
Cutting the GRASS:
Threshold GRoup Action Signature Schemes

Michele Battagliola1, Giacomo Borin1, Alessio Meneghetti1, and Edoardo
Persichetti2

1 Università di Trento, Italy
2 Florida Atlantic University, Boca Raton, USA and Sapienza University, Rome, Italy

michele.battagliola@unitn.it, giacomo.borin@studenti.unitn.it,
alessio.meneghetti@unitn.it, epersichetti@fau.edu

Abstract. Group actions are a fundamental mathematical tools, with
a long history of use in cryptography. Indeed, the action of finite groups
at the basis of the discrete logarithm problem is behind a very large por-
tion of modern cryptographic systems. With the advent of post-quantum
cryptography, however, the method for building protocols shifted towards
a different paradigm, centered on the difficulty of discerning “noisy” ob-
jects, as is the case for lattices, codes, and multivariate systems. This
method yields promising results for “core” primitives such as encryption
or signature, but can be less than ideal in the case when more advanced
functionalities are required. In this work, we show that isomorphism
problems which stem from cryptographic group actions, can be viable
building blocks for threshold signature schemes. In particular, we con-
struct a full N -out-of-N threshold signature scheme, and discuss the
efficiency issues arising from extending it to the generic T -out-of-N case.
To give a practical outlook on our constructions, we instantiate them
with the LESS and MEDS frameworks, which are two flavors of code-
based cryptographic group actions. Finally, we highlight some ideas that
would allow for a more efficient and compact (T,N) threshold variant of
LESS, whose security relies on new hardness assumptions.

1 Introduction

With the threat of quantum computers looming ever closer, the community
has stirred to produce alternative cryptographic solutions, that will be resistant
to attackers equipped with such technology. Indeed, considering the timeline ex-
pected to design, standardize, implement and deliver such solutions, initiatives
such as NIST’s [48] are definitely timely. To be sure, NIST’s standardization
effort can be considered a first step, with more to follow. For instance, while
the first standards are about to be drafted, covering key encapsulation and sig-
natures, the situation with the latter is considered not fully satisfactory, to the
point that NIST launched an “on-ramp” process to standardize new signature de-
signs [49]. Furthermore, there is a scarcity of threshold-friendly schemes among
the current solutions, which is prompting more research in this area, and will
lead to its own standardization process [20].



Code-based cryptography, which makes use of problems and techniques com-
ing from coding theory, is the second largest area within the post-quantum realm,
capable of offering interesting solutions, particularly in the context of key estab-
lishment. Indeed, all three candidates in NIST’s 4th round of standardization are
code-based [4,5,3], with two of them expected to be added to the current list of
standards (which, for KEMs, includes only Kyber [52]). On the other hand, this
area has historically struggled to produce efficient signature schemes: as a litmus
test, none of those presented to NIST in 2017 made it past the first round. This
steered the community towards experimenting with different paradigms, such as,
for instance MPC-in-the-head [40,32,31].

The work of LESS [16], which started in 2020 and continued with various
follow-ups [7,6,9], uses a different approach, stepping away from the traditional
decoding problem, and focusing instead on the difficulty of finding an isometry
between two linear codes. In fact, the security of LESS relies solely on the well-
known code equivalence problem. This idea was recently extended [23] to the class
of matrix codes, which are measured in the rank metric, and yields the parallel
notion of matrix equivalence. Interestingly, the action of isometries on the re-
spective types of codes can be formulated as a (non-commutative) group action,
which gives a new perspective on the field, and opens the way to other construc-
tions beyond plain signatures. Indeed, the use of group actions in cryptography
dates back all the way to Diffie and Hellman, and has found new vigor as a
post-quantum method, thanks to the recent developments on isogenies [22,15].

1.1 Related Work

A (T,N)-threshold digital signature scheme is a protocol designed to distribute
the right to sign messages to any subset of at least T out of N key owners, with
the restriction that none of the N players can repudiate a valid signature. A key
point in most threshold digital signature schemes is compatibility with existing
schemes: even though the key generation and signing algorithms are multi-party
protocols (MPC), in fact, the verification algorithm is identical to that of an
existing signature scheme, usually referred to as the “centralized” scheme.

In 1996, a first (T + 1, 2T + 1)-threshold digital signature scheme was pro-
posed [37]. A few years later, the same authors discuss the security of distributed
key generation for the case of schemes based on the Discrete Logarithm Prob-
lem [38,39]. Since 2001, several authors started working first on two-party vari-
ants of digital signatures [46,47] and then on ECDSA [28,43]. The first general
(T,N)-threshold scheme was proposed in 2016 [36], improved first in 2017 [17],
and then again in 2018 [34]. In 2019, the work of [28] has been generalized by the
same authors to the multi-party case [29]. While the signing algorithm requires
the participation of at least T players to take part in a multi-party protocol,
the key generation algorithm requires the involvement of a Trusted Authority or
the active participation of all N players. This requirement has been relaxed in a
recent (2, 3) threshold ECDSA version [13], where the key generation algorithm
involves only 2 out the 3 parties.

2



As noted in [19], a challenging task in designing a threshold version of the
EdDSA signature scheme is the distribution among the parties of the determinis-
tic nonce generation, a task that can be carried out either with MPC techniques
or with zero-knowledge proofs (ZKP). Following the latter approach, the work
presented in [13] has successively been extended to a (2, 3)-threshold EdDSA
instantiation [12]. In [18], the authors propose instead an MPC-based threshold
scheme for HashEdDSA. In the latter, T is bounded to be less than N

2 + 1.
Finally, in 2022, a variant of [12] suitable for Schnorr signatures has been pro-
posed [10] and then generalized to a ZKP-based (T,N)-threshold Schnorr digital
signature scheme whose key generation algorithm does not involve any trusted
party [11].

Recently, driven by both the NIST call for Post-Quantum Standardization [48]
and the call for Multi-Party Threshold Schemes [20], many researchers have
started to wonder whether it could be possible to design post-quantum versions
of threshold digital signature schemes. Since most of the existing literature for
threshold schemes focuses on trapdoors that rely on the difficulty of the Discrete
Logarithm Problem, new methods have to be investigated, likely starting with
tools already utilized to design plain signatures, such as lattices, codes, multivari-
ate equations etc. In [24], the (round 2) proposals of the standardization process
were analyzed in order to determine ways to define threshold variants, eventu-
ally identifying multivariate schemes as the most suitable starting point, with
UOV-based schemes being the most promising. Even though, from a theoretical
point of view, it appears to be indeed possible to obtain a threshold version of
UOV by exploiting LSSS-based MPC protocols, this approach remains, at the
present time, only theoretical. Notably, threshold signature schemes for crypto-
graphic cyclic group actions have been already discussed in 2020 and applied to
isogeny-based schemes [27].

1.2 Our Contribution

In this work, we investigate constructions for post-quantum threshold signature
schemes, using cryptographic group actions as the main building block. However,
our goal is to take a step back, and keep requirements to a minimum, without
needing additional properties such as, for instance, commutativity. This will
allow our frameworks to be instantiated with a wider variety of candidates, such
as the aforementioned code-based signature schemes.

A full threshold scheme. As a first contribution, we present a construction for a
“full” (N,N)-threshold signature scheme. We then prove its security via a reduc-
tion to the original centralized signature; this is a generic signature scheme that
is simply an abstraction, but has appeared in literature when instantiated in var-
ious works, such as LESS signature scheme [7], and MEDS signature scheme [23].
The core idea is to split both the secret key and the ephemeral map as a product
of N group elements, i.e. as g = g1 · · · gN .

3



Thanks to this shared knowledge the users are able to prove the knowledge
of secret the key. The details of the construction, as well as the security proof,
are given in Section 3.

Construction using subsets. Our second contribution is the (T,N) version of
scheme, with T ≤ N . Since we cannot assume any properties on the groups
(except the security of the group actions), our construction is quite inefficient in
terms of memory required. This is because we need to distribute multiple keys
to each user. We illustrate this by presenting some performance figures in the
selected scenario, namely, the code-based setting. Nevertheless, our construction
remains practical for certain use cases, especially for low values of T and N , or
whenever T and N are very close.

Tailoring the solution. Finally, in light of the previous considerations, we present
a dedicated framework for the case of LESS signatures. In this setting, in fact,
we are able to build an optimized secret sharing scheme, that allows for a better
memory management and makes the size of the secret key independent from the
values of T and N . This approach requires a slight change in perspective in the
formulation of the linear equivalence problem. Indeed, we exploit the fact that
the group element is composed of two pieces, a monomial matrix and a non-
singular change-of-basis map, which are both necessary to guarantee security;
we then focus our attention on the change-of-basis map, and show that it is
possible to produce an efficient secret sharing scheme by selecting it among the
set of invertible maps with a particular structure. We sketch a security analysis
for this new proposal, although a full discussion is intended to be the focus of
future studies.

1.3 Outline

We begin in Section 2, where we provide all the necessary preliminary definitions
and notions used in the paper. Then, in Section 3 we present the full threshold
version of the signature, together with a security proof. In Section 4 we show
how to construct a possible solution to obtain a general (T,N)-version, adapting
the previous framework as well as its proof. To provide a practical outlook, we
present a concrete instantiation of both protocols, in Section 5, utilizing the
code equivalence group actions at the basis of the LESS and MEDS signature
schemes. Lastly, in Section 6 we present the tailored version of our protocol to
the LESS setting, introducing a new security assumption to back the rationale
of the construction. We conclude in Section 7.

2 Preliminaries

We begin by laying down our notation. Throughout the paper we will use de-
note with capital letters object such as sets and groups, and with lowercase
letters their elements. We will use instead boldface letters to denote vectors and
matrices.

4



Since the chosen setting for our particular instantiation concerns linear codes,
we briefly report here the related notation and notions. First of all, we indicate
by Fq the finite field of cardinality q, and by Fk×n

q the set matrices of dimension
k × n, with elements in Fq; when k = 1, we write simply Fn

q , which denotes the
corresponding vector space over Fq. A linear code C is a vector subspace C ⊆ Fn

q

of dimension k, and it is usually referred to as an [n, k] linear code. It follows
that a basis for C is given by a set of k linearly independent vectors in Fn

q .
When these vectors are put as rows of a matrix G, this is known as a generator
matrix for the code, as it can generate each vector of C (i.e. a codeword) as a
linear combination of its rows. Note that such a generator is not unique, and
any invertible k × k matrix S yields another generator via a change of basis;
however, it is always possible to utilize a “standard” form simply performing a
Gaussian elimination on the left-hand side. This is usually called systematic if
the result is the identity matrix (i.e. if the leftmost k× k block is invertible); we
denote this by SF.

Linear codes are traditionally measured with the Hamming metric, which
associates a weight to each codeword by simply counting the number of its
non-zero positions. It follows, then, that an isometry (i.e. a map preserving the
weight) is given by any n × n permutation matrix P acting on each word, or
indeed, on the columns of G (since every codeword can be generated as a linear
combination of the rows of G). Moreover, it is possible to generalize this notion
by adding some non-zero scaling factors from Fq to each column. Such a matrix
is commonly known as a monomial matrix, and we denote it by Q; it can be
seen as a product D · P between a permutation matrix and a diagonal matrix
with non-zero components.

The notion of linear codes can be generalized to the case where each codeword
is a matrix, instead of a vector; more precisely, m×n matrices over Fq. We talk
then about [m×n, k] matrix code, which can be seen as a k-dimensional subspace
C of Fm×n

q . These objects are usually measured with a different metric, known
as rank metric, where the weight of each codeword corresponds to its rank as
a matrix. In this case, then, isometries are maps which preserve the rank of
a matrix, and are thus identified by two non-singular matrices A ∈ GLm and
B ∈ GLn acting respectively on the left and on the right of each codeword, by
multiplication.

In both of the metrics defined above, we are able to formulate a notion of
equivalence in the same way, by saying that two codes are equivalent if they are
connected by an isometry. In other words, with a slight abuse of notation, we
say that two linear codes C and C ′ are linearly equivalent if C ′ = CQ, and two
matrix codes C and C ′ are matrix equivalent if C ′ = ACB. Note that the notion
of permutation equivalence is just a special case of linear equivalence (with the
diagonal matrix D being the identity matrix), yet is often treated separately for
a variety of reasons of both historical and practical nature (for instance, certain
solvers behave quite differently).

5



2.1 Cryptographic Group Actions

A group action is a well-known object in mathematics. It can be described as a
function, as shown below, where X is a set and G a group.

⋆ : G×X → X

(g, x) → g ⋆ x

A group action’s only requirement is to be compatible with the group; using
multiplicative notation for G, and denoting with e its identity element, this
means that for all x ∈ X we have e ⋆ x = x and that moreover for all g, h ∈ G,
it holds that h ⋆ (g ⋆ x) = (h · g) ⋆ x. A group action is also said to be:

– Transitive, if for every x, y ∈ X, there exists g ∈ G such that y = g ⋆ x;
– Faithful, if there does not exist a g ∈ G such that x = g ⋆ x for all x ∈ X,

other than the identity;
– Free, if an element g ∈ G is equal to identity whenever there exists an x ∈ X

such that x = g ⋆ x;
– Regular, if it is free and transitive.

The adjective cryptographic is added to indicate that the group action in
question has additional properties that are relevant to cryptography. For in-
stance, a cryptographic group action should be one-way, i.e. given randomly
chosen x, y ∈ X, it should be hard to find g ∈ G such that g ⋆ x = y (if such a g
exists). Indeed, the problem of finding this element is known as the vectorization
problem, or sometimes Group Action Inverse Problem (GAIP), as defined below.

Problem 1 (GAIP). Given x and y in X, find, if any, an element g ∈ G such
that y = g ⋆ x.

A related problem asks to compute the action of the product of two group
elements, given the result of the individual actions on a fixed element. This is
known as the parallelization problem, and it corresponds to, essentially, the com-
putational version of the Diffie-Hellman problem, formulated for generic group
actions. A definition is given next.

Problem 2 (cGADH). Given x, g ⋆x and h⋆x, for g, h ∈ G, compute (g ·h)⋆x.

In fact, the analogy to the case of discrete logarithms is easily drawn, once
one realizes that this is simply the group action given by the exponentiation
map on finite cyclic groups. Then GAIP corresponds to DLP and cGADH to the
CDH problem.

Finally, other useful properties for group actions include those that make it
effective, such as, for instance, the existence of efficient (probabilistic polynomial-
time) algorithms for membership testing, sampling, computation (of both the
group operation and ⋆) etc.

6



2.2 Signatures from Generic Group Actions

We summarize here briefly how to design a signature scheme from generic group
actions. To begin, we formulate the Sigma protocol described in Figure 1.

Public Data : Group G acting on X via ⋆, element x ∈ X and hash function H.
Private Key : Group element g with gi ∈ G.
Public Key : y = g ⋆ x.

PROVER VERIFIER
Get g̃

$← G, set x̃← g̃ ⋆ x, send h = H(x̃) h−→
b←− b

$← {0, 1}.
If b = 0 then u← g̃. u−→ Accept if H(u ⋆ x) = h.
If b = 1 then u← g̃g−1. Accept if H(u ⋆ y) = h.

Fig. 1. Identification protocol for the knowledge of the private key.

The protocol above intuitively provides a soundness error of 1/2; it is in
fact trivial to prove that an adversary who could solve answer both challenges
simultaneuosly, would be able to recover a witness, i.e. a solution to GAIP. It
is then necessary to amplify soundness, in order to reach the desired authenti-
cation level. This is accomplished, in the simplest way, by parallel repetition;
in practice, several optimizations can be applied, as we will see in Section 5,
without impacting security. At this point, a signature scheme can be obtained
using the Fiat-Shamir transformation [33], which guarantees EUF-CMA secu-
rity in the (Quantum) Random Oracle Model. The next result is intentionally
a little vague, since it is well-known in literature, and we do not want to overly
expand this section. Proofs tailored to the specific instantiations can be found,
for example, in [26,8]. For further discussions on Fiat-Shamir, and its security
in the ROM and QROM, we point instead the reader to [33,1,30,45].

Proposition 1. Let I be the identification protocol described above, and S be the
signature scheme obtained by iterating I and then applying Fiat-Shamir. Then S
is existentially unforgeable against chosen-message attacks, based on the hardness
of GAIP.

Note that the protocol does not require any specific property from the group
action in use, except those connected to efficient sampling and computation.
Indeed, even though the action could in principle be non-transitive, as is the
case for code-based group actions, the construction makes it so that we operate
on a single orbit (i.e. it is transitive by design in this specific use case). It is
however advisable to utilize a free group action, since this could have an impact
on the security of GAIP.

7



2.3 Code-based Group Actions

We now present the group action associated to code equivalence, according to
the definitions given in the previous sections. First, consider the set X ⊆ Fk×n

q of
all full-rank k×n matrices, i.e. the set of generator matrices of [n, k]-linear codes.
We then set G = Mn, by which we denote the group of monomial matrices. Note
that this group is isomorphic to (F∗

q)
n ⋊ Sn if we decompose each monomial

matrix Q ∈ Mn into a product D · P . The group operation can be then seen
simply as multiplication, and the group action is given by

⋆ : G×X → X

(G,Q) → SF(GQ)

It is easy to see that the action is well-formed, with the identity element being
In, and compatible with respect to (right) multiplication.

Remark 1. The definition above considers a standardized choice of representative
by utilizing the systematic form SF. This simplifies the definition and makes
sure to avoid cases where multiple generators for the same code could be chosen.
Indeed, since the systematic form uniquely identifies linear codes, this allows us
to see our group action as effectively acting on linear codes, rather than on their
representatives (generator matrices).

The case of matrix code equivalence can be framed analogously. In this case,
the set X is formed by the k-dimensional matrix codes of size m× n over some
base field Fq; similarly to linear codes, matrix codes can be represented via
generator matrices G ∈ Fk×mn

q . Then, the action of the group G = GLm ×GLn

on this set can be described compactly as follows:

⋆ : G×X → X

((A,B),G) → SF(G(A⊤ ⊗B))

Note that this is equivalent to applying the matrices A and B to each code-
word C in the matrix code as ACB; indeed this is often the most convenient
notation.

Note that, in both cases, the action is not commutative and in general neither
transitive nor free. It is however possible to restrict the set X to a single well-
chosen orbit to make the group action both transitive and free. In fact, picking
any orbit generated from some starting code ensures transitivity, and the group
action is free if the chosen code has a trivial automorphism group, where triv-
ial means up to scalars in Fq. The non-commutativity is both a positive and
negative feature: although it limits the cryptographical design possibilities, e.g.
key exchange becomes hard, it prevents quantum attacks to which commutative
cryptographic group actions are vulnerable, such as Kuperberg’s algorithm for
the dihedral Hidden Subgroup Problem [42].

8



The vectorization problems for the code-based group actions are well-known
problems in coding theory. We report them below.

Problem 3 (Linear Equivalence (LEP)). Given two k-dimensional linear codes
C ,C ′ ⊆ Fn

q , find, if any, Q ∈ Mn such that C ′ = CQ.

We have not defined explicitly here the Permutation Equivalence Problem
(PEP), since we will not use it directly; this can be seen as just a special case
of LEP, where the monomial matrix Q is simply a permutation.

Problem 4 (Matrix Code Equivalence (MCE)). Given two k-dimensional ma-
trix codes C ,C ′, find, if any, A ∈ GLm,B ∈ GLn such that C ′ = ACB.

Note that both of the above problems are traditionally formulated as deci-
sional problems, but in cryptographic applications we are most often interested
in their computational version. Rather extensive treatments of their hardness is
given, for instance, in [9,23].

2.4 Threshold Signatures

We briefly summarize here the relevant notions for threshold signature schemes.
In a nutshell, a (T,N)-threshold signature is a multi-party protocol that allows
any T parties out of a total of N to compute a signature that may be verified
against a common public key. Usually, threshold signature protocols involve a
key-generation phase where the N parties collaborate to construct the key pair
(sk, pk) as well as shares of the private key ski. These are distributed to every
party, so that the share ski is known only by party i, and the private key sk is
never actually computed explicitly.

After this initial phase, any set of T parties who agree on a common message
m is able to perform a signature phase in order to sign it. The resulting signature
is verifiable against the public key pk. Often, threshold signature protocols are
obtained by adapting “plain” signature schemes, which are then referred to as
“centralized”, for obvious reasons. In this case, a common requested property is
that signatures produced by the threshold protocol are indistinguishable from
signatures produced by the centralized one.

The main security property for threshold signature schemes, which is the one
that we are able to prove for our signature protocol, is Existential Unforgeability
under Chosen Message Attacks (EUF-CMA), and is related to the analogue
notion for centralized schemes. For completeness, we present it below.

Definition 5. We say that a (T,N)-threshold signature scheme is existentially
unforgeable under chosen message attacks if no malicious adversary who corrupts
at most T −1 players can produce with non-negligible probability the signature on
a new message m, given the view of Threshold− Sign on input a polynomially
large number of messages m1, ..., mqs (which the adversary chooses adaptively).

9



3 The Full Scheme

In this section we give all the details of our construction for a full threshold
scheme. As mentioned in Section 1, we start by designing a zero-knowledge iden-
tification protocol, similar to that of Figure 1, but specific to the threshold case.
The signature scheme is obtained by applying Fiat-Shamir to it, as usual. The re-
sulting algorithms for (decentralized) key generation, signature, and verification
are presented next. We begin with the former.

Algorithm 1 KeyGen

Require: x ∈ X.
Ensure: Public key y = g ⋆ x, each participant holds gi such that

∏
gi = g.

1: Each participant Pi chooses gi ∈ G and publishes x′
i = gi ⋆ x.

2: Set x0 = x.
3: for i = 1 to N do
4: Pi computes xi = xi−1 ⋆ gi
5: Pi produces a ZKP proving the honest use of gi and publishes it
6: Pi sends xi to Pi+1

7: end for
8: return y = xN . The private key of Pi is gi.

Note that, to define a secure distributed key generation (Algorithm 1) it was
necessary to add a Zero-Knowledge Proof in line 5, to prove that the element gi,
generated at the start of the protocol, was actually used.

As far as signing is concerned, it is possible to observe that, when sending
the set and group elements (lines 6 and 20 of Algorithm 2), these can be grouped
all together in a single message. Finally, note that the output of the signature
algorithm is a valid signature for the centralized scheme; it follows that the
verification procedure is equal to the one in the original scheme. Nevertheless,
we reported it here for completeness.

3.1 Security Proof

We now prove the security of the full threshold protocol, according to Defini-
tion 5. In particular we have the following theorem:

Theorem 1. Under the hardness of GAIP, the full threshold signature scheme is
Existentially Unforgeable under adaptive Chosen-Message Attacks (EUF-CMA)
in the Random Oracle Model.

The proof follows a standard game-based argument. In particular we show
that if an adversary A is able to forge the signature scheme controlling N − 1
players with non negligible probability ϵ, then it is possible to build a simulator
S that, interacting with A, is able to forge the original one user signature with
non negligible probability. We now show how to simulate the key generation.

10



Algorithm 2 Threshold− Sign

Require: x ∈ X, a security parameter λ, a hash function H, a public key (x, y = g⋆x).
The party Pi knows the (multiplicative) share gi of g = g1 · · · gN .

Ensure: A valid signature for the message m under the public key (x, y).
1: Set xj

0 = x for all j = 1 to λ ▷ Shared commitment generation phase
2: for i = 1 to N do
3: If i > 1 Pi receives xj

i−1 from Pi−1 for all j = 1 to λ
4: for j = 1 to λ do
5: Pi chooses g̃ji ∈ G and computes xj

i = g̃ji ⋆ x
j
i−1

6: If i < N Pi sends xj
i to Pi+1

7: end for
8: end for
9: Set xj = xj

N for all j = 1 to λ
10: Compute ch = H(x1||...||xλ||m) ▷ Non-iterative challenges evaluation
11: Set uj

0 = e for all j = 1 to λ ▷ Shared response generation phase
12: for i = 1 to N do
13: If i > 1 Pi receives uj

i−1 from Pi−1 for all j = 1 to λ
14: for j = 1 to λ do
15: if chj = 0 then
16: Pi computes uj

i = g̃jiu
j
i−1 ▷ g̃ji can also be disclosed via the seed

17: else
18: Pi computes uj

i = g̃jiu
j
i−1g

−1
i

19: end if
20: If i < N Pi sends uj

i to Pi+ 1
21: end for
22: end for
23: respj = uj

N for all j = 1 to λ
24: sig = ch||resp1||...||respλ

Simulation of the Key Generation Initially the simulator S receives a challenge
for the signature algorithm, i.e. a public key (x, y). The goal of this step is to
simulate an honest execution of the Key-Generation with the aim of having
public key y. We need to distinguish two cases, based on whether A controls PN

or not. First we show a simulation for A not controlling PN :

– The simulator S, playing the role of PN starts the adversary A.
– S choose a random gN and commits to it by publishing gN ⋆ x.
– A sends gA ⋆ x to S, where gA is g1g2...gN−1 all the secret key controlled by

A
– S extracts all the gi, saves them and sends y to A.
– S simulates the ZKP of Appendix A with public data g ⋆ x and y.
– The public key is y.

Now we need to show a simulation when PN is controlled by A. Let PS be
the single player controlled by S. With an abuse of notation we use S to also
denote the position of PS in the protocol (i.e. PS+1 is the party after PS).

11



Algorithm 3 Verify

Require: x ∈ X, the security parameter λ, a hash function H, a public key (x, y =
g ⋆ x).

Ensure: Accept if the signature for the message m is valid under the public key (x, y).
1: Parse ch, resp1, ..., respλ from sig

2: for j = 1 to λ do
3: if chj = 0 then
4: set x̂j = respj ⋆ x
5: else
6: set x̂j = respj ⋆ y
7: end if
8: end for
9: Accept if ch = H(x̂1||...||x̂λ||m)

– S starts A and picks randomly gS .
– S receive from A the commitments gi ⋆ x for all Pi controlled by A.
– S follows the protocol normally, extracting all the gi from A.
– S rewinds A, changes the message it sends to g−1

S+1...g
−1
N ⋆ y and sends it to

PS+1 (which is controlled by A).

Lemma 1. The simulation terminates in expected polynomial time, is indistin-
guishable from a real execution and outputs y.

Proof. The proof for the simulation in case the adversary A does not control PN

is immediate: the simulator S does not need to rewind A and can simply output
y. The only difference between the simulation and a real execution is that S does
not know its private key; however, it is still able to simulate the final ZKP as
shown in Appendix A.

In the case of A controlling PN , S rewinds the adversary after seeing the
output of the first iteration and, thanks to the ZKP in Appendix A, it is also
able to extract the all the secret keys gi from the adversary. In this way, S is
able to fix its own private values in order to force the desired output y. Due to
the initial commitment, A chooses always the same group elements gS , ..., gN in
both execution except with negligible probability and thus the simulation ends
in expected polynomial time with the desired output y.

The only difference is that S does not know its private key, however it is able
to simulate the ZKP as shown in Appendix A.

Simulation of the Signature After the key generation A is allowed to choose
messages m1, ..., mqs adaptively and ask S to perform the Threshold− Sign al-
gorithm on them. Since S does not know its private key, it needs to simulate the
interaction.

At this point, we do not need to distinguish different cases based on the which
is the honest party. Indeed, the simulator can needs reprogram the random

12



oracle. This technique, which is at the basis for the proof of the Fiat-Shamir
transformation [2], allows the simulator to choose the challenge for the message
ahead of time, allowing S to simulate the computation of resp in the same way
it simulates the ZKP in Figure 1. Let PS be the party controlled by S. The
simulation works as follows:

– A chooses a message m to sign and sends it to the simulator S.
– S generates a random string ch′.
– Depending on each bit ch′j of ch, S computes xj in this way:

• if ch′j = 0 it follows the protocol normally;
• if ch′j = 1 picks a random g̃jS and sends

∏S−1
i=1 gig̃

j
S , where the gi are the

values it received from the adversary during the key generation phase.
– The adversary computes x1, ..., xλ and, when computing ch, the simulator

reprograms the random oracle so that H(x1||...||xλ||m) = ch′.
– S performs the computation of resp normally, sending g̃jS when ch′j = 1.

Lemma 2. The simulation above terminates in expected polynomial time, it is
indistinguishable from a real execution of the protocol and either outputs a valid
signature.

Proof. The only difference is that between the simulated execution and a real
execution is that S does not know it public key and thus it fixes the challenge in
advance and to be able to compute resp. Note that, since the number of queries
qs is polynomially bounded then the probability of collision is negligible, thus
the reprogramming step is indistinguishable from a real execution.

Thanks to the zero knowledge properties of the identification protocol (Fig-
ure 1), the above simulation is indistinguishable from a real execution, except if
A decides to send to S a wrong value ui to S. To avoid this problem, S chooses
a random index h ∈ [0, ..., qs], where qs is the maximum number of signature
query the adversary is allowed to perform.

– if h = 0 we assume that all executions are correct, i.e. A always sends the
correct ui. In this case we can always simulates as described.

– Otherwise we assume that the first h−1 executions are correct, but at the h
one A sends a wrong ui. In this case S does not use the previous simulation
and instead outputs a random resp and aborts.

With non-negligible probability 1
qs+1 the simulator is able to guess the correct

index h.

As a corollary we obtain the proof of Theorem 1.

Proof. The simulator S described above produces an indistinguishable view for
the adversary A, and therefore, A will produce a forgery with the same proba-
bility as in a real execution. Then success probability of S is at least ϵ

qs+1 , given
by the probability ϵ of A producing a valid forgery and the probability 1

qs+1 of
guessing the correct index h.

13



3.2 Toward Identifiable Abort and Simulation-Based Security

Before we conclude the security discussion, we note that our protocol detects
the presence of a malicious adversary, by noticing that the signature does not
verify. As pointed out by Lindell in [44], this strategy is not simulatable against a
malicious adversary. Luckily, this is not an issue, as shown in the previous proof,
where we utilize the same trick as [35]. Moreover, it is important to note that,
at the end of a failed execution, it is impossible to pinpoint the malicious party.
To do so, we would need to add ZKPs about the correct computation of all uj

i

with respect to xj
i , i = 1, ..., N and j = 1, ..., λ. This would drastically reduce

the efficiency of the signature, since it would require the inclusion of multiple
ZKPs and commitment, similar to the one presented in Appendix A.

4 Construction using Subsets

In this section, we explain how to modify the construction for the full threshold
scheme, to obtain a T -out-of-N scheme. We proceed in the following way: given a
pair of parameters (T,N), set M =

(
N

T−1

)
and consider the family I containing

all the M subsets of {1, ..., N} of cardinality N − T + 1. After labeling I as
{I1, ..., IM}, we split the secret key g ∈ G as a product gI1 · · · gIM , where gi ∈ G.
Then each user Pi gets the knowledge of all the shares gI such that I ∋ i.

Proposition 2. Any subset J ⊂ {1, ..., N} of T users can get the secret key g,
whilst any adversarial group A ⊂ {1, ..., N} of T − 1 users cannot retrieve at
least one share.

Proof. For the first part we will prove that it is possible to recover gI for any I
of cardinality N − T + 1. By the inclusion-exclusion principle, |J ∩ I| = |J | +
|I| − |I ∪ J | ≥ T + N − T + 1 − N = 1, so the intersection is non-empty and
contains at least an integer j. Thus, the user Pj has the knowledge of gI since
j ∈ I and it belongs to the set J . For the second part, note that the complement
set AC = {1, ..., N} \ A, obviously, does not intersect A, and so the share gAC

cannot be retrieved by an adversarial group.

Thanks to this proposition, we obtain a multiplicative threshold secret shar-
ing scheme for g ∈ G that can be leveraged to get a threshold signature scheme.
Using this secret sharing we are able to build a generic (T,N)−threshold sig-
nature with the same structure of the full threshold explained in Section 3. In
particular, the structure of the protocol will be the same, with the only difference
that some participants are required to send multiple messages, such that all the
gIM shares are used once. Since each gIi is shared among multiple parties, the
users need to agree on a common “turn” function τ that, on input the set of
participants J and the current round, allows to consistently choose which user
will carry on the operations during the current turn. A possible example of τ is
the function given by min J ∩ Ii, that is clearly unique, and returns a user in J
who knows gIi (since min J ∩ Ii ∈ Ii).

14



Public Data : Group G acting on X via ⋆, element x ∈ X and hash function H.
Private Key : Group element g = gI1 · · · gIM with gI ∈ G.
Shares for Pi : all group elements gI such that j ∈ I.
Public Key : y = g ⋆ x.

PROVERS VERIFIER
Set x̃← x and for i = 1, ...,M do :

h−→Pτ(J,i) get g̃i
$← X and set x̃← g̃i ⋆ x̃

Set h = H(x̃).
b←− b

$← {0, 1}.
If b = 0 they opens all g̃I and

set u← g̃I1 · · · g̃IM .
u−→

Accept if H(u ⋆ x) = h.
If b = 1 then u← e.
for i = 1, ...,M do :

Pτ(J,i) evaluate and send u← g̃Ii · u · g
−1
Ii

. Accept if H(u ⋆ y) = h.

Fig. 2. Threshold identification protocol for the shared knowledge of the Private Key
using the subset technique, executed by a set J of at leat T honest users

It is worth mentioning that there is the possibility of decentralizing the Key
Generation, after making some important considerations. Indeed, there are two
possibilities to realize this:

1. All the users that should know a share, generate a shard of it and then
combine the shard;

2. One of the users that should know a share generates it and shares it securely
to the other users that are allowed to know it.

At this point, the key generation is performed as before, where each party
sends messages according to the function τ . The signature algorithm is also
performed in the same way as the full threshold scheme, using the function
τ to determine which party sends which messages at each round. To ease the
readability and the comprehension of the protocol, we explicitly reported the
signature protocol in Algorithm 4.

The proof of security for this scheme is practically equal to the full threshold
one: in fact, one can imagine that, after an initial phase to see who has the
required shares, the scheme is essentially an (M,M)-threshold scheme. Unfor-
tunately, the number of shares required for each user and the number of rounds
become respectively

(
N
T

)
and

(
N

T−1

)
, which are exponential in min(T,N−T ), and

thus the scheme is practical only in certain scenarios; for example for T = N
(full threshold) or N small. For the case T = N − 1 and N > 3, the size of
the shares is already linear in N and the rounds are quadratic in N . The main
issue here is the non-commutativity of the group, which precludes the usage of
traditional techniques for secret sharing.

15



Algorithm 4 Subset− Threshold− Sign

Require: x ∈ X, a security parameter λ, a hash function H, a public key (x, y = g⋆x),
a set J of T party and the turn function τ . The party Pi knows the (multiplicative)
shares gi of g = g1 · · · gM , for all i ∈ I.

Ensure: A valid signature for the message m under the public key (x, y). ▷ Shared
commitment generation phase

1: for j = 1 to λ do
2: Set xj

0 = x
3: for i = 1 to M do
4: cp = τ(J, i)
5: Pcp chooses g̃ji ∈ G and sends xj

i = g̃ji ⋆ x
j
i−1 to Pτ(J,i+1)

6: end for
7: They set xj = xj

M = g̃j ⋆ x = (g̃jN · · · g̃
j
1) ⋆ x

8: end for ▷ Non-iterative challenges evaluation
9: Compute ch = H(x1||...||xλ||m) ▷ Shared response generation phase

10: for j = 1 to λ do
11: if chj = 0 then Pi discloses all g̃jl generated
12: respj = g̃jM · · · g̃

j
1 is then published

13: else set u0 = e
14: for i = 1 to M do
15: cp = τ(J, i)
16: Pcp computes ui = g̃jiui−1g

−1
i and sends ui to Pτ(J,i+1)

17: end for
18: Get uM = g̃jg−1 = g̃jM · · · g̃

j
1g

−1
1 · · · g

−1
M

19: respj = u; is published
20: end if
21: end for
22: sig = ch||resp1||...||respλ

Theorem 2. Under the hardness of GAIP, the (T,N)) threshold signature scheme
is Existentially Unforgeable under adaptive Chosen-Message Attacks (EUF-CMA)
in the Random Oracle Model.

Sketch. The proof is very similar to that of the full threshold case. First of all,
note that, since the adversary controls at most T − 1 players, there must be at
least a set Iho ∈ I composed only by honest players. Moreover, in every execution
of Threshold− Sign there must be at least one player Pho with ho ∈ Iho, holding
the share gho.

During the simulation of the key generation, A follows the protocol normally,
except when it takes the role of Pho applying gho. In this round, it uses the same
simulation technique as before and sends the appropriate value, in order to have
the final output that matches the challenger’s key. A will play the role of all the
honest parties and will act following the protocol normally except when it takes
the role of Pho during round ho. In this round, A would use the same simulation
strategy and simulate the ZKP. The rest of the proof is identical.

16



5 Concrete Instantiations

In this section, we will present concrete instantiations of our protocols, us-
ing the code equivalence group actions behind the LESS and MEDS signature
schemes [7,23]; note that, however, our protocol is very general, and it is in
principle possible to utilize other groups and group actions instead. We begin
by showing that several optimizations embedded in the schemes’ design can be
adapted in order to be applied to our work too. We will discuss these again using
the generic group action notation, since they can work in general.

5.1 Multi-bit Challenges

This optimization is applied to LESS in Section 5.1 of [7] and to MEDS in Section
5 of [23]. In a nutshell, the technique proposes to replace the binary challenges
of the verifier with multi-bit ones, where each challenge value corresponds to a
different public key. In this way, it is possible to amplify soundness, at the cost
of an increase in public key size. To be precise, we will fix a non-negative integer
l, set r = 2l and consider a challenge space of cardinality r. Note that the case
l = 1 corresponds to the original protocol. With this optimization, the security
of the scheme relies on a different, but related problem:

Problem 6 (mGAIP: Multiple Group Action Inverse Problem). Given a collec-
tion x0, ..., xr−1 in X, find, if any, an element g ∈ G and two different indices
j ̸= j′ such that xj′ = g ⋆ xj .

We proceed to prove the equivalence of hardness between this problem and
Problem 1, by generalizing the proof of Theorem 3 from [7].

Proposition 3. Given an algorithm to solve mGAIP, that runs in time T and
succeeds with probability ϵ, it is possible to solve GAIP (Problem 1), in time
approximately equal to T +O(poly(n)), with probability of success equal to ϵ/2.

Proof. Let A be an adversary for mGAIP. We now show how to construct an
adversary A′ that is able to solve GAIP using A as a subroutine. From a GAIP
instance (x, y = g⋆x), A′ samples uniformly at random g

(0)
i , ..., g

(r−1)
i for r = 2l.

Then, it computes (in polynomial time) half of the elements starting from x, and
half starting from y; wlog, we can imagine that xi = g

(i)
i ⋆ x for i ∈ [0; r/2− 1],

while xi = g
(i)
i ⋆y for i ∈ [r/2; r−1] are generated from y. Since the new instances

are randomly generated, they are indistinguishable from the original one. At this
point, A′ runs A on input x0, ..., xr−1, and this will output, with probability ϵ,
a response g∗, j, j′ such that xj′ = g∗ ⋆ xj . Now, if the two indices lie in the two
different halves of [0, r], it is possible to use the random group element to get g;

for example if j < r/2 < j′ then g =
(
g
(j′)
i

)−1

· g∗ · g(j)i . Since this happens with
probability 1/2, we get the thesis.

17



As a consequence, we will consider r − 1 public keys x1, ..., xr−1 generated
from the initial element x0 by r − 1 shared keys g(1), ..., g(r) (with the notation
g(0) = e). To do this, we modify the KeyGen algorithm in order to generate r− 1
shared secret keys g(1), ..., g(r) and public keys x1, ..., xm (using the notation
g(0) = e and x0 = x). Essentially, the process consists of repeating r − 1 times
the classical KeyGen algorithm, as shown in Algorithm 5; to avoid burdening the
reader, we have only inserted the modified protocol for the full-threshold case,
since the other one follows immediately.

Algorithm 5 KeyGen for the l-multibit
Require: x ∈ X.
Ensure: Public keys xj = g(j) ⋆ x0 with each participant Pi holding g

(j)
i such that∏

g(j) = g(j), for all j = 1, ..., r − 1.
1: Each participant Pi chooses g

(j)
i ∈ G and publishes x̄j,i = g

(j)
i ⋆ x0, for all j =

1, ..., r − 1.
2: Set xj,0 = x, for all j = 1, ..., r − 1.
3: for i = 1 to N do
4: for j = 1 to r − 1 do
5: Pi computes xj,i = g

(j)
i ⋆ xj,i−1.

6: If i < N Pi sends xj,i to Pi+1.
7: Pi produces a ZKP proving the honest use of g(j)i (using x̄j,i).
8: end for
9: end for

10: return xj = xj,N for all j = 1, ..., r − 1. The private key of Pi is g
(j)
i .

At this point we can modify the protocol in Figure 2 to produce challenges
in a larger space, as shown in Figure 3.

With this protocol the soundness error is reduced to 1
2l

, thus in the signing
algorithm we only need to execute ⌈λ

l ⌉ rounds, reducing both the signature size
and the computational cost, but increasing the public key size. It is possible to
obtain a security reduction to mGAIP (Problem 6), in the random oracle model,
for the multibit version of the threshold scheme, in the same way as for the proof
of Theorem 1. We avoid do not include it, since it is a well-known optimization
in literature (see for example Section 5.1 of [7] and Section 4 of [26]).

5.2 Fixed-weight challenges

Another possible variant for group action-based signature schemes is the use of
fixed-weight challenge strings, as shown for instance in [7, section 5.2]. The idea
is simple: since on the challenge bit 0 the Prover’s response consists of a random
group element g̃, he can simply transmit the PRNG seed used to generate it.
This consists usually of only λ bits, thus it makes sense to have the challenge 0
occur (much) more often than 1. To do that, one has to use the hash function
H to return a vector of fixed weight ω and length t.

18



Public Data : Group G acting on X via ⋆, element x0 ∈ X and hash function H.
Private Key : Group elements g(j) = g

(j)
I1
· · · g(j)IM

with (j)gI ∈ G, for all j = 1, ..., r − 1.
Shares for Pi : all group elements g

(j)
I such that j ∈ I, for all j = 1, ..., r − 1.

Public Key : x(j) = g(j) ⋆ x0, for all j = 1, ..., r − 1.

PROVERS VERIFIER
Set x̃← x and for i = 1, ...,M do :

h−→Pτ(i) get g̃i
$← X and set x̃← g̃i ⋆ x̃

Set h = H(x̃).
b←− b

$← {0, ..., r − 1}.
If b = 0 they opens all g̃I and

set u← g̃I1 · · · g̃IM .
u−→

Accept if H(u ⋆ x0) = h.
If b ̸= 0 then u← e.
for i = 1, ...,M do :

Pτ(i) evaluate and send u← g̃Ii · u ·
(
g
(b)
Ii

)−1

. Accept if H(u ⋆ xb) = h.

Fig. 3. Threshold identification protocol with soundness error 1
2l

.

To avoid security loss we need to have a preimage security (the difficulty of
guessing in the challenge space) of still λ bits, thus we need to choose t, ω such
that: (

t

ω

)
≥ 2λ .

In this way, for carefully selected parameters, we can decrease the signature
size (even if the number of rounds is increased). The security of the scheme
remains unchanged. More on this can be read, for instance, in section 5.2 of [7],
but also in [50] and in the original Fiat-Shamir paper [33].

When one tries to apply this optimization to the threshold case, a new ob-
stacle arises. In fact, the parties are not able to share a single seed used for the
generation of the ephemeral map g̃, but have to share M =

(
N

T−1

)
of them. Thus,

if the challenge bit is 0, the parties need to send all the M bits, and the total
communication cost becomes Mλ. This can be a problem in two ways:

– For this strategy to make sense, we need Mλ to be smaller than the weight
of the group element.

– In some applications, it can be desirable to not disclose the parameters T
and N .

In these cases, the fixed-weight optimization should not be used, and the signers
should just send the group element instead.

Note that the two optimizations can be combined together in a rather intu-
itive way, as explained again in [7].

19



Seed tree. If seeds are indeed used to represent random objects, it makes sense
to transmit them efficiently, rather than individually; this can be done via a
so-called seed tree. This primitive uses a secret master seed to generate t seeds
recursively exploiting a binary structure, but in the “other direction”: each parent
node is used to generate two child nodes via a PRNG. When a subset of t − ω
seeds is requested for the signature, we only need to send the appropriate nodes,
reducing the space required for the seeds from λ(t−ω) to a value bounded above
by λNseeds, where

Nseeds = 2⌈log(ω)⌉ + ω(⌈log(t)⌉ − ⌈log(ω)⌉ − 1) ,

as shown in [41,23]. More details are given, for instance, in Section 2.7 of [14].

5.3 Scheme Parameters

In Table 1, we compare the public key size and signature size of the different
variants, both alone and combined, with respect also to T and N (setting M =(

N
T−1

)
). We will use ξ to denote the weight in bits of an element of the set X,

and γ to denote that of a group element of G.

Version #rounds |pk| |σ|

Classic λ ξ λγ + λ

Multibit
⌈
λ
l

⌉
(2l − 1)ξ

⌈
λ
l

⌉
(γ + l)

Fixed t s.t.
(
t
ω

)
≥ 2λ ξ NseedsMλ+ ωγ + t

Both t s.t.
(
t
ω

)
(2l − 1)ω ≥ 2λ (2l − 1)ξ NseedsMλ+ ωγ + t

Table 1. Overview of the sizes for different variants.

In our signing algorithm, for each iteration of the for loop over 1, ...,M , each
user needs to send the following quantities to the next user:

– #rounds · ξ bits for the commitment phase,
– |σ| bits for the response phase.

It follows that the overall cost, for the information exchanged by the users,
is given by: (

N

T − 1

)
(#rounds · ξ + |σ|) (1)

At this point, we can see specific choices for LESS and MEDS. We will select
the public parameters that satisfy the requirement of 128 bits of classical security
and at least 64 bits of quantum security, and evaluate ξ and γ accordingly. We

20



include here the data for the original signature schemes, as well as parameters
that we found in order to optimize the sum |pk| + |σ| for the cases (2, 3), (3, 5)
and the case without fixed-weight challenges to hide T and N (that must be
used also if Mλ ≥ γ).

Instantiations with LESS. From Table 7 of [7], we have taken the secure
parameters for the linear equivalence problem: n = 198, k = 94 (length and
dimension of the code), q = 251 (the field size). We obtain that the size of a
single code in systematic form is given by (n−k)k log2(q) bits, so ξ = 9742 bytes,
while the size of monomial map is γ = 194 bytes. To evaluate it we have used an
optimization presented by the LESS team at CBCrypto 2023 that allows to cut
in half the cost of the monomial map. Numbers are reported in Table 2, where
we report, in the last column, also the total amount of exchanged data.

Case Variant t ω l |pk| (kB) |σ| (kB) Exc. (MB)

centralized F+M 333 26 1 9.74 6.85 -

(2,3) F+M 247 30 1 9.74 10.27 7.28

(3,5) F+M 247 30 1 9.74 20.57 11.83

(*,*) M - - 1 9.74 24.85
(

N
T−1

)
1.27

Table 2. Parameters for the threshold version of LESS

Instantiations with MEDS. From Section 7.2 [23] we have taken the secure
parameters for the matrix code equivalence problem: n = 12,m = 12, k = 10
(matrix sizes and dimension of the code), q = 65521 (the field size). Thus we
obtain that the size of a single code in systematic form is given by (nm −
k)k log2(q) bites, so ξ = 2696 bytes, while the size of group element is given by
(n2+m2) log2(q) bits, corresponding to γ = 576 bytes. Numbers are reported in
Table 3; as above, in the last column we report the total amount of exchanged
data.

Case Variant t ω l |pk| (kB) |σ| (kB) Exc. (MB)

centralized F+M 333 26 1 2.70 16.78 -

(2,3) F+M 333 26 1 2.70 20.30 2.75

(3,5) F+M 244 20 2 8.09 23.07 6.81

(*,*) M - - 3 18.9 24.78
(

N
T−1

)
0.369

Table 3. Parameters for the threshold version of MEDS

21



6 A Construction Tailored for LESS

The scheme proposed in Figure 3 becomes impractical for large values of T,N
since the number of round and shares necessaries is

(
N

T−1

)
. In this section, we

propose an alternative construction, tailored to LESS signature scheme. First of
all, we reformulate the vectorization problem (Problem 3) in the context of code
equivalence:

Problem 7 (Linear Code Equivalence). Given two generator matrices G,G′ ∈
Fk×n
q for two k-dimensional linear codes C and C ′, find, if any, an invertible

matrix S ∈ GLk and a monomial matrix Q ∈ Mn such that G′ = SGQ.

While the monomial map is usually considered the “true” representative of
the action, the hardness of LEP relies both on the monomial matrix Q and the
change of basis matrix G. Indeed, if either one of the two matrices is public, it
is possible to efficiently retrieve the other one . In particular:

Proposition 4. Let G and G′ = SGQ be the generator matrices for two lin-
early equivalent codes. If S is known then it is possible to recover Q in polynomial
time by using sorting algorithms.

Proof. Knowing the linear map S, we can have the two codes written with
respect to the same basis. In particular we can consider the matrix S−1G′ = GQ.
Note that this matrix and G have the same columns vectors, only permuted and
multiplied by a constant. So we can write a first naive algorithm to recover the
monomial map:

1. Go through the columns of G, set them in standard form by multiplying
each column by the inverse of the first non-zero entry, and sort them using
any order. Memorize the map Q1 used for the sorting.

2. Go through the columns of G′, set them in standard form by multiplying
each column by the inverse of the first non-zero entry, and sort them with
respect to the same order used previously. Memorize the map Q2 used for
the sorting.

3. The permutation underlying the monomial map Q is the permutation Q =
Q1Q

−1
2 .

4. Use the previous permutation applied to G to find the coefficients of the
monomial map Q.

Thanks to this observation, we can use the linear map as private key and
share it instead of the monomial map. In particular we use particular invertible
matrices, that allow to design a multiplicative threshold sharing.

22



6.1 Multiplicative to Additive Secret Sharing

In the case where k is an even number is possible to have a threshold secret
sharing scheme based on matrix multiplication working in the multiplicative
abelian subgroup U ⊆ GLk(Fq) defined as follows:

U =

{[
I A
0 I

]
| A ∈ F

k
2×

k
2

q

}
. (2)

The group U has the interesting property that the multiplication of matrices
corresponds to the addition of the submatrices:[

I A
0 I

]
·
[
I B
0 I

]
=

[
I A+B
0 I

]
(3)

We can use this property to define a threshold secret sharing scheme for
matrix multiplication by simply using Shamir’s Secret Sharing [21, Section 1.5]
for a secret k

2 × k
2 matrix S (it is enough to do it component-wise), so that it

can be recovered by T parties by adding the share matrices multiplied by the
Lagrange coefficients, i.e. S = δ1S1 + ...+ δTST . At this point we have that:[

I S
0 I

]
=

[
I δ1S1

0 I

]
· · ·

[
I δTST

0 I

]
Using this secret sharing scheme reaches clearly the necessary goal of being

multiplicative, but has the problem that the secret matrix is in triangular form,
so clearly cannot be used alone, since it would leak the private permutation. To
solve this problem we use the group U ′, that is the transpose of the previous
group:

U ′ =

{[
I 0
A I

]
| A ∈ F

k
2×

k
2

q

}
. (4)

Notation. If A is a k
2 ×

k
2 matrix we will indicate by Â the corresponding matrix(

I A
0 I

)
∈ U and by Â

′
the corresponding matrix

(
I 0
A I

)
∈ U ′.

We can now consider matrices in the product group U × U ′ in which all
the elements are the product of two matrices Ŝ1 ∈ U, Ŝ

′
2 ∈ U ′ which, when

multiplied, have the form:[
I S1

0 I

]
·
[
I 0
S2 I

]
=

[
S1S2 + I S1

S2 I

]
. (5)

At this point the secret is a k× k matrix that should not have any structure
to allow the recovery of information on the equivalence between the codes. We
will discuss the security of this approach, as well as the possible use of more
than two matrices, in Section 6.3.

23



6.2 A New Protocol Exploiting Invertible Matrices

In Algorithm 6 we present our new protocol. The threshold secret sharing of the
secret key and the public key generation requires a trusted authority, while the
verification function remains unchanged. The core idea use the aforementioned
group to achieve a (T,N) secret sharing of the linear map and Proposition 4
to be able to compute the monomial map during the signature. In Appendix B
we show a ZKP from which is possible to design a centralized signature for this
approach.

Without loss of generality we have assumed that the subset of users trying
to sign is {1, ..., T}. By ŜTSS(i),r we mean the additive share for Ŝr already
modified using Lagrange coefficients so that ŜTSS(1),r · · · ŜTSS(T ),r = Ŝr.

Algorithm 6 Threshold− Sign− Triangular

Require: q, n, k ∈ N, G ∈ Fk×n
q , a hash function H. Each party holds additive shares

of ŜTSS(i),1, ŜTSS(i),2 ∈ U × U ′ as previously defined. A public key (G,G′ =

Ŝ1Ŝ
′
2GQ).

Ensure: A valid LESS signature for the message m under the public key (G, Ŝ1Ŝ
′
2GQ).

1: Set G̃
j ← G′ for j = 1, ..., λ.

2: for r = 1, 2, i = 1 to T do
3: for j = 1 to λ do
4: Pi samples randomly S̃

j
i,r ∈ GLk(Fq) and Q̃

j

i,r ∈Mn(q)

5: Pi sends G̃
j ← S̃

j
i,rG̃

j
Q̃

j

i,r to Pi+1. ▷ Assuming PT+1 = P1

6: end for
7: end for
8: Compute ch = H(SF(G̃

1
)||...||SF(G̃λ

)||m)
9: Set Rj ← I for all j = 1 to λ

10: for r = 1, 2, i = 1 to T do
11: for j = 1 to λ do
12: if chj = 0 then
13: Pi computes Rj ← RjQ̃

j

i,r ▷ Rj is a monomial matrix
14: else
15: Pi computes Rj ← S̃

j
i,rR

jŜTSS(i),r ▷ Rj is a matrix k × k
16: end if
17: Pi sends Rj to Pi+1 ▷ Assuming PT+1 = P1

18: end for
19: end for
20: for j = 1 to λ do
21: If chj = 1 all parties use Rj to retrieve QQ̃.
22: Set Rj = QQ̃.
23: end for
24: respj = Rj for all j = 1 to λ
25: sig = ch||resp1||...||respλ

24



Algorithm 7 Verify

Require: q, n, k ∈ N, G ∈ Fk×n
q , a hash function H. A public key (G,G′ = SF(GQ)).

Ensure: Accept if the signature for the message m is valid under the public key (G,G′).
1: Parse ch, resp1, ..., respλ from sig

2: for j = 1 to λ do
3: if chj = 0 then
4: set G̃

j
= SF(G′ · respj)

5: else
6: set G̃

j
= SF(G · respj)

7: end if
8: end for
9: Accept if ch = H(G̃

1||...||G̃λ||m)

Proposition 5. When executed by an honest subset of users, Algorithm 6 pro-
duces a valid signature, that can be verified from Algorithm 7.

Proof. We avoid using the j apex to ease the notation. After executing the first
for loops, we have that G̃ = S̃G′Q̃ with S̃ = S̃T,2 · · · S̃1,2 · S̃T,1 · · · S̃1,1 and
Q̃ = Q̃1,1 · · · Q̃T,1 · Q̃1,2 · · · Q̃T,2. Now:

– When ch = 0 in line 13 we are clearly evaluating Q̃ recursively.
– When ch = 1 in line 15 we are evaluating:

S̃T,2 · · · S̃1,2 · S̃T,1 · · · S̃1,1 · ŜTSS(1),1 · · · ŜTSS(T ),1 · ŜTSS(1),2 · · · ŜTSS(T ),2 =

S̃T,2 · · · S̃1,2 · S̃T,1 · · · S̃1,1 · Ŝ1 · Ŝ
′
2 = S̃ · Ŝ1 · Ŝ

′
2 .

Since G̃ = S̃G′Q̃ = S̃Ŝ1Ŝ
′
2GQQ̃, thanks to Proposition 4 it is possible to

evaluate QQ̃ and pass the verification.

6.3 Security

The main difference between the new protocol and the (N,N)-threshold one is
that we are limiting the choice for the linear map S. The only other relevant
difference is that instead of having a secret sharing of the monomial map Q, we
have a secret sharing of the linear map S, but both approach are equivalent as
noted in Proposition 4, as long as Q remains secret. Indeed, parties only recover
QQ̃ during the signature phase, with Q̃ being an ephemeral monomial matrix,
whose knowledge is shared among all the Pi.

We briefly analyze the security implication of limiting the choice of S, and
we suggest a plausible assumption to justify it.

25



Hardness of the structured problem. First of all, we need to guarantee
that the secret matrix S ∈ U × U ′ does not leak information on the monomial
map. In other words, it should still be hard to find Q given G and SGQ even
for S ∈ U × U ′. Indeed, using a particularly crafted matrix can potentially leak
some information on the equivalence map. For example, using a single matrix in
U we would have: [

I A
0 I

] [
G1

G2

]
Q =

[
G1Q+AG2Q

G2Q

]
(6)

Since we know both G2 and G2Q, we can use Proposition 4 to retrieve part
of the permutation with high probability.

Speaking heuristically, we expect that a matrix in U×U ′, that is, of the form
given in Equation (5), is enough to scramble the rows and hide the monomial
map used. To justify this intuition we introduce the following proposition.

Proposition 6. Consider the matrix G ∈ Fn×k
q , a monomial matrix Q ∈ Mn(q),

an invertible matrix S =
[
S11 S12

S21 S22

]
∈ GLk(q) and the product G′ = SGQ. If an

adversary A is able to retrieve the secret Q from any instance (G,G′,S11,S21)
(i.e. knowing half of the columns), then it can be used to solve LEP with param-
eters [n, k/2].

Proof. Given an instance (H,H ′) of dimension k/2, we can forge an input for A
as G =

[
0
H

]
and G′ =

[
RH′

H′

]
where R is a random invertible matrix. Observe

in fact that if H ′ = SHP then we have that:[
S11 RS
S21 S

]
·
[
0
H

]
· P =

[
RSHP
SHP

]
=

[
RH ′

H ′

]
.

Thus the algorithm A on input G,G′ would output the secret map for the
instance H,H ′.

This proposition is not an actual reduction (as for example Proposition 3),
since to break the [n, k/2] instance it is necessary to be able to attack the par-
ticular instance of a matrix where half of the entries are zeros. Still, it can be
used for heuristic reasons, but also two possible ideas to actually exploit it would
be to use the matrix G =

[
0
H

]
for the users at the start of the protocol (since,

while committing, they can still use the systematic form) or to consider codes of
dimension k = 2n

3 (where n is the code length as usual), so that the codes with
parameters [n, k/2] have the same level of security.

Another possible way to improve the security would be to additionally con-
sider matrices which are the product of l triangular matrices from U (where
one every two matrices is transposed). Thus, it makes sense to formalize a new
security assumption.

26



Problem 8 (l-Modified Linear Code Equivalence). Let G ∈ Fk×n
q be the gen-

erator matrix of a [n, k] linear code. Consider a monomial matrix Q ∈ Mn, an
invertible matrix S ∈ U × U ′ · · · , where l is the number of groups used in the
direct product, and the generator matrix G′ = SGQ. The problem consist of
solving the linear equivalence problem for the codes given by G and G′, i.e. find
Q.

At the moment, we are using this assumption for l = 2, since for l = 1 the
problem is easy and we cannot see meaningful advantages in using l > 2.

Hiding during calculations. During the combination phases, each participant
has access to the following information from the user Pi (note that we simplify
the notation to avoid cluttering):

1. S̃G̃Q̃ with G̃ from the commitment phase;
2. S̃RŜ with R from the response to the challenge b = 1.

Ideally, we would like it to be infeasible to use these informations, in order
to retrieve the share Ŝ or the ephemeral map Q̃.

First of all, we can see that we have information-theoretic security for the
share Ŝ. In fact, by assigning R̄ = S̃R and P = RŜ, we can observe that:[

P 11 P 12

P 21 P 22

]
=

[
R̄11 R̄12

R̄21 R̄22

]
·
[
I S
0 I

]
=

[
R̄11 R̄11S + R̄12

R̄21 R̄21S + R̄22

]
(7)

Thus, we can see that S must satisfy the following system.{
R̄11S + R̄12 = P 12

R̄21S + R̄22 = P 22

(8)

The system is underdetermined, and so any possible matrix S can be an
acceptable solution via the right choices for R̄12, R̄22. However, there is still a
possible issue here. Indeed, considering the equations P i1 = S̃i1R11 + S̃i2R21,
for i = 1, 2 in principle we have additional information that can be exploited,
and used to solve the code equivalence problem in 1 to obtain Q̃ (for example,
in an algebraic attack we would have additional equations).

When R = I, we are essentially again in the case of Proposition 6, that can
be considered safe in some sense. We expect that similar results can be obtained
also when R is different from the identity, but, as mentioned before, further
cryptanalysis is necessary.

Overall, we summarize our analysis, with the assumption that the following
problem is hard.

Problem 9. (Linear Equivalence with Additional Equations) Consider the ma-
trices G ∈ Fk×n

q ,R1,R2 ∈ F
k
2×

k
2

q , an invertible matrix S =
[
S11 S12

S21 S22

]
∈ GLk, a

monomial matrix Q ∈ Mn and define G′ = SGQ. Recover Q from the knowl-
edge of G,G′ and the additional equations:

S11R1 + S12R2 , S11R1 + S12R2. (9)

27



7 Conclusions

We introduced two protocols for threshold signature schemes based on the Group
Action Inverse Problem that are agnostic about which particular group action
is used, and works without any further hypotheses. Our schemes are similar to
well-known group action threshold schemes such as the one presented in [25,27],
and share the strictly sequential round-robin communication sequence. Unfortu-
nately, this structure seems to be unavoidable due to the inherent properties of
group action computation. Additionally, we were able to define a decentralized
key generation algorithm and to reduce the security of the threshold signature
scheme to that of the centralized scheme, which is easily proved to be unforgeable
under the hardness of the group action problem.

Our proposed schemes are practical for several real-world instances, such as
(2, 3) or (3, 5) sharing, but cannot be used for arbitrary (T,N) since the number
of shares required grows as a binomial coefficient. To circumvent this issue, in
Section 6 we presented a tailor-made construction for the LESS signature [16],
and its improved version [8], that only requires a number of shares which is linear
in T . We observe that the new scheme security relies on novel cryptographic as-
sumptions (Proposition 3), that require further study and cryptanalytic scrutiny.
This would, incidentally, enable us to select a secure set of parameters for a prac-
tical instantiation, as well as a possible implementation. Another future direction
for our work would be to define a distributed key generation and to apply the
same ideas for MEDS, since for matrix code equivalence we have a result equiv-
alent to Proposition 4 (See Problem 4, Remark 16 of [51]).

8 Acknowledgement

This publication was created with the co-financing of the European Union FSE-
REACT-EU, PON Research and Innovation 2014-2020 DM1062/2021. The first
author acknowledges support from TIM S.p.A. through the Ph.D. scholarship.
The second author acknowledges support from Telsy S.p.A. and De Compo-
nendis Cifris through the M.Sc. scholarship and Collegio Clesio. The third au-
thor is a member of the INdAM Research Group GNSAGA. The fourth author
acknowledges support from NSF through grant 1906360 and NSA through grant
H98230-22-1-0328.
All the authors would like to thank Giuseppe D’Alconzo and Leonardo Errati
for their comments and suggestions.

References

1. Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From
identification to signatures via the fiat-shamir transform: Minimizing assumptions
for security and forward-security. In EUROCRYPT, pages 418–433. Springer, 2002.

28



2. Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From
identification to signatures via the fiat-shamir transform: Minimizing assumptions
for security and forward-security. In Lars R. Knudsen, editor, Advances in Cryp-
tology — EUROCRYPT 2002, pages 418–433, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

3. Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, Gilles Zémor,
and Jurjen Bos. HQC. NIST PQC Submission, 2020.

4. Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher,
Tanja Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki, Ruben Niederha-
gen, Kenneth G. Paterson, Edoardo Persichetti, Christiane Peters, Peter Schwabe,
Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin Tomlinson, and Wen Wang.
Classic McEliece. NIST PQC Submission, 2020.

5. Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy, Jean-
Christophe Deneuville, Phillipe Gaborit, Shay Gueron, Tim Guneysu, Carlos
Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-
Pierre Tillich, Gilles Zémor, Valentin Vasseur, and Santosh Ghosh. BIKE. NIST
PQC Submission, 2020.

6. Alessandro Barenghi, Jean-Francois Biasse, Tran Ngo, Edoardo Persichetti, and
Paolo Santini. Advanced signature functionalities from the code equivalence prob-
lem. Cryptology ePrint Archive, Paper 2022/710, 2022. https://eprint.iacr.
org/2022/710.

7. Alessandro Barenghi, Jean-François Biasse, Edoardo Persichetti, and Paolo San-
tini. Less-fm: fine-tuning signatures from the code equivalence problem. In Post-
Quantum Cryptography: 12th International Workshop, PQCrypto 2021, Daejeon,
South Korea, July 20–22, 2021, Proceedings 12, pages 23–43. Springer, 2021.

8. Alessandro Barenghi, Jean-Francois Biasse, Edoardo Persichetti, and Paolo San-
tini. Less-fm: Fine-tuning signatures from the code equivalence problem (full ver-
sion). Cryptology ePrint Archive, Paper 2021/396, 2021. https://eprint.iacr.
org/2021/396.

9. Alessandro Barenghi, Jean-François Biasse, Edoardo Persichetti, and Paolo San-
tini. On the computational hardness of the code equivalence problem in cryptog-
raphy. Advances in Mathematics of Communications, 17(1):23–55, 2023.

10. Michele Battagliola, Alessio Galli, Riccardo Longo, and Alessio Meneghetti. A
provably-unforgeable threshold schnorr signature with an offline recovery party. In
DLT2022 at Itasec 2022, CEUR Workshop Proceedings, 2022.

11. Michele Battagliola, Riccardo Longo, and Alessio Meneghetti. Extensible decen-
tralized secret sharing and application to schnorr signatures. preprint: https:
//eprint.iacr.org/2022/1551, 2022.

12. Michele Battagliola, Riccardo Longo, Alessio Meneghetti, and Massimiliano Sala.
A provably-unforgeable threshold EdDSA with an offline recovery party. preprint:
https://arxiv.org/abs/2009.01631, 2020.

13. Michele Battagliola, Riccardo Longo, Alessio Meneghetti, and Massimiliano Sala.
Threshold ECDSA with an offline recovery party. Mediterranean Journal of Math-
ematics, 19(4), 2022.

14. Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and falafl:
Logarithmic (linkable) ring signatures from isogenies and lattices. Cryptology
ePrint Archive, Paper 2020/646, 2020. https://eprint.iacr.org/2020/646.

15. Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh: Efficient
isogeny based signatures through class group computations. IACR Cryptol. ePrint
Arch., page 498, 2019.

29

https://eprint.iacr.org/2022/710
https://eprint.iacr.org/2022/710
https://eprint.iacr.org/2021/396
https://eprint.iacr.org/2021/396
https://eprint.iacr.org/2022/1551
https://eprint.iacr.org/2022/1551
https://arxiv.org/abs/2009.01631
https://eprint.iacr.org/2020/646


16. Jean-François Biasse, Giacomo Micheli, Edoardo Persichetti, and Paolo Santini.
Less is more: Code-based signatures without syndromes. In Abderrahmane Nitaj
and Amr Youssef, editors, Progress in Cryptology - AFRICACRYPT 2020, pages
45–65, Cham, 2020. Springer International Publishing.

17. Dan Boneh, Rosario Gennaro, and Steven Goldfeder. Using level-1 homomorphic
encryption to improve threshold dsa signatures for bitcoin wallet security. In In-
ternational Conference on Cryptology and Information Security in Latin America,
pages 352–377. Springer, 2017.

18. Charlotte Bonte, Nigel P. Smart, and Titouan Tanguy. Thresholdizing hasheddsa:
Mpc to the rescue. International Journal of Information Security, 20:879 – 894,
2021.

19. Luís T. A. N. Brandão and Michael Davidson. Notes on threshold eddsa/schnorr
signatures. Accessed: 2023-05-01.

20. Luís T. A. N. Brandão, Michael Davidson, and Apostol Vassilev. Nist roadmap
toward criteria for threshold schemes for cryptographic primitives. Accessed: 2020-
08-27.

21. Selda Çalkavur, Alexis Bonnecaze, Romar dela Cruz, and Patrick Solé. Code Based
Secret Sharing Schemes: Applied Combinatorial Coding Theory. World Scientific,
2022.

22. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
CSIDH: an efficient post-quantum commutative group action. In Advances in
Cryptology–ASIACRYPT 2018: 24th International Conference on the Theory and
Application of Cryptology and Information Security, Brisbane, QLD, Australia,
December 2–6, 2018, Proceedings, Part III 24, pages 395–427. Springer, 2018.

23. Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Tovohery Hajatiana Randri-
anarisoa, Krijn Reijnders, Simona Samardjiska, and Monika Trimoska. Take your
meds: Digital signatures from matrix code equivalence. Cryptology ePrint Archive,
2022.

24. Daniele Cozzo and Nigel P Smart. Sharing the luov: threshold post-quantum
signatures. In IMA International Conference on Cryptography and Coding, pages
128–153. Springer, 2019.

25. Daniele Cozzo and Nigel P. Smart. Sashimi: Cutting up csi-fish secret keys to
produce an actively secure distributed signing protocol. In Jintai Ding and Jean-
Pierre Tillich, editors, Post-Quantum Cryptography, pages 169–186, Cham, 2020.
Springer International Publishing.

26. Luca De Feo and Steven D Galbraith. Seasign: compact isogeny signatures from
class group actions. In Advances in Cryptology–EUROCRYPT 2019: 38th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Darmstadt, Germany, May 19–23, 2019, Proceedings, Part III 38, pages
759–789. Springer, 2019.

27. Luca De Feo and Michael Meyer. Threshold schemes from isogeny assumptions.
In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, edi-
tors, Public-Key Cryptography – PKC 2020, pages 187–212, Cham, 2020. Springer
International Publishing.

28. Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Secure two-party
threshold ecdsa from ecdsa assumptions. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 980–997. IEEE, 2018.

29. Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold ecdsa from
ecdsa assumptions: The multiparty case. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 1051–1066. IEEE, 2019.

30



30. Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security of the
fiat-shamir transformation in the quantum random-oracle model. In CRYPTO
2019, pages 356–383, 2019.

31. Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome decoding
in the head: Shorter signatures from zero-knowledge proofs. In Advances in Cryp-
tology – CRYPTO 2022, volume 13508 of LNCS, pages 541–572. Springer, 2022.

32. Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Shared permutation for
syndrome decoding: New zero-knowledge protocol and code-based signature. De-
signs, Codes and Cryptography, 91(2):563–608, 2023.

33. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, Advances in
Cryptology — CRYPTO’ 86, pages 186–194, Berlin, Heidelberg, 1987. Springer
Berlin Heidelberg.

34. Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ecdsa with fast
trustless setup. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 1179–1194, 2018.

35. Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ecdsa with fast
trustless setup. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, page 1179–1194, New York, NY, USA,
2018. Association for Computing Machinery.

36. Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-optimal
dsa/ecdsa signatures and an application to bitcoin wallet security. In Interna-
tional Conference on Applied Cryptography and Network Security, pages 156–174.
Springer, 2016.

37. Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. Robust
threshold dss signatures. In International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 354–371. Springer, 1996.

38. Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. Secure dis-
tributed key generation for discrete-log based cryptosystems. In Advances in Cryp-
tology—EUROCRYPT’99: International Conference on the Theory and Applica-
tion of Cryptographic Techniques Prague, Czech Republic, May 2–6, 1999 Proceed-
ings 18, pages 295–310. Springer, 1999.

39. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure dis-
tributed key generation for discrete-log based cryptosystems. Journal of Cryptol-
ogy, 20:51–83, 2007.

40. Shay Gueron, Edoardo Persichetti, and Paolo Santini. Designing a practical code-
based signature scheme from zero-knowledge proofs with trusted setup. Cryptog-
raphy, 6(1):5, 2022.

41. Shay Gueron, Edoardo Persichetti, and Paolo Santini. Designing a practical code-
based signature scheme from zero-knowledge proofs with trusted setup. Cryptog-
raphy, 6(1):5, 2022.

42. Greg Kuperberg. Another subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. In Simone Severini and Fernando G. S. L. Brandão,
editors, TQC 2013, volume 22 of LIPIcs, pages 20–34. Schloss Dagstuhl, 2013.

43. Yehuda Lindell. Fast secure two-party ecdsa signing. In Advances in Cryptology–
CRYPTO 2017: 37th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 20–24, 2017, Proceedings, Part II 37, pages 613–644. Springer,
2017.

44. Yehuda Lindell. Fast secure two-party ecdsa signing. In Jonathan Katz and Ho-
vav Shacham, editors, Advances in Cryptology – CRYPTO 2017 - 37th Annual

31



International Cryptology Conference, Proceedings, Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), pages 613–644. Springer Verlag, 2017. Publisher Copyright:
© 2017, International Association for Cryptologic Research.; 37th Annual Inter-
national Cryptology Conference, CRYPTO 2017 ; Conference date: 20-08-2017
Through 24-08-2017.

45. Qipeng Liu and Mark Zhandry. Revisiting post-quantum fiat-shamir. In Advances
in Cryptology - CRYPTO 2019, pages 326–355, 2019.

46. Philip MacKenzie and Michael K Reiter. Two-party generation of dsa signatures.
In Advances in Cryptology—CRYPTO 2001: 21st Annual International Cryptology
Conference, Santa Barbara, California, USA, August 19–23, 2001 Proceedings 21,
pages 137–154. Springer, 2001.

47. Philip MacKenzie and Michael K Reiter. Two-party generation of dsa signatures.
International Journal of Information Security, 2:218–239, 2004.

48. NIST. Post-Quantum Cryptography Standardization, 2017. URL: https://csrc.
nist.gov/Projects/Post-Quantum-Cryptography.

49. NIST. Call for Additional Digital Signature Schemes for the Post-Quantum
Cryptography Standardization Process, 2023. URL: https://csrc.nist.gov/
projects/pqc-dig-sig/standardization/call-for-proposals.

50. Robert Ransom. Constant-time verification for cut-and-choose-based signatures.
Cryptology ePrint Archive, Paper 2020/1184, 2020. https://eprint.iacr.org/
2020/1184.

51. Krijn Reijnders, Simona Samardjiska, and Monika Trimoska. Hardness estimates
of the code equivalence problem in the rank metric. Cryptology ePrint Archive,
2022.

52. Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Le-
point, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien Stehlé.
CRYSTALS-KYBER. NIST PQC Submission, 2020.

32

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
https://eprint.iacr.org/2020/1184
https://eprint.iacr.org/2020/1184


A Zero-Knowledge Proof for Action Equality

In the Distributed Key Generation given in Algorithm 1, we need a proof for the
knowledge of a set element gi such that the following relation holds:

yi = gi ⋆ x ∧ xi = gi ⋆ xi−1 .

The protocol presented below is a generalization of the one presented in
Section 3.1 of [25], for a general group action.

Public Data : xa, xb ∈ X and hash function H.
Private Key : Group element g ∈ G.
Public Key : ya = g ⋆ xa and yb = g ⋆ xb.

PROVER VERIFIER
Choose g̃

$← G and set:
h−→x̃a = g̃ ⋆ xa, x̃b = g̃ ⋆ xb.

Set h = H(x̃a∥x̃b)).
b←− b

$← {0, 1}.
If b = 0 then u = g̃. u−→ Accept if H(u ⋆ xa∥u ⋆ xb) = h.
If b = 1 then u = g̃g−1. Accept if H(u ⋆ ya∥u ⋆ yb) = h.

Fig. 4. Identification protocol to prove that the Private Key is used for the calculation.

Proposition 7. The interactive proof in Figure 4 is correct, has soundness er-
ror 1

2 and is computationally zero-knowledge assuming decisional-GAIP and the
collision resistance of the hash function.

Proof. The completeness of the protocol is straightforward. We need to prove
soundness and zero knowledge.
– Soundness: suppose that the Prover is able to answer both the challenges

with u0 and u1, by the collision resistance of the hash function at this point
we would retrieve g as u−1

1 u0 solving GAIP (Problem 1) and having that the
public keys are generated by the same group elements.

– Zero Knowledge: to simulate the protocol without knowing the secret g
the Prover flips a coin c. If c = 0, the Prover follows the protocol normally
and is able to answer the challenge if b = 0. If c = 1, it computes x̄a = ḡya
and x̄b = ḡyb and sends them in place of x̃a and x̃b. In this way it is able
to answer to the challenge b = 1. Thus, if c = b the prover can convince the
verifier, otherwise it rewind the verifier and try again. Since at every iteration
the prover has probability 1

2 of guessing the correct c the simulation ends
in expected polynomial time. Note that this transcript is indistinguishable
from the honestly-obtained one, because the distribution of c is the same as
the ones from the challenges and also ḡ, g̃g−1 have the same distribution.

33



B Zero-Knowledge Proof for LESS Version

Since, in the literature, the signatures based on the Fiat-Shamir transformation
start from a zero-knowledge identification protocol, we have included it here
for completeness. Note that, at the moment, there is no clear framework for
identification protocols executed with multiparty computations, and introducing
one is out of the scope of this work.

Public Data : q, n, k ∈ N, matrix G ∈ Fk×n
q and hash function H.

Private Key : Invertible matrix Ŝ1Ŝ
′
2 ∈ U × U ′ and monomial matrix Q.

Public Key : G′ = Ŝ1Ŝ
′
2GQ.

PROVER VERIFIER
Set G̃← G′ and for r = 1, 2 do:

h−→get S̃r
$← GLk(Fq) and Q̃r

$←Mn(q)

set G̃← S̃rG̃Q̃r.
Set h = H(SF(G̃)).

b←− b
$← {0, 1}.

If b = 0 then u← Q̃1Q̃2
u−→

Accept if H(SF(G′u)) = h.
If b = 1 then ν ← I.
for r = 1, 2 do :

ν ← S̃r · ν · Ŝi.
Use ν to retrieve the map and set u← QQ̃ Accept if H (SF (Gu)) = h.

Fig. 5. Identification protocol for the optimized version of LESS.

Proposition 8. The interactive proof in Figure 5 is correct, has soundness er-
ror 1

2 and is computationally zero-knowledge assuming decisional-GAIP and the
collision resistance of the hash function.

The protocol’s soundness and zero-knowledge follow immediately from the
original protocol, since the view of the protocol is unchanged. The completeness
can be verified as in Proposition 5. Again, the protocol can be transformed into
a signature scheme using the Fiat-Shamir.

34


	Cutting the GRASS: Threshold GRoup Action Signature Schemes 

