
Unifying Freedom and Separation for Tight
Probing-Secure Composition

Sonia Belaïd1, Gaëtan Cassiers3, Matthieu Rivain1, and
Abdul Rahman Taleb1,2

1 CryptoExperts, France
2 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

3 TU Graz, Austria
{sonia.belaid,matthieu.rivain,abdul.taleb}@cryptoexperts.com

gaetan.cassiers@iaik.tugraz.at

Abstract. The masking countermeasure is often analyzed in the prob-
ing model. Proving the probing security of large circuits at high masking
orders is achieved by composing gadgets that satisfy security definitions
such as non-interference (NI), strong non-interference (SNI) or free SNI.
The region probing model is a variant of the probing model, where the
probing capabilities of the adversary scale with the number of regions in
a masked circuit. This model is of interest as it allows better reductions
to the more realistic noisy leakage model. The efficiency of composable
region probing secure masking has been recently improved with the in-
troduction of the input-output separation (IOS) definition.
In this paper, we first establish equivalences between the non-interference
framework and the IOS formalism. We also generalize the security def-
initions to multiple-input gadgets and systematically show implications
and separations between these notions. Then, we study which gadgets
from the literature satisfy these. We give new security proofs for some
well-known arbitrary-order gadgets, and also some automated proofs for
fixed-order, special-case gadgets. To this end, we introduce a new au-
tomated formal verification algorithm that solves the open problem of
verifying free SNI, which is not a purely simulation-based definition.
Using the relationships between the security notions, we adapt this al-
gorithm to further verify IOS. Finally, we look at composition theorems.
In the probing model, we use the link between free SNI and the IOS
formalism to generalize and improve the efficiency of the tight private
circuit (Asiacrypt 2018) construction, also fixing a flaw in the original
proof. In the region probing model, we relax the assumptions for IOS
composition (TCHES 2021), which allows to save many refresh gadgets,
hence improving the efficiency.

Keywords: Masking · Probing model · Region probing model · Non-
interference · Input output separation · Tight private circuit

1 Introduction

The security of cryptographic algorithms is mainly studied in the black-box
model, where an adversary is restricted to the knowledge of inputs and out-

puts to recover the secret key. However, the discovery of side-channel attacks in
the late nineties [31] opened the door for a new field of security study. These at-
tacks can break cryptosystems by exploiting the device’s physical leakage (power
consumption, electromagnetic emanations, ...) that executes the implementation.

Many countermeasures have since been studied to protect against this class of
attacks. The masking countermeasure is the most widely deployed one. The con-
cept was introduced in 1999 by Chari et al. [21] and by Goubin and Patarin [25],
and suggests splitting a sensitive variable x of the implementation into n shares,
such that an adversary must get information on all the shares to recover the se-
cret. This can be easily achieved by generating n−1 shares uniformly at random
x1, . . . , xn−1 and computing the last share xn so that x = x1 ∗ . . . ∗ xn−1 ∗ xn
according to some group law ∗. An implementation then manipulates the sharing
~x = (x1, . . . , xn) instead of the secret itself. While being easy to manipulate for
affine operations, which can be computed on each share separately (sharewise),
it is not trivial to securely manipulate sharings for non-linear operations without
recombining the secrets.

To theoretically evaluate the security of a circuit against side-channel attacks,
Ishai, Sahai, and Wagner (ISW) [29] introduced the t-probing leakage model. A
circuit is secure in the t-probing model if the exact values of any set of t inter-
mediate variables do not reveal any information on the secrets. This definition
is motivated by the increasing difficulty of recovering information on the combi-
nation of t+ 1 variables from the leakage traces that contain noisy functions of
the manipulated data, as t grows. Furthermore, this model corresponds to the
practically-relevant notion of masking security order [6]. Many works have since
built and analyzed masking schemes with respect to their security in the probing
model [35,22,10].

Meanwhile, probing security is only partially satisfactory. Indeed, there is
a mismatch between the fixed number of probes and the amount of real-world
leakage, which grows with the number of performed computations. For instance,
the authors of [7] show that the repeated manipulation of identical values can be
exploited to retrieve the secrets in the context of horizontal side-channel attacks.
This led to the formalization of the noisy leakage model in [34] as a specialization
of the only computation leaks model [33]. In this model, the adversary can re-
trieve a noisy function of each intermediate variable of the computation. Because
of the inconvenience of the noisy model for security proofs, Duc, Dziembowski,
and Faust [24] proposed a reduction from the noisy model to the t-probing model.
Reducing to the t-region probing model, where the whole computation is split
into regions and the adversary can chose t probes in each region, improves sig-
nificantly the security of this bound since this model increases the number of
probes with respect to the size of the circuit/region.

Even in the simple probing model, proving the security of large masked cir-
cuits is a challenging problem, due to the combinatorial number of possible sets of
probes. The most common solution is to build circuits from smaller sub-circuits
named gadgets that implement a simple computation on masked data. Then,
these gadgets can be composed to implement more complex computations, and

2

the security proof only needs to care about the properties of the gadgets and
their composition. In their seminal work [29], ISW introduced such gadgets for
a field multiplication and addition. These gadgets can be arbitrarily composed,
but this scheme requires masking with n = 2t+ 1 shares. For performance rea-
sons, the follow-up works mostly focused on using the optimal number of shares
n = t + 1. The first composition security notion which is known as t-strong
non-interference (SNI) was introduced by Barthe, Belaïd, Dupressoir, Fouque,
Grégoire, Strub and Zucchini in [5]. In a nutshell, t-SNI ensures that probes
inside a gadget and on its output shares can be perfectly simulated with knowl-
edge of a limited number of input shares of a gadget. It follows that one can
simulate all the probes in a composition of t-SNI gadgets by knowing t shares
of each input sharing, which is independent of the secret input values. The SNI
gadgets for affine operations are however not very efficient, was solved by the
t-PINI definition (at the expense of slightly less efficient multiplication) [19].

Another direction to improve efficiency is to drop the requirement of arbitrary
composition: while direct application of the ISW construction with n = t + 1
is not secure [35], it can be fixed by adding refresh gadgets (which implement
the identity function but re-randomize the sharings). This has instance been
proposed in [5] with the maskComp tool that can compose weaker non-interferent
(NI) gadgets by inserting SNI refresh gadgets (which can be derived from the
ISWmultiplication) in the circuit. Later, Belaïd, Goudarzi and Rivain [12], intro-
duced tight private circuits (TPC), which is another variant of the ISW scheme
with n = t+1 and additional refresh gadgets. The set of refresh gadgets inserted
by their tightProve tool is tight in the sense that removing one of these gadgets
is guaranteed to break t-probing security.

A stronger version of the probing model has been considered in the literature
which is known as the region probing model [1]. In this model, the adversary is not
limited to t probes on the circuit but gets t probes per gadget (or region) of the
circuit. This model is relevant in practice as being closer to actual side-channel
leakages (providing information on all the gadgets of an implementation) which is
formally captured by a reduction to the noisy leakage model [34,24]. In a recent
work [27], Goudarzi, Prest, Rivain and Vergnaud introduce the input-output
separation (IOS) notion for simple composition in the region probing model. This
notion acts as probing-composition scissors: the circuit is divided into regions
separated by IOS gadgets whose probes can then be simulated separately.

A complementary line of research has been considering the optimization of
the masked gadgets themselves. This culminated in the design of a (n − 1)-
NI multiplication gadget with randomness usage n2/4 + O(n) [9] (while the
ISW multiplication is (n − 1)-SNI and has n2/2 + O(n) randomness usage)
and a (n − 1)-SNI refresh gadget with complexity O(n log n) [8]. Besides these
arbitrary-order gadgets, there have been many optimizations for low-order gad-
gets. Manually verifying the security properties of such small gadgets is tedious
and error-prone [22], which naturally led to the development of automatic formal
verification tools for these security properties [4,5,2,30,16,13].

3

free SNI

Balanced t-IOS

Unbalanced free t-SNI

t-IOS

t-SNI

t-PINI

t-NI

Theorem 1 Theorem 2

Corollary 2

Corollary 1

Theorem 3

[5]

[19]

1-input [19] 2-input [19]Section A.2

Section A.3

[5]

Fig. 1. Relations between security notions. Plain black arrows represent mathematical
implications whereas red crossed out arrows mean that a counterexample demonstrates
the absence of implication. The orange plain arrow represents an implication from t-
SNI to t-PINI only for 1-input gadgets. The black rectangle frames the security notions
that are focused on in this paper. F.V. means that a counterexample is given in the
full version of the paper.

Our contributions. In this paper, we unify and extend existing probing com-
position notions, we analyze gadget constructions under these unified notions,
we provide efficient verification methods for these notions, and we extend exist-
ing composition approaches in the probing and region probing model. In more
details, our contributions are as follows:

• We show that the composition approach of tight private circuits (TPC) in-
troduced in [12] actually requires a stronger notion than the SNI notion
initially considered by the authors. The required notion happens to be the
free SNI notion introduced by Coron and Spignoli in [23]. In a nutshell, the
free SNI notion requires that the non-simulated output shares of a gadget
be uniformly distributed and mutually independent of the simulated wires.
We generalize the free SNI notion to two input gadgets and patch the com-
position proof of TPC.4 Our proof also generalizes the TPC composition
approach to any gadget circuit based on (n−2)-free SNI multiplication gad-
gets, (n − 1)-free SNI refresh gadget and sharewise affine gadgets (which
encompasses a wide number of masked circuits used in practice).

• We show strong connections between the free SNI notion and the IOS notion
introduced in [27] for easy composition in the region probing model. Specif-

4 We note that, while the composition proof is flawed, the TPC construction considered
in [12] which relies on ISW multiplication and refresh gadgets is still secure since
these gadgets achieve the necessary free SNI notion as we further show in the present
paper.

4

ically, we show that these notions are essentially equivalent. More precisely,
the IOS notion is equivalent to a unbalanced version of the free SNI no-
tion which relaxes some constraints on the input and output shares involved
in the simulation. On the other hand, the free SNI notion is equivalent to
a balanced version of the IOS notion which adds the latter constraints to
IOS. We further show that free SNI and IOS (for either the balanced or
unbalanced version) both imply the SNI notion. This notably answers the
questions left open in [28]: (1) IOS (resp. free SNI) is strictly stronger than
SNI: IOS implies SNI while the converse is not true, (2) IOS (resp. free SNI)
is strictly stronger than PINI for one-input gadget but it is separated from
PINI for two-input gadgets. These relations are depicted on Figure 1 which
summarizes the current state of affairs in terms of (most common) probing
composition notions.

• We then investigate gadget constructions under the strong unified notions
of free SNI and balanced IOS. We propose generic constructions of gadgets
achieving these notions from simpler building blocks. We further demonstrate
that common gadgets satisfy these properties. Specifically, we prove that the
well known ISW multiplication gadget is free-(n − 2)-SNI (or equivalently
balanced (n−2)-IOS) and not free-(n−1)-SNI. We further show that the ISW
refresh gadget as well as the quasilinear refresh gadget from [8] both satisfy
the free-(n− 1)-SNI security notion (or equivalently balanced (n− 1)-IOS).

• While the verification of probing composition notions such as, e.g., NI, SNI,
PINI, is today relatively well understood and engineered [4,2,13], it is not
yet clear how to verify notions such as free SNI or IOS which are different
in nature. Verifying such notions not only means checking that a given tuple
of wires can be perfectly simulated from at most t input shares, it further
requires showing that a set of output wires is uniform and mutually inde-
pendent of this simulation. In this paper, we tackle this issue and provide
an efficient verification method for these notions. We present a set of algo-
rithms to efficiently verify common gadgets under these notions which we
implemented in the IronMask tool.5 We further report applications of these
algorithms to several gadgets of the literature and hence (in)validate their
free SNI / IOS features.

• Finally, we extend the IOS composition framework proposed in [27]. We show
a general composition theorem for circuits made of IOS gadgets and share-
wise affine gadgets. Compared to the original IOS composition framework,
we consider IOS gadgets which are not necessarily refresh gadgets, which
allows us to take advantage of the IOS property of e.g. the ISW multiplica-
tion gadgets. Moreover, our composition result does not require to insert an
IOS refresh gadget between any two non-IOS gadgets which allows to save
many refresh gadgets, hence improving the global efficiency of the underlying
masked circuit.

5 This augmented version of IronMask is available at https://github.com/
CryptoExperts/IronMask.

5

https://github.com/CryptoExperts/IronMask
https://github.com/CryptoExperts/IronMask

2 Preliminaries

Along the paper, K shall denote a finite field. For any tuple ~x = (x1, . . . , xn) ∈
Kn and any set I ⊆ [1 : n], we shall denote ~x|I = (xi)i∈I . We use id

= to refer to
the equality of the distributions of random variables.

2.1 Additive Sharing, Circuits and Gadgets

In the following, the n-additive decoding mapping, denoted AddDec, refers to the
function

⋃
nKn → K defined as

AddDec : (x1, . . . , xn) 7→ x1 + · · ·+ xn ,

for every n ∈ N and (x1, . . . , xn) ∈ Kn. We shall further consider that, for every
n, ` ∈ N, on input (~x1, . . . , ~x`) ∈ (Kn)` the n-additive decoding mapping acts as

AddDec : (~x1, . . . , ~x`) 7→ (AddDec(~x1), . . . ,AddDec(~x`)) .

Definition 1 (Additive Sharing). Let n, ` ∈ N. For any x ∈ K, an n-additive
sharing of x is a random vector ~x ∈ Kn such that AddDec(~x) = x. It is said to
be uniform if for any set I ⊆ [1 : n] with |I| < n the tuple ~x|I is uniformly
distributed over K|I|. A n-additive encoding is a probabilistic algorithm AddEnc
which on input a tuple (x1, . . . , x`) ∈ K` outputs a tuple (~x1, . . . , ~x`) ∈ (Kn)`
such that ~xi is a uniform n-additive sharing of xi for every i ∈ [1 : `].

An arithmetic circuit on a field K is a labeled directed acyclic graph whose
edges are wires and vertices are arithmetic gates processing operations on K. We
consider circuits composed of addition gates, (x1, x2) 7→ x1 + x2, multiplication
gates, (x1, x2) 7→ x1 · x2, and copy gates, x 7→ (x, x). A randomized arithmetic
circuit is equipped with an arithmetic circuit additional random gate which
outputs a fresh uniform random value of K.

In the following, we shall call an (n-share, `-to-m) gadget, a randomized arith-
metic circuit that maps an input (~x1, . . . , ~x`) ∈ (Kn)` to an output (~y1, . . . , ~ym) ∈
(Kn)m such that (x1, . . . , x`) = AddDec(~x1, . . . , ~x`) ∈ K` and (y1, . . . , ym) =
AddDec(~y1, . . . , ~ym) ∈ Km satisfy (y1, . . . , ym) = g(x1, . . . , x`) for some function
g. A refresh gadget is a gadget for which g is the identity function, while a mul-
tiplication gadget implements the multiplication function. Affine functions g can
be implemented with sharewise affine gadgets: such gadgets apply the under-
lying linear function to all the shares, except for the last one where the affine
function is applied.

Some gadgets are said probing complete: for all the combinations of one share
from each of their input sharings they contain a wire which depends on all the
shares of the combination. For example, a multiplication gadget that computes
ai · bj (if ~a and ~b are its input sharings) for all i and j is probing complete. For
single-input gadgets, probing completeness is a trivial notion.

6

2.2 Probing Security

An assign-wires sampler takes as input a randomized arithmetic circuit C, a set
of wire labels W (subset of the wire labels of C), and an input (~x1, . . . , ~x`), and
it outputs a |W |-tuple (w1, . . . , w|W |) ∈ (K ∪ {⊥})|W |, denoted as

(w1, . . . , w|W |)← AssignWires(C,W, (~x1, . . . , ~x`)) ,

where (w1, . . . , w|W |) corresponds to the assignments of the wires of C with label
in W for an evaluation on input (~x1, . . . , ~x`).

Definition 2 (Probing Security). A randomized arithmetic circuit C equipped
with an encoding Enc6 is t-probing secure if there exists a simulator Sim which,
for any input (x1, . . . , x`) ∈ K`, for every set of wires W such that |W | ≤ t,
satisfies

Sim(C,W)
id
= AssignWires(C,W,Enc(x1, . . . , x`)).

Definition 3 (Region Probing Security). Let r be an integer. A randomized
arithmetic circuit C equipped with an encoding Enc is r-region probing secure
if there exists a circuit partition C = (C1, . . . , Cm) such that for any input
(x1, . . . , x`) ∈ K` and for any sets of wires W1 ⊆ WC1

, . . . , Wm ⊆ WCm
such

that |W1| ≤ dr|C1|e, . . . , |Wm| ≤ dr|Cm|e, there exists a simulator Sim which
satisfies

Sim(C,W)
id
= AssignWires(C,W,Enc(x1, . . . , x`))

where W =W1 ∪ · · · ∪Wm.

3 Advanced Probing Composition Notions

Several security notions have been introduced in the literature to efficiently com-
pose gadgets in the (region) probing model. This section aims to recall them,
to specify or relax them for our purposes, and to demonstrate how they are
connected to each other.

3.1 Existing Notions

First, most common gadgets that use randomness are expected to be uniform
in the sense of Definition 4 (to not be confused with the uniformity definition
of Threshold Implementations [?]), which is the most basic requirement for a
refresh gadget.

Definition 4 (Uniformity from [27]). An (n-share, `-to-m) gadget G imple-
menting a function g is uniform if, for every (~x1, . . . , ~x`) ∈ (Kn)`, the output
G(~x1, . . . , ~x`) is a uniform additive sharing (seeDefinition 1) of g(x1, . . . , x`).

6 In this paper, we restrict ourselves to additive encodings as recalled in Definition 1.

7

Then, we recall the notions of strong non-interference (or SNI), input-output
separative (or IOS) and free SNI that were chronologically introduced in various
contexts to compose gadgets in the (region) probing model.

SNI was the first security notion introduced to securely compose n-share
gadgets into a (n − 1)-probing secure circuit. In a nutshell, a gadget is t-SNI if
any set of ti internal probes and to output probes can be perfectly simulated
from at most ti shares of each input sharing for any ti + to ≤ t. Composition
of SNI gadgets is then straightforward. Probes of one gadget can be simulated
by its input shares which are the output shares of the incoming gadget(s). The
latter inherited probes can then be simulated for free.

Definition 5 (Strong Non-Interference [5]). Let G be an (n-share, `-to-
1) gadget. G is said t-Strong Non-Interferent (t-SNI), if for every set W of
internal wires of G such that |W | ≤ ti, and every set J ⊆ [1 : n] of output share
indices such that |J | ≤ to and ti + to ≤ t, there exists a (two-stage) simulator
Sim =

(
Sim1,Sim2

)
such that for every input (~x1, . . . , ~x`) ∈ (Kn)`,

1. Sim1(W,J) = (I1, . . . , I`) where I1, . . . , I` ⊆ [1 : n], with |I1|, . . . , |I`| ≤ |W |,
2. Sim2(W,J, (~x1|I1 , . . . , ~x`|I`))

id
=
(
AssignWires(G,W, (~x1, . . . , ~x`)), ~y|J

)
where ~y = G(~x1, . . . , ~x`). A gadget is simply said to be SNI if it is (n− 1)-SNI.

A few years after SNI, the IOS security notion was introduced for 1-to-1
refresh gadgets. The latter are meant to be inserted between gadgets satisfying
the classical probing security notion (which does not yield a secure composition
on its own) in order to obtain a region probing secure circuit. In a nutshell,
a gadget is t-IOS if it is uniform and if any set of t probes can be perfectly
simulated from at most t input shares and t output shares.

In the following, we shall say that a pair of vector (~x, ~y) ∈ (Kn)2 is admissible
for a gadget G if there exists a random tape ~ρ (i.e. an assignment of the random
gates’ outputs) such that ~y = G~ρ(~x)7. For an admissible pair (~x, ~y) and a set W
of wires of G, the wire assignment distribution of G in W induced by (~x, ~y), de-
noted AssignWires(G,W, ~x, ~y) ∈ K|W |, is the random vector AssignWires(G,W, ~x)
constrained to ~y = G~ρ(~x), i.e. the wire assignment distribution obtained for a
uniform drawing of ~ρ among {~ρ;G~ρW (~x) = ~y}. We note that for a uniform gadget,
an admissible pair is any (~x, ~y) ∈ (Kn)2 such that

∑n
i=1 xi =

∑n
i=1 yi. Based on

this definition, we recall the IOS security notion for any 1-to-1 gadget.

Definition 6 (IOS [27]). Let G be an (n-share, 1-to-1) gadget. G is said t-
input-output separative (t-IOS), if it is uniform and if there exists a (two-stage)
simulator Sim =

(
Sim1,Sim2

)
such that for every admissible pair (~x, ~y) for G

and for every set of wires W of G with |W | ≤ t, we have

1. Sim1(W) = (I, J) where I, J ⊆ [1 : n], with |I| ≤ |W | and |J | ≤ |W |, and
7 This notion of admissible pair can be trivially extended to the notion of admissible
tuple for any number of inputs.

8

2. Sim2(W,~x|I , ~y|J)
id
= AssignWires(G,W, ~x, ~y).

A gadget is simply said to be IOS if it is n-IOS.

Finally, the free SNI notion was introduced for 1-to-1 refresh gadgets as well
to strengthen the existing SNI property and produce probing secure circuits in
the stateful model. In addition to the SNI features, the free SNI security notion
ensures that a strict subset of the output shares which are not indexed by the
input shares involved in the probes’ simulation is uniformly and independently
distributed, even conditioned on the probes and the other output shares.

Definition 7 (Free SNI [23]). Let G be an (n-share, 1-to-1) gadget. G is said
free t-SNI, if for every setW of internal wires of G such that |W | ≤ t, there exists
a (two-stage) simulator Sim =

(
Sim1,Sim2

)
such that for every input ~x ∈ Kn,

1. Sim1(W) = I where I ⊆ [1 : n], with |I| ≤ |W |,
2. Sim2(W,~x|I)

id
=
(
AssignWires(G,W, ~x), ~y|I

)
,

where ~y = G(~x), and for every set O ([1 : n] \ I, ~y|O is uniformly and inde-
pendently distributed, conditioned on AssignWires(G,W, ~x) and ~y|I . A gadget is
simply said to be free SNI if it is free (n− 1)-SNI.

3.2 Extending and Balancing IOS

We now generalize the IOS property for 2-input gadgets8. In a nutshell, any set
of at most t probes is now simulated from two subsets of input shares and a
subset of output shares.

Definition 8 (Two-Input IOS). Let G be an (n-share, 2-to-1) gadget. G is
said t-input-output separative (t-IOS), if it is uniform and if there exists a
(two-stage) simulator Sim =

(
Sim1,Sim2

)
such that for every admissible triple

(~x1, ~x2, ~y) for G and for every set of wires W of G with |W | ≤ t, we have

1. Sim1(W) = (I1, I2, J) where I1, I2, J ⊆ [1 : n], with |I1| ≤ |W |, |I2| ≤ |W |
and |J | ≤ |W |, and

2. Sim2(W, ~x1|I1 , ~x2|I2 , ~y|J)
id
= AssignWires(G,W, (~x1, ~x2), ~y).

We then define a balanced version of the IOS property in which the output set
of shares used for the simulation is entirely defined together with the input sets
of shares used for the simulation. This tweaked notion is already satisfied by the
refresh gadget introduced in [27] and is advantageously equivalent to the free
SNI notion (as proven later in Theorem 1).

Definition 9 (Two-Input Balanced IOS). Let G be an (n-share, 2-to-1) gad-
get. G is said balanced t-input-output separative (balanced t-IOS), if it is uni-
form and if there exists a (two-stage) simulator Sim =

(
Sim1,Sim2

)
such that

for every admissible triple (~x1, ~x2, ~y) for G and for every set of wires W of G
with |W | ≤ t, we have
8 The definition for `-input gadgets is given in Section A.1.

9

1. Sim1(W) = (I1, I2) where I1, I2 ⊆ [1 : n], with |I1| ≤ |W |, |I2| ≤ |W | and
2. Sim2(W, ~x1|I1 , ~x2|I2 , ~y|I1∩I2)

id
= AssignWires(G,W, (~x1, ~x2), ~y).

A gadget is simply said to be balanced IOS if it is balanced (n− 1)-IOS.

Corollary 1. An (n-share, 2-to-1) balanced t-IOS gadget is t-IOS.

For the above corollary, it is indeed enough to use the first simulator of the
balanced IOS definition and to fix the J set to the intersection of I1 and I2.

The (balanced) IOS notion can also be naturally extended to 1-to-2 gadgets,
e.g. to cover copy gadgets which are useful in the context of region probing
composition (see Section 7). We give a formal definition of IOS for 1-to-2 gadgets
in Appendix B.2.

3.3 Extending and Unbalancing Free SNI

As for the IOS property, we generalize the free SNI security notion for 2-input
gadgets9. In a nutshell, two subsets of input shares are now involved in the sim-
ulation and the output shares to be simulated are defined from the intersection
of their indices.

Definition 10 (Two-Input Free SNI). Let G be an (n-share, 2-to-1) gadget.
G is said free t-SNI, if for every set W of internal wires of G such that |W | ≤ t,
there exists a (two-stage) simulator Sim =

(
Sim1,Sim2

)
such that for every input

(~x1, ~x2) ∈ Kn ×Kn,

1. Sim1(W) = (I1, I2) where I1, I2 ⊆ [1 : n], with |I1| ≤ |W | and |I2| ≤ |W |,
2. Sim2(W, ~x1|I1 , ~x2|I2)

id
=
(
AssignWires(G,W, (~x1, ~x2)), ~y|I1∩I2

)
,

where ~y = G(~x1, ~x2), and for every set O ([1 : n] \ (I1 ∩ I2), ~y|O is uni-
formly and independently distributed, conditioned on AssignWires(G,W, (~x1, ~x2))
and ~y|I1∩I2 . A gadget is simply said to be free SNI if it is free (n− 1)-SNI.

In the reverse direction compared to IOS (see Figure 1), we define an unbalanced
variant of free SNI for which the first simulator outputs different sets of indices.
It has the advantage of being equivalent to the IOS security property (as proven
later in Theorem 2).

Definition 11 (Two-Input Unbalanced Free SNI). Let G be an (n-share, 2-
to-1) gadget. G is said unbalanced free t-SNI, if for every setW of internal wires
of G such that |W | ≤ t, there exists a (two-stage) simulator Sim =

(
Sim1,Sim2

)
such that for every input (~x1, ~x2) ∈ Kn ×Kn,

1. Sim1(W) = (I1, I2, J) where I1, I2, J ⊆ [1 : n], with |I1| ≤ |W |, |I2| ≤ |W |
and |J | ≤ |W |, and

2. Sim2(W, ~x1|I1 , ~x2|I2)
id
=
(
AssignWires(G,W, (~x1, ~x2)), ~y|J

)
,

9 The definition for `-input gadgets is given in Appendix A.1..

10

where ~y = G(~x1, ~x2), and for every set O ([1 : n] \ J , ~y|O is uniformly and
independently distributed, conditioned on AssignWires(G,W, (~x1, ~x2)) and ~y|J . A
gadget is simply said to be unbalanced free SNI if it is unbalanced free (n− 1)-
SNI.

Corollary 2. An (n-share, 2-to-1) free t-SNI gadget is unbalanced free t-SNI.

As for IOS (see Corollary 1), the free t-SNI property trivially implies the unbal-
anced free t-SNI property by fixing the output set of indices J to the intersection
of sets I1 and I2.

Also, unbalanced free t-SNI implies t-SNI: the unbalanced free-SNI can simu-
late any strict subset of the output (more formally, this is a consequence of The-
orem 3).

Corollary 3. An (n-share, 2-to-1) unbalanced free t-SNI gadget is t-SNI.

3.4 Relations between Security Notions

In this section, we draw and prove the relations between the different security
notions recalled or introduced above for (n-share, 2-to-1) gadgets. They are
summarized in Figure 1.

We first demonstrate the equivalence between the free t-SNI and balanced
t-IOS notions. This result is somehow surprising given the different natures of
the two notions: Free SNI requires the ability to simulate the probed wires from
some input shares with the feature that non-simulated output wires are mutually
independent of the simulation. On the other hand, IOS requires the ability to
simulate the probed wires from some input and output shares where the sim-
ulation must be consistent with any given (admissible) values of the input and
output sharings. The following theorem show that these two requirements are
essentially equivalent.

Theorem 1. Let G be a (n-share, 1-to-1 or 2-to-1) gadget and let t be an integer
strictly less than n. G is free t-SNI if and only if G is t-balanced IOS.

The complete proof is given in Section A.4. For both implications, we demon-
strate how to build the new simulators from the existing ones. For the right-to-
left implication, we additionally show that some part of the output sharing is
uniform and independent conditioned on the probes and the remaining outputs
using a contradiction. While the first simulators of both properties are always
built the same way, the construction of the second simulators is trickier. For the
left-to-right implication, we need to run the second free t-SNI simulator until its
second output matches the third value of the admissible triple for the balanced
IOS property. For the right-to-left implication, any uniformly random chunk
of output forms an admissible triple to be used in the second balanced t-IOS
simulator to build the free t-SNI one.

Similarly, Theorem 2 gives the equivalence between the unbalanced free SNI
and IOS notions. Its proof follows exactly the same steps as the proof of Theo-
rem 1 (see complete proof in Section A.4).

11

Theorem 2. Let G be a (n-share, 1-to-1 or 2-to-1) gadget and let t be an integer
strictly less than n. G is unbalanced free t-SNI if and only if G is t-IOS.

Finally, the t-IOS security property implies the t-SNI security property, as
stated in Theorem 3 and formally proven in Section A.5. In a nutshell, the first
t-SNI simulator is built from the two first outputs of the first t-IOS simulator.
Then, the second t-SNI simulator is built from the second t-IOS simulator using
an admissible triple in which the output additionally integrates the output probes
authorized by the SNI property.

Theorem 3. Let G be an (n-share, 1-to-1 or 2-to-1) gadget and let t be an
integer strictly less than n. If G is t-IOS then G is t-SNI.

From Theorem 1 on the equivalence between t-IOS and unbalanced free t-SNI,
it follows that unbalanced free t-SNI also directly implies t-SNI.

Meanwhile, unbalanced free t-SNI (or equivalently t-IOS) does not imply free
t-SNI (or equivalently balanced t-IOS) and t-SNI does not imply t-unbalanced
SNI (or equivalently t-IOS). Counterexamples are given in Section A.2 and Sec-
tion A.3.

3.5 Additional Relations for ZE-Refresh Gadgets

In the literature, it can be noticed that most efficient refresh gadgets are built
from a refresh on a sharing of zero. We thus properly define such constructions
and we show how to use them to build free SNI gadgets.

In the following, we call a ZE-refresh gadget (ZE for zero-encoding) a gadget
G which, for any input ~x ∈ Kn computes ~y = G(~x) as follows (i.e., respecting
the order of operations)

~y ← ~x+ ZeroEnc() ,

where ZeroEnc is a randomized circuit which takes no input and outputs a sharing
of 0. We note that G is uniform if and only if ZeroEnc outputs a uniform sharing
of 0, i.e. ~z ← ZeroEnc() is such that ~z|O is uniformly distributed over K|O| for
every O ([1 : n]. Definition 12 introduces a security property on ZeroEnc that,
if satisfied, yields free t-SNI ZE-refresh gadgets.

Definition 12 (Free Encoding of Zero). Let ZeroEnc be an (n-share, 0-to-1)
gadget performing a refresh on a sharing of zero. ZeroEnc is said to be t-free if for
every set W of (internal and output) wires on ZeroEnc with |W | ≤ t, there exists
a set J of cardinality |J | ≤ |W | such that for every set O ([1 : n] \ J , ~z|O is
uniformly distributed and mutually independent of AssignWires(ZeroEnc,W, ∅, ~z),
and ~z|J , where ~z = ZeroEnc().

Then we obtain the following result, whose proof is given in Section A.6.

Proposition 1. Let G be an n-share uniform ZE-refresh gadget. The inner gad-
get ZeroEnc is t-free if and only if G is free t-SNI.

12

Let us remark that a result similar to Proposition 1 for SNI refresh gadgets
has been introduced by Cassiers et al. [18]. Indeed, our ZE-refresh gadgets are
the same construction as their “off-path” refresh gadgets. Moreover, they define
the notion of Strong Output Independence (t-SOI) for ZeroEnc gadgets, which
is a weaker variant of free encoding: ZeroEnc is t-SOI if, for every t1 + t2 ≤ t,
every set of wires in ZeroEnc with |W | ≤ t1 and every set O ⊂ [1 : n] such that
|O| ≤ t2, there exists a set J ⊆ O such that |J | ≤ t1 and ~z|O\J is uniformly
distributed and mutually independent of AssignWires(ZeroEnc,W, ∅, ~z), and ~z|J ,
where ~z = ZeroEnc(). A ZE-Refresh gadget is t-SNI if and only if the inner
ZeroEnc is t-SOI.

4 Gadgets under New Notions for Arbitrary Orders

This section is dedicated to the construction of free t-SNI or t-IOS gadgets at
arbitrary orders. We first demonstrate useful propositions to build strong generic
gadgets from ZE-refresh gadgets, and then we explore the properties satisfied by
the most deployed gadgets from the literature.

4.1 Generic Constructions

ZE-refresh gadgets can be used to build free t-SNI and t-IOS gadgets with larger
t, like multiplication or copy gadgets for instance, as illustrated on Figure 2.

Fig. 2. Illustration of Generic Constructions of Propositions 2, 3 and 4

In particular, Proposition 2 and Proposition 3 demonstrate how to compose
free t1-SNI gadgets which are additionally t-SNI or t-NI (with t > t1) with free
(t− t1)-SNI ZE-refresh gadgets to obtain free t-SNI refresh gadgets. Their proofs
are given in Section B.1.

Proposition 2. Let G1 be an (n-share, 2-to-1) gadget and let G2 be an n-share
ZE-refresh gadget. Let G = G2 ◦ G1. For t > t1 ≥ 1, if G1 is t-SNI and free
t1-SNI, and G2 is free (t− t1 − 1)-SNI, then G is free t-SNI.

13

Proposition 3. Let G1 be an (n-share, 2-to-1) gadget and let G2 be an n-share
ZE-refresh gadget. Let G = G2 ◦ G1. For t > t1 ≥ 1, if G1 is t-NI and t1-IOS,
and G2 is free (t− t1 − 1)-SNI, then G is t-IOS.

In the same vein, Proposition 4 claims that a copy gadget built from the
double application of a free t-SNI ZE-refresh gadget is balanced t-IOS. Its proof
is given in Section B.2.

Proposition 4. Let GZE be an n-share ZE-refresh gadget. Let Gcp = (GZE, GZE).
If GZE is free t-SNI, then Gcp is balanced t-IOS.

From Theorem 1, this copy gadget is equivalently free t-SNI (and trivially un-
balanced free t-SNI and t-IOS). We state the result for the IOS notion here since
such copy gadgets are useful in the context of the IOS composition framework
for region probing security (see Section 7).

4.2 Known Gadgets

We now demonstrate that common gadgets satisfy the strong unified notions of
free SNI and IOS. Specifically, we prove that the well known ISW multiplication
gadget (named after its authors Ishai, Sahai, and Wagner, from [29]) is free-
(n− 2)-SNI (or equivalently balanced (n− 2)-IOS) and not free-(n− 1)-SNI and
that the subsequent ISW refresh gadget is free-(n− 1)-SNI. Then, we show that
the O(n log n) refresh gadget from [8,32] and the copy gadget built from it are
both free (n− 1)-SNI.

4.3 ISW Multiplication and Refresh Gadgets

We recall the ISW multiplication gadget in Algorithm 1.

Algorithm 1: ISW Multiplication [29]
Input : (a1, . . . , an),(b1, . . . , bn) input sharings, {ri,j}1≤i<j≤n random values
Output: (c1, . . . , cn) sharing of a · b

1 for i← 1 to n do
2 ci ← ai · bi;
3 end
4 for i← 1 to n do
5 for j ← i+ 1 to n do
6 ci ← ci + ri,j ;
7 rji ← (ai · bj − ri,j) + aj · bi;
8 cj ← cj + rj,i;
9 end

10 end
11 return (c1, . . . , cn);

14

Our main result for the n-share ISWmultiplication gadget is provided in Propo-
sition 5 whose proof is given in Section B.3. The n-share ISW multiplication
gadget can thus be used as a building block of a tight composition in the probing
model, as proven in Section 6.

Proposition 5. The n-share ISW multiplication gadget is free-(n− 2)-SNI.

Note that from Theorem 1, the ISW multiplication is equivalently balanced
(n − 2)-IOS and it is also (n − 2)-IOS, which is enough to act as a building
block of a tight composition in the region probing model described in Section 7.
However it is not free-(n − 1)-SNI, as claimed in Proposition 6 whose proof is
given in Section B.3. In a nutshell, the proof exhibits the following set of n− 1
probes on the gadget W = {a1 · b2− r1,2, . . . , a1 · bn− r1,n} as a counterexample.
One can check that a linear combination between all the probes in W and the
output share c1 gives the value a1 · (b1+ . . .+ bn) which involves all of the shares
of the second input, leading to a failure.

Proposition 6. The n-share ISW multiplication gadget is not free (n−1)-SNI.

Remark 1. Note that the ISW multiplication gadget satisfies a security notion
slighlty weaker than free (n − 1)-SNI for which the output shares indexed by
I1 ∩ I2 do not need to be simulated.

Even though the ISW multiplication gadget is not free (n− 1)-SNI, we can use
the fact that it is free (n−2)-SNI and (n−1)-SNI to construct a new free (n−1)-
SNI gadget, by applying the result of Proposition 2. Since the ISW gadget is free
(n− 2)-SNI, then the ZE-refresh gadget must be free 1-SNI. Hence, we can use
any refresh gadget which simply outputs a uniform sharing. For this, we can
choose a linear refresh gadget, for instance Algorithm 3 from [20] or the circular
refresh gadget from [6].

Corollary 4. The composition of the n-share ISW multiplication gadget with a
free 0-SNI ZE-refresh gadget (like Algorithm 3 from [20] or the circular refresh
gadget from [6]) is free (n− 1)-SNI.

The proof of Corollary 4 follows directly from Proposition 2.

From the ISW multiplication gadget, one can build the ISW refresh gadget
by simply fixing the second input to the constant vector (1, 0, . . . , 0). Follow-
ing Proposition 5, the gadget is trivially free (n−2)-SNI. Interestingly, it is even
free (n− 1)-SNI as stated in Lemma 1. In fact, the failure sets of probes of size
n − 1 in the case of the ISW multiplication gadget essentially failed because of
the manipulation of two input sharings. This is no longer the case in the ISW
refresh gadget, which is why it becomes free (n− 1)-SNI. The full proof is given
in Section B.5.

Lemma 1. The n-share ISW refresh gadget is free-(n− 1)-SNI.

Like the ISW multiplication gadget, the ISW refresh gadget can be used as a
building block of a tight composition in the probing or in the region probing
model (as shown in Sections 6 and 7).

15

4.4 O(n logn) Refresh and Copy Gadgets

In the following, we present the optimized version of theO(n log n) refresh gadget
from [8], as improved in [32], by removing one layer of randomness. This ZE-
refresh gadget relies on the ZeroEnc gadget that we recall in Algorithm 2.

Algorithm 2: QuasiLinearZeroEnc
Input : Number of shares n
Output: (d1, . . . , dn) such that d1 + · · ·+ dn = 0

1 if n = 1 then return 0;
2 if n = 2 then
3 r ← $;
4 return (r,−r);
5 end
6 (c1, . . . , cbn/2c)← QuasiLinearZeroEnc(bn/2c);
7 (cbn/2c+1, . . . , cn)← QuasiLinearZeroEnc(dn/2e);
8 for i← 1 to bn/2c do
9 r ← $;

10 di ← ci + r;
11 dbn/2c+i ← cbn/2c+i − r;
12 end
13 if n mod 2 = 1 then dn ← cn;
14 return (d1, . . . , dn);

Our next proposition states that the ZeroEnc gadget recalled in Algorithm 2
is a (n− 1)-free encoding of zero. The proof is given in Section B.6.

Proposition 7. Algorithm 2 is an (n− 1)-free encoding of zero.

From Proposition 1 and Proposition 7, we conclude that the corresponding ZE-
refresh gadget is free (n− 1)-SNI.

Corollary 5. The O(n log n) n-share ZE-refresh gadget instantiated with Algo-
rithm 2 as ZeroEnc is free (n− 1)-SNI.

From Theorem 1, this O(n log n) n-share ZE-refresh gadget is equivalently bal-
anced IOS and thus trivially IOS (see Corollary 1). This result confirms (and
even generalizes) the proven statement from [28] stating that the gadget is IOS
when the number n of shares is a power of two.

Following this result and Proposition 4, the copy gadget built from the dou-
ble application of the O(n log n) ZE-refresh gadget described above is directly
balanced t-IOS (or equivalently free t-SNI).

Corollary 6. Let GZE,O(n logn) be the O(n log n) n-share ZE-refresh gadget re-
called above. Then the copy gadget defined as Gcp = (GZE,O(n logn), GZE,O(n logn))
is balanced t-IOS.

16

5 Efficient Verification of Free SNI and IOS

Verification tools for probing security/composition notions such as maskVerif [4,2]
or IronMask [13] usually work by enumerating possible tuples of probed wires
(for a given number of probes depending on the security notion) and for each
of them analyze the number of input shares which are necessary for a perfect
simulation. The latter analysis is done by considering linear combinations of
the probed variables to eliminate the randomness (assuming linearly introduced
randomness) and by listing the input shares involved in the random-free symbolic
expressions (which are hence necessary for a perfect simulation). While this
approach is sound to verify usual probing composition notions (e.g. NI, SNI,
PINI) and the random probing notions (RPC, RPE) recently introduced in [11],
it is not clear how to extend it to notions such as free SNI or IOS. Indeed, free
SNI requires the ability to simulate the probed wires but also to demonstrate
that each subset of non-simulated output wires is mutually independent of the
simulation. On the other hand, IOS constrains the simulation to be consistent
with any given (admissible) values of the input and output sharings and to
simulate the probed wires not only from input shares but also with some output
shares.

In this section, we show how to extend the existing probing verification ap-
proach to the free SNI and IOS notions recalled and generalized in Section 3.
We present a set of algorithms to efficiently verify common gadgets under these
notions. We then show a few applications of these algorithms as implemented in
IronMask.

5.1 Verification Algorithms

Notations. In the following, we consider (n-share, 2-to-1) gadgets, and denote
−→x1,−→x2 the input sharings, −→r the internal randomness, and −→y the output shar-
ing. Throughout this section, the coordinates of −→x1,−→x2 and −→r are considered as
symbolic variables and we denote W the set of symbolic arithmetic expressions
in these symbolic variables (by arithmetic we mean with operations and/or con-
stants from K). Under this formalism, any wire wi in the gadget and any output
share yj lies in W . We note that the verification algorithms presented hereafter
can easily be adapted to cover gadgets with a single input.

We exclusively focus on LR-gadgets (as defined in [14]), i.e. gadgets for which
all random values are additively introduced to compute the output shares. For
these common gadgets (see e.g. [29,22,9,10]), each wire computes a variable of
the form:

w = fw(
−→x1,−→x2) +−→r T · −→sw,

for some arithmetic function fw : (Kn)2 → K, the input sharings −→x1, −→x2 ∈ Kn,
the vector −→r of all random values used by the gadget which is uniformly drawn
from Kρ (with ρ the number of random gates in the gadget), and some constant
vector −→sw ∈ Kρ.

17

In the following, we assume that we have access to the following function:

Gaussian :Wk →Wk

−→
W = (w1, . . . , wk)

T 7→
−→
W ′ = (w′1, . . . , w

′
k)
T

such that
−→
W ′ = N ·

−→
W where N is an invertible matrix in Kk×k such that S′ =

N · S with S′ the row reduced form (after Gaussian elimination) of the matrix
S := (−→sw1

|−→sw2
| . . . |−→swk

)T which satistifes S′ = (−→sw′1 |
−→sw′2 | . . . |

−→sw′v |
−→
0 | . . . |−→0)T for

some v ∈ [1 : k].

After Gaussian elimination, the expression of each w′i can be written as

w′i = c1 · wj1 + . . .+ ct · wjt = fw′i(
−→x1,−→x2) +−→r T · −→sw′i

for (c1, . . . , ct) ∈ Kt, such that Ni,j 6= 0 for any j ∈ {j1, . . . , jt} and Ni,j = 0 for
all other coefficients on the same row i of matrix N .

We denote by I1,w′i (resp. I2,w′i) the indices of the first input (resp. sec-
ond input) shares that are contained in the symbolic expression of w′i, i.e. in
fw′i(
−→x1,−→x2).

We also denote I1,w′i (resp. I2,w′i) the indices of the first input (resp. second in-
put) shares that are involved in the symbolic expression of fw′i(

−→x1,−→x2)−g(−→x1,−→x2),
where g(−→x1,−→x2) :=

∑n
i=1 yi is the (unshared) output of the considered gadget

G. For instance, if G is a single input refresh gadget, then we have, g(−→x1) =∑n
i=1 x1,i, and I1,w′i = [1 : n]\ I1,w′i . In the case where G is a multiplication gad-

get, the products of input shares must be considered in each symbolic expression,
i.e. g(−→x1,−→x2) =

(∑n
i=1 x1,i

)(∑n
i=1 x2,i

)
.

Finally, given
−→
W = (w1, . . . , wk)

T and
−→
W ′ = (w′1, . . . , w

′
k)
T such that

−→
W =

N ·
−→
W (obtained through a call to Gaussian), we define

Ow′i := {j ∈ [1 : n] | ∃ ` ∈ [1 : k] s.t. Ni,` 6= 0 and w` = yj} .

Namely, following the Gaussian elimination, the output share w` = yj appears
in the linear combination defining w′i. We further define Ow′i := [1 : n] \Ow′i .

Preliminary results. We present hereafter the sub-algorithms used to verify
the main security notions defined or recalled in Section 3. These sub-algorithms
take as input a given set of probes

−→
W and verify the free SNI or IOS notion

for this set. These sub-algorithms have been implemented in the IronMask tool
(see [13]) and called on all possible sets of probes

−→
W of the target gadget to

check that it satisfies the free SNI or IOS notion.

First, we present an efficient method to check that an n-share gadget G is
uniform. Namely, this method checks that for any O ([1 : n], the output shares
in −→y |O are all independent and uniform (with −→y denoting the output sharing
of the gadget). The method is described in Algorithm 3.

18

Algorithm 3: Verification of Output independence and Uniformity
Input : Symbolic expressions −→y ∈Wn of the output sharing of an

LR-gadget G.
Output: success if G is uniform, failure otherwise.

1 (w′1, . . . , w
′
n)← Gaussian(y1, . . . , yn);

2 v ← index in [1 : n] such that ∀j > v, −→sw′j =
−→
0 ;

3 if v 6= n− 1 then
4 return failure;
5 end
6 return success;

Proposition 8. Algorithm 3 is correct.

The proof of Proposition 8 is given in Section C.1. In a nutshell, it states that
if the gadget is indeed uniform and we perform a Gaussian elimination on the
vectors of randomness for the output shares −→y , then we get at most one row
which is a linear combination of all of the others outputs in the matrix of the
Gaussian procedure. This is exactly the check performed by Algorithm 3.

In the rest of this section, we assume a gadget G on which Algorithm 3
does not fail. If Algorithm 3 fails, then we do not need to go further in the
verification since both the free SNI and IOS properties require that the gadget
G satisfy uniformity.

Before presenting the full verification algorithm, we state the following useful
result. Namely, a set I ⊆ [1 : n] satisfies the free property for some probes
−→
W ∈ Wk if, for any O ([1 : n] \ I, the output shares −→y |O are independent and
uniform conditioned on the probes in

−→
W and output shares −→y |I . The proof is

given in Section C.4.

Lemma 2. Let G be a uniform n-share LR-gadget for the base field K = F2.
Let
−→
W = (w1, . . . , wk) be a tuple of internal probes on G and let

(f1, . . . , fn+k−1)← Gaussian(w1, . . . , wk, y1, . . . , yn−1) .

Let v ∈ [0 : n+ k − 1] such that −→sfi 6=
−→
0 for all i ≤ v and −→sfi =

−→
0 for all i > v

and denote P = {fv+1, . . . , fn+k−1}.
For any partition P1 ∪ P2 = P (with P1 ∩ P2 = ∅), the set

I =
(⋃
fi∈P1

Ofi

)
∪
(⋃
fi∈P2

Ofi

)
, (1)

with Ofi = [1 : n] \Ofi , satisfies the free property for
−→
W .

Moreover, any set I ′ which is not a superset of a set I in the form of (1)
does not satisfy the free property for

−→
W .

19

Verification algorithms. We present hereafter the verification algorithms
which check whether a given set of probes on a gadget represents a failure for free
SNI or IOS property. The complete procedure is described in Algorithms 4, 5,
and 6. They are implemented in the IronMask verification tool, which iterates
over all possible sets of probes on the gadget and calls the procedure on each
of them. The exploration of the different sets of probes uses the optimizations
already integrated in the tool and presented in [13]. As in Lemma 2, the descrip-
tion assumes that the base field is K = F2. We later discuss the general case of
any base field K.

Algorithm 4 performs the preliminary steps common to the verification of free
SNI and IOS. Namely, it determines the sets of input shares necessary to simu-
late the given set of probes

−→
W . This is done through the Gaussian elimination

(g1, . . . , gt) ← Gaussian(w1, . . . , wt) performed on line 2 and then constructing
the sets of input shares

I1 =
⋃

i∈[v+1:t]

I1,gi and I2 =
⋃

i∈[v+1:t]

I2,gi

on lines 3 to 6, where, as introduced above, Ij,gi is the set of shares from −→xj
which are involved in the expression gi. At this point, we already have a failure
if at least one of the sets I1 or I2 is of size larger than |

−→
W |. This indeed consists

in an SNI failure, which is automatically a failure for free SNI and IOS. This
test is performed on line 7. Next, on lines 8 and 9, the algorithm prepares the
inputs to the inner algorithm, which either checks free SNI or IOS by performing
the Gaussian elimination described in Lemma 2. Depending on the property,
Algorithm 4 then calls one of Algorithms 5 or 6. In both algorithms, we perform
a direct application of Lemma 2. In other words, we try to find a set of output
shares that satisfies free SNI or IOS requirements using the Lemma result. The
correctness of this procedure is proved in Lemmas 3 and 4. The full proof of the
lemmas are given in Section C.2 and Section C.3.

Lemma 3. Algorithms 4 and 5 are correct when checking free t-SNI property.

Lemma 4. Algorithms 4 and 6 are correct when checking t-IOS property.

Optimization. We can optimize the execution time of Algorithms 5 and 6 by
reducing the number of sets to test, i.e. the number of subsets to consider in the
main loop on line 2 in both algorithms.

Observe that in Algorithm 5, for each i ∈ C = {v + 1, . . . , n + t − 1}, if
|I1,fi ∪ Ofi | > t or |I2,fi ∪ Ofi | > t, then for any subset C ′ of C such that
i ∈ C ′, the constructed sets I ′1 and I ′2 will be of size bigger than t, which
means that we cannot use them to satisfy the free SNI property. In this case,
we have no choice but to use I1,fi ∪ Ofi and I2,fi ∪ Ofi to add to the sets
I ′1 and I ′2 respectively. The observation works analoguously in the case where
|I1,fi ∪ Ofi | > t or |I2,fi ∪ Ofi | > t. We hence apply this in a preprocessing

20

Algorithm 4: Verification Algorithm for free-t-SNI or t-IOS for a single
set of probes

Input :
−→
W = (w1, . . . , wt) ∈ Wt a tuple of t internal probes on an
(n-share, 2-to-1) LR-gadget G.
property ∈ {freeSNI, IOS} to check.

Output: false if
−→
W is a failure for property, true otherwise.

1 I1 ← {}, I2 ← {};
2 (g1, . . . , gt)← Gaussian(w1, . . . , wt);
3 v ← index in [1 : t] such that ∀j > v, −→sgj =

−→
0 ;

4 for i ∈ [v + 1 : t] do
5 I1 ← I1 ∪ I1,gi , I2 ← I2 ∪ I2,gi ;
6 end
7 if |I1| > t or |I2| > t then return false;
8 (f1, . . . , fn+t−1)← Gaussian(w1, . . . , wt, y1, . . . , yn−1);
9 v ← index in [1 : n+ t− 1] such that ∀j > v, −→sfj =

−→
0 ;

10 return check_{property}(t, I1, I2, (fv+1, . . . , fn+t−1));

Algorithm 5: check_freeSNI
Input : t, I1, I2, (fv+1, ..., fn+t−1)

from Algorithm 4
Output: false if failure for

free-t-SNI, true otherwise.

1 C ← {v + 1, . . . , n+ t− 1};
2 for each C′ such that C′ ⊆ C do
3 I ′1 ← I1, I ′2 ← I2;
4 for i ∈ C′ do
5 I ′1 ← I ′1 ∪ I1,fi ∪Ofi ;
6 I ′2 ← I ′2 ∪ I2,fi ∪Ofi ;

7 end
8 for i ∈ C \ C′ do
9 I ′1 ← I ′1 ∪ I1,fi ∪Ofi ;

10 I ′2 ← I ′2 ∪ I2,fi ∪Ofi ;

11 end
12 if |I ′1| ≤ t and |I ′2| ≤ t then

return true;
13 end
14 return false;

Algorithm 6: check_IOS
Input : t, I1, I2, (fv+1, ..., fn+t−1)

from Algorithm 4
Output: false if failure for t-IOS,

true otherwise.

1 C ← {v + 1, . . . , n+ t− 1};
2 for each C′ such that C′ ⊆ C do
3 I ′1 ← I1, I ′2 ← I2, J ′ ← {};
4 for i ∈ C′ do
5 I ′1 ← I ′1 ∪ I1,fi ;
6 I ′2 ← I ′2 ∪ I2,fi ;
7 J ′ ← J ′ ∪Ofi ;
8 end
9 for i ∈ C \ C′ do

10 I ′1 ← I ′1 ∪ I1,fi ;
11 I ′2 ← I ′2 ∪ I2,fi ;
12 J ′ ← J ′ ∪Ofi ;
13 end
14 if |I ′1| ≤ t and |I ′2| ≤ t and

|J ′| ≤ t then return true;
15 end
16 return false;

21

phase to the algorithm, where for each such i ∈ C = {v + 1, . . . , n + t − 1},
we update the sets I1 and I2 correspondingly, and remove the index i from C.
Then, in the loop afterwards, we only consider a subset of C. In fact, in the
case where t < n/2, we always have either |I1,fi ∪ Ofi | ≤ t or |I2,fi ∪ Ofi | ≤ t
for each i ∈ C, hence there is only one possible partition that could work for
the property. This means that we do not need to loop on all possible subsets
of C anymore but only go through all indices once. In the case where t ≥ n/2,
the experimental results in the next section show that with the optimization,
we end up considering, on average, only 1 or 2 subsets of C in the loop before
finding the partition that satisfies the property. In other words, Algorithm 5 for
checking the free SNI property is in O(n + t) whenever t < n/2 while it might
be exponential in O(2n+t) otherwise to explore all the subsets C ′ ⊆ C. But
interestingly in practice, this exploration does not explode for tested gadgets for
which the overhead is at most a factor 2.

Finally, we can also apply the same optimization for Algorithm 6 where
instead of considering the sizes of the sets I1,fi ∪Ofi and I2,fi ∪Ofi , we have to
consider the sets I1,fi , I2,fi , and Ofi independently.

Generalization to any base field K. The verification technique presented in
this section can be generalized from F2 to any base field K. First, Algorithm 3
which tests if the output sharing of the gadget is uniform can be applied in the
exact same way. Then, to verify free SNI and IOS properties, we can also apply
Algorithm 4 without any changes by correctness of the verification procedure of
IronMask on any base field as proven in [14]. Next, we need to slightly modify
Algorithms 5 and 6. For each i ∈ C, where C is the set defined on the first line
of the algorithms, instead of considering the equation fi (i.e. the sets I1,fi , I2,fi
and Ofi), and fi +

∑
j yj (i.e. the sets I1,fi , I2,fi and Ofi), we need to consider

substracting from fi different multiples of
∑
j yj by constant factors of K. In

general, we need to consider the |K| different multiples of
∑
j yj (where |K| is

the size of the field). However, we can observe that each fi can be written as

fi = c1,f1 · w1 + . . .+ ct,f1 · wt + d1,f1 · y1 + . . . dn−1,f1 · yn−1

for coefficients (c1,f1 , . . . , ct,f1 , d1,f1 , . . . , dn−1,f1) ∈ Kt+n−1 (on F2, all of these
coefficients are either 0 or 1). Hence, for each i ∈ C, we only need to consider
the n equations fi, fi − d1,f1 ·

∑
j yj , . . . , fi − dn−1,f1 ·

∑
j yj . The correctness of

this procedure can be proven in a similar way to the result of Lemma 2. Indeed,
the cost of Algorithms 5 and 6 becomes more exponential: in the case of F2, the
algorithms perform at most 2n+t−v−2 iterations of the main loop, while on a
larger base field K, the algorithms perform at most nn+t−v−2 iterations to find
the sets satisfying the free SNI or IOS property.

5.2 Application to Concrete Gadgets

We now demonstrate the verification of the recalled or newly defined properties
of Section 3 for the most common multiplication and refresh gadgets used in

22

the literature for a reasonable number of shares. We execute the IronMask tool
extended with Algorithm 4 on a single core of a 2.4 GHz Intel Core i9 8 cores
with a 16 GB RAM. Our results are given in Table 1.

The first column displays the number of shares n (or the range when appli-
cable) for which the gadget is tested. The second column gives the complexity
of the gadget with its number of random variables and its number of intermedi-
ate variables. Then, the three properties SNI, IOS, and free SNI are tested for
t = n−1, and the verification result is given in the Res. column. Finally, the last
column displays the verification time and the highest t for which the property
is verified when it is not for t = n− 1.

First, Table 1 confirms for small numbers of shares that refresh gadgets from
Section 4, i.e. the ISW refresh gadget and the optimized O(n log n) ZE-refresh
gadget, are free (n−1)-SNI and (n−1)-IOS. The table also shows the verification
result for the ISW multiplication gadget, which is (n−1)-SNI for up to 7 shares,
and confirms that the gadget is only free (n−2)-SNI and (n−2)-IOS. Conversely,
the multiplication gadget from Corollary 4 is free (n− 1)-SNI for up to 7 shares,
as expected.

As an additional multiplication gadget, we test the parallel construction
from [6, SNI gadgets from Table 4] for up to 8 shares.10 The results in the
table show that the gadget is always (n− 1)-SNI, but depending on the number
of shares, is free t-SNI and t′-IOS for different values of t, t′ ≥ 1. Interestingly,
the values of t and t′ change differently depending on the number of shares in
the construction. Also, the gadget is only free (n − 1)-SNI and (n − 1)-IOS for
n = 4.

Finally, we test the optimized 8-shares refresh gadget from [18], which is
slightly more efficient than the 8-shares O(n log n) refresh gadget from Corol-
lary 5, and uses one less random value. The gadget is confirmed to be free 7-SNI
and 7-IOS. We also test the circular refresh gadget as constructed in [3] as a
ZE-refresh and confirm that it is free (n − 1)-SNI and (n − 1)-IOS for n up to
11 shares.

In all of the tests, we evaluate the impact of the optimization on Algorithms 5
and 6. In order to do this, for each checked gadget, we compute the total number
of iterations performed in the loops of Algorithm 5 for free SNI, or Algorithm 6
for IOS, for all of the tuples, divided by the total number of tuples which require
at least one iteration of the loop. We observe that for any of the tested gadgets,
this ratio does not exceed 1.2, which means that for each tuple of probes, we
need, on average, one or at most two iterations of the loop of Algorithm 5 or 6
before finding the sets that satisfy the respective property. This shows that
with the optimization introduced to the algorithms, the cost is not exponential
anymore, meaning that we do not need to test all possible partitions as described
in Lemma 2, but only at most one or two before finding the right one.
10 When we implemented the parallel multiplication gadgets from [6, SNI gadgets from

Table 4], we detected a correctness flaw for the case n mod 4 = 2. That is why we
could not test such a gadget with six shares.

23

Table 1. IronMask verification results and execution time.

Complexity Property Res. Verification
shares # rand. - # var. time

Multiplication Gadgets
ISW multiplication from [29]

n ≤ 7 ≤ 21, ≤ 161
SNI 3 ≤ 10sec
IOS 7 ≤ 10sec (tmax = n− 2)

free SNI 7 ≤ 10sec (tmax = n− 2)
Multiplication from Corollary 4

n ≤ 7 ≤ 27, ≤ 179
SNI 3 ≤ 1min30sec
IOS 3 ≤ 3min

free SNI 3 ≤ 3min
Parallel multiplication from [6, SNI gadgets from Table 4]

3 3, 27
SNI 3 ≤ 1sec
IOS 7 ≤ 1sec (tmax = 1)

free SNI 7 ≤ 1sec (tmax = 1)

4 8, 56
SNI 3 ≤ 1sec
IOS 3 ≤ 1sec

free SNI 3 ≤ 1sec

5 10, 80
SNI 3 ≤ 1sec
IOS 3 ≤ 1sec

free SNI 7 ≤ 1sec (tmax = 3)

7 21, 161
SNI 3 7sec
IOS 7 4sec (tmax = 5)

free SNI 7 4sec (tmax = 5)

8 24, 200
SNI 3 6min
IOS 7 11sec (tmax = 5)

free SNI 7 ≤ 1sec (tmax = 3)
Refresh Gadgets

ISW refresh gadget from [29]

n ≤ 8 ≤ 28, ≤ 84
SNI 3 ≤ 30sec
IOS 3 ≤ 2min30sec

free SNI 3 ≤ 2min30sec
O(n logn) refresh gadget from Corollary 5

n ≤ 11 ≤ 17, ≤ 51
SNI 3 ≤ 1min
IOS 3 ≤ 3min

free SNI 3 ≤ 3min
Optimized 8-share refresh gadget from [18]

8 11, 33
SNI 3 ≤ 1sec
IOS 3 ≤ 1sec

free SNI 3 ≤ 1sec
Circular refresh gadget (RefreshBlock1; RefreshBlock3) from [3]

n ≤ 11 ≤ 22, ≤ 66
SNI 3 ≤ 6min
IOS 3 ≤ 76min

free SNI 3 ≤ 71min

24

6 Probing Model Composition

In this section, we revisit the security proof of the tight private circuits (TPC) [12].
We begin with an overview of this proof, and then show that there is a flaw in
one of its lemmas. We however remark that the security of the standard circuits
verified by tightPROVE still holds, since the ISW multiplication gadgets are free
(n− 2)-SNI. We are actually able to leverage the new security notions to gener-
alize the tight private circuits to circuits using other types of gadgets (i.e. not
only ISW multiplication/refresh and additions). This generalization allows, for
example, to use the O(n log n) refresh gadget from Algorithm 2 in TPCs, instead
of the less efficient ISW refresh gadget.

6.1 TPC security proof

The TPCs [12] are standard shared circuits, that is, masked circuits obtained
by composing sharewise addition gadgets, ISW multiplication gadgets and ISW
refresh gadgets (next collectively denoted as ISW gadgets). The security proof
for TPCs is composed of two parts: the equivalence between t-probing security
and a simpler leakage model (Game 3), and a technique to verify the security of
a circuit in this model (instantiated with the tightPROVE tool).

In this paper, we focus on the first part of the proof, which is carried by
showing the successive equivalence of four different security games. In each of
these games, an adversary A selects some probes and secret inputs, and a sim-
ulator S has to perfectly simulate the set of probes in the circuit. A simulator
wins the game if the simulation ExpSimi(A,S, C) has the same distribution as
the true set of probes ExpReali(A, C), and a circuit is secure in a game if for all
adversaries, there exists a simulator that wins the game.

The first game of the reduction (Game 0, see Figure 4) is the t-probing
security game. Next, Game 1 is a variant of Game 0 where the adversary cannot
put probes inside RNL (“refresh or non-linear”) gadgets, and instead of a probe in
a ISW gadget, can get a probe on one share of each of its input sharings. The two
following games (see Figure 5) operate on a flattened circuit C ′ = Flatten(C),
in which the output sharing of each ISW gadget is replaced by a new input
sharing of the circuit. In Game 2, the adversary probes C ′, and the constraints
on the probes are the same as in Game 1. Finally, in Game 3, the set of probes
follow the same rules, but is additionally limited to probes on the input shares
of two-input ISW gadgets (i.e., the multiplication gadgets).

The reduction between the games is illustrated in Figure 3, and we next
present the main ideas of the reductions. First, the equivalence between Game 0
and Game 1 is based, in one direction, on the simulation of the internal probes
using knowledge of the input shares, and in the other direction by exploiting
the probing completeness of the ISW gadgets. Next, the equivalence between
Game 1 and Game 2 is a consequence of [12, Lemma 1], which states that the
output sharing of any SNI gadget, hence of ISW gadgets, is uniform. Finally,
the equivalence of Game 2 and Game 3 relies on the observation that without
probes on the multiplication gadgets, any standard circuit would be secure, and

25

we can actually show that the other probes are redundant with the ones in
multiplication gadgets.

Game 0
“t-probing”

Game 1
“input-only”

Game 2
“flattened”

Game 3
“mul. input only”

Game 1’
“IO-only”

Game 2’
“flattened IO”

Fig. 3. Representation of the flawed and fixed TPC proofs (an arrow Game i→ Game j
means “Security for Game i implies security for Game j.”). The flawed implication is
in red and the new reductions are in blue.

ExpReali(A, C)
1. (Pi, x1, . . . , xm)← A()
2. −→x1 ← Enc(x1), . . . ,

−→xm ← Enc(xm)
3. (v1, . . . , vq)← C(−→x1, . . . ,

−→xm)Pi

4. Return (v1, . . . , vq)

ExpSimi(A,S, C)
1. (Pi, x1, . . . , xm)← A()
2. (v1, . . . , vq)← S(Pi)
3. Return (v1, . . . , vq)

Fig. 4. Game 0, Game 1 and Game 1’ (i = 0, 1, 1′ respectively). For Game 0, P0 can
be any set of q = t probes in C. For Game 1, the probes in ISW or RNL gadgets
are moved to their input shares while for Game 1’, the corresponding output probes
(following the balanced IOS definition) are also included.

6.2 Proof flaw

The reduction of security w.r.t. Game 0 to the security w.r.t. Game 1 (security
implication from Game 1 to Game 0 in Figure 3, [12, Proposition 4]) has a flawed
proof. This proof relies on a simulation argument. At a gadget level, a probe in
a ISW multiplication gadget can be simulated when one share of each input
is known, since the gadget is SNI. However, when handling the composition,
the simulation may need the values of output shares of a multiplication gadget.
Thanks to [12, Lemma 1]), any set of n−1 output shares of the ISW multiplica-
tion is uniform and independent of the input sharings. This observation is used
in the proof of the proposition to claim that the output shares can be simulated
as fresh randomness. However, this is not correct in presence of probes in the
multiplication gadget, whose value may not be independent of the output shares.

Let us now show with a counter-example that the proof cannot be easily
fixed, i.e. that it cannot be fixed while relying only on the SNI security of the
ISW multiplication. We consider the circuit described in Algorithm 7. In the
first multiplication gadget, the adversary can probe the last intermediate sum in

26

ExpReali(A, C)
1. C′ ← Flatten(C)
2. (Pi, x1, . . . , xM)← A()
3. −→x1 ← Enc(x1), . . . ,

−→xM ← Enc(xM)
4. (v1, . . . , vq)← C(−→x1, . . . ,

−→xM)Pi

5. Return (v1, . . . , vq)

ExpSimi(A,S, C)
1. C′ ← Flatten(C)
2. (Pi, x1, . . . , xM)← A()
3. (v1, . . . , vq)← S(Pi)
4. Return (v1, . . . , vq)

Fig. 5. Game 2, Game 2’ and Game 3 (i = 2, 2′, 3 respectively). For Game 2, the probes
are the same as in Game 1, and for Game 2’ we add probes on the new input shares
that correspond to probes on output shares of RNL gadgets in P1′ . For Game 3, P3

contains only probes on input shares of the two-input ISW/RNL gadgets.

Algorithm 7: Broken ISW composition
Input : sharings (a1, . . . , a4) and (b1, . . . , b4)

1 (c1, . . . c4)← ISW-MUL((a1, . . . , a4), (b1, . . . , b4)) ; // Uses randomness ri,j
2 (d1, d2, d3, d4)← (c2, c3, c4, c1)
3 for i← 1 to 4 do
4 ei ← ai ⊕ di;
5 end
6 (f1, . . . f4)← ISW-MUL((e1, . . . , e4), (a1, . . . , a4))

the computation of c2: p1 = S with c2 = S ⊕ r2,3, and p2 = (a2b3 ⊕ r2,3)⊕ a3b2.
It can also probe p3 = e1a4 in the second multiplication. Since p3 = (a1⊕ c2)a4,
the adversary may compute p1⊕p2⊕p3 = (S⊕r2,3)(a4⊕1)⊕a2b3⊕a3b2⊕a1a4.
When S, b2 and b3 are uniform randomness, and (a1, a2, a3, a4) is a uniform
sharing of a, the value of previous expression depends on a, therefore the circuit
is not 3-probing secure.

Let us remark that the presence of the rotation between the sharing (c1, . . . , c4)
and the sharing (d1, . . . , d4) is needed the exhibit the attack. If we consider this
rotation as part of the first multiplication gadget, it remains (n− 1)-SNI (as the
size of a set of output shares is not impacted by the rotation), showing that,
for the proof to work, we have to rely on a stronger property. However, a rota-
tion break the free SNI property, and indeed, we next show that, since the ISW
multiplication is free (n− 2)-SNI, the TPC proof can be repaired.

6.3 Generalized proof

We now fix the above flaw and generalize the proof of [12] to cover more types of
gadgets. Namely, we allow any probing complete gadget that is free (n− 2)-SNI
and (n−1)-NI instead of only ISW multiplication and refresh gadgets. Moreover,
instead of only additions, our proof works with arbitrary affine sharewise gadgets.

Definition 13 (GTPC). An n-generalized tight private circuit (GTPC) is an
n-share masked circuit composed of SA gadgets and RNL gadgets (standing for
refresh or non-linear). A gadget is SA if it is sharewise affine, and a gadget is

27

RNL if it is (n− 1)-probing complete, (n− 1)-NI, free (n− 2)-SNI, and has one
or two input shares.

Let us remark that this definition covers the standard shared circuits, since
ISW multiplication and refresh gadgets are free (n− 2)-SNI and (n− 1)-NI.

Theorem 4 (All games are equivalent). Let G be any of the games of Fig-
ure 3. A n-GTPC is (n− 1)-probing secure if and only if for every adversary A
there exists a simulator S that wins G.

The proof idea is as follows (the full proof is given in Section D): we introduce
two new intermediate games (Game 1’ and Game 2’, shown in Figure 3) for
the reduction of Game 0 security to Game 3 security, while for the tightness
(reduction of Game 3 security to Game 0) we discuss the minor changes needed
to generalize the proofs of [12] to the generalized circuit assumptions.

In a nutshell, with the two new games, we introduce the output probes needed
to simulate the probes in the RNL gadgets, using a balanced IOS simulator, as
shown in Figure 4 and Figure 5. Security in Game 1’ therefore implies security
in Game 0 thanks to the balanced IOS simulation, while, as previously, the
reduction of Game 1’ to Game 2’ is a consequence of the uniformity of output
sharings of RNL gadgets. Finally, the reduction of Game 2’ to Game 3 has to
deal with the additional probes on the circuit inputs and the more general affine
gadgets, but the core proof idea remain the same: any attack in Game 2’ has its
source in a probe in a 2-input RNL gadget.

Let us remark that we only require free (n−2)-SNI and not free (n−1)-SNI,
which allows us to cover ISW gadgets with our proof. This relaxed requirement
is only significant when the adversary puts all its n−1 probes in a single gadget.
In that case, the part of the circuit that uses the output of this gadget is not
probed, hence we do not care about the output shares distribution, which is why
(n− 1)-NI is a sufficient requirement.

7 Region Probing Model Composition

In this section, we revisit the IOS composition framework introduced in [27] to
achieve security in the region probing model. As recalled in Section 2, the region
probing model is a strong version of the probing model in which the adversary
gets to place t probes in each gadget (or region) of the circuit. This model is
relevant in practice as being closer to actual side-channel leakages (providing
information on all the gadgets of an implementation) which is formally captured
by a reduction from the noisy leakage model [34,24].

We show hereafter that another generalized version of tight private circuits
(TPC), which we name region tight private circuit (RTPC), enjoys a tight secu-
rity in the region probing model.

Composing several sharewise affine gadgets yields a larger sharewise affine
gadget which we shall call a sharewise affine region (or SA region) hereafter
when it is delimited by IOS gadgets. Consider such an SA region

G : (−→x1, . . . ,−→x`) 7→ (−→y1, . . . ,−→ym)

28

computing a function g : (x1, . . . , x`)→ (g1(x1, . . . , x`), . . . , gm(x1, . . . , x`)). We
say that this SA region is full rank if the computed coordinate functions gi’s are
linearly independent, i.e., there exist no constant α ∈ Km and β ∈ K such that
〈α, g(x1, . . . , x`)〉 = β (for all x1, . . . , x`).

Definition 14 (RTPC). An n-region tight private circuit (RTPC) is an n-
share masked circuit composed of SA gadgets and RCNL gadgets (standing for
refresh, copy or non-linear). A gadget is SA if it is sharewise affine while a gadget
is RCNL if it is b(n− 1)/3c-IOS. Moreover, all the SA regions of an RTPC are
full rank.

We stress that for n ≥ 3, a generalized tight private circuit (GTPC) under
Definition 13 is also an RTPC under the above definition provided that its SA
regions are full rank. Moreover, the common example of masked circuits com-
posed of ISW multiplications, O(n log n) refresh gadgets and sharewise affine
gadgets are both GTPC and RTPC (once again provided that their SA regions
are full rank).

Remark 2. We note that an SA region which is not full rank can be split into
smaller full rank SA regions by introducing IOS refresh and/or copy gadgets.
Consider for example the function:

g(x1, x2, x3) 7→

y1y2
y3

 =

x1 + x2
x2 + x3
x1 + x3

 .

An SA region composed of three addition gadgets computing this function is not
full rank. By introducing IOS copies of x1 and x3 (e.g. using the copy gadget of
Section 4.4), this SA region can be split into two full rank SA regions, the first
one computing (y1, y2) and the second one computing y3.

An RTPC tolerates up to t = b(n − 1)/3c probes per IOS gadget and per
(full rank) SA region, which gives a probing rate r of b(n−1)/3c over the size of
the largest region (IOS gadget or SA region). This is formalized in the following
theorem (the proof is given in Appendix E).

Theorem 5. An n-region tight private circuit is r-region probing secure with

r = min

(
b(n− 1)/3c
|SAR|

,
b(n− 1)/3c
|RCNL|

)
with |SAR| the size of the largest SA region in the circuit and |RCNL| the size of
the largest RCNL gadget in the circuit.

The above theorem generalizes the composition result from [27] to RTPC.
Compared to this previous result, the above theorem is more general in several
aspects:

29

– We consider IOS gadgets which are not necessarily refresh gadgets. We can
thus take advantage of the IOS property of multiplication gadgets, such as
the ISW multiplication gadget, and use IOS copy gadgets.

– We do not require the underlying circuit to insert an IOS refresh gadget
between any two non-IOS gadgets whereas the standard circuit compilers
defined in [27] impose this requirement (which is needed by the composition
theorem). As a result, we can use large sharewise affine regions and save
many refresh gadgets.

– The underlying circuit can use IOS copy gadgets where a standard circuit
compiler from [27] would use a copy gadget surrounded by three IOS re-
freshes. Our construction of IOS copy gadget (see Section 4.4) is slightly
more efficient (i.e. equivalent to 2 IOS refreshes).

– We do not consider probing secure gadgets (besides sharewise affine gad-
gets) which seemingly is a loss of generality but is actually not as we show
hereafter.

Probing secure gadgets in our framework. The power of the IOS framework
introduced in [27] resides in the fact that it enables to securely compose gadgets
which only satisfy probing security and no further probing composition notions.
Sharewise affine gadgets are an example of probing-secure gadgets (which are not
e.g. SNI or IOS) but other probing secure gadgets exist which are not sharewise
affine. An example is the multiplication gadget considered in [27] (previously
introduced in [26]) which achieves quasilinear complexity O(n log n) (with some
constraints on the underlying field K). While such gadgets are seemingly out of
the scope of RTPC circuits they can be augmented to fit into it thanks to the
following proposition (the proof is given in Section E).

Proposition 9. Let G : (x1, x2) 7→ y be a t-probing secure gadget and Gref be a
t-IOS refresh gadget. The gadget G′ defined as

G′ : (x1, x2) 7→ Gref
(
G
(
Gref(

−→x1), Gref(
−→x2)
))

is (balanced) t-IOS.

The above proposition shows that any probing secure gadget can be made IOS
by surrounding it with IOS refreshes (which is the principle of the composition
from [27]). This way, we can include non-sharwise affine probing secure gadgets
(such as the quasilinear multiplication gadget) in our extended IOS framework
by first composing them with IOS refreshes.

Acknowledgements. This work is partly supported by SGS and the French
FUI-AAP25 VeriSiCC project. The authors would also like to thank Benjamin
Grégoire for his insightful comments and constructive discussions.

References

1. Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Circuit compil-
ers with O(1/ log(n)) leakage rate. In Marc Fischlin and Jean-Sébastien Coron,

30

editors, Advances in Cryptology – EUROCRYPT 2016, Part II, volume 9666 of
Lecture Notes in Computer Science, pages 586–615, Vienna, Austria, May 8–12,
2016. Springer, Heidelberg, Germany.

2. Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin Gré-
goire, and François-Xavier Standaert. maskVerif: Automated verification of higher-
order masking in presence of physical defaults. In Kazue Sako, Steve Schneider,
and Peter Y. A. Ryan, editors, ESORICS 2019: 24th European Symposium on Re-
search in Computer Security, Part I, volume 11735 of Lecture Notes in Computer
Science, pages 300–318, Luxembourg, September 23–27, 2019. Springer, Heidel-
berg, Germany.

3. Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, François-Xavier Standaert, and Pierre-Yves Strub. Improved parallel
mask refreshing algorithms: generic solutions with parametrized non-interference
and automated optimizations. J. Cryptogr. Eng., 10(1):17–26, 2020.

4. Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order masking. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology – EURO-
CRYPT 2015, Part I, volume 9056 of Lecture Notes in Computer Science, pages
457–485, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

5. Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and
type-directed higher-order masking. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016:
23rd Conference on Computer and Communications Security, pages 116–129, Vi-
enna, Austria, October 24–28, 2016. ACM Press.

6. Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-
Xavier Standaert, and Pierre-Yves Strub. Parallel implementations of masking
schemes and the bounded moment leakage model. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, Part I,
volume 10210 of Lecture Notes in Computer Science, pages 535–566, Paris, France,
April 30 – May 4, 2017. Springer, Heidelberg, Germany.

7. Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina Zeitoun.
Horizontal side-channel attacks and countermeasures on the ISW masking scheme.
In Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware
and Embedded Systems – CHES 2016, volume 9813 of Lecture Notes in Computer
Science, pages 23–39, Santa Barbara, CA, USA, August 17–19, 2016. Springer,
Heidelberg, Germany.

8. Alberto Battistello, Jean-Sebastien Coron, Emmanuel Prouff, and Rina Zeitoun.
Horizontal side-channel attacks and countermeasures on the ISW masking scheme.
Cryptology ePrint Archive, Report 2016/540, 2016. https://eprint.iacr.org/
2016/540.

9. Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian
Thillard, and Damien Vergnaud. Randomness complexity of private circuits for
multiplication. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in
Cryptology – EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes in Com-
puter Science, pages 616–648, Vienna, Austria, May 8–12, 2016. Springer, Heidel-
berg, Germany.

10. Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian
Thillard, and Damien Vergnaud. Private multiplication over finite fields.
In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –

31

https://eprint.iacr.org/2016/540
https://eprint.iacr.org/2016/540

CRYPTO 2017, Part III, volume 10403 of Lecture Notes in Computer Science,
pages 397–426, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidel-
berg, Germany.

11. Sonia Belaïd, Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Ab-
dul Rahman Taleb. Random probing security: Verification, composition, expansion
and new constructions. In Daniele Micciancio and Thomas Ristenpart, editors, Ad-
vances in Cryptology – CRYPTO 2020, Part I, volume 12170 of Lecture Notes in
Computer Science, pages 339–368, Santa Barbara, CA, USA, August 17–21, 2020.
Springer, Heidelberg, Germany.

12. Sonia Belaïd, Dahmun Goudarzi, and Matthieu Rivain. Tight private circuits:
Achieving probing security with the least refreshing. In Thomas Peyrin and Steven
Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018, Part II, volume
11273 of Lecture Notes in Computer Science, pages 343–372, Brisbane, Queensland,
Australia, December 2–6, 2018. Springer, Heidelberg, Germany.

13. Sonia Belaïd, Darius Mercadier, Matthieu Rivain, and Abdul Rahman Taleb. Iron-
mask: Versatile verification of masking security. In 43rd IEEE Symposium on Se-
curity and Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022, pages
142–160. IEEE, 2022.

14. Sonia Belaïd, Darius Mercadier, Matthieu Rivain, and Abdul Rahman Taleb. Iron-
Mask: Versatile verification of masking security. In 2022 IEEE Symposium on Se-
curity and Privacy, pages 142–160, San Francisco, CA, USA, May 22–26, 2022.
IEEE Computer Society Press.

15. Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan Man-
gard, and Johannes Winter. Formal verification of masked hardware implemen-
tations in the presence of glitches. In Jesper Buus Nielsen and Vincent Rijmen,
editors, Advances in Cryptology – EUROCRYPT 2018, Part II, volume 10821 of
Lecture Notes in Computer Science, pages 321–353, Tel Aviv, Israel, April 29 –
May 3, 2018. Springer, Heidelberg, Germany.

16. Nicolas Bordes and Pierre Karpman. Fast verification of masking schemes in char-
acteristic two. In Anne Canteaut and François-Xavier Standaert, editors, Advances
in Cryptology – EUROCRYPT 2021, Part II, volume 12697 of Lecture Notes in
Computer Science, pages 283–312, Zagreb, Croatia, October 17–21, 2021. Springer,
Heidelberg, Germany.

17. Gaëtan Cassiers, Sebastian Faust, Maximilian Orlt, and François-Xavier Standaert.
Towards tight random probing security. In Tal Malkin and Chris Peikert, editors,
Advances in Cryptology – CRYPTO 2021, Part III, volume 12827 of Lecture Notes
in Computer Science, pages 185–214, Virtual Event, August 16–20, 2021. Springer,
Heidelberg, Germany.

18. Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Standaert.
Hardware private circuits: From trivial composition to full verification. IEEE
Trans. Computers, 70(10):1677–1690, 2021.

19. Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently composing
masked gadgets with probe isolating non-interference. IEEE Trans. Inf. Forensics
Secur., 15:2542–2555, 2020.

20. Gaëtan Cassiers and François-Xavier Standaert. Provably secure hardware masking
in the transition- and glitch-robust probing model: Better safe than sorry. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2021(2):136–158,
2021. https://tches.iacr.org/index.php/TCHES/article/view/8790.

21. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Michael J. Wiener,

32

https://tches.iacr.org/index.php/TCHES/article/view/8790

editor, Advances in Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in
Computer Science, pages 398–412, Santa Barbara, CA, USA, August 15–19, 1999.
Springer, Heidelberg, Germany.

22. Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche.
Higher-order side channel security and mask refreshing. In Shiho Moriai, editor,
Fast Software Encryption – FSE 2013, volume 8424 of Lecture Notes in Computer
Science, pages 410–424, Singapore, March 11–13, 2014. Springer, Heidelberg, Ger-
many.

23. Jean-Sébastien Coron and Lorenzo Spignoli. Secure wire shuffling in the prob-
ing model. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology –
CRYPTO 2021, Part III, volume 12827 of Lecture Notes in Computer Science,
pages 215–244, Virtual Event, August 16–20, 2021. Springer, Heidelberg, Germany.

24. Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage mod-
els: From probing attacks to noisy leakage. In Phong Q. Nguyen and Elisabeth Os-
wald, editors, Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lec-
ture Notes in Computer Science, pages 423–440, Copenhagen, Denmark, May 11–
15, 2014. Springer, Heidelberg, Germany.

25. Louis Goubin and Jacques Patarin. DES and differential power analysis (the “du-
plication” method). In Çetin Kaya Koç and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems – CHES’99, volume 1717 of Lecture Notes in
Computer Science, pages 158–172, Worcester, Massachusetts, USA, August 12–13,
1999. Springer, Heidelberg, Germany.

26. Dahmun Goudarzi, Antoine Joux, and Matthieu Rivain. How to securely com-
pute with noisy leakage in quasilinear complexity. In Thomas Peyrin and Steven
Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018, Part II, volume
11273 of Lecture Notes in Computer Science, pages 547–574, Brisbane, Queensland,
Australia, December 2–6, 2018. Springer, Heidelberg, Germany.

27. Dahmun Goudarzi, Thomas Prest, Matthieu Rivain, and Damien Vergnaud. Prob-
ing security through input-output separation and revisited quasilinear mask-
ing. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(3):599–640, 2021. https://tches.iacr.org/index.php/TCHES/article/
view/8987.

28. Dahmun Goudarzi, Thomas Prest, Matthieu Rivain, and Damien Vergnaud. Prob-
ing security through input-output separation and revisited quasilinear masking.
Cryptology ePrint Archive, Report 2022/045, 2022. https://eprint.iacr.org/
2022/045.

29. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hard-
ware against probing attacks. In Dan Boneh, editor, Advances in Cryptology –
CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 463–481,
Santa Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany.

30. David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - statistical indepen-
dence and leakage verification. In Shiho Moriai and Huaxiong Wang, editors, Ad-
vances in Cryptology – ASIACRYPT 2020, Part I, volume 12491 of Lecture Notes
in Computer Science, pages 787–816, Daejeon, South Korea, December 7–11, 2020.
Springer, Heidelberg, Germany.

31. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666
of Lecture Notes in Computer Science, pages 388–397, Santa Barbara, CA, USA,
August 15–19, 1999. Springer, Heidelberg, Germany.

32. Axel Mathieu-Mahias. Securisation of implementations of cryptographic algo-
rithms in the context of embedded systems, 2021.

33

https://tches.iacr.org/index.php/TCHES/article/view/8987
https://tches.iacr.org/index.php/TCHES/article/view/8987
https://eprint.iacr.org/2022/045
https://eprint.iacr.org/2022/045

33. Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended ab-
stract). In Moni Naor, editor, TCC 2004: 1st Theory of Cryptography Conference,
volume 2951 of Lecture Notes in Computer Science, pages 278–296, Cambridge,
MA, USA, February 19–21, 2004. Springer, Heidelberg, Germany.

34. Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture Notes in
Computer Science, pages 142–159, Athens, Greece, May 26–30, 2013. Springer,
Heidelberg, Germany.

35. Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of
AES. In Stefan Mangard and François-Xavier Standaert, editors, Cryptographic
Hardware and Embedded Systems – CHES 2010, volume 6225 of Lecture Notes in
Computer Science, pages 413–427, Santa Barbara, CA, USA, August 17–20, 2010.
Springer, Heidelberg, Germany.

A Proofs of Section 3

A.1 Generalized security notions

Definition 15 (`-Input IOS). Let G be an (n-share, `-to-1) gadget. G is said
t-input-output separative (t-IOS), if it is uniform and if there exists a (two-stage)
simulator Sim =

(
Sim1,Sim2

)
such that for every admissible tuple (−→x1, . . . ,−→x`,−→y)

for G and for every set of wires W of G with |W | ≤ t, we have

1. Sim1(W) = (I1, . . . , I`, J) where I1, . . . , I`, J ⊆ [1 : n], with |I1| ≤ |W |, . . . , |I`| ≤
|W | and |J | ≤ |W |, and

2. Sim2(W,
−→x1|I1 , . . . ,−→x`|I` ,

−→y |J)
id
= AssignWires(G,W, (−→x1, . . . ,−→x`),−→y).

Definition 16 (`-Input Balanced IOS). Let G be an (n-share, `-to-1) gadget.
G is said balanced t-input-output separative (balanced t-IOS), if it is uniform
and if there exists a (two-stage) simulator Sim =

(
Sim1,Sim2

)
such that for every

admissible tuple (−→x1, . . . ,−→x`,−→y) for G and for every set of wires W of G with
|W | ≤ t, we have

1. Sim1(W) = (I1, . . . , I`) where I1, . . . , I` ⊆ [1 : n], with |I1| ≤ |W |, . . . , |I`| ≤
|W | and

2. Sim2(W,
−→x1|I1 , . . . ,−→x`|I` ,

−→y |I1∩...∩I`)
id
= AssignWires(G,W, (−→x1, . . . ,−→x`),−→y).

A gadget is simply said to be balanced IOS if it is balanced (n− 1)-IOS.

Definition 17 (`-Input Free SNI). Let G be an (n-share, `-to-1) gadget. G
is said free t-SNI, if for every set W of internal wires of G such that |W | ≤ t,
there exists a (two-stage) simulator Sim =

(
Sim1,Sim2

)
such that for every input

(−→x1, . . . ,−→x`), we have

1. Sim1(W) = (I1, . . . , I`) where I1, . . . , I` ⊆ [1 : n], with |I1| ≤ |W |, . . . , |I`| ≤
|W |,

2. Sim2(W,
−→x1|I1 , . . . ,−→x`|I`)

id
=
(
AssignWires(G,W, (−→x1, . . . ,−→x`)),−→y |I1∩...∩I`

)
,

34

where −→y = G(−→x1, . . . ,−→x`), and for every set O ([1 : n]\(I1∩. . .∩I`), −→y |O is uni-
formly and independently distributed, conditioned on AssignWires(G,W, (−→x1, . . . ,−→x`))
and −→y |I1∩...∩I` . A gadget is simply said to be free SNI if it is free (n− 1)-SNI.

Definition 18 (`-Input Unbalanced Free SNI). Let G be an (n-share, `-to-
1) gadget. G is said unbalanced free t-SNI, if for every set W of internal wires
of G such that |W | ≤ t, there exists a (two-stage) simulator Sim =

(
Sim1,Sim2

)
such that for every input (−→x1, . . . ,−→x`), we have

1. Sim1(W) = (I1, . . . , I`, J) where I1, . . . , I`, J ⊆ [1 : n], with |I1| ≤ |W |, . . . , |I`| ≤
|W | and |J | ≤ |W |, and

2. Sim2(W,
−→x1|I1 , . . . ,−→x`|I`)

id
=
(
AssignWires(G,W, (−→x1, . . . ,−→x`)),−→y |J

)
,

where −→y = G(−→x1, . . . ,−→x`), and for every set O ([1 : n]\J , −→y |O is uniformly and
independently distributed, conditioned on AssignWires(G,W, (−→x1, . . . ,−→x`)) and −→y |J .
A gadget is simply said to be unbalanced free SNI if it is unbalanced free (n−1)-
SNI.

A.2 Example of an unbalanced Free t-SNI (or equivalently t-IOS)
gadget but not free t-SNI (or equivalently balanced t-IOS)

Consider the following 2-share refresh gadget with a single random value r:

c1 = a2 + r
c2 = a1 − r

IronMask demonstrates that the above gadget is not free 1-SNI. As a counterex-
ample, it exhibits the set formed of a single probe W = {r}. Indeed, we only
have three choices to fix the set I for the free 1-SNI property: I = ∅, I = {1} or
I = {2}.
In the case where we choose I = ∅, then for any O ({1, 2}, the output shares
c|O must be independent and uniform conditioned on W . This is clearly not the
case, since neither c1 nor c2 is independent of the probe r.
In the case where we choose I = {1}, we need to be perfectly able to simulate the
probe r and the output share c1 using I. This is not the case, since to perfectly
simulate the output share c1, we need the input share a2.
Finally, in the case where we choose I = {2}, we need to be perfectly able to
simulate the probe r and the output share c2 using I. This is not the case, since
to perfectly simulate the output share c2, we need the input share a1.
Hence, for the probe W = {r}, there is no set I of size at most 1, which satisfies
the free 1-SNI property. The gadget is not free 1-SNI.

Meanwhile, we can check that the above gadget is unbalanced free 1-SNI.
Specifically, we consider three different cases depending on the probed variables
among r, a1 and a2 for the unbalanced free 1-SNI property.
When W = ∅, then we can fix I = J = ∅. We can verify that for any O (
{1, 2}\J , the corresponding output share is independent and uniform conditioned
on W , which satisfies the property.

35

When W = {r} or W = {−r} or W = {a1}, we fix I = {1} and J = {2}. Using
the input share a1, we can perfectly simulate the probe in W and the output
share c2 = a1 − r. In addition, since {1, 2} \ J = {1}, then we do not need to
consider any output shares for the independence property (because O ({1, 2}\J
so O = ∅). This satisfies the unbalanced free 1-SNI property.
Finally, when W = {a2}, we fix I = {2} and J = {1}. Using the input share
a2, we can perfectly simulate the probe in W and the output share c1 = a2 + r.
In addition, since {1, 2} \ J = {2}, then we do not need to consider any output
shares for the independence property (because O ({1, 2} \ J so O = ∅). This
satisfies the unbalanced free 1-SNI property.

We hence easily proved that the depicted gadget is unbalanced free 1-SNI,
while it is not free 1-SNI.

A.3 Example of a t-SNI gadget but not unbalanced free t-SNI (or
equivalently t-IOS)

Consider the following 4-share linear refresh gadget introduced in [35, Algorithm
4]:

c1 = a1 + r1
c2 = a2 + r2
c3 = a3 + r3
c4 = (((a4 − r1)− r2)− r3)

IronMask and maskVerif verification tools both demonstrate that the above gad-
get is 1-SNI, but not 2-SNI. However, the gadget is not unbalanced free 1-SNI.
In fact, consider as a counterexample the single probe

w = a4 − r1 − r2 .

It is clear that no input shares are needed to perfectly simulate the probe w.
However, we can easily check that the output shares c1 and c2 are not indepen-
dent and uniform conditioned on w. In fact, we can check that

c1 + c2 + w = a1 + a2 + a4 .

Hence, in order to satisfy the unbalanced free 1-SNI, we have to consider at least
J = {1, 2}, and consequently I = {1, 2, 4} to be able to perfectly simulate w and
the output shares c1 and c2 . Since |I| > 1 and |J | > 1, then this gadget cannot
satisfy the unbalanced free 1-SNI.

We hence proved that the depicted gadget is 1-SNI but not unbalanced free
1-SNI.

A.4 Proof of Theorem 1 and Theorem 2

We prove the results for 2-to-1 gadgets. The 1-to-1 easily follow. We start with
the proof of Theorem 1.

36

We start with the left-to-right implication. Namely, we assume that G is
free t-SNI. First, the uniformity of G is straightforward from the free t-SNI
property forW = ∅. In that case, any strict subset of the output is uniformly and
independently distributed. Then, we denote (Simf-sni

1 ,Simf-sni
2) the corresponding

two-stage simulator. Let (−→x1,−→x2,−→y) be an admissible triple for G and W a set
of wires such that |W | ≤ t. We define the first simulator for the balanced t-IOS
property as follows:

Simb-ios
1 (W) = Simf-sni

1 (W) = (I1, I2)

and we have I1, I2 ⊆ [1 : n], with |I1| ≤ |W |, |I2| ≤ |W | as expected, and we
define J = I1 ∩ I2. Then, for the second simulator, we run the second free t-
SNI simulator on the inputs Simf-sni

2 (−→x1,−→x2) until its second output is equal to
−→y |J as previously defined (observe that we need to do this since the output −→y is
already fixed for the balanced IOS property, in the admissible triple (−→x1,−→x2,−→y)).
Note that this step is certainly inefficient but it ends with probability one (since
G is uniform and (−→x1,−→x2,−→y) is admissible for G). Once done, we define the
second simulator Simb-ios

2 to output AssignWires(G,W, (−→x1,−→x2)) as simulated by
the second free t-SNI simulator for the correct output. This corresponds to a
perfect simulation of AssignWires(G,W, (−→x1,−→x2),−→y) which shows the correctness
of Simb-ios

2 . Hence G is balanced t-IOS.

We continue with the right-to-left implication. Now we assume that G is
balanced t-IOS. LetW be a set of internal wires such that |W | ≤ t. We define the
simulators of the free t-SNI property. The first simulator Simf-sni

1 is defined like
the one of the balanced t-IOS property. We thus have that Simf-sni

1 (W) = (I1, I2)
where I1, I2 ⊆ [1 : n], with |I1|, |I2| ≤ |W |. Since G is uniform and |J | < n, any
sharing chunk −→y |J generated uniformly at random forms an admissible triple
for G with −→x1 and −→x2. We thus generate such a sharing chunk −→y |J and we use
the second simulator of the balanced IOS property Simb-ios

2 to build the second
simulator for the free t-SNI property as follows:

Simf-sni
2 (−→x1|I1 ,−→x2|I2)← Simb-ios

2 (−→x1|I1 ,−→x2|I2 ,−→y |J)

which gives us AssignWires(G,W, (−→x1,−→x2)). The output sharing −→y |J is trivially
simulated since it is already defined. Now, it remains to prove that for every set
O ([1 : n]\(J), −→y |O is uniformly and independently distributed, conditioned on
AssignWires(G,W, (−→x1,−→x2)) and −→y |J . Assume this is not the case, then Simb-ios

2

would necessarily require more shares from −→y |J to output a perfect simulation
of AssignWires(G,W, (−→x1,−→x2),−→y), which leads to a contradiction. �

Finally, the proof of Theorem 2 is identical to the above proof, except for
letting Sim1 output (I1, I2, J) instead of using J = I1 ∩ I2.

A.5 Proof of Theorem 3

We prove the result for 2-to-1 gadgets. The 1-to-1 easily follows.
We assume thatG is t-IOS. LetW be a set of internal wires such that |W | ≤ ti

and J be a set of output share indices such that |J | ≤ to with ti + to ≤ t. From

37

the t-IOS property, there exists Simios
1 such that Simios

1 (W) = (I1, I2, J
ios). We

define the first simulator for the SNI property as follows:

Simsni
1 (W) = (I1, I2).

We thus have that |I1|, |I2| ≤ |W |. We then generate uniformly at random a
sharing chunk −→y |J∪J ios . Since G is uniform and |J ∪ J ios| ≤ |W | + to ≤ t < n,
−→y |J∪J ios can be seen as a part of a −→y that forms an admissible triple with −→x1
and −→x2. In other words, since G is uniform, then the subset J ∪ J ios of at most
n− 1 shares of the output −→y can be seen as a set of n− 1 uniform and mutually
independent random values that do not depend on the inputs −→x1 and −→x2. Hence,
we can generate all shares in −→y |J∪J ios uniformly at random, and they would still
form an admissible triple with −→x1 and −→x2.

Then, using the second simulator of the t-IOS property with this −→y , we
obtain a perfect simulation of the probes in W and we also have −→y |J , which
together form the output of the second SNI simulator. �

A.6 Proof of Proposition 1

Let G be an n-share uniform ZE-refresh gadget. We will prove that the inner
gadget ZeroEnc() is t-free if and only if G is free t-SNI. For this, let us denote
−→z the output sharing of ZeroEnc(), −→y the output sharing of G and −→x its input
sharing.

We start with the left-to-right implication. Namely, let us first suppose that
ZeroEnc is t-free. Let W be a set of probes on the gadget G such that |W | ≤ t.
We can splitW into disjoint setsW1 andW2, whereW1 contains probes (internal
and output) on ZeroEnc, andW2 contains probes on the input shares xi, in other
words W2 ⊆ {x1, . . . , xn}. Since ZeroEnc is t-free, there exists a set J such that
|J | ≤ |W1| and for any O′ ([1 : n]\J , the shares −→z |O′ are uniformly distributed
and mutually independent from the probes in W1 and −→z |J .
Next, we construct the two-stage simulator Sim =

(
Sim1,Sim2

)
of G for free

t-SNI. Namely, Sim1 outputs the set I = J ∪ {i | xi ∈ W2}. Observe that
|I| ≤ |J | + |W2| ≤ |W |. Now we show how Sim2 perfectly simulates the probes
in W and the output shares −→y |I . All probes in W1 can be simply perfectly
simulated by generating random values and performing the same operations as
in ZeroEnc. Then, the probes in W2 which are input shares can be perfectly
simulated using the input shares −→x |I by construction of the set I. In addition,
the output shares −→y |I are also perfectly simulated by observing that each yi for
i ∈ I is equal to yi = xi + zi where xi is an input share and zi is an output of
ZeroEnc. This proves the simulation part of the free t-SNI property.
Next, let O ([1 : n] \ I. We have that O ([1 : n] \ I ⊆ [1 : n] \ J since J ⊆ I.
Since for any O′ ([1 : n]\J , the outputs of the internal block −→z |O′ are uniformly
distributed and mutually independent fromW1 and −→z |J , then we also have that
−→z |O are uniformly distributed mutually independent from W = W1 ∪W2 and
−→z |I because W1 ⊆ W and J ⊆ I. Then, we get that −→y |O are also mutually
independent from W and −→y |I . This concludes the first part of the proof.

38

We continue with the right-to-left implication. Now we suppose that G is free
t-SNI. LetW be a set of probes on ZeroEnc such that |W | ≤ t. We will prove that
ZeroEnc is t-free. For this, we can use the simulator of G for free t-SNI. Namely,
we provide Sim1 with the set of probes W . Notice that {x1, . . . , xn} ∩W = ∅.
The simulator then outputs a set I such that |I| ≤ |W | ≤ t. From the free t-SNI
property of G, we know that for any O ([1 : n] \ I, the output shares −→y |O
are uniformly distributed and mutually independent from W and −→y |I . Hence,
for the t-free property of ZeroEnc, we can fix J = I. In fact, since for each
i ∈ [1 : n], we have yi = zi+ xi and xi is an input share, then we can check that
for any O ([1 : n] \ J , the output shares −→z |O = −→y |O − −→x |O of ZeroEnc are
uniformly distributed and mutually independent fromW and −→z |J = −→y |J−−→x |J .
This concludes the second part of the proof, which concludes the proof of the
Lemma. �

39

B Proofs of Section 4

B.1 Proofs of Proposition 2 and Proposition 3

G1 G2

−→y = −→y1 +−→z

W 1

W 2
W 3,W 4

−→x1

−→x2

−→y1

Fig. 6. Construction from Proposition 2.

We will prove Proposition 2 and Proposition 3. Namely, let G1 be an (n-
share, 2-to-1) gadget and G2 be a ZE-refresh gadget with G = G2 ◦G1 as shown
in Figure 6. Let t > t1 ≥ 1 and t2 = t− t1. We will show that

– if G1 is (t1 + t2)-SNI and free t1-SNI, and G2 is free (t2 − 1)-SNI, then G is
free (t1 + t2)-SNI (i.e. result of Proposition 2), and

– if G1 is (t1 + t2)-NI and t1-IOS, and G2 is free (t2 − 1)-SNI, then G is
(t1 + t2)-IOS (i.e. result of Proposition 3).

The proof follows the same path for both cases. We point out the main differences
within the proof. In order to prove the result of Proposition 3, we will use the
unbalanced free SNI property instead of IOS, which is essentially equivalent to
IOS (by Theorem 2) but makes the proof more convenient.

We denote −→x1 and −→x2 the input sharings of G, and −→y its output sharing
(which is the output sharing of G2). We also denote −→y1 to be the output sharing
of G1, such that ∀i ∈ [1 : n], yi = y1,i + zi, where −→z is the output sharing of
ZeroEnc internal block of G2. We consider that G has two input sharings. The
proof in the case where G has only one input sharing is similar. Figure 6 shows
the construction of the gadget.

Let W be a set of leaking wires such that |W | ≤ t1 + t2. We will split these
internal probes into four disjoint sets W =W1 ∪W2 ∪W3 ∪W4 such that:

1. W1 contains internal probes to gadget G1

2. W2 contains probes on the output of G1, i.e. probes on y1,i for i ∈ [1 : n].
3. W3 contains internal probes on the ZeroEnc component of gadget G2.
4. W4 contains output probes on the ZeroEnc component of gadget G2, i.e.

probes on zi for i ∈ [1 : n].

We consider two cases.

40

Case 1. Let us first consider the case where |W1| ≤ t1. In this case, we have at
most t1 probes onG1. Now we differentiate the cases for Proposition 2 and Propo-
sition 3.

– In the case of Proposition 2, G1 is free t1-SNI. So we can construct sets I ′1
and I ′2 on inputs −→x1 and −→x2 respectively, such that |I ′1| ≤ |W1| and |I ′2| ≤
|W1| and the probes in W1 as well as the shares −→y1|I′1∩I′2 can be perfectly
simulated using the input shares −→x1|I′1 and −→x2|I′2 . In addition, for any O1 (
[1 : n] \ (I ′1 ∩ I ′2), the shares −→y1|O1

are uniformly distributed and mutually
independent from −→y1|I′1∩I′2 and the probes in W1.

Since, we can also have probes on the shares −→y1 in W2, for each such probe
y1,i for i ∈ [1 : n], we add i to the already constructed sets of the previous
step I ′1 and I ′2. Let K = {i | y1,i ∈W2}. We have I1 = I ′1 ∪K, I2 = I ′2 ∪K,
|I1| ≤ |W | and |I2| ≤ |W |. Thanks to the free (n−t1−1)-SNI property of G1,
we know that the shares −→y1|I1∩I2 = −→y1|(I′1∩I′2)∪K can be perfectly simulated
since:
• the shares −→y1|I′1∩I′2 are perfectly simulated from the input shares indexed

in I ′1 and I ′2.
• the shares −→y1|K\(I′1∩I′2) are also perfectly simulated. Indeed, the output

shares −→y1|O1 are uniformly distributed and mutually independent from
−→y1|I′1∩I′2 and the rest of the probes, for any O1 ([1 : n] \ (I ′1 ∩ I ′2). In
particular, they can be simulated without any input share.

Notice that we also still have the property that for any O1 ([1 : n]\(I1∩I2),
the shares −→y1|O1

are uniformly distributed and mutually independent from
−→y1|I1∩I2 and the probes in W1, since

[1 : n] \ (I1 ∩ I2) ⊆ [1 : n] \ (I ′1 ∩ I ′2) .

Probes in W3 ∪W4 can then be trivially simulated without the need for any
input shares (recall that G2 performs a refreshing of a zero encoding), which
proves that we can perfectly simulate all probes in W1∪W2∪W3∪W4 =W .

As for the output shares −→y |I1∩I2 , notice that for i ∈ [1 : n], we have yi =
y1,i + zi. Since we already know that we can perfectly simulate the shares
y1,i for i ∈ I1∩ I2 thanks to the above arguments, then we can also perfectly
simulate each such yi by perfectly simulating the corresponding y1,i and zi.

Finally, let O ([1 : n] \ (I1 ∩ I2). Since the shares −→y1|O are independent
and uniform conditioned on W1 and −→y1|I1∩I2 , then it follows that the output
shares −→y |O are uniformly distributed and mutually independent from W
and −→y |I1∩I2 (note that the probes in W2 ⊆ W of the form y1,i are already
perfectly simulated since they are indexed in I1 ∩ I2). This shows that G is
free t1 + t2-SNI in the case where |W1| ≤ t1 for Proposition 2.

41

– In the case of Proposition 3, G1 is unbalanced free t1-SNI. So we can con-
struct sets I ′1 and I ′2 and J ′ on −→x1, −→x2, and −→y respectively, such that
|I ′1| ≤ |W1|, |I ′2| ≤ |W1|, and |J ′| ≤ |W1| and the probes in W1 as well
as the shares −→y1|J′ can be perfectly simulated using the input shares −→x1|I′1
and −→x2|I′2 . In addition, for any O1 ([1 : n] \ J ′, the shares −→y1|O1

are uni-
formly distributed and mutually independent from −→y1|J′ and the probes in
W1.

Similarly as before, we construct I1 = I ′1 ∪K, I2 = I ′2 ∪K, J = J ′ ∪K with
the set K as defined above. Note that we still have |I1| ≤ |W |, |I2| ≤ |W |
and |J | ≤ |W |, and we can prove in the same way as earlier that the shares
−→y1|J = −→y1|J′∪K can be perfectly simulated from −→x1|I1 and −→x2|I2 . Finally, all
of the probes in W are also simulated as before and for any O ([1 : n] \ J ,
the output shares −→y |O are uniformly distributed and mutually independent
from W and −→y |J . This shows that G is unbalanced free (t1 + t2)-SNI in the
case where |W1| ≤ t1 for Proposition 3.

Case 2. Now let us consider the other case |W1| ≥ t1 + 1. Since |W | ≤ t1 + t2,
then we have |W3| ≤ t2 − 1. From the (t2 − 1)-free property of G2, there exists
a set J ′, such that |J ′| ≤ |W3| and for any O′ ([1 : n] \ J ′, the shares −→z |O′ are
uniformly distributed and mutually independent from the internal probes W3

and −→z |J′ . We will use the shares of −→z in order to prove the free (t1 + t2)-SNI
property of G. For this, we will first start by constructing a new setW ′2 of output
probes on gadget G1 as follows.

We start with W ′2 = W2. Then, for every i ∈ J ′, we add y1,i as a probe to
W ′2. And for every zj ∈ W4 for j ∈ [1 : n], we add y1,j to W ′2. Now, instead of
perfectly simulating the probes W1 and W2 on G1, we will simulate W1 and W ′2,
which is stronger since W2 ⊆W ′2.

For the rest of the proof, we differentiate the cases where G1 is (t1 + t2)-
SNI for Proposition 2, or (t1 + t2)-NI for Proposition 3. But first, observe that
|W | ≤ t1 + t2, in particular |W1|+ |W ′2| ≤ t1 + t2 by construction of the set W ′2
(|W ′2| ≤ |W2|+ |W3|+ |W4|).

– In the case of Proposition 2,G1 is (t1+t2)-SNI, we know that we can perfectly
simulate probes in W1 and W ′2 from sets of input shares I ′1 and I ′2 such that
|I ′1| ≤ |W1| and |I ′2| ≤ |W1|.

Then, we consider the following sets of input shares on the gadget G:

I1 = I ′1 ∪ J ′ ∪ {i | zi ∈W4}

and
I2 = I ′2 ∪ J ′ ∪ {i | zi ∈W4}

Notice that |I1| ≤ |I ′1|+ |J ′|+ |W4| ≤ |W1|+ |W3|+ |W4| ≤ |W | and |I2| ≤
|I ′2|+ |J ′|+ |W4| ≤ |W1|+ |W3|+ |W4| ≤ |W |.

42

Next, we will prove how to perfectly simulate all probes inW and the output
shares −→y |I1∩I2 from the input shares indexed in I1 and I2. We will also prove
that for anyO ([1 : n]\(I1∩I2),−→y |O are uniformly distributed and mutually
independent from the probes in W and −→y |I1∩I2 .
First, probes in W3 ∪W4 can be simulated without the need for any input
share. Also, probes in W1∪W2 can be perfectly simulated from input shares
indexed in I1 and I2 since they are perfectly simulated using the input shares
indexed in I ′1 and I ′2 from the SNI property of G1 and the fact that I ′1 ⊆ I1
and I ′2 ⊆ I2. Next, let us consider the output shares −→y |I1∩I2 . Let i ∈ I1 ∩ I2
and yi = y1,i + zi. Then, we have two possibilities:
1. i ∈ J ′ ∪ {i | zi ∈ W4}. In this case, we can perfectly simulate y1,i using

input shares in I1 and I2, by construction of the set of output probes
W ′2 on G1. Hence, we can perfectly simulate the output share yi (we do
not require any input share to simulate the second term zi).

2. i /∈ J ′ ∪ {i | zi ∈ W4}. In this case, we know that the share zi is inde-
pendent and uniform conditioned on the internal probes and the other
output shares by the property of gadget G2 (as long as at least another zj
does not appear in the probes, which is the case by assumption). Hence,
the output share yi = y1,i + zi is also independent and uniform and can
be simulated without the need for any input share.

Thus we proved that all probed intermediate variables on gadget G and the
output shares y|I1∩I2 can be perfectly simulated from the sets of input shares
I1 and I2.

Finally, let O ([1 : n]\(I1∩I2). Let i ∈ O. Since in particular i /∈ J ′∪{i | zi ∈
W4}, then we can again use the property of gadget G2 in order to prove that
−→y |O are uniformly distributed and mutually independent from the internal
probes and −→y |I1∩I2 , which comes from the fact that −→z |O are independent
and uniform and that −→y = −→y1 +−→z .
This concludes the proof that G is free (t1 + t2)-SNI in the case where
|W1| ≥ t1 + 1.

– In the case of Proposition 3, G1 is (t1+t2)-NI, we know that we can perfectly
simulate probes in W1 and W ′2 from sets of input shares I ′1 and I ′2 such that
|I ′1| ≤ |W1|+ |W ′2| and |I ′2| ≤ |W1|+ |W ′2|.
Then, we consider the following sets of input shares on the gadget G:

I1 = I ′1, I2 = I ′2

and the following set of output shares

J = J ′ ∪ {i | zi ∈W4}

As earlier, we have |I1| ≤ |W | and |I2| ≤ |W |. In addition, |J | ≤ |J ′|+|W4| ≤
|W3|+ |W4| ≤ |W |.
Next, can prove in a similar way as earlier that we can perfectly simulate all
probes in W and the output shares −→y |J from the input shares indexed in I1

43

and I2, and that for any O ([1 : n] \ J , −→y |O are uniformly distributed and
mutually independent from the probes in W and −→y |J . This concludes the
proof that G is unbalanced free (t1+ t2)-SNI in the case where |W1| ≥ t1+1.

This finally concludes the proofs of Proposition 2 and Proposition 3. �

B.2 Proof of Proposition 4

We will prove Proposition 4. Namely, let GZE be an n-share ZE-refresh gadget.
Let Gcp = (GZE, GZE). We will prove that if GZE is free t-SNI, then Gcp is
balanced t-IOS.

Let us first formally define what it means to be (balanced) IOS for a copy
gadget, or more generally for a 1-to-2 gadget. This definition is a straightforward
generalization of the 1-to-1 and 2-to-1 notions.

Definition 19 (Two-Output IOS). Let G : −→x 7→ (−→y1,−→y2) be an (n-share,
1-to-2) gadget. G is said t-input-output separative (t-IOS), if it is uniform and
if there exists a (two-stage) simulator Sim =

(
Sim1,Sim2

)
such that for every

admissible triple (−→x ,−→y1,−→y2) for G and for every set of wires W of G with |W | ≤
t, we have

1. Sim1(W) = (I, J1, J2) where I, J1, J2 ⊆ [1 : n], with |I| ≤ |W |, |J1| ≤ |W |
and |J2| ≤ |W |, and

2. Sim2(W,
−→x |I ,−→y1|J1 ,−→y2|J2)

id
= AssignWires(G,W,−→x , (−→y1,−→y2)).

Moreover, G is balanced t-IOS if for every set of wires W , the sets returned by
Sim1(W) satisfy I = J1 = J2.

We are now ready to prove Proposition 4. We recall that the considered copy
gadget is defined as

Gcp : x 7→ (−→y1,−→y2) :=
(−→x + ZeroEnc(),−→x + ZeroEnc()

)
where ZeroEnc is a t-free encoding of zero (or equivalently GZE is free t-SNI).
Let W be a set of probes on the gadget Gcp such that |W | ≤ t. We can split
W into disjoint sets W1, W2 and W3, where W1 contains probes (internal and
output) on the “left” ZeroEnc, W1 contains probes (internal and output) on the
“right” ZeroEnc, and W3 contains probes on the input shares xi, in other words
W3 ⊆ {x1, . . . , xn}. Let us denote −→z1 and −→z2 the outputs of the two encodings
of zero such that (−→y1,−→y2) = (−→x +−→z1 ,−→x +−→z2).

Since ZeroEnc is t-free, there exists a set J ′1 such that |J ′1| ≤ |W1| and for
any O1 ([1 : n] \ J ′1, the shares −→z1 |O1

are uniformly distributed and mutually
independent from the probes in W1 and −→z1 |J′1 . Similarly, there exists a set J ′2
such that |J ′2| ≤ |W2| and for any O2 ([1 : n]\J ′2, the shares −→z2 |O2 are uniformly
distributed and mutually independent from the probes in W2 and −→z2 |J′2 . Let us
further denote I ′ the set of indices for which the input shares −→x |I′ are in W3.
We defined the first IOS simulator as

Sim1(W) = (I, I, I) with I = I ′ ∪ J ′1 ∪ J ′2 .

44

Then the simulator Sim2 works as follows: upon receiving shares −→x |I ,−→y1|I ,−→y2|I ,
it first computes −→z1 |I = −→y1|I − −→x |I and −→z2 |I = −→y2|I − −→x |I . Then it performs a
simulation of the wires in W1 which is consistent with −→z1 |I and a simulation of
the wires in W2 which is consistent with −→z2 |I . By the free property of ZeroEnc
these two simulations are consistent with any value of −→z1 |[1:n]\I and −→z2 |[1:n]\I
(satisfying the constraint

∑
i z1,i =

∑
i z2,i = 0), namely they are consistent

with any admissible value of the triple (−→x ,−→y1,−→y2) matching the input of the
simulator (−→x |I ,−→y1|I ,−→y2|I). The wires in W3 are directly simulated from −→x |I .
We thus obtain a perfect simulation of all the wires in W which is consistent
with the triple (−→x ,−→y1,−→y2) which implies that Gcp is t-IOS. Moreover, since the
sets returned by Sim1 are all equal, the gadget is further balanced t-IOS.This
concludes the proof of Proposition 4. �

B.3 Proof of Proposition 5

We prove that the ISW multiplication n-share gadget described in Algorithm 1
is free (n− 2)-SNI.

Let W be a set of internal leaking wires such that |W | ≤ n−2. First, observe
that the leaking wires in W are of the following forms:

1. input shares ai, bi, product of shares ai · bi.

2. partial sum ci,j =

{
ai · bi − ri,1 − · · · − ri,j if j < i
ai · bi − ri,1 − · · · − ri,i−1 + ri,i+1 + · · ·+ ri,j otherwise

such that j ∈ [1 : n] \ {i}.
3. product of shares ai · bj with i 6= j.
4. random variable rij for i < j, variable rji = ai · bj − rij + aj · bi for j > i.
5. variable ai · bj − rij with i 6= j.

We build sets I1 and I2 on input shares from empty sets as follows. For every
wire inW of the first or second form, we add index i to I1 and I2. For every wire
in W of the third form, we add index i to I1 and j to I2. For every wire in W of
the fourth or fifth form, if i ∈ I1, we add j to I1, otherwise we add i to I1, and if
i ∈ I2, we add j to I2, otherwise we add i to I2. We can see that |I1| ≤ |W | and
|I2| ≤ |W |. Let O ([1 : n] \ (I1 ∩ I2), and without loss of generality, we let O of
maximal size, i.e. |O| = n−|I1∩I2|−1. Let o ∈ [1 : n] such that o /∈ O∪(I1∩I2).
Since |W | ≤ n− 2, then we are sure that |O| ≥ 1 and that the index o exists.

We will first start by showing that the output shares indexed in O are uniform
and independent conditioned on the probes in W and the output shares indexed
in I1 ∩ I2 and the other output shares in O. We will show this by demonstrating
that each such output share indexed in O can be masked by a random value
which does not involve any of the probes, the shares c|I1∩I2 , or the other output
shares in O.

Let i ∈ O. Since, i /∈ I1 ∩ I2, we know that there is no probe of the form ci,j
for any j ∈ [1 : n] (i.e. partial sum of ci) by construction of the sets I1 and I2.
In addition, each ci indexed in O is composed of n − 1 random values, and at

45

most one of them can enter in the expression of each other output wire cj for
j ∈ [1 : n] \ {i} or a probe in W . In particular, for the index o /∈ O ∪ (I1 ∩ I2)
chosen above, we can have two cases:

– if o < i, we know that the random variable ro,i does not appear in any
probe in W by construction of the sets I1 and I2 (neither ro,i nor a partial
sum of ri,o = ao · bi + ro,i + ai · bo, or of the output shares ci and co are
observed). Hence, the random value ro,i only appears in the expression of
ci, so it can be used to mask its expression. Hence, ci can be generated as a
fresh random value, conditioned on the probes in W , on the output shares
indexed in I1 ∩ I2, and also on the other output shares in O.

– if o > i, we know that the random variable ri,o does not appear in any
probe in W by construction of the sets I1 and I2 (neither ri,o nor a partial
sum of ro,i = ai · bo + ri,o + ao · bi, or of the output shares ci and co are
observed). Hence, the random value ri,o only appears in the expression of
ci, so it can be used to mask its expression. Hence, ci can be generated as a
fresh random value, conditioned on the probes in W , on the output shares
indexed in I1 ∩ I2, and also on the other output shares in O.

Hence, we proved that each output share indexed in O is generated as a fresh
random value independently of the probes, the output shares indexed in I1 ∩ I2,
and the other output shares in O. Next, we will prove how to jointly simulate
the probes in W and the output shares c|I1∩I2 .

It is easy to see that probes in W of the first or third form (i.e. product of
shares) can be perfectly simulated using the corresponding input shares in I1
and I2. Let us now consider probes of the fourth and fifth form. If the probe
is a random value ri,j for i < j, then it can be perfectly simulated without the
need for any input share. Otherwise, if the probe is of the form ai · bj + rij or
rji = ai · bj + rij + aj · bi for j > i (we will denote such as probe as p), then we
can have two cases:

– if i, j ∈ I1 ∩ I2, then the probe can be perfectly simulated from the input
shares in I1 and I2 and by generating the random value ri,j .

– otherwise, we are sure that i ∈ I1 ∩ I2 and j /∈ I1 ∩ I2, by construction of
the sets I1 and I2 and since at least the expression p is probed. This means
only one expression of the form p is probed (i.e. there are no probes of the
form ri,j either). The ri,j random value may also appear in the output share
cj . Meanwhile, since j /∈ I1 ∩ I2, then either j = o and o /∈ O ∪ (I1 ∩ I2), or
j ∈ O and the output share cj is masked by the random value rj,o if j < o
or ro,j if o < j, which is different than ri,j since i ∈ I1 ∩ I2. We can conclude
that the random value ri,j only appears in the expression of p and can thus
be used to mask it. Hence, p can be generated as a fresh random value.

It remains to show that we can perfectly simulate the probes in W of the second
form and the output shares c|I1∩I2 . We will prove their simulation at the same
time. Let i ∈ I1 ∩ I2.

46

– if there are no probes inW of the form ci,j for any j ∈ [1 : n] (i.e. partial sum
of ci), then ci is composed of n− 1 random values, and at most one of them
can enter in the expression of each other output wire cj for j ∈ [1 : n] \ {i}.
Since we have at most n− 2 probes (|W | ≤ n− 2), then there is at least one
index j /∈ I1∩I2 such that the random value ri,j (or rj,i if j < i) can be used
to mask the expression of ci (either j = o and o /∈ O ∪ (I1 ∩ I2), or j ∈ O
and the output share cj is masked by the random value rj,o if j < o or ro,j
if o < j, which is different than ri,j since i ∈ I1 ∩ I2). We can conclude that
ci can be perfectly simulated without the need for any input share.

– if there is at least partial sum of ci observed throughW , then let us consider
the biggest such partial sum i.e. maxj′ ci,j′ such that ci,j′ ∈ W . We will
prove how to perfectly simulate each term in ci,j′ and then each term in
ci + ci,j′ independently. This will allow us to perfectly simulate the partial
sums of ci observed through W as well as the output share ci.
Observe first that ai ·bi is perfectly simulated using the input share i ∈ I1∩I2.
Then, for each ri,j such that i < j in ci,j′ (and similarly in ci,j′ + ci), we can
simulate as a random value without the need for any input share. Next, for
i > j we can simulate the term ri,j = aj · bi + rj,i + ai · bj as follows:
• if i, j ∈ I1∩ I2, then the probe can be perfectly simulated from the input

shares in I1 and I2 and by generating the random value rj,i.
• otherwise, we are sure that i ∈ I1∩ I2 and j /∈ I1∩ I2, by construction of

the sets I1 and I2. Meanwhile, since j /∈ I1 ∩ I2, we are sure that there
are no probes in W on ri,j nor a partial sum of it nor rj,i. In addition,
since j /∈ I1∩I2, then either j = o or j ∈ O and all other output shares of
indices in O are masked by random values different than rj,i. Then, we
can conclude that the random value rj,i only appears in the expression
of ri,j and can thus be used to mask it, similarly as to the above case.

Hence, we proved how to simulate each term in the expressions of ci,j′ and
ci + ci,j′ independently, which allows us to simulate the output share ci and
the probed variables of the form ci,j′ for the index i.

This concludes the proof that the n-share ISW multiplication gadget is free
(n− 2)-SNI.

B.4 Proof of Proposition 6

We will prove that the n-share ISW multiplication gadget as described in Algo-
rithm 1 is not free (n − 2)-SNI. To demonstrate this result, we exhibit a coun-
terexample as a set of probes which represents a failure for the property. Let
W = {a1 · b2− r1,2, . . . , a1 · bn− r1,n} be a set of n−1 probes on an n-share ISW
multiplication gadget. For the gadget to be free (n−1)-SNI, there must exist sets
of input shares indices I1 on −→a and I2 on

−→
b such that |I1| ≤ n− 1, |I2| ≤ n− 1,

and all output shares −→c |I1∩I2 and probes in W can be perfectly simulated using
input shares from I1 and I2. In addition, for any O ([1 : n] \ (I1 ∩ I2), the
output shares −→c |O must be uniform and independent conditioned on probes in
W and −→c |I1∩I2 .

47

However, this condition is not satisfied for the previously defined set of probes
W . In fact, observe that the output share

c1 = a1 · b1 + r1,2 + . . .+ r1,n

is not independent and uniform conditioned on the probes inW . Indeed, we have

c1 +
∑
w∈W

w = a1 · b.

Hence, we cannot have the index 1 in O, and we must add the index 1 to both
I1 and I2. Moreover, to perfectly simulate the probesW and the output share c1
(we need to simulate it because 1 ∈ I1 ∩ I2), we need all input shares of

−→
b , and

the input share a1. This means that we have {1} ∈ I1 and I2 = {1, . . . , n}. Since
|I2| = n, then we cannot satisfy the necessary conditions for free (n− 1)-SNI. �

B.5 Proof of Lemma 1

We will prove Lemma 1, i.e. that the n-share ISW refresh gadget is free (n− 1)-
SNI. Let −→x be the input sharing of the ISW refresh gadget, and −→y be its output
sharing. Let W be a set of internal probes on the gadget such that |W | ≤ n− 1.
Notice that compared to the ISW multiplication gadget, the probes have simpler
forms. Namely, each probe is of one of the following forms:

1. input shares xi.

2. partial sum yi,j =

{
xi − r1,i − · · · − rj,i if j < i
xi − r1,i − · · · − ri−1,i + ri,i+1 + · · ·+ ri,j otherwise

such that j ∈ [1 : n] \ {i}.
3. random variable rij for i < j.

In this case, we can construct the set of input shares indices I on −→x similarly to
the way we construct the set I1 in the case of the ISW multiplication gadget. In
this case, for each probe of the first or second form (i.e. input share or partial sum
of output share), we add i to I. Then, for each probe of the third form, if i ∈ I,
we add j to I, otherwise we add i to I. We can easily see that all of the probes in
W can be perfectly simulated from the input shares indexed in I. In addition, all
of the output shares −→y |I can also be trivially perfectly simulated from the input
shares indexed in I and by generating random values and summing them. Notice
that at this point in the case of the ISW multiplication gadget, we already have
a failure for free (n−1)-SNI as shown in Proposition 6. This comes from the fact
that each output share involves several shares of the second input which leads
to a failure. In the case of the ISW refresh gadget, each output share involves
exactly one input share.

We hence only need to prove that for any set O ([1 : n]\I, the output shares
−→y |O are uniformly distributed and mutually independent from the probes in W
and −→y |I . We can prove this in the same way we do it for the case of the ISW

48

multiplication gadget. Namely, let O ([1 : n] \ I and let o /∈ O ∪ I (we are sure
that o exists since O ([1 : n] \ I), and we observe that each yi indexed in O
is composed of n − 1 random values, and at most one of them can enter in the
expression of each other output wire yj for j ∈ [1 : n] \ {i} or a probe in W .
Then for each i ∈ O:

– if o < i, we know that the random variable ro,i does not appear in any probe
in W by construction of the set I since i /∈ I and o /∈ I, and so ro,i does not
appear in any output share indexed in I. It only appears in the expression
of yi, so it can be used to mask its expression. Hence, yi can be generated
as a fresh random value.

– if o > i, we know that the random variable ri,o does not appear in any probe
in W by construction of the set I since i /∈ I and o /∈ I, and so ri,o does not
appear in any output share indexed in I. It only appears in the expression
of yi, so it can be used to mask its expression. Hence, yi can be generated
as a fresh random value.

Hence, we proved that each output share indexed in O is generated as a fresh
random value independently of the probes, the output shares indexed in I, and
the other output shares in O. This concludes the proof that the ISW refresh
gadget is free (n− 1)-SNI, which concludes the proof of Lemma 1. �

B.6 Proof of Proposition 7

R1

R2

LO


d1
...
dn



V 1

V 2

V 0
0

...
0




0

...
0




c1
...

cbn/2c




cbn/2c+1

...
cn



Fig. 7. Optimized O(n logn) zero-encoding gadget from Algorithm 2

We will prove Proposition 7 ,i.e. that Algorithm 2 is (n − 1)-free. We will
prove the result by recurrence on the number of shares n ≥ 2.

The gadget in the base case (n = 2) gives the following output sharing:

d1 ← r

d2 ← −r

49

The proof in this case is easy. Mainly, we can have |W | = 0 or |W | = 1 .

– if W = ∅, then J has to be ∅. Then the sets O to consider are O = {1} or
O = {2}, and it is clear that in both cases,

−→
d |O is independent and uniformly

distributed thanks to the random value r which doesn’t appear in any other
probed value.

– If |W | = 1, then we certainly have W = {r} or W = {−r} and in this
case we can fix J = {1}. We can clearly see that [1 : 2] \ J = {2}, and so
O ([1 : 2] \ J = ∅. The proof holds in this case since

−→
d |O = ∅.

This concludes the proof for the base case.

Next we suppose that for any number of shares n′ < n, the gadget G satisfies
Proposition 7, and we prove the property for n shares. To prove this, we split the
gadget into three subgadgets as in Figure 7, where R1 and R2 gadgets correspond
to the two recursive calls respectively, and gadget LO corresponds to the loop
which adds bn/2c random values to the intermediate sharing. Any set of probes
W on the gadget can be split it into disjoint sets W = V 0∪V 1∪V 2 as shown in
Figure 7. Namely, the set V 1 (resp. V 2) contains internal and output probes on
sub-gadget R1 (resp. R2), while the set V 0 contains internal and output probes
on the layer LO, i.e. probes of the form di for i ∈ [1 : n] or rj for j ∈ [1 : bn/2c].
Hence, probes on the input of LO are considered in V 1 and V 2. Observe that
the output sharing di can be expressed as:

– if n is odd, then for i ∈ [1 : bn/2c],

di = ci + ri

di+bn/2c = ci+bn/2c − ri
dn = cn,

– if n is even, then for i ∈ [1 : n/2],

di = ci + ri

di+n/2 = ci+n/2 − ri.

In order to use the induction hypothesis, we need the following condition to hold
for the gadget R1:

|V 1| ≤ bn/2c − 1 (2)

and the following for the gadget R2:

|V 2| ≤ dn/2e − 1. (3)

We consider first two easy cases for the proof:

1. |V1| ≥ bn/2c. Then we must have |V 2| ≤ dn/2e − 1, because we have that
|W | ≤ n− 1.
Since (3) holds, from the induction hypothesis on R2, there exists a subset J2
of output indices with |J2| ≤ |V 2|, such that for any O ([bn/2c+1 : n]\J2,

50

the shares in −→c |O are uniformly and independently distributed, conditioned
on the probed variables V 2 and −→c |J2 .
Since |V 1| ≥ bn/2c, we can set J1 = [1 : bn/2c]. We finally define a set of
output shares for the overall gadget as J = J1 ∪ J2 ∪ {i | di ∈ V 0}.
We have

|J | ≤ |J1|+ |J2|+ |V 0| ≤ |W | .

Next, let
O ([1 : n] \ J .

First observe that

([1 : n] \ J) ⊆ ([1 : n] \ (J1 ∪ J2)) = ([bn/2c+ 1 : n] \ J2)

since J1 = [1 : bn/2c]. This means that O ([bn/2c + 1 : n] \ J2. From
the induction hypothesis on R2, we know that the shares −→c |O are uniformly
and independently distributed conditioned on the internal probes V 2 and the
shares −→c |J2 . Since the gadgets R1 and R2 are independent and use different
random values, then −→c |O are uniformly and independently distributed con-
ditioned on V 2, V 1 and c|J1∪J2 .
Let us now consider

−→
d |O. Recall that

−→
d = (c1 + r1, . . . , cn/2 + rn/2, c1+n/2 + r1, . . . , cn + rn/2)

if n is even, or

−→
d = (c1 + r1, . . . , cbn/2c + rbn/2c, c1+bn/2c + r1, . . . , cn−1 + rbn/2c, cn)

if n is odd. Also, for i ∈ [1 : n]\J , we are sure that di /∈ V 0 by construction of
the set J . Hence, we can also conclude that the output shares

−→
d |O are uni-

formly and independently distributed, conditioned on the probed variables
W and d|J1∪J2 . Indeed, this comes from the fact that −→c |O are independent
and uniform conditioned on V 2, V 1 and −→c |J1∪J2 , and consequently also in-
dependent of the probed random values in V 0, i.e. each di for i ∈ O can be
simulated as a fresh random value thanks to the uniformity and indepen-
dence of ci without using the random ri. This concludes the proof of the
Lemma in the case where |V 1| ≥ bn/2c.

2. |V2| ≥ dn/2e. This case can be treated exactly like the above case.

For the rest of the proof, we suppose that |V 1| ≤ bn/2c−1, and |V 2| ≤ dn/2e−1.

We first consider that n is even. Without loss of generality, let |V 1| ≤ |V 2|
(the case where |V 2| ≤ |V 1| is symmetric since n is even). Since (2) holds, from
the induction hypothesis on R1, there exists a subset J1 of output indices with
|J1| ≤ |V 1|, such that for any O1 ([1 : n/2] \ J1, the shares in −→c |O1

are
uniformly and independently distributed, conditioned on the probed variables
V 1 and c|J1 . Without loss of generality, let J1 = {1, . . . , `} with ` ≤ n/2 − 1.
We construct the set J2 as follows. We start with J2 = {1 + n/2, . . . , ` + n/2}.

51

Then, for each ri ∈ V 0 such that i /∈ J1, we add i+ n/2 to J2. We will consider
the probes di ∈ V 0 later in the proof. Finally, we let J = J1 ∪ J2. We can check
that

|J | ≤ 2 · |V 1|+ |V 0| ≤ |V 1|+ |V 2|+ |V 0| ≤ |W | .

We will now prove that for any O ([1 : n] \ J , the output shares
−→
d |O are

independent and uniform conditioned on the probes W and the shares d|J . Let
us consider

O′ = [1 : n] \ J = ([1 : n/2] \ J1) ∪ ([n/2 + 1 : n] \ J2) .

Now, denote [n/2 + 1 : n] \ J2 = {n/2 + i1, . . . , n/2 + ik} where {i1, . . . , ik} ⊆
{`+ 1, . . . , n/2} ⊆ [1 : n/2] \ J1. Observe that

−→
d |O′ = (c`+1 + r`+1, . . . , cn/2 + rn/2, cn/2+i1 + ri1 , . . . , cn/2+ik + rik) .

From the construction of the set J = J1∪J2, we know that {ri1 , . . . , rik}∩V 0 = ∅.
Now let O ([1 : n] \ J = O′, i.e. there is at least one i such that i ∈ O′ \O.

1. If i ∈ {` + 1, . . . , n/2}, then we can use the induction hypothesis of gadget
R1 and the fact that the shares {c`+1, . . . , cn/2} \ {ci} are independent and
uniform conditioned on the probes V 1 and the shares−→c |I1 . Hence, the output
shares {c`+1+ r`+1, . . . , cn/2+ rn/2} \ {ci+ ri} are independent and uniform
conditioned on the probes in W \ {di ∈ V 0}, and the other output shares,
by independence of the random values used in the gadgets R1, R2 and LO.
In addition, since the random values {ri1 , . . . , rik} are not probed, then the
output shares {cn/2+i1 + ri1 , . . . , cn/2+ik + rik} are also independent and
uniform, conditioned on the other probes and the output shares. Hence, all
output shares

−→
d |O are independent and uniform conditioned on the probes

W \ {di ∈ V 0} and the output shares
−→
d |J .

2. If i ∈ {n/2+i1, . . . , n/2+ik}, then in particular, the random value ri−n/2 can
be used to mask the expression of the output share di−n/2 = ci−n/2+ ri−n/2
for i−n/2 ∈ {`+1, . . . , n/2}. Then we can again use the induction hypothesis
of R1 and the same arguments as before to prove that all output shares d|O
are independent and uniform conditioned on the probes W \ {di ∈ V 0} and
the output shares d|I .

Finally, in order to consider probes di ∈ V 0, for each such probe, we add
i to J . This amounts to removing one coordinate from the considered vector
d|O′ . Clearly, this does not change the correctness of the proof, i.e. thanks to the
above arguments, we sill have that for any O ([1 : n] \ (J ∪{i | di ∈ V 0}) ⊆ O′,
the output shares

−→
d |O are independent and uniform conditioned on the probes

W and the output shares
−→
d |J . Additionally, |J | is still less than |W | since we

only considered the remaining probes in V 0.
This concludes the proof in the case where n is even.

Next, let us suppose that n is odd in order to conclude the proof of Propo-
sition 7. We consider two cases:

52

1. |V 2| ≤ |V 1|. Since (3) holds, from the induction hypothesis on R2, there
exists a subset J2 of indices with |J2| ≤ |V 2|, such that for any O2 ([dn/2e :
n] \ J2, the shares in −→c |O2 are uniformly and independently distributed,
conditioned on the probed variables V 2 and c|J2 . Without loss of generality,
we define J2 = {i1, . . . , i`} with ` = |J2|. We construct the set J1 as follows.
We start with

J1 = {j1 − bn/2c, . . . , j`′ − bn/2c}, for {j1, . . . , j`′} = J2 \ {n} .

Then, for each ri ∈ V 0 such that i + bn/2c /∈ J2, we add i to J1. We can
consider probes di ∈ V 0 later similarly as above in the proof. Finally, we let
J = J1 ∪ J2. We can check that

|J | ≤ 2 · |J2|+ |V 0| ≤ 2 · |V 2|+ |V 0| ≤ |V 1|+ |V 2|+ |V 0| ≤ |W | .

The rest of the proof is similar to the case where n is even. Indeed, we can
show that for O ([1 : n]\J , part of the output shares

−→
d |O are independent

and uniform thanks to the induction hypothesis on R2 (the output share
dn = cn is either independent and uniform by the hypothesis on R2, or
n ∈ J2 and it does not need to be independent and uniform), while the other
part of the shares are independent and uniform thanks to the fact that the
random values ri−bn/2c for i ∈ [dn/2e : n− 1] \ J2 are not observed through
V 0.

2. |V 1| < |V 2|. Since (2) holds, from the induction hypothesis on R1, there
exists a subset J1 of input indices with |J1| ≤ |V 1|, such that for anyO1 ([1 :
bn/2c]\J1, the shares in −→c |O1

are uniformly and independently distributed,
conditioned on the probed variables V 1 and −→c |J1 . Without loss of generality,
let J1 = {1, . . . , `} with ` ≤ bn/2c − 1. We construct the set J2 as follows.
We start with J2 = {1+ bn/2c, . . . , `+ bn/2c}∪ {n}. Then, for each ri ∈ V 0

such that i /∈ J1, we add i + bn/2c to J2. We can consider probes di ∈ V 0

later similarly as above in the proof. Finally, we let J = J1 ∪ J2. We can
check that

|J | ≤ 2 · |J1| +1+ |V 0| ≤ 2 · |V 1|+1+ |V 0| ≤ |V 1|+ |V 2|−1 +1+ |V 0| ≤ |W |

where the underlined term in the equation is due to the fact that we add the
share n to J2 anyway. Since n ∈ J , then the share dn = cn does not need to
be independent and uniform, in other words for any O ([1 : n] \ J , we have
n /∈ O. Hence, the rest of the proof in this case is similar to the proof in the
other cases. We can proof in the same way that the output shares

−→
d |O are

independent and uniform conditioned on the shares
−→
d |I and the probes W .

This concludes the proof in the case where n is odd, which concludes the proof
of Proposition 7. �

53

C Proofs of Section 5

C.1 Proof of Proposition 8

We will prove Proposition 8, i.e. that Algorithm 3 is correct. Recall that the
algorithm verifies, for an n-share gadget G of output sharing −→y , if for any O (
[1 : n], the output shares −→y |O are independent and uniform. In our context, this
means that each of the output shares in −→y |O can be generated as a fresh random
value conditioned on the other output shares in −→y |O.
Consider the matrix S = (−→sy1 | . . . |−→syn)T . In fact, Algorithm 3 performs a gaussian
elimination on this matrix thanks to the Gaussian procedure (first line). Then,
the algorithm checks if the rank of S is exactly n − 1. This is equivalent to
checking that v = n − 1 in the output of the Gaussian procedure (second and
third line). We hence need to prove that rank(S) = n−1 is equivalent to the fact
that for any O ([1 : n], the output shares −→y |O are independent and uniform.

Direction 1: rank(S) = n − 1 =⇒ for any O ([1 : n], the output shares −→y |O
are independent and uniform.

Suppose that ∃O ([1 : n] and ∃j ∈ O such that yj cannot be generated
as a fresh independent random value conditioned on the other output shares in
O \ {j}. This means that we can write a linear combination

−→syj +−−→syi1 + . . .+−−→syik =
−→
0 . (4)

for {i1, . . . , ik, j} ⊆ O.
Now consider the matrix S = (−→sy1 | . . . |−→syn)T . By correctness of the output of the
gadget G, we know that there is a linear combination of size n such that

−→sy1 + . . .+−→syn =
−→
0 . (5)

In addition, from (4) and (5), there is another linear combination

−→sj1 + . . .+−−→syjk =
−→
0 . (6)

such that {j1, . . . , jk} = [1 : n] \ {i1, . . . , ik, j}. Thus, rank(S) ≤ n − 2. This
proves that the rank of the matrix S is not equal to n− 1.

Direction 2: for any O ([1 : n], the output shares −→y |O are independent and
uniform =⇒ rank(S) = n− 1.

Suppose that rank(S) < n− 1. Then in a similar way, since we know by cor-
rectness of the gadget that the linear combination of size n in equation (5) holds,
then there must exist at least another linear combination of a form similar to that
in (4) such that |{j, i1, . . . , ik}| < n−1. Then, we can choose O = {j, i1, . . . , ik},
for which the output shares −→y|O are clearly not independent and uniform.

By this, we conclude the proof of Proposition 8.

54

C.2 Proof of Lemma 3

We will prove Lemma 3, i.e. that Algorithms 4 and 5 are correct when checking
free t-SNI property. As described in Section 6 , Algorithm 4 starts by determining
the sets of input shares I1 and I2 necessary to perfectly simulate the probes given
as input. The correctness of this process (lines 1 to 7 of the algorithm) directly
follows from the results in [13]. Then, the test on line 7 determines if the set
of probes already constitutes a failure for the SNI property, which implies a
failure for free SNI. After that, Algorithm 4 performs Gaussian elimination and
determines the index v as described in Lemma 2, in order to call Algorithm 5,
which is a direct application of the lemma. Namely, it looks for sets I ′1 and I ′2
of size at most t starting from I1 and I2, respectively, such that I ′1 ∩ I ′2 satisfies
the free SNI property. The construction of the sets follows the partition process
described in Lemma 2. This can be seen through the loop on line 2 where for
each possible subset C ′ of C we add Ofi to I ′1 and I ′2 for i ∈ C ′, and Ofi to I ′1 and
I ′2 for i /∈ C ′. Note that since we also need to perfectly simulate the expressions
fi for i ∈ C, we add I1,fi and I2,fi to I ′1 and I ′2 respectively for i ∈ C ′, and I1,fi
and I2,fi to I ′1 and I ′2 respectively for i /∈ C ′. In addition, one can check that
adding these sets of input shares does not change the correctness of Lemma 2.
Finally, thanks to the result of the lemma, if we cannot find such sets I ′1 and
I ′2 of size less than t, then the set of probes constitutes a failure for free SNI,
which is why the algorithm returns false on line 14. This concludes the proof
of Lemma 3.

C.3 Proof of Lemma 4

The proof of Lemma 4 is very similar to that of Lemma 3. The only difference
between Algorithm 6 and Algorithm 5 is in the construction of the sets I ′1, I ′2
and O′. In the case of the free SNI property, the set O′ is imposed to be I ′1 ∩ I ′2,
while in the case of the IOS property, the set O′ must only be of size at most
t. Algorithm 6 looks for sets I ′1, I ′2, and O′, which satisfy the unbalanced free
SNI property, equivalent to the IOS property. The construction of these sets also
follows the result of Lemma 2.

C.4 Proof of Lemma 2

We will prove Lemma 2. Namely, let G be a uniform n-share LR-gadget for the
base field K = F2. Let

−→
W = (w1, . . . , wk) be a tuple of internal probes on G and

let
(f1, . . . , fn+k−1)← Gaussian(w1, . . . , wk, y1, . . . , yn−1) .

Let v ∈ [0 : n+ k − 1] such that −→sfi 6=
−→
0 for all i ≤ v and −→sfi =

−→
0 for all i > v

and denote P = {fv+1, . . . , fn+k−1}. We will consider partitions P1 ∪ P2 = P
(with P1 ∩ P2 = ∅).

55

Let us start with the case P1 = P and P2 = ∅ and recall the definition of the
set I(P1,P2) as

I(P1,P2) =
(⋃
fi∈P1

Ofi

)
∪
(⋃
fi∈P2

Ofi

)
,

with Ofi = [1 : n] \ Ofi . Let us consider some given values of the probed wires
−→
W and some given values of the input shares −→x1, −→x2. These values imply some
constraints on the output shares −→y and the randomness −→r which are summed
up with the following system:

N · (w1, . . . , wk, y1, . . . , yn−1)
T = S′ · −→r +

−→
F (−→x1,−→x2) (7)

with the additional equation:

y1 + · · ·+ yn = g(−→x1,−→x2) (8)

where N is the (k + n − 1) × (k + n − 1) square matrix obtained by applying
Gaussian,

−→
F is the vector of functions N · (fw1

, . . . , fwk
, fy1 , . . . , fyn−1

), and g is
the function computed by the gadget (such as defined at the beginning of Sec-
tion 5.1). Recall that S′ is the row reduced version of S, which (without loss of
generality, up to a permutation of the wi’s and the ri’s) is of the following form:

S′ =


Iv ∗

0 0

 .

In the following, we shall call the v first equations of the system in (7) (cor-
responding to the v first rows of N), the “probabilistic equations” while the next
k + n − 1 − v shall be called the “deterministic equations” and (8) the “out-
put sum” equation. By definition of I, the deterministic equations only involve
output shares from −→y |I while the probabilistic equations further involve output
shares from −→y |[1:n−1]. The output sum equation involves all the output shares.

Given some values of
−→
W , −→x1 and −→x2, the deterministic equations yield linear

constraints in the −→y |I , which means that the −→y |I are jointly dependent on
−→
W ,

−→x1 and −→x2. Then, for any assignment of −→y |I satisfying these constraints, we
further have that for every set O ([1 : n] \ I of cardinality n− 1− |I| and any
value of −→y |O, the system has exactly |F2|ρ−v = 2ρ−v solutions (where ρ = |−→r |
the number of random gates in G). Indeed, given −→y |I and −→y |O, we have exactly
one assignment of −→y satisfying the output sum equation (8). On the other hand,
we have |F2|ρ−v assignments of −→r satisfying the system. Indeed, remark that
thanks to the form of S′, we can take any value for the ρ− v last coordinates of
−→r and deduce the v first accordingly (and from the values of

−→
W , −→x1, −→x2 and −→y).

56

We have thus shown that for any choice of −→y |O the system has exactly the same
number of solutions for −→r which implies that −→y |O is mutually independent of
−→
W , −→x1, −→x2 and −→y |I . Note that since the property holds for all O ([1 : n] \ I
of cardinality n − 1 − |I|, it trivially holds for any O ([1 : n] \ I (possibly of
smaller cardinality). The free property of I for the probes

−→
W directly follows.

Let us now consider the case P2 6= ∅. For each fi in P2, subtract the equation
(8) to the ith equation of (7). It is not hard to see that the new system is
equivalent to the former one. Then we can apply the above argument in the
exact same way. Indeed, for equation i such that fi ∈ P2 (which is a deterministic
equation by definition), the involved output shares are those in Ofi , hence the
output shares −→y |I are dependent on

−→
W , −→x1, −→x2 (with I defined in (1) w.r.t.

P1, P2) while the −→y |O for any set O ([1 : n] \ I are uniform conditioned to
−→
W ,

−→x1, −→x2 and −→y |I . In other words, any set I of the form of Equation (1) satisfies
the free property for

−→
W .

Let us now consider a set I ′ which is not a super set of the set I(P1,P2)

defined by (1) whatever the partition P1 ∪ P2 = P . This implies that, whatever
the equivalent version of the system of constraints, there always exists a set
J ([1 : n] \ I ′ such that all the shares −→y |J are involved in the deterministic
equations of the system, which means that I ′ cannot satisfy the free property
for
−→
W . To see the existence of such a set J , note that since I ′ is not a super set

of the set I(P1,P2), then we can define J = I(P1,P2) \ I ′ 6= ∅. Moreover, we can
exclude the case J = [1 : n] \ I ′ since this would imply

I(P2,P1) = [1 : n] \ I(P1,P2) ⊆ I
′

and hence would lead to a contradiction (since I ′ would be a super set for the
swapped partition (P2, P1)).

This concludes the proof of Lemma 2.

57

D Proof of generalized threshold-probing composition

Let us first give a formal definition for completeness (which is needed for Defi-
nition 13).

Definition 20 (Two-Input Probing Completeness). Let G be an (n-share,
2-to-1) gadget. G is said t-probing complete, if there exists at least one wire p
and two distinct indices i1, i2 ∈ [1 : n], such that for every (two-stage) simulator
Sim =

(
Sim1,Sim2

)
and for every input (−→x1,−→x2) ∈ Kn ×Kn,

1. Sim1(p) = (I1, I2) where I1, I2 ⊆ [1 : n],
2. Sim2(p,

−→x1|I1 ,−→x2|I2)
id
= AssignWires(G, p, (−→x1,−→x2)),

we have i1 ∈ I1 and i2 ∈ I2.

Next, our proof is based on the games Game 0, Game 1’, Game 2’ and Game 3
defined in Figure 4 and Figure 5.

D.1 Game definitions

We now formally define the associated constraints on the set of probes P0, P1′ ,
P2′ and P3. For the sake of completeness, we also define with the same formalism
the sets P1 and P2 that correspond to Game 1 and Game 2 of [12].

In the games, P0 is a t-probe set in C, that is, an arbitrary set of t = n− 1
probes in the original circuit C. We can attribute each probe to one of the three
kinds of gadgets: affine (a), single-input RNL (I) and two-input RNL (II), giving
the partition

P0 = Pa ∪ PI ∪ PII . (9)

Next, for Game 1, P1 is a t-I-only probe set. That is, it is a union P1 = P ′a ∪
P ′I∪P ′II , where P ′a, P ′I and P ′II are derived from a partition P0 = Pa∪PI∪PII of
a t-probe set, and contain only the probes specified next. For each affine gadget
g and each probe p ∈ Pa that belongs to g, the set P ′a contains all the inputs of
g with the same share index as p. For each single-input (respectively two-input)
RNL gadget g in C, the set P ′I (resp. P ′II) contains the input shares needed
to simulate the probes in g. If there are at most n − 2 probes in g, this set is
determined using the free SNI simulator, otherwise it is determined with the NI
simulator. For Game 1’, the set P ′1 is a t-IO-only probe set. That is, it is a union
P ′1 = P ′a∪P ′I ∪P ′II ∪PoI ∪PoII , where P ′a, P ′I and P ′II are derived from a t-probe
set in the same way as for a t-I-only probe set. Moreover, for each gadget g, PoI
(resp. PoII) contains the output shares of g for which the input share (resp. both
input shares) with the same index belong to P ′I (resp. P ′II).

Let us now discuss Game 2 and Game 2’. For the former, the set is the same
as before the flattening: P2 must be a t-I-only probe set. For the latter, P ′2 is a
t-f-IO-only probe set. That is, it is a union P ′2 = P ′a∪P ′I ∪P ′II ∪P

f
I ∪P

f
II , where

P ′a, P ′I and P ′II are derived from a partition P0 = Pa ∪PI ∪PII of a t-IO-probe
set P ′1 = P ′a ∪P ′I ∪P ′II ∪PoI ∪PoII . Moreover, for each gadget g, PfI (resp. PfII)

58

contains the shares of a new input sharing that correspond to output shares of
g that belong to index belong to PoI (resp. PoII).

Finally, for Game 3, P3 is t-dI-only: for each two-input RNL gadget g in C,
it contains w(g) shares of each input sharing of g, for some weighing w of the
gadgets such that the weights belong to {0, . . . , t} and the sum of the weights is
t.

D.2 Reductions

We begin with the new reductions.

Proposition 10 (Game 1’ to Game 0). Let C be a n-GTPC. If, for any
adversary A1′ , there exists a simulator S1′ that wins Game 1’, then, for any
adversary A0, there exists a simulator S0 that wins Game 0.

Proof. Let P0 be the set of probes chosen by A0. If all the probes belong to a
single SA gadget, then A0 behaves as a A1′ adversary and S0 can behave like
S1′ . Similarly, if all the probes belong to a single RNL gadget, then using the
n− 1-NI simulator for that gadget, we get a set of probes P1′ on its inputs, and
these probes can be simulated by S1′ (we do not use the output probe values
generated by S1′).

Next, if the probes are spread on multiple gadgets, there is at most n − 2
probes in a single gadget. Therefore, using the balanced (n − 2)-IOS (obtained
thanks to Theorem 1) simulators for the RNL gadgets, we get a set of probes P1′

that is similar to P0, but contains input and output probes instead of internal
probes for RNL gadgets. We can simulate the probes P1′ using S1′ and then use
the balanced IOS simulators to simulate the internal probes. ut

Proposition 11 (Game 2’ to Game 1’). Let C be a n-GTPC. If, for any
adversary A2′ , there exists a simulator S2′ that wins Game 2’, then, for any
adversary A1′ , there exists a simulator S1′ that wins Game 1’.

Proof. For each adversary A1′ returning (x1, . . . , xm) and P1′ , we define A2′ as
the adversary that returns the set of probes P2′ (which is the t-f-IO probe set
derived from the t-IO-probe set P1′) and the extended input (x1, . . . , xM) such
that the m first elements match the choice of A1′ and the M − m last match
the unmasked outputs of the corresponding RNL gadgets. Then, by the free
SNI definition, the output of the RNL gadgets are independent of their input
sharings. Therefore, the real-world distributions for Game 1’ and Game 2’ are
identical. We can then define S1′ to output the same distribution as the simulator
S2′ that wins against A2′ . ut

Lemma 5. Let [v1], . . . [vn] be vectors of probes (grouped by share index) rep-
resenting a (n − 1)-f-IO-only probe set in a flattened GTPC C ′. Let [xi] be the
vector of the input shares of C ′ with share index i for i = 1, . . . , n, and let Mi

and [ai] be constants such that [vi] = Mi[xi] + [ai] for i = 1, . . . , n. The set of
probes can be perfectly simulated iff

Im(M1) ∩ · · · Im(Mn) = ∅.

59

Proof. Since the constants [ai] are public, it is equivalent to simulate [vi] or
[vi]− [ai], therefore this lemma is a consequence of [12, Lemma 2].

Proposition 12 (Game 3’ to Game 2’). Let C be a n-GTPC. If, for any
adversary A3, there exists a simulator S3 that wins Game 3, then, for any ad-
versary A2′ , there exists a simulator S2′ that wins Game 2’.

Proof. Let us prove the contrapositive statement, i.e. if there is a A2′ such that
all S2′ fail Game 2’, then there is a A3 such that all S3 fail Game 3. We denote by
(x1, . . . , xM) and by P2′ the outputs of A2′ . Further, letM1, . . . ,Mn the matrices
induced by Lemma 5. Using this lemma, the assumption of the contrapositive
statement implies

Im(M1) ∩ · · · ∩ Im(Mn) 6= ∅.

Let us now use the partition P2′ = P ′a ∪ P ′I ∪ P ′II ∪ P
f
I ∪ P

f
II . Let S be the

set of share indexes of the probes in P ′a ∪ P ′I ∪ P
f
I . Moreover, let S′ be the set

of share indexes that appear at least twice in the probes P ′II , and let P ′′II be the
probes in P ′II whose index does not belong to S′. Therefore, all the probes in
P2′ \ P ′′II have their share index in S ∪ S′, and by construction, knowing that
P2′ is a (n− 1)-f-IO-only probe set, we have |S ∪ S′|+ |P ′′II | /2 ≤ n− 1.

All the probes in P2′ \ P ′′II therefore contribute lines in at most |S ∪ S′|
distinct matrices Mi. Since every matrix contains at least one row (otherwise
the intersection would be empty), the remaining probes contribute to at least
one row in each of the remaining matrices. There are at least n − |S ∪ S′| such
matrices and the remaining probes are P ′′II , whith |P ′′II | ≤ 2(n − |S ∪ S′|) − 2.
Therefore, at least one matrix Mi∗ has a single row (let us next denote it w),
and that row corresponds to a probe on an input sharing of a two-input RNL
gadget (next denoted g).

Let P ′′ be the set of probes containing the probes P ′′2 , and where each probe
in P ′a, P ′1 and P ′2 \P ′′2 is transformed into a pair of probes on the input sharings
of g (both new probes have the same share index as the original probe), which
does not change the set of probed inputs P ′i. Let this new set of probes be the
output of A3: the corresponding intersection of matrix images still contains w,
hence the probes cannot be perfectly simulated.

Finally, we can prove Theorem 4.

Proof (of Theorem 4). The previous propositions show that if C is secure for
Game 3, then it is secure for Game 0. Next, for a standard shared circuit, se-
curity for Game 0 implies successively security for Games 1, 2 and 3 [12]. Let
us remark that these reductions can be trivially generalized to GTPC. Indeed,
their proofs rely on the uniformity of the output sharing of ISW gadgets and on
their probing completeness, and these properties are also satisfied for the RNL
gadgets in GTPC. For the addition gadget, no particular property is used, hence
generalizing them to SA gadgets is not an issue. ut

60

E Proofs for Region Probing Composition

We first give the proof of Theorem 5.

Proof. Let C be an n-RTPC. We shall denote by G1, G2, . . . , Gm the different
regions of C. For every i, Gi is either a t-IOS gadget, with t = b(n− 1)/3c or a
full rank SA region as defined in Section 7. For the sake of simplicity, we prove
the result assuming that the RCNL gadgets are unbalanced t-IOS (this reduce
the number of sets to be considered).

We have to show that for any sets of wires W1 ⊆WG1
, . . . , Wm ⊆WGm

such
that |W1| ≤ dr|G1|e ≤ t, . . . , |Wm| ≤ dr|Gm|e ≤ t, there exists a simulator Sim
which satisfies

Sim(C,W) = AssignWires(C,W,AddEnc(x1, . . . , x`))

where W =W1 ∪ · · · ∪Wm.
Without loss of generality, let us assume that |W1| = |W2| = · · · = |Wm| = t.

The simulation goes as follows. For each Gj which is an `j-to-mj IOS gadget,
we first call Simios-Gj

1 the first IOS simulator of Gj on the set of probes Wj . The
simulator then returns sets I1, . . . , I`j ⊆ [1 : n] and J1, . . . , Jmj

⊆ [1 : n] all of
cardinality at most t such that the probes inWj can be perfectly simulated from
the input shares indexed by I1, . . . , I`j (each set for one input sharing) and the
output shares indexed by J1, . . . , Jmj

(each set for one output sharing). Without
loss of generality, we assume |I1| = · · · = |I`j | = t and |J1| = · · · = |Jmj | = t. All
the input/output shares which are necessary to the simulations of IOS gadgets
are input/output shares of SA regions. Moreover, for each input sharing and
output sharing of each SA region, we need exactly t shares. For a SA region Gj
we denote W ′j the set of wires corresponding to those input/output shares.

The region probing simulator then performs a simulation ofWj∪W ′j for each
SA region Gj , which we explain hereafter. Note that all the input sharings of the
SA regions are output of IOS gadgets and are hence uniform sharing mutually
independent of each other. This implies that all these SA region simulation can
be done independently. Then, the set W ′ = W1 ∪ . . . ∪ Wm contains all the
input-output shares which are necessary to the simulation of the IOS gadgets.
By calling the second IOS simulators Sim

ios-Gj

2 for each IOS gadget Gj with
relevant input shares from W ′, we get a perfect simulation of the wires Wj of
IOS gadgets Gj . We thus have a full simulation of W .

It remains to show how to perform a perfect simulation of the wires Wj ∪W ′j
for an SA region Gj . This can be shown with a reasoning close to the linear
algebra characterization of tightPROVE [12]. Let us denote −→x1, . . . , −→x`j the input
sharings of Gj and let define

−→
X1 := (x1,1, x2,1, . . . , x`j ,1)

...
−→
Xn := (x1,n, x2,n, . . . , x`j ,n)

61

namely
−→
Xi is the vector with coordinates the ith share of each input sharing.

Because Gi is sharewise affine, each wire w of Gi can be expressed as w = φw(
−→
Xi)

for some i ∈ [1 : n] and for φw an affine function. Now, let us define the set

IWj := {i | ∃w ∈Wi s.t. w = φw(
−→
Xi)} .

Namely, a share index i ∈ [1 : n] is included in IWj
iff one probed wire in Wj

is of share index i (i.e. it is an affine function of the ith shares of the input
sharings). By definition of the set IWj , we can simulate all the probed wires
in Wj from the shares (

−→
Xi)i∈IWj

. To complete the proof, we will show that we

can perform a perfect joint simulation of the shares (
−→
Xi)i∈IWj

and all the input-
output shares in W ′j (from which we can then derive a perfect simulation of the
wires in Wj ∪W ′j).

Let us denote by −→gk ∈ K`j the vector such that the kth output yk of the SA
region is defined as

yk = 〈−→gk, (x1, . . . , x`j)〉

where x1, . . . , x`j are the `j input of the SA region and where, for the sake of
simplicity, we assume that the constant of the affine function is zero (this does
not change the following reasoning). Each output share, yk,i of the SA region
can then be expressed as yk,i = 〈−→gk,

−→
Xi)〉. From those notations, we have that

all the values in (
−→
Xi)i∈IWj

and W ′j (which we aim to simulate) can be expressed
in terms of the following matrix-vector products:

M1 ·
−→
X1 , M2 ·

−→
X2 , . . . , Mn ·

−→
Xn ,

where

– Mi is the identity matrix if i ∈ IWj
,

– the row vector
−→ek = (0, . . . , 0︸ ︷︷ ︸

k − 1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
n− k times

)

is in Mi if xi,k (the ith share of the kth input sharing) belongs to W ′j (the
probed input-output shares),

– the row vector −→gk is in Mi if yi,k (the ith share of the kth output sharing)
belongs to W ′j (the probed input-output shares).

Now, from [12, Lemma 2] we know that (M1 ·
−→
X1, M2 ·

−→
X2, . . . , Mn ·

−→
Xn)

can be perfectly simulated whenever

〈M1〉 ∩ 〈M2〉 ∩ . . . 〈Mn〉 = ∅

where 〈Mi〉 denotes the linear span of the rows of Mi. We refer to [12] for a
proof of the fact. The intuition is that if those spans do not intersect, then all
the variables in (M1 ·

−→
X1, M2 ·

−→
X2, . . . , Mn ·

−→
Xn) are uniform and independent

(for full rank Mi’s which is wlog).

62

Since Mi is the identity matrix for all i ∈ IWj
, we have⋂

i∈[1:n]

〈Mi〉 =
⋂

i∈[1:n]\IWj

〈Mi〉 .

Now observe that we have more than 2t terms in the above intersection (since
[1 : n] \ IWj

= n− t > 2t). Moreover

– all the −→ek ’s are linearly independent vectors and each of them goes in at most
t matrices Mi (this is because we have t probes on −→xk in W ′j),

– all the −→gk’s are linearly independent vectors and each of them goes in at most
t matrices Mi (this is because we have t probes on −→yk in W ′j).

We deduce that
⋂
i∈[1:n]\IWj

〈Mi〉 = ∅. Therefore, thanks to [12, Lemma 2], we

can perfectly simulate (M1 ·
−→
X1, M2 ·

−→
X2, . . . , Mn ·

−→
Xn) which is equivalent to

perfectly simulate (
−→
Xi)i∈IWj

and W ′j . �

We now prove Proposition 9.

Proof. Recall that G : (x1, x2) 7→ y is t-probing secure gadget and Gref is a t-IOS
refresh gadget. We show that

G′ : (x1, x2) 7→ Gref
(
G
(
Gref(

−→x1), Gref(
−→x2)
))

is t-IOS. Let us further define a few notations:

−→x1′ = Gref(
−→x1)

−→x2′ = Gref(
−→x2)

−→y = G
(−→x1′,−→x2′)

−→y ′ = Gref(
−→y)

Consider a set of probes W = W1 ∪W2 ∪W3 ∪W4, where W1 denotes the
probes on the refreshing of (−→x1), W2 denotes the probes on the refreshing of
(−→x2), W3 denotes the probes on the refreshing of (−→y), and where W4 denotes
the probes on G. We will further denote ti = |Wi|.

We show that for any such set of probesW and any admissible triple (−→x1,−→x2,−→y ′),
we can perfectly simulate the wires inW constrained to the values of (−→x1,−→x2,−→y ′).
Using the first IOS simulator of Gref, we get

– two sets I1 and J1, with |I1|, |J1| ≤ t1, such that the probes in W1 can be
perfectly simulated from −→x1|I1 and −→x1′|J1 ,

– two sets I2 and J2, with |I2|, |J2| ≤ t2, such that the probes in W2 can be
perfectly simulated from −→x2|I2 and −→x2′|J2 ,

– two sets I3 and J3, with |I3|, |J3| ≤ t3, such that the probes in W3 can be
perfectly simulated from −→y |I3 and −→y ′|J3 .

63

We now define
I = I1 ∪ I2 ∪ J3 .

The first-step (balanced) IOS simulator for G′ returns the above set I. The
second-step (balanced) IOS simulator receives −→x1|I , −→x2|I , and −→y ′|I and must
output a perfect simulation of W which is consistent with any admissible triple
(−→x1,−→x2,−→y ′). It goes as follows. It first call the probing secure simulator of G to
get a perfect simulations of

W4 ∪ {−→x1′|J1} ∪ {−→x2′|J2} ∪ {−→y |I3}

We note that the above set contains t1 + t2 + t3 + t4 = |W | ≤ t wires hence the
probing secure simulator succeeds. then

– from {−→x1|I1} ⊆ {−→x1|I} (input of the IOS simulator of G′) and −→x1′|J1 (output
of the probing secure simulator of G) we can perfectly simulate the probed
wires in W1 thanks to the IOS simulator of Gref,

– from {−→x2|I2} ⊆ {−→x2|I} (input of the IOS simulator of G′) and −→x2′|J2 (output
of the probing secure simulator of G) we can perfectly simulate the probed
wires in W2 thanks to the IOS simulator of Gref,

– from {−→y ′|J3} ⊆ {−→y ′|I} (input of the IOS simulator of G′) and −→y |I3 (output
of the probing secure simulator of G) we can perfectly simulate the probed
wires in W3 thanks to the IOS simulator of Gref.

We thus get a perfect simulation of all the probed wires inW =W1∪W2∪W3∪W4

from −→x1|I , −→x2|I , and −→y ′|I for any admissible triple (−→x1,−→x2,−→y ′). Namely, G′ is
balanced t-IOS. �

64

	Unifying Freedom and Separation for Tight Probing-Secure Composition

