreover, the indistinguishable behaviour of the original signer
ensures hiding that a delegation took place. That is, the original signer simulates
a "self-delegation" and behaves in a similar way to the case of delegation even
when generating signatures using her signing key—by posting dummy (ρb, ctb)
simulating a timed delegation or fresh klist simulating a delegation revocation.
The original signer will also include policy policym with her signatures. This
will make Sign and DegSign follow the same behavior. Thus, seeing time policies
on the board, or published k values, or signatures with policies over the signed
messages, will not give the adversary A any additional advantage in distinguishing
the signatures.

This is in addition to the fact that delegation in our construction is generated
in a non-interactive way, i.e., the original signer does that alone. Also, the

28



generated delegation information is sent securely to the proxy signer. So, only
these two parties are aware that a delegation took place while any information
posted publicly on the board does not reveal that.

As a result, the two strategies above will not give the attacker A any additional
advantage, over just random guessing, in winning the DegAnon. This completes
the proof. ⊓⊔

Lemma 3 (Revocability). Assuming a secure bulletin board and a CCA secure
TLE scheme, then the construction described in Figures 5 and 6 satisfies the
revocability property defined in Figure 3.

Proof. Security of both automatic and on-demand revocability relies on the
security of the bulletin board and the TLE scheme used in our construction.
A verifier will check the board to validate the revState before accepting a valid
signature, and will reject any signature that is already revoked. An adversary
A who tries to break the revocability of our construction can do that by: (1)
manipulating the bulletin board (i.e., prevent publishing revState on the board,
control the verifier’s view of the board—so the verifier sees the old state that
does not contain the updated revState, or even rewrite the board to omit already
recorded revState), or (2) maul (ρb, ctb) to produce different revState (or k values)
from those produced by the original signer.

By the assumption that the bulletin board is secure (cf. Definition 3), the
first strategy succeeds with negligible probability. Also, by the assumption that
the TLE scheme we use in our construction is CCA secure, the second strategy
succeeds with negligible probability. Thus, A’s advantage in breaking the revoca-
bility property of our scheme is negligible, which completes the proof. ⊓⊔

Lemma 4 (Policy enforcement). Assuming a secure bulletin board, a CCA
secure TLE scheme, an EUF-CMA secure signature scheme Π, and a secure
NIZK system Σ, then the construction described in Figures 5 and 6, with the policy
enforcement techniques described in Section 4, satisfies the policy enforcement
property defined in Figure 4.

Proof. Recall that in our scheme a policy is composed of two parts: policy =
(policyt, policym). We show that our construction satisfies policy enforcement for
both of them.

For the time policy policyt, security relies on the security of the bulletin
board and the TLE scheme. By the correctness of the TLE scheme, the valid
decryption information will be produced at times ρa and ρb. Thus, the proxy
signer can reveal the degInfo only when time ρa comes, and the board validators
can decrypt ctb only when time ρb comes. By Lemma 3, an adversary A cannot
prevent automatic revocation, which ends the delegation time period at time ρb.
In other words, an adversary that can violate policyt can be used to build another
adversary B that can break the security of the TLE scheme and the revocability
of our construction, which is a contradiction.

For the message policy policym, we discuss both public and private policy
options in our construction. For public policym, its security relies on the EUF-
CMA security of the signature scheme Π that the original signer uses to sign

29



the public warrant. A verifier will verify this signature first before checking that
m ∈ policym. An adversary A cannot forge a valid signature over a policy of
her choice with non-negligible probability. For private policym, using a similar
argument, an adversary A cannot forge a signature over a policym of her choice to
produce a valid NIZK. And by the security of the NIZK system (cf. Definition 4),
A cannot produce a valid proof that convinces the verifier of accepting a signature
over a message m /∈ policym (where here policym is a valid policy produced by the
original signer). Furthermore, the integrity of a valid NIZK proof π is preserved
since in our construction the produced signature in case of private message policy
is over m ∥ π, which completes the proof. ⊓⊔

Proof of Theorem 1. Follows by Lemmas 1, 2, 3, and 4. ⊓⊔

References

1. Abadi, A., Ciampi, M., Kiayias, A., Zikas, V.: Timed signatures and zero-knowledge
proofs—timestamping in the blockchain era—. In: International Conference on
Applied Cryptography and Network Security. pp. 335–354. Springer (2020)

2. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-
time signatures: Tight security and optimal tag size. In: The 16th International
Conference on Practice and Theory in Public-Key Cryptography (PKC). pp. 312–
331. Springer (2013)

3. Amos, R., Georgiou, M., Kiayias, A., Zhandry, M.: One-shot signatures and appli-
cations to hybrid quantum/classical authentication. In: Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing. pp. 255–268 (2020)

4. Arun, A., Bonneau, J., Clark, J.: Short-lived zero-knowledge proofs and signatures.
Cryptology ePrint Archive (2022)

5. Ateniese, G., Hohenberger, S.: Proxy re-signatures: new definitions, algorithms,
and applications. In: Proceedings of the 12th ACM conference on Computer and
communications security. pp. 310–319 (2005)

6. Backes, M., Meiser, S., Schröder, D.: Delegatable functional signatures. In: Public-
Key Cryptography–PKC 2016, pp. 357–386. Springer (2016)

7. Bellare, M., Goldwasser, S.: Encapsulated key escrow (1996)
8. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: Rka-prps,

rka-prfs, and applications. In: The International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT). pp. 491–506. Springer
(2003)

9. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: The 24th Annual International Conference on
the Theory and Applications of Cryptographic Techniques (EUROCRYPT). pp.
409–426. Springer (2006)

10. Ben-David, S., Sattath, O.: Quantum tokens for digital signatures. arXiv preprint
arXiv:1609.09047 (2016)

11. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptog-
raphy. In: International conference on the theory and applications of cryptographic
techniques. pp. 127–144. Springer (1998)

12. Boldyreva, A., Palacio, A., Warinschi, B.: Secure proxy signature schemes for
delegation of signing rights. Journal of Cryptology 25 (06 2003). https://doi.org/
10.1007/s00145-010-9082-x

30

https://doi.org/10.1007/s00145-010-9082-x
https://doi.org/10.1007/s00145-010-9082-x
https://doi.org/10.1007/s00145-010-9082-x
https://doi.org/10.1007/s00145-010-9082-x


13. Boldyreva, A., Palacio, A., Warinschi, B.: Secure proxy signature schemes for
delegation of signing rights. Journal of Cryptology 25(1), 57–115 (2012)

14. Boneh, D., Naor, M.: Timed commitments. In: The 20th Annual International
Cryptology Conference (CRYPTO). pp. 236–254. Springer (2000)

15. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: International workshop on public key cryptography. pp. 501–519. Springer
(2014)

16. Campanelli, M., David, B., Khoshakhlagh, H., Konring, A., Nielsen, J.B.: Encryption
to the future: A paradigm for sending secret messages to future (anonymous)
committees. Cryptology ePrint Archive (2021)

17. Chalkias, K., Hristu-Varsakelis, D., Stephanides, G.: Improved anonymous timed-
release encryption. In: The 12th European Symposium On Research In Computer
Security (ESORICS). pp. 311–326. Springer (2007)

18. Choi, G., Vaudenay, S.: Timed-release encryption with master time bound key (full
version). Cryptology ePrint Archive (2019)

19. Coladangelo, A., Liu, J., Liu, Q., Zhandry, M.: Hidden cosets and applications to
unclonable cryptography. In: The 41st Annual International Cryptology Conference
(CRYPTO). pp. 556–584. Springer (2021)

20. Crites, E., Komlo, C., Maller, M.: How to prove schnorr assuming schnorr: security
of multi-and threshold signatures. Cryptology ePrint Archive (2021)

21. Das, M.L., Saxena, A., Gulati, V.P.: An efficient proxy signature scheme with
revocation. Informatica 15(4), 455–464 (2004)

22. Derler, D., Hanser, C., Slamanig, D.: Privacy-enhancing proxy signatures from
non-interactive anonymous credentials. In: IFIP Annual Conference on Data and
Applications Security and Privacy. pp. 49–65. Springer (2014)

23. Döttling, N., Hanzlik, L., Magri, B., Wohnig, S.: Mcfly: Verifiable encryption to
the future made practical. Cryptology ePrint Archive (2022)

24. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. In: Advances
in Cryptology—CRYPTO. pp. 263–275. Springer (1990)

25. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Advances in Cryptology—CRYPTO. vol. 86, pp. 186–194.
Springer (1986)

26. Foster, I., Kesselman, C., Tsudik, G., Tuecke, S.: A security architecture for com-
putational grids. In: Proceedings of the 5th ACM Conference on Computer and
Communications Security. pp. 83–92 (1998)

27. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: The 38th Annual International Cryptology Conference (CRYPTO). pp. 33–62.
Springer (2018)

28. Fuchsbauer, G., Pointcheval, D.: Anonymous proxy signatures. In: International
Conference on Security and Cryptography for Networks. pp. 201–217. Springer
(2008)

29. Fuchsbauer, G., Pointcheval, D.: Anonymous consecutive delegation of signing
rights: Unifying group and proxy signatures. Formal to Practical Security: Papers
Issued from the 2005-2008 French-Japanese Collaboration pp. 95–115 (2009)

30. Gailly, N., Melissaris, K., Romailler, Y.: tlock: Practical timelock encryption from
threshold bls. Cryptology ePrint Archive, Paper 2023/189 (2023), https://eprint.
iacr.org/2023/189

31. Garay, J.A., Jakobsson, M.: Timed release of standard digital signatures. In: The
6th International Conference on Financial Cryptography and Data Security. pp.
168–182. Springer (2003)

31

https://eprint.iacr.org/2023/189
https://eprint.iacr.org/2023/189


32. Garillot, F., Kondi, Y., Mohassel, P., Nikolaenko, V.: Threshold Schnorr with
stateless deterministic signing from standard assumptions. pp. 127–156 (2021).
https://doi.org/10.1007/978-3-030-84242-0_6

33. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation
for discrete-log based cryptosystems. pp. 295–310 (1999). https://doi.org/10.
1007/3-540-48910-X_21

34. Hanser, C., Slamanig, D.: Blank digital signatures. In: The 8th ACM SIGSAC
symposium on Information, computer and communications security. pp. 95–106
(2013)

35. Hanser, C., Slamanig, D.: Warrant-hiding delegation-by-certificate proxy signature
schemes. In: International Conference on Cryptology in India. pp. 60–77. Springer
(2013)

36. Herranz, J., Sáez, G.: Verifiable secret sharing for general access structures, with
application to fully distributed proxy signatures. In: International Conference on
Financial Cryptography. pp. 286–302. Springer (2003)

37. Kim, S., Park, S., Won, D.: Proxy signatures, revisited. In: International Conference
on Information, Communications and Signal Processing (1997)

38. Lamport, L.: Constructing digital signatures from a one way function (1979)
39. Lee, B., Kim, H., Kim, K.: Strong proxy signature and its applications. In: Pro-

ceedings of SCIS. vol. 2001, pp. 603–608 (2001)
40. Lee, J.Y., Cheon, J.H., Kim, S.: An analysis of proxy signatures: Is a secure channel

necessary? In: The Cryptographers’ Track at the RSA Conference, CT-RSA. pp.
68–79. Springer (2003)

41. Liu, J., Jager, T., Kakvi, S.A., Warinschi, B.: How to build time-lock encryption.
Designs, Codes and Cryptography 86, 2549–2586 (2018)

42. Liu, Z., Hu, Y., Zhang, X., Ma, H.: Provably secure multi-proxy signature scheme
with revocation in the standard model. Computer Communications 34(3), 494–501
(2011)

43. Lu, E.J.L., Hwang, M.S., Huang, C.J.: A new proxy signature scheme with revoca-
tion. Applied mathematics and Computation 161(3), 799–806 (2005)

44. Malkin, T., Obana, S., Yung, M.: The hierarchy of key evolving signatures and
a characterization of proxy signatures. In: The International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT). pp. 306–
322. Springer (2004)

45. Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing opera-
tion. In: Proceedings of the 3rd ACM Conference on Computer and Communications
Security. pp. 48–57 (1996)

46. Mambo, M., Zheng, Y., Okamoto, T., Tada, M., Okamoto, E.: Extended proxy
signatures for smart cards. In: Information Security Workshop, ISW. pp. 247–258.
Springer (1999)

47. Morita, H., Schuldt, J.C., Matsuda, T., Hanaoka, G., Iwata, T.: On the security
of the schnorr signature scheme and dsa against related-key attacks. In: The 18th
International Conference (ICISC). pp. 20–35. Springer (2016)

48. Neuman, B.: Proxy-based authorization and accounting for distributed systems. In:
[1993] Proceedings. The 13th International Conference on Distributed Computing
Systems. pp. 283–291 (1993)

49. Okamoto, T., Tada, M., Okamoto, E.: Extended proxy signatures for smart card. In:
Lecture Notes in Computer Science book series (LNCS,volume 1729). pp. 247–258.
Springer Berlin Heidelberg (1999)

32

https://doi.org/10.1007/978-3-030-84242-0_6
https://doi.org/10.1007/978-3-030-84242-0_6
https://doi.org/10.1007/3-540-48910-X_21
https://doi.org/10.1007/3-540-48910-X_21
https://doi.org/10.1007/3-540-48910-X_21
https://doi.org/10.1007/3-540-48910-X_21


50. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous
networks. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 643–673. Springer (2017)

51. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind
signatures. Journal of cryptology 13(3), 361–396 (2000)

52. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto
(1996)

53. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Advances
in Cryptology—CRYPTO. pp. 239–252. Springer (1990)

54. Schuldt, J.C., Matsuura, K., Paterson, K.G.: Proxy signatures secure against proxy
key exposure. In: The 11th International Workshop on Practice and Theory in
Public-Key Cryptography (PKC). pp. 141–161. Springer (2008)

55. Sun, H.M.: Design of time-stamped proxy signatures with traceable receivers. IEE
Proceedings-Computers and Digital Techniques 147(6), 462–466 (2000)

56. Sun, H.M., Lee, N.Y., Hwang, T.: Threshold proxy signatures. IEE Proceedings-
Computers and Digital Techniques 146(5), 259–263 (1999)

57. Thyagarajan, S.A., Malavolta, G., Schmid, F., Schröder, D.: Verifiable timed linkable
ring signatures for scalable payments for monero. In: The 27th European Symposium
on Research in Computer Security (ESORICS). pp. 467–486. Springer (2022)

58. Varadharajan, V., Allen, P., Black, S.: An analysis of the proxy problem in dis-
tributed systems. In: Proceedings. 1991 IEEE Computer Society Symposium on
Research in Security and Privacy. pp. 255–275 (1991)

59. Wang, H., Pieprzyk, J.: Efficient one-time proxy signatures. In: The 9th International
Conference on the Theory and Application of Cryptology and Information Security
(ASIACRYPT). pp. 507–522. Springer (2003)

60. Wuille, P., Nick, J., Ruffing, T.: Schnorr signatures for secp256k1. Bitcoin Improve-
ment Proposal 340 (2020), https://github.com/bitcoin/bips/blob/master/
bip-0340.mediawiki

61. Xu, S., Yang, G., Mu, Y., Ma, S.: Proxy signature with revocation. In: Australasian
Conference on Information Security and Privacy. pp. 21–36. Springer (2016)

62. Zhang, F., Kim, K.: Efficient id-based blind signature and proxy signature from
bilinear pairings. In: The 8th Australasian Conference (ACISP). pp. 312–323.
Springer (2003)

33

https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

	Abstract
	1 Introduction
	1.1 Contributions and Technical Overview
	1.2 Related Work
	1.2.1 Proxy signatures
	1.2.2 One-time Signatures
	1.2.3 Timed Cryptographic Primitives


	2 Preliminaries
	2.1 Notation
	2.2 The Schnorr Digital Signature Scheme
	2.3 Timelock Encryption

	3 Definitions
	4 Construction
	5 Design Considerations
	6 Security
	References

