
Security-Preserving Distributed Samplers: How to Generate any
CRS in One Round without Random Oracles

Damiano Abram1, Brent Waters2,3, and Mark Zhandry3

1 Aarhus University
damiano.abram@cs.au.dk

2 University of Texas at Austin
bwaters@cs.utexas.edu

3 NTT Research
mzhandry@gmail.com

Abstract. A distributed sampler is a way for several mutually distrusting parties to non-interactively
generate a common reference string (CRS) that all parties trust. Previous work constructs distributed
samplers in the random oracle model, or in the standard model with very limited security guarantees.
This is no accident, as standard model distributed samplers with full security were shown impossible.
In this work, we provide new definitions for distributed samplers which we show achieve meaningful
security guarantees in the standard model. In particular, our notion implies that the hardness of a wide
range of security games is preserved when the CRS is replaced with a distributed sampler. We also
show how to realize our notion of distributed samplers. A core technical tool enabling our construction
is a new notion of single-message zero knowledge.

1 Introduction

Many protocols require a common reference string to be generated by a third party in order to securely run
the protocol. Importantly, the security of the protocol requires that the any secrets revealed during setup
are hidden from the parties of the protocol. For example, if the protocol relies on a public RSA modulus for
a reference string, the parties of the protocol must not know the prime factors. Such a structured common
reference string requires placing enormous trust in the third party, and naturally leads to the question:

What happens if the trusted third party is actually not trustworthy?

Digging deeper, there may be many potential third parties who are willing to run the setup: maybe certain
state organizations (e.g. NIST) as well and independent organizations (e.g. EFF). Some participants in the
protocol may trust some third parties, while some participants only trust other third parties, and there
may be no overlap between the trusted parties. How can we ensure that all protocol participants trust the
reference string?

An obvious solution is for all potential third parties to run an MPC protocol to generate the reference
string. Then, as long as each participant trusts a single third party, they will trust the reference string (CRS).
However, engaging in an MPC protocol can be a logistical burden for these third parties. For comparison,
in a situation where the CRS is generated by a single trusted third party, that party can simply post the
reference string they produce to some public domain. In contrast, if many third parties are engaging in an
MPC protocol to compute the reference string, this requires the many third parties to send several messages
back-and-forth between each other.

Another issue is the difficulty of updating the CRS if we want to expand the number of involved trusted
parties. For example, suppose third parties A,B,C engaged in an MPC protocol to generate a CRS such
as an RSA modulus N . At some later date, users u, v wish to engage in a protocol using an RSA modulus,
but user u only trusts a new third party D and not A,B,C. Meanwhile v does not trust D since it is new.
Unfortunately, this would require A,B,C to come back online and interact with D to create a new modulus
N ′. A,B,C may be unable or unwilling to do so, as it would be an unreasonable burden to re-run the MPC
any time a trusted setup was requested with a new third party.

Solution: Distributed Samplers. Abram, Scholl, and Yakoubov [ASY22] proposed the notion of a distributed
sampler. Here, parties A,B,C each individually run their own setup algorithm locally, arriving at messages
UA, UB , UC , which they post to some public domain. Now when a set of users want a CRS generated
by A,B,C, they look up UA, UB , UC , and run a procedure which deterministically extracts a CRS from
UA, UB , UC . Because the process of computing the CRS from UA, UB , UC is deterministic, all parties can
compute it from UA, UB , UC for themselves, and therefore do not require any additional interaction. Thus,
the tuple UA, UB , UC now acts as the common reference string, which is simply the concatenation of the
individual messages of the various third parties. Informally, as long as a user trusts at least one of the third
parties, then they trust the CRS derived from the list of strings that includes that party.

When a set of users wishes to incorporate a new third party D, all they need is for D to generate and
post its own UD. Now the parties can derive a new CRS from UA, UB , UC , UD. Importantly the original
parties A,B,C do not need to do anything to add a new third party. In the follow-up work of [AOS23], a
construction is given that maintains security in such a scenario.

Limitations of Existing Work. The work of [ASY22] constructs two kinds of distributed samplers both utiliz-
ing indistinguishability obfuscation. The first achieves semi-honest security, where the third parties honestly
generate their messages but wish to then break a protocol using the generated CRS. Unfortunately, this
notion of security is rather limited, since a truly malicious adversary could try to generate their messages
dishonestly in order to influence the generated CRS. Such influence over the CRS offers much greater flexi-
bility in breaking the protocol. For example, if the CRS is for a statistically sound proof system, a malicious
adversary may try to influence the CRS into a “bad” one where false proofs exist.

The second distributed sampler achieves full malicious security in the UC model. However, the con-
struction requires the random oracle model, and worse requires the full power of programming the random
oracle.

Thus, the existing work either requires the full power of the random oracle model, or achieves only a very
limited notion of security. This is no accident: as shown by [AOS23], full standard model malicious security
is in fact impossible. So the question becomes: what kind of malicious security can be meaningfully achieved
in the standard model?

1.1 Our Work

In this work, we address the above limitations of prior work, by giving new definitions for distributed samplers
that avoid the above impossibility while still guaranteeing meaningful security against malicious adversaries,
and providing a new instantiation of distributed samplers satisfying this definition. As a crucial step toward
this goal, we also investigate single message zero knowledge proofs in the standard model, and provide new
constructions with novel features. A summary of our main results follows.

Defining Distributed Samplers. Our first contribution is to define new security notions for distributed sam-
plers. We describe a notion of security preserving distributed samplers, which implies that, for any game-based
protocol using a reference string, security is preserved by the distributed sampler. That is, if the protocol
is secure under a reference string generated by a single trusted third party, then it is also secure when the
reference string is generated via a distributed sampler, as long as at least one of the parties involved is
trusted. We also give some technical definitions of security for distributed samplers that are easier to reason
about, and we show that these notions imply adequate notions of security preservation. See Sections 5 and 6
for details.

Constructing Distributed Samplers. Next, we show how to construct distributed samplers meeting our new
definition. We obtain two flavours of the primitive: a CRS-less distributed sampler with security against
uniform adversaries and a construction achieving security against non-uniform adversaries by relying on a
short, reusable and unstructured CRS.

Our construction uses [ASY22] as a starting basis. However, we need to make several key changes.
Critically, we face the following challenge: in order to justify that the reference string is “as good as” an

2

honestly generated one, the reduction needs to be able to embed an actual honestly generated reference string
N into the honest third party’s message, and somehow force the adversary to generate their own messages in
a way that makes the derived reference string equal to N . But in the case of malicious adversaries, whatever
strategy the reduction uses, the adversary can seemingly use as well to force the derived reference string to
be their own, maliciously generated, N ′.

Extractable 1-message zero knowledge. Resolving the above problem requires many tools. One of the main
ones is a new 1-message zero knowledge proof, which crucially does not need a CRS. Now, such an object
is normally considered impossible, but it can be possible if the simulator is allowed to be non-uniform
while the adversary is required to be uniform. Such 1-message zero knowledge leveraging non-uniformity was
considered before [BP04]. However, our use of zero knowledge requires several features, such as the ability
for the reduction to extract the original proof from the sender’s message, that were not present in existing
1-message zero knowledge. We therefore develop a new 1-message zero knowledge proof system with several
useful features that we crucially leverage to achieve our notion of distributed samplers.

Updatability. The distributed samplers presented in this work assume that the set of participants is a-priori
given. As a consequence, our constructions tolerate inactive parties (their distributed sampler messages can
be generated using default randomness), but when new participants join, the protocol needs to restart.

Applications. A direct implication of our results is the existence of a 3-round OT protocol in the plain model
(no CRS) with security against active, uniform adversaries and non-uniform simulation. This is achieved by
directly applying our CRS-less distributed sampler to [PVW08]. More in general, our distributed samplers
imply 3-round active MPC in the plain model (no CRS) with security against uniform adversaries and
non-uniform simulation [BL18a].

Our distributed samplers can also be used to compile extractable NIZKs into 2-round zero-knowledge
proofs of knowledge4. The resulting constructions either rely on a short, unstructured CRS or no CRS at all,
depending on whether we aim for security against non-uniform adversaries or not. Furthermore, the 2-round
protocols satisfy automatically concurrent security, independently of the properties of the original NIZKs.

2 Technical Overview

2.1 New notions of distributed sampler

Full malicious security, and its impossibility. We first recall an informal description of the notion of malicious
security obtained by [ASY22], which follows the real/ideal paradigm as shown in Figure 1 (We use D to denote
the distribution of honestly generated CRSs. Such distribution can be private-coin). In the real world, the
adversary is given the messages of the honest third parties, and then subsequently generates the messages
of the malicious third parties. The challenger then derives the CRS from the combined messages of third
parties, and gives it to the adversary. In the ideal world, the honest third party message is instead generated
by a simulator (which depends on the adversary), and the simulator is given as input a CRS generated
honestly from D. The adversary is then given the simulated message and the honestly generated CRS.
Security dictates that the two worlds are indistinguishable, which in particular implies that the derived CRS
is equal to the provided honest CRS in the ideal world.

This brief description is obviously impossible, however. Indeed, a malicious adversary could be rushing :
after seeing the honest party’s message, it could generate several sets of malicious third party messages (but
even generate them honestly), compute the derived CRSs, and then select the set of third party messages that
give a CRS most advantageous to the adversary. This means it is impossible for the simulator to guarantee
that any single provided honest CRS is used by the adversary. To capture this ability of rushing adversaries,

4 Our techniques do not apply to non-extractable NIZKs. This is due to the challenger of the soundness game being
not efficient.

3

A

Real	World

Gen
Ui

{Uj}j≠i

Sample R

b=0/1

Ideal	World

Sim

D

R1,…,Rq

A

Ui

{Uj}j≠i

Rt

b=0/1

t

Fig. 1. An informal explanation of malicious security for distributed samplers. Here, Gen is the algorithm for honestly
generating the third party messages Uj and Sample is the algorithm that combines the messages into the derived
CRS R. i is the honest user, t is the simulator’s choice of which of the honest CRS samples R1, . . . , Rq to use.

the definition actually gives the simulator a polynomial number of honestly generated potential CRSs, and
the simulator can then choose which one gets sent to the adversary.

The above described notion of security is still impossible, as shown by [AOS23]. One basic reason is the
following: the simulator has to produce a message Ui, whose length is fixed by the protocol. However, the
sequence of honest CRSs provided to the simulator can be arbitrary long, since an arbitrary polynomial-
time adversary can generate arbitrarily many sets of third party messages, thereby allowing them to select
from an arbitrary polynomial number of CRSs. This means there is no way for a single Ui to embed all
of the CRSs. [AOS23] formalize an impossibility, and it seems rather robust, since although their results
apply only to the UC model with dishonest majority, different security settings such as standalone security,
superpolynomial simulation, honest majority, or having the protocol depend itself on a CRS do not seem
to solve the problem. The positive results of [ASY22,AOS23] therefore employ a random oracle. This avoids
the impossibility, since the simulator can now program the random oracle with the various CRSs, instead of
programming them into Ui. However, it requires the full power of programming the random oracle, and it is
unclear what kind of security this gives in the standard model.

Our first notion: hardness-preserving distributed samplers. We now describe our new notions of security
for distributed samplers. The first we describe is that of hardness preserving, which is given informally in
Figure 2. There are two main differences from the security notion described. First, only a single honest CRS
is given to the simulator in the ideal world. This is necessary in the standard model, as there is no way to
program an unbounded number of CRSs into a fixed length simulated message. Note that with this change
we can no longer hope to force the derived CRS to be equal to the provided honest CRS, except possibly
with inverse polynomial probability. This means an adversary can distinguish real from ideal in the majority
of cases. So the second change is to relax indistinguishability to the following. We only require that if the
adversary outputs 1 in the real world with non-negligible probability ε1, then it also outputs 1 in the ideal
world with non-negligible probability ε2. But ε1 and ε2 do not need to be close, and ε2 can be far lower than
ε1.

The obvious question is then: what kind of guarantees does such a relaxed definition provide? We show
that hardness preserving distributed samplers are good for guaranteeing security for various search tasks.

4

A

Real	World

Gen
Ui

{Uj}j≠i

Sample R

b=0/1

Ideal	World

Sim

D

R

A

Ui

{Uj}j≠i

b=0/1

Fig. 2. An informal explanation of hardness-preserving security for distributed samplers. It is the same as Figure 1,
except that there is only a single honest CRS in the ideal world, and the relation between success probabilities in the
two worlds is relaxed.

These are tasks where the adversary’s goal is to output some value with non-negligible probability (as opposed
to distinguishing tasks, where the goal is to output a value with probability non-negligibly larger than 1/2).

More precisely, we consider a general search game between a challenger and adversary, where at some
step the challenger is provided with an honestly generated CRS, which it uses in its own internal logic but
also sends to the adversary. We can compile such a game into one where the CRS is generated via distributed
samplers, and the adversary controls all but one of the trusted third parties. A diagram of such a game and
its compilation is given in Figure 3. We show the following:

Theorem 1 (informal). If a distributed sampler is hardness-preserving and the search game is hard, then
the compiled search game is also hard.

Notice that there exists a non-negligible security loss between the original search game and the compiled
version. Furthermore, the loss depends on the running time of the adversary. This is unavoidable: a rushing
adversary can regenerate the corrupted party distributed sampler messages in its head many times, looking
for an output that gives a higher chance of solving the search problem. The advantage will therefore degrade
proportionally to the number of such trials, which is proportional to the running time.

Our second notion: indistinguishability-preserving distributed samplers. Hardness-preserving distributed sam-
plers achieve a somewhat limited form of security against active adversaries. For starters, if the game is an
indistinguishability game, the notion gives no guarantees. But a more subtle issue is the following. Consider
a protocol like a NIZK with CRS. The definition of zero knowledge says that there exists a simulator which
simulates both the CRS and the proof. Perhaps it generates the CRS such that it knows a certain trapdoor,
which allows it to generate a proof without knowing a witness. When using a distributed sampler, we would
like the ideal world to reflect this simulated CRS and proof. But this is not a simple matter of plugging in the
existing simulated CRS into the simulator for the distributed sampler, as there is no way for the distributed
sampler simulator to then use the CRS trapdoor to help generate the proof. In the language of protocols
and functionalities, this means that for a protocol Π with CRS which implements a functionality F, the
compiled protocol Π ′ using the distributed sampler to generate the CRS might no longer implement F.

The second distributed sampler notion we introduce, called indistinguishability-preserving, tries to tackle
this problem. The concept is informally described in Fig. 4: an indistinguishability-preserving distributed

5

Oracle Game

Ch
A

D

Win/lose

Compiled Game

R

Ch

A’

Gen
Ui

{Uj}j≠i
Sample

R

Win/lose

Fig. 3. Search games and their compilations. The figure on the left is a search game utilizing an honest CRS, while
the figure on the right is the compiled game using a distributed sampler to generate the CRS.

sampler compiles any protocol Π with CRS satisfying the condition at the top of Fig. 4 for some functionality
F and simulator SimΠ , into a protocol without CRS satisfying the property at the bottom.

We focus for a moment on the property at the top of Fig. 4. The condition states that the protocol
Π implements the functionality F. However, it actually gives a strictly stronger requirement: in the ideal
world, the CRS is simulated using a distribution D′ that produces both a sample R and a trapdoor T . While
the adversary receives only R, the simulator SimΠ receives also T . In the NIZK example, D′ would be the
trapdoored CRS, and T is the trapdoor. An important point is that the simulated CRS is independent of any
information known to the functionality. Not all protocols have this kind of simulation. For example, the HSS
construction of [OSY21] satisfies the property: the CRS is a large RSA modulus distributed identically to
the protocol and simulated before interacting with the functionality. On the other hand, imagine a protocol
where the CRS consists of an RSA modulus N . Suppose that the protocol allows, e.g., generic MPC modulo
N and N is chosen by the functionality (notice that the CRS is given by the functionality). If we use an
indistinguishability-preserving distributed sampler to generate N , the compiled protocol will not implement
the functionality anymore. This is because, in the simulation, we cannot ensure that the output of the
distributed sampler is the modulus N chosen by the functionality.

Moving on to the bottom of Fig. 4, we observe that, in the ideal world, the sampling algorithm of the
distributed sampler has been substituted with a new algorithm called Trapdoor. The latter has the purpose
of extracting the trapdoors from the outputs of the simulated distributed sampler. The resulting values are
then given to SimΠ . Observe that the property at the bottom implies that the compiled protocol implements
F.

Theorem 2 (informal). If a distributed sampler is indistinguishability-preserving and the protocol Π im-
plements the functionality F as in the top of Fig. 4, then the compiled protocol also implements F.

The definition of indistinguishability-preserving distributed sampler is actually more general than what
we outlined here: it provides security guarantees even when the sample from D is not given as a CRS but
as an “oracle sample” revealed halfway through the execution of the protocol. It is still possible to compile
this kind of protocol using a distributed sampler: instead of executing it at the beginning, the parties will
run it at a later stage. Sometimes, when the first round of the protocol Π is independent of the CRS, this
fact allows us to compile Π without adding rounds of interaction. For more details, check Section 5.2.

6

Real World

A

D

Ideal World

R

Π

A

D’
R

Sim
Π

R, T

F

b=0/1 b=0/1

ww�
Compiled Real World

A’

Compiled Ideal World

Π

A’

b=0/1

Sim
Π

Gen
Ui

{Uj}j≠i
Sample

R

Sim
Ui

{Uj}j≠i
Trapdoor

R, T

F

b=0/1

Fig. 4. An informal explanation of indistinguishability-preserving security for distributed samplers.

Lossy distributed samplers. In the paper, we introduce one last notion: lossy distributed samplers. This will
be a convenient technical notion that will help us realize our notions of distributed samplers from above.
Such a lossy sampler consists of two modes of operation: in addition to a standard mode, in which the
output remains unpredictable as long as one party is honest, there exists a lossy mode. When the latter is
activated, the output becomes predictable: with overwhelming probability, it will lie in a set of polynomial
size determined by the messages of the honest parties. Distinguishing between standard and lossy mode will
always be possible, however, for any given PPT adversary. But by choosing sufficiently large parameters
for the lossy mode, we ask that the distinguishability advantage for any given adversary can be made an
arbitrarily small non-negligible function, i.e. for every PPT A and δ = 1/poly, there exists a sufficiently large
q5 such that ∣∣Pr

[
A → 1

∣∣StandardMode
]
− Pr

[
A → 1

∣∣LossyMode(q)
]∣∣ ≤ δ.

From lossy to hardness-preserving distributed samplers. We use lossy distributed samplers to build hardness-
preserving distributed samplers. Consider an adversary A that, in the real-world game of the hardness-
preserving distributed samplers (see Fig. 2), interacts with the standard mode of the construction. The
idea is that if the adversary outputs 1 with non-negligible probability, we can activate the lossy mode with
sufficiently large parameters so thatA keeps outputting 1 with non-negligible probability. The main difference
is that, now, the output of the construction is all of a sudden predictable.

5 q is a polynomial that upper bounds the size of the output space.

7

At this point, we make use of a property that is satisfied by some lossy distributed samplers: programma-

bility. The latter guarantees that we can hide an ideal sample R̂
$← D among the outputs of a lossy-mode

distributed samplers without the adversary’s realizing. Since the output space is polynomial in size, the ad-
versary ends up obliviously selecting R̂ as output of the protocol with p = 1/poly probability. Conditioned on
this event, A still outputs 1 with non-negligible probability ε. In conclusion, in the ideal world, the challenger
just needs to send lossy-mode messages. The adversary will output 1 with probability at least p · ε.

Theorem 3 (Informal). Any programmable, lossy distributed sampler is hardness-preserving.

2.2 Building lossy distributed samplers

We explain how to build programmable, lossy distributed samplers using, among other tools, indistinguisha-
bility obfuscation [GGH+13], multi-key FHE [AJJM20], extremely lossy functions (ELFs) [Zha16] and a new
primitive called almost everywhere extractable NIZKs. We make extensive use of subexponentially secure
primitives. The resulting lossy distributed sampler makes use of a short (polynomial in λ, but independent
of D), unstructured and reusable CRS (the construction is secure even if the CRS is reused in multiple
concurrent instantiations of the protocol, potentially involving different subsets of parties). Our construction
originates from the semi-honest distributed sampler of [ASY22]. We briefly recall it.

The encryption program. In [ASY22], a distributed sampler message consists of two obfuscated programs.
Adapting the terminology to this paper, we call them the encryption program and the decryption program.

The encryption program of party Pi takes care of generating a multi-key FHE encryption of a random
string si under a fresh key pki. The output of the construction will be obtained by adding the n random strings
s1, . . . , sn and feeding the result as randomness for D, i.e. the output sample is R := D(1ln; s1 ⊕ · · · ⊕ sn).
Observe that thanks to the homomorphic properties of multi-key FHE, given the encryptions of the random
strings, everybody is able to derive an encryption of R6. The issue is that nobody is able to decrypt it: the
output of the multi-key FHE evaluation is encrypted under a “joint key”. In order to decrypt, the parties
usually need to collaborate: each of them performs a partial decryption of the joint ciphertext and publishes
the result. By pooling together the partial plaintexts, everybody can reconstruct the hidden message.

The decryption program. Usually, a multi-key FHE decryption requires interaction. In the distributed sam-
plers of [ASY22], however, the decryption program takes care of everything without needing additional
rounds of interaction.

Formally, the decryption program of party Pi takes as input the encryption programs of all the parties and
evaluates them. After receiving the encryption of sj for every j ∈ [n], the program retrieves an encryption
of the output R by applying homomorphic operations on the ciphertexts. Observe that all the decryption
programs derive the same joint ciphertext C. The execution terminates by performing a partial decryption
of C using the private counterpart of pki. The program outputs the resulting partial plaintext.

Observe that by evaluating all the decryption programs, the parties are able to retrieve all the partial
decryptions of C. At that point, reconstructing R is immediate.

Counteracting the residual function attack. A common issue of all 1-round MPC protocols is that an adversary
can rerun the protocol in its head many times changing a subset of the messages. The outputs of all these
executions are correlated with the inputs of the honest parties. For particular functionalities, this could leak
enough information to reconstruct the input of the honest parties.

In distributed samplers, there are no private inputs but we still need to be careful: we need to make
sure that, in every distributed sampler execution, the encryption programs use independent looking random
strings s1, . . . , sn. If that was not the case, the adversary might use the residual function attack to learn
information about the randomness used in the main execution of the protocol.

In [ASY22], the authors ensure this by feeding the encryption program of each party with the hash of
the encryption programs of the other players (notice that inputting the program themselves would not be

6 The fact that the ciphertexts are encrypted under different keys does not constitute a problem.

8

EProg[Ki]

Hard-coded. The PPRF key Ki.
Input. A digest y.

1. (si, ri, r
′
i)← F (Ki, y)

2. (pki, ski)← mkFHE.Gen(1lλ; ri)
3. ci ← mkFHE.Enc(pki, si; r

′
i)

4. Output (pki, ci).

Fig. 5. A sketch of the unobfuscated encryption program of party Pi

DProg[Ki,EPi, σ, (idj)j 6=i]

Hard-coded. The PPRF key Ki, the encryption program EPi, the CRS for a NIZK σ, the identities of the
other parties (idj)j 6=i.
Input. Set of n − 1 tuples (EPj , πj)j 6=i where EPj is the encryption program of party Pj and πj is a NIZK
proving its well-formedness.

1. ∀j 6= i : bj ← NIZK.Verify(σ, idj , πj ,EPj)
2. If ∃j 6= i such that bj = 0, output ⊥
3. ∀j ∈ [n] : yj ← Hash

(
(EPl)l6=j

)
4. ∀j ∈ [n] : (pkj , cj)← EPj(yj)

5. C ← mkFHE.Eval
(
D, c1, . . . , cn

)
6. (si, ri, r

′
i)← F (Ki, yi)

7. (pki, ski)← mkFHE.Gen(1lλ; ri)
8. di ← mkFHE.PartDec(C, ski)
9. Output di

Fig. 6. A sketch of the unobfuscated decryption program of party Pi

possible for a matter of sizes). The encryption program generates the randomness for the multi-key FHE key
pki and the string si by inputting the hash into a puncturable PRF. Observe that if any adversary reruns
the distributed sampler in its head modifying any of the other messages, the hash fed in the encryption
program changes. As a consequence, the program will use an independent looking si (and an independent
looking multi-key FHE key pair).

In our lossy distributed sampler, the encryption program will remain the same as in [ASY22]. We sketch
its code in Fig. 5.

Adding extractable NIZKs. The main change we bring to the construction is to add non-interactive zero
knowledge (NIZK) proofs of the well-formedness of the encryption programs. These proofs will be inputted
into the decryption programs. When any of the proofs do not verify, the decryption program will output ⊥.
We sketch their code in Fig. 6.

In order to describe the lossy mode of the distributed sampler, we assume that the NIZK is extractable,
which means there is a special trapdoor that allows for extracting from any proof the witness used to generate
the proof. We defer the discussion of the exact properties needed until later in this overview.

The lossy mode of the distributed sampler tweaks the programs of one of the honest parties as follows. The
encryption program will generate simulated public keys and ciphertexts. The decryption program, instead
of verifying the NIZKs, will extract the witnesses from them using the extraction property of the NIZK.
From the latter, it will derive the randomness used to generate the multi-keys FHE keys and ciphertexts of
the other players. At that point, similarly to [HIJ+17], it simulates the partial decryption instead of directly

9

EProgLs[Ki]

Hard-coded. The PPRF key Ki.
Input. A digest y.

1. (ηi, η
′
i)← F ′(Ki, y)

2. (φ, pki, ci)← mkFHE.Sim1(1lλ; ηi)
3. Output (pki, ci).

Fig. 7. A sketch of the unobfuscated encryption program for the lossy mode

performing it. We recall that the simulator for the partial decryption takes as input a targeted plaintext
R′ [AJJM20]. Such value might differ for the actual message hidden in the joint ciphertext C, however, the
output of the decryption is still guaranteed to be R′.

Decreasing the size of the output space using an ELF. In the lossy mode, the output of the protocol is decided
by the party that sends the lossy-mode programs (those that simulate the multi-key FHE operations). How
can we restrict the output space to a set of polynomial size without the adversary’s immediate detecting the
small output space? After all, the adversary could keep generating outputs, hoping to find a collision. After
only a polynomial number of outputs, the adversary would expect to find such a collision in the lossy mode.

To rectify this issue, we have the size of the lossy output space be a polynomial that grows with the
adversary’s run time and success probability, making sure it is a sufficiently large polynomial that the
adversary cannot detect it in the time give.

At a lower level, we use extremely lossy functions (ELFs) [Zha16]. These are randomized algorithms
generating deterministic functions with large domain. The primitive has two modes of operations: injective
mode and lossy mode. When the first mode is activated, the function is injective. In the other case, the
image of the function has size smaller than q, where q is a polynomial parameterizing the lossy mode.
The two modes will be always distinguishable with non-negligible advantage. ELFs guarantee that, for any
adversary A and inverse-polynomial δ, by choosing a sufficiently large polynomial q, it is possible to make
the distinguishability advantage between the injective mode and the lossy mode smaller than δ.

In our construction, we generate the value R′ input in the partial decryption simulator by applying
an ELF on the concatenation of the encryption programs of the n parties. The result is then fed in a
puncturable PRF. Its output is used as randomness for D(1lλ). In this way, when the ELF has a small image,
the distributed sampler will have a small output space. We skecth the code of the lossy-mode programs in
Fig. 7 and Fig. 8.

Programmability. It is easy to see that our candidate distributed sampler is programmable: in order to hide
an ideal sample R̂ in the output space, we can just pick a random value ẑ in the image of the ELF f and input
R̂ into the partial decryption simulator whenever f(EP1, . . . ,EPn) = ẑ. By the security of puncturable PRFs,
the changes cannot be detected by the adversary. Furthermore, if the ELF satisfies an additional property
called regularity [Zha16], it is guaranteed that the event f(EP1, . . . ,EPn) = ẑ occurs with inverse-polynomial
probability.

2.3 Security Proof Challenge 1: Simultaneous Extraction and Statistical Soundness

At this point, we can try to prove the security of the candidate lossy distributed sampler. However, there
are some challenges that need to be overcome.

The first challenge is the following. In the lossy mode, we need to be able to extract witnesses from valid
proofs. However, zero knowledge implies that there are false proofs that contain no witnesses. The existence
of these false proofs presents a problem for proving security using indistinguishability obfuscation.

10

DProgLs[Ki,EPi, σ, (τ
j
e)j 6=i,K, f]

Hard-coded. The PPRF key Ki, the encryption program EPi, the CRS for the almost everywhere extractable
NIZK σ, the extraction trapdoors (τ je)j 6=i, a PPRF key K, an ELF f .
Input. Set of n− 1 tuples (EPj , πj)j 6=i where EPj is the encryption program of party Pj and πj is an almost
everywhere extractable NIZK proving its well-formedness.

1. ∀j 6= i : Kj ← NIZK.Extract(τ je , πj ,EPj)
2. If ∃j 6= i such that Kj = ⊥, output ⊥
3. ∀j ∈ [n] : yj ← Hash

(
(EPl)l6=j

)
4. ∀j 6= i : (sj , rj , r

′
j)← F (Kj , yj)

5. z ← f(EP1, . . . ,EPn)
6. s← F (K, z)
7. R′ ← D(1lλ; s)
8. (ηi, η

′
i)← F ′(Ki, yi)

9. (φ, pki, ci)← mkFHE.Sim1(1lλ; ηi)

10. di ← mkFHE.Sim2

(
φ,D, R′, (sj , rj , r′j)j 6=i; η′i

)
11. Output di

Fig. 8. A sketch of the unobfuscated decryption program for the lossy mode

More generally, consider the following general setup. There is a program C0 receiving n values x1, . . . , xn
as inputs from n parties along with n NIZKs proving their validity. The program C0 outputs ⊥ whenever
any of the NIZKs does not verify. In the other cases, it outputs C(x1, . . . , xn) where C is some circuit. There
also a second program C1 that, instead of verifying the NIZKs, it tries to extract the witnesses hidden in
them (C1 outputs ⊥ if the extraction of any witness fails). Then it uses the extracted witnesses to attempt
to simulate the same behavior as C0. The goal is to have obfuscations of C0 and C1 be indistinguishable.

The problem of differing inputs. The main issue is that C0 and C1 have differing inputs: the zero-knowledge
property of the NIZKs guarantees the existence of proofs for which the witness cannot be extracted despite
verification succeeds. On these inputs, the behavior of C0 and C1 can be easily told apart. In order to apply
indistinguishability obfuscation, however, we need C0 and C1 to be equivalent programs.

Fortunately, finding these differing inputs is hard. Therefore the natural tool to achieve indistinguisha-
bility between obfuscations of C0 and C1 would be differing-input obfuscation [BGI+01]. The existence of
such primitive is, however, controversial due to some results suggesting its impossibility [GGHW14,BSW16].
In [HIJ+17], Halevi et al. faced a problem similar to ours. They solved it by designing NIZKs that can be
simulated only for statements hidden in the CRS. Since there is a small number of problematic statements, it
is easy to take care of the corresponding executions of C0 and C1 using just indistinguishability obfuscation.
The solution of Halevi et al., however, compromises the reusability of the CRS and makes it grow with the
size of the statements. Since we want to keep the CRS as simple as possible, we follow a different approach.

Indistinguishability obfuscation is enough. We rely solely on indistinguishability obfuscation. In [BCP14],
Boyle, Chung and Pass showed that, if two programs have a polynomial number of differing inputs and
finding any of them is hard, then iO is enough to hide which program was obfuscated. In our application,
the number of differing inputs is of course superpolynomial, however, we notice that the result of [BCP14]
can be generalized: assume that all differing inputs have a prefix in a set S. If finding an element in S is
hard even for adversaries running in time poly

(
λ, |S|

)
, subexponentially secure iO is sufficient to hide which

program was obfuscated.
To leverage this observation, we introduce the notion of almost everywhere extractable NIZKs. Such NIZKs

are designed so that the prefix of all the valid proofs for which the witness cannot be extracted lies in a set
S. Finding an element in S is hard even for adversaries running in time poly

(
λ, |S|

)
that are provided with

11

the extraction trapdoor. By using almost everywhere extractable NIZKs together with the generalization of
[BCP14], we can show that P0 and P1 are hard to distinguish despite the existence of differing-inputs. We
discuss building such NIZKs later in this overview.

2.4 Security Proof Challenge 2: More Differing Inputs

Decreasing the entropy of the encryption programs. At this point, we can try to prove the security of
the candidate lossy distributed sampler. The strategy is the following: using the properties of the almost
everywhere extractable NIZKs followed by an input-by-input iO argument, we show that, if the ELF is in
injective mode, the lossy-mode programs are indistinguishable from the usual ones. By switching to a lossy
ELF, we can then argue that the distinguishability advantage between the modes of the distributed sampler
can be made an arbitrarily small inverse-polynomial function.

There is only one problem that hinders this plan: beyond the differing-inputs caused by the NIZK extrac-
tion (which are taken care by the almost everywhere extractable NIZKs), there exist other inputs for which
the lossy-mode programs have a clearly distinguishable behaviour. Consider indeed two tuples of encryption
programs (EPj)j 6=i and (EP′j)j 6=i having colliding hashes. When these tuples are used along with normal
programs for party Pi, the outputs of the protocol will be correlated: in both executions, the programs of Pi
use the same random string si (see how si is generated in Fig. 5). If instead Pi sent lossy-mode programs,
the outputs will look independent of each other (see how R̂ is generated in Fig. 8).

Even if these problematic inputs are hard to find, this time we do not use the trick by Boyle, Chung and
Pass [BCP14]. To work around the issue, we decrease the entropy of the encryption programs: we require that
they are generated using the randomness produced by a PRG with a small λ-bit seed. The almost everywhere
extractable NIZKs will guarantee that the adversary does not break this rule. On the other hand, the lossy-
mode programs will use full-entropy randomness. In this way, the total number of valid encryption programs
for the corrupted parties becomes smaller than (2λ)n−1. By adopting a subexponentially collision-resistant
hash function, we can make sure that, with overwhelming probability, there exist no collisions among these
(2λ)n−1 elements. Moreover, the digests will still be small enough to fit into the encryption programs.

This technique solves also circular dependencies between subexponentially secure primitives: the input-
by-input iO argument requires us to work with a number of hybrids that is proportional to the number of
valid encryption programs. In each of these hybrids, we need to rely on the security of multi-key FHE. In order
for the proof to go through, the size of the multi-key FHE keys therefore needs to increase logarithmically
with the number of hybrids. If we used full-entropy encryption programs, the size of the keys would be
so large that they would not even fit in the encryption programs anymore. By forcing valid encryption
programs to have low entropy, we can hybrid over only the valid programs instead of all possible encryption
programs, thereby eliminating the circular dependency. The properties of the NIZK guarantee not only that
the adversary cannot find non-valid encryption programs, but that they do not even exist.
With these challenges overcome, we prove the following:

Theorem 4 (Informal). Assuming almost everywhere extractable NIZKs, subexponential iO, subexponen-
tial multi-key FHE, subexponentially collision-resistant hash functions and regular extremely lossy functions,
the distributed sampler sketched above is lossy and programmable.

2.5 Building indistinguishability-preserving distributed samplers.

A lossy distributed sampler is not necessarily indistinguishability-preserving. We show, however, that the
construction described above actually is:

Theorem 5 (Informal). Assuming almost everywhere extractable NIZKs, subexponential iO, subexponen-
tial multi-key FHE, subexponentially collision-resistant hash functions and regular extremely lossy functions,
the distributed sampler sketched above is indistinguishability-preserving.

We start by considering a protocol Π that relies on a CRS sampled from the distribution D. We suppose
that Π implements a functionality F as described at the top of Fig. 4. In particular, in the ideal world, the
CRS is simulated using a distribution D′ that outputs a trapdoor T along with the sample R.

12

A sketch of the proof. We use a hybrid argument beginning from the compilation of the real world using
the standard mode of our lossy distributed sampler and ending with the compilation of the ideal world
using a simulated mode (see the bottom of Fig. 4). We prove that the compiled worlds are computationally
indistinguishable.

As a first step, we switch the distributed sampler to lossy mode. This already introduces some non-
negligible distinguishability advantage in the proof, we will explain later why this does not constitute a
problem. On the other hand, the lossy mode allows us to move to a sample space of polynomial size.

Next, we gradually change the distribution of the outputs of the distributed sampler, switching from D
to D′. The technique here is rather simple: we just rely on the security of puncturable PRFs similarly to
what we did to argue programmability. Along the way, we gradually switch from the execution of Π, to the
execution of the simulator SimΠ . In particular, there will some subhybrids in which some of the distributed
sampler outputs come from D and some from D′. We run SimΠ only when the adversary chooses an execution
where the sample comes from D′. In these cases, we can retrieve the trapdoor by using the puncturable PRF
key K and the ELF hidden in the lossy-mode programs (see Fig. 8). Observe that, since the sample space is
small, switching from D to D′ needs only a polynomial number of subhybrids. As a consequence, we do not
need that D and D′ are subexponentially indistinguishable, nor that Π implements F with subexponential
security.

In the last hybrid, we switch the ELF in the lossy-mode programs back to injective mode. Once again,
the operation introduces a non-negligible distinguishability advantage. However, it allows us to move to a
large sample space where all the elements are trapdoored.

The compiled games are indistinguishable. We finally argue why the non-negligible advantage introduced in
the first and the last hybrid does not constitute a problem: by contradiction, suppose that there exists an
adversary A that distinguishes between the initial and the final stage with non-negligible advantage ε. By
choosing sufficiently large parameters for the lossy mode of the ELF (which is used only in the intermediate
hybrids, but not in the real and the ideal world), we can ensure that the advantage of A in the first and the
last steps of the proof are both bounded by ε/4. The total advantage of A against the compiled games would
therefore be strictly smaller than ε, reaching a contradiction.

On the reusability of the CRS of our distributed samplers. It is easy to see that the CRS of a hardness-
preserving distributed sampler is always reusable across multiple concurrent executions of the protocol.
Indeed, the hardness of the search problem is not affected by the concurrent executions as the latter are
always simulatable. On the other hand, the security of an indistinguishability-preserving distributed sampler
can be affected by the concurrent executions. The construction presented in this paper, however, does not
suffer from this issue.

2.6 Building almost everywhere extractable NIZKs

We obtain almost everywhere extractable NIZKs in the CRS model using perfectly sound NIWIs, subexponen-
tially secure injective one-way functions, perfectly binding commitments and perfectly correct identity-based
encryption (IBE).

Why consider distributed samplers that need a CRS? It may seem strange to have a distributed sampler
— whose purpose is to generate a CRS — in turn rely on a CRS. What is the advantage of generating a
CRS using a distributed sampler if the latter still needs a CRS? There are several reasons why a distributed
sampler using a CRS can be useful: the CRS of the distributed sampler might be reused multiple times,
allowing the production of many samples. The CRS of the distributed sampler protocol can also be simple
to generate, perhaps because it is short or because it is unstructured (i.e. a uniform string of bits).

Our Construction. The CRS consists of an IBE master public key and a one-way function challenge v. The
proofs are associated to the identity of the party that issues them. Each of them consists of a commitment
c0, an IBE encryption of the witness c1 under the party’s identity and a NIWI guaranteeing that either

13

c1 contains the witness or c0 contains the preimage of v. In order to extract the witness, it is sufficient to
decrypt c1.

Observe that, in all valid proofs for which extraction fails, the prefix is a commitment to the preimage
of v. Since the one-way function is injective, the number of such prefixes depends only on the size of the
randomness of the commitment scheme. As the one-way function is subexponentially secure, we can make v
hard to invert even for poly(λ, |S|)-time adversaries that have enough power to brute-force the commitment
to retrieve the hidden value. This ensures the property we need.

Why to use identity-based encryption? In many applications of almost everywhere extractable NIZKs, we
would like to argue that the programs C0 and C1 are indistinguishable even if we simulate the NIZKs of the
honest parties (clearly, in these situations, C1 will try to extract the witnesses only from the NIZKs of the
corrupted players). The issue is that the NIZK described in the previous paragraph is not simulation-almost
everywhere extractable, i.e. leaking simulated proofs may allow distinguishing between C0 and C1. On the
other hand, disclosing C1 might compromise the zero-knowledge property of the NIZKs due to the extraction
trapdoor hidden into it.

Identity-based encryption allows us to work around the problem: to extract the witness from a NIZK
proven under the identity id, we do not need the IBE master secret key, but just the private key associated to
id. In other words, if we equip C1 only with the decryption keys associated to the identities of the corrupted
players, we are still able to simulate the proofs of the honest parties. The identities associated with the
NIZKs guarantee that no corrupted party can publish one of the simulated proofs as it was its own.

Note that some IBE schemes such as [BF01] have uniformly random public keys. If we also use a one-way
permutation to generate v, then the CRS is actually uniformly random. As such, our resulting distributed
samplers will take a uniformly random CRS, and can be used to generate any arbitrarily structured CRS.

Theorem 6 (Informal). Assuming perfectly correct IBE, perfectly binding non-interactive commitments,
perfectly sound NIWIs and subexponential OWFs, the NIZK sketched above is almost everywhere extractable.

2.7 CRS-less NIZKs in the Uniform Setting

All the distributed samplers we described so far make use of a CRS. The latter, needed by the NIZKs in
the construction, is short, reusable and unstructured, however, is it possible to completely remove it? For
indistinguishability-preserving distributed samplers, this is too much to hope for: if that was not the case,
we would obtain a 3-round OT protocol with active security by compiling any 2-round OT protocol with
CRS such as [PVW08]. It is known that active OT requires at least 4 rounds [HV16]. We show, however,
that, if we restrict to security against uniform adversaries, we can remove the CRS from all our primitives.
We obtain this by constructing CRS-less NIZKs that can be plugged in our distributed samplers.

NIZKs against uniform adversaries. The fact that NIZKs do not need CRSs if we restrict to security against
uniform adversaries has been known for almost two decades: the fact was proven by Barak and Pass in [BP04]
by building a CRS-less NIZK in the stand-alone model. In [BL18b], Bitansky and Lin studied a related
question. They designed CRS-less NIZKs with a weak security guarantee against non-uniform adversaries:
the number of false statements that can be proven is proportional to the non-uniformity of the adversary.
Although this notion does not imply full soundness against uniform adversaries, it is easy to see that their
constructions achieve the result. In this way, they indirectly obtain a CRS-less NIZK satisfying a weak form
of simulation-soundness [Sah99]: a uniform adversary cannot generate proofs for false statements even if it
has oracle access to the NIZK simulator that can be queried only with true statements (in the standard
definition of simulation soundness, the simulator can be queried even with false statements).

Beyond these works, the topic remains rather unexplored. In this paper, we show how to construct CRS-
less NIZKs achieving full simulation-soundness [Sah99], simulation extractability and almost-everywhere
extractability against uniform adversaries. All our constructions rely on the same trick: in order to simulate
a proof, we need to use a trapdoor. Such trapdoor will be infeasible to compute for every uniform adversary
but not for the simulator as it will be non-uniform.

14

Uniform-DDH and uniform-LWE. We start by introducing natural variations of the DDH and LWE assump-
tions that we believe to hold against uniform adversaries.

Consider a uniform deterministic algorithm DDHGen that outputs the description of a cyclic group G
along with two elements g, h ∈ G such that no uniform adversary can find the value α such that h = gα. A
heuristic instantiation of this algorithm is to use a SHA hash function, or the digits of π, to generate g and h.
The uniform-DDH assumption states that no uniform adversary can distinguish between pairs (gr, hr) and
pairs (gr, hs) where r and s are uniformly random elements. Clearly, the assumption cannot hold against
non-uniform adversaries: a non-uniform adversary can receive α as part of its non-uniform advice, at that
point, distinguishing is trivial. Even uniform quantum adversaries can trivially distinguish by recovering
α using Shor’s algorithm. We however believe that it is possible to instantiate the assumption so that all
uniform, classical PPT adversaries have subexponentially small advantage.

The uniform-LWE assumption follows a similar blueprint: we use a uniform deterministic algorithm
LWEGen to generate the matrix A ∈ Zm×nq describing a lattice. We then assume that no uniform PPT
adversary can distinguish Aᵀ · s + x (where s is uniform in Znq and x is a short vector in Zmq) from a
random element in Zmq . Once again, we cannot hope to achieve security against non-uniform adversaries:
if they receive a small vector u such that A · u = 0 as part of their non-uniform advice, they can easily
break the assumption. We however believe that every uniform, classical or quantum PPT adversary has a
subexponentially small advantage.

The first simulation-sound NIZKs. We obtain simulation-sound NIZKs without CRS using two different
approaches. We now describe the first one.

Challengeless one-way functions. The first NIZK makes use of challengeless one-way functions (COWFs): a
one-way function in which the challenge is deterministically generated by a uniform algorithm. The guarantee
is that no uniform PPT adversary can find a preimage of the challenge.

We actually need two COWFs that are independently hard : finding preimages for any of them remains
hard even when we are given a preimage for the other one. Uniform-DDH and uniform-LWE easily give a
pair of independently hard one-way functions: thanks to the subexponential security of the primitive, we can
make sure that, for classical adversaries, breaking uniform-DDH is strictly harder than uniform-LWE (this
is achieved by making an appropriate choice of the parameters of the assumptions). On the other hand, in
a post-quantum world, uniform-DDH is broken, while uniform-LWE retains its security. If breaking any of
the challengeless one-way functions allows an adversary to break the other one, one of these two facts would
be contradicted. This kind of trick was used before in [KK19,KNYY21,LPS17].

The first approach. The construction follows the blueprint of [BP04]. The proof consists of two commit-
ments c0 and c1 along with a signature and a CRS-less NIWI [BOV03,GOS06a,GOS06b]. The NIZKs prove
that either the statement lies in the language or one of the commitments hides a preimage for one of the
independently hard challengeless one-way functions COWF0 and COWF1. These preimages will be used as
trapdoors.

In order to achieve simulation-soundness, we need to ensure that the proof is non-malleable. We therefore
generate c0 and c1 using a non-interactive CCA commitment without CRS [KS17,LPS17,BL18b,KK19,GKLW21]:
each commitment is associated with a tag. The primitive guarantees that, given a commitment, no adversary
can derive a commitment to a correlated value under a different tag. In our NIZK, similarly to [GO07], the
tag will be a one-time signature verification key. Such key will be used to sign the proof. This ensures that, in
order to produce a NIZK for a false statement, the adversary cannot reuse the commitments in the simulated
proofs: it needs to at least change the tag (otherwise, it would need to forge a signature). The CCA security
of the commitments guarantees the hardness of this task. Therefore, if the adversary manages to prove a
false statement is because it discovered one of the trapdoors.

Why do we need two challengeless one-way functions? The reason is that we need to argue that the NIWIs
in the simulated proofs leak no information about the trapdoors. When the statement for a simulated proof

15

lies in the language, it is guaranteed that the NIWI does not leak the trapdoor. If that was not the case, by
witness indistinguishability, the trapdoor would have been leaked even if the NIWI was generated using the
witness for our statement. This contradicts the fact that the trapdoor is hard to compute. What instead if
the statement does not lie in the language? In this case, the NIWI does not allow us to tell which trapdoor
was used for its generation, however, it might leak some generic information about them, e.g. the minimal
trapdoor according to the lexicographical order.

Using two independently hard, challengeless one-way function, we avoid this problem: by the independent
hardness, if we use the COWF0 trapdoors for the simulated proofs, the NIWIs cannot leak any COWF1

trapdoor and vice-versa. By witness indistinguishability, we conclude that the NIWIs do not leak any of the
trapdoors.

Theorem 7 (Informal). Assuming subexponential independently secure COWFs, non-interactive CCA-
commitments without CRS, subexponential CRS-less NIWIs and strong one-time signatures, the CRS-less
NIZK sketched above is simulation-sound against uniform adversaries.

The second simulation-sound NIZK. We describe the second approach to build simulation-sound NIZKs
without CRS.

Labelled, challengeless one-way functions (LOWF). Our second simulation-sound NIZK makes instead use of
labelled, challengeless one-way functions CLOWF: on input any label id, a uniform algorithm deterministically
generates a one-way function challenge. The primitive guarantees that no uniform PPT adversary can invert
any challenge even given the preimages associated with some of the other labels. A heuristic instantiation
of this primitive can use a SHA hash function to generate the verification key for a deterministic signature
scheme. In this case, the preimage associated with a label id consists of a signature on id.

The second approach. Building simulation-sound NIZKs with the second approach is perhaps even easier:
each proof consists of a commitment c, a CRS-less NIWI, a signature and the relative verification key vk. The
NIWI is used to prove that either the statement belongs to the language or c hides a preimage for CLOWF
where the label is vk. Such preimage acts as a trapdoor.

We use a signature over the whole proof to ensure that, if the adversary manages to prove a false
statement, it uses a fresh verification key (otherwise, it would have succeeded in forging a signature). That
means that the adversary needs to find a preimage relative to a fresh label of CLOWF. The trapdoors used
in the simulated proof do not help in this task. We can therefore achieve simulation-soundness even with
malleable commitments.

Theorem 8 (Informal). Assuming subexponential LOWF, perfectly binding non-interactive commitments,
CRS-less NIWIs and strong one-time signatures, the CRS-less NIZK sketched above is simulation-sound
against uniform adversaries.

CRS-less simulation-extractable NIZK. In order to build simulation-extractable NIZKs, we introduce
CRS-less non-interactive extractable commitment schemes. Observe that the primitive can exist only if we
restrict to security against uniform adversaries. We build two schemes. The first one is based on uniform-
DDH, the second one on uniform-LWE. A commitment consists of an encryption of the value using the
public keys deterministically produced by either DDHGen or LWEGen. In the first case, we use ElGamal, in
the second case, we use dual-LWE. To extract the value, it is sufficient to perform a decryption (the extractor
will be a non-uniform algorithm). The operation is however infeasible for the adversary as the secret key is
hard to compute in uniform polynomial-time.

In order to obtain a simulation-extractable NIZK, we simply generate an extractable commitment c to
the witness for the statement we want to prove. We then use a simulation-sound NIZK to prove that c is
indeed what we claim it to be.

Theorem 9 (Informal). Assuming CRS-less simulation-sound NIZKs and subexponential CRS-less non-
interactive extractable commitments, the CRS-less NIZK sketched above is simulation-extractable against
uniform adversaries.

16

CRS-less almost everywhere extractable NIZK. We finally present a CRS-less almost everywhere
extractable NIZK with security against uniform adversaries. Differently from the construction described in
Section 2.2, this NIZK will use a single extraction trapdoor for every prover’s identity. On the other hand,
the scheme will remain almost everywhere extractable even if we provide oracle access to the zero-knowledge
simulator (we call the property simulation-almost everywhere extractability). This ensures that the obfuscated
programs P0 and P1 remain indistinguishable even if the proofs of the honest parties are simulated (we recall
that P0 is a program that verifies the NIZKs proving the well-formedness of its inputs, while P1 instead tries
to extract the witnesses from them).

Independently secure labelled one-way functions and extractable commitments. The construction makes use
of a labelled challengeless one-way function CLOWF and a non-interactive extractable commitment. The
two primitives need to be independently secure: they need to retain their security properties even when
we leak the other primitive’s trapdoor. We can for instance ensure this using the same trick we adopted
for simulation-sound NIZKs: we use a post-quantum extractable commitment (which can be obtained from
uniform-LWE) and a quantumly-broken labelled, challengeless one-way function (heuristically, we can obtain
it from any DLOG-based deterministic signature).

The reason why we need independently secure primitives is that almost everywhere extractability always
requires that the simulation trapdoor (i.e. the trapdoor for CLOWF) is hard to compute in uniform polynomial
time even if we leak the extraction trapdoor (i.e. the trapdoor for the extractable commitment). On the other
hand, in our construction, the proof of zero-knowledge would require the symmetric relation. Independent
security allows us to satisfy both conditions simultaneously.

The simulation-almost everywhere extractable NIZK without CRS. A proof consists of two commitments c0
and c1, where c1 is extractable, along with a CRS-less NIWI. The latter proves that either c1 hides a witness
for the statement we want to prove or c0 hides a preimage for CLOWF where the label is the identity of the
prover. In all the proofs where extraction fails, c0 will therefore satisfy this second condition.

We select CLOWF so that the preimage for any given label is unique. In this way, the number of prefixes of
problematic NIZKs for a given prover identity depends only on the size of the randomness of the commitment
scheme. Since CLOWF is subexponentially secure, we can ensure that finding the right CLOWF preimage is
infeasible even for poly

(
λ, |S|

)
-time adversaries (S denotes the set of problematic prefixes) that have enough

computational power to recover the value hidden in c0. Finding elements in S is therefore hard even for
poly

(
λ, |S|

)
-time algorithms. Learning simulated proofs under other provers’ indentities does not help the

adversary in the task.

Theorem 10 (Informal). Assume the existence of a subexponential injective LOWF and a CRS-less non-
interactive extractable commitment that are independently secure. Assume perfectly binding non-interactive
commitments and CRS-less NIWIs. Then, the CRS-less NIZK sketched above is simulation-almost everywhere
extractable against uniform adversaries.

3 Notation and Preliminaries

In this section, we formalise the notation and recall the known results about distributed samplers. We recall
other definitions and useful results in Appendix A

Basic notation. We denote the security parameter by λ. For any n ∈ N, we use [n] to denote the set
{1, 2, . . . , n}. For any binary string x and integer `, Trunc`(x) denotes the prefix of x consisting of its first `
bits. Moreover, for any integers `0 < `1, we use Trunc`1`0(x) to denote the substring of x consisting of the bits
from the `0-th position to the `1-th one. Given any NP relation R, we denote the corresponding language
by LR.

17

Algorithm execution. For any deterministic algorithm A and input x, we use the expression a ← A(x) to
assign the output of the algorithm A on input x to the variable a. When A is probabilistic, we instead use

a
$← A(x). Finally, if A is randomised, we use a ← A(x; r) to mean that a is assigned the output of A on

input x and randomness r. If x is variable, we use a← x to assign the value of x to a. If X is a set, instead,

we use a
$← X to mean that a is assigned a value sampled from X uniformly at random. If A and O are

algorithms, for any x and y, we use AO(y,·)(x) to denote the value output by A on input x while having
unbounded oracle access to O(y, ·). In other words, at any point in time, A can send values z to an oracle,
which replies with O(y, z). We use the term efficient distribution to denote a uniform PPT algorithm taking
only the security parameter as input.

Asymptotic behaviour. We use negl(λ) (resp. nonegl(λ)) to denote a generic negligible (resp. non-negligible)
function in the security parameter. Similarly, we use poly(X1, . . . , Xn) to denote a generic function that is
upper-bounded by a polynomial in the given variables X1, . . . , XN . Given two functions S0(λ) and S1(λ),
we say that S0(λ)� S1(λ) if S0(λ) is a poly

(
λ, S1(λ)

)
function but S1(λ) is not poly

(
λ, S0(λ)

)
.

Uniform vs non-uniform adversaries. We recall that a non-uniform algorithm consists of a randomised
Turing machine that, at the beginning of its execution, receives a polynomial-size advice string, whose value
depends only on the security parameter. A uniform algorithm is instead a randomised Turing machine that
receives no such advice string. Throughout the paper, we use AClass to denote either the class of uniform
algorithms or the class of non-uniform algorithms. Observe that the latter is strictly larger than the former.

Multiparty computation. In the paper, we deal with multiparty protocols. We always assume the existence
of authenticated point-to-point channels along with an authenticated broadcast medium. We often denote
the i-th party by Pi. We also assume that each party is associated with a unique identity id known to all the
other players. We work with static corruption and we denote the set of honest parties by H. We say that
a CRS is unstructured if it is computationally indistinguishable from a uniformly random string of a given
length.

Subexponential security. We say that a primitive is subexponentially secure if there exists e > 0 such that
the advantage of every adversary running in poly

(
2λ

e)
time in the relative security game is asymptotically

smaller than 2−λ
e

.

3.1 Distributed Samplers

Distributed samplers [ASY22] are a powerful primitive allowing n parties to securely generate a sample from a
fixed distribution D(1lλ) using a single round of interaction. A natural application of these constructions is the
distributed generation of (structured or unstructured) common reference strings in one round. In [ASY22],
the authors showed that distributed samplers can also be used to build public-key PCFs [OSY21,ASY22],
a primitive producing large amounts of correlated randomness with minimal communication and a single
round of interaction.

Known constructions. The notion of distributed sampler was introduced for the first time in [ASY22]. In their
work, Abram, Scholl and Yakoubov showed how to build distributed samplers for any efficiently samplable
distribution D(1lλ) using strong cryptographic primitives such as polynomially secure indistinguishability
obfuscation [BGI+01,GGH+13] and a weaker form of multi-key FHE called multiparty homomorphic en-
cryption (MHE) [AJJM20,MW16]. The authors achieved constructions in the plain model with security
against non-rushing semi-malicious adversaries7, statically corrupting up to n − 1 parties. In such setting,

7 Similarly to the semi-honest case, a semi-malicious adversary is forced to follow the protocol, but it can choose
the randomness tapes of the corrupted players as it prefers. Since the adversary is non-rushing, the choice of the
randomness must be taken at the beginning of the protocol, before the honest messages are delivered.

18

distributed samplers were defined as one-round protocols that implement the functionality that generates a
sample from the distribution D(1lλ) and outputs it to all the parties.

The authors focussed on active security too. They managed to upgrade their constructions to this setting,
unfortunately, at the price of relying on random oracles. Active distributed samplers were defined as one-
round protocols that implement the functionality FD (see Fig. 9) in the UC model. Such functionality
provides the adversary with a polynomial number of samples from D(1lλ) and lets it choose the one it likes
the most as the final output of the protocol. Although FD allows influence to the adversary, the functionality
is strong enough to generate CRSs for MPC protocols without compromising security.

The active distributed sampler functionality FD
Sample. On input Sample from the adversary, compute R

$← D(1lλ) and reply with R and a unique identifier
id. The adversary can query this procedure multiple times.
Output. On input îd from the adversary, the functionality retrieves the sample with identifier îd and outputs
it to all honest parties. If such sample is not defined, the functionality aborts.

Fig. 9. The functionality for active distributed samplers in [ASY22]

Known impossibilities. A recent work by Abram, Obremski and Scholl [AOS23] proved that, without random
oracle, it is impossible to build non-trivial active distributed samplers satisfying the definition of [ASY22].
Actually, the impossibility holds even if we try to achieve security against rushing, semi-malicious adversaries.

Abram, Obremski and Scholl started by showing that active distributed samplers always need common
reference strings. Then, they proved that such CRSs cannot be reused more than once, they cannot be
significantly shorter than the Yao entropy of the distribution HYao(D) (they can be at most O(log λ) bits
shorter) and they cannot be unstructured (unless D is obliviously samplable8). These results, which just
assume the existence of OWFs, suggest that, without random oracles, active distributed samplers cannot
improve upon the trivial construction in which we directly encode a sample from D(1lλ) in the CRS. In this
work, we present how to get around these impossibilities by weakening the security definition of distributed
sampler.

4 Almost Everywhere Extractable NIZKs

The main purpose of distributed sampler is to generate secure CRSs for multiparty computation protocols
using a single round of interaction. As we discussed in the introduction, distributed samplers can be inter-
esting if they rely on CRSs as long as the latter have nice properties such as reusability, short length and
unstructuredness.

The distributed sampler we present in this paper will make use of particular NIZKs that, if instantiated
with constructions from previous works, would compromise the reusability of the CRS. In this section, we
formalise the security properties we require from these primitives. Furthermore, we explain how to realise
our definitions obtaining short and unstructured CRSs that do not compromise reusability.

Performing extractions inside obfuscated programs. We describe the context in which we would
like to use our NIZKs. We start from a NIZK satisfying black-box straight-line extraction. We consider
an obfuscated program C0 that receives a NIZK proof π among its input, verifies it and, based on the
result, either outputs ⊥ (when the verification fails) or performs other operations. We would like to argue
that this obfuscated circuit is indistinguishable from another obfuscated circuit C1 that has an extraction

8 A distribution is obliviously samplable if given a sample R from D(1lλ), we can simulate the randomness that
produced R. In other words, we can securely generate samples but directly feeding public random coins into D(1lλ).

19

trapdoor hardcoded. When C1 receives π as input, it not only verifies the proof, but it also tries to extract
the corresponding witness. If any of the procedures fails, C1 outputs ⊥, otherwise, it performs the same
operations as C0.

Since it is hard for the adversary to come up with a proof that verifies but cannot be extracted, one could
hope to prove indistinguishability between C0 and C1 using obfuscation. Unfortunately, we cannot rely on iO
as, due to zero-knowledge, C0 and C1 will always have differing inputs. Specifically, we know that simulated
proofs exist, verify, but cannot be extracted, so they immediately lead to differing inputs.

The only way to avoid this problem is to rely on constructions in which the CRS only allows simulating
proofs for a fixed set of statements S having polynomial size p(λ). This idea was for instance used in [HIJ+17].
With this trick, we could augment the extraction trapdoor with a list of witnesses for the statements in S,
so the extraction from simulated proof will never fail. This solution, however, has the disadvantage of letting
the CRS grow with p(λ). That would make the CRS of our distributed sampler long and would hinder
reusability.

Differing-input obfuscation would solve our problems. We consider diO. This primitive guarantees the hard-
ness in distinguishing between the obfuscation of two circuits as long as differing inputs are hard to find.
Although the existence of general-purpose diO for circuits is often doubted [GGHW14,BSW16], we know
that, for some classes of circuits, indistinguishability obfuscators are also differing-input obfuscators. In par-
ticular, in [BCP14], Boyle, Chung and Pass proved that this is the case when the number of differing inputs
is polynomial. By relying on subexponential secure obfuscation, it is easy to generalise the result of [BCP14]
as follows.

Lemma 1 ([BCP14]). Let Samp be a probabilistic algorithm outputting two circuits C0, C1 with input
space {0, 1}m(λ), auxiliary information aux and a secret ρ. Let O be another probabilistic algorithm that on
input a pair (ρ, x) outputs a value y. Suppose the following

– there exist efficiently computable values `0(C0, C1, aux), `1(C0, C1, aux) and d(λ) (the latter potentially
superpolynomial) such that

Pr
[∣∣DI`0,`1C0,C1

∣∣ ≤ d(λ)
∣∣∣(C0, C1, aux, ρ)

$← Samp(1lλ)
]

= 1− negl(λ),

where DI`0,`1C0,C1
:=
{
Trunc`1`0(x)

∣∣C0(x) 6= C1(x)
}

.
– for every probabilistic adversary A ∈ AClass running in poly(λ, d(λ)) time,

Pr

[
y ∈ DI`0,`1C0,C1

∣∣∣∣∣(C0, C1, aux, ρ)
$← Samp(1lλ)

y
$← AO(ρ,·)(1lλ, 1ld(λ), C0, C1, aux)

]
= negl(λ).

Let iO be an indistinguishability obfuscator against which every PPT adversary has advantage at most
negl(λ)/d(λ). Then, for every PPT adversary A ∈ AClass we have∣∣∣∣∣∣∣∣Pr

AO(ρ,·)(1lλ, C0, C1, C̃, aux) = b

∣∣∣∣∣∣∣∣
b

$← {0, 1}

(C0, C1, aux, ρ)
$← Samp(1lλ)

C̃
$← iO(1lλ, Cb)

− 1

2

∣∣∣∣∣∣∣∣ = negl(λ).

Sketch of the proof. The proof follows the blueprint of [BCP14][Theorem 6.2], in which they convert a suc-
cessful PPT distinguisher A into a successful extractor for (prefixes of) differing inputs. The only differences
is that now, A has unbounded access to O(ρ, ·) and we are looking for substrings of differing-inputs so the
binary search will involve only the bits of the inputs in between position `0(C0, C1, aux) and `1(C0, C1, aux).
Furthermore, the parameter d(λ) is potentially superpolynomial.

Observe that the extractor of [BCP14][Lemma 6.3] is uniform if A is uniform. Notice indeed that the
extractor does not need to know the advantage ε(λ) of A 9, but only the polynomial p(λ) such that, for every
λ′ ∈ N, there exists λ′′ ≥ λ′ such that ε(λ′′) ≥ 1/p(λ′′). Moreover, it runs in time is at most d3(λ) · poly(λ).
Finally, it still outputs a prefix of differing-input with non-negligible probability. ut
9 This could be impossible when the extractor is uniform

20

Our goal will be to build particular NIZKs that will allow us to apply the above lemma. More in detail,
we want that the prefix of all proofs that verify but cannot be extracted lies in a set VPFE whose elements are
hard to compute even for adversaries running in time d(λ) := |VPFE|. If we succeed in doing this, assuming the
subexponential hardness of iO, we can argue that the obfuscation of C0 and C1 are indistinguishable despite
the existence of differing inputs. We call the NIZK satisfying this particular property almost everywhere
extractable NIZKs.

Almost everywhere extractable NIZKs. In this section, we formalise the properties of the NIZK needed
by our distributed samplers. We recall here the definition of identity-based NIZK [KOR05]. Informally, this
is a primitive in which both the proving and the verification algorithms are augmented with an input id
denoting an identity. Completeness is guaranteed only if the algorithms use the same id.

Definition 1 (Identity-based NIZK). Let R be an NP relation. An identity-based NIZK for R is a triple
of uniform PPT algorithms (Setup,Prove,Verify) with the following syntax

– Setup is randomised and takes as input the security parameter and outputs a CRS σ.
– Prove is randomised and takes as input the security parameter, the CRS σ, an identity id, a statement x

and the corresponding witness w. The output is a proof π.
– Verify is deterministic and takes as input the CRS σ, an identity id, a proof π and a statement x. The

output is a bit b representing whether the statement was accepted or not.

We require that the construction satisfies completeness, namely that there exists a negligible function negl(λ)
such that, for every (x,w) ∈ R and identity id,

Pr

[
Verify(σ, id, π, x) = 1

∣∣∣∣∣σ
$← Setup(1lλ)

π
$← Prove(1lλ, σ, id, x, w)

]
≥ 1− negl(λ).

Why do we need identity-based NIZKs? Almost everywhere extractable NIZKs will be identity-based. We
recall that our goal is to design NIZKs for which it is difficult to distinguish an obfuscated program that
simply verifies the provided proofs and one that instead tries to extract the witnesses. Now, in the security
proofs of many applications, e.g. our distributed samplers, the adversary will be given many simulated proofs.
In general, these are proofs where extraction fails although the verification succeeds! If we feed any of these
proofs to the obfuscated programs, we can trivially discover if the circuit tries to extract the witness or not
(in the first case, the output will always be ⊥).

Identity-based NIZKs allow us to find a way around the problem: we modify the programs so that they will
only accept proofs that verify with respect to specific hardcoded identities. If the identities of the simulated
proofs differ from the hardcoded ones, the behaviour of the program on input these simulated proofs will be
independent of whether extraction if performed or not. In order words, we are using identities to restrict the
scope of the proofs.

Alternative approaches. There are two ways we can proceed towards our goal. The first one is to achieve a
stronger form of simulation-extractability: forging a valid proof where extraction fails must be hard even if
we provide simulated proofs for different identities. Although we use this approach in Section 10 to build
almost everywhere extractable NIZKs with security against uniform adversaries, in this section, we adopt a
different solution: we strengthen the notion of zero-knowledge. In particular, the extraction will take place
in two steps: first, from the general extraction trapdoor and the identity associated with the proof, we derive
an identity-specific trapdoor. Then, we use the latter to extract the witness. We require that zero-knowledge
holds even if we leak identity-specific extraction trapdoors where the underlying identities differ from those
of the simulated proofs. The obfuscated programs will contain only extraction trapdoors associated with
their hardcoded identities.

The two approaches lead to different proving strategies. If we rely on simulation-extractability, the security
proof of our application will first consider the hybrid in which the NIZKs of the honest parties are simulated

21

and then we switch to obfuscated programs that try to extract witnesses. If we strengthen zero-knowledge,
we will do the opposite: first, we switch to programs that extract the witnesses and then we simulate the
proofs of the honest players. The results are equivalent.

In this section, we decided to follow the second approach as it allows us to achieve our goal under weaker
assumptions. Following the blueprint in Section 10, it would also have been possible to adopt the first
approach, however, that would require assuming the existence of B(λ)-bounded labelled one-way functions
(that do not need to be challengeless) that are secure against adversaries running in poly

(
2λ

e

, B(λ)
)

for some
e > 0.

Defining almost-everywhere extractability. We proceed by formalising the definition of almost everywhere
extractable NIZK. The construction relies on two trapdoors τs and τe, the first one will be used to simulate
the proofs, the second one will be used to extract the witnesses. The extraction is divided into two procedures:
given a proof π with underlying identity id, we first derive the extraction trapdoor associated with id using

τ ide
$← Trap(τe, id). Next, we extract the witness from π using τ ide . It is straightforward to see that an almost

everywhere extractable NIZK is also a non-interactive argument of knowledge.

Definition 2 (Almost everywhere extractable NIZK). An identity-based NIZK for the NP relation
R is almost everywhere extractable if there exists a uniform PPT algorithms SimSetup, Trap and Extract
with the following properties

– No PPT adversary can distinguish between{
σ
∣∣∣σ $← Setup(1lλ)

} {
σ
∣∣∣(σ, τs, τe) $← SimSetup(1lλ)

}
– The algorithm Extract is deterministic and, for every w = Extract(τ ide , π, x),

Pr
[
(x,w) ∈ R

∣∣∣w 6= ⊥] = 1.

– There exist values `(λ) ∈ [m] and d(λ) (the latter potentially superpolynomial) and a negligible function
negl(λ) such that, for every identity id,

Pr
[∣∣VPFEσ,τe,id∣∣ ≤ d(λ)

∣∣∣(σ, τs, τe) $← NIZK.SimSetup(1lλ)
]
≥ 1− negl(λ),

where

VPFEσ,τe id :=

Trunc`(π)

∣∣∣∣∣∣∣∃(x, r) s.t.

NIZK.Verify(σ, id, π, x) = 1

NIZK.Trap(τe, id; r) = τ ide

NIZK.Extract(τ ide , π, x) = ⊥


– For every probabilistic adversary A running in poly(λ, d(λ)) time, there exits a negligible function negl(λ)

such that, for every identity id

Pr

[
y ∈ VPFEσ,τe,id

∣∣∣∣∣(σ, τs, τe)
$← NIZK.SimSetup(1lλ)

y
$← A(1lλ, 1ld(λ), σ, τe)

]
≤ negl(λ).

We prove below that, if we use almost everywhere extractable NIZKs and we rely on a subexponentially
secure iO scheme, the obfuscation of the programs C0 and C1 are indistinguishable.

Lemma 2. Let NIZK be an almost everywhere extractable NIZK for the relation R. Let d(λ) be the upper-
bound on

∣∣VPFEσ,τe,id∣∣. Suppose that iO is an indistinguishability obfuscator against which every PPT ad-
versary has advantage at most negl(λ)/d(λ). Then, no PPT adversary A = (A1,A2) can win the game in
Fig. 10 with non-negligible advantage.

22

diO Game for Almost Everywhere Extractable NIZKs

1. b
$← {0, 1}

2. (σ, τs, τe)
$← SimSetup(1lλ)

3.
(
C, (idj)j∈[m], ψ

) $← A1(1lλ, σ, τe)

4. ∀j ∈ [m] : τ je
$← Trap(τe, idj)

5. C̃0
$← iO(1lλ, C0[σ, (idj)j∈[m]]) (see Fig. 11)

6. C̃1
$← iO(1lλ, C1[σ, (idj)j∈[m], (τ

j
e)j∈[m]]) (see Fig. 12)

7. The adversary wins if A2(ψ, C̃b) = b.

Fig. 10. diO game for almost everywhere extractable NIZKs

C0

[
σ, (idj)j∈[m]

]
Hard-coded. The NIZK CRS σ, the m identities (idj)j∈[m].
Input. A set of inputs (xj)j∈[m] and a set of proofs (πj)j∈[m].

1. ∀j ∈ [m] : bj ← NIZK.Verify(σ, idj , πj , xj)
2. If ∃j ∈ [m] such that bj = 0, output ⊥
3. Output C(x1, . . . , xm)

Fig. 11. The circuit C0

Proof. Let A be a PPT adversary. We proceed by means of m+ 1 subhybrids indexed by i = 0, 1, . . . ,m. In
the i-th of these hybrids, we provide A with an obfuscation of the program C ′i (see Fig. 13).

Observe that by the security of iO, when i = 0, Hybrid i is indistinguishable from the game in Fig. 10
when b = 0. Similarly, by the security of iO, when i = m, Hybrid i is indistinguishable from from the game
in Fig. 10 when b = 1. It remains to prove that A cannot distinguish between Hybrid i− 1 and Hybrid i for
any i ∈ [m]. We rely on Lemma 1.

We consider the circuit sampler Sampi that runs SimSetup, provides σ and τe toA1, obtains C, (idj)j∈[m], ψ,
compute τ je for every j ∈ [m] and outputs C ′i−1, C ′i, aux := ψ and ρ := ⊥. Let O be an algorithm that always
returns the empty string. We want to argue that even when aux is revealed, no PPT adversary can distinguish
between the obfuscation of C ′i−1 and C ′i.

Let `(λ) and d(λ) be the values used in the third and fourth property of our almost everywhere extractable
NIZK. Let `0(λ) denote the position of the first bit of πi. Define `1(λ) := `0(λ) + `(λ).

The circuits C ′i−1 and C ′i potentially have differing inputs. Observe that these must be values (xj , πj)j∈[m]

for which Verify(σ, idi, πi, xi) = 1 but Extract(τ ie, πi, xi) = ⊥. In other words, we know that for every differing
input,

DI`0,`1C′i−1,C
′
i
⊆ VPFEσ,τe,idi .

With overwhelming probability over the randomness of SimSetup, the latter has at most d(λ) elements.

Now, suppose that there exists an adversary B running in time poly
(
λ, d(λ)

)
that can find an element in

DI`0,`1C′i−1,C
′
i

with non-negligible probability given C ′i−1, C ′i and aux = ψ. We build an adversary B′ that breaks

the fourth property of the almost everywhere extractable NIZK.

The adversary B′ runs an internal copy of A1 and one of B. It starts by providing the NIZK CRS σ and
the trapdoor τe it received from its challenger to A1 obtaining C and (idj)j∈[m]. Then, for every j ∈ [m],

B′ computes τ je
$← Trap(τe, idj). Finally, it provides B with C ′i−1, C ′i and aux := ψ and outputs whatever B

23

C1

[
σ, (idj)j∈[m], (τ

j
e)j∈[m]

]
Hard-coded. The NIZK CRS σ, the m identities (idj)j∈[m], the m extraction trapdoors (τ je)j∈[m].
Input. A set of inputs (xj)j∈[m] and a set of proofs (πj)j∈[m].

1. ∀j ∈ [m] : bj ← NIZK.Verify(σ, idj , πj , xj)
2. ∀j ∈ [m] : wj ← NIZK.Extract(τ je , πj , xj)
3. If ∃j ∈ [m] such that bj = 0 or wj = ⊥, output ⊥
4. Output C(x1, . . . , xm)

Fig. 12. The circuit C1

C′i
[
i, σ, (idj)j∈[m], (τ

j
e)j≤i

]
Hard-coded. The hybrid index i, the NIZK CRS σ where (σ, τs, τe)

$← SimSetup(1lλ), the m identities

(idj)j∈[m], the i extraction trapdoors (τ je)j≤i where τ je
$← Trap(τe, idj) for every j ≤ i.

Input. A set of inputs (xj)j∈[m] and a set of proofs (πj)j∈[m].

1. ∀j ≤ i : wj ← NIZK.Extract(τ je , πj , xj)
2. If ∃j ≤ i such that wj = ⊥, output ⊥
3. ∀j ∈ [m] : bj ← NIZK.Verify(σ, idj , πj , xj)
4. If ∃j ∈ [m] such that bj = 0, output ⊥
5. Output C(x1, . . . , xm)

Fig. 13. The circuit C′i

outputs. We observe that B′ outputs an element in DI`0,`1C′i−1,C
′
i

with non-negligible probability. Furthermore,

it runs in poly
(
λ, d(λ)

)
time.

We conclude that A2 cannot distinguish between the obfuscation of C ′i−1 and C ′i even if it is given ψ.
This ends the proof. ut

Chosen-ID multi-theorem zero-knowledge. We now focus on formalising a particular zero-knowledge
notion for almost everywhere extractable NIZKs. We call the property chosen-ID zero-knowledge. Informally,
it says that, as long as τ ide remains secret, it is impossible to distinguish between a real proof under the identity
id and a simulated one produced using the trapdoor τs.

This is formalised by giving the adversary access to an oracle that either generates real proofs using
witnesses or simulates them using τs. We also give access to a second oracle that, on input any identity id,
reveals the extraction trapdoor τ ide . The adversary is allowed to perform multiple adaptive queries to both
the oracles with the only restriction that, if an identity is queried to the first oracle, it cannot be queried to
the second one and vice-versa. Even with this kind of help, the adversary should not be able to tell if it is
given real proofs or fake ones.

Definition 3 (Chosen-ID Zero-knowledge NIZK). An almost everywhere extractable NIZK (Setup,
Prove,Verify) for R is chosen-ID zero-knowledge if there exists a uniform PPT algorithm SimProve such that
no PPT adversary A can win the game in Fig. 14 with non-negligible advantage.

4.1 Building almost everywhere extractable NIZKs

We explain how to build a chosen-ID zero-knowledge, almost everywhere extractable NIZK with security
against non-uniform adversaries.

24

Chosen-ID Zero-Knowledge Game
Initialisation: This procedure is run only once, at the beginning of the game.

1. b
$← {0, 1}

2. Q0, Q1 ← ∅
3. (σ, τs, τe)

$← SimSetup(1lλ)
4. Activate the adversary with 1lλ and σ.

Trapdoor: This procedure can be queried multiple times and at any point of the game. Upon receiving any
query (Trap, id) where id 6∈ Q1, compute the following.

1. Add id to Q0

2. τ ide
$← Trap(τe, id)

3. Give τ ide to the adversary.

Prove: This procedure can be queried multiple times and at any point of the game. Upon receiving any query
(Prove, id, x, w) where id 6∈ Q0 and (x,w) ∈ R, compute the following.

1. Add id to Q1

2. π0 $← Prove(1lλ, σ, id, x, w)

3. π1 $← SimProve(τs, id, x)
4. Give πb to the adversary.

Win: The adversary wins if it guesses b.

Fig. 14. Chosen-ID zero-knowledge game

Our construction relies on an identity based encryption scheme, a non-interactive commitment scheme,
a subexponentially secure injective one-way function and a NIWI proof. The CRS will consist of the IBE
master public key and a challenge v for a one-way function. It is possible to instantiate the primitives so
that the CRS is short (i.e. the length depends only on the security parameter) and unstructured.

Let R be the NP relation we are targetting, suppose that we want to prove that x ∈ LR using the identity
id. The proof is obtained by encrypting the witness w under the identity id using the IBE scheme. We also
commit to 0. Then, we generate a NIWI proving that either the ciphertext is an encryption of w under id,
or we committed to the preimage of v. The NIZK proof consists of the concatenation of the commitment,
the ciphertext and the NIWI. The verification is a simple check of the latter.

Observe that it is easy to extract the witness by decrypting the ciphertext. Of course, the operation
requires knowing the private key associated with the identity id. The latter can be derived from the master
secret key of the IBE scheme. Even simulating proofs is rather easy: it is sufficient to encrypt 0, commit to
a preimage of v and use the latter as witness for the NIWI. To summarise, the extraction trapdoor will be
the master secret key, the soundness trapdoor will be the preimage of v.

Ensuring almost-everywhere extractability. Our idea is that, in all proofs where the witness cannot be
extracted, the commitment will hide a preimage of v. In order to ensure this, we will rely on a perfectly
correct IBE scheme (if the ciphertext hides the witness, we always succeed in extracting it) and a perfectly
sound NIWI (if the ciphertext does not hide a witness, the commitment must hide a preimage of v). Since
the one-way function is injective, there will be at most 2q(λ) ways of committing to a preimage of v. Here,
q(λ) denotes the length of the randomness used by the commitment10.

Now, suppose that the commitment is perfectly binding and it is possible to break hiding in poly
(
λ, 2q(λ)

)
time. By choosing a sufficiently large security parameter for the one-way function, we can make sure that

10 We can assume that q(λ) is independent of the length of the committed value. Consider for instance a scheme in
which we commit the message bit by bit and all the randomness comes from a PRF.

25

finding the preimage of v is hard even for adversaries running in poly
(
λ, 2q(λ)

)
time. That ensures the last

property of almost everywhere extractable NIZKs.

Proving chosen-ID zero-knowledge is instead rather easy. We just rely on witness-indistinguishability, the
hiding properties of the commitment and the IND-ID-CPA security of IBE. Notice that a message encrypted
under the identity id remains secret as long as the secret-key for id is kept private. Leaking private keys for
other identities does not help in retrieving the plaintext.

Formalising the construction. Let R the NP relation for our almost everywhere extractable NIZK. Consider
an IND-ID-CPA identity-based encryption scheme IBE where the master public key mpk is computation-
ally indistinguishable from a uniformly random string. We also require that the scheme satisfies perfect
correctness. For instance, we can use the constructions of [BB04,ABB10].

Let Com be a computationally hiding, perfectly binding non-interactive commitment scheme without
CRS. Suppose that there exists an algorithm running in superpolynomial time that breaks hiding with
probability 1. Finally, let OWF be a subexponentially secure injective one-way function. Furthermore, assume
that the one-way function outputs values that are computationally indistinguishable from a uniformly random
string. This kind of one-way function can be instantiated e.g. using DLOG.

Finally, we rely on a NIWI scheme without CRS. The underlying relation is the following.

RNIWI :=


(
(mpk, v, id, c0, c1, x),

(w, r)
)

∣∣∣∣∣∣∣
c1 = Enc(mpk, id, w; r), (x,w) ∈ R

OR

w = u, c0 = Com(u; r), OWF(1lλ, u) = v


Our construction is formalised in Fig. 15 and Fig. 16.

Chosen-ID Zero-Knowledge, Almost Everywhere Extractable NIZK - Part 1
Let q1(λ) denote the length of the randomness needed by IBE.Enc.
Setup(1lλ)

1. (mpk,msk)
$← IBE.Setup(1lλ)

2. (v, u)
$← OWF.Gen(1lλ)

3. Output σ := (mpk, v)

Prove
(
1lλ, σ = (mpk, v), id, x, w

)
1. c0

$← Com(1lλ, 0)

2. r
$← {0, 1}q1(λ)

3. c1 ← IBE.Enc(mpk, id, w; r)

4. π′
$← NIWI.Prove

(
1lλ, (mpk, v, id, c0, c1, x), (w, r)

)
5. Output π := (c0, c1, π

′)

Verify
(
σ = (mpk, v), id, π = (c0, c1, π

′), x
)

1. Output NIWI.Verify
(
π′, (mpk, v, id, c0, c1, x)

)
Fig. 15. A chosen-ID zero-knowledge, almost everywhere extractable NIZK - Part 1

Theorem 11. Suppose that Com is a computationally hiding, perfectly binding non-interactive commitment.
Assume that the algorithm needs q2(λ) bits of randomness. Suppose that there exists an algorithm running
in poly

(
λ, S(λ)

)
time that breaks the hiding property of Com with probability 1.

26

Chosen-ID Zero-Knowledge, Almost Everywhere Extractable NIZK - Part 2
Let q2(λ) denote the length of the randomness needed by Com.
SimSetup(1lλ)

1. (mpk,msk)
$← IBE.Setup(1lλ)

2. (v, u)
$← OWF.Gen(1lλ)

3. Output σ := (mpk, v), τs := u, τe := msk

SimProve(τs = u, id, x)

1. r
$← {0, 1}q2(λ)

2. c0 ← Com(1lλ, u; r)

3. c1
$← IBE.Enc(mpk, id, 0)

4. π′
$← NIWI.Prove

(
1lλ, (mpk, v, id, c0, c1, x), (u, r)

)
5. Output π := (c0, c1, π

′)

Trap(τe = msk, id)

1. Output IBE.Extract(msk, id)

Extract(τ ide , π = (c0, c1, π
′), x)

1. w ← IBE.Dec(τ ide , c1)
2. If (x,w) ∈ R, output w, otherwise, output ⊥.

Fig. 16. A chosen-ID zero-knowledge, almost everywhere extractable NIZK - Part 2

Let IBE be an IND-ID-CPA identity-based encryption scheme that satisfies perfect correctness. Let OWF
be an injective one-way function that is hard to invert even for adversaries running in poly(λ, 2q2(λ), S(λ)

)
time. Suppose that NIWI is a perfectly sound witness-indistinguishable proof system for the relation RNIWI.

Then, the construction in Fig. 15 and Fig. 16 is a chosen-ID zero-knowledge almost everywhere extractable
NIZK for R against non-uniform PPT adversaries.

We prove Theorem 11 in Appendix B.

5 Weakening Distributed Samplers to Avoid Random Oracles

In this section, we reformulate the concept of distributed sampler under a new light. Although we weaken the
simulation-based definition of [ASY22], we obtain a meaningful notion of security against active adversaries.
This allows us to build constructions that overcome the impossibilities of [AOS23] without using random
oracles.

Syntax of Distributed Samplers. We start by recalling the syntax of distributed samplers [ASY22].

Definition 4 (Distributed Sampler). An n-party distributed sampler is a triple of uniform, PPT algo-
rithms (Setup,Gen,Sample) with the following syntax:

– Setup is a probabilistic algorithm taking as input the security parameter. The output is a string crs.
– Gen is a probabilistic algorithm taking as input the security parameter, a session identity sid, the index
i ∈ [n] of the party running the algorithm and the string crs. The output is the distributed sampler
message Ui of the i-th party.

– Sample is a deterministic algorithm taking as input n distributed sampler messages U1, U2, . . . , Un, a
session identity sid and the string crs. The output is a sample R.

27

Observe that distributed samplers are implicitly associated with a one-round protocol with CRS (the latter is
generated using Setup(1lλ)) producing a sample from a target distribution D. In such protocol, all the parties

Pi simultaneously broadcast a distributed sampler message Ui
$← Gen(1lλ, sid, i, crs). After that, everybody

retrieves the output R← Sample(U1, U2, . . . , Un, sid, crs).
Notice that, compared to [ASY22], we augmented the generation and sampling algorithms with a session

identity. The latter can be used to restrict the context in which the distributed sampler messages can be used.
For instance, it can identify the identities of the parties taking part to the protocol. If the session identity
of any of the exchanged messages does not match the expected set of parties, the sampling algorithm will
produce ⊥.

5.1 Hardness-Preserving Distributed Samplers.

We now present the first weakening of the original definition. The notion is called hardness-preserving dis-
tributed sampler. The name refers to the fact that this kind of distributed sampler allows compiling protocols
with CRS Π into protocols without CRS Π ′ while preserving the hardness properties: if the probability of
realising an attack against Π is negligible, the probability of realising the same attack against Π ′ still remains
negligible.

An unusual definition of security. Our definition is based on a real-world/ideal-world paradigm where sim-
ulation is non-black-box. In the real world, the adversary is provided with a distributed sampler CRS and
the message of a honest party. After selecting the distributed sampler messages of the other parties, the ad-
versary is provided with the output of the protocol (notice that the adversary was already able to compute
this on its own). In the ideal world, instead, the CRS and the message of the honest party are produced by a

simulator. The latter is given an ideal sample R
$← D(1lλ). When the adversary answers with the distributed

sampler messages of the other players, we do not compute the output of the protocol, we just provide the
adversary with R.

The important point is that we do not ask for indistinguishability between the real-world and the ideal
world. That would indeed be impossible to achieve. We ask instead that if an adversary A outputs 1 with non-
negligible probability while interacting with the real world, then, A outputs 1 with non-negligible probability
even while interacting with the ideal world.

Definition 5 (Hardness-Preserving Distributed Sampler). Let D(1lλ) be an efficient distribution.
We say that an n-party distributed sampler is hardness-preserving for D(1lλ) against AClass if, for every
PPT A ∈ AClass, there exists a pair of PPT non-uniform simulators (SimSetupA,SimGenA) such that, in
the game GHP in Fig. 17,

Pr
[
GAHP(1lλ) = 1

∣∣∣b = 0
]

= nonegl(λ) =⇒ Pr
[
GAHP(1lλ) = 1

∣∣∣b = 1
]

= nonegl(λ).

Preservation of hardness. We now explain in what sense distributed samplers satisfying Def. 5 preserve
hardness.

We start by formalising the concept of game with oracle distribution. This basically corresponds to a
game describing the interaction between n parties connected by authenticated point-to-point channels and
a broadcast medium. The adversary has full control over the corrupted players, whereas the operations of
the honest parties is managed by the challenger of the game. The novelty compared to the a standard game
is that, at some point in time, the parties are all provided with the same ideal sample R from a distribution
D(1lλ). The moment in which the sample is delivered is chosen by the parties themselves: by sending a
special message (Sample, i), the i-th party declares its approval on delivering R. When all the honest parties
expressed their agreement, the sample R is provided to the adversary. When all the corrupted parties agree
too, the sample R is given to the challenger too. The adversary wins the game if the challenger terminates its
execution outputting 1. For instance, this can mean that the adversary succeeded in performing an attack.
We define the advantage as the probability of this event.

28

The Hardness-Preserving Game GHP

Each phase is run only once.
Initialisation Phase:

1. b
$← {0, 1}

2. R(1) $← D(1lλ)

3. crs(0)
$← Setup(1lλ)

4. (crs(1), ζ)
$← SimSetupA(1lλ)

5. Activate A with 1lλ and crs(b).

Generation Phase:

1. Receive i ∈ [n] and a session identity sid = (tag, idj1 , . . . , idjn) from A
2. U (0) $← Gen(1lλ, sid, i, crs(0))

3. U (1) $← SimGenA(1lλ, sid, i, ζ, R(1))
4. Ui ← U (b)

5. Provide Ui to A

Sampling Phase

1. Receive (Uj)j 6=i from A
2. R(0) ← Sample(U1, . . . , Un, crs

(0))
3. If R(0) = ⊥, output 0.
4. Otherwise, provide R := R(b) to A
5. The output of the game is the bit output by A.

Fig. 17. The hardness-preserving game GHP

Definition 6 (Game with oracle distribution). An n-party game with oracle distribution is a triple
G := (D,Ch) where

1. D(1lλ) is an efficient distribution: a uniform, PPT algorithm taking only the security parameter as input.
2. Ch is an efficient challenger: a uniform, PPT, round-based, interactive Turing machine that, for every

i ∈ [n], sends the message (Sample, i) at most once in its execution.

Let A be a round-based interactive Turing machine. We define GA(1lλ) to be the output of the game in Fig. 18.
For every adversary A, we define the advantage of A in the game G as

AdvGA(λ) := Pr
[
GA(1lλ) = 1

]
.

We say that A wins with non-negligible advantage if AdvGA(λ) is non-negligible in the security parameter.

Notice that at the beginning of the game in Def. 6, the adversary is allowed to choose the set of honest
parties H and an auxiliary input aux for Ch. In other words, our definition considers only static corruption
in the dishonest majority setting.

On the expressiveness of the model. Protocols relying on CRSs can be formulated as games with oracle
distribution. In such settings, D(1lλ) represents the distribution from which the CRS is generated. Since the
CRS should be given before the beginning of the protocol, in the corresponding game with oracle distribution,
the challenger immediately starts by sending (Sample, i) for every i ∈ H. It then waits for analogous messages
from the corrupted players, ignoring all other communication. After that, the challenger runs the protocol
with the adversary on behalf of the honest parties.

More in general, games with oracle distributions can be used to analyse the security of protocols that
rely on a sampling resource: a functionality that, upon receiving the approval of all players, delivers an ideal

29

Game with Oracle Distribution

1. Activate the adversary A with 1lλ.
2. Receive aux, H ⊆ [n] from A.

3. R
$← D(1lλ)

4. Activate a copy of Ch with 1lλ, H and aux.
5. Relay all the messages from Ch to A.
6. Relay all the messages from A to Ch.
7. After the challenger has sent (Sample, j) for every j ∈ H, provide A with R.
8. Only when the above occurred, after A has sent (Sample, j) for every j 6∈ H, provide R to Ch.
9. Keep relaying the messages between A and Ch as before.

10. The output of the game is the value output by Ch before halting.

Fig. 18. Game with oracle distribution

sample from a fixed distribution D(1lλ). The sample is leaked to the adversary in advance, at the moment
in which all the honest players send their approval.

Compiling games with oracle distributions using distributed samplers. Using a distributed sampler for D,
there is a natural way to compile a game with oracle distribution G = (D,Ch) into a standard interactive
game. The delivery of a special message (Sample, i) in G will correspond to the delivery of a distributed
sampler message Ui from party Pi. The sample R used by the challenger Ch will be the output of the
distributed sampler. If the output is R = ⊥, the challenger always halts outputting 0.

Observe that, as in the game with oracle distribution, the adversary can learn the sample R as soon as
all the honest parties deliver their distributed sampler messages. Indeed, the adversary may have already
chosen the distributed sampler messages of the corrupted players without revealing them. The honest players
(i.e. the challenger) will discover R only when the adversary decides to deliver these messages.

Notice that in the case of a protocol with CRSΠ, the compiled game consists of the sequential composition
of a distributed sampler with Π, where the former is used to generate the CRS for the latter.

Multi-session security. Distributed samplers sometimes make use of a CRS. We would like the latter to
be reusable among multiple sessions involving different subsets of parties. Since all these executions are
correlated by the use of the same CRS, the security analysis of the compiled game cannot restrict to single
sessions. For this reason, upon activation, we provide the adversary with the distributed sampler CRS and
we let it choose the identities of a large number m > n of players that will constitute our universe. At the
same time, it also selects the set of honest players H. At that point, the adversary is free to engage in many,
possibly simultaneous sessions of the compiled game, all using the same distributed sampler CRS. Each
session takes place between n parties chosen by the adversary. The session is uniquely identified by a session
label sid consisting of the identities of the n parties and an additional label tag that acts like a counter.
Thanks to the latter, it will be possible to have multiple sessions among the same subset of parties. For each
session, the adversary is also allowed to choose a different auxiliary input aux. We define the advantage of
the adversary as the probability that, in one of the sessions, the challenger outputs 1.

Definition 7 (Compiled game). Let G = (D,Ch) be an n-party game with oracle distribution and let
DS = (Setup,Gen,Sample) be an n-party distributed sampler. We define the compiled game G′ in Fig. 19.
For any PPT adversary A, we denote the output of the game by G′A(1lλ). We denote the value output by A
before halting by AG′(1lλ).

We define the advantage of A in the game G′ as

AdvG
′

A (λ) := Pr
[
G′A(1lλ) = 1

]
.

We say that A wins with non-negligible advantage if AdvG
′

A (λ) is non-negligible in the security parameter.

30

Compiled Game with Oracle Distribution
Initialisation: This procedure is run only once, at the beginning of the game.

1. crs
$← DS.Setup(1lλ)

2. Activate the adversary A with 1lλ and crs.
3. Receive a list of identities of the parties ID := {id1, . . . , idm} from A along with the subset of honest players

H ⊆ [m].

Session: This procedure can be queried multiple times and at any point of the game. Upon receiving any query
(NewSession, tag, idj1 , . . . , idjn , aux) where the session identity sid := (tag, idj1 , . . . , idjn) has not been queried
before, idji ∈ ID for every i ∈ [n], idjl 6= idjk for every l 6= k and aux, perform the following.

1. Store sid
2. ∀i ∈ [n] such that ji ∈ H : Ui

$← DS.Gen(1lλ, sid, i, crs)
3. Activate a new copy of Ch with 1lλ, H ′ := {i ∈ [n]|ji ∈ H} and aux.
4. Relay all the messages from Ch to A appending sid to them.
5. Relay all the messages from A with prefix sid to Ch (the prefix is removed).
6. When Ch sends (Sample, i) for any i ∈ H ′, provide A with (sid, Sample, idji , Ui).
7. When A sends (sid,Sample, idji , Ui) for any i 6∈ H ′, give (Sample, i) to Ch.
8. When all the messages (sid, Sample, idji , Ui)i∈[n] have been exchanged, provide Ch with R ←

DS.Sample(U1, . . . , Un, sid, crs).
9. Keep relaying the messages between Ch and A as before.

10. The output of the session is the value output by Ch before halting. If R = ⊥, the output of the session is 0.

Output: In the game, multiple sessions are run in parallel. The output of the game is 1 if there exists a session
that terminates with 1.

Fig. 19. Compiled game with oracle distribution

In the next theorem, we show that if the distributed sampler is hardness-preserving, hard-to-win games
with oracle distribution are compiled into standard games that are still hard to win. In other words, if we
have a protocol with CRS Π for which all PPT adversaries fail in performing an attack, the attack remains
hard to perform even against the compiled protocol Π ′.

Theorem 12. Let G := (D,Ch) be an n-party game with oracle distribution such that every PPT adversary
A has negligible advantage against G. Let DS = (Setup,Gen,Sample) be an n-party distributed sampler. If

DS is hardness-preserving for D against AClass, there exists no PPT A′ ∈ AClass such that AdvG
′

A′(λ) is
non-negligible.

The idea at the base of the proof is rather simple. Suppose that an adversary A′ can win against the
compiled game with non-negligible advantage. That means that, if we pick a session at random, the session
output is 1 with non-negligible probability. Now, we build an the adversary B against the hardness-preserving
property of the distributed sampler. The latter picks a random session ι of the compiled game and simulates it
to A′ using the values provided by its challenger. In particular, B is given the CRS crs, the honest distributed
sampler message that is sent for last and the distributed sampler output. The adversary B halts outputting
the outcome of the ι-th session.

In the real-world execution of the distributed sampler, B outputs 1 with non-negligible probability, so,
by the hardness-preserving properties, the same must happen in the ideal-world execution. In the latter,
however, in B’s simulation of the ι-th session, the challenger is given an ideal sample from D(1lλ) instead of
the actual distributed sampler output. From this, we can easily build a PPT adversary A that wins against
G with non-negligible advantage.

Proof. Suppose that our game is false and there exists a PPT adversary A′ ∈ AClass such that AdvG
′

A′(λ) is
non-negligible. Let M(λ) be a polynomial upper-bounding the number of NewSession queries issued by A.

31

We construct a PPT adversary B ∈ AClass for the hardness-preserving game such that

Pr
[
GBHP(1lλ) = 1

∣∣∣b = 0
]

= nonegl(λ). (1)

The adversary B starts its execution by selecting a random value ι
$← [M]. Then, it uses the value crs given

by its challenger to simulate G′ to an internal copy of A′. It behaves slightly differently in the ι-th NewSession
query. Specifically, let (Sample, i) be the last special message sent by Ch in that session. Instead of providing
a distributed sampler message generated using DS.Gen, the adversary B queries its challenger with i and
sid = (tag, idj1 , . . . , idjn). It provides the adversary with the answer Ui. Moreover, after all the distributed
sampler messages (Uj)j∈[n] have been exchanged, B does not compute the sample R using DS.Sample, but
queries its challenger with (Uj)j 6=i. It gives the answer to Ch. All the rest remains as in Fig. 19. The final
output of B corresponds to the output of the ι-th session.

We observe that if the bit b in the hardness-preserving game is set to 0, the view of A′ in G′ coincides
with the one in B’s simulation. So,

Pr
[
GBHP(1lλ) = 1

∣∣∣b = 0
]
≥ 1

M(λ)
· Pr

[
G′A′(1l

λ) = 1
]
.

The latter is non-negligible. Notice also that since the challenger of G′ is uniform and PPT, B still belongs
to AClass. We have just proven equation (1).

By the hardness-preserving property of DS, we know that there exists a pair of PPT algorithms (SimSetupB,
SimGenB) such that

Pr
[
GBHP(1lλ) = 1

∣∣∣b = 1
]

= nonegl(λ). (2)

We can finally build a PPT adversary A that wins the game G with non-negligible advantage. The ad-

versary A runs an internal copy of A′. It starts its execution by sampling ι
$← [M] and running (crs, ζ)

$←
SimSetupB(1lλ). Then, it simulates the game G′ to A′ using crs as CRS for the distributed sampler. The simu-
lation of the game takes place as in Fig. 19 with the exception of the ι-th session. Let sid = (tag, idj1 , . . . , idjn)
be the corresponding session identity and aux the corresponding auxiliary input. The adversary A provides
its challenger with aux and the set of honest players {i ∈ [n]|ji ∈ H}. Then, it relays the messages between
A′ and Ch. When A receives (Sample, i) where i ∈ H from its challenger, it generates a distributed sampler
message Ui and sends it to A′. The operations is always performed using DS.Gen except for the last honest
player. In that case, A receives an ideal sample R from its challenger, so, it generates Ui using

Ui
$← DS.SimGenB(1lλ, sid, i, ζ, R).

When A′ sends a distributed sample message in the ι-th session on behalf of a corrupted party idji , A sends
(Sample, i) to Ch. The adversary A terminates its execution when A′ does.

We observe that
Pr
[
GA(1lλ) = 1

]
= Pr

[
GBHP(1lλ) = 1

∣∣∣b = 1
]

= nonegl(λ).

ut

5.2 Indistinguishability Preserving Distributed Samplers

Hardness-preserving distributed samplers guarantee a somewhat limited form a security: they are just meant
to preserve the hardness of computations. In other words, if we have two indistinguishable games relying
on a CRS, a hardness-preserving distributed sampler does not guarantee that the compiled games are still
indistinguishable.

More concretely, suppose that we deal with the security proof of a protocol Π relying on a CRS R. That
means that there exists a simulator S such that Π is indistinguishable from the interaction between S and
a functionality F. A hardness-preserving distributed sampler does not guarantee that the compiled protocol
Π ′ still implements the functionality F. Indeed, how can we simulate the distributed sampler messages sent

32

in Π ′? Notice that in its simulation, S might rely on a trapdoored version of the CRS R. It can be that
the outputs of the hardness-preserving distributed sampler never have a trapdoor. Furthermore, even if the
trapdoor existed, how would S retrieve it?

We need our distributed sampler to satisfy additional properties. For this reason, we introduce the notion
of indistinguishability-preserving distributed sampler. They will guarantee that, under some conditions, if a
protocol Π relying on a CRS implements a functionality F against an active adversary in the UC model, the
compiled protocol still implements F. As for the hardness-preserving case, indistinguishability-preserving
distributed samplers overcome the impossibilities of [AOS23]. They can therefore be built without using
random oracles.

Roadmap for the definition. In order to formalise the definition of indistinguishability-preserving distributed
sampler, we need to introduce preliminary concepts. We will define a trapdoored version of games with oracle
distribution. This notion is meant to model the behaviour of a simulator that hides trapdoors in the CRSs it
produces. In a game with trapdoor oracle distribution, the ideal sample given to the parties hides a trapdoor
T . The latter is revealed only to the challenger simultaneously with R. We then define indistinguishability
between a game with oracle distribution and a game with trapdoored oracle distribution. Finally, we define
indistinguishability-preserving distributed samplers as distributed samplers that compile games with oracle
distribution and games with trapdoored oracle distribution preserving indistinguishability.

Games with trapdoored oracle distribution. We introduce the concept of trapdoored distribution. Essentially,
the latter consists of a distribution D′ that outputs samples R along with trapdoors T . The trapdoor
distribution D′ can also be given an auxiliary input aux′ of fixed length. The notion is formalised with
respect to another (standard) distribution D. We require that for every value aux′, the sample R generated
by D′ is indistinguishable from the one generated by D.

Definition 8 (Trapdoored distribution). Let D(1lλ) be an efficient distribution. A trapdoored distribu-
tion for D is a uniform, PPT algorithm D′ which takes as input the security parameter 1lλ and auxiliary
information aux′ ∈ {0, 1}`(λ) where `(λ) is a fixed polynomial. The outputs are a sample R and a trapdoor
T . We also require that, for every auxiliary input aux′ ∈ {0, 1}`(λ), the following distributions are indistin-
guishable {

R
∣∣∣R $← D(1lλ)

}
and

{
R
∣∣∣(R, T)

$← D′(1lλ, aux′)
}
.

Trapdoored distributions are meant to represent the distributions used by simulators of MPC protocols.
The auxiliary input aux′ can be used to represent any information that the simulator receives from the
functionality such as public inputs. It may happen indeed that the simulated CRS depends on these. Examples
of this kind are statistically-sound simulation extractable NIZKs [HIJ+17], in which the CRS for a simulated
proof is a commitment to the statement.

We formalise the notion of game with trapdoored oracle distribution. The concept is similar to the one in
Def. 6. The difference is that now we deal with a trapdoored distribution D′.
Definition 9 (Game with trapdoored oracle distribution). An n-party game with trapdoored oracle
distribution is a triple G := (D′,Ch) where

1. D′ is a trapdoored distribution.
2. Ch is an efficient challenger: a uniform, PPT, round-based, interactive Turing machine that, for every

i ∈ [n], sends the message (Sample, i) at most once in its execution.

Indistinguishability-preserving distributed samplers will be compatible only with a particular class of
games with trapdoored oracle distribution. The interaction between the adversary and the challenger will
be analogous to the one in Fig. 18 with the difference that when the challenger receives the sample R, it
may also obtain the corresponding trapdoor T . The adversary instead never receives T . The choice of the
auxiliary input aux′ given to D′ is made by the challenger when R is given to the adversary. We say that
the game satisfies trapdoor security if it is impossible for the adversary to tell if the trapdoor was given to
the challenger or not. If the first case, we say that the game is in trapdoor mode, otherwise, we say that the
game is in no-trapdoor mode.

33

Trapdoor Security Game

1. b
$← {0, 1}

2. Activate the adversary A with 1lλ.
3. Receive aux and H ⊆ [n] from A.
4. Activate a new copy of Ch with 1lλ, H and aux.
5. Relay all the messages from Ch to A.
6. Relay all the messages from A to Ch.

7. After the Ch has sent (Sample, i) for every i ∈ H, receive aux′ ∈ {0, 1}`(λ) from Ch, compute (R, T)
$←

D′(1lλ, aux′) and provide A with R.
8. After the above occurred and after A has sent (Sample, i) for every i 6∈ H, provide Ch with R and, if b = 1,

with T too.
9. Keep relaying the messages between A and Ch as before.

Win: The adversary wins if it guesses b.

Fig. 20. Trapdoor security game

Definition 10 (Trapdoor security). Consider an n-party game with trapdoored oracle distribution G =
(D′,Ch). We say that G satisfies trapdoor security if every PPT adversary A wins the game in Fig. 20 with
negligible advantage.

Why do we need the above property? Trapdoor security ensures that, independently on whether the trapdoor
will be provided, the challenger will be able to conclude its execution obtaining indistinguishable outcomes.
Indistinguishability-preserving distributed samplers will guarantee that, if an game with oracle distribution
G0 = (D,Ch0) is indistinguishable from a game with trapdoored oracle distribution G1 = (D′,Ch1), then,
also the compiled games are indistinguishable. In the security proof of our construction, we will switch the
challenger of the compiled games from Ch0 to Ch1, using the mode of operation in which no trapdoor is
given. Then, we gradually modify the output of the distributed sampler, switching from D to the trapdoored
version D′. In other words, there will be some hybrids in which part of the outputs of the distributed sampler
are trapdoored, whereas the rest is not. Since there will be no way to predict whether the adversary chooses
a trapdoored sample or not, we need to make sure that before R is delivered to it, Ch1 will not rely on the
fact that a trapdoor will be given at some point. Trapdoor security guarantees this.

Trapdoorable distributed samplers and compiled games. We need to explain how to compile a game with
trapdoored oracle distribution. We start by introducing the concept of trapdoorable distributed sampler.

Definition 11 (Trapdoorable distributed sampler). An n-party trapdoorable distributed sampler is a
tuple of PPT algorithms (Setup,Gen,Sample,SimSetup,SimGen,Trap) where

1. (Setup,Gen,Sample) is an n-party distributed sampler.
2. SimSetup(1lλ) is a PPT algorithm taking as input the security parameter. The output is a simulated CRS

crs and the information ζ.
3. SimGen(1lλ, sid, i, ζ, aux′) is a PPT algorithm taking as input the security parameter, a session-identity,

an index i ∈ [n], the information ζ and aux′. The output is distributed sampler messages Ui and the
trapdoor information ξ.

4. Trap
(
ξ, (Ui)i∈[n]

)
is a deterministic algorithm taking as input the trapdoor information ξ and the dis-

tributed sampler messages (Ui)i∈[n]. The output is a pair (R, T).

Essentially, a trapdoorable distributed sampler is a distributed sampler in which the CRS and the mes-
sages can be simulated in a way that the outputs will be sampled from a trapdoored distribution D′ instead
of D. In other words, the samples will be equipped with trapdoors. The latter can be retrieved from the

34

Compiled Game with Trapdoored Oracle Distribution
Initialisation: This procedure is run only once, at the beginning of the game.

1. (crs, ζ)
$← DS.SimSetup(1lλ)

2. Activate the adversary A with 1lλ and crs.
3. Receive a list of parties ID := {id1, . . . , idm} from A along with the subset of honest players H ⊆ [m].

Session:This procedure can be queried multiple times and at any point of the game. Upon receiving any query
(NewSession, tag, idj1 , . . . , idjn , aux) where the session identity sid := (tag, idj1 , . . . , idjn) has not been queried
before, idji ∈ ID for every i ∈ [n], idjl 6= idjk for every l 6= k and aux, perform the following.

1. Store sid
2. ∀i s.t. ji ∈ H : Ui

$← DS.Gen(1lλ, sid, i, crs)
3. Activate a new copy of Ch with 1lλ, H ′ := {i ∈ [n]|ji ∈ H} and aux.
4. Relay all the messages from Ch to A appending sid to them.
5. Relay all the messages from A with prefix sid to Ch (the prefix is removed).
6. When Ch sends (Sample, i) for any i ∈ H ′ except the last one left, provide A with (sid, Sample, idji , Ui).

7. When Ch sends (Sample, i) for the last i ∈ H ′, obtain aux′ ∈ {0, 1}`(λ) from Ch1, compute (Ui, ξ)
$←

DS.SimGen(1lλ, sid, i, ζ, aux′). Then, provide A with (sid,Sample, idji , Ui).
8. When A sends (sid, Sample, idji , Ui) for any i 6∈ H ′, give (Sample, i) to Ch.
9. When all the messages (sid, Sample, idji , Ui)i∈[n] have been exchanged, compute (R, T) ←

DS.Trap
(
ξ, (Uj)j∈[n]

)
. Provide (R, T) to Ch.

10. Keep relaying the messages between Ch and A as before.

Fig. 21. Compiled game with trapdoored oracle distribution

exchanged messages using the algorithm Trap. The auxiliary information aux′ needed by D′ will be hidden
in the simulated messages. All the samples produced by the construction will use the same aux′.

We can finally explain how to compile a game with trapdoored oracle distribution using a trapdoorable
distributed sampler. The idea is similar to the one explained in Def. 7. The main differences is that now, the
distributed sampler CRS and the last message sent by a honest party in each session are simulated using
SimSetup and SimGen. The auxiliary information input in SimGen will be the one provided by the challenger.
When all the distributed sampler messages have been exchanged, we provide the challenger with a pair (R, T)
generated using Trap.

Definition 12 (Compiled game with trapdoored oracle distribution). Consider an n-party game
with trapdoored oracle distribution G = (D,Ch) and let DS = (Setup,Gen,Sample,SimSetup,SimGen,Trap) be
an n-party trapdoorable distributed sampler.

For any PPT adversary A, we denote by AG′(1lλ) the value output by A at the end of the game in Fig. 21.

Defining indistinguishability-preserving distributed samplers. Indistinguishability-preserving distributed sam-
plers compile indistinguishable games with oracle distributions into standard indistinguishable games. We
are interested in the case in which one of the games with oracle distribution is trapdoored.

We define chosen-sample indistinguishability. Essentially, the latter says that a game with oracle distri-
bution G0 = (D,Ch0) is indistinguishable from a game with trapdoored oracle distribution G1 = (D′,Ch1) if
no PPT adversary A can tell the two apart even if the A is allowed to choose the sample R. The challenger
Ch1 is never provided with trapdoors.

Definition 13 (Chosen-sample Indistinguishable games with oracle distribution). Consider any
pair (G0,G1) where G0 = (D,Ch0) is a game with oracle distribution and G1 = (D′,Ch1) is a game with
trapdoored oracle distribution. We say that G0 and G1 are chosen-sample indistinguishable if every PPT
adversary A wins the game in Fig. 22 with negligible advantage.

35

Chosen-Sample Indistinguishability for Games with Oracle Distribution

1. b
$← {0, 1}

2. Activate the adversary A with 1lλ.
3. Receive aux and H ⊆ [n] from A.
4. Activate a copy of Chb with 1lλ, H and aux.
5. Relay all the messages from Chb to A.
6. Relay all the messages from A to Chb.
7. After the Chb has sent (Sample, i) for every i ∈ H and A has sent (Sample, i) for every i 6∈ H, let A choose

R and provide it to Chb. Do not provide aux′ to A.
8. Keep relaying the messages between A and Chb as before.

Win: The adversary wins if it guesses b.

Fig. 22. Chosen-sample indistinguishability for games with oracle distribution

The reason why we let the adversary choose R is the influence allowed in the compiled games. While in
a game with oracle distribution the choice of the sample R is not affected by the adversary, in the compiled
games, the adversary has always some influence. If we want the compiled games to be indistinguishable, it
is important that the challengers Ch0 and Ch1 cannot be told apart, no matter how the adversary influences
the choice of R.

We can finally define indistinguishability-preserving distributed samplers.

Definition 14 (Indistinguishability-preserving distributed sampler). Let D(1lλ) be an efficient dis-
tribution and let D′ be a trapdoored distribution for D. We say that an n-party trapdoorable distributed
sampler is indistinguishability-preserving for (D,D′) against AClass if, for every PPT adversary A ∈ AClass
and for every pair (G0,G1) of chosen-sample indistinguishable games where G0 = (D,Ch0) is a game with ora-
cle distribution and G1 = (D′,Ch1) is a game with trapdoored oracle distribution satisfying trapdoor security,
we have ∣∣∣Pr[AG′0(1lλ) = 1]− Pr[AG′1(1lλ) = 1]

∣∣∣ = negl(λ),

where G′0 and G′1 are the compiled games.

Applications of indistinguishability-preserving distributed samplers for protocol security. We
now show that, in most cases, indistinguishability-preserving distributed samplers can be used to remove
CRSs in MPC protocols at the cost of one additional round of interaction while preserving simulation security.
This holds in a context of active adversaries statically corrupting any number of the parties. Our theorem is
formalised below.

Theorem 13. Assume the existence of authenticated point-to-point channels and a broadcast medium. Let
Π be an n-party protocol implementing a PPT functionality F against active PPT adversaries in the UC
model with static corruption. Suppose that Π relies on a CRS R generated according to the distribution
D(1lλ). Let S be the corresponding PPT simulator.

Suppose that S can be regarded as the sequential composition of S1 and S2 where S1 never interacts with

the functionality, generates a pair (R, T)
$← D′(1lλ) and provides the adversary with the simulated CRS R

and S2 with (R, T).
Assume that D′ is a trapdoored distribution for D. Let DS be an n-party indistinguishability-preserving

distributed sampler for (D,D′). Let Π ′ be the sequential composition of DS with Π. Then, Π ′ implements F
against active PPT adversaries in the UC model with static corruption.

Observe that the round complexity of the protocol Π ′ has only increased by one. The idea at the base of the
proof is rather immediate: the protocol Π can be reformulated as a game with oracle distribution G0. In the

36

latter, the special messages are all exchanged at the beginning of the session. In a similar way, the simulation
can be reformulated as a game with trapdoored oracle distribution G1 in which the auxiliary information
given to D′ is the empty string. To be precise, the simulation of Π corresponds to the trapdoor mode of G1,
the no-trapdoor mode of G1 is instead identical to G0. Trapdoor security is an immediate consequence of the
UC-security of Π. Chosen-sample indistinguishability is instead for free as G0 and the no-trapdoor mode of
G1 are identical. That is enough to argue that the compiled games G′0 and G′1 are indistinguishable too. It
is straightforward to notice that if we reformulate the compiled protocol Π ′ as a game, we obtain G′0. To
terminate the proof, we notice that G′1 easily leads to a simulator S ′ for Π ′ and F.

Proof. Let H be the set of honest parties. For every i ∈ [n], let idi denote the identity of the i-th party.
A single real-world execution of Π can be formulated as a n-party game with oracle distribution G0. In

such game, the challenger Ch0 immediately sends (Sample, i) for every i ∈ H. Then, it waits for the adversary
to send (Sample, i) for every i 6∈ H. It ignores all other communications received before that. Then, Ch0 runs
the protocol Π with A on behalf of the honest parties.

In a similar way, a single ideal-world execution, can be rephrased as a n-party game with trapdoor oracle
distribution G1 = (D′,Ch1) where the challenger Ch1 behaves as follows:

1. It immediately sends (Sample, i) for every i ∈ H, it sets aux′ to be the empty string.
2. It waits for the adversary to send (Sample, i) for every i 6∈ H. It ignores all other communications received

before that.
3. If it receives only a sample R, it executes Ch0 providing it with R
4. It it receives a pair (R, T), it runs S2 along with F.

By the UC security of Π, G1 satisfies trapdoor security. Moreover, it is immediate to see that the games G0
and G1 are perfectly chosen-sample indistinguishable.

Since DS is indistinguishability-preserving, the compiled games G′0 and G′1 are still indistinguishable.
Observe that if we reformulate the real-world execution of Π ′, we obtain G′0.

We now consider the simulator S ′ that generates the distributed sampler CRS crs using (crs, ζ)
$←

SimSetup(1lλ). In every session sid = (tag, idj1 , . . . , idjn) of the protocol Π ′ where idj1 , . . . , idjn denote the
identities of the parties involved, S ′ performs the following operations

1. pick i such that ji ∈ H
2. ∀l 6= i s.t. jl ∈ H : Ul

$← DS.Gen(1lλ, sid, l, crs)

3. (Ui, ξ)
$← SimGen(1lλ, sid, i, ζ)

4. send (Ul)jl∈H to the adversary on behalf of the honest parties
5. wait for (Ul)jl 6∈H from the adversary
6. (R, T)← Trap

(
ξ, (Ul)l∈[n]

)
7. run S2(1lλ, R, T) interacting with the functionality F and the adversary.

Observe that if we reformulate the interaction between F, S ′ and the adversary as a game, we obtain G′1.
We conclude that no active PPT adversary can distinguish between Π ′ and the composition of F and S ′.
This terminates the proof. ut

In some cases, when the first round of interaction in Π is independent of the CRS, indistinguishability-
preserving distributed samplers allow removing the CRS without affecting the round complexity. The result
is formalised below.

Theorem 14. Assume the existence of authenticated point-to-point channels and a broadcast medium. Let
Π be an n-party protocol implementing a PPT functionality F against active PPT adversaries in the UC
model with static corruption. Let S be the corresponding PPT simulator. Suppose that Π can be rewritten as
the sequential composition of a one-round protocol Π1 with no CRS and a protocol Π2 that relies on a CRS
R generated according to the distribution D(1lλ).

Suppose that S can be regarded as the sequential composition of S1, S2 and S3 where:

37

– S1 never interacts with the functionality, generates values (R, T)
$← D′(1lλ) and provides the adversary

with the simulated CRS R and S3 with (R, T).
– S2, never interacts with the functionality, generates the first-round messages of the honest parties using
Π1 and delivers them to the adversary. It passes its internal state to S3.

Assume that D′ is a trapdoored distribution for D. Let DS be an n-party indistinguishability-preserving
distributed sampler for (D,D′). Let Π ′ be the composition of DS with Π where DS and Π1 are run in parallel.
Then, Π ′ implements F against active PPT adversaries in the UC model with static corruption.

The proof of Theorem 14 follows the blueprint of the proof of Theorem 13. Once again, we reformulate Π
as a game with oracle distribution G0. This time the special messages are all sent simultaneously with the
first round of communications. Since the simulator S generates the first round messages exactly as in Π, we
can design a game with trapdoored oracle distribution G1 in which the trapdoor mode is a reformulation of
the ideal world whereas the no-trapdoor mode is identical to G0. Trapdoor security is a consequence of the
UC-security of Π, chosen-sample indistinguishability instead comes for free as before. The rest remains as
in the proof of Theorem 13.

Proof. Let H be the set of honest parties. For every i ∈ [n], let idi denote the identity of the i-th party.
As before, a single real-world execution of Π can be formulated as a n-party game with oracle distribution

G0. In such game, the challenger Ch0 immediately sends (Sample, i) for every i ∈ H. Simultaneously, it sends
the messages of the honest parties in protocol Π1. Then, it waits for the adversary to send (Sample, i) for
every i 6∈ H along with the messages of the corrupted players in Π1. Finally, Ch0 runs the protocol Π2 with
A on behalf of the honest parties.

In a similar way, a single ideal-world execution, can be rephrased as a n-party game with trapdoor oracle
distribution G1 = (D′,Ch1) where the challenger Ch1 behaves as follows:

1. It runs S2. The messages generated by S2 are delivered to the adversary in conjunction with (Sample, i)
for every i ∈ H. The challenger Ch1 also outputs the empty string aux′.

2. It waits for the adversary to send (Sample, i) for every i 6∈ H, along with the first-round messages of the
corrupted parties.

3. If it receives only a sample R, it executes Π2 on behalf of the honest parties using R as CRS.
4. It it receives a pair (R, T), it runs S3 along with F. The simulator S3 is given (R, T) and the messages

of the corrupted players in Π1.

Notice that if Ch1 receives R but not the trapdoor T , the view of the adversary is the same as in Π. So, by
the UC security of Π, G1 satisfies trapdoor security. Moreover, it is immediate to see that the games G0 and
G1 are perfectly chosen-sample indistinguishable.

Since DS is indistinguishability preserving, the compiled games G′0 and G′1 are still indistinguishable.
Observe that if we reformulate the real-world execution of Π ′ as a game, we obtain G′0.

We now consider the simulator S ′ that generates the distributed sampler CRS crs using (crs, ζ)
$←

SimSetup(1lλ). In every session sid = (tag, idj1 , . . . , idjn) of the protocol Π ′ where idj1 , . . . , idjn denote the
identities of the parties involved, S ′ performs the following operations

1. pick i such that ji ∈ H
2. ∀l 6= i s.t. jl ∈ H : Ul

$← DS.Gen(1lλ, sid, l, crs)

3. (Ui, ξ)
$← SimGen(1lλ, sid, i, ζ)

4. generate the first-round messages of the honest parties in Π1 following the protocol. Provide S3 with the
view of the honest players.

5. send (Ul)jl∈H to the adversary along with the messages generated in the previous step.
6. wait for (Ul)jl 6∈H and the corrupted player messages in Π1 from the adversary
7. (R, T)← Trap

(
ξ, (Ul)l∈[n]

)
8. run S3(1lλ, R, T) interacting with the functionality F and the adversary. S3 is also given the messages of

the corrupted players in Π1.

38

Observe that if we reformulate the interaction between F, S ′ and the adversary as a game, we obtain G′1.
We conclude that no active PPT adversary can distinguish between Π ′ and the composition of F and S ′.
This terminates the proof. ut

Generalisations. Sometimes, indistinguishability-preserving distributed samplers can be used to remove
CRSs even from UC-secure protocols that satisfy neither of the hypothesis of Theorem 13 and Theorem 14.
For instance, in some cases, we can let the simulated CRS depend on auxiliary information aux′ provided
by the functionality. In order for the proofs to go through, however, we need to ask that indistinguishability
between real world and ideal world holds even when aux′ is leaked to the adversary.

Theorem 14 can also be generalised in the sense that the simulator S does not strictly need to follow
the protocol in the first round. The important thing, indeed, is to be able to successfully terminate the
simulation even if S1 abruptly refuses to provide the trapdoor T and instead provides a sample R chosen
by the adversary (S can even ask the functionality F to reveal its internal state when that happens). That
would ensure chosen-sample indistinguishability.

The limits of indistinguishability-preserving. Although indistinguishability-preserving distributed samplers
allow removing CRSs from a broad range of UC secure protocols, we know that there exist constructions
for which this fails. One example in the protocol ΠD in which, after being provided with a CRS R sampled
according to D(1lλ), all the parties output R. This protocol trivially implements the functionality FD that
generates a sample from D(1lλ) and provides it to all the parties. If indistinguishability-preserving distributed
samplers worked for this case we would obtain a distributed sampler for D satisfying the simulation-based
definition of [ASY22]. We know that this is impossible [ASY22,AOS23].

6 Lossy Distributed Samplers

In this section, we introduce a new variant of distributed sampler called lossy distributed samplers. On their
own, lossy distributed samplers are not sufficient to achieve hardness or indistinguishability preservation.
However, they are a useful stepping stone towards our goal.

The construction of [ASY22] and its problems with rushing adversaries. In [ASY22], Abram, Scholl and
Yakoubov presented a distributed sampler achieving security against semi-malicious non-rushing adversaries
in the UC model. In other words, the protocol implements the ideal functionality that provides all the parties
with a random sample from D(1lλ). The construction does not rely on random oracles nor CRSs.

There is a property that allows all this: output programming. Specifically, given any distributed sampler
messages (Ûj)j 6∈H for the corrupted parties and a random sample R̂ from D(1lλ), it is possible to generate

fake messages for the honest parties such that, when used in conjunction with (Ûj)j 6∈H , the output of the

protocol is R̂. These fake messages are indistinguishable from the real ones, so no adversary is able to tell if
the output was programmed or not.

This property is sufficient to achieve security against non-rushing adversaries in the UC model. Indeed,
in this setting, the simulator gets to know the messages of the corrupted parties before generating those of
the honest players. So, it can just send fake messages that are programmed to output R̂, the sample received
from the functionality. In some sense, the simulator is leveraging rushing against the adversary.

The strategy, however, fails against rushing adversaries. Now, indeed, the adversary receives the honest
messages first and then it chooses what to send on behalf of the corrupted players. The simulator can still
try to program some of the outputs of the distributed sampler, but it can apply the technique only a limited
number of times: the samples provided by the functionality have large entropy and so, it is impossible to
“hide” many of them in the messages of the honest parties. In conclusion, if the messages of the corrupted
players are chosen at random, the simulator cannot predict the choice of the adversary, so, with overwhelming
probability, the output of the protocol will not have been programmed.

Unfortunately, the issue we highlighted is not only restricted to the construction of [ASY22], it is part
of a more general problem formalised by Abram, Obremski and Scholl in [AOS23]: without random oracle,

39

distributed samplers with UC security against rushing adversaries are essentially impossible. The reason is
that, in the protocol, we would like the entropy of the output conditioned on the messages of any subset
S of the parties to be high, i.e. H

(
R|(Ui)i∈S

)
= ω(log λ). If that was not the case, an adversary corrupting

all the parties in S would have too much influence over the output of the protocol, compromising security.
On the other hand, in the ideal world, we would like the simulator to generate fake honest messages so that
H
(
R|(Ui)i∈H

)
is small, namely O(log λ). In this way, we can hope to hide ideal samples in the output space

so that, even if the adversary decides the messages of the corrupted parties after seeing (Ui)i∈H , the output
of the protocol will be an ideal sample with high probability. The results presented by Abram, Obremski and
Scholl in [AOS23] suggest that, for any such simulator, it is possible to distinguish between the real (Ui)i∈H
and the simulated ones.

Introducing lossy distributed samplers. We move back to our goal: building hardness-preserving and indistinguishability-
preserving distributed samplers. Although we are not aiming for UC security anymore, having a way to
control the output of the distributed sampler is still a desirable property that would simplify our task. In
this context, the discussion about entropy in the previous paragraph raised a point we need to face. We do
this by introducing the notion of lossy distributed sampler.

A lossy distributed sampler is a distributed sampler having two modes of operation. In the standard
mode, for every non-empty H ⊆ [n], the entropy H

(
R|(Ui)i∈H

)
will remain high, namely ω(log λ). In this

way, we can make sure that the influence of the adversary on the protocol is limited. By switching to lossy
mode, however, the messages of the honest parties restrict the output in a set of polynomial size, with high
probability. In other words, in the lossy mode, the outputs of the protocol becomes predictable. This allows
us to deal with rushing.

Unavoidably, an adversary can always distinguish between a distributed sampler in standard mode and
one in lossy mode 11. However, lossy distributed samplers permit making the distinguishability advantage
arbitrarily small: for every polynomial p(λ) and inverse polynomial function δ(λ), we can set the parameters
of the lossy mode so that no adversary running in time at most p(λ) can distinguish between the standard
mode and the lossy mode with advantage greater than δ(λ). Observe that this property strongly resembles
the one of ELFs [Zha16]. This is not a coincidence, as ELFs will be one of the building blocks for lossy
distributed samplers.

We now present the precise definition.

Definition 15 (Lossy distributed sampler). An lossy distributed sampler for AClass is an n-party dis-
tributed sampler DS = (Setup,Gen,Sample) for which there exists a tuple of PPT algorithms (LossySetup, LossyGen,
Project,Extract) with the following syntax:

– LossySetup is randomised and takes as input the security parameter and an integer q ∈ N. The output is
a lossy distributed sampler crs, the CRS trapdoor ζ.

– LossyGen is uniform, randomised and takes as input the security parameter, a session identity sid, an
index i ∈ [n] and the CRS information ζ. The output is a lossy distributed sampler message Ui and the
extraction trapdoor ξ.

– Project is uniform, deterministic and takes as input the CRS trapdoor ζ, n distributed sampler messages
(Ui)i∈[n] and a session identity sid. The output is an element z.

– Extract is uniform, deterministic and takes as input an extraction trapdoor ξ and a value z. The output
is a sample R.

A lossy distributed sampler satisfies the following properties.

– (Arbitrarily small advantage). For every polynomial p(λ) and inverse polynomial function δ(λ), there
exists a polynomial q(λ) such that every adversary A ∈ AClass running in time at most p can win the
game in Fig. 23 with advantage asymptotically smaller than δ.

11 In the standard mode, running the protocol twice produces different outputs with overwhelming probability, in
lossy mode, instead, there is a non-negligible probability of obtaining a collision.

40

Lossy distributed sampler game
Initialisation: This procedure is run only once, at the beginning of the game.

1. b
$← {0, 1}

2. crs0
$← Setup(1lλ)

3. (crs1, ζ)
$← LossySetup

(
1lλ, q(λ)

)
4. Activate A with 1lλ and crsb
5. Receive a set of distinct identities ID := (idi)i∈[m] from A.

New session: This procedure can be queried multiple times and at any point of the game. Upon receiving
any query (NewSession, tag, idj1 , . . . , idjn , i) where the session identity sid := (tag, idj1 , . . . , idjn) has never been
queried before, idjl ∈ ID for every l ∈ [n] and all idjl 6= idjk for every l 6= k, compute the following.

1. U0
i

$← Gen
(
1lλ, sid, i, crs

)
2. (U1

i , ξ)
$← LossyGen

(
1lλ, sid, i, ζ

)
3. Provide the adversary with Ui := Ubi
4. Store (sid, i, Ui, ξ)

Sample: This procedure can be queried multiple times and at any point of the game. Upon receiving any query(
Sample, sid, (Uj)j 6=i

)
where sid denotes the identity of an already initiated session, compute the following. The

same session identity can be queried multiple times.
1. Retrieve (sid, i, Ui)
2. R0 ← Sample(U1, . . . , Un, sid, crs0)

3. R1 ← Extract
(
ξ,Project

(
ζ, (Uj)j∈[n], sid

))
4. Provide the adversary with Rb.

Win: The adversary wins if it guesses b

Fig. 23. Lossy distributed sampler game

– (Small support). For every polynomial q(λ), there exists a negligible function negl(λ) such that, for
every session identity sid and index i ∈ [n],

Pr

[∣∣Suppζ∣∣ > q(λ)

∣∣∣∣∣(crs, ζ)
$← LossySetup

(
1lλ, q(λ)

)
(Ui, ξ)

$← LossyGen(1lλ, sid, i, ζ)

]
≤ negl(λ),

where Suppζ :=
{
Project

(
ζ, (Uj)j∈[n], sid

)∣∣(sid, (Uj)j∈[n]) ∈ {0, 1}∗}.

Notice that the lossy mode is split into two parts: a lossy setup LossySetup and a lossy generation algorithm
LossyGen. The lossy setup takes as input the parameter q(λ) and outputs a fake CRS along with a trapdoor
ζ. The lossy generation algorithm takes as input the trapdoor ζ and the index of party i ∈ [n]. The output
is the lossy message for Pi. In order to switch the distributed sampler to lossy mode, it is sufficient that a
single party sends a message in lossy mode. When that happens, with high probability, the output of Sample
is obtained by first projecting the exchanged messages in a set of polynomial size and then deterministically
mapping the result into a sample from D(1lλ). Observe, however, that our definition does not guarantee that
this occurs with overwhelming probability, but just with probability 1 − δ(λ), where δ(λ) is an arbitrarily
small inverse-polynomial quantity. Informally, this means that the lossy mode restricts most of the outputs
of the construction in a set of polynomial size.

In order to make the distinguishability advantage between standard and lossy mode arbitrarily small, it
is important that Project and Extract are hard to compute when the trapdoors ζ and ξ are kept secret.

Regularity of lossy distributed samplers. We now formulate the definition of regular lossy distributed sampler.
Essentially, this consists of a lossy distributed sampler for which the output of the lossy mode is predictable
with inverse-polynomial probability independently of the behaviour of the adversary. Observe that if the
output space was not restricted in a set of polynomial size, this property was unachievable.

41

Definition 16 (Regularity). We say that a lossy distributed sampler (Setup,Gen,Sample, LossySetup, LossyGen,
Project,Extract) is regular if there exists a uniform PPT algorithm Z and a polynomial s(λ, q) such that, for

every polynomial q(λ), with overwhelming probability over the randomness of (crs, ζ)
$← LossySetup

(
1lλ, q(λ)

)
,

Pr
Z

[
Z(ζ) = Project

(
ζ, (Uj)j∈[n], sid

)]
≥ 1

s
(
λ, q(λ)

)
for every

(
sid, (Ui)i∈[n]

)
∈ {0, 1}∗, where the above probability is taken only over the randomness of Z.

Formally, the above definition states that Z allows to predict the output of the projection with inverse-
polynomial probability. Furthermore, the success probability is essentially only over the randomness of Z.
That immediately allows predicting the output thanks to Extract.

Programmability. We finally formalise the notion of programmable lossy distributed sampler. This consists of
a construction in which the lossy mode allows hiding an ideal sample R in the output space. In particular,
there will be an element z such that executions that are projected to z will output R with high probability.
Furthermore, the adversary will not be able to tell if one of the outputs was programmed even if we provide
it with z and the trapdoor ζ. The extraction trapdoor ξ will instead remain secret.

Observe that programmability is the only property that guarantees that the outputs of the distributed
sampler look like those of the targetted distribution D(1lλ) and no further information is leaked. In Section 8,
we will show that lossy distributed samplers that are regular and programmable are hardness-preserving.

Definition 17 (Programmability). We say that a lossy distributed sampler (Setup,Gen,Sample, LossySetup,
LossyGen,Project,Extract) for D is programmable if there exists a uniform PPT algorithm ProgGen such that
no PPT adversary in AClass can win the game in Fig. 24 with non-negligible advantage.

7 Building Lossy Distributed Samplers

In this section, we present a lossy distributed sampler that is regular and programmable. In the non-uniform
setting, the construction relies on a uniformly random CRS which can be reused multiple times. In the
uniform setting, instead, we need no CRS. Security is based, among other primitives, on subexponentially
secure indistinguishability obfuscation and multi-key FHE. We achieve security against any active adversary
statically corrupting up to n− 1 parties.

The construction of [ASY22]. Our starting point is the semi-malicious distributed sampler of [ASY22, Section
4], which achieves security against non-rushing adversaries in the plain model.

Our construction inherits the same structure: the distributed sampler message of each party Pi consists of
two obfuscated programs. The purpose of the first one is to generate a pseudorandom string si and encrypt
it under a multi-key FHE public key pki. The random string si will be Pi’s share of the randomness input
into D(1lλ). In other words, the output of the distributed sampler will be a sample R obtained by adding
the strings s1, s2, . . . , sn and feeding the result as randomness for D(1lλ). We call this first program the
encryption program of party Pi and we denote it by EPi.

The second program instead has the purpose of applying homomorphic operations on the ciphertexts
generated by the encryption programs, deriving an encryption C of the output R. The program terminates
its execution outputting a partial decryption of C using the private counterpart of pki. We call this second
program the decryption program of party Pi and we denote it by DPi. The encryption of sj and the public
key pkj will be derived running EPj inside the code of DPi. The encryption program EPj will be given as
input to DPi for every j 6= i.

To summarise, in order to obtain a random sample R, the parties just feed each decryption program DPi
with the encryption programs (EPj)j 6=i. In this way, they obtain the partial plaintext di. The output will be
derived by performing the final decryption R← FinDec(d1, . . . , dn).

42

Programmability Game
Each phase is run only once.
Initialisation Phase:

1. b
$← {0, 1}

2. (crs, ζ)
$← LossySetup

(
1lλ, q(λ)

)
3. Activate A with 1lλ, crs and ζ.

Generation Phase:

1. Receive i ∈ [n], sid and z from the adversary.

2. R
$← D(1lλ)

3. (U0
i , ξ

0)
$← LossyGen

(
1lλ, sid, i, ζ

)
4. (U0

i , ξ
1)

$← ProgGen
(
1lλ, sid, i, z, R, ζ

)
5. Provide the adversary with Ui := Ubi

Sampling Phase:

1. Receive (Uj)j 6=i from the adversary

2. R0 ← Extract
(
ξ0,Project

(
ζ, (Uj)j∈[n], sid

))
3. R1 ← Extract

(
ξ1,Project

(
ζ, (Uj)j∈[n], sid

))
4. If Project

(
ζ, (Uj)j∈[n], sid

)
= z and z 6= ⊥, set R1 ← R.

5. If Project
(
ζ, (Uj)j∈[n], sid

)
= ⊥, set R1 ← ⊥.

6. Provide the adversary with Rb.

Win: The adversary wins if it guesses b

Fig. 24. Programmability game

Counteracting the residual function attack. A common issue of one-round MPC protocols is residual function
attacks: the adversary can rerun the protocol in its head keeping the same messages for the honest parties
but using different messages for the corrupted players. In this way, it obtains a different output that might
be correlated to the original one. Observe that the adversary can repeat this attack as many times as it likes,
potentially obtaining a lot of leakage.

In order to prevent this issue in their distributed sampler [ASY22], Abram, Scholl and Yakoubov made
sure that EPi encrypts an independent-looking si for every choice of (EPj)j 6=i. They achieved this by letting
every party Pi choose a hash key hki and providing EPi with a digest yi of (hkj ,EPj)j 6=i under hki (notice
that we cannot directly input (EPj)j 6=i into EPi as the former is significantly larger than the latter). The
encryption program EPi will derive si by feeding yi into a puncturable PRF. The key used for the encryption
will also change depending on (EPj)j 6=i. The technique remains the same as before: by feeding yi into another
puncturable PRF, the program obtains randomness ri and r′i that will be used for the key generation and
the encryption. The hash keys will be broadcast by the parties as part of their message.

Using this strategy, even if an adversary reruns the distributed sampler protocol in its head changing any
(hkj ,EPj), the encryption program EPi will generate an independent looking si and so the new output R′

obtained by the adversary will look independent of the original one. Notice that changing any DPj instead
does not help in learning information about R.

The construction in this paper will keep using the technique of [ASY22]. We sketch the unobfuscated
code of the encryption program EProg in Fig. 25.

Adjustments in the decryption programs. The modifications to the encryptions programs we added in the
previous paragraph require minor adjustments in the decryption programs. As we have mentioned, for every
j ∈ [n], each DPi needs to evaluate the encryption program EPj to obtain pkj and the encryption of sj .

43

EProg[K
(i)
1 ,K

(i)
2 , i]

Hard-coded. The PPRF keys K
(i)
1 and K

(i)
2 , the index i.

Input. A digest y ∈ {0, 1}t(λ).

1. si ← F1(K
(i)
1 , y)

2. (ri, r
′
i, r
′′
i , ηi, η

′
i)← F2(K

(i)
2 , y)

3. (pki, ski)← mkFHE.Gen(1lλ, i; ri)
4. ci ← mkFHE.Enc(pki, si; r

′
i)

5. Output (pki, ci).

Fig. 25. The unobfuscated encryption program of party Pi

In order to do this, it needs to compute the digest yj that will be fed into EPj . For this reason, we need
to provide DPi not only with (EPj)j 6=i but also with all the hash keys (hkj)j 6=i. The pair (hki,EPi) will
instead be hardcoded into DPi. In the decryption program, we also hardcode the PRF key that produced
the randomness for the key generation in EPi. This will allow DPi to retrieve the secret key needed for the
partial decryption.

We also introduce another modification to the decryption programs and the construction in general. The
reason for this will be clearer after reading the next paragraphs. Along with hki, EPi and DPi, each party
Pi will now broadcast an almost everywhere extractable NIZK πi proving the well-formedness of (hki,EPi).
In the non-uniform case, this NIZK will require a CRS. Luckily, the latter can be uniformly random (see
Section 4.1 and Section 10.1). We denote the construction by NIZK. Each decryption program DPi will now
receive the proofs (πj)j 6=i as input and will use them to check the pair (hkj ,EPj) for every j 6= i. If any of
the NIZKs does not verify, the decryption program DPi simply outputs ⊥. We sketch the unobfuscated code
of the decryption program DProg in Fig. 26.

Circular dependencies between subexponentially secure primitives. Our construction can achieve security as
long as at least one of the random strings si remains private. Since the encryption program EPi always
reveals an encryption of the latter, we need to rely on the security of multi-key FHE. Unfortunately, we
cannot perform a direct reduction as the PRF key that allows retrieving the multi-key FHE private key
is hardcoded into both the encryption and the decryption program. So, in the security proof, we need to
somehow remove the information about ski from EPi and DPi first, and only at that point, we can apply the
multi-key FHE security.

Our goal is to achieve this using subexponentially secure primitives, similarly to what Halevi et al. did in
[HIJ+17]. Specifically, by repeating a hybrid argument for every tuple (hkj ,EPj)j 6=i of well-formed elements,
the programs EPi and DPi will gradually switch from performing the key generation, the encryptions and
the partial decryptions to simulating them [AJJM20]. Notice that the multi-key FHE simulators need to
know the randomness used by all the other parties. The program will extract it from the NIZKs (πj)j 6=i that
are given as input.

In order for our strategy to work, we need to rely on the subexponential security of multi-key FHE. In
particular, if we denote the number of well-formed tuples (hkj ,EPj)j 6=i by N(λ) and the advantage of any

PPT adversary A against the multi-key FHE scheme by AdvAmkFHE(λ), we require that there exists a constant
e ∈ N such that

N(λ) · AdvAmkFHE(λe) = negl(λ)12.

This is because, every time we rely on the simulatability of the partial decryption, the advantage of the
adversary increases by a negligible but non-zero amount. In our proof, we rely on this argument a super-
polynomial number of times, namely at least N(λ), so, at the end, the small advantages might add up to

12 To be precise, we will require a strictly stronger property: instead of N , we will use another function M(λ)� N(λ).

44

DProg[i, sid,K
(i)
2 ,EPi, hki, σ]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K
(i)
2 , the encryption program

EPi, the hash key hki, the CRS for the extractable NIZK σ.
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. ∀j 6= i : bj ← NIZK.Verify
(
σ, (sid, j), πj , (j, hkj ,EPj)

)
2. If ∃j 6= i such that bj = 0, output ⊥
3. ∀j ∈ [n] : yj ← Hash

(
hkj , (hkl,EPl)l 6=j

)
4. ∀j ∈ [n] : (pkj , cj)← EPj(yj)

5. C ← mkFHE.Eval
(
D̃, pk1, c1, . . . , pkn, cn

)
(see below)

6. (ri, r
′
i, r
′′
i , ηi, η

′
i)← F2(K

(i)
2 , yi)

7. (pki, ski)← mkFHE.Gen(1lλ, i; ri)

8. di ← mkFHE.PartDec
(
C, (pk1, pk2, . . . , pkn), i, ski; ηi

)
9. Output di

The algorithm D̃. On input n random strings s1, s2, . . . , sn ∈ {0, 1}m(λ).

1. s← s1 ⊕ s2 ⊕ · · · ⊕ sn
2. R← D(1lλ; s)
3. Output R

Fig. 26. The unobfuscated decryption program of party Pi

something non-negligible. If the e described above exists, however, we are sure that, by setting the security
parameter of multi-key FHE to λ′ := λe, this will not happen. The final stage will be indistinguishable from
the initial one.

The issue is that N(λ) already depends on λ′. Indeed, every encryption program generates a multi-key
FHE key. We are therefore trapped in a circular dependency. It also turns out that this is not the only one,
it is just the easiest to spot.

Decreasing the entropy of the corrupted messages. We solve our problems using an idea of [ASY22]: we
decrease the entropy of (hkj ,EPj) generating it using a PRG. Each party Pj will now sample a random
λ-bit seed and will use its expansion to generate the PRF keys hidden in EPj , the hash key hkj and to
obfuscate EPj . The NIZK πj will guarantee that the pair (hkj ,EPj) is generated in this way. In other
words, the adversary will be forced to output low-entropy messages. On the other hand, by leveraging the
simulatability of the NIZK, we will be able to send full-entropy messages for the honest parties.

Thanks to this trick, the number of well-formed (hkj ,EPj)j 6=i will be independent of the multi-key FHE
security parameter λ′: the value of N(λ) will be 2λ·(n−1). By choosing e sufficiently large and assuming
subexponential security, we can finally make sure that

N(λ) · AdvAmkFHE(λe) = negl(λ).

This trick fixes all the other circular dependencies too.

Avoiding collisions between well-formed encryption programs. The technique described in the previous para-
graph will also allow us to achieve a nice property: by taking a subexponentially collision resistant hash
function, we can make sure that, with overwhelming probability over hki

13, there exist no hash collisions
between well-formed tuples (hkj ,EPj)j 6=i. In particular, we choose the hash function security parameter λ′

13 The probability is over full-entropy hash keys.

45

so that, for every PPT adversary A,

N(λ)2 · AdvAHash(λ′) = negl(λ),

where AdvAHash(λ
′) denotes the advantage of A against the collision resistance of Hash. Notice that N(λ)2

upper-bounds the number of pairs of well-formed tuples. This of course will increase the size of the digests
but they will still fit into EPi. We will explain how this property is used in the security proof in Section 7.2.

Adding a final NIZK to achieve active security. The reader might have noticed that in our blueprint, noth-
ing prevents an adversary to broadcast malformed decryption programs. In order to contrast this kind of
malicious behaviour, we add a second NIZK to the construction proving the well-formedness of the programs
and the hash key. We rely on a simulation-extractable NIZK, we denote it by NIZK′. Observe that the latter
satisfied multi-theorem zero-knowledge. If we aim for security against non-uniform adversaries, NIZK′ will
require a CRS that can be small and uniformly random. In the uniform setting, if we use the construction
in Section 9.3, NIZK′ has no CRS. We denote the new proof broadcast by party Pi by π′i. To summarise, the
distributed sampler message of Pi will consists of the tuple Ui := (hki,EPi,DPi, πi, π

′
i).

7.1 Introducing ELFs to Achieve Lossy Properties

The construction we sketched above is not lossy: given the messages of the honest parties, the output still
remains highly unpredictable, i.e. H

(
R|(Ui)i∈H

)
= ω(log λ). For this reason, we introduce an ELF in the

construction. When the latter is set in injective mode, the entropy of the output given the honest messages
will remain high. When the ELF is instead in lossy mode, the messages of the honest players will restrict
the output in a set of polynomial size, no matter what the adversary does. The properties of ELFs will also
allow us to make the distinguishability advantage between injective mode and lossy mode arbitrarily small.
That will be fundamental to achieve the first property of lossy distributed samplers (see Def. 15).

While integrating the ELF in the construction, we need to pay attention to particular conditions. As
mentioned in the technical overview, we want the distributed sampler to be regular and programmable: our
goal is to hide an ideal sample R among the small set of possible outputs allowed by the lossy mode. Any
adversary must have a 1/poly(λ) probability of obliviously selecting R as output of the protocol. We need
also to focus on incorporating the ELF in the construction while keeping the CRS as simple as possible.
Finally, we need to make sure that the protocol supports a polynomial number of parties instead of just a
constant.

Where should we place the ELF? Satisfying all the conditions described above is not trivial. Our current
construction allows the parties to produce a common string that looks random as long as one party is honest,
i.e. the string s := s1 ⊕ s2 ⊕ · · · ⊕ sn. In order to obtain a random looking sample from D(1lλ), we need a
common source of entropy, i.e. entropy that can be accessed by all players. The CRS and s are the only
sources of this kind we have at the moment.

After observing this, one could try to achieve the properties we need by feeding s into the ELF, convert
the output into uniform randomness using an extractor and then input the result into the distribution D(1lλ).
While adding two CRSs (one for the ELF, one for the extractor), this solution allows to restrict the output
in a set of polynomial size when the ELF is set in lossy mode. However, it lacks programmability: how can
we hide an ideal sample among the outputs without the adversary noticing it? Observe that, using just the
CRSs, the adversary can compute the set of all possible outputs, so the ideal sample would stand out. In
cryptography, programmability is often achieved using puncturable PRFs and obfuscation. The technique
requires the PRF key K to be private and unpredictable. Hiding K in the CRS seems hard, perhaps even
impossible. Another option would be to use s to generate K. The issue is that K needs high entropy, so we
cannot use the output of the ELF, we are forced to use s itself. If we do that, however, the size of the output
space would become superpolynomial.

46

EProgLs[K
(i)
2 , i]

Hard-coded. The PPRF key K
(i)
2 and the index i.

Input. A digest y ∈ {0, 1}t(λ).

1. (ri, r
′
i, r
′′
i , ηi, η

′
i)← F2(K

(i)
2 , y)

2. (φ, pki, ci)← mkFHE.Sim1(1lλ, i; r′′i)
3. Output (pki, ci).

Fig. 27. The unobfuscated encryption program for the lossy mode

The lossy mode of the distributed sampler. We solve all our problems by relying on subexponentially secure
primitives and making the ELF appear only when the distributed sampler is set in lossy mode.

The lossy mode will produce programs EPi and DPi that differ from the ones in standard mode, we
formally describe them in Fig. 27 and Fig. 28. The idea is that EPi and DPi will simulate the key generation,
the encryptions and the partial decryptions. The security of multi-key FHE will guarantee that the output
of the distributed sampler will be the sample given to the multi-key FHE simulator. Such sample will not
coincide with the value hidden in the evaluated ciphertext C, it will be the element produced by Project and
Extract. The former will simply apply an ELF f on (hkj ,EPj)j∈[n]. The latter will use a puncturable PRF key
K to deterministically map each projection into a pseudorandom string s, which will be used as randomness
for D(1lλ). Notice that since the ELF is in lossy mode, the image of the projection will be polynomial in size.

Working out the rest of the details is now easy. The decryption program will be able to run Project and
Extract inside its code as f and K will be hardcoded into it. It will also be able to perform the partial
decryption as it will know the PRF keys hardcoded in the encryption programs that are given as input: it
will extract them from the NIZKs that are provided along with (EPj)j 6=i. When the extraction fails, the
program will simply output ⊥. In order for our strategy to succeed, the lossy setup will simulate the CRSs σ
and σ′. The corresponding trapdoors will also allow us to generate proofs πi and π′i despite the fact that EPi
and DPi are no longer well-formed. The lossy setup will also take care of generating the ELF f . The size of
the image will be q(λ) where q is the polynomial parametrising the lossy mode of the distributed sampler. A
final minor issue is that the second multi-key FHE simulator needs to receive the state produced by the first
simulator. The execution of the former takes place in DPi, whereas the latter is run in EPi. Thankfully, both
executions are made deterministic using the outputs of a puncturable PRF. By storing the corresponding
key in both EPi and DPi, we can rerun the first simulator inside DPi to retrieve the state.

Regularity and programmability of the lossy mode. The above construction can easily be made regular. It is
sufficient to use a regular ELF: by sampling a random element x in the domain [M], f(x) will hit all the
elements in the support of the projection with inverse-polynomial probability.

The construction is also programmable. Thanks to obfuscation and the security of puncturable PRFs
[SW14], we can easily hide an ideal sample in the output space of the lossy mode distributed sampler. All we
need to do is to puncture K in the right position z. We then modify the decryption program by hardcoding
an ideal sample R along with z and the punctured key. Differently from before, the new program will compare
the output of the ELF with z. When the latter coincide, it will directly feed R to the partial decryption
simulator. It is easy to prove that the adversary is not able to detect whether we hid an ideal sample in the
output space or not.

7.2 Proving Security

We present a blueprint of the security proof. Seeing that, in our construction, the projection has small
support is rather straightforward. We therefore focus on the first property of the lossy distributed sampler.
The proof will hold independently of whether AClass represents the class of uniform adversaries or not.

47

DProgLs[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K, f]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K
(i)
2 , the encryption program

EPi, the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors (τ je)j 6=i, the PPRF key K,
the ELF f .
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. ∀j 6= i : bj ← NIZK.Verify
(
σ, (sid, j), πj , (j, hkj ,EPj)

)
2. ∀j 6= i :

(
K

(j)
1 ,K

(j)
2

)
← NIZK.Extract

(
τ je , πj , (j, hkj ,EPj)

)
a

3. If ∃j 6= i such that bj = 0 or
(
K

(j)
1 ,K

(j)
2

)
= ⊥, output ⊥

4. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
5. ∀j 6= i : sj ← F1

(
K

(j)
1 , yj

)
6. ∀j ∈ [n] : (rj , r

′
j , r
′′
j , ηj , η

′
j)← F2

(
K

(j)
2 , yj

)
7. z ← f

(
(hkj ,EPj)j∈[n]

)
8. s← F (K, z)
9. R̂← D(1lλ; s)

10. (φ, pki, ci)← mkFHE.Sim1(1lλ, i; r′′i)

11. di ← mkFHE.Sim2

(
φ, D̃, R̂, (sj , rj , r′j)j 6=i; η′i

)
(see bottom of Fig. 26)

12. Output di

a Here, we simplified the notation: the extractor would output only the PRG seed used to produce (hkj ,EPj).

By the expanding that, it is straightforward to derive K
(j)
1 and K

(j)
2 .

Fig. 28. The unobfuscated decryption program for the lossy mode

Before starting, we recall our goal: we want to show that for every polynomial p(λ) and inverse-polynomial
function δ(λ), there exists a polynomial q(λ) such that the advantage of all adversaries running in time at
most p(λ) in distinguishing the standard mode from the lossy mode parametrised by q(λ) is asymptotically
smaller than δ(λ). We prove the result through a series of hybrids, starting from the standard mode.

First step: simulating NIZK′. We start the proof by simulating the proof π′i in every NewSession query. We
recall that i denotes the index chosen by the adversary in each of these queries, π′i denotes instead the
simulation-extractable NIZK proving the well-formedness of the message of i-th party. We also modify the
answer to the sampling queries: we start by extracting the witnesses from the NIZKs (π′j)j 6=i selected by the
adversary. If the extraction fails, we answer with ⊥, otherwise, we reply with the output of Sample. This
hybrid is indistinguishable from the previous one due to the simulation-extractability of NIZK′.

Second step: witness extraction in the decryption programs. We proceed by simulating the proof πi in every
NewSession query. We recall that πi is an almost everywhere extractable NIZK proving the well-fomredness
of (hki,EPi). We also modify the decryption program DPi. Specifically, we hardcode extraction trapdoors
(τ je)j 6=i for the almost everywhere extractable NIZK. The label associated with τ je will be (sid, j) where sid is
the session identity queried by the adversary. The program DPi will now try to extract the witness from the
NIZK proofs that are given as input. If any extraction fails, DPi will simply outputs ⊥. Otherwise, it will
perform the usual operations. Notice that now the decryption program will only accept well-formed inputs.
We sketch the operations of the modified program DProg1 in Fig. 29.

We highlight that, compared to the previous step, the input-output behaviour of DPi changed. However,
the two hybrids will still be indistinguishable thanks to the almost-everywhere extractability of NIZK (see
Lemma 2 and Lemma 3). In the uniform setting, this step requires additional attention. Indeed, in the
reduction to almost-everywhere extractability, the uniform adversary needs to derive the trapdoor τ ′ for
NIZK′. The latter cannot be computed in uniform polynomial time. We work around this problem by choosing

48

DProg1[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K
(i)
2 , the encryption program

EPi, the hash key hki, the CRS for the extractable NIZK σ, the extraction trapdoors (τ je)j 6=i.
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. ∀j 6= i : bj ← NIZK.Verify
(
σ, (sid, j), πj , (j, hkj ,EPj)

)
2. ∀j 6= i :

(
K

(j)
1 ,K

(j)
2

)
← NIZK.Extract

(
τ je , πj , (j, hkj ,EPj)

)
a

3. If ∃j 6= i such that bj = 0 or
(
K

(j)
1 ,K

(j)
2

)
= ⊥, output ⊥

4. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
5. ∀j ∈ [n] : (pkj , cj)← EPj(yj)

6. C ← mkFHE.Eval
(
D̃, pk1, c1, . . . , pkn, cn

)
(see Fig. 26)

7. (ri, r
′
i, r
′′
i , ηi, η

′
i)← F2(K

(i)
2 , yi)

8. (pki, ski)← mkFHE.Gen(1lλ, i; ri)

9. di ← mkFHE.PartDec
(
C, (pk1, pk2, . . . , pkn), i, ski; ηi

)
10. Output di

Fig. 29. Second step: the unobfuscated decryption program of party Pi

NIZK, NIZK′ and a superpolynomial function S(λ) so that NIZK′ is S-deterministic and NIZK is a-disclosed
for every S-computable sequence a. The construction presented in Section 10.1 allows this.

Third step: switching to full-entropy. Since the NIZKs are now simulated, we are free to switch to a full-
entropy Ui. Specifically, we generate the hash key hki, the encryption program EPi and the keys hardcoded
into it using full-entropy randomness, instead of the output of a PRG. This stage is indistinguishable from
the previous by the security of the PRG.

Fourth step: simulating key generation, ciphertexts and partial decryptions. We proceed by modifying both
the encryption program EPi and the decryption program DPi. The new programs will not perform the
multi-key FHE operations as usual, they will instead simulate them. In order to perform such operation,
DPi will use the PRF keys in the encryption programs of the other parties, which will be extracted from
the NIZKs (πj)j 6=i that are given as input. For the moment, the multi-key FHE simulator in DPi will also

need to know the sample R̂ hidden into the joint ciphertext C. The program will reconstruct it using the

PRF keys (K
(j)
1)j 6=i hidden in the encryption programs (EPj)j 6=i, those used to produce the pseudorandom

strings (sj)j 6=i. In order to compute si, the new program will also have the key K
(i)
1 hardcoded. Finally, the

simulator in DPi will need to know that secret information output by the first simulator Sim1, the one that
produced a fake public key and a fake ciphertext in EPi. The decryption program will obtain it by rerunning
Sim1 with the same randomness as in EPi. It is easy to do that as the randomness is a PRF output and the
corresponding key is hardcoded in both EPi and DPi. We sketch the unobfuscated version of the modified
programs EProgLs and DProg2 in Fig. 27 and Fig. 30.

We prove that this step is indistinguishable from the previous one using an exponential number of hybrids.
In particular, the number of reductions is proportional to the number of digests of the hash function, i.e.
2t(λ). The proof relies on the reusable semi-malicious security of multi-key FHE, the collision resistance of
the hash function, the security of iO and the one of the puncturable PRF F2, all four subexponential. In
order for the proof to go through, we need to use an injective obfuscator. In this way, we are sure that

EPj uniquely determines the PRF keys K
(j)
1 and K

(j)
2 , so the NIZK extraction will always lead to the same

values.

Fifth step: embedding the ELF into the decryption program DPi. In this step, we finally integrate the ELF
in the construction. For the moment, the ELF will be set in injective mode.

49

DProg2[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

(i)
1]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K
(i)
2 , the encryption program

EPi, the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors (τ je)j 6=i, the PPRF key

K
(i)
1 .

Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. ∀j 6= i : bj ← NIZK.Verify
(
σ, (sid, j), πj , (j, hkj ,EPj)

)
2. ∀j 6= i :

(
K

(j)
1 ,K

(j)
2

)
← NIZK.Extract

(
τ je , πj , (j, hkj ,EPj)

)
a

3. If ∃j 6= i such that bj = 0 or
(
K

(j)
1 ,K

(j)
2

)
= ⊥, output ⊥

4. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
5. ∀j ∈ [n] : sj ← F1

(
K

(j)
1 , yj

)
6. ∀j ∈ [n] : (rj , r

′
j , r
′′
j , ηj , η

′
j)← F2

(
K

(j)
2 , yj

)
7. R̂← D(1lλ; s1 ⊕ · · · ⊕ sn)
8. (φ, pki, ski)← mkFHE.Sim1(1lλ, i; r′′i)

9. di ← mkFHE.Sim2

(
φ, D̃, R̂, (sj , rj , r′j)j 6=i; η′i

)
(see bottom of Fig. 26)

10. Output di

Fig. 30. Forth step: the unobfuscated decryption program of party Pi

We observe that at the end of step four, we have finally managed to unlink K
(i)
1 from (sj)j 6=i. Previously,

indeed, it was impossible to modify K
(i)
1 without affecting (sj)j 6=i. By changing K

(i)
1 , the encryption program

EPi would have become different, consequently all the digests (yj)j 6=i would have changed and, at the end,
we would end up with new PRF outputs (sj)j 6=i. Since all the strings s1, . . . , sn where mutually dependent,
it was hard to analyse how the adversary could affect the distribution of their sum. Now, instead, by the
security of the puncturable PRF, we can finally say that si looks independent of (sj)j 6=i. So, we are sure
that our construction generates pseudorandom samples.

We leverage this fact to modify the decryption program DPi once again, switching to an obfuscation
of DProgLs (see Fig. 28). The new program will ignore (sj)j 6=i. It will instead feed the inputs (hkj ,EPj)j 6=i
along with the hardcoded pair (hki,EPi) into the injective-mode ELF. The result is then input into a
puncturable PRF. The randomness produced in this way is given to D(1lλ). The generated sample will be
input into the partial decryption simulator. We select the ELF so that its domain is sufficiently large to
embed all (hkj ,EPj)j∈[n] into it without causing any collision. In conclusion, in the new program, each tuple
(hkj ,EPj)j 6=i will be mapped to an independent-looking pseudorandom output.

Using a superpolynomial number of hybrids, we prove that step five and step four are indistinguishable.
In particular, we repeat the hybrid arguments for every well-formed tuple (hkj ,EPj)j 6=i, i.e. 2λ·(n−1) times.
Observe that one way the adversary can try to distinguish between step four and step five is by finding two
pairs of inputs (hkj ,EPj)j 6=i, (hk′j ,EP

′
j)j 6=i having colliding digests under hki. Indeed, in step four, the two

inputs would produce the same string si and therefore, the respective outputs would be correlated. In step
five, instead, the adversary would end up with independent looking outputs. We prevent this attack by relying
on the subexponential collision intractability of the hash function so that, with overwhelming probability over
hki, there exist no collisions among the 2λ·(n−1) well-formed tuples (hkj ,EPj)j 6=i. To summarise, we prove
indistinguishability between step four and five by relying on the security of iO, the collision intractability of
the hash function and the security of the puncturable PRFs F and F1, all of them subexponential.

Final step: setting the ELF in lossy mode. At this point, we switch the ELF hidden in DPi into lossy mode.
Notice that step six can be distinguished from step five, however, by properly setting the parameters of the
lossy mode, we can make the distinguishing advantage arbitrarily small. In particular, let p′(λ) be the total
time needed by the challenger and the adversary in step five. We can pick the polynomial q(λ) parametrising

50

The Standard Mode of the Lossy Distributed Sampler
Setup(1lλ):

1. σ
$← NIZK.Gen(1lλ)

2. σ′
$← NIZK′.Gen(1lλ)

3. Output crs := (σ, σ′)

Gen
(
1lλ, sid, i, crs := (σ, σ′)

)
:

1. ρ1
$← {0, 1}L1(λ)

2. ρ2
$← {0, 1}L2(λ)

3. W
$← {0, 1}λ

4. (K
(i)
1 ,K

(i)
2 , u1, u2)← PRG(W)

5. hki ← Hash.Gen(1lλ; u1)

6. EPi ← iO(1lλ,EProg[K
(i)
1 ,K

(i)
2 , i]; u2) (see Fig. 25)

7. DPi ← iO(1lλ,DProg[i, sid,K
(i)
2 ,EPi, hki, σ]; ρ1) (see Fig. 26)

8. πi ← NIZK.Prove
(
σ, (sid, i), (i, hki,EPi),W ; ρ2

)
9. π′i

$← NIZK′.Prove
(
σ′, (i, sid, hki,EPi,DPi, πi, σ), (W,ρ1, ρ2)

)
10. Output Ui := (hki,EPi,DPi, πi, π

′
i).

Sample
((
Uj = (hkj ,EPj ,DPj , πj , π

′
j)
)
j∈[n], sid, crs = (σ, σ′)

)
1. ∀j ∈ [n] : bj ← NIZK′.Verify

(
σ′, π′j , (j, sid, hkj ,EPj ,DPj , πj , σ)

)
2. If there exists j ∈ [n] such that bj = 0, output ⊥.
3. ∀j ∈ [n] : dj ← DPj

(
(hkl,EPl, πl)l 6=j

)
4. R← mkFHE.FinDec(d1, . . . , dn)
5. Output R

Fig. 31. The standard mode of the lossy distributed sampler

the lossy mode so that no adversary running in time p′(λ) can distinguish between injective mode and lossy
mode with advantage greater than δ/2. In this way, we are sure that the distinguishability advantage between
step zero and step six is at most δ/2 + negl(λ). This step corresponds to the lossy mode of the distributed
sampler.

7.3 Formalising the Results

The full description of the standard mode of our distributed sampler is in Fig. 31. In the construction, NIZK
denotes an almost everywhere extractable NIZK. When we aim for security against non-uniform adversaries,
NIZK will be chosen-ID zero-knowledge and almost everywhere extractable as in Def. 2. In the uniform setting
instead, we will rely on simulation almost-everywhere extractability and zero-knowledge as in Def. 31. The
NP relation underlying NIZK is

R1 :=


(i, hki,EPi),

W

∣∣∣∣∣∣∣∣
(K

(i)
1 ,K

(i)
2 , u1, u2) := PRG(W)

hki = Hash.Gen(1lλ; u1)

EPi = iO(1lλ,EProg[K
(i)
1 ,K

(i)
2 , i]; u2)


We also make use of a simulation-extractable NIZK, which we will denote by NIZK′. In the uniform setting,
NIZK′ will be S(λ)-deterministic whereas NIZK will be a-compatible for every S(λ)-computable sequence a.
In other words, NIZK will be secure even if we leak the trapdoor τ ′ for NIZK′. The relation corresponding to

51

F1

(PPRF)

(n − 1) · λ Hash
(CRHF)

iO
(iO)

mkFHE
(mkFHE)

F2

(PPRF)

F
(PPRF)

NIZK
(iOEC
NIZK)

Fig. 32. In this diagram, we describe the dependencies between the security parameters of the various subexponen-
tially secure primitives. When a primitive is connected through an arrow to (n−1) ·λ, we mean that the advantage of
any PPT adversary against the security of the primitive must be negl(λ)/2(n−1)·λ. When a primitive is connected to
Hash, we mean that the advantage of any PPT adversary against the security of the primitive must be negl(λ)/2t(λ).
We recall that t(λ) denotes the length of the digests. When a primitive is connected to NIZK, we mean that the advan-
tage of any PPT adversary against the security of the primitive must be negl(λ)/d(λ) where d(λ) is the upper-bound
on |VPFEσ,τe | in NIZK.

NIZK′ is the following.

R2 :=


(
(i, sid, hki,EPi,

DPi, πi, σ),

(W,ρ1, ρ2)
)
∣∣∣∣∣∣∣∣∣∣
(K

(i)
1 ,K

(i)
2 , u1, u2) := PRG(W)(

(i, hki,EPi),W
)
∈ R1

DPi = iO(1lλ,DProg[i, sid,K
(i)
2 ,EPi, hki, σ]; ρ1)

πi = NIZK.Prove
(
σ, (sid, i), (i, hki,EPi),W ; ρ2

)


Above, we used L1 and L2 to denote the length of the randomness used to obfuscate DProg and to prove a
statement using NIZK, respectively.

We rely on an injective and subexponentially secure indistinguishability obfuscator iO. We also use a
multi-key FHE scheme mkFHE that satisfies subexponential reusable semi-malicious security. Let Hash be a
subexponentially collision resistant hash function, outputting digests of length t(λ). We use two subexpo-
nentially secure puncturable PRFs F1 and F2. The first one outputs a pseudorandom string of length equal
to the randomness needed by D(1lλ). The second one outputs a pseudorandom string of length equal to the
randomness needed by mkFHE.Gen, mkFHE.Enc, mkFHE.Sim1, mkFHE.PartDec and mkFHE.Sim2. Finally, we
rely on a PRG mapping a λ-bit seed W into a pseudorandom string (K1,K2, u1, u2) where K1 and K2 are
PRF keys for F1 and F2 respectively and u1 and u2 are as long as the randomness needed by Hash.Gen and
the obfuscation of EProg respectively.

In Fig. 33, we formalise the lossy mode of the distributed sampler. Notice that the construction relies on
a subexponentially secure puncturable PRF F . Its outputs are pseudorandom strings that are as long as the
randomness needed by D(1lλ). The construction relies also an ELF. We choose the domain of the latter so
that all tuples (hkj ,EPj)j∈[n] fit into it. In Fig. 34, we present the algorithms used for programmability and
regularity. We describe the dependencies between the subexponentially secure primitives in Fig. 32.

Theorem 15. Assume the existence of ELFs and the subexponential security of injective iO, multi-key
FHE, collision resistant hash functions and puncturable PRFs. If AClass denotes the class of non-uniform
adversaries, we also assume the existence of simulation-extractable NIZKs and almost everywhere extractable
NIZKs with unstructured CRS. If instead AClass denotes the class of uniform adversaries, we additionally
assume the existence of simulation-extractable NIZKs and simulation almost everywhere extractable NIZKs
with no CRS.

Then, the construction in Fig. 31 is a programmable lossy distributed sampler for D(1lλ) with security
against AClass. If the ELF is regular, the lossy distributed sampler is also regular. If AClass denotes the class

52

The Lossy Mode of the Distributed Sampler
LossySetup

(
1lλ, q(λ)

)
:

1. (σ, τs, τe)
$← NIZK.SimSetup(1lλ)

2. (σ′, τ ′)
$← NIZK′.SimSetup(1lλ)

3. f
$← ELF.Gen(M, q)

4. Output crs := (σ, σ′) and ζ := (σ, σ′, τs, τe, τ
′, f).

LossyGen
(
1lλ, sid, i, ζ := (σ, σ′, τs, τe, τ

′, f)
)
:

1. K
$← F.Gen(1lλ)

2. K
(i)
2

$← F2.Gen(1lλ)

3. hki
$← Hash.Gen(1lλ)

4. EPi
$← iO(1lλ,EProgLs[K

(i)
2 , i]) (see Fig. 27)

5. ∀j 6= i : τ je
$← NIZK.Trap

(
τe, (sid, j)

)
6. DPi

$← iO(1lλ,DProgLs[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K, f]) (see Fig. 28)

7. πi
$← NIZK.SimProve

(
τs, (sid, i), (i, hki,EPi)

)
8. π′i

$← NIZK′.SimProve
(
τ ′, (i, sid, hki,EPi,DPi, πi, σ)

)
9. Output Ui := (hki,EPi,DPi, πi, π

′
i) and ξe := K.

Project
(
ζ = (σ, σ′, τs, τe, τ

′, f),
(
Uj = (hkj ,EPj ,DPj , πj , π

′
j)
)
j∈[n], sid

)
:

1. ∀j ∈ [n] : bj ← NIZK′.Verify
(
σ′, π′j , (j, sid, hkj ,EPj ,DPj , πj , σ)

)
2. If there exists j ∈ [n] such that bj = 0, output ⊥.
3. Output f

(
(hkj ,EPj)j∈[n]

)
.

Extract(ξe = K, z):

1. If z = ⊥, output ⊥.
2. s← F (K, z)
3. Output D(1lλ; s).

Fig. 33. The lossy mode of the distributed sampler

53

Programmability and Regularity of the Lossy Distributed Sampler
ProgGen

(
1lλ, sid, i, z, R, ζ := (σ, σ′, τs, τe, τ

′, f)
)
:

1. K
$← F.Gen(1lλ)

2. K∗ ← F.Punct(K, z)

3. K
(i)
2

$← F2.Gen(1lλ)

4. hki
$← Hash.Gen(1lλ)

5. EPi
$← iO(1lλ,EProgLs[K

(i)
2 , i]) (see Fig. 27)

6. ∀j 6= i : τ je
$← NIZK.Trap

(
τe, (sid, j)

)
7. DPi

$← iO(1lλ,DProgPr[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

∗, z, f, R]) (see Fig. 35)

8. πi
$← NIZK.SimProve

(
τs, (sid, i), (i, hki,EPi)

)
9. π′i

$← NIZK′.SimProve
(
τ ′, (i, sid, hki,EPi,DPi, πi, σ)

)
10. Output Ui := (hki,EPi,DPi, πi, π

′
i).

Z
(
ζ = (σ, σ′, τs, τe, τ

′, f)
)
:

1. b
$← {0, 1}

2. If b = 0, output ⊥.

3. x
$← [M]

4. Output f(x).

Fig. 34. Programmability and regularity of the lossy distributed sampler

of non-uniform adversaries, the construction relies on an unstructured CRS whose size is independent of
D(1lλ). If AClass denotes the class on uniform adversaries, the construction does not need any CRS.

Moreover, let p′(λ) denote a polynomial upper-bounding the running times of LossySetup, LossyGen and
LossySample. The advantage of an adversary A running in time at most p(λ) in distinguishing between the
lossy mode and the standard mode is

AdvM,q
ELF,A′(λ) + negl(λ),

where A′ is an adversary running in time at most p(λ)2 ·p′(λ) and AdvM,q
ELF,A′(λ) denotes the advantage of A′

in distinguishing between the injective mode of the ELF with domain size M and its lossy mode parametrised
by q(λ).

We prove the above theorem in Appendix C.

8 Building Hardness-Preserving Distributed Samplers

We explain the idea behind our result. Consider a PPT adversary A that outputs 1 with non-negligible
probability ε(λ) in the real-world execution of the regular and programmable lossy distributed sampler (see
Fig. 17). In such execution, the distributed sampler will be in standard mode. We recall that our goal is
to show the existence of a simulator, which depends on A, such that, even in the simulated execution, the
adversary A still outputs 1 with non-negligible probability.

We use a hybrid argument. In the first stage, we switch our distributed sampler to lossy mode. The new
setting is clearly distinguishable from the initial one but, by choosing the polynomial q parametrising the
lossy mode properly, we can make sure that the adversary A still outputs 1 with probability at least ε(λ)/2.

In the next hybrid, we use the regularity of the lossy distributed sampler to argue that the probability
that A outputs 1 and Z guesses the output chosen by the adversary is also non-negligible.

In the final hybrid, we rely on the programmability properties to hide an ideal sample R in the position
guessed by Z. Since the adversary cannot detect any change, A will still have a non-negligible probability
of outputting 1 while picking R as output of the protocol.

54

DProgPr[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

∗, ẑ, f, R]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K
(i)
2 , the encryption program

EPi, the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors (τ je)j 6=i, a punctured PRF
key K∗, the position ẑ, the ELF f , the ideal sample R.
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. ∀j 6= i : bj ← NIZK.Verify
(
σ, (sid, j), πj , (j, hkj ,EPj)

)
2. ∀j 6= i :

(
K

(j)
1 ,K

(j)
2

)
← NIZK.Extract

(
τ je , πj , (j, hkj ,EPj)

)
a

3. If ∃j 6= i such that bj = 0 or
(
K

(j)
1 ,K

(j)
2

)
= ⊥, output ⊥

4. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
5. ∀j 6= i : sj ← F1

(
K

(j)
1 , yj

)
6. ∀j ∈ [n] : (rj , r

′
j , r
′′
j , ηj , η

′
j)← F2

(
K

(j)
2 , yj

)
7. z ← f

(
(hkj ,EPj)j∈[n]

)
8. s← F (K∗, z)
9. R̂← D(1lλ; s)

10. If z = ẑ, R̂← R
11. (φ, pki, ski)← mkFHE.Sim1(1lλ, i; r′′i)

12. di ← mkFHE.Sim2

(
φ, D̃, R̂, (sj , rj , r′j)j 6=i; η′i

)
(see bottom of Fig. 26)

13. Output di

Fig. 35. The unobfuscated decryption program for programmability

From the last hybrid, we can easily obtain the simulators we are looking for. We simulate the CRS using
LossySetup

(
1lλ, q(λ)

)
. The choice of q(λ) depends on A. In particular, q(λ) needs to be sufficiently large so

that A cannot distinguish between the first two hybrids with advantage greater than ε(λ)/2. The simulation
of the distributed sampler message is instead performed using ProgGen. The programmed position is sampled
using Z. We formalise the construction in Fig. 36.

The Hardness-Preserving Simulators.
Let q(λ) be the polynomial associated with A.
SimSetupA

(
1lλ
)
:

1. (crs, ζ)
$← LossySetup(1lλ, q)

2. Output crs and ζ.

SimGenA
(
1lλ, sid, i, ζ, R

)
:

1. z
$← Z(ζ)

2. (Ui, ξ)
$← ProgGen(1lλ, sid, i, z, R, ζ)

3. Output Ui.

Fig. 36. The hardness-preserving simulators.

Theorem 16 (Hardness-preserving distributed sampler). Let DS = (Setup,Gen,Sample,SimSetupA,
SimGenA) be a regular and programmable lossy distributed sampler for D(1lλ) against AClass. Then, the
construction described in Fig. 31 and Fig. 36 is an n-party hardness-preserving distributed sampler for D
against AClass.

55

We prove Theorem 16 in Appendix D.

8.1 Building Indistinguishability Preserving Distributed Samplers

We now explain why the distributed sampler presented in Section 7 is indistinguishability preserving.

The Indistinguishability-Preserving Simulators
SimSetup

(
1lλ
)
:

1. (σ, τs, τe)
$← NIZK.SimSetup(1lλ)

2. (σ′, τ ′)
$← NIZK′.SimSetup(1lλ)

3. f
$← ELF.Gen(M,M)

4. Output crs := (σ, σ′) and ζ := (σ, σ′, τs, τe, τ
′, f)

SimGen
(
1lλ, sid, i, ζ := (σ, σ′, τs, τe, τ

′, f), aux
)
:

1. K
$← F.Gen(1lλ)

2. K
(i)
2

$← F2.Gen(1lλ)

3. hki
$← Hash.Gen(1lλ)

4. EPi
$← iO(1lλ,EProgLs[K

(i)
2 , i]) (see Fig. 27)

5. ∀j 6= i : τ je
$← NIZK.Trap

(
τe, (sid, j)

)
6. DPi

$← iO(1lλ,DProgIP[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K, f, aux]) (see Fig. 38)

7. πi
$← NIZK.SimProve

(
τs, (sid, i), (i, hki,EPi)

)
8. π′i

$← NIZK′.SimProve
(
τ ′, (i, sid, hki,EPi,DPi, πi, σ)

)
9. Output Ui := (hki,EPi,DPi, πi, π

′
i) and ξ := (sid, σ′, σ, f,K, aux).

Trap
(
ξ = (sid, σ′, σ, f,K, aux),

(
Uj = (hkj ,EPj ,DPj , πj , π

′
j)
)
j∈[n]

)
:

1. ∀j ∈ [n] : bj ← NIZK′.Verify
(
σ′, π′j , (j, sid, hkj ,EPj ,DPj , πj , σ)

)
2. If ∃j ∈ [n] such that bj = 0, output (⊥,⊥).
3. z ← f

(
(hkj ,EPj)j∈[n]

)
4. s← F (K, z)
5. Output (R, T)← D′(1lλ, aux; s)

Fig. 37. The indistinguishability-preserving simulators

Consider any pair of chosen-sample indistinguishable games G0 and G1 where G0 = (D,Ch0) is a game
with oracle distribution and G1 = (D′,Ch1) is a game with trapdoored oracle distribution satisfying trapdoor
security. We start by considering any PPT adversary A whose goal is to distinguish between the compiled
games G′0 and G′1. The proof relies on a hybrid argument beginning from G′0. We will explain the distributed
sampler simulator for the trapdoored mode in the last hybrid.

The hybrids. In the first stage, we activate the lossy mode of the distributed sampler using some polynomial
q(λ). At this point, the output of the construction is restricted in a set of polynomial size. Notice, however,
that we have given the adversary non-negligible distinguishability advantage ε1(λ). We will argue later why
this will not constitute a problem.

In the next hybrid, we proceed by switching from the challenger Ch0 to the challenger Ch1 without
providing the latter with any trapdoor T . The modification cannot be detected by the adversary due to the
chosen-sample indistinguishability between G0 and G1.

56

Next, using obfuscation and puncturable PRFs, we will gradually change the distribution of the outputs of
the distributed sampler, switching from D to the trapdoored distribution D′. The technique is similar to the
one we used to prove programmability. The main difference is that we repeat the procedure many times, once
for each element in the image of the ELF. Simultaneously, we will start providing Ch1 with the trapdoors T .
Specifically, there will be some hybrids in which part of the distributed sampler outputs are produced using
D whereas the rest is generated using D′. When the distributed sampler output chosen by the adversary
is generated using D′, we provide the corresponding trapdoor T to Ch1 otherwise, we will not. We will be
able to retrieve the trapdoors leveraging the knowledge of the ELF f and the PPRF key K hardcoded into
the lossy-mode messages. The randomness fed into D′ will indeed be F (K, z) where z = f

(
(hkj ,EPj)j∈[n]

)
,

similarly to what happened in DProgLs (see Fig. 28). To prove that this stage is indistinguishable from the
previous one, we use a hybrid argument that is iterated over the image of the ELF. Since the latter has
polynomial cardinality, we do not need to assume that G1 satisfies subexponential trapdoor security.

In the last stage, which will correspond to G′1, we switch back to a construction where the outputs
have high entropy. This will be done by setting the ELF in the construction back to injective mode. The
distributions of the outputs will remain as in the previous hybrid, namely, with a trapdoor embedded in them.
In the process, however, we will give the adversary other non-negligible advantage ε2(λ). Notice anyway, that
this stage is independent of the polynomial q(λ).

Why are G′0 and G′1 indistinguishable? Suppose that our adversary A can distinguish between the initial
and the final stage with non-negligible advantage ε(λ). By choosing the polynomial q(λ) in the lossy mode
properly, we can make ε1(λ) and ε2(λ) arbitrarily small non-negligible functions. In particular, we can make
sure that no adversary running in the same time as A can distinguish between G′0 and G′1 with advantage
greater than ε(λ)/2. In this way, we reach a contradiction.

The simulators. From the last stage of our hybrid argument, we can easily derive the simulators for the
indistinguishability-preserving distributed sampler. The algorithm SimSetup will simulate the CRSs for NIZK
and NIZK′ as LossySetup did (see Fig. 33). Furthermore, it will generate an injective-mode ELF f . The
simulator SimGen will behave exactly as LossyGen (see Fig. 33) with the exception that, in DPi, we substitute
D(1lλ) with D′(1lλ, aux). The trapdoor information ξ will contain the ELF f , the PPRF key K and aux. This
information is sufficient to retrieve the trapdoors hidden in the distributed sampler outputs. We formalise
the construction in Fig. 37.

Theorem 17 (Indistinguishability-preserving distributed sampler). Let D be an efficient distribu-
tion and let D′ be a trapdoored distribution for D. Assume that ELF is a regular extremely lossy function.
Under the hypothesis of Theorem 15, the construction DS = (Setup,Gen,Sample,SimSetup,SimGen,Trap)
described in Fig. 31 and Fig. 37 is an n-party indistinguishability-preserving distributed sampler for (D,D′)
against AClass.

Observe that in the non-uniform setting, we can instantiate the construction so that the CRS is statisti-
cally close to uniform and its length depends only on the security parameter. In the uniform setting, instead,
we do not need any CRS. We prove Theorem 17 in Appendix E.

9 NIZKs with no CRS in the Uniform Setting

Non-interactive zero-knowledge proofs (NIZKs) allow proving the truthfulness of a statement by sending a
single message and without revealing further information. It is easy to see that NIZKs for generic NP lan-
guages always need CRSs [BP04]: zero-knowledge implies the existence of valid proofs for false statements14.
If any construction did not rely on a CRS, non-uniform adversaries that receive accepting proofs for false

14 Consider e.g. the language consisting of the image of a PRG. Since it is hard to distinguish between true statements
and false statements, by running the zero-knowledge simulator on a random false statement, we obtain an accepting
NIZK with high probability.

57

DProgIP[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K, f, aux]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K
(i)
2 , the encryption program

EPi, the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors (τ je)j 6=i, the PPRF key K,
the ELF f , the auxiliary information aux.
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. ∀j 6= i : bj ← NIZK.Verify
(
σ, (sid, j), πj , (j, hkj ,EPj)

)
2. ∀j 6= i :

(
K

(j)
1 ,K

(j)
2

)
← NIZK.Extract

(
τ je , πj , (j, hkj ,EPj)

)
a

3. If ∃j 6= i such that bj = 0 or
(
K

(j)
1 ,K

(j)
2

)
= ⊥, output ⊥

4. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
5. ∀j 6= i : sj ← F1

(
K

(j)
1 , yj

)
6. ∀j ∈ [n] : (rj , r

′
j , r
′′
j , ηj , η

′
j)← F2

(
K

(j)
2 , yj

)
7. z ← f

(
(hkj ,EPj)j∈[n]

)
8. s← F (K, z)
9. (R̂, T̂)← D′(1lλ, aux; s)

10. (φ, pki, ski)← mkFHE.Sim1(1lλ, i; r′′i)

11. di ← mkFHE.Sim2

(
φ, D̃, R̂, (sj , rj , r′j)j 6=i; η′i

)
(see bottom of Fig. 26)

12. Output di

Fig. 38. The unobfuscated decryption program for the indistinguishability-preserving simulator

statements as part of their advice string would break soundness. One could ask if CRSs are still needed if
we aim for security against uniform adversaries. Barak and Pass [BP04] showed that this is not the case: in
their work, they presented NIZKs without CRS achieving soundness and zero-knowledge against uniform ad-
versaries. In this section, in contrast with the approach of [BP04], we study the problem of CRS-less NIZKs
in a concurrent setting, explaining how to achieve, among other notions, multi-theorem zero-knowledge,
simulation-soundness [Sah99] and simulation extractability. Throughout the paper, we use the term U-NIZK
to denote non-interactive proofs achieving security against uniform adversaries.

We start by presenting definitions. Although our ultimate goal is to remove CRSs, for generality and to
keep the notation consistent with the non-uniform setting, our notions will still rely on a Setup algorithm.
In the CRS-less constructions, Setup will output the empty string.

Multi-theorem zero-knowledge U-NIZK. We begin by formalising the notion of multi-theorem zero-knowledge
against uniform adversaries. The concept is analogous to the non-uniform setting: the adversary cannot
distinguish between an oracle that generates proofs using the witnesses and one that simulates them.

In order to achieve a weak form of composability for U-NIZKs, we also provide the adversary with a non-
uniform advice string aλ. While in the non-uniform setting, we ask zero-knowledge to hold independently
of the choice of the advice string, we now define security with respect to a fixed sequence of advice strings
a = (aλ)λ∈N. We will use this approach also in all the other definitions of this section.

Definition 18 (Multi-Theorem Zero-Knowledge). Let a = (aλ)λ∈N be non-uniform advice. A NIZK
(Setup,Prove,Verify) for the NP relation R is a-disclosed multi-theorem zero-knowledge if there exists a
possibly non-uniform PPT algorithm SimSetup and a uniform PPT algorithm SimProve such that no uniform
PPT adversary can win the game in Fig. 39 with non-negligible advantage.

Simulation-Sound U-NIZKs. We now present the definition of simulation-sound U-NIZK. This is a multi-
theorem zero-knowledge construction in which it is hard to generate accepting proofs for false statements
even when the adversary has access to the simulation oracle [Sah99].

58

Multi-Theorem Zero-Knowledge Game for U-NIZKs
Initialisation: This procedure is run only once, at the beginning of the game.

1. b
$← {0, 1}

2. σ0
$← Setup(1lλ)

3. (σ1, τ)
$← SimSetup(1lλ)

4. Activate the adversary with 1lλ, σb and aλ.

Prove: This procedure can be queried multiple times. Upon receiving any query (Prove, x, w) where (x,w) ∈ R,
compute the following.

1. π0 $← Prove(1lλ, σ, x, w)

2. π1 $← SimProve(τ, x)
3. Give πb to the adversary.

Win: The adversary wins if it guesses b.

Fig. 39. Multi-theorem zero-knowledge game for U-NIZKs

Definition 19 (Simulation-sound U-NIZK). Let a = (aλ)λ∈N be non-uniform advice. A NIZK (Setup,Prove,
Verify) for R is a-disclosed U-simulation-sound if it is a-disclosed multi-theorem zero-knowledge and, for ev-
ery uniform PPT adversary A ,

Pr

 (π, x) 6∈ Q
Verify(σ, π, x) = 1

x 6∈ LR

∣∣∣∣∣∣∣
(σ, τ)

$← SimSetup(1lλ)

(π, x)
$← ASimProve(τ,·)(1lλ, σ, aλ)

 = negl(λ)

where Q denotes the set of the responses provided by SimProve(τ, ·).

Restricted simulation-sound U-NIZK. Restricted simulation-soundness is a weaker form of simulation-soundness:
in the corresponding game, the adversary can only query the simulation oracle with statements for which
it knows a witness. The primitive guarantees the existence of an inefficient uniform algorithm Check that
rejects all proofs for false statements, even those that pass the usual verification. The primitive guarantees
the hardness of generating proofs for which Check and Verify disagree. Observe that there might exist proofs
for true statements that are rejected by Check.

While building CRS-less simulation-sound U-NIZKs will require introducing new assumptions, we achieved
restricted simulation-soundness from more conservative hypotheses.

Definition 20 (Restricted simulation-sound U-NIZK). Let a = (aλ)λ∈N be non-uniform advice.
A NIZK (Setup,Prove,Verify) for R is a-disclosed restricted U-simulation-sound if it is a-disclosed multi-
theorem zero-knowledge and there exists an inefficient, uniform, deterministic algorithm Check such that

1. For every pair (σ, π, x) such that Verify(σ, π, x) = 1 but x 6∈ LR

Pr
[
Check(σ, π, x) = 1

]
= 0.

2. No uniform PPT adversary A can win the game in Fig. 40 with non-negligible probability.

Observe that Check can trivially be the algorithm that performs a brute-force search for a witness,
however, in this case, the construction would have limited applications. For instance, consider the case in
which n parties, some of them corrupted, exchange messages along with NIZKs proving their well-formedness.
Let S(λ) denote the running time of Check. Using a restricted simulation-sound NIZK, we can switch to

59

Game for Restricted Simulation-Sound U-NIZKs
Initialisation: This procedure is run only once, at the beginning of the game.

1. Q← ∅
2. (σ, τ)

$← SimSetup(1lλ)
3. Activate the adversary with 1lλ, σ and aλ.

Prove: This procedure can be queried multiple times. Upon receiving any query (Prove, x, w) where (x,w) ∈ R,
compute the following.

1. π
$← SimProve(τ, x)

2. Add (π, x) to Q
3. Give π to the adversary.

Win: The adversary wins if it outputs (π, x) 6∈ Q such that Verify(σ, π, x) 6= Check(σ, π, x).

Fig. 40. Restricted simulation-sound U-NIZK game

the hybrid in which the honest parties send simulated proofs and abort if the proof of any corrupted player
is rejected by Check. Notice that at this point, the simulation is inefficient as it needs to run Check. Now,
suppose that we want to substitute the messages of the honest parties with a new set of indistinguishable
messages not belonging to the language. The operation can be performed as long as distinguishing is hard
even for adversaries running in poly(λ, S(λ)

)
time. If, however, Check performs a brute-force search for the

witness, that can never happen.

Simulation-extractable U-NIZK. A simulation-extractable U-NIZK satisfies knowledge soundness: the trap-
door τ generated by the setup simulator allows us to efficiently extract the witness from verifying proofs.
Security states that even if the adversaries has access to the simulation oracle, it is hard to generate a proof
that verifies but for which the extraction of the witness fails.

Definition 21 (Simulation-extractable U-NIZK). Let a = (aλ)λ∈N be non-uniform advice. A NIZK
(Setup,Prove,Verify) for R is a-disclosed U-simulation-extractable if it is a-disclosed multi-theorem zero-
knowledge and there exists a uniform PPT algorithm Extract such that

1. The algorithm Extract is deterministic and, for every w = Extract(τ, π, x),

Pr
[
(x,w) ∈ R

∣∣∣w 6= ⊥] = 1.

2. For every uniform PPT adversary A ,

Pr

 (π, x) 6∈ Q
Verify(σ, π, x) = 1

Extract(τ, π, x) = ⊥

∣∣∣∣∣∣∣
(
σ, τ
) $← SimSetup(1lλ)

(π, x)
$← ASimProve(τ,·)(1lλ, σ, aλ)

 = negl(λ)

where Q denotes the set of the responses provided by SimProve(τ, ·).

Restricted simulation-extractable U-NIZK. Similarly to simulation-soundness, we define a weaker notion of
simulation-extractability by restricting the simulation queries to statements for which the adversary knows a
witness. Compared to simulation-extractability, we will be able to realise this definition without CRSs using
weaker assumptions.

Definition 22 (Restricted simulation-extractable U-NIZK). Let a = (aλ)λ∈N be non-uniform advice.
A NIZK (Setup,Prove,Verify) for R is a-disclosed restricted U-simulation-extractable if it is a-disclosed multi-
theorem zero-knowledge and there exists a uniform PPT algorithm Extract such that

60

Game for Restricted Simulation-Extractable U-NIZKs
Initialisation: This procedure is run only once, at the beginning of the game.

1. Q← ∅
2. (σ, τ)

$← SimSetup(1lλ)
3. Activate the adversary with 1lλ, σ and aλ.

Prove: This procedure can be queried multiple times. Upon receiving any query (Prove, x, w) where (x,w) ∈ R,
compute the following.

1. π
$← SimProve(τ, x)

2. Add (π, x) to Q
3. Give π to the adversary.

Win: The adversary wins if it outputs a pair (π, x) 6∈ Q such that Verify(σ, π, x) = 1 but Extract(τ, π, x) = ⊥.

Fig. 41. Restricted simulation-extractable U-NIZK game

1. The algorithm Extract is deterministic and, for every w = Extract(τ, π, x),

Pr
[
(x,w) ∈ R

∣∣∣w 6= ⊥] = 1.

2. No uniform PPT adversary A can win the game in Fig. 41 with non-negligible probability.

Computable sequence and deterministic U-NIZKs. Before describing our CRS-less constructions, we present
two additional definitions. These will be fundamental to formalise a weak form of composability for U-NIZKs.

The first definition introduces the notion of T (λ)-computable sequence and quantumly computable se-
quence. The former consists of a sequence of values indexed by the security parameter that is computable
in uniform-poly

(
λ, T (λ)

)
time. The latter indicates a sequence that is computable in uniform, quantum

polynomial time.

Definition 23 (T -computable sequence and quantumly computable sequence). Let a := (aλ)λ∈N
be a sequence of values. Let T (λ) be a function of λ. We say that a is T -computable if there exists a uniform
algorithm C running in poly

(
λ, T (λ)

)
time such that

Pr
[
C(1lλ, 1lT (λ)) = aλ

]
= 1− negl(λ).

We say that a is quantumly computable if there exists a uniform, quantum polynomial time algorithm Q such
that

Pr
[
Q(1lλ) = aλ

]
= 1− negl(λ).

Our second definition formalises the concept of T (λ)-deterministic U-NIZK, i.e. a U-NIZK in which
SimSetup is deterministic and its output is T (λ)-computable.

Definition 24 (S-deterministic U-NIZK). Let T (λ) be a function of λ. We say that a U-NIZK is T -
deterministic if there exists an T -computable sequence (aλ)λ∈N such that

Pr
[
SimSetup(1lλ) = aλ

]
= 1.

61

9.1 Building restricted simulation-sound U-NIZKs without CRS

In this section, we show how to build restricted simulation-sound U-NIZK without CRS. In [BL18b], Bitansky
and Lin presented CRS-less NIZKs with a weak form of security against non-uniform adversaries: an attacker
can generate valid proofs only for a number of false statements proportional to its non-uniformity. It is
not hard to see that their constructions achieve full soundness against uniform adversaries (using collision
resistant keyless hash functions as incompressible problem). One of them is particularly interesting: it satisfies
a tag-based version of restricted simulation-soundness15 (i.e. each proof is associated with a tag. Generating
a valid proof for a false statement under a tag t̂ag remains hard even given simulated proofs under tags
different from t̂ag).

In this section, we show how to achieve restricted simulation-soundness without needing tags. Following
the blueprint of [BL18b], our construction is obtained by using tag-based non-malleable commitments in the
scheme of [BP04]. In particular, each proof includes a CCA commitment to 0, we denote it by c. We use a
NIWI to prove that either our statement lies in the language or c is a commitment to a collision for a keyless
hash function. Following [GO07], the commitment tag will consist of a strong one-time signature verification
key vk. The proof is finally augmented with a signature over the NIWI and the commitment using vk. The
scheme is formalised in Fig. 42.

To simulate a proof, we will commit to a collision for the keyless hash function and use the latter as
witness for the NIWI. It is easy to prove zero-knowledge by leveraging witness indistinguishability and the
hiding properties of the commitment.

As for soundness, thanks to the collision resistance of the hash function and the perfect soundness of the
NIWI, it will be hard to generate a proof for a false statement. Indeed, in all such proofs, c is a commitment
to a collision. The signature and the CCA security of the commitment will make sure that this holds even
if the adversary has access to an oracle that generates simulated proofs. Indeed, the signature guarantees
that, if the adversary succeeds in generating a valid proof for a false statement, it must use a fresh signing
key, instead of one generated by the oracle. Since the tag of the CCA commitment is the verification key, in
order to obtain a commitment to a collision under its own tag, the adversary needs to either break hiding
or the non-malleability of the commitment. In either case, that would contradict the security of the CCA
commitment.

Observe that Check can easily reject all proofs for false statements by extracting the value in c and
checking if it consists of a collision for the hash function. The running time of Check is therefore independent
of R.

Formalising the construction. Let T (λ) be a function of the security parameter and let e ∈ N such that
T (λ) ≤ 2λ

e

. We rely on a e-computation enabled non-interactive CCA commitment [GKLW21]. We require
that the construction satisfies perfect correctness. Let S(λ) denote the running time of CCACom.Val.

Let KHash be a keyless collision-resistant hash function with domain size p(λ) achieving security against
uniform adversaries running in poly

(
λ, S(λ), T (λ)

)
time. Suppose also that the smallest collision for KHash

according to the lexicographical order is 2λ
e

-computable. Fo every λ ∈ N, we denote this collision by (y0λ, y
1
λ).

Let NIWI be a perfectly sound, witness indistinguishable proof system for the relation

RNIWI :=


(vk, c, x),

w

∣∣∣∣∣∣∣∣∣(x,w) ∈ R OR


w = (y0, y1, r)

y0 6= y1

KHash(y0) = KHash(y1)

c = CCACom
(
1lλ, vk, (y0, y1); r

)



We require that NIWI is witness indistinguishable even against adversaries running in poly
(
λ, S(λ)

)
time.

Finally, let SOTS = (Gen,Sign,Verify) be a strong one-time signature. To summarise, we have T (λ), S(λ)�
2λ

e

.
15 In the paper [BL18b], Bitansky and Lin claim that the construction is tag-based simulation-sound. This is, however,

not the case: the construction is only restricted simulation-sound as the NIWI in their scheme guarantees that the
trapdoors are kept secret only if the statement lies in the language.

62

A restricted simulation-sound NIZK without CRS
Prove(1lλ, x, w)

1. (vk, sk)
$← SOTS.Gen(1lλ)

2. c
$← CCACom(1lλ, vk, 02p(λ))

3. π′
$← NIWI.Prove

(
1lλ, (vk, c, x), w

)
4. s← SOTS.Sign

(
sk, (vk, c, π′)

)
5. Output π := (vk, c, π′, s)

Verify
(
π = (vk, c, π′, s), x

)
1. b0 ← SOTS.Verify

(
vk, (vk, c, π′), s

)
2. b1 ← NIWI.Verify

(
π′, (vk, c, x)

)
3. Output b0 ∧ b1.

SimSetup(1lλ)

1. Retrieve the smallest collision (y0λ, y
1
λ) for KHash according to the lexicographical order. Such collision is

given as a non-uniform advice.
2. Output the empty string along with τ = (y0λ, y

1
λ).

SimProve(τ = (y0λ, y
1
λ), x)

1. (vk, sk)
$← SOTS.Gen(1lλ)

2. r
$← {0, 1}q(λ)

3. c← CCACom(1lλ, vk, τ ; r)

4. π′
$← NIWI.Prove

(
1lλ, (vk, c, x), (τ, r)

)
5. s← SOTS.Sign

(
sk, (vk, c, π′)

)
6. Output π := (vk, c, π′, s)

Check(π = (vk, c, π′, s), x)

1. b← Verify(1lλ, π, x)
2. If b = 0, output 0.
3. (y0, y1)← CCACom.Val(vk, c)
4. If KHash(y0) = KHash(y1) and y0 6= y1, output 0, otherwise, output 1.

Fig. 42. A restricted simulation-sound NIZK without CRS

63

Theorem 18. Let a := (aλ)λ∈N be a T -computable sequence. Assume the existence of computation-enabled
CCA commitments with poly(λ) tag size and strong one-time signatures. Furthermore, assume the existence
of subexponentially collision-resistant keyless hash functions and subexponentially witness-indistinguishable
non-interactive proofs without CRS. Then, the construction in Fig. 42 is an a-disclosed restricted simulation-
sound NIZK without CRS for R with security against uniform PPT adversaries.

Proof. Completeness follows immediately from the completeness of NIWI.
The first property of restricted simulation-soundness is an easy consequence of the perfect soundness of

NIWI and the perfect correctness of CCACom. Indeed, if the NIZK verifies, the NIWI π′ must verify. If x does
not belong to the language, it must be that c is a commitment to a collision for KHash. So Check outputs 0
with probability 1.

We now prove the second property and multi-theorem zero-knowledge at once. In particular, consider
the zero-knowledge game in Fig. 39 in which we augment the adversary with a verification oracle. The latter
can be queried with pairs (π, x) that are not responses of the proving oracle. When b = 0, the answer will
be Verify(σ, π, x), when b = 1 instead, the answer will be Check(σ, π, x). We show that even in this game,
the adversary cannot guess b with non-negligible advantage. This immediately implies both multi-theorem
zero-knowledge and restricted simulation-soundness. Indeed, if there was a way to generate a pair (π, x) such
that Verify(σ, π, x) 6= Check(σ, π, x) while having access to the simulation oracle, then it is immediate to
guess b: when b = 0, the verification oracle always outputs Verify(σ, π, x), when b = 1, instead, that does not
happen.

We use a hybrid argument.
Hybrid 0. This corresponds to the augmented zero-knowledge game when b = 0. In particular, the

proofs are generated using witnesses and verification just relies on Verify.
Hybrid 1. In this hybrid, in each verification query where (π, x) 6∈ Q, the challenger checks if the

verification key vk included in π coincides with one stored in Q. In that case, the challenger immediately
returns 0.

Claim. No PPT adversary can distinguish between Hybrid 0 and Hybrid 1.

Proof of the claim. If an adversary A distinguishes between Hybrid 0 and Hybrid 1, it means that, with non-
negligible probability ε(λ), it can generate a proof π = (vk, c, π′, s) for a statement x such that Verify(π, x) = 1
and vk coincides with the verification key of a proof π̂ = (vk, ĉ, π̂′, ŝ) previously generated by the challenger.
Observe that π 6= π̂ and SOTS.Verify

(
vk, (vk, c, π′), s

)
= 1.

We show how to build a uniform adversary B that breaks the security of the strong one-time signature
scheme SOTS. This immediately leads to a contradiction.

Let M := M(λ) denote a polynomial upper-bound on the number of Prove queries issued by A. The

adversary B receives the verification key v̂k from its challenger, samples a random i
$← [M] and simulates the

game in Hybrid 0 for an internal copy of A. Since the one-time signature is secure even against non-uniform
adversaries, we can assume that B receives aλ as part of its non-uniform advice. At the i-th Prove query, B
deviates from the game: it generates the commitment ĉ and the NIWI proof π̂′ using the verification key v̂k.
Then, it queries (v̂k, ĉ, π̂′) and includes the answer ŝ in the proof (v̂k, ĉ, π̂′, ŝ).

For every valid verification query (π, x) 6∈ Q where π = (vk, c, π′, s), B checks if the verification key in

π coincides with v̂k. If that happens and Verify(π, x) = 1, B outputs the forgery (vk, c, π′), s. Notice that B
succeeds with probability at least ε(λ)/M(λ). �

Hybrid 2. In this hybrid, we answer every verification query using Check instead of Verify. The rest
remains as in Hybrid 1. In particular, we keep checking if the signature keys included in the verification
queries coincide with those in Q. When that happens, we always answer with 0.

Claim. No uniform PPT adversary can distinguish between Hybrid 2 and Hybrid 1.

Proof of the claim. If an adversary A distinguishes between Hybrid 1 and Hybrid 2, it means that, with non-
negligible probability, it can generate a proof π = (vk, c, π′, s) for a statement x such that Verify(π, x) = 1
but Check(π, x) = 0. In other words, CCACom.Val(vk, c) will output a collision for KHash.

64

We show how to build a uniform adversary B that finds a collision for KHash running in poly
(
λ, S(λ)

)
time. This immediately proves our claim as it contradicts the security of the keyless hash function.

The adversary B simulates the game in Hybrid 1 for an internal copy of A. It retrieves aλ in uniform
poly

(
λ, T (λ)

)
time. For every verification query, B runs CCACom.Val on the provided commitment. Notice

that this operation can be performed in uniform poly
(
λ, S(λ)

)
time. In case it obtains a collision for KHash,

B outputs it. �

Hybrid 3. This hybrid, the challenger generates the answers to Prove queries using SimProve. All the
rest remains as in Hybrid 2.

Claim. No uniform PPT adversary can distinguish between Hybrid 2 and Hybrid 3.

Proof of the claim. Let M(λ) be a polynomial upper-bounding the number of tuples (xi, wi) queried by A.
Since A is PPT, we know that M exists. Let πi denote the answer to the i-th query.

For every i ∈ [M] ∪ {0}, we define Hybrid 2.i as the hybrid in which, for every j ≤ i, we generate πj
using SimProve(τ, xj). For very j > i instead, we generate πj using Prove(1lλ, xj , wj). The answer to the
verification queries remains as in Hybrid 2.

Notice that Hybrid 2.0 is identical to Hybrid 2. Hybrid 2.M is instead identical to Hybrid 3. In order
to prove our claim, it is sufficient to prove that no uniform PPT adversary can distinguish between Hybrid

2.(i− 1) and Hybrid 2.i for a randomly sampled i
$← [M].

We show this by relying on a sequence of indistinguishable subhybrids.

Hybrid’ 0. This hybrid coincides with Hybrid 2.(i− 1) for i
$← [M].

Hybrid’ 1. In this hybrid, we change the proof πi. In particular, instead of committing to 02p(λ), we
commit to the smallest collision (y0λ, y

1
λ) for KHash according to the lexicographical order. All the rest remains

as in Hybrid’ 0.
This hybrid is indistinguishable from the previous one by the e-computation enabled CCA hiding property

of CCACom. In the reduction, the adversary B starts its execution by querying the Turing machine P that

computes τ = (y0λ, y
1
λ) and aλ. Then, it sample i

$← [M] and runs A. It replies to the first i− 1 queries using
SimProve. Starting from the (i+ 1)-th query, it instead uses Prove.

The adversary B deviates from the game in the i-th Prove query. It begins by generating the signature
key pair (v̂k, ŝk) and queries (tag = v̂k, 02p(λ), τ) to its challenger. It then uses the answer c and (v̂k, ŝk)
to generate πi. The verification queries are answered as in Hybrid 2. Notice that B does not need to run
CCACom.Val as its challenger gives oracle access to it. Observe also that, with overwhelming probability,
B does not query (v̂k, c′) to the CCACom.Val oracle for any value c′. Indeed, the probability that v̂k was
included in a verification query issued before the i-th Prove query is negligible. Furthermore, if the adversary
ever uses v̂k in a verification query after the i-th Prove query, B can immediately output 0.

The adversary B terminates the execution outputting the same value as A. Notice that if A distinguishes
between Hybrid’ 0 and Hybrid’ 1, then B is a e-computation enabled adversary breaking the hiding properties
of CCACom.

Hybrid’ 2. In this hybrid, we change again the proof πi. In particular, instead of using wi as witness for
NIWI, we use τ and the randomness used to commit to it. This hybrid is indistinguishable from the previous
one by the S(λ)-witness indistinguishability of NIWI.

Notice that NIWI is secure against non-uniform adversaries so, in the reduction, we can assume that the
adversary is given τ = (y0λ, y

1
λ) and aλ as part of its advice string. The adversary we construct, denoted by

B, runs in poly
(
λ, S(λ)

)
time. It starts its execution sampling a random i

$← [M] and it simulates the game
as in Hybrid’ 1 to an internal copy of A. It deviates from the game at the i-th Prove query. In particular,
after generating vk and c as usual, it queries (vk, c, xi) along with the witnesses wi and (τ, r) to the NIWI
challenger. Here, r denotes the randomness used for the generation of c. The answer π′ is included in the
proof returned to A. The adversary B replies to the verification queries as in Hybrid’ 1. Notice that the
evaluations of CCACom.Val take S(λ) time. At the end of its execution, B outputs the same bit as A. Notice
that if A succeeds in distinguishing, B succeeds too.

65

Observe that Hybrid’ 2 is identical to Hybrid 2.i for a random i
$← [M]. This ends the proof of the

claim. �

Hybrid 4. This hybrids corresponds to the augmented zero-knowledge game when b = 1. In particular,
in the verification queries, we do not check anymore if vk is part of any element in Q, we simply run Check.

It is easy to see that Hybrid 3 and Hybrid 4 are indistinguishable. Indeed, if that was not the case, it
means that, in Hybrid 3, with non-negligible probability, the adversary could generate a proof π = (vk, c, π′, s)
and a statement x such that (π, x) 6∈ Q, Check(π, x) = 1 and vk was already used by a proof in Q. This
contradicts the fact that A cannot distinguish between Hybrid 0 and Hybrid 3. ut

9.2 Building simulation-sound U-NIZKs without CRS

In this section, we show how to build simulation-sound U-NIZKs without CRS. We present two types of
constructions. In both cases, in order to prove security, we introduce new assumptions.

Uniform-DDH, uniform-LWE and challengeless one-way functions. The first scheme relies on new
variants of DDH and LWE for the uniform setting. For both assumptions, the approach is the same: we require
the existence of a uniform deterministic algorithm that generates part of the DDH and LWE challenge.
Specifically, for DDH, the algorithm outputs the group and the first two elements of the DDH tuple. For
LWE, the algorithm outputs the matrix A describing the lattice. One can imagine these algorithms as the
result of generating two group elements g and h (in the case of DDH), or a full-rank matrix A (in the case
of LWE) using a SHA hash function. The idea is that, if the adversary is uniform, deriving a ∈ Z such that
ga = h or a small vector u 6= 0 such that A · u = 0 is hard. Notice that the assumption totally breaks if we
consider non-uniform adversaries as they can receive a and u as part of their non-uniform advice. In the case
of DDH, our assumption is that no uniform adversary can distinguish between the pair (gr, hr) and (gr, gs)
where r and s are random. In the LWE case, instead, we assume that no uniform adversary can distinguish
between a uniformly random vector v and Aᵀ · s+ x, where s is uniformly random and x is a random small
vector. We further assume that both assumptions are subexponentially secure against uniform adversaries
and, in the case of LWE, even against uniform quantum adversaries.

Definition 25 (Uniform DDH). Let DDHGen be a uniform, polynomial time deterministic algorithm that
on input the security parameter 1lλ outputs a prime p, the description of a cyclic group G of order p and
two elements g, h ∈ G \ {1}. For any function S(λ), we say that the S(λ)-uniform decisional Diffie-Hellman
assumption holds for DDHGen if no uniform adversary running in poly

(
λ, S(λ)

)
time can distinguish between

the following distributions {
gr, hr

∣∣∣r $← [p]
} {

gr, hs
∣∣∣r, s $← [p]

}
Definition 26 (Post-Quantum Uniform LWE). Let m,n, q be functions in the security parameter. Let
χ be a distribution over Zmq that is efficiently samplable using a uniform algorithm and let B(λ) be a bound

on ‖χ(1lλ)‖. Let LWEGen be a uniform, polynomial time, deterministic algorithm that on input the security
parameter 1lλ outputs a rank-n matrix A ∈ Zm×nq . For any function S(λ), we say that the post-quantum S(λ)-

uniform LWE assumption holds for LWEGen if no quantum, uniform adversary running in poly
(
λ, S(λ)

)
time

can distinguish between the following distributions{
Aᵀ · s+ x

∣∣∣s $← Znq , x
$← χ
} {

v
∣∣∣v $← Zmq

}
We say that LWEGen is trapdoored if, for every λ ∈ N, there exists u ∈ Zmq such that u0 = 1, ‖u‖·B(λ) < bq/4c
and A · u = 0 where A = LWEGen(1lλ).

66

Defining challengeless one-way functions. Our first simulation-sound construction relies on a new notion
called challengeless one-way function. The concept is a natural adaptation of one-way function to the uniform
setting. The main difference is that security is not ensured by randomness, but leveraging the computational
limits of uniform adversaries. Informally, a challengeless one-way function is a uniform deterministic algorithm
COWF that, on input any value u, it either accepts it or rejects it. We require that, for every uniform,
computationally bounded adversary, it is hard to find an accepting input. A natural example of challengeless
one-way function is the one that checks if a given pair (x0, x1) consists of a collision for a keyless hash
function.

Definition 27 (Challengeless one-way function). Let p(λ) be a polynomial function. A challengeless
one-way function with input size p(λ) is a uniform deterministic polynomial-time algorithm COWF that takes
as input the security parameter 1lλ and a value u ∈ {0, 1}p(λ). We require the following properties:

1. For every λ ∈ N, there exists at least one element uλ such that COWF(1lλ, uλ) = 1.
2. For every uniform PPT algorithm A

Pr
[
COWF(1lλ, u) = 1

∣∣∣u $← A(1lλ)
]

= negl(λ).

If there exists a unique uλ such that COWF(1lλ, uλ) = 1 for every λ ∈ N, we say that the challengeless
one-way function is injective.

Let S(λ) be a function of the security parameter. We say that COWF is S(λ)-secure if, for every uniform
algorithm A running in poly

(
λ, S(λ)

)
time,

Pr
[
COWF(1lλ, u) = 1

∣∣∣u $← A(1lλ, 1lS(λ))
]

= negl(λ).

We say that COWF is post-quantumly S(λ)-secure if, for every uniform quantum algorithm Q running in
poly

(
λ, S(λ)

)
time,

Pr
[
COWF(1lλ, u) = 1

∣∣∣u $← Q(1lλ, 1lS(λ))
]

= negl(λ).

We observe that uniform DDH and uniform LWE immediately lead to challengeless one-way functions
that are subexponentially secure. In the case of uniform DDH, the construction is post-quantumly broken and
injective. In the case of uniform LWE instead, we also obtain security against uniform quantum adversaries.
These properties will be fundamental in our first simulation-sound U-NIZK.

Theorem 19. Let S(λ) be a function of the security parameter. If S(λ)-uniform DDH holds for DDHGen,
then the algorithm that, on input u ∈ Zp, checks if h = gu for (p,G, g, h)← DDHGen(1lλ) is an S(λ)-secure
injective challengeless OWF.

Theorem 20. Let S(λ) be a function of the security parameter. If the post-quantum S(λ)-uniform LWE
assumption holds for LWEGen and the latter is trapdoored, then the algorithm that, on input u ∈ Zmq , checks

if A·u = 0, u 6= 0 and ‖u‖·B(λ) < bq/4c for A← LWEGen(1lλ) is a post-quantumly S(λ)-secure challengeless
OWF.

Independently hard challengeless one-way functions. Challengeless one-way functions can be tricky objects:
leaking values accepted by one such construction can, in principle, compromise the security of other challen-
geless one-way functions16. Luckily, assuming the subexponential hardness of uniform-DDH, the schemes we
introduced above do not suffer from this issue. Specifically, we can parametrise the security of the construc-
tions so that the uniform-DDH construction is S(λ)-secure while it is possible to brute-force the uniform-LWE
construction in time S(λ). This implies that the first challengeless one-way function is secure even if we leak
values accepted by the second one. The opposite holds too due to the post-quantum security of uniform
LWE: a quantum adversary can easily find values accepted by the first construction while having no chance

16 Consider, e.g., the construction based on uniform-DDH and a similar one which accepts u if and only if gu = h2.

67

against the second one. This kind of trick was used before in [KK19,KNYY21,LPS17]. If a pair of challenge-
less one-way functions behaves as described, we say that they are independently hard. We highlight that it is
possible to obtain independently hard challengeless one-way functions also by instantiating non-interactive
non-malleable commitments such as those of [KK19,GKLW21] using different tags.

Definition 28 (Independently hard challengeless one-way functions). Let COWF0 and COWF1 be
challengeless one-way functions. We say that COWF0 and COWF1 are independently hard if, for every λ ∈ N,
there exist values uλ,0, uλ,1 such that, for every b ∈ {0, 1},

– COWFb(1l
λ, uλ,b) = 1.

– For every uniform PPT adversary A,

Pr
[
COWFb(1l

λ, u) = 1
∣∣∣u $← A(1lλ, uλ,1−b)

]
= negl(λ).

Let S(λ) be a function of the security parameter. We say that COWF0 and COWF1 are S(λ)-independently
hard if the above property holds even against adversaries A running in poly

(
λ, S(λ)

)
time.

We will use independently hard challengeless-one-way functions to build simulation-sound U-NIZKs that
do not need CRSs. As we explained above, we can obtain what we need from uniform-DDH and uniform-LWE.

Theorem 21. Let S(λ) = 2λ
O(1)

be a function of the security parameter. Assuming the subexponential
security of uniform-DDH and the subexponential, post-quantum security of uniform-LWE, there exists a pair
of S(λ)-independently hard challengeless one-way functions.

The above result has clearly the disadvantage that the resulting pair of challengeless one-way functions
is not secure against quantum adversaries, however, there may be other solutions that do not suffer from
this issue.

Challengeless labelled one-way functions. The second simulation-sound U-NIZK that we present relies on a
stronger assumption, namely the existence of challengeless labelled one-way functions. These correspond to
particular challengeless one-way functions that, in addition to the usual input, receive also a label id. We
also require the existence of a trapdoor u that, for any label id, allows efficiently determining a value uid such
that (uid, id) is an accepting pair. Security requires that no uniform, computationally bounded adversary

can find an accepting pair (û, îd) even if it has access to an oracle that, on input any labelled id, returns an
accepting pair (uid, id).

Definition 29 (Challengeless labelled one-way function). An challengeless labelled one-way function
is a pair of uniform PPT algorithms (CLOWF,Derive) with the following properties:

1. CLOWF is deterministic.
2. For every λ ∈ N, there exits a value uλ such that CLOWF(1lλ,Derive(1lλ, uλ, id), id) = 1 with probability 1

for every identity id.
3. For every uniform PPT algorithm A,

Pr
[
id 6∈ Q,CLOWF(1lλ, uid, id) = 1

∣∣∣(id, uid) $← ADerive(1lλ,uλ,·)(1lλ)
]

= negl(λ),

where Q denotes the set of identities queried by A to Derive(1lλ, uλ, ·).

Let B(λ) be a function of the security parameter. We say that the challengeless labelled one-way function is
B(λ)-bounded if, for every λ ∈ N and identity id,∣∣∣{v∣∣∣CLOWF(1lλ, v, id) = 1

}∣∣∣ ≤ B(λ).

We say that the construction is injective if it is 1-bounded.
For any function S(λ), we say that the construction is S(λ)-secure if, for every uniform algorithm A

running in poly
(
λ, S(λ)

)
time,

Pr
[
id 6∈ Q,CLOWF(1lλ, uid, id) = 1

∣∣∣(id, uid) $← ADerive(1lλ,uλ,·)(1lλ, 1lS(λ))
]

= negl(λ).

68

Building challengeless labelled one-way functions is clearly harder than building simple challengeless
one-way functions. In this paper, we present only heuristic constructions. We take inspiration from the
identity-based encryption literature [CHK03,BB04,Wat05,Gen06]. We notice indeed that the secret-keys of
IBE schemes have the kind of structure we are looking for: given a decryption key for any identity we
can efficiently validate it. Moreover, even given access to a key generation oracle, it is hard to compute
decryption keys for non-queried identities. Finally, there exists a trapdoor that allows us to efficiently retrieve
the decryption key for any identity. If the master public key mpk of the IBE scheme is statistically close
to uniform, we can therefore hope that a SHA hash function allows us to deterministically generate mpk
without disclosing the secret counterpart.

Another candidate construction, inspired by [Gen06], is to deterministically generate the parameters of
a pairing-based bilinear map e : G×G→ GT using a SHA hash function along with values g, g1 and h in G.
In this way, we can hope that the values u and v such that g1 = gu and h = gv remain hidden to uniform
adversaries. The trapdoor of the labelled one-way function will be u. For each identity id, the only accepted

value is uid :=
(
h · g−f(id)

)1/(u−id)
where f denotes another SHA hash function. We can easily verify uid by

checking if e(g1/g
id, uid) = e(h · g−f(id), g). Observe that if the SHA hash functions were modelled as random

oracles, an attack to the labelled one-way function would lead to an attack to the IBE scheme of [Gen06].
A nice property of this candidate construction is its injectivity and the fact that is broken against quantum
adversaries. We will rely on these characteristics in Section 10.

A final option is to use signature schemes in which the verification key is statistically close to uniform.
Using a SHA hash function we deterministically generate a verification key vk. We can hope that the private
counterpart, corresponding to the trapdoor of the labelled one-way function, is hard to compute for every
uniform adversary. The value uid associated to the identity id will consist of a signature on id under vk. Clearly,
uid can be easily verified. Moreover, thanks to the security of the signature, we can hope that revealing uid

does not help in finding uid
∗

for any id∗ 6= id. Observe that if we consider a deterministic signature scheme, this
candidate labelled one-way function becomes injective. Furthermore, if we use DLOG-based constructions
such as EdDSA or ECDSA, the labelled one-way function is broken against quantum adversaries.

The first simulation-sound U-NIZK. We now present our first simulation-sound U-NIZK. We make use
of the same primitives as in the restricted simulation-sound construction in Section 9.1 together with the
subexponential hardness of uniform DDH and post-quantum uniform LWE.

The reason why the construction in Section 9.1 failed to achieve full simulation-soundness is the fact
that witness indistinguishability only guarantees that the proof does not leak any information allowing
distinguishing which witness was used. Specifically, if the statement belongs to the language, we are sure
that a simulated proof does not leak the trapdoor. However, if the statement is not in the language, all the
witnesses are based on the same trapdoor (the value hidden in the commitment), so leaking it would not
compromise witness indistinguishability. In order to achieve full-simulation soundness, we will therefore use
two trapdoors: a pair of accepting values for two independently hard challengeless one-way functions COWF0

and COWF1. In other words, each of them will retain their security properties even if we leak values accepted
by the other one.

The idea is to include two CCA commitments c0 and c1 of 0 in the proof instead of just one. The
NIWI will prove that either our statement lies in the language or there exists b ∈ {0, 1} such that cb is a
commitment to a value accepted by COWFb. As for the construction in Section 9.1, we will sign the NIWI
and the commitments using a strong one-time signature. The tag used in the CCA commitments will be the
verification key for such signature.

In order to simulate a proof, we will always commit to a value u0 accepted by COWF0. The proof of zero-
knowledge will proceed similarly to the restricted simulation-sound construction. As for simulation-soundness,
the idea is the following. Thanks to independent hardness, if the oracle uses a value accepted by COWF0 as
trapdoor for the simulated proofs, the adversary cannot generate valid proofs for false statements using values
accepted by COWF1. For the same reason, but in a symmetric way, if the oracle uses a value accepted by
COWF1 as trapdoor for the simulated proofs, the adversary cannot generate valid proofs for false statements
using values accepted by COWF0. We conclude by relying on subexponential witness-indistinguishability: we

69

show that it is impossible to tell if the simulated proofs used COWF0 or COWF1 for the trapdoor even if we
have enough computational power to break the hiding properties of the commitments. That guarantees that
the adversary cannot use either of the challengeless one-way functions to forge proofs.

Formalising the construction. Let T (λ) be a function of the security parameter and let e ∈ N be such that
T (λ) < 2λ

e

. We rely on a e-computation enabled non-interactive CCA commitment [GKLW21]. We require
that the construction satisfies perfect correctness. Let S(λ) denote the running time of CCACom.Val.

Let COWF0 and COWF1 be max{T (λ), S(λ)}-independently hard, challengeless one-way functions with
input size p(λ). For every b ∈ {0, 1} and λ ∈ N, let uλ,b be the value accepted by COWFb that could
be leaked without compromising the security of COWF1−b. We require that the sequence (uλ,0, uλ,1)λ∈N is
2λ

e

-computable.
Let NIWI be a perfectly sound, witness indistinguishable proof system for the relation RNIWI defined

below (vk, c0, c1, x),

w

∣∣∣∣∣∣∣(x,w) ∈ R OR ∃b ∈ {0, 1} s.t.

w = (ub, r)

COWFb(1l
λ, ub) = 1

cb = CCACom
(
1lλ, vk, ub; r

)



We require that NIWI is witness indistinguishable even against adversaries running in poly
(
λ, S(λ)

)
time.

Finally, let SOTS = (Gen,Sign,Verify) be a strong one-time signature. To summarise, we have T (λ), S(λ)�
2λ

e

.

Theorem 22. Let a := (aλ)λ∈N be a T -computable sequence. Assume the existence of computation-enabled
CCA commitments with poly(λ) tag size. Furthermore, assume the existence of subexponentially, indepen-
dently hard, challengeless one-way functions. Finally, assume the existence of strong one-time signatures and
subexponentially secure non-interactive witness-indistinguishable proofs without CRS. Then, the construction
in Fig. 43 is an a-disclosed simulation-sound NIZK without CRS for R with security against uniform PPT
adversaries.

Proof. Completeness follows immediately from the completeness of NIWI.

Claim. The construction in Fig. 43 is an a-disclosed multi-theorem zero-knowledge U-NIZK for R.

Proof of the claim. Let M(λ) be a polynomial upper-bounding the number of tuples (xi, wi) queried by A.
Since A is PPT, we know that M exists. Let πi denote the answer to the i-th query.

For every i ∈ [M]∪ {0}, we define Hybrid i as the hybrid in which, for every j ≤ i, we generate πj using

SimProve(τ, xj). For very j > i instead, we generate πj using Prove(1lλ, xj , wj).
Notice that Hybrid 0 is identical to the zero-knowledge game when b = 0. Hybrid M is instead identical

to the zero-knowledge game when b = 1. In order to prove our claim, it is sufficient to prove that no uniform

PPT adversary can distinguish between Hybrid i− 1 and Hybrid i for a randomly sampled i
$← [M].

We show this by relying on a sequence of indistinguishable subhybrids.

Hybrid’ 0. This hybrid coincides with Hybrid i− 1 for i
$← [M].

Hybrid’ 1. In this hybrid, we change the proof πi. In particular, instead of committing to 0p(λ), we
commit to the value τ = uλ,0 output by SimSetup. All the rest remains as in Hybrid’ 0.

This hybrid is indistinguishable from the previous one by the e-computation enabled CCA hiding property
of CCACom. In the reduction, the adversary B starts its execution by querying the Turing machine P that

computes (uλ,0, uλ,1, aλ). Then, it samples i
$← [M] and runs A. It replies to the first i − 1 queries using

SimProve. Starting from the (i+ 1)-th query, it instead uses Prove.
The adversary B deviates from the game in the i-th Prove query. It begins by generating the signature

key pair (vk, sk) and queries (tag = vk, 0p(λ), uλ,0) to its challenger. It then uses the answer c0 and (vk, sk) to
generate πi. The adversary B terminates the execution outputting the same value that A generates. Notice
that if A distinguishes between Hybrid’ 0 and Hybrid’ 1, then B is a e-computation enabled adversary
breaking the hiding properties of CCACom.

70

A simulation-sound NIZK without CRS
Prove(1lλ, x, w)

1. (vk, sk)
$← SOTS.Gen(1lλ)

2. c0
$← CCACom(1lλ, vk, 0p(λ))

3. c1
$← CCACom(1lλ, vk, 0p(λ))

4. π′
$← NIWI.Prove

(
1lλ, (vk, c0, c1, x), w

)
5. s← SOTS.Sign

(
sk, (vk, c0, c1, π

′)
)

6. Output π := (vk, c0, c1, π
′, s)

Verify
(
π = (vk, c0, c1, π

′, s), x
)

1. b0 ← SOTS.Verify
(
vk, (vk, c0, c1, π

′), s
)

2. b1 ← NIWI.Verify
(
π′, (vk, c0, c1, x)

)
3. Output b0 ∧ b1.

SimSetup(1lλ)

1. Get uλ,0 where COWF(1lλ, uλ,0) = 1 as auxiliary input.
2. Output the empty string along with τ = uλ,0.

SimProve(τ, x)

1. (vk, sk)
$← SOTS.Gen(1lλ)

2. r
$← {0, 1}q(λ)

3. c0 ← CCACom(1lλ, vk, τ ; r)

4. c1
$← CCACom(1lλ, vk, 0p(λ))

5. π′
$← NIWI.Prove

(
1lλ, (vk, c0, c1, x), (τ, r)

)
6. s← SOTS.Sign

(
sk, (vk, c0, c1, π

′)
)

7. Output π := (vk, c0, c1, π
′, s)

Fig. 43. A simulation-sound NIZK without CRS

71

Hybrid’ 2. In this hybrid, we change again the proof πi. In particular, instead of using wi as witness for
NIWI, we use τ and the randomness used to commit to it. This hybrid is indistinguishable from the previous
one by the S-witness indistinguishability of NIWI.

Notice that NIWI is secure against non-uniform adversaries so, in the reduction, we can assume that the
adversary is given τ = uλ,0 and aλ as part of its auxiliary input. We build a PPT adversary that breaks

the witness indistinguishability of NIWI. It starts its execution sampling a random i
$← [M] and it simulates

the game as in Hybrid’ 1 to an internal copy of A. It deviates from the game at the i-th Prove query. In
particular, after generating vk, c0 and c1 as usual, it queries (vk, c0, c1, xi) along with the witnesses wi and
(τ, r) to the NIWI challenger. Here, r denotes the randomness used for the generation of c0. The answer π′

is included in the proof returned to A. At the end of its execution, B outputs the same bit as A. Notice that
if A succeeds in distinguishing, B succeeds too.

Observe that Hybrid’ 2 is identical to Hybrid i for a random i
$← [M]. This ends the proof of the claim.�

Claim. The construction in Fig. 43 is an a-disclosed simulation-sound U-NIZK for R.

Proof of the claim. We use a hybrid argument.
Hybrid 0. In this hybrid, we provide the adversary with oracle access to SimProve. The challenger

outputs 1 when the adversary terminates its execution outputting an accepting proof. Let Q denote the set
of the oracle responses.

Hybrid 1. In this hybrid, when the adversary generates an accepting proof π = (vk, c0, c1, π
′, s) for a

false statement x, the challenger checks whether vk coincides with the verification key in one of the responses
of the simulation oracle. In that case, the challenger outputs 0, in the other cases it behaves as before.

Observe that Hybrid 0 and Hybrid 1 are indistinguishable due to the security of the strong one-time
signature. Indeed, the adversary can distinguish only if it generates an accepting proof π = (vk, c0, c1, π

′, s)
for a false statement x such that (π, x) 6∈ Q but vk was previously generated by SimProve. In other words, A
would produce a forgery with non-negligible probability. Notice that the one-time signature is secure against
non-uniform adversaries, so in the reduction, we can assume that the adversary receives aλ as part of its
advice string.

Hybrid 2. In this hybrid, when the adversary generates an accepting proof π = (vk, c0, c1, π
′, s) for a

false statement x, the challenger checks whether COWF1(1lλ, u1) = 1 where u1 = CCACom.Val(vk, c1). In
that case, the challenger outputs 0, in the other cases it behaves as before.

Hybrid 2 and Hybrid 1 are indistinguishable under the max{T (λ), S(λ)}-independent hardness of COWF0

and COWF1. Indeed, an adversary can distinguish only if it generates a proof where

COWF1

(
1lλ,CCACom.Val(vk, c1)

)
= 1.

In the reduction, we build a uniform PPT adversary running in poly
(
λ, T (λ), S(λ)

)
time that retrieves a

value u1 such that COWF1(1lλ, u1) = 1 with non-negligible probability. The adversary B starts its execution
by retrieving τ = uλ,0, which is given by the challenger, and aλ. This operation requires poly

(
λ, T (λ)

)
time.

Then, it proceeds by running an internal copy of A simulating SimProve using τ . When A outputs a proof
π = (vk, c, π′, s), B outputs CCACom.Val(vk, c1). With non-negligible probability, the latter coincides with a
value u1 such that COWF1(1lλ, u1) = 1. Observe that B can run CCACom.Val(vk, c) in poly

(
λ, S(λ)

)
.

Now, let M(λ) be a polynomial upper-bounding the number of queries to SimProve issued by the adver-
sary. For every i ∈ [M] ∪ {0}, we define the following hybrids.

Hybrid 3.i. In this hybrid, in the first i simulated proofs π = (vk, c0, c1, π
′, s), c1 will be a commitment

to uλ,1. In the remaining simulated proofs, c1 will be a commitment to 0p(λ). The rest remains as in Hybrid
2.

Observe that Hybrid 3.0 is identical to Hybrid 2. We now show that no uniform PPT adversary can

distinguish between Hybrid 3.i and Hybrid 3.(i− 1) for a random i
$← [M] due to the e-computation enable

CCA hiding property of CCACom. In the reduction, we build a uniform PPT adversary B that samples

i
$← [M] and queries the Turing machine P that generates the triple (uλ,0, uλ,1, aλ). The adversary B

72

proceeds by simulating the game as in Hybrid 3.(i−1) to an internal copy of A using (uλ,0, uλ,1). It deviates

from the game at the i-th simulation query. Specifically, after generating the signature key pair (v̂k, ŝk), it

queries (tag = v̂k, 0p(λ), uλ,1) to its challenger. It uses the answer ĉ1 to generate the rest of the simulated
proof. When A outputs a proof π = (vk, c0, c1, π

′, s) and a statement x, B can check the value hidden in

c1 by querying it to CCACom.Val. Observe that if vk = v̂k, B can simply provide A with 0. At the end, B
outputs the same bit as A. So, if A succeeds in distinguishing, B succeeds too.

Hybrid 4.i. In this hybrid, in the first i simulated proofs π = (vk, c0, c1, π
′, s), π′ uses uλ,1 and the

randomness used in c1 as witness. In the remaining simulated proofs, π′ uses uλ,0 and the randomness used
in c0. The rest remains as in Hybrid 3.M .

Observe that Hybrid 4.0 is identical to Hybrid 3.M . We now show that no uniform PPT adversary can

distinguish between Hybrid 4.i and Hybrid 4.(i− 1) for a random i
$← [M] due to the non-uniform witness-

indistinguishability of NIWI. In the reduction, we build a non-uniform adversary B running in poly
(
λ, S(λ)

)
time. It starts its execution by receiving the triple (uλ,0, uλ,1, aλ) as advice string. Then, it samples i

$← [M]
and simulates the game as in Hybrid 4.(i − 1) to an internal copy of A using (uλ,0, uλ,1). It deviates from
the game at the i-th simulation query. Specifically, after generating ĉ0 and ĉ1 with randomness r0 and r1
respectively, it queries the statement (v̂k, ĉ0, ĉ1, x̂) and the witnesses (uλ,0, r0) and (uλ,1, r1) to its challenger.
It uses the answer π̂′ to generate the rest of the simulated proof. When A outputs a proof π = (vk, c0, c1, π

′, s)
and a statement x, B runs CCACom.Val(vk, c1). The operation requires poly

(
λ, S(λ)

)
time. At the end, B

outputs the same bit as A. So, if A succeeds in distinguishing, B succeeds too.
Hybrid 5.i. In this hybrid, in the first i simulated proofs π = (vk, c0, c1, π

′, s), c0 will be a commitment
to 0p(λ). In the remaining simulated proofs, c0 will be a commitment to uλ,0. The rest remains as in Hybrid
4.M .

Observe that Hybrid 5.0 is identical to Hybrid 4.M . We now show that no uniform PPT adversary

can distinguish between Hybrid 5.i and Hybrid 5.(i − 1) for a random i
$← [M] due to the e-computation

enable CCA hiding property of CCACom. In the reduction, we build a uniform PPT adversary B that samples

i
$← [M] and queries the Turing machine P that generates the triple (uλ,0, uλ,1, aλ). The adversary B proceeds

by simulating the game as in Hybrid 5.(i − 1) to an internal copy of A using (uλ,0, uλ,1). It deviates from

the game at the i-th simulation query. Specifically, after generating the signature key pair (v̂k, ŝk), it queries

(tag = v̂k, uλ,0, 0
p(λ)) to its challenger. It uses the answer ĉ0 to generate the rest of the simulated proof.

When A outputs a proof π = (vk, c0, c1, π
′, s) and a statement x, B can check the value hidden in c1 by

querying it to CCACom.Val. Observe that if vk = v̂k, B can simply provide A with 0. At the end, B outputs
the same bit as A. So, if A succeeds in distinguishing, B succeeds too.

Hybrid 6. In this hybrid, when the adversary generates an accepting proof π = (vk, c0, c1, π
′, s) for a

false statement x, the challenger checks whether COWF0(1lλ, u0) = 1 or COWF1(1lλ, u1) = 1 where u0 =
CCACom.Val(vk, c0) and u1 = CCACom.Val(vk, c1). In that case, the challenger outputs 0, in the other cases
it behaves as before.

Hybrid 6 is indistinguishable from Hybrid 5.M under the max{T (λ), S(λ)}-independent hardness of
COWF0 and COWF1. Indeed, if A distinguishes, then it must be able to generate a proof such that

COWF0

(
1lλ,CCACom.Val(vk, c0)

)
= 1.

In the reduction, we build a uniform adversary B running in poly
(
λ, T (λ), S(λ)

)
time. The adversary B starts

its execution by recovering uλ,1, which is given by its challenger, and aλ. Then, it simulates the game as in
Hybrid 5.M to an internal copy of A using uλ,1. When the adversary outputs a proof π = (vk, c0, c1, π

′, s), B
outputs u0 = CCACom.Val(vk, c0). With non-negligible probability COWF0(1lλ, u0) = 1. Notice that the last
operation requires poly

(
λ, S(λ), T (λ)

)
time. We reached a contradiction.

Observe that in Hybrid 6, by the perfect soundness of NIWI and the perfect correctness of CCACom, the
challenger always outputs 0 when it is provided with a proof for a false statement. That means that, in Hybrid
0, the adversary could not generate valid proofs for false statements except with negligible probability. This
ends the proof. �

ut

73

The second simulation-sound U-NIZK. We now present our second simulation-sound U-NIZK. The
construction is simpler but relies on challengeless labelled one-way functions, a primitive for which, currently,
we have only heuristic instantiations.

Once again, the scheme follows the blueprint of the construction in Section 9.1. The main difference is
that the simulation trapdoor will coincide with the trapdoor of the challengeless labelled one-way function.
As before, the proof will consist of a commitment c to 0 along with a NIWI proof. The latter will guarantee
that either our statement x lies in the language or c is a commitment to a value uid that is accepted by the
challengeless labelled OWF. The label id is a strong one-time signature verification key vk. As in Section 9.1,
the NIWI proof and c are signed using vk.

To simulate a proof, we just commit to uid and we use the latter as witness for the NIWI. Zero-knowledge
is guaranteed by the hiding properties of the commitment and witness indistinguishability. As for simulation-
soundness, the adversary cannot reuse the same verification keys as the simulation oracle; it is forced to craft
its own proof using a fresh key pair. Hence, even if the NIWI leaks any trapdoor uid used in the simulated
proofs, by the security of the labelled one-way function, the adversary will not be able to derive the trapdoor
corresponding to its verification key. With the current approach, we will be able to achieve security even if
the commitment is malleable. We will therefore obtain a U-NIZK without CRS that achieves multi-theorem
zero-knowledge even against non-uniform adversaries. Soundness will clearly be restricted to the uniform
setting.

Formalising the construction. Let T (λ) be a function of the security parameter. We rely on a perfectly
binding, computationally hiding non-interactive commitment scheme Com. We also require that the value
hidden in the commitments can be retrieved with probability 1 in uniform poly

(
λ, S(λ)

)
time.

We make use of a challengeless labelled one-way CLOWF functions that is (T + S)-secure.
Let NIWI be a perfectly sound, witness indistinguishable proof system for the relation

RNIWI :=

(vk, c, x),

w

∣∣∣∣∣∣∣(x,w) ∈ R OR

w = (u, r)

CLOWF(1lλ, u, vk) = 1

c = Com
(
1lλ, u; r

)



Finally, let SOTS = (Gen,Sign,Verify) be a strong one-time signature.

Theorem 23. Let a := (aλ)λ∈N be a T -computable sequence. Assume the existence of a perfectly bind-
ing non-interactive commitment schemes and non-interactive witness-indistinguishable proofs without CRS.
Furthermore, assume the existence of strong one-time signatures and subexponentially secure challengeless la-
belled one-way functions. Then, the construction in Fig. 44 is an a-disclosed simulation-sound NIZK without
CRS for R with security against uniform PPT adversaries.

Proof. Completeness follows immediately from the completeness of NIWI.

Claim. The construction in Fig. 44 is an a-disclosed multi-theorem zero-knowledge U-NIZK for R.

Proof of the claim. Let M(λ) be a polynomial upper-bounding the number of tuples (xi, wi) queried by A.
Since A is PPT, we know that M exists. Let πi denote the answer to the i-th query.

For every i ∈ [M] ∪ {0}, we define Hybrid i to be the hybrid in which, for every j ≤ i, we generate πj
using SimProve(τ, xj). For very j > i instead, we generate πj using Prove(1lλ, xj , wj).

Notice that Hybrid 0 is identical to the zero-knowledge game when b = 0. Hybrid M is instead identical
to the zero-knowledge game when b = 1. In order to prove our claim, it is sufficient to prove that no uniform

PPT adversary can distinguish between Hybrid i− 1 and Hybrid i for a randomly sampled i
$← [M].

We show this by relying on a sequence of indistinguishable subhybrids.

Hybrid’ 0. This hybrid coincides with Hybrid i− 1 for i
$← [M].

Hybrid’ 1. In this hybrid, we change the proof πi. In particular, instead of committing to 0, we commit

to the value uvk
$← Derive(1lλ, τ, vk) where τ is output by SimSetup. All the rest remains as in Hybrid’ 0.

74

A simulation-sound NIZK without CRS
Prove(1lλ, x, w)

1. (vk, sk)
$← SOTS.Gen(1lλ)

2. c
$← Com(1lλ, 0)

3. π′
$← NIWI.Prove

(
1lλ, (vk, c, x), w

)
4. s← SOTS.Sign

(
sk, (vk, c, π′)

)
5. Output π := (vk, c, π′, s)

Verify
(
π = (vk, c, π′, s), x

)
1. b0 ← SOTS.Verify

(
vk, (vk, c, π′), s

)
2. b1 ← NIWI.Verify

(
π′, (vk, c, x)

)
3. Output b0 ∧ b1.

SimSetup(1lλ)

1. Get the non-uniform advice uλ where CLOWF(1lλ,Derive(1lλ, uλ, id), id) = 1 for every id.
2. Output the empty string along with τ = uλ.

SimProve(τ, x)

1. (vk, sk)
$← SOTS.Gen(1lλ)

2. r
$← {0, 1}q(λ)

3. uvk $← Derive(1lλ, τ, vk)
4. c← CCACom(1lλ, uvk; r)

5. π′
$← NIWI.Prove

(
1lλ, (vk, c, x), (uvk, r)

)
6. s← SOTS.Sign

(
sk, (vk, c, π′)

)
7. Output π := (vk, c, π′, s)

Fig. 44. A simulation-sound NIZK without CRS

This hybrid is indistinguishable from the previous one by the non-uniform hiding property of Com. In
the reduction, the adversary B starts its execution by retrieving τ = uλ and aλ as part as its non-uniform

advice. Then, it samples i
$← [M] and runs A. It replies to the first i − 1 queries using SimProve. Starting

from the (i+ 1)-th query, it instead uses Prove.

The adversary B deviates from the game in the i-th Prove query. It begins by generating the signature

key pair (vk, sk) and queries (0, uvk) to its challenger where uvk
$← Derive(1lλ, τ, vk). It then uses the answer

c and (vk, sk) to generate πi. The adversary B terminates the execution outputting the same value that
A generates. Notice that if A distinguishes between Hybrid’ 0 and Hybrid’ 1, then B breaks the hiding
properties of Com.

Hybrid’ 2. In this hybrid, we change again the proof πi. In particular, instead of using wi as witness
for NIWI, we use uvk and the randomness used to commit to it. This hybrid is indistinguishable from the
previous one by the S-witness indistinguishability of NIWI.

Notice that NIWI is secure against non-uniform adversaries so, in the reduction, we can assume that the
adversary is given τ = uλ and aλ as part of its advice string. We build a PPT adversary that breaks the

witness indistinguishability of NIWI. It starts its execution sampling a random i
$← [M] and it simulates

the game as in Hybrid’ 1 to an internal copy of A. It deviates from the game at the i-th Prove query. In
particular, after generating vk and c as usual, it queries (vk, c, xi) along with the witnesses wi and (uvk, r) to
the NIWI challenger. Here, r denotes the randomness used for the generation of c. The answer π′ is included
in the proof returned to A. At the end of its execution, B outputs the same bit as A. Notice that if A
succeeds in distinguishing, B succeeds too.

75

Observe that Hybrid’ 2 is identical to Hybrid i for a random i
$← [M]. This ends the proof of the claim.�

Claim. The construction in Fig. 44 is an a-disclosed simulation-sound U-NIZK for R.

Proof of the claim. Suppose that there exists a uniform PPT adversary A that can generate an accepting
proof for a false with non-negligible probability. We proceed by means of a series of hybrids.

Hybrid 0. In this hybrid, we provide the adversary with oracle access to SimProve. The challenger
outputs 1 when when the adversary terminates its execution outputting an accepting proof. Let Q denote
the set of the oracle responses.

Hybrid 1. In this hybrid, when the adversary generates an accepting proof π = (vk, c, π′, s) for a false
statement x, the challenger checks whether vk coincides with the verification key in one of the responses of
the simulation oracle. In that case, the challenger outputs 0, in the other cases it behaves as before.

Observe that Hybrid 0 and Hybrid 1 are indistinguishable due to the security of the strong one-time
signature. Indeed, if the adversary can distinguish only if it generates an accepting proof π = (vk, c0, c1, π

′, s)
for a false statement x such that (π, x) 6∈ Q but vk was previously generated by SimProve. In other words, A
would produce a forgery with non-negligible probability. Notice that the one-time signature is secure against
non-uniform adversaries, so in the reduction, we can assume that the adversary receives aλ as part of its
advice string.

Hybrid 2. In this hybrid, when the adversary generates an accepting proof π = (vk, c, π′, s) for a false
statement x, the challenger retrieves the value u hidden in c. If CLOWF(1lλ, u, vk) = 1, the challenger outputs
0, in the other cases it behaves as before.

Hybrid 2 is indistinguishable from Hybrid 1 due to the S(λ)-security of the challengeless labelled one-
way function. Indeed, if A distinguishes, it must be that with non-negligible probability, it outputs a proof
π̂ = (v̂k, ĉ, π̂′, ŝ) such that v̂k is different from all the signatures keys generates by the simulation oracle

and ĉ is a commitment to a value û such that CLOWF(1lλ, û, v̂k) = 1. In the reduction, we build a uniform
adversary B running in poly

(
λ, S(λ) +T (λ)

)
time. The adversary B simulates the game as in Hybrid 1 to an

internal copy of A. It starts its execution by retrieving aλ in poly
(
λ, T (λ)

)
time. It replies to each simulation

query of A by generating a signature key pair (vk, sk) and querying vk to its challenger. It uses the answer

uvk to generate the simulated proof. When A outputs a proof π̂ = (v̂k, ĉ, π̂′, ŝ), B retrieves the value hidden

in the corresponding commitment and outputs it along with v̂k. The operation requires poly
(
λ, S(λ)

)
time.

Notice that with non-negligible probability, the output is a pair (û, v̂k) where CLOWF(1lλ, û, v̂k) = 1 and v̂k
has never been queries to the Derive oracle. We reached a contradiction.

Notice that by the perfect soundness of NIWI and the perfect binding property of Com, in Hybrid 2,
the challenger always output 0 when the adversary outputs a proof for a false statement. Since Hybrid 0
and Hybrid 2 are indistinguishable, it must be that the adversary could not 0 generate valid proofs for false
statements even in Hybrid 0. This terminates the proof. �

ut

9.3 Building simulation-extractable U-NIZKs without CRS

In this section, we will show how to build non-interactive arguments of knowledge without CRS with security
against uniform adversaries. The idea is very simple: we use a non-interactive extractable commitment
without CRS to hide the witness for our statement. Then, we use a (restricted) simulation-sound U-NIZK to
prove the well-formedness of the commitment. In this way, we immediately obtain a (restricted) simulation-
extractable U-NIZK without CRS. In order to extract the witness, we just need to extract the value hidden
in the commitment using the corresponding trapdoor.

Non-interactive extractable commitments in the uniform setting. The main challenge of the ap-
proach described above is the fact that, in the non-uniform setting, non-interactive extractable commitments
always need a CRS. If we aim for security against uniform adversaries only, we can however hope to built

76

CRS-less constructions. In such schemes, the extraction trapdoor will be fixed but hard to retrieve for uniform
adversaries.

In this section, we show how to build extractable commitments without CRS by relying on the uniform
DDH and the uniform LWE assumptions. We start by formalising the definition.

Definition 30 (Non-interactive extractable U-commitment). A non-interactive extractable U-commitment
scheme is a pair of uniform PPT algorithms (ExCom,Extract) with the following syntax:

– ExCom is probabilistic and takes as input the security parameter 1lλ and a message m. The output is a
commitment c.

– Extract is deterministic, it takes as input a trapdoor τe and a commitment c. The output is a value m or
⊥.

We say that the scheme is perfectly correct if, for every λ ∈ N, there exits a value τe such that, for every
message m,

Pr[Extract(τe, c) = m|c $← ExCom(1lλ,m)] = 1.

We say that the scheme is perfectly binding if there exists no tuple (m0,m1, r0, r1) such that m0 6= m1

and ExCom(1lλ,m0; r0) = ExCom(1lλ,m1; r1).
For any function S(λ), we say that the scheme is S(λ)-uniformly hiding if no uniform adversary A

running in poly
(
λ, S(λ)

)
time can distinguish between ExCom(1lλ,m0) and ExCom(1lλ,m1) even if it is the

one choosing m0 and m1. We say that the scheme is post-quantumly S(λ)-uniformly hiding if even a uniform
quantum adversary running in poly

(
λ, S(λ)

)
time cannot distinguish.

Building non-interactive extractable commitments using uniform-DDH and uniform-LWE. The uniform-
DDH assumption and the uniform-LWE assumptions immediately lead to non-interactive extractable U-
commitments without CRS. In order to commit to a value m, it is sufficient to encrypt m either under the
“ElGamal public-key” output by DDHGen or the “dual-Regev public-key” output by a trapdoored LWEGen.
Extraction is a simple decryption using the trapdoors hidden in the DDHGen and LWEGen outputs.

Non-Interactive Extractable Bit-Commitment based on Uniform-DDH
Let a denote the value such that h = ga for (G, p, g, h) = DDHGen(1lλ)
ExCom(1lλ, b)

1. (G, p, g, h)← DDHGen(1lλ)

2. r
$← [p]

3. c0 ← gr

4. c1 ← gb · hr
5. Output (c0, c1)

ExCom.Extract(a, c0, c1)

1. Compute m = c1/c
a
0 . If m = 1 output 0, if m = g output 1, otherwise, output ⊥.

Fig. 45. Non-interactive extractable bit-commitment based on uniform-DDH

We start by formalising the construction based on uniform-DDH.

Theorem 24. Suppose that the S(λ)-uniform DDH assumption holds for DDHGen. Then, the construction
in Fig. 45 is a non-interactive extractable bit-commitment scheme that is perfectly binding and S(λ)-uniformly
hiding. Furthermore, it satisfies perfect correctness.

77

Proof. Proving perfect correctness is straightforward. Even perfect binding is immediate as DDHGen always
outputs a value g 6= 1.

Proving S(λ)-hiding is almost as simple. Suppose that there exists a uniform adversary A running in
poly

(
λ, S(λ)

)
time that distinguishes between a commitment to 0 and one to 1. We proceed by a Hybrid

argument.
Hybrid 0. This hybrid corresponds to the usual hiding game for bit-commitments. In particular, the

adversary is given a commitment to a random bit b.
Hybrid 1. In this hybrid, we provide the adversary with a pair (c0, c1) where c0 = gr and c1 = gb ·hs for

r, s
$← [p]. Notice thatA cannot guess b with non-zero advantage as c0 and c1 are uniformly and independently

distributed over G. This contradicts the hardness of uniform DDH. Indeed, we can consider the adversary
that, after receiving (g′, h′) from the uniform DDH challenger, samples a random bit b, sets c0 ← g′ and
c1 ← gb · h′ and runs A on input (c0, c1). When A provides its answer b′, the new adversary outputs 1 if
and only if b = b′. If (g′, h′) were generated at random, the view of A is identical to the one in Hybrid 1. In
the other case, the view is identical to the one in Hybrid 0. In the first case, the adversary outputs 1 with
probability 1/2, in the second case, with probability 1/2 + ε(λ) where ε(λ) is non-negligible. We reached a
contradiction. ut

A Post-Quantum Non-interactive Extractable Bit-Commitment based on Uniform-LWE
Let u ∈ Zm2 denote the value such that u0 = 1, ‖u‖ · B(λ) < bq/4c and A · u = 0 for A = LWEGen(1lλ). Let e0
denote the first vector of the canocical basis of Zmq .
ExCom(1lλ, b)

1. A← LWEGen(1lλ)

2. s
$← Znq

3. x
$← χ

4. c
$← Aᵀs+ x+ b · bq/2c · e0

5. Output c

ExCom.Extract(u, c)

1. Compute b′ = uᵀ · c. If b′ is closer to bq/2c than to 0 modulo q, output 1, otherwise, output 1.

Fig. 46. Post-quantum non-interactive extractable bit-commitment based on uniform-LWE

Below, we formalise the construction based on uniform-LWE.

Theorem 25. Suppose that the post-quantum S(λ)-uniform LWE assumption holds for LWEGen. Assume
also that LWEGen is trapdoored. Then, the construction in Fig. 46 is a post-quantum non-interactive, ex-
tractable bit-commitment scheme that is perfectly binding and S(λ)-uniformly hiding. Furthermore, it satisfies
perfect correctness.

Proof. Proving perfect correctness is straightforward. Indeed,

b′ = uᵀ · c = uᵀ ·Aᵀs+ uᵀ · x+ b · bq/2c · uᵀ · e0 = uᵀ · x+ b · bq/2c.

By Cauchy-Schwartz, |uᵀ · x| ≤ ‖u‖ · ‖x‖ ≤ ‖u‖ · B(λ) < bq/4c. So, b′ is always closer to b · bq/2c than to
(1− b) · bq/2c.

Even perfect binding is immediate. Indeed, if there existed (s0, x0) and (s1, x1) such that Aᵀs0 + x0 =
Aᵀs1 + x1 + bq/2c · e0, then, we would have that uᵀ(x0 − x1) = bq/2c. However, by Cauchy-Schwartz,
|uᵀ(x0 − x1)| ≤ 2‖u‖ ·B(λ) < 2bq/4c ≤ bq/2c.

78

Proving hiding is almost as simple. Suppose that there exists a quantum uniform adversary A running
in poly

(
λ, S(λ)

)
time that distinguishes between a commitment to 0 and one to 1. We proceed by a Hybrid

argument.
Hybrid 0. This hybrid corresponds to the usual hiding game for bit-commitments. In particular, the

adversary is given a commitment to a random bit b.

Hybrid 1. In this hybrid, we sample b and we provide the adversary with a vector c
$← Zmq . Notice

that A cannot guess b with non-zero advantage as c is independent of it. This contradicts the hardness of
quantum S(λ)-uniform LWE. Indeed, we can consider the adversary that, after receiving v ∈ Zmq from the
uniform LWE challenger, samples a random bit b, sets c← v+ b · bq/2c · e0 and runs A on input c. When A
provides its answer b′, the new adversary outputs 1 if and only if b = b′. If v was generated at random, the
view of A is identical to the one in Hybrid 1. In the other case, the view is identical to the one in Hybrid 0.
In the first case, the adversary outputs 1 with probability 1/2, in the second case, with probability 1/2+ε(λ)
where ε(λ) is non-negligible. We reached a contradiction. ut

Building (restricted) simulation-extractable U-NIZKs. We now formalise the idea described at the
beginning of this section: using a simulation-sound U-NIZK and a non-interactive extractable U-commitment,
we achieve simulation-extractability. If the U-NIZK is only restricted simulation-sound, the result will only
achieve restricted simulation-extractability.

Let T (λ) be a function of the security parameter and consider a T -computable sequence a = (aλ)λ∈N.
We make use of a non-interactive extractable U-commitment scheme ExCom without CRS satisfying perfect
correctness. We require the scheme to be perfectly binding and T (λ)-uniformly hiding. We also rely on an
a-compatible U-NIZK NIZK′ for the relation

RNIZK′ :=

{ (
(c, x), (w, r)

) ∣∣∣∣∣(x,w) ∈ R
c = ExCom(1lλ, w; r)

}
The U-NIZK NIZK′ can either be restricted or fully simulation-sound. In the first case, we require that the
running time of NIZK′.Check is poly

(
λ, T (λ)

)
. We also require that NIZK′ is T (λ)-deterministic.

Theorem 26. Assume the existence of subexponentially secure, perfectly correct non-interactive extractable
U-commitments. If NIZK′ is an a-disclosed (restricted) simulation-sound U-NIZK without CRS, then, the
construction in Fig. 47 is an a-disclosed (restricted) simulation-extractable U-NIZK without CRS for R.

Proof. Completeness follows immediately from the completeness of NIWI.

Claim. The construction in Fig. 47 is an a-disclosed multi-theorem zero-knowledge U-NIZK for R.

Proof of the claim. We proceed by means of a series of indistinguishable hybrids .
Hybrid 0. This hybrid coincides with the zero-knowledge game when b = 0. In particular, all the proof

are generates using the witness.
Hybrid 1. In this hybrid, we modify each response of the oracle. In particular, instead of generating π′

using NIZK′.Prove, we use NIZK′.SimProve.
Hybrid 1 is indistinguishable from Hybrid 0 under the a-disclosed multi-theorem zero-knowledge of NIZK′.

In the reduction, we build a uniform PPT adversary B that simulates the game as in Hybrid 0 to an internal
copy of A. Observe that B receives aλ from its challenger. The adversary B deviates from the game in each
Prove query. In particular, after generating an extractable commitment c to the witness w using randomness
r, B queries

(
(c, x), (w, r)

)
to its challenger and relays the answer along with c to A. At the end of its

execution, B outputs the same bit as A. So, if A succeeds in distinguishing, B succeeds too.
Now, let M(λ) be a polynomial upper-bounding the number of queries to Prove issued by the adversary.

For every i ∈ [M] ∪ {0}, we define the following hybrids.
Hybrid 2.i. In this hybrid, in the first i responses of the oracle, c will be a commitment to 0. In the

remaining responses, c will instead be a commitment to the queried witness. The rest remains as in Hybrid
1. In particular, all the queries are simulated.

79

A simulation-extractable NIZK without CRS
Prove(1lλ, x, w)

1. c← ExCom(1lλ, w; r)

2. π′
$← NIZK′.Prove

(
1lλ, (c, x), (w, r)

)
3. Output π := (c, π′)

Verify
(
π = (c, π′), x

)
1. b← NIZK′.Verify

(
vk, π′, (c, x)

)
2. Output b.

SimSetup(1lλ)

1. Get τs ← NIZK′.SimSetup(1lλ) and τe
2. Output the empty string along with τ = (τs, τe).

SimProve(τ = (τs, τe), x)

1. c
$← ExCom(1lλ, 0)

2. π′
$← NIZK′.SimProve

(
τs, (c, x)

)
3. Output π := (c, π′)

Extract(τ = (τs, τe), π = (c, π′), x)

1. b← Verify(1lλ, π, x)
2. If b = 0, output ⊥.
3. w ← ExCom.Extract(τe, c)
4. If (x,w) ∈ R, output w, otherwise, output ⊥.

Fig. 47. A simulation-extractable NIZK without CRS

Observe that Hybrid 2.0 is identical to Hybrid 1. We show that Hybrid 2.i is indistinguishable from

Hybrid 2.(i− 1) for a random choice of i
$← [M] due to the hiding property of ExCom. In the reduction, we

build a uniform adversary B running in poly
(
λ, T (λ)

)
time. The adversary B starts its execution by sampling

i
$← [M] and retrieving τs and aλ. The operation requires poly

(
λ, T (λ)

)
time . Then, B simulates the game

as in Hybrid 2.(i − 1) to an internal copy of A using τs. It deviates from the game at the i-th proof query.
Specifically, after receiving the pair (x,w) from A, it queries (0, w) to its challenger. It then uses the answer
c to generate the proof π requested by A. At the end of its execution, B outputs the same bit as A. So, if A
succeeds in distinguishing, B does too. We reached a contradiction.

Observe that Hybrid 2.M is identical to the multi-theorem zero-knowledge game when b = 1. �

Claim. If NIZK′ is an a-disclosed (restricted) simulation-sound U-NIZK, then the construction in Fig. 47 is
an a-disclosed (restricted) simulation-extractable U-NIZK for R.

Proof of the claim. The first property is straightforward.
We focus on the second property starting from the case in which NIZK′ is restricted simulation-sound.

We use a hybrid argument.
Hybrid 0. This corresponds to the game in which all queries to the simulation oracle are answered

using SimProve. In particular, the responses are generated by committing to 0 and simulating π′. When the
adversary outputs a pair (π, x) different from every oracle response, the challenger outputs Verify(π, x).

Now, let M(λ) be a polynomial upper-bounding the number of queries to Prove issued by the adversary.
For every i ∈ [M] ∪ {0}, we define the following hybrids.

80

Hybrid 1.i In this hybrid, in the first i responses from the simulation oracle, we commit to the witness
w queried by the adversary. In the remaining queries, we instead commit to 0. All the rest remains as in
Hybrid 0.

Observe that Hybrid 1.0 is identical to Hybrid 0. We show that Hybrid 1.i and Hybrid 1.(i − 1) are

indistinguishable for a random i
$← [M] due to the hiding property of ExCom. In the reduction, we build

a uniform adversary B running in poly
(
λ, T (λ)

)
time. The adversary B starts its execution by sampling

i
$← [M] and recovering τs and aλ in poly

(
λ, T (λ)

)
time. Then, it simulates the game as in Hybrid 1.(i−1) to

an internal copy of A. It deviates from the game at the i-th simulation query. Specifically, after receiving the
witness w chosen by A, B queries (0, w) to its challenger. It uses the answer to generate the simulated proof
π requested by A. At the end of its execution B outputs the same bit as A. So if A succeeds in distinguishing,
B succeeds too.

Hybrid 2. In this hybrid, when the adversary provides a pair (π = (c, π′), x), the challenger outputs
NIZK′.Check(π′, (c, x)). This hybrid is indistinguishable from Hybrid 1.M due to the a-disclosed restricted
simulation-soundness of NIZK′. Suppose that there exists a uniform PPT adversary A that distinguishes
between Hybrid 2 and Hybrid 1.M . Then, it must be that, with non-negligible probability, A can generate
a pair (π = (c, π′), x) different from every oracle response such that Verify(π, x) = NIZK′.Verify(π′, (c, x)) 6=
NIZK′.Check(π′, (c, x)). In the reduction, we build a uniform PPT adversary B that simulates the game as in
Hybrid 1.M to an internal copy of A. Notice that B receives aλ from its challenger. The adversary B generates
all responses to the simulation oracle by committing to the witness w queried by A using randomness r.
Then, it queries (c, x) along with (w, r) to its own challenger. It relays the answer along with c to A. When
A provides a pair (π = (c, π′), x), B outputs π′, (c, x). With non-negligible probability, (π′, (c, x)) differs from
all responses from the simulation oracle and NIZK′.Verify(π′, (c, x)) 6= NIZK′.Check(π′, (c, x)).

Hybrid 3.i In this hybrid, in the first i responses of the simulation oracle, we commit to 0. In the
remaining queries, we instead commit to the witness w queried by the adversary. All the rest remains as in
Hybrid 2.

Observe that Hybrid 3.0 is identical to Hybrid 2. We show that Hybrid 3.i and Hybrid 3.(i − 1) are

indistinguishable for a random i
$← [M] due to the hiding property of ExCom. In the reduction, we build

a uniform adversary B running in poly
(
λ, T (λ)

)
time. The adversary B starts its execution by sampling

i
$← [M] and recovering τs and aλ in poly

(
λ, T (λ)

)
time. Then, it simulates the game as in Hybrid 3.(i− 1)

to an internal copy of A. It deviates from the game at the i-th simulation query. Specifically, after receiving
the witness w chosen by A, B queries (w, 0) to its challenger. It uses the answer to generate the simulated
proof π requested by A. When A provides a pair (π = (c, π′), x), B answers with NIZK′.Check(π′, (c, x)).
The operation requires poly

(
λ, T (λ)

)
time. At the end of its execution, B outputs the same bit as A. So if A

succeeds in distinguishing, B succeeds too.

Observe that we have proven that Hybrid 3.M is indistinguishable from Hybrid 0. That means that, even
if we have oracle oracle access to SimProve, it is hard to find a pair (π = (c, π′), x) different from every oracle
response such that Verify(π, x) 6= NIZK′.Check(π′, (c, x)). Notice that when NIZK′.Check(π′, (c, x)) = 1, then
(c, x) ∈ LNIZK′ . By the perfect correctness of ExCom, we conclude that when NIZK′.Check(π′, (c, x)) = 1, then
extraction always succeeds. This terminates the proof for the case in which NIZK′ is restricted simulation-
sound.

We now focus on the case in which NIZK′ is fully simulation-sound. Suppose that there exists an uniform
PPT adversary A having oracle access to SimProve that, with non-negligible probability, can generate a proof
that verifies but cannot be extracted. We can immediately derive a uniform PPT adversary B that breaks the
simulation soundness of NIZK′. Such an adversary simulates the simulation-extractable game to an internal
copy of A. Notice that B obtains aλ from its challenger. When A queries any value x to the simulation oracle,
B generates an extractable commitment c to 0 and queries (c, x) to its challenger, it provides the answer along
with c to A. When A outputs a pair

(
π = (c, π′), x

)
, B outputs

(
π′, (c, x)

)
. Observe that with non-negligible

probability Verify
(
π′, (c, x)

)
= 1 but Extract(τe, (c, π

′), x) = ⊥. By the perfect correctness of the extractable
commitment, it means that (c, x) does not belong to the language. In other words, B breaks the simulation

81

soundness of NIZK′. This terminates our proof for the case in which NIZK′ is fully simulation-sound. �
ut

10 Almost Everywhere Extractable NIZKs without CRS in the Uniform
Setting

In this section, we show how to build almost everywhere extractable NIZKs without CRS in the uniform
setting. Unfortunately, we were able to design only constructions that satisfy the standard definition of zero-
knowledge (see Def. 18), but not chosen-ID zero-knowledge (see Def. 3). On the other hand, we achieved
a stronger notion of almost everywhere extractability, which we called simulation almost everywhere ex-
tractability. This will be sufficient to build distributed samplers.

The main difference between the new notion and Def. 2 is that now, we require that, for every identity id,
it is hard to find elements in VPFEid even if we have oracle access to the simulation oracle SimProve(τs, ·, ·).
Clearly, the adversary is not allowed to query for a simulated proof under the identity id. We recall that
in the game the adversary is allowed to run in poly

(
λ, d(λ)

)
time where d(λ) denotes an upper-bound on

|VPFEid|.

Definition 31 (Simulation almost everywhere extractable U-NIZK). Let a := (aλ)λ∈N be a se-
quence of values. An identity-based U-NIZK (Setup,Prove,Verify) for R is a-compatible, simulation almost
everywhere extractable if there exists a non-uniform PPT algorithm SimSetup and uniform PPT algorithms
SimProve, Trap and Extract such that

1. No non-uniform PPT adversary can distinguish between{
σ
∣∣∣σ $← Setup(1lλ)

} {
σ
∣∣∣(σ, τs, τe) $← SimSetup(1lλ)

}
2. The algorithm Extract is deterministic and, for every w = Extract(τ ide , π, x),

Pr
[
(x,w) ∈ R

∣∣∣w 6= ⊥] = 1.

3. There exist efficiently computable values `(λ) ∈ [m] and d(λ) (the latter potentially superpolynomial) and
a negligible function negl(λ) such that, for every identity id,

Pr
[∣∣VPFEσ,τe,id∣∣ ≤ d(λ)

∣∣∣(σ, τs, τe) $← NIZK.SimSetup(1lλ)
]
≥ 1− negl(λ),

where

VPFEσ,τe,id :=

Trunc`(π)

∣∣∣∣∣∣∣∃(x, r) s.t.

NIZK.Verify(σ, id, π, x) = 1

NIZK.Trap(τe, id; r) = τ ide

NIZK.Extract(τ ide , π, x) = ⊥


4. Every uniform adversary A running in poly(λ, d(λ)) time wins the game in Fig. 48 with negligible prob-

ability.

The definition of zero-knowledge for simulation almost everywhere extractable U-NIZKs is formalised as
in Def. 18 with minor changes to the notation. Indeed, since we are dealing with identity-based NIZKs, we
need to augment the proof queries with identities id. The latter will be given as input to both Prove and
SimProve.

We now show that Lemma 2 can be generalised to simulation almost everywhere extractable U-NIZKs.
In other words, we show that, if we deal with a subexponentially secure indistinguishability obfuscator and
we rely on a simulation almost everywhere extractable U-NIZK, no uniform PPT adversary can distinguish
between the obfuscation of C0 and C1 despite the existence of differing inputs. Furthermore, indistinguisha-
bility holds even if we provide the adversary with oracle access to SimProve(τs, ·, ·) and we leak the extraction

82

Simulation Almost Everywhere Extractable U-NIZK Game
Initialisation: This procedure is run only once, at the beginning of the game.

1. (σ, τs, τe)
$← SimSetup(1lλ)

2. Q← ∅
3. Activate A with 1lλ, 1ld(λ), σ, τe and aλ.

Prove: This procedure can be queried multiple times. Upon receiving any query (Prove, id, x), compute the
following.

1. Add id to Q.

2. π
$← SimProve(τs, id, x)

3. Provide π to the adversary.

Win: The adversary wins if it outputs a pair (id, y) such that id 6∈ Q and y ∈ VPFEσ,τe,id.

Fig. 48. Simulation almost everywhere extractable U-NIZK game

trapdoor τe. We recall that the circuits C0 and C1 were informally defined in Section 4. Both the circuits
take as input m statements and m NIZKs proving the validity of the latter. While C0 simply verifies the
NIZKs and outputs a function of the statements, C1 tries to extract all the witnesses. In case of a failure,
C1 outputs ⊥, otherwise, it performs the same operations as C0.

Lemma 3. Let a := (aλ)λ∈N be a sequence of values. Let NIZK be an a-disclosed, simulation almost every-
where extractable U-NIZK for the relation R. Let d(λ) be the upper-bound on

∣∣VPFEσ,τe,id∣∣. Suppose that iO
is an indistinguishability obfuscator against which every PPT adversary has advantage at most negl(λ)/d(λ).
Then, no uniform PPT adversary A can win the game in Fig. 49 with non-negligible advantage.

Proof. Let A be a uniform PPT adversary. We proceed by means of m + 1 subhybrids indexed by i =
0, 1, . . . ,m. In the i-th of these hybrids, we provide A with an obfuscation of the program of C ′i (see Fig. 13)
instead of one of C0 or C1. The rest remains as in Fig. 49.

Observe that by the security of iO, when i = 0, Hybrid i is indistinguishable from the game in Fig. 10
when b = 0. Similarly, by the security of iO, when i = m, Hybrid i is indistinguishable from from the game
in Fig. 10 when b = 1. It remains to prove that A cannot distinguish between Hybrid i− 1 and Hybrid i for

a random i
$← [m]. We rely on Lemma 1.

We consider the circuit sampler Sampi that runs SimSetup, provides σ, τe and aλ to A and obtains
C, (idj)j∈[m] after answering some queries to SimProve. Then, it computes τ je for every j ∈ [m] and outputs
C ′i−1, C ′i, ρ := (τs, id1, . . . , idm) and aux corresponding to the internal state of A at the time it provides C
and (idj)j∈[m]. We consider the oracle O that, on input ρ = (τs, id1, . . . , idm) and (id, x), it answers with
SimProve(τs, id, x) as long as id 6= idj for every j ∈ [m]. We want to argue that even when aux is revealed
and we give access to O(ρ, ·), no uniform PPT adversary can distinguish between the obfuscation of C ′i−1
and C ′i. That would immediately prove that A cannot distinguish between Hybrid i− 1 and Hybrid i.

Let `(λ) and d(λ) be the values used in the third and fourth property of our simulation almost everywhere
extractable U-NIZK. Let `0(λ) denote the position of the first bit of πi. Define `1(λ) := `0(λ) + `(λ).

The circuits C ′i−1 and C ′i potentially have differing inputs. Observe that these must be values (xj , πj)j∈[m]

for which Verify(σ, idi, πi, xi) = 1 but Extract(τ ie, πi, xi) = ⊥. In other words, we know that for every differing
input,

DI`0,`1C′i−1,C
′
i
⊆ VPFEσ,τe,idi .

With overwhelming probability over the randomness of SimSetup, the latter has at most d(λ) elements.
Now, suppose that there exists a uniform adversary B running in time poly

(
λ, d(λ)

)
that can find an

element in DI`0,`1C′i−1,C
′
i

with non-negligible probability given C ′i−1, C ′i and aux and oracle access to O(ρ, ·).

83

diO Game for Simulation Almost Everywhere Extractable U-NIZKs
Initialisation: This procedure is run only once, at the beginning of the game.

1. b
$← {0, 1}

2. Q← ∅
3. (σ, τs, τe)

$← SimSetup(1lλ)
4. Activate the adversary A with 1lλ, σ, τe and aλ.

Challenge: This query can be issued only once. On input a circuit C and identities (idj)j∈[m] such that idj 6∈ Q
for every j ∈ [m], perform the following.

1. ∀j ∈ [m] : τ je
$← Trap(τe, idj)

2. C̃0
$← iO(1lλ, C0[σ, (idj)j∈[m]]) (see Fig. 11)

3. C̃1
$← iO(1lλ, C1[σ, (idj)j∈[m], (τ

j
e)j∈[m]]) (see Fig. 12)

4. Provide the adversary with C̃b

Prove: This procedure can be queried multiple times, both before and after choosing the challenge. On input
any query (Prove, id, x) where id 6= idj for every j ∈ [m], provide the adversary with SimProve(τs, id, x) and add
id to Q.

Win: The adversary wins if it guesses b.

Fig. 49. diO game for simulation almost everywhere extractable U-NIZKs

We build an adversary B′ that breaks the fourth property of the simulation almost everywhere extractable
U-NIZK.

The adversary B′ runs an internal copy of A and one of B. It starts by providing the NIZK CRS σ, the
trapdoor τe and the value aλ it received from its challenger to A. It replies to the Prove queries of A by

relaying the messages to its challenger. When A provides C and (idj)j∈[m], it computes τ je
$← Trap(τe, idj)

for every j ∈ [m]. Finally, it provides B with C ′i−1, C ′i and the internal state of A. It answers the queries of
B to O(ρ, ·) by relaying the messages to its challenger. Clearly, it does not reply when the queried identity
coincides with idj for any j ∈ [m]. The adversary B′ terminates the execution outputting the same value as

B. We observe that B′ outputs an element in DI`0,`1C′i−1,C
′
i

with non-negligible probability. Furthermore, it runs

in uniform poly
(
λ, d(λ)

)
time. We reached a contradiction. So, the lemma follows from Lemma 1. ut

10.1 Building simulation almost everywhere extractable U-NIZKs without CRS

We now present a simulation almost everywhere extractable U-NIZK without CRS. The construction is based
on a perfectly sound NIWI, a challengeless labelled one-way function (see Def. 29) and two commitment
schemes. The first one is perfectly binding and secure against non-uniform adversaries, the second one is an
extractable U-commitment (see Def. 30).

Each proof includes two commitments c0 and c1. The first one hides the value 0, whereas the second
one, which is extractable, hides the witness w. We use the NIWI to prove that either c1 hides a witness
for our statement, or c0 is a commitment to a value uid such that the pair (uid, id) is accepted by the
challengeless labelled one-way function. We recall that id is the identity under which we prove the validity
of our statement. Observe that the soundness trapdoor coincides with the trapdoor of the labelled one-
way function. The extraction trapdoor, instead, coincides with the trapdoor of the extractable commitment
scheme.

Ensuring simulation almost everywhere extractability. Proving that our construction is zero-knowledge is
rather straightforward using the techniques of Section 9. The main challenge is, however, proving simulation
almost everywhere extractability.

84

As in Section 4.1, we would like that, in every valid NIZK where extraction fails, the commitment c0
hides a value accepted by the labelled one-way function. In order to ensure this, we rely on a perfectly correct
extractable U-commitment. In other words, we are sure that if c1 hides the witness, the extraction always
succeeds. By the perfect soundness of the NIWI, we are also sure that if c1 does not hide the witness, then
c0 must hide a value accepted by the labelled one-way function in conjunction with id. If we consider a B(λ)-
bounded labelled one-way function, the number of elements in VPFEσ,τe,id is at most d(λ) := B(λ) · 2q(λ)
where q(λ) denotes the length of the randomness needed by the perfectly binding commitment17.

In order to achieve the last property of almost everywhere extractability, we require that the labelled
OWF is at least d(λ)-secure. Observe that if we adopt a subexponentially secure injective, labelled OWF,
by choosing a sufficiently large security parameter for the construction, we can always ensure this. We
also consider a perfectly binding commitment scheme in which the hidden message can be retrieved in
poly

(
λ, d(λ)

)
time. In this way, we are sure that if an adversary can find an element in VPFEσ,τe,id in

poly
(
λ, d(λ)

)
time, it can also break the labelled one-way function. Notice that having access to simulated

proofs under identities different from id does not help in finding elements in VPFEσ,τe,id.

Independently secure extractable commitments and labelled one-way functions. A minor issue we encounter
in the blueprint above is that the proof of zero-knowledge would require that the extraction trapdoor is
hard to retrieve even if we leak the soundness trapdoor. On the other hand, the proof of simulation almost
everywhere extractability would require the symmetric relation: the soundness trapdoor is hard to retrieve
even when the extraction trapdoor is known. Similarly to what we did in the first construction of simulation-
sound U-NIZK, we therefore require that the security of the extractable U-commitment is “independent” of
the security of the labelled one-way function.

Definition 32 (Independently secure extractable commitments and labelled OWFs). Let (ExCom,Extract)
be a non-interactive, extractable U-commitment and let (CLOWF,Derive) be a challengeless, labelled one-way
function. Let τe be the trapdoor for ExCom. Similarly, let τs be the trapdoor for CLOWF. We say that ExCom
and CLOWF are independently secure if

– For every pair of uniform PPT algorithms (A1,A2),

Pr

A2(ψ, c) = b

∣∣∣∣∣∣∣∣
b

$← {0, 1}

(m0,m1, ψ)
$← A1(1lλ, τs)

c
$← ExCom(1lλ,mb)

 = negl(λ).

– For every uniform PPT algorithm A,

Pr
[
id 6∈ Q,CLOWF(1lλ, uid, id) = 1

∣∣∣(id, uid) $← ADerive(1lλ,τs,·)(1lλ, τe)
]

= negl(λ),

where Q denotes the set of identities queried by A to Derive(1lλ, τs, ·).

Let S1(λ), S2(λ) be functions of the security parameter. We say that ExCom and CLOWF are (S1, S2)-
independently secure if the above properties hold even if A runs in poly

(
λ, S1(λ)

)
time and A1 and A2

run in poly
(
λ, S2(λ)

)
time.

One way we can obtain pairs of independently secure challengeless labelled one-way functions and ex-
tractable U-commitments is by moving to a post-quantum world: by appropriately parametrising security,
we can make τs harder to find than τe in a classical world. In a quantum world, instead, we can flip the
relation: while finding τe will retain its hardness, τs will be easily retrievable. In other words, it is sufficient
to take a post-quantumly secure non-interactive, extractable U-commitment and a post-quantumly broken
challengeless labelled one-way function (or vice versa). This approach has clearly the disadvantage that the
resulting pair is not secure against quantum adversaries, however, there may be other solutions that do not
suffer from this issue.
17 As in Section 4.1, we can assume that q(λ) is independent of the length of the committed value.

85

Formalising the scheme. We rely on a perfectly binding non-interactive commitment scheme Com. We assume
that Com requires q(λ) bits of randomness. We also assume that the value hidden in a commitment can be
retrieved with probability 1 in uniform poly

(
λ, 2q(λ)

)
time.

Let B(λ) and T (λ) be functions of the security parameter such that T (λ) � B(λ) · 2q(λ). We make
use of a non-interactive extractable commitment scheme ExCom with perfect correctness (we use q′(λ) to
denote the length of the randomness it needs). We denote the extraction trapdoor by τe. We also use of an
B(λ)-bounded challengeless labelled one-way function CLOWF. We denote the corresponding trapdoor by
τs. We require that ExCom and CLOWF are (T, 2q ·B)-independently secure.

Finally, let NIWI be a perfectly sound, witness indistinguishable proof system for the relation RNIWI

described below{(
(id, c0, c1, x),

(w, r)
) ∣∣∣∣∣

(
(x,w) ∈ R
c1 = ExCom(1lλ, w; r)

)
OR

(
CLOWF(1lλ, w, id) = 1

c0 = Com
(
1lλ, w; r

))}

Theorem 27. Let q(λ), T (λ) and B(λ) be functions of the security parameter where T (λ) � B(λ) · 2q(λ).
Let a be any T (λ)-computable sequence. Assume the existence of non-interactive witness-indistinguishable
proofs without CRS and a perfectly binding non-interactive commitment scheme. Suppose that the latter
uses q(λ) bits of randomness and it is possible to retrieve the committed values with probability 1 in uni-
form poly

(
λ, 2q(λ)

)
time. Assume also the existence of a perfectly correct, non-interactive, extractable U-

commitment and a B(λ)-bounded challengeless, labelled one-way function that are (T,B · 2q)-independently
secure. Then, the construction in Fig. 50 is an a-disclosed multi-theorem zero-knowledge, simulation almost
everywhere extractable U-NIZK without CRS for R.

Proof. Completeness follows immediately from the completeness of NIWI.

Claim. The construction in Fig. 50 is a-disclosed multi-theorem zero-knowledge against uniform PPT ad-
versaries.

Proof of the claim. Let M(λ) be a polynomial upper-bounding the number of tuples (idi, xi, wi) queried by
A. Since A is PPT, we know that M exists. Let πi denote the answer to the i-th query.

For every i ∈ [M]∪ {0}, we define Hybrid i as the hybrid in which, for every j ≤ i, we generate πj using

SimProve(τs, idj , xj). For very j > i instead, we generate πj using Prove(1lλ, idj , xj , wj).
Notice that Hybrid 0 is identical to the zero-knowledge game when b = 0. Hybrid M is instead identical

to the zero-knowledge game when b = 1. In order to prove our claim, it is sufficient to show that no uniform

PPT adversary can distinguish between Hybrid (i− 1) and Hybrid i for a randomly sampled i
$← [M].

We rely on a sequence of indistinguishable subhybrids.

Hybrid’ 0. This hybrid coincides with Hybrid (i− 1) for i
$← [M].

Hybrid’ 1. In this hybrid, we change the proof πi. In particular, instead of generating a commitment c0
of 0, we commit to uidi

$← Derive(τs, idi). All the rest remains as in Hybrid’ 0.
This hybrid is indistinguishable from the previous one by the hiding property of Com. Since Com is

secure against non-uniform adversaries, we can assume that τs and aλ are given to the adversary B in the

reduction as part of its advice string. So, the adversary B will simply sample i
$← [M] and simulate the

zero-knowledge game as in Hybrid’ 0 to an internal copy of A. At the i-th query, B will send the pair (0, uidi)
to its challenger and use the commitment it receives as part of the proof πi. The adversary B terminates
the execution outputting the same bit as A. Notice that if A distinguishes between Hybrid’ 0 and Hybrid’
1, then B break the hiding property of Com.

Hybrid’ 2. In this hybrid, we change again the proof πi. In particular, instead of using wi as witness
for NIWI, we use uidi and the randomness used to commit to it. This hybrid is indistinguishable from the
previous one by the witness indistinguishability of NIWI.

Notice that NIWI is secure against non-uniform adversaries so, in the reduction, we can assume that the
adversary is given τs and aλ as part of its advice string. The adversary we construct, denoted by B, starts its

86

A Simulation Almost Everywhere Extractable U-NIZK without CRS
Prove(1lλ, id, x, w)

1. r
$← {0, 1}q

′(λ)

2. c0
$← Com(1lλ, 0)

3. c1 ← ExCom(1lλ, w; r)

4. π′
$← NIWI.Prove

(
1lλ, (id, c0, c1, x), (w, r)

)
5. Output π := (c0, c1, π

′)

Verify
(
id, π = (c0, c1, π

′), x
)

1. b← NIWI.Verify
(
π′, (id, c0, c1, x)

)
2. Output b.

SimSetup(1lλ)

1. Get the trapdoor τs for CLOWF and the extraction trapdoor τe for ExCom.
2. Output the empty string along with τs and τe.

SimProve(τs, id, x)

1. r
$← {0, 1}q(λ)

2. uid ← Derive(τs, id)
3. c0 ← Com(1lλ, uid; r)

4. c1
$← ExCom(1lλ, 0)

5. π′
$← NIWI.Prove

(
1lλ, (id, c0, c1, x), (uid, r)

)
6. Output π := (c0, c1, π

′)

Trap(τe, id)

1. Output τ ide = (τe, id)

Extract(τ ide = (τe, id), π = (c0, c1, π
′), x)

1. b← Verify(1lλ, id, π, x)
2. If b = 0, output ⊥.
3. w ← ExCom.Extract(τe, c1)
4. If (x,w) ∈ R, output w, otherwise, output ⊥.

Fig. 50. A simulation almost everywhere extractable U-NIZK without CRS

87

execution sampling a random i
$← [M]. Then, it simulates the game as in Hybrid’ 1 to an internal copy of A.

It deviates from the game at the i-th Prove query. In particular, after generating c0 and c1 as usual, it queries
(idi, c0, c1, xi) along with the witnesses (wi, r1) and (uidi , r0) to the NIWI challenger. Here, r0 and r1 denote
the randomness used for the generation of c0 and c1 respectively. The answer π′ is included in the proof
requested by A. At the end of its execution, B outputs the same bit as A. If A succeeds in distinguishing, B
succeeds too.

Hybrid’ 3. In this hybrid, in the i-th Prove query, instead of committing to wi using ExCom, we commit
to 0. This hybrid is indistinguishable from the previous one by the first property of (T,B · 2q)-independent
security of ExCom and CLOWF.

In the reduction, we build a uniform adversary B. The adversary B samples a random i
$← [M] and

retrieves τs and aλ. The former is given by the challenger, the latter is computed in T (λ)-uniform polynomial
time. Then, B simulates the game as in Hybrid’ 2 to an internal copy of A. In the i-th Prove query, B deviates
from the protocol. In particular, it queries wi and 0 to its challenger and uses the answer c1 to generate
the proof πi. At the end of its execution, B outputs the same bit as A. If A succeeds in distinguishing, B
succeeds too.

Observe that Hybrid’ 3 is identical to Hybrid i for a random i
$← [M]. This ends the proof of the claim.�

Claim. The construction in Fig. 50 is an a-disclosed simulation almost everywhere extractable U-NIZK for
R.

Proof of the claim. The first two properties of simulation almost everywhere extractable NIZKs are trivial.

As for the third property, we observe that since NIWI is perfectly sound and ExCom perfectly correct, in
all proofs π = (c0, c1, π

′) for which there exists x such that Verify(id, π, x) = 1 but Extract(τ ide , π, x) = ⊥, c0
is a commitment to a value uid such that CLOWF(1lλ, uid, id) = 1. The number of such commitments is at
most B(λ) · 2q(λ) where q(λ) denotes the length of the randomness needed by Com. We conclude that the
third property holds with relation to `(λ) denoting the position of the last bit of c0, d(λ) := B(λ) · 2q(λ) and
VPFEσ,τe,id := {Com(1lλ, uid; , r)|r ∈ {0, 1}q(λ),CLOWF(1lλ, uid, id) = 1}.

We focus on the last property. Suppose that there exists a uniform adversary A running in poly
(
λ, d(λ)

)
time that, even if knowing τe and having oracle access to SimProve, it can derive a pair (id, y) where y ∈
VPFEσ,τe,id and id 6∈ Q with non-negligible probability. We recall that Q denotes the set of identities queried
to SimProve.

We use A to build a uniform adversary B that breaks the second property of the (T,B · 2q)-independent
security of ExCom and CLOWF. The adversary B runs in poly

(
λ, d(λ)

)
time. It starts its execution deriving

τe and aλ, the operation requires T (λ) time (τe is given by the challenger). Then, it simulates the almost-
everywhere extraction game as in Fig. 48 to an internal copy of A. In every Prove query, B relays the
corresponding identity id′ to its challenger, it uses the answer uid

′
to generate the simulated proof. When

the adversary A outputs a pair (id, y) where id 6∈ Q, B retrieves the value hidden in the commitment y and
outputs it. Breaking y requires poly

(
λ, 2q(λ)

)
time. Observe that B wins with non-negligible probability. This

contradicts the security of challengeless labelled one-way function. �
ut

Acknowledgements

Damiano Abram thanks Speedy’s Tacos for their delicious burritos and quesadillas. He also thanks the
Aarhus Crypto Group and the people at NTT Research during summer 2022 for being amazing humans
(independently of their success in research). The work of Damiano Abram was carried out during an internship
funded by NTT Research.

88

References

ABB10. Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model. In
Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 553–572. Springer, Heidelberg,
May / June 2010.

AJJM20. Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Multi-key fully-homomorphic
encryption in the plain model. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part I, volume
12550 of LNCS, pages 28–57. Springer, Heidelberg, November 2020.

AOS23. Damiano Abram, Maciej Obremski, and Peter Scholl. On the (Im)possibility of Distributed Samplers:
Lower Bounds and Party-Dynamic Constructions. Cryptology ePrint Archive, 2023/863, 2023.

ASY22. Damiano Abram, Peter Scholl, and Sophia Yakoubov. Distributed (correlation) samplers: How to remove
a trusted dealer in one round. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022,
Part I, volume 13275 of LNCS, pages 790–820. Springer, Heidelberg, May / June 2022.

BB04. Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In Matthew
Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 443–459. Springer, Heidelberg, August
2004.

BCP14. Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Yehuda Lindell, editor,
TCC 2014, volume 8349 of LNCS, pages 52–73. Springer, Heidelberg, February 2014.

BF01. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, Heidelberg, August 2001.

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and
Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian, editor, CRYPTO 2001, volume
2139 of LNCS, pages 1–18. Springer, Heidelberg, August 2001.

BGI14. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions. In
Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519. Springer, Heidelberg, March
2014.

BL18a. Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round oblivious transfer
via garbled interactive circuits. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part II, volume 10821 of LNCS, pages 500–532. Springer, Heidelberg, April / May 2018.

BL18b. Nir Bitansky and Huijia Lin. One-message zero knowledge and non-malleable commitments. In Amos
Beimel and Stefan Dziembowski, editors, TCC 2018, Part I, volume 11239 of LNCS, pages 209–234.
Springer, Heidelberg, November 2018.

BOV03. Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryptography. In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 299–315. Springer, Heidelberg, August 2003.

BP04. Boaz Barak and Rafael Pass. On the possibility of one-message weak zero-knowledge. In Moni Naor,
editor, TCC 2004, volume 2951 of LNCS, pages 121–132. Springer, Heidelberg, February 2004.

BP15. Nir Bitansky and Omer Paneth. ZAPs and non-interactive witness indistinguishability from indistin-
guishability obfuscation. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume
9015 of LNCS, pages 401–427. Springer, Heidelberg, March 2015.

BSW16. Mihir Bellare, Igors Stepanovs, and Brent Waters. New negative results on differing-inputs obfuscation.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 792–821. Springer, Heidelberg, May 2016.

BW13. Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In Kazue
Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300.
Springer, Heidelberg, December 2013.

CCK+22. Ran Canetti, Suvradip Chakraborty, Dakshita Khurana, Nishant Kumar, Oxana Poburinnaya, and Manoj
Prabhakaran. COA-secure obfuscation and applications. In Orr Dunkelman and Stefan Dziembowski,
editors, EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages 731–758. Springer, Heidelberg,
May / June 2022.

CHK03. Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. In Eli
Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 255–271. Springer, Heidelberg, May
2003.

CLTV15. Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of probabilistic circuits
and applications. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015
of LNCS, pages 468–497. Springer, Heidelberg, March 2015.

89

CM15. Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled FHE from learning with
errors. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216
of LNCS, pages 630–656. Springer, Heidelberg, August 2015.

DHRW16. Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption and its applica-
tions. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS,
pages 93–122. Springer, Heidelberg, August 2016.

Gen06. Craig Gentry. Practical identity-based encryption without random oracles. In Serge Vaudenay, editor,
EUROCRYPT 2006, volume 4004 of LNCS, pages 445–464. Springer, Heidelberg, May / June 2006.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th FOCS, pages 40–49.
IEEE Computer Society Press, October 2013.

GGHW14. Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 518–535. Springer, Heidelberg,
August 2014.

GKLW21. Rachit Garg, Dakshita Khurana, George Lu, and Brent Waters. Black-box non-interactive non-malleable
commitments. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part III,
volume 12698 of LNCS, pages 159–185. Springer, Heidelberg, October 2021.

GO07. Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. In Alfred Menezes, editor,
CRYPTO 2007, volume 4622 of LNCS, pages 323–341. Springer, Heidelberg, August 2007.

GOS06a. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques for NIZK.
In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 97–111. Springer, Heidelberg,
August 2006.

GOS06b. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP. In
Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 339–358. Springer, Heidelberg,
May / June 2006.

HIJ+17. Shai Halevi, Yuval Ishai, Abhishek Jain, Ilan Komargodski, Amit Sahai, and Eylon Yogev. Non-interactive
multiparty computation without correlated randomness. In Tsuyoshi Takagi and Thomas Peyrin, editors,
ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 181–211. Springer, Heidelberg, December
2017.

HV16. Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. What security can we achieve within 4
rounds? In Vassilis Zikas and Roberto De Prisco, editors, SCN 16, volume 9841 of LNCS, pages 486–505.
Springer, Heidelberg, August / September 2016.

JLS21. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded assumptions.
In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, page 60–73, New
York, NY, USA, 2021. Association for Computing Machinery.

JLS22. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN over Fp, DLIN, and
PRGs in NC0. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part I, volume
13275 of LNCS, pages 670–699. Springer, Heidelberg, May / June 2022.

KK19. Yael Tauman Kalai and Dakshita Khurana. Non-interactive non-malleability from quantum supremacy.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 552–582. Springer, Heidelberg, August 2019.

KNYY21. Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Round-optimal blind sig-
natures in the plain model from classical and quantum standard assumptions. In Anne Canteaut and
François-Xavier Standaert, editors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 404–434.
Springer, Heidelberg, October 2021.

KOR05. Jonathan Katz, Rafail Ostrovsky, and Michael O. Rabin. Identity-based zero knowledge. In Carlo Blundo
and Stelvio Cimato, editors, SCN 04, volume 3352 of LNCS, pages 180–192. Springer, Heidelberg, Septem-
ber 2005.

KPTZ13. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable pseu-
dorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
ACM CCS 2013, pages 669–684. ACM Press, November 2013.

KS17. Dakshita Khurana and Amit Sahai. How to achieve non-malleability in one or two rounds. In Chris
Umans, editor, 58th FOCS, pages 564–575. IEEE Computer Society Press, October 2017.

LPS17. Huijia Lin, Rafael Pass, and Pratik Soni. Two-round and non-interactive concurrent non-malleable com-
mitments from time-lock puzzles. In Chris Umans, editor, 58th FOCS, pages 576–587. IEEE Computer
Society Press, October 2017.

90

LTV12. Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation on the
cloud via multikey fully homomorphic encryption. In Howard J. Karloff and Toniann Pitassi, editors,
44th ACM STOC, pages 1219–1234. ACM Press, May 2012.

MW16. Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key FHE. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
735–763. Springer, Heidelberg, May 2016.

OSY21. Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of paillier: Homomorphic secret sharing
and public-key silent OT. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021,
Part I, volume 12696 of LNCS, pages 678–708. Springer, Heidelberg, October 2021.

PVW08. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable
oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 554–571.
Springer, Heidelberg, August 2008.

Sah99. Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In
40th FOCS, pages 543–553. IEEE Computer Society Press, October 1999.

Sha84. Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and David Chaum,
editors, CRYPTO’84, volume 196 of LNCS, pages 47–53. Springer, Heidelberg, August 1984.

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption, and
more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM Press, May / June 2014.

Wat05. Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127. Springer, Heidelberg, May 2005.

Zha16. Mark Zhandry. The magic of ELFs. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part I, volume 9814 of LNCS, pages 479–508. Springer, Heidelberg, August 2016.

A Additional Preliminaried

In this appendix, we recall security definitions and basic results used in this work.

A.1 One-Way Functions

We recall the definition of one-way function (OWF): a function that can be efficiently computed but hard
to invert on random instances.

Definition 33 (One-way function). A one-way function is a pair of uniform PPT algorithms (Gen,OWF)
with the following syntax:

– Gen is randomised, takes as input the security parameter 1lλ and outputs a pair (v, u).
– OWF is deterministic and takes as input the security parameter 1lλ and a value u. The output is a value
v.

We require the following properties

– (Correctness). For every λ ∈ N, we have

Pr
[
OWF(1lλ, u) = v

∣∣∣(v, u)
$← Gen(1lλ)

]
= 1.

– (Security). For every PPT adversary A, we have

Pr
[
OWF(1lλ, u′) = v

∣∣∣(v, u)
$← Gen(1lλ), u′

$← A(1lλ, v)
]

= negl(λ).

We say that the the one-way function is injective if

Pr
[
∃u′ 6= u OWF(1lλ, u′) = v

∣∣∣(v, u)
$← Gen(1lλ)

]
= 0.

One-way functions, including subexponentially secure ones, can be built using well studied assumptions.

91

A.2 Puncturable PRFs

We recall now the definition of puncturable PRF [KPTZ13,BW13,BGI14]. As for a standard PRF, it consists
of a keyed functions whose outputs are indistinguishable from random as long as the key remains secret.
The primitive, however, satisfies an additional property: it is possible to generate punctured keys. The latter
permit evaluating the PRF in any point of its domain except for the punctured position. Furthermore, even
if the punctured key is disclosed, the value of the PRF at the punctured position remains indistinguishable
from random.

Definition 34 (Puncturable PRF). Let p(λ) and q(λ) be polynomial functions. A puncturable PRF with
input size p(λ) and output size q(λ) is a pair of uniform PPT algorithms (Gen, F,Punct) with the following
syntax:

– Gen is randomised, takes as input the security parameter 1lλ and outputs a key K.
– F is deterministic and takes as input a key K and a value x ∈ {0, 1}p(λ). The output is a pseudorandom

string y ∈ {0, 1}q(λ).
– Punct is deterministic and takes as input a key K and a value x ∈ {0, 1}p(λ). The output is a punctured

key K∗.

We require the following properties.

– (Correctness). For every pair of distinct values x and x′ in {0, 1}p(λ), we have

Pr
[
F (K,x′) = F (K∗, x′)

∣∣∣K $← Gen(1lλ), K∗ ← Punct(K,x)
]

= 1.

– (Security). For every pair of PPT adversaries (A1,A2), we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


A2(ψ,K∗, yb) = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b
$← {0, 1}

K
$← Gen(1lλ)

(x, ψ)
$← A1(1lλ)

K∗ ← Punct(K,x)

y0 ← F (K,x)

y1
$← {0, 1}q(λ)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= negl(λ).

Puncturable PRFs, even with subexponential security, can be easily constructed using one-way functions.

A.3 Hash Functions

We recall now the definition of collision resistant hash function. Essentially, the latter consists of a keyed
function for which it is hard to find pairs of different elements that are mapped to the same value. Security
relies on the unpredictability of the key. It is possible to build subexponentially secure collision resistant
hash functions from well studied assumptions.

Definition 35 (Collision resistant hash function). Let p(λ) and t(λ) be polynomial functions. A hash
function with input size p(λ) and digest size t(λ) is a pair of uniform PPT algorithms (Gen,Hash) with the
following syntax:

– Gen is randomised, takes as input the security parameter 1lλ and outputs an hash key hk.
– Hash is deterministic and takes as input a hash key hk and a value x ∈ {0, 1}p(λ). The output is a digest
y ∈ {0, 1}t(λ).

92

We say that the hash function is collision resistant if, for PPT adversary A, we have∣∣∣∣∣Pr

[
x0 6= x1

Hash(hk, x0) = Hash(hk, x1)

∣∣∣∣∣hk
$← Gen(1lλ)

(x0, x1)
$← A(1lλ, hk)

]∣∣∣∣∣ = negl(λ).

Applied cryptography makes often use of a keyless version of the above primitive for which finding
collisions is still believed to be hard. We formalise the definition below. We highlight that this primitive can
hope to achieve security only against uniform adversaries. Indeed, since there is no randomness involved in
the construction, a non-uniform adversary can be given a collision as part of its advice string.

Definition 36 (Keyless collision resistant hash function). Let p(λ) and t(λ) be polynomial functions.
A keyless hash function with input size p(λ) and digest size t(λ) is a uniform deterministic polynomial time
algorithm KHash that takes as input the security parameter 1lλ and a value x ∈ {0, 1}p(λ). The output is a
digest y ∈ {0, 1}t(λ).

We say that the keyless hash function is collision resistant if, for every uniform PPT adversary A, we
have ∣∣∣Pr

[
x0 6= x1,KHash(1lλ, x0) = KHash(1lλ, x1)

∣∣∣(x0, x1)
$← A(1lλ)

]∣∣∣ = negl(λ).

A.4 Commitments

In this subsection, we recall definitions of non-interactive commitments. A non-interactive commitment
scheme is a primitive that allows encoding a message m in a string c, called the commitment. By itself,
c hides the value of m, so it can be distributed to other parties without fear of revealing its secret. At a
later point in time, the commitment can however be opened, disclosing the value hidden into it. The scheme
guarantees the hardness of opening c to any value other than m. In other words, after the commitment is
opened, the parties can be sure that who generated c had been already committed to revealing m since the
time c was sent.

In this paper, we will make use of perfectly binding, computationally hiding non-interactive schemes.
In particular, that means that the value hidden in the commitment remains secret only to computationally
bounded adversaries. Furthermore, the commitment c uniquely determines the value hidden into it. Such
schemes can be built, even with subexponential security, based on well-studied assumptions.

Definition 37 (Non-interactive commitment scheme). Let p(λ) be a polynomial function. A non-
interactive commitment scheme with message size p(λ) is a uniform PPT algorithm Com that takes as input
the security parameter 1lλ and a message m ∈ {0, 1}p(λ). The output is a commitment c.

We say that the scheme is perfectly binding if, for every λ ∈ N, there exist no pairs (m0, r0) and (m1, r1)
such that m0 6= m1 and Com(1lλ,m0; r0) = Com(1lλ,m1; r1).

We say that the scheme is computationally hiding if, for every pair of PPT adversaries (A1,A2), we have∣∣∣∣∣∣∣∣Pr

A2(ψ, c) = b

∣∣∣∣∣∣∣∣
b

$← {0, 1}

(m0,m1, ψ)
$← A1(1lλ)

c
$← Com(1lλ,mb)

− 1

2

∣∣∣∣∣∣∣∣ = negl(λ).

We also recall the definition of computation-enabled CCA commitment [KS17] [LPS17,BL18b,KK19,GKLW21].
This is a particular type of commitment that satisfies non-malleability. That means that given a commitment
c hiding a value m, we are not able to derive another commitment c′ that hides some value m′ correlated to
m. This property is formulated by augmenting the commitment algorithm with tags. Formally, we require
that, if a value m is committed along with a tag id, m remains hidden even if the adversary has access to
an inefficient oracle that extracts the values from the queried commitments. Clearly, the oracle accepts only
commitments that use tags different from id.

93

Obtaining non-interactive non-malleable commitments with large tag space without relying on setups is
not an easy task. For this reason, in this paper, we rely on constructions of this kind that achieve security only
against uniform adversaries. In particular, the primitive we are interested in satisfies computation-enabled
CCA security, meaning that, at the beginning of the game we described above, the uniform adversary is
allowed to query a possibly inefficient, randomised Turing machine with no input. The challenger provides
the adversary with the result of the machine execution.

Definition 38 (Computation-enabled CCA commitment). Let p(λ) and q(λ) be polynomial functions,
let e > 0. A e-computation enabled CCA commitment scheme with message size p(λ) and tag size q(λ) is a
pair of uniform algorithms (CCACom,Val) with the following syntax:

– CCACom is PPT and takes as input the security parameter 1lλ, a tag id ∈ {0, 1}q(λ) and a message
m ∈ {0, 1}p(λ). The output is a commitment c.

– Val is deterministic and inefficient. It takes as input a label id and a commitment c and outputs either a
message m ∈ {0, 1}p(λ) or ⊥.

We require the following properties.

– (Correctness). For every λ ∈ N, id ∈ {0, 1}q(λ) and m ∈ {0, 1}p(λ), we have

Pr
[
Val(id, c) = m

∣∣∣c $← CCACom(1lλ, id,m)
]

= 1.

– (CCA-Hiding). For every polynomials t(λ) and s(λ), no uniform PPT adversary A can win the game
in Fig. 51 with non-negligible advantage.

CCA-Hiding Game
Initialisation: This procedure is run only once, at the beginning of the game.

1. b
$← {0, 1}

2. Activate A with 1lλ.
3. Receive a Turing machine P from the adversary.
4. Run P on no input for at most t(2λ

e

) steps. If P does not terminate before that, provide A with ⊥, otherwise,
provide it with the first s(λ) bits of the output.

5. Receive a tag îd from the adversary.

Value: This procedure can be queried multiple times, both before and after choosing the challenge. Upon
receiving pairs (id, c) where id 6= îd, the challenger replies with Val(id, c).

Challenge: This procedure can be queried only once. The adversary provides m0,m1 ∈ {0, 1}p(λ). The

challenger replies with c
$← CCACom(1lλ, îd,mb).

Win: The adversary wins if it guesses b.

Fig. 51. CCA-hiding game

A.5 Strong One-Time Signatures

We recall here the definition of strong one-time signature. Informally, this consists in a signing scheme for
which it is hard to craft forgeries if we are given access to just one signature. The scheme is strong in the
sense that, given a signature s for a message m, it is even hard to find another signature s′ for m. Strong
one-time signatures can be built from one-way functions.

94

Definition 39 (Strong one-time signature). Let p(λ) be a polynomial function. A strong one-time sig-
nature is a triple of uniform PPT algorithms (Gen,Sign,Verify) with the following syntax:

– Gen is randomised and takes as input the security parameter 1lλ. The output is a key pair (vk, sk).
– Sign is randomised and takes as input a secret key sk and a message m ∈ {0, 1}p(λ). The output is a

signature s.
– Verify is deterministic and takes as input a verification key vk, a message m ∈ {0, 1}p(λ) and a signature
s. The output is a bit b ∈ {0, 1}.

We require the following properties.

– (Correctness). For every m ∈ {0, 1}p(λ), we have

Pr
[
Verify(vk,m, s) = 1

∣∣∣(vk, sk)
$← Gen(1lλ), s

$← Sign(sk,m)
]

= 1.

– (Security). For every pair of PPT adversaries (A1,A2), we have

Pr


(s,m) 6= (ŝ, m̂)

Verify(vk,m, s) = 1

∣∣∣∣∣∣∣∣∣∣∣

(vk, sk)
$← Gen(1lλ)

(m̂, ψ)
$← A1(1lλ, vk)

ŝ
$← Sign(sk, m̂)

(s,m)
$← A2(ψ, ŝ)

 = negl(λ).

A.6 Non-Interactive Witness Indistinguishability

We recall the definition of non-interactive witness-indistinguishable proof (NIWI). Essentially, this consists of
a construction specifying how to prove that a given statement x belong to a language using a single message.
In order to be efficient, the algorithm that generates the proof needs to receive a witness for x as input. The
primitive does not guarantee that the proof keeps the witness secret. It achieves, however, a weaker form of
security stating that if there are multiple witnesses for the same statement x, the proof does not disclosed
which witness was used for its generation.

It is possible to build subexponentially secure NIWI proofs without setups from various assumptions,
specifically, DLIN [GOS06b,GOS06a], derandomisation [BOV03] and indistinguishability obfuscation [BP15].

Definition 40 (NIWI proof). Let R be an NP relation. A NIWI proof is a pair of uniform PPT algorithms
(Prove,Verify) with the following syntax:

– Prove is randomised and takes as input the security parameter 1lλ, a statement x and a witness w. The
output is a proof π.

– Verify is deterministic and takes as input a proof π and a statement x. The output is a bit b ∈ {0, 1}.

We require the following properties.

– (Completeness). There exists a negligible function negl(λ) such that, for every (x,w) ∈ R, we have

Pr
[
Verify(π, x) = 1

∣∣∣π $← Prove(1lλ, x, w)
]

= 1− negl(λ).

– (Perfect Soundness). If x 6∈ LR, there exists no π such that Verify(π, x) = 1.
– (Witness-Indistinguishability). For every pair of PPT adversaries (A1,A2), we have∣∣∣∣∣∣∣∣∣∣∣

Pr

A2(ψ, π) = b

∣∣∣∣∣∣∣∣∣∣∣

b
$← {0, 1}

(x,w0, w1, ψ)
$← A1(1lλ)

π
$← Prove(1lλ, x, wb)

If (x,w0) 6∈ R or (x,w1) 6∈ R : π ← ⊥

−
1

2

∣∣∣∣∣∣∣∣∣∣∣
= negl(λ).

95

A.7 Identity-Based Encryption

We recall the definition of identity-based encryption (IBE) [Sha84,BF01]. An IBE scheme is a public-key
encryption scheme that is augmented with an access policy: each ciphertext and each secret key is associated
with an identity. It is possible to decrypt only if two identities match. Holding keys associated with other
identities gives no help in retrieving information about the plaintext.

Definition 41 (Identity-based encryption). Let p(λ) and q(λ) be polynomial functions. An identity-
based encryption scheme (IBE) with message size p(λ) and identity size q(λ) is a tuple of uniform PPT
algorithms (Setup,Extract,Enc,Dec) with the following syntax:

– Setup is randomised and takes as input the security parameter 1lλ. The output is a key pair (mpk,msk).
– Extract is randomised and takes as input a master secret key msk and an identity id ∈ {0, 1}q(λ). The

output is a secret-key sk.
– Enc is randomised and takes as input a master public key mpk, an identity id ∈ {0, 1}q(λ) and a message
m ∈ {0, 1}p(λ). The output is a ciphertext c.

– Dec is deterministic and takes as input a secret-key sk and a ciphertext c. The output is a message m or
⊥.

We require the following properties.

– (Perfect Correctness). For every id ∈ {0, 1}q(λ) and m ∈ {0, 1}p(λ),

Pr

Dec(sk, c) = m

∣∣∣∣∣∣∣∣
(mpk,msk)

$← Setup(1lλ)

c
$← Enc(mpk, id,m)

sk
$← Extract(msk, id)

 = 1.

– (IND-ID-CPA security). No PPT adversary can win the game in Fig. 52 with non-negligible advan-
tage.

The IND-ID-CPA Game
Initialisation: This procedure is run only once, at the beginning of the game.

1. b
$← {0, 1}

2. Q← ∅
3. îd← ⊥
4. (mpk,msk)

$← Setup(1lλ)
5. Activate the adversary with 1lλ and mpk.

Key: This procedure can be queried multiple time, both before and after choosing the challenge. On input
identities id ∈ {0, 1}q(λ) such that id 6= îd, the challenger adds id to Q and replies with Extract(msk, id).

Challenge: This procedure can be queried only once. The adversary provides m0,m1 ∈ {0, 1}p(λ) and

îd ∈ {0, 1}q(λ) \Q. The challenger answers with Enc(mpk, îd,mb).

Win: The adversary wins if it guesses b.

Fig. 52. The IND-ID-CPA game

Subexponentially secure IBE schemes can be built in the plain model using a large variety of assumptions
[CHK03,BB04,Wat05,Gen06,ABB10].

96

A.8 Indistinguishability Obfuscation

We recall the definition of indistinguishability obfuscation [BGI+01,GGH+13]. An indistinguishability ob-
fuscation is an algorithm that modifies a circuit without altering its input-output behaviour. The result is
however so “scrambled” that it is hard to tell what the original circuit looked like. In this paper, we use the
terms “circuit” and “program” interchangeably.

Definition 42 (Indistinguishability obfuscator). An indistinguishability obfuscator is a uniform PPT
algorithm iO that takes as input the security parameter 1lλ and a circuit C. The output is an obfuscate
program C̃. We require the following properties.

– (Perfect Correctness). For every circuit C and input x, we have

Pr
[
C(x) = C̃(x)

∣∣∣C̃ $← iO(1lλ, C)
]

= 1.

– (Security). For every PPT adversary A and sampler Samp outputting same-size circuits C0 and C1

such that ∀x : C0(x) = C1(x) along with auxiliary information aux, we have∣∣∣∣∣∣∣∣Pr

A(1lλ, C̃, C0, C1, aux) = b

∣∣∣∣∣∣∣∣
b

$← {0, 1}

(C0, C1, aux)
$← Samp(1lλ)

C̃
$← iO(1lλ, Cb)

− 1

2

∣∣∣∣∣∣∣∣ = negl(λ).

Although the initial obfuscation constructions were based on non-standard assumptions [GGH+13], the field
has recently shown significant progress. State-of-the-art obfuscators can indeed be based on the subexponen-
tial hardness of well-founded problems [JLS21,JLS22]. Notice that the subexponential security of obfuscation
is a common assumption in cryptography [CLTV15,DHRW16,HIJ+17].

In this paper, we will use indistinguishability obfuscators satisfying a particular property called injectivity.
In other words, it is guaranteed that the obfuscation of distinct circuits will never collide. It is easy to obtain
this property by appending a perfectly binding commitment of the unobfuscated circuit to the obfuscated
program [CCK+22].

Definition 43 (Injective indistinguishability obfuscator). We say that an indistinguishability obfus-
cator iO is injective if, for every λ ∈ N, there exist no pairs (C0, r0) and (C1, r1) such that C0 6= C1 but
iO(1lλ, C0; r0) = iO(1lλ, C1; r1).

A.9 Multi-Key FHE

We recall the definition of multi-key fully homomorphic encryption [LTV12,CM15] [MW16]. As standard
FHE, multi-key FHE scheme is a public key encryption scheme that allows homomorphically applying func-
tions on encrypted values deriving encryptions of the outputs. The evaluation of the function is performed
locally and no information about the plaintexts is revealed in the process. The big advantage of multi-key
FHE is that, while standard FHE allows performing operations only between ciphertexts encrypted under
the same public key, multi-key FHE suffers from no such restriction: we can evaluate functions on inputs
encrypted under different keys, obtaining an encryption of the output under a “joint key”. In order to decrypt
the latter, the parties need to collaborate: each player will locally compute a partial decryption using its own
private key. By pooling together the partial plaintexts, everybody can retrieve the result.

Subexponentially secure multi-key FHE without CRS can be built based on LWE and DSPR [AJJM20],
or obfuscation and DDH [DHRW16]. In this paper, we rely on the definition of [AJJM20].

Definition 44 (Multi-key FHE). An multi-key fully homomorphic encryption scheme is a tuple of uni-
form PPT algorithms (Gen,Enc,Eval,PartDec,FinDec) with the following syntax:

– Gen is randomised and takes as input the security parameter 1lλ. The output is a key pair (pk, sk).

97

– Enc is randomised and takes as input a public key pk and a message m. The output is a ciphertext c.
– Eval is deterministic and takes as input a function f and n pairs (pki, ci) where n is the number of inputs

of f . The output is a ciphertext C encrypted under the joint public key (pk1, . . . , pkn).
– PartDec is randomised and takes as input a ciphertext C, n public keys pk1, . . . , pkn for some n ∈ N, an

index i ∈ [n] and a secret key sk. The output is a partial decryption d.
– FinDec is deterministic and takes as input n partial decryptions d1, . . . , dn for some n ∈ N. The output

is a message m or ⊥.

We require the following properties.

– (Correctness). For every function f with n inputs and values x1, . . . , xn, we have

Pr


m = f(x1, . . . , xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣

∀i ∈ [n] : (pki, ski)
$← Gen(1lλ)

∀i ∈ [n] : ci
$← Enc(pki, xi)

C ← Eval(f, pk1, c1, . . . , pkn, cn)

∀i ∈ [n] : di
$← PartDec(C, pk1, . . . , pkn, i, ski)

m← FinDec(d1, . . . , dn)


= 1.

– (Reusable Semi-Malicious Security). There exists uniform PPT simulators Sim1 and Sim2 such
that no PPT adversary A can win the game in Fig. 53 with non-negligible advantage.

The Multi-Key FHE Security Game
Initialisation: This procedure is run only once, at the beginning.

1. b
$← {0, 1}

2. Activate the adversary A with 1lλ

3. Receive H ⊆ [n] from the adversary along with (xi)i∈H .

4. ∀i ∈ H : (pk0i , sk
0
i)

$← Gen(1lλ, i)

5. ∀i ∈ H : c0i
$← Enc(pk0i , xi)

6.
(
φ, (pk1i , c

1
i)i∈H

) $← Sim1(1lλ, H)

7. ∀i ∈ H : (pki, ci)← (pkbi , c
b
i)

8. Provide A with (pki, ci)i∈H .
9. Receive (xj , rj , r

′
j)j 6∈H from A

10. ∀j 6∈ H : (pkj , skj)← Gen(1lλ, j; rj)
11. ∀j 6∈ H : cj ← Enc(pkj , xj ; r

′
j)

Decryption: This procedure can be queried multiple times. On input a function f with n inputs, compute the
following.
1. C ← Eval(f, pk1, c1, . . . , pkn, cn)
2. y ← f(x1, . . . , xn)

3. ∀i ∈ H : d0i
$← PartDec(C, pk1, . . . , pkn, i, sk

0
i)

4.
(
φ′, (d1i)i∈H

) $← Sim2

(
φ, f, y, (xj , rj , r

′
j)j 6∈H

)
5. φ← φ′

6. Provide (dbi)i∈H to A
Win: The adversary wins if it guesses b.

Fig. 53. The multi-key FHE security game

A.10 Extremely Lossy Functions

We recall the definition of extremely lossy function (ELF) [Zha16]. An ELF is a function f parametrised by
two values M and r. The former denotes the cardinality of its domain, whereas r denotes an upper bound

98

on the size of the image. When M = r, the function is guaranteed to be injective. When r 6= M , we say
that the ELF is in lossy mode. The primitive ensures that, by choosing a sufficiently large poly(logM) value
r, the advantage in distinguishing between an injective ELF and a lossy ELF can be made an arbitrarily
small inverse polynomial function in logM . Extremely lossy functions can be built based on the exponential
hardness of DDH over elliptic curves [Zha16].

Definition 45 (Extremely lossy function). An extremely lossy function (ELF) consists of a uniform
PPT algorithm Gen that takes as input two integers M and r. The output is the description of a function f
with domain [M]. The primitive uses logM as security parameter. We require the following properties.

– f is computable in poly log(M) time and the running time is independent of r.

– If r = M , Pr
[
∃x 6= y s.t. f(x) = f(y)

∣∣f $← Gen(M,M)
]

= negl(logM).

– There every r ∈ [M], Pr
[∣∣f([M]

)∣∣ ≥ r∣∣∣f $← Gen(M, r)
]

= negl(logM).

– For every polynomial p and inverse polynomial function δ, there exists a polynomial q such that, for
every adversary A running in time at most p(logM), and r ≥ q(logM), we have∣∣∣∣∣∣∣∣Pr

A(M, r, fb) = 1

∣∣∣∣∣∣∣∣
b

$← {0, 1}

f1
$← Gen(M, r)

f0
$← Gen(M,M)

− 1

2

∣∣∣∣∣∣∣∣ ≤ δ(logM).

In the constructions in this paper, logM will be both poly(λ) and Ω(λ). Therefore, every negligible
function in logM will also be negligible in λ (and viceversa). Similarly, every polynomial function in logM
will also be polynomial in λ (and viceversa).

We now recall the definition of regular ELF [Zha16]. Informally, an ELF is regular if, by applying the
function on a random domain element, we hit all the elements in the image with at least inverse-polynomial
probability in r and logM . Regular ELFs can be built based on exponential DDH [Zha16].

Definition 46 (Regular ELF). An ELF is regular if there exists s = poly(logM, r) such that, except with

negligible probability over f
$← Gen(M, r), for every y ∈ f([M]), we have

Pr
x

[
f(x) = y

∣∣x $← [M]
]
≥ 1

s(logM, r)

where Pr
x

is a probability taken over the randomness of x.

We also recall the definition of strongly efficiently enumerable ELF [Zha16]. This consists an ELF in
which it is possible to reconstruct the image in poly(logM, r) time.

Definition 47 (Strongly efficiently enumerable ELF). An ELF is strongly efficiently enumerable if
there exists a randomise algorithm Enum running in poly(logM, r) time such that, for every r ∈ [M],

Pr
[
S 6= f

(
[M]

)∣∣∣f $← Gen(M, r), S
$← Enum(M, 1lr, f)

]
≤ negl(logM).

It easy to show that every regular ELF is strongly efficiently enumerable [Zha16].

Theorem 28 ([Zha16]). A regular ELF is strongly efficiently enumerable.

B Proof of Theorem 11

In this appendix, we prove Theorem 11.

Proof. Completeness is an immediate consequence of the completeness of NIWI.

99

Claim. The construction in Fig. 15 and Fig. 16 is an almost everywhere extractable NIZK.

Proof of the claim. We start by observing that the CRS σ generated by Setup(1lλ) has exactly the same
distribution as the one generated by SimSetup(1lλ). The second property is also straightforward.

Therefore, we focus on the third property of the almost everywhere extractable NIZKs. Let `(λ) denote
the position of the last bit of c0. We observe that by the perfect soundness of NIWI and the perfect correctness
of IBE, in all proofs that verify but cannot be extracted, c0 is a commitment to a preimage of v. Since the
OWF is injective, there exists a unique preimage. Furthermore, the commitment algorithm takes as input
q2(λ) bits of randomness. We conclude that, with probability 1, VPFEσ,τe,id contains at most 2q2(λ) elements.

Now, suppose that an adversary B running in time poly
(
λ, 2q2(λ)

)
can find an element in VPFEσ,τe,id

with non-negligible probability after being provided with σ and τe. We can use this adversary to break the
subexponential one-wayness of OWF. Indeed, consider the adversary that after receiving v from its challenger,
generates (mpk,msk) using IBE.Setup and provides the pair σ = (mpk, v), τe = msk to B. When the latter
replies with c0, the new adversary retrieves the value hidden in c0, breaking the hiding property of the
commitment. The total running time of poly

(
λ, 2q2(λ), S(λ)

)
and, with non-negligible probability, due to the

perfectly binding property of the commitment scheme, the output is the value u such that OWF(1lλ, u) = v.
We reached a contradiction. This ends the proof of the claim. �

Claim. The construction in Fig. 15 and Fig. 16 satisfies chosen-ID zero-knowledge.

Proof of the claim. We prove the result by means of a sequence of indistinguishable hybrids. We repeat it
for i = 0, 1, . . . ,M where M is a polynomial upper bound on the number of Prove queries issued by the
adversary (since A is PPT, M exists). Throughout the proof, for any i, let πi denote the proof provided to
the adversary in the i-th Prove query. Let us denote the identity, the statement and the witness of the latter
by idi, xi and wi respectively.

Hybrid i.0. In this hybrid, for every j ≤ i, we generate the proof πj using SimProve(τs, idj , xj). For every

j > i instead, we generate the proof πj using Prove(1lλ, σ, idj , xj , wj). When i = 0, this hybrid corresponds
to the execution of the chosen-ID zero-knowledge game (see Fig. 14) with b = 0. In particular, the proofs
are all generated using the witnesses for R. In all other cases, this hybrid is identical to Hybrid (i− 1).3.

Hybrid i.1. In this hybrid, in the i-th proof, instead of committing to 0, we commit to τs = u. This hybrid
is indistinguishable from the previous one by the hiding property of the commitment scheme. Formally, the
operations to generate πi are the following. All other proofs are generated as in the previous hybrid.

1. c0
$← Com(1lλ, u)

2. r
$← {0, 1}q1(λ)

3. c1 ← IBE.Enc(mpk, idi, wi; r)

4. π′
$← NIWI.Prove

(
1lλ, (mpk, v, idi, c0, c1, xi), (wi, r)

)
5. Output πi := (c0, c1, π

′)

Hybrid i.2. In this hybrid, instead of using wi and the randomness used to generate c1 as witness for
NIWI, we use u and the randomness used for c0. By the witness indistinguishability of NIWI, this hybrid is
indistinguishable from the previous one. Formally, the operations to generate πi are the following. All other
proofs are generated as in the previous hybrid.

1. r
$← {0, 1}q2(λ)

2. c0 ← Com(1lλ, u; r)

3. c1
$← IBE.Enc(mpk, idi, wi)

4. π′
$← NIWI.Prove

(
1lλ, (mpk, v, idi, c0, c1, xi), (u, r)

)
5. Output πi := (c0, c1, π

′)

Hybrid i.3. In this hybrid, instead of encrypting wi using IBE, we encrypt 0. This hybrid is indistin-
guishable from the previous one by the IND-ID-CPA security of IBE. Notice indeed, that we never provide
the adversary with τe nor with τ idie . Formally, the operations to generate πi are the following. All other proofs
are generated as in the previous hybrid.

100

1. r
$← {0, 1}q2(λ)

2. c0 ← Com(1lλ, u; r)

3. c1
$← IBE.Enc(mpk, idi, 0)

4. π′
$← NIWI.Prove

(
1lλ, (mpk, v, idi, c0, c1, xi), (u, r)

)
5. Output πi := (c0, c1, π

′)

Notice that when i = M , the last hybrid is identical to the to the execution of the chosen-ID zero-knowledge
game (see Fig. 14) with b = 1. This ends the proof of the claim. �

ut

C Proof of Theorem 15

In this appendix, we prove Theorem 15, namely that the construction in Fig. 31 is a lossy distributed sampler.

Proof. We observe that the second property of the lossy distributed sampler is a trivially implied by the
ELF. Therefore, we focus on the first property, namely that for any polynomial p(λ) and inverse polynomial
function δ(λ), there exists a polynomial q(λ) such that no adversary running in time at most p(λ) can
distinguish between the standard mode and the lossy mode parametrised by q(λ) with advantage greater
than δ(λ). We rely on an hybrid argument.

Hybrid 0. This hybrid corresponds to the game for lossy distributed samplers when the challenger uses
the standard mode of operation.

We recap below the operations performed by Setup(1lλ) in this hybrid.

1. σ
$← NIZK.Setup(1lλ)

2. σ′
$← NIZK′.Setup(1lλ)

3. Output (σ, σ′).

The operations used by Gen
(
1lλ, sid, i, crs = (σ, σ′)

)
are instead the following.

1. ρ1
$← {0, 1}L1(λ)

2. ρ2
$← {0, 1}L2(λ)

3. W
$← {0, 1}λ

4. (K
(i)
1 ,K

(i)
2 , u1, u2)← PRG(W)

5. hki ← Hash.Gen(1lλ; u1)

6. EPi ← iO(1lλ,EProg[K
(i)
1 ,K

(i)
2 , i]; u2) (see Fig. 25)

7. DPi ← iO(1lλ,DProg[i, sid,K
(i)
2 ,EPi, hki, σ]; ρ1) (see Fig. 26)

8. πi ← NIZK.Prove
(
σ, (sid, i), (i, hki,EPi),W ; ρ2

)
9. π′i

$← NIZK′.Prove
(
σ′, (sid, i, hki,EPi,DPi, πi, σ), (W,ρ1, ρ2)

)
10. Output Ui := (hki,EPi,DPi, πi, πi).

Hybrid 1. In this hybrid, we simulate the NIZK CRS σ′ and the proof π′i sent in each NewSession query.
We recall that i is the index queried by the adversary. Formally, the CRS of the distributed sample is now
generate as follows.

1. σ
$← NIZK.Setup(1lλ)

2. (σ′, τ ′)
$← NIZK′.SimSetup(1lλ)

3. Output (σ, σ′).

The operations performed by the challenger in order to compute Ui in NewSession queries become the
following.

1. W
$← {0, 1}λ

101

2. (K
(i)
1 ,K

(i)
2 , u1, u2)← PRG(W)

3. hki ← Hash.Gen(1lλ; u1)

4. EPi ← iO(1lλ,EProg[K
(i)
1 ,K

(i)
2 , i]; u2) (see Fig. 25)

5. DPi
$← iO(1lλ,DProg[i, sid,K

(i)
2 ,EPi, hki, σ]) (see Fig. 26)

6. πi
$← NIZK.Prove

(
σ, (sid, i), (i, hki,EPi),W

)
7. π′i

$← NIZK′.SimProve
(
τ ′, (i, sid, hki,EPi,DPi, πi, σ)

)
8. Output Ui := (hki,EPi,DPi, πi, π

′
i).

This hybrid is indistinguishable from the previous one due to the multi-theorem zero-knowledge of NIZK′.
In the reduction, we build a PPT adversary B that simulates the lossy distributed sampler game as in
Hybrid 0 to an internal copy of A. The adversary B models the CRS using the element σ′ obtained from
its challenger. In each NewSession query, it generates the proof π′i by querying the corresponding statement
(i, sid, hki,EPi,DPi, πi, σ) and the relative witness (W,ρ1, ρ2) to its challenger. At the end of its execution,
B outputs the same bit as A. So if A succeeds at distinguishing between Hybrid 0 and Hybrid 1, B succeeds
in breaking NIZK′ too. Notice that if A is uniform B is uniform too.

Hybrid 2. In this hybrid, we change the reply to the sampling queries. In particular, for every Ul provided
by the adversary in session sid, we compute

bl ← NIZK′.Verify
(
σ′, π′l, (l, sid, hkl,EPl,DPl, πl, σ)

)
,

wl ← NIZK′.Extract
(
τ ′, π′l, (l, sid, hkl,EPl,DPl, πl, σ)

)
.

If bl = 0 or wl = ⊥, we provide the adversary with⊥. In all other cases, we provided it with Sample(U1, . . . , Un, sid, crs).
This hybrid is indistinguishable from the previous one due to the simulation-extractability of NIZK′. Let

M(λ) denote a polynomial upper-bounding the number of sampling queries issued by the adversary. In the
reduction, we build a PPT adversary B that simulates the lossy distributed sampler game as in Hybrid 0 to

an internal copy of A. The adversary B starts its execution by sampling ι
$← [M]. It models the distributed

sampler CRS using the element σ′ obtained from its challenger. In each NewSession query, it generates
the proof π′i by querying the corresponding statement (i, sid, hki,EPi,DPi, πi, σ) to the simulation oracle. It
replies to the first ι − 1 sampling queries as in Hybrid 1. At the ι-th sampling query

(
Sample, sid, (Ul)l 6=i

)
,

however, B samples j
$← [n] \ {i} and outputs π′j , (j, sid, hkj ,EPj ,DPj , πj , σ) where hkj ,EPj ,DPj , πj and π′j

are the elements in Uj .
If A succeeds at distinguishing, it must be that, with non-negligible probability ε(λ), one of its sampling

queries contains a proof that verifies but cannot be extracted. With 1/M(λ) probability, the first proof of
this kind will appear in the ι-th sampling query. So, B will succeed with probability at least ε(λ)/(M · n).
This contradicts the simulation-extractability of NIZK′. Notice that if A is uniform B is uniform too.

Hybrid 3. In this hybrid, we simulate the NIZK CRS σ and the proof πi sent in each NewSession query.
We also modify the decryption program DPi. Instead of verifying the NIZKs that are given as input, the
program extracts the witness from them using trapdoors (τ je)j 6=i we hardcode into it. When extraction of

any NIZK fails, the program outputs ⊥. Each of the trapdoor is obtained as τ je
$← NIZK.Trap

(
τe, (sid, j)

)
.

The distributed sampler CRS is now computed as follows.

1. (σ, τs, τe)
$← NIZK.SimSetup(1lλ)

2. (σ′, τ ′)
$← NIZK′.SimSetup(1lλ)

3. Output crs := (σ, σ′)

The operations performed by the challenger in order to compute Ui in NewSession queries become the
following.

1. W
$← {0, 1}λ

2. (K
(i)
1 ,K

(i)
2 , u1, u2)← PRG(W)

3. hki ← Hash.Gen(1lλ; u1)

102

4. EPi ← iO(1lλ,EProg[K
(i)
1 ,K

(i)
2 , i]; u2) (see Fig. 25)

5. ∀j 6= i : τ je
$← NIZK.Trap

(
τe, (sid, j)

)
6. DPi

$← iO(1lλ,DProg1[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i]) (see Fig. 29)

7. πi
$← NIZK.SimProve

(
τs, (sid, i), (i, hki,EPi)

)
8. π′i

$← NIZK′.SimProve
(
τ ′, (i, sid, hki,EPi,DPi, πi, σ)

)
9. Output Ui := (hki,EPi,DPi, πi, π

′
i).

Claim. If AClass denotes the class of non-uniform adversaries, Hybrid 3 is indistinguishable from Hybrid 2 due
to the subexponential security of iO and almost-everywhere extractability and the chosen-ID zero-knowledge
of NIZK.

Proof of the claim. We proceed by means of a sequence of indistinguishable hybrids.

Hybrid’ 0. This hybrid corresponds to the game in Hybrid 2.

Hybrid’ 1. In this hybrid, we generate the CRS σ using SimSetup. In the process, we obtain also the
trapdoors τe and τs. Hybrid’ 1 and Hybrid’ 0 are indistinguishable thanks to the first property of almost
everywhere extractable NIZKs.

Let M(λ) be a polynomial upper-bound on the number of NewSession queries issued by A. We proceed
with M(λ) + 1 hybrids indexed by ι = 0, 1, . . . ,M(λ).

Hybrid’ 2.ι. In this hybrid, we reply to the first ι NewSession queries using an obfuscation of DProg1
(see Fig. 29). Starting from the (ι+ 1)-th query, we instead send an obfuscation of DProg (see Fig. 26). We
observe that Hybrid’ 2.0 is identical to Hybrid’ 1. For every ι ∈ [M], Hybrid’ 2.ι is indistinguishable from
Hybrid’ 2.(ι−1) thanks to Lemma 2. In the reduction, we build adversaries B1 and B2 that contradict Lemma
2. The adversary B1 receives σ and τe from the challenger. Then, it simulates the lossy distributed sampler
game as in Hybrid’ 2.(ι− 1) to an internal copy of A. At the ι-th NewSession query, B generates hki and EPi
as usual, then, it outputs the circuit DProg[i, sid,K

(i)
2 ,EPi, hki, σ] erasing the first two lines (i.e. the NIZKs

verification) along with the identities (sid, l)l 6=i and its internal state. The adversary B2 after receiving the
obfuscated program DPi and the internal state of B1 resumes the simulation of the lossy distributed sampler
game with A. It includes DPi as part of the answer Ui to the ι-th NewSession query of A. It produces the
proofs πi and π′i in Ui as in Hybrid 2. At the end of its execution, B outputs the same bit as A. Observe
that if A distinguishes, then (B1,B2) breaks Lemma 2.

Hybrid’ 3. In this hybrid, we reply to all NewSession queries using an obfuscation of DProg1 (see Fig. 29).
Notice that Hybrid’ 3 is identical to Hybrid’ 2.M .

Hybrid’ 4. In this hybrid, we simulate the proof πi in each NewSession query. Hybrid’ 3 and Hybrid’ 4 are
indistinguishable under the chosen-ID zero-knowledge of NIZK. In the reduction, we build a PPT adversary
B that simulates the game as in Hybrid’ 3 to an internal copy of A. The NIZK CRS σ is given by the
zero-knowledge challenger. In every execution of NewSession, the adversary B generates hki,EPi,DPi, π

′
i as

in Hybrid’ 3. The only difference is that it obtains the extraction trapdoors hardcoded into DPi by querying(
Trap, (sid, j)

)
for every j 6= i to the chosen-ID zero-knowledge challenger. The proof πi is obtained by

querying

(Prove, (sid, i), x := (i, hki,EPi), w := W
)

to the chosen-ID zero-knowledge challenger. Observe that B never queries proofs and trapdoors for the same
identity. At the end of its execution B outputs the same bit as A. So if A succeeds in distinguishing, B breaks
the chosen-ID zero-knowledge property of NIZK.

Observe that Hybrid’ 4 is identical to Hybrid 3. This terminates the proof of the claim. �

Claim. If AClass denotes the class of uniform adversaries, Hybrid 3 is indistinguishable from Hybrid 2 due
to the subexponential security of iO and the τ ′-disclosed simulation almost-everywhere extractability and
zero-knowledge of NIZK.

103

Proof of the claim. We proceed by means of a sequence of indistinguishable hybrids.
Hybrid’ 0. This hybrid corresponds to the game in Hybrid 2.
Hybrid’ 1. In this hybrid, we generate the CRS σ using SimSetup. In the process, we obtain also the

trapdoors τe and τs. Hybrid’ 1 and Hybrid’ 0 are indistinguishable thanks to the first property of simulation
almost everywhere extractable NIZKs.

Hybrid’ 2. In this hybrid, we simulate the proof πi in each NewSession query. Hybrid’ 1 and Hybrid’ 2 are
indistinguishable under zero-knowledge of NIZK. In the reduction, we build a PPT adversary B that simulates
the game as in Hybrid’ 1 to an internal copy of A. The NIZK CRS σ and the value aλ = τ ′ is given by the
zero-knowledge challenger. In every execution of NewSession, the adversary B generates hki,EPi,DPi, π

′
i as

in Hybrid’ 1. The proof πi is obtained by querying

(Prove, (sid, i), x := (i, hki,EPi), w := W
)

to the zero-knowledge challenger. At the end of its execution B outputs the same bit as A. So if A succeeds
in distinguishing, B breaks the zero-knowledge property of NIZK.

Let M(λ) be a polynomial upper-bound on the number of NewSession queries issued by A. We proceed
with M(λ) + 1 hybrids indexed by ι = 0, 1, . . . ,M(λ).

Hybrid’ 3.ι. In this hybrid, we reply to the first ι NewSession queries using an obfuscation of DProg1
(see Fig. 29). Starting from the (ι + 1)-th query, we instead send an obfuscation of DProg (see Fig. 26).

We observe that Hybrid’ 3.0 is identical to Hybrid’ 2. We show that for a random ι
$← [M], Hybrid’ 3.ι is

indistinguishable from Hybrid’ 3.(ι− 1) thanks to Lemma 3. In the reduction, we build an adversary B that
contradicts Lemma 3. The adversary B receives σ, τe and aλ = τ ′ from the challenger. Then, it simulates the
lossy distributed sampler game as in Hybrid’ 3.(ι− 1) to an internal copy of A. In each NewSession query, B
generates the simulated proof πi by querying its challenger. At the ι-th NewSession query, B generates hki
and EPi as usual, then, it provides its challenger with the circuit DProg[i, sid,K

(i)
2 ,EPi, hki, σ] erasing the

first two lines (i.e. the NIZKs verification) along with the identities (sid, l)l 6=i. Then, it includes the answer
DPi from its challenger as part of the distributed sampler message Ui. Notice that B never queries for a
simulated proof with identity (sid, j) for any j 6= i. At the end of its execution, B outputs the same bit as
A. Observe that B is uniform so if A distinguishes, then B breaks Lemma 3.

Hybrid’ 4. In this hybrid, we reply to all NewSession queries using an obfuscation of DProg1 (see Fig. 29).
Notice that Hybrid’ 4 is identical to Hybrid’ 3.M .

Observe that Hybrid’ 4 is identical to Hybrid 3. This terminates the proof of the claim. �

We now proceed by repeating the following sequence of hybrids for ι = 1, . . . ,M(λ),M(λ) + 1 where
M(λ) is a polynomial upper-bound on the number of NewSession queries issued by the adversary. From now
on, all pairs of hybrids can be proven indistinguishable by means of reductions to primitives that are secure
against non-uniform adversaries. For this reason, we do not need to worry anymore on how the reduction
obtains τe and τs.

Hybrid 4.ι.0. In this hybrid, the challenger starts its execution by generating a ELF f
$← ELF.Gen(M,M).

Notice that the latter is in injective mode. The input space is chosen sufficiently big to embed all tuples
(hkj ,EPj)j 6=i into it without collisions.

The challenger generates the answer Ui to the first ι− 1 NewSession queries as follows.

1. K
(i)
1

$← F1.Gen(1lλ)

2. K
(i)
2

$← F2.Gen(1lλ)

3. hki
$← Hash.Gen(1lλ)

4. K
$← F.Gen(1lλ)

5. EPi
$← iO(1lλ,EProgLs[K

(i)
2 , i]) (see Fig. 27)

6. ∀j 6= i : τ je
$← NIZK.Trap

(
τe, (sid, j)

)
7. DPi

$← iO(1lλ,DProgLs[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K, f]) (see Fig. 28)

8. πi
$← NIZK.SimProve

(
τs, (sid, i), (i, hki,EPi)

)
104

9. π′i
$← NIZK′.SimProve

(
τ ′, (i, sid, hki,EPi,DPi, πi, σ)

)
10. Output Ui := (hki,EPi,DPi, πi, π

′
i).

All the remaining NewSession queries are answered as in Hybrid 3. Notice that when ι = 0, Hybrid 4.ι.0 is
identical to Hybrid 2. In all other cases, Hybrid 4.ι.0 is identical to Hybrid 4.(ι− 1).

Hybrid 4.ι.1. In this hybrid, we generate the pair (hki,EPi) in the ι-th NewSession query using full-
entropy randomness instead of by expanding a PRG seed. All the rest remains as in the previous hybrid.
This hybrid is indistinguishable from the previous one by the security of the PRG (the proof is an easy
reduction). The operations performed by the challenger in order to compute Ui in the ι-th NewSession query
become the following.

1. K
(i)
1

$← F1.Gen(1lλ)

2. K
(i)
2

$← F2.Gen(1lλ)

3. hki
$← Hash.Gen(1lλ)

4. EPi
$← iO(1lλ,EProg[K

(i)
1 ,K

(i)
2 , i]) (see Fig. 25)

5. ∀j 6= i : τ je
$← NIZK.Trap

(
τe, (sid, j)

)
6. DPi

$← iO(1lλ,DProg1[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i]) (see Fig. 29)

7. πi
$← NIZK.SimProve

(
τs, (sid, i), (i, hki,EPi)

)
8. π′i

$← NIZK′.SimProve
(
τ ′, (i, sid, hki,EPi,DPi, πi, σ)

)
9. Output Ui := (hki,EPi,DPi, πi, π

′
i).

Remark 1. From now on, we will keep the generation of K
(i)
1 , K

(i)
2 and hki implicit. Indeed, the procedure

will remain as in Hybrid 4.ι.1. We do the same for πi and π′i and (τ je)j 6=i.

Hybrid 4.ι.2. In this hybrid, we modify the answer to the sampling queries concerning the ι-th session.
In particular, when the NIZKs verify and we succeed in extracting the witnesses (Wj)j 6=i from the messages
(Uj)j 6=i provided by the adversary, we answer the query as follows.

1. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
2. ∀j 6= i : (K

(j)
1 ,K

(j)
2 , uj1, u

j
2)← PRG(Wj)

3. ∀j ∈ [n] : sj ← F1(K
(j)
1 , yj)

4. R← D(1lλ; s1 ⊕ · · · ⊕ sn)

5. Provide R to the adversary.

Observe that this hybrid is identical to the previous one by the perfect correctness of multi key FHE and
the perfect correctness and injectivity of iO. The latter is needed to argue that EPj univocally determines

K
(j)
1 and K

(j)
2 .

Hybrid 4.ι.3. In this hybrid, we change both the encryption program EPi and the decryption program
DPi generated for the ι-th NewSession query, switching to an obfuscation of EProgLs (see Fig. 27) and DProg2
(see Fig. 30). All the rest remains as in the previous hybrid. Notice that, at this point, we removed K

(i)
1 from

the code of EPi. The operations performed by the challenger in order to compute Ui in the ι-th NewSession
query become the following.

1. EPi
$← iO(1lλ,EProgLs[K

(i)
2 , i]) (see Fig. 27)

2. DPi
$← iO(1lλ,DProg2[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

(i)
1]) (see Fig. 30)

3. Output Ui := (hki,EPi,DPi, πi, π
′
i).

Claim. Assuming the subexponential security of iO, of Hash, of the puncturable PRF F2 and of multi-key
FHE, no PPT adversary can distinguish between Hybrid 4.ι.2 and Hybrid 4.ι.3.

105

EProg0[K
(i)
1 ,K

(i)
2 , i, ŷ]

Hard-coded. The PPRF keys K
(i)
1 and K

(i)
2 , the index i, the hybrid index ŷ.

Input. A digest y ∈ {0, 1}t(λ).

1. If y <lex ŷ: (pki, ci)← EProgLs[K
(i)
2 , i](y) (see Fig. 27)

2. Otherwise, (pki, ci)← EProg[K
(i)
1 ,K

(i)
2 , i](y) (see Fig. 25)

3. Output (pki, ci)

Fig. 54. Hybrid ŷ.0: the unobfuscated encryption program of party Pi

Proof of the claim. We select the security parameter of the subexponentially collision resistance hash function
so that, for any PPT adversary,

22λ·(n−1) · AdvACR(λ) = negl(λ).

Let Ω be the set of all the tuples (hkj ,EPj)j 6=i such that each (hkj ,EPj) is generated by expanding a λ-bit
PRG seed as in Fig. 31. Observe that |Ω| ≤ 2λ·(n−1). We conclude that with overwhelming probability over
hki, there exist no collisions in Ω. Otherwise, the adversary that simply outputs two random elements in Ω
would break the above assumption. We can therefore, prove indistinguishability conditioned on this event
occurring.

We proceed once again by means of a series of hybrids. Their number will however be superpolynomial.
Specifically, we consider the set of all possible digests {0, 1}t(λ) and we set ŷ to its minimum according to
the lexicographical order. We proceed through the following sequence of hybrids gradually increasing ŷ until
it reaches the maximum in {0, 1}t(λ).

Hybrid ŷ.0. In this hybrid, we modify the programs EPi and DPi sent in the ι-th NewSession query. In
particular, instead of obfuscating EProg (see Fig. 25), we obfuscate EProg0 (see Fig. 54). Similarly, instead
of obfuscating DProg1 (see Fig. 29), we obfuscate DProg01 (see Fig. 55). In both these programs, we hardcode
ŷ. If the digest input in EPi is strictly lexicographically smaller than ŷ, the encryption program performs
the same operations as EProgLs (see Fig. 27), otherwise, it behaves as EProg (see Fig. 25). Similarly, if the
hash yi of the tuple (hkj ,EPj)j 6=i input in DPi is strictly lexicographically smaller than ŷ, the decryption
program performs the same operations as DProg2 (see Fig. 30), otherwise, it behave as DProg1 (see Fig. 29).

Notice that when ŷ is the minimum of {0, 1}t(λ), the new programs have exactly the same input-output
behaviour as EProg and DProg1. We conclude that, when ŷ is minimum, Hybrid ŷ.0 is indistinguishable from
Hybrid 4.ι.1, by the security of iO. If ŷ is not the minimum, this hybrid will be identical to the previous one
(i.e. Hybrid ŷ′.7 where ŷ′ is the previous value of ŷ).

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following.

1. EPi
$← iO(1lλ,EProg0[K

(i)
1 ,K

(i)
2 , i, ŷ]) (see Fig. 54)

2. DPi
$← iO(1lλ,DProg01[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

(i)
1 , ŷ]) (see Fig. 55)

3. Output Ui := (hki,EPi,DPi, πi, π
′
i).

Hybrid ŷ.1. In this hybrid, we modify the encryption program EPi sent in the ι-th NewSession query.
In particular, instead of obfuscating EProg0 (see Fig. 54), we obfuscate EProg1 (see Fig. 56). In the latter,

the PPRF key K
(i)
2 will now be punctured in position ŷ. Furthermore, we store into EPi, the pair

(p̂ki, ĉi)← EProg[K
(i)
1 ,K

(i)
2 , i](ŷ).

When ŷ is provided as input, EPi will directly output (p̂ki, ĉi). The rest remains as before. Since the input-
output behaviour of EProg1 is the same as for EProg0, no adversary can distinguish between this hybrid and
the previous one under the security of iO.

106

DProg01[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

(i)
1 , ŷ]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K
(i)
2 , the encryption program

EPi, the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors (τ je)j 6=i, the PPRF key

K
(i)
1 , the hybrid index ŷ.

Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. If Hash
(
hki, (hkj ,EPj)j 6=i

)
<lex ŷ:

di ← DProg2[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

(i)
1]
(

(hkj ,EPj , πj)j 6=i
)

(see Fig. 30)

2. Otherwise,

di ← DProg1[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i]

(
(hkj ,EPj , πj)j 6=i

)
(see Fig. 29)

3. Output di

Fig. 55. Hybrid ŷ.0: the unobfuscated decryption program of party Pi

EProg1[K
(i)
1 ,K

(i)
2 , i, ŷ, p̂k, ĉ]

Hard-coded. The PPRF keys K
(i)
1 and K

(i)
2 , the index i, the hybrid index ŷ, the public key p̂k and the

ciphertext ĉ.
Input. A digest y ∈ {0, 1}t(λ).

1. If y <lex ŷ: (pki, ci)← EProgLs[K
(i)
2 , i](y) (see Fig. 27)

2. If y = ŷ: (pki, ci)← (p̂k, ĉ)

3. Otherwise, (pki, ci)← EProg[K
(i)
1 ,K

(i)
2 , i](y) (see Fig. 25)

4. Output (pki, ci)

Fig. 56. Hybrid ŷ.1: the unobfuscated encryption program of party Pi

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following.

1. K∗2 ← F2.Punct(K
(i)
2 , ŷ)

2. si ← F1(K
(i)
1 , ŷ)

3. (ri, r
′
i, r
′′
i , ηi, η

′
i)← F2(K

(i)
2 , ŷ)

4. (p̂ki, ŝki)← mkFHE.Gen(1lλ, i; ri)

5. ĉi ← mkFHE.Enc(p̂ki, si; r
′
i)

6. EPi
$← iO(1lλ,EProg1[K

(i)
1 ,K∗2 , i, ŷ, p̂ki, ĉi]) (see Fig. 56)

7. DPi
$← iO(1lλ,DProg01[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

(i)
1 , ŷ]) (see Fig. 55)

8. Output Ui := (hki,EPi,DPi, πi, π
′
i).

Hybrid ŷ.2. In this hybrid, we modify the decryption program DPi sent in the ι-th NewSession query.
In particular, instead of obfuscating DProg01 (see Fig. 55), we obfuscate DProg11 (see Fig. 57). In the latter,

the PPRF key K
(i)
2 will now be punctured in position ŷ. Now, there are two cases: if there exists a tuple

(hkj ,EPj)j 6=i ∈ Ω such that Hash
(
hki, (hkj ,EPj)j 6=i

)
= ŷ, then, we store into DPi, the partial decryption

d̂i ← DProg1[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i]

(
(hkj ,EPj)j 6=i

)
.

Notice that, thanks to the subexponential security of Hash, the tuple (hkj ,EPj)j 6=i is univocally defined. If

instead, the tuple (hkj ,EPj)j 6=i we are looking for does not exist, we set d̂i ← ⊥. When the hash of the input

107

DProg11[i, sid,K∗2 ,EPi, hki, σ, (τ
j
e)j 6=i,K

(i)
1 , ω, d̂i]

Hard-coded. The index i of the party, the session identity sid, a punctured PRF key K∗2 , the encryption
program EPi, the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors (τ je)j 6=i, the PPRF

key K
(i)
1 , the hybrid index ŷ, the partial decryption d̂i.

Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. If Hash
(
hki, (hkj ,EPj)j 6=i

)
<lex ŷ:

di ← DProg2[i, sid,K∗2 ,EPi, hki, σ, (τ
j
e)j 6=i,K

(i)
1]
(

(hkj ,EPj , πj)j 6=i
)

(see Fig. 30)

2. If Hash
(
hki, (hkj ,EPj)j 6=i

)
= ŷ :

(a) ∀j 6= i : bj ← NIZK.Verify
(
σ, πj , (j, hkj ,EPj)

)
(b) ∀j 6= i :

(
K

(j)
1 ,K

(j)
2

)
← NIZK.Extract

(
τ je , πj , (j, hkj ,EPj)

)
a

(c) If ∃j 6= i such that bj = 0 or
(
K

(j)
1 ,K

(j)
2

)
= ⊥, output ⊥

(d) di ← d̂i
3. Otherwise,

di ← DProg1[i, sid,K∗2 ,EPi, hki, σ, (τ
j
e)j 6=i]

(
(hkj ,EPj , πj)j 6=i

)
(see Fig. 29)

4. Output di

Fig. 57. Hybrid ŷ.2: the unobfuscated decryption program of party Pi

collides with ŷ, DPi will now directly output d̂i. The rest remains as before. Observe that the input-output
behaviour of DProg11 is the same as for DProg01. Indeed, the input-output behaviour can change only if the
input consists of a tuple (hkj ,EPj)j 6=i that hashes to ŷ. We know that there exists at most one such tuple in

Ω and, in that case, the output of both DProg11 and DProg01 is the hardcoded value d̂i. When (hkj ,EPj)j 6=i
in not in Ω, then both DProg11 and DProg01 output ⊥ as the extraction of the witness from the NIZKs will
always fails. We conclude that no adversary can distinguish between this hybrid and the previous one under
the security of iO.

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following. Below, (hkj ,EPj)j 6=i denotes the tuple in Ω that hashes to ŷ under hki. If such tuple does not

exist, we ignore steps 7-10 below, and we simply set d̂i ← ⊥.

1. K∗2 ← F2.Punct(K
(i)
2 , ŷ)

2. si ← F1(K
(i)
1 , ŷ)

3. (ri, r
′
i, r
′′
i , ηi, η

′
i)← F2(K

(i)
2 , ŷ)

4. (p̂ki, ŝki)← mkFHE.Gen(1lλ, i; ri)

5. ĉi ← mkFHE.Enc(p̂ki, si; r
′
i)

6. EPi
$← iO(1lλ,EProg1[K

(i)
1 ,K∗2 , i, ŷ, p̂ki, ĉi]) (see Fig. 56)

7. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
8. ∀j ∈ [n] : (pkj , cj)← EPj(yj)

9. C ← mkFHE.Eval
(
D̃, pk1, c1, . . . , pkn, cn

)
(see bottom of Fig. 26)

10. d̂i ← mkFHE.PartDec
(
C, (pk1, pk2, . . . , pkn), i, ŝki; ηi

)
11. DPi

$← iO(1lλ,DProg11[i, sid,K∗2 ,EPi, hki, σ, (τ
j
e)j 6=i,K

(i)
1 , ŷ, d̂i]) (see Fig. 57)

12. Output Ui := (hki,EPi,DPi, πi, π
′
i).

Hybrid ŷ.3. In this hybrid, in the ι-th NewSession query, we generate p̂ki, ĉi and d̂i by inputting full-
entropy randomness ri, r

′
i and ηi into mkFHE.Gen, mkFHE.Enc and mkFHE.PartDec instead of producing

it using F2(K
(i)
2 , ŷ). This hybrid is indistinguishable from the previous one by the security of puncturable

PRFs.

108

Remark 2. Observe that since the number of pairs (i, hki) is finite, for every λ ∈ N, there exists one that
maximises the advantage of the adversary in distinguishing this hybrid from the previous one. We call the
corresponding hash key “the worst hash key”. Of course the worst hash key is chosen among those for which
there exist no collisions in Ω. In the reduction to the security of puncturable PRFs, we can assume that the

new adversary (the one attacking F2) obtains ŷ, the worst hash key ĥki and the tuple (hkj ,EPj)j 6=i in Ω
that is hashed to ŷ (if such tuple exists) as part of its non-uniform advice. The new adversary will simulate
the indistinguishability game between Hybrid ŷ.2 and Hybrid ŷ.3 using these values.

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following. Below, (hkj ,EPj)j 6=i denotes the tuple in Ω that hashes to ŷ under hki. If such tuple does not

exist, we ignore steps 6-9 below, and we simply set d̂i ← ⊥.

1. K∗2 ← F2.Punct(K
(i)
2 , ŷ)

2. si ← F1(K
(i)
1 , ŷ)

3. (p̂ki, ŝki)
$← mkFHE.Gen(1lλ, i)

4. ĉi
$← mkFHE.Enc(p̂ki, si)

5. EPi
$← iO(1lλ,EProg1[K

(i)
1 ,K∗2 , i, ŷ, p̂ki, ĉi]) (see Fig. 56)

6. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
7. ∀j ∈ [n] : (pkj , cj)← EPj(yj)

8. C ← mkFHE.Eval
(
D̃, pk1, c1, . . . , pkn, cn

)
(see bottom of Fig. 26)

9. d̂i
$← mkFHE.PartDec

(
C, (pk1, pk2, . . . , pkn), i, ŝki

)
10. DPi

$← iO(1lλ,DProg11[i, sid,K∗2 ,EPi, hki, σ, (τ
j
e)j 6=i,K

(i)
1 , ŷ, d̂i]) (see Fig. 57)

11. Output Ui := (hki,EPi,DPi, πi, π
′
i).

Hybrid ŷ.4. In this hybrid, in the ι-th NewSession query, instead of computing p̂ki, ĉi and d̂i using
mkFHE.Gen, mkFHE.Enc and mkFHE.PartDec, we simulate them. Notice that the multi-key FHE simulator
mkFHE.Sim2 needs to receive the inputs and the randomness used by the other parties. We retrieve the latter

by expanding the PRF keys K
(j)
1 and K

(j)
2 hidden in EPj (we recall that (hkj ,EPj)j 6=i denotes the only tuple

in Ω that is hashed to ŷ under hki). Since the obfuscation scheme is injective, K
(j)
1 and K

(j)
2 are univocally

defined.
This hybrid is indistinguishable from the previous one under the reusable semi-malicious security of

multi-key FHE. For the reduction, we use the same trick as in Hybrid ŷ.3, i.e. we provide the adversary with

ŷ, the worst hash key, the only preimage (hkj ,EPj)j 6=i of ŷ in Ω along with the PRF keys K
(j)
1 ,K

(j)
2 hidden

in each EPj as part of the non-uniform advice string.
The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become

the following. Below, (hkj ,EPj)j 6=i denotes the tuple in Ω that hashes to ŷ under hki. For every j 6= i, we

use K
(j)
1 and K

(j)
2 to denote the PPRF keys hidden in EPj . If such tuple does not exist, we ignore steps 4-8

below, and we simply set d̂i ← ⊥.

1. K∗2 ← F2.Punct(K
(i)
2 , ŷ)

2. (φ, p̂ki, ĉi)
$← mkFHE.Sim1(1lλ, i)

3. EPi
$← iO(1lλ,EProg1[K

(i)
1 ,K∗2 , i, ŷ, p̂ki, ĉi]) (see Fig. 56)

4. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
5. ∀j ∈ [n] : sj ← F1(K

(j)
1 , yj)

6. ∀j 6= i : (rj , r
′
j , r
′′
j , ηj , η

′
j)← F2(K

(j)
2 , yj)

7. R̂← D(1lλ; s1 ⊕ · · · ⊕ sn)

8. d̂i
$← mkFHE.Sim2

(
φ, ˜dist, R̂, (sj , rj , r

′
j)j 6=i

)
9. DPi

$← iO(1lλ,DProg11[i, sid,K∗2 ,EPi, hki, σ, (τ
j
e)j 6=i,K

(i)
1 , ŷ, d̂i]) (see Fig. 57)

109

10. Output Ui := (hki,EPi,DPi, πi, π
′
i).

Hybrid ŷ.5. In this hybrid, in the ι-th NewSession query, we generate p̂ki, ĉi and d̂i using the randomness

generated by F2(K
(i)
2 , ŷ). This hybrid is indistinguishable from the previous one under the security of the

puncturable PRF.

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following. Below, (hkj ,EPj)j 6=i denotes the tuple in Ω that hashes to ŷ under hki. For every j 6= i, we

use K
(j)
1 and K

(j)
2 to denote the PPRF keys hidden in EPj . If such tuple does not exist, we ignore steps 5-9

below, and we simply set d̂i ← ⊥.

1. K∗2 ← F2.Punct(K
(i)
2 , ŷ)

2. (ri, r
′
i, r
′′
i , ηi, η

′
i)← F2(K

(i)
2 , ŷ)

3. (φ, p̂ki, ĉi)← mkFHE.Sim1(1lλ, i; r′′i)

4. EPi
$← iO(1lλ,EProg1[K

(i)
1 ,K∗2 , i, ŷ, p̂ki, ĉi]) (see Fig. 56)

5. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
6. ∀j ∈ [n] : sj ← F1(K

(j)
1 , yj)

7. ∀j 6= i : (rj , r
′
j , r
′′
j , ηj , η

′
j)← F2(K

(j)
2 , yj)

8. R̂← D(1lλ; s1 ⊕ · · · ⊕ sn)

9. d̂i ← mkFHE.Sim2

(
φ, ˜dist, R̂, (sj , rj , r

′
j)j 6=i; η

′
i

)
10. DPi

$← iO(1lλ,DProg11[i, sid,K∗2 ,EPi, hki, σ, (τ
j
e)j 6=i,K

(i)
1 , ŷ, d̂i]) (see Fig. 57)

11. Output Ui := (hki,EPi,DPi, πi, π
′
i).

Hybrid ŷ.6. In this hybrid, we change the encryption program EPi sent in the ι-th NewSession query.
In particular, we switch back to an obfuscation of EProg0 (see Fig. 54). This time, however, instead of
hardcoding ŷ, we hardcode the next element in {0, 1}t(λ). We denote it by ŷ′18. The input-output behaviour
of EPi remains the same as in the previous hybrid, so we can argue for indistinguishability based on the
security of iO.

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following. Below, (hkj ,EPj)j 6=i denotes the tuple in Ω that hashes to ŷ under hki. For every j 6= i, we

use K
(j)
1 and K

(j)
2 to denote the PPRF keys hidden in EPj . If such tuple does not exist, we ignore steps 5-9

below, and we simply set d̂i ← ⊥.

1. K∗2 ← F2.Punct(K
(i)
2 , ŷ)

2. (ri, r
′
i, r
′′
i , ηi, η

′
i)← F2(K

(i)
2 , ŷ)

3. (φ, p̂ki, ĉi)← mkFHE.Sim1(1lλ, i; r′′i)

4. EPi
$← iO(1lλ,EProg0[K

(i)
1 ,K

(i)
2 , i, ŷ′]) (see Fig. 54)

5. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
6. ∀j ∈ [n] : sj ← F1(K

(j)
1 , yj)

7. ∀j 6= i : (rj , r
′
j , r
′′
j , ηj , η

′
j)← F2(K

(j)
2 , yj)

8. R̂← D(1lλ; s1 ⊕ · · · ⊕ sn)

9. d̂i ← mkFHE.Sim2

(
φ, ˜dist, R̂, (sj , rj , r

′
j)j 6=i; η

′
i

)
10. DPi

$← iO(1lλ,DProg11[i, sid,K∗2 ,EPi, hki, σ, (τ
j
e)j 6=i,K

(i)
1 , ŷ, d̂i]) (see Fig. 57)

11. Output Ui := (hki,EPi,DPi, πi, π
′
i).

18 If ŷ is already the maximum of {0, 1}t(λ), we augment {0, 1}t(λ) with an imaginary element that is strictly greater
than all other values. Let ŷ′ be such value.

110

Hybrid ŷ.7. In this hybrid, we change the decryption program DPi sent in the ι-th NewSession query.
In particular, we switch back to an obfuscation of DProg01 (see Fig. 55). This time, however, instead of
hardcoding ŷ, we hardcode ŷ′19. The input-output behaviour of DPi remains the same as in the previous
hybrid, so we can argue for indistinguishability based on the security of iO.

We observe that the differing-inputs can only consist of tuples (hkj ,EPj)j 6=i that hash to ŷ. Any of these
tuples that does not belong to Ω is mapped to ⊥ by DPi in both hybrids. Indeed, the extraction of the
witnesses from the proofs will always fail. The only differing input can therefore be the only preimage of ŷ
in Ω, if this exists. However, even for such input, DPi behaves the same in the two hybrids.

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following.

1. EPi
$← iO(1lλ,EProg0[K

(i)
1 ,K

(i)
2 , i, ŷ′]) (see Fig. 54)

2. DPi
$← iO(1lλ,DProg01[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

(i)
1 , ŷ′]) (see Fig. 55)

3. Output Ui := (hki,EPi,DPi, πi, π
′
i).

When ŷ reaches the maximum in {0, 1}t(λ), Hybrid ŷ.7 is indistinguishable from Hybrid 4.ι.3 due to the
security of iO. Indeed, in Hybrid ŷ.7, for any input, EPi computes the output using EProgLs, whereas DPi
computes the output using DProg2. This terminates the proof of the claim. �

Hybrid 4.ι.4. In this hybrid, we change the decryption program DPi generated in the ι-th NewSession
query, switching to an obfuscation of DProgLs (see Fig. 28). In the latter, we embed the ELF f used to reply
to the first ι− 1 NewSession queries, and a random PPRF key K.

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following.

1. K
$← F.Gen(1lλ)

2. EPi
$← iO(1lλ,EProgLs[K

(i)
2 , i]) (see Fig. 27)

3. DPi
$← iO(1lλ,DProgLs[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K, f]) (see Fig. 28)

4. Output Ui := (hki,EPi,DPi, πi, π
′
i).

In the hybrid, we also change the reply to the sampling queries concerning the ι-th session.In particular,
when the NIZKs verify and we succeed in extracting the witnesses from the messages (Uj)j 6=i provided by
the adversary, we answer the sampling query as follows.

1. z ← f
(
(hkj ,EPj)j∈[n]

)
2. s← F (K, z)
3. R← D(1lλ; s)
4. Provide R to the adversary.

Claim. Assuming the subexponential security of iO, of the puncturable PRFs F and F1 and the subexpo-
nential collision intractability of the hash function, no PPT adversary can distinguish between Hybrid 4.ι.3
and Hybrid 4.ι.4.

Proof of the claim. We select the security parameter of the subexponentially collision resistance hash function
so that, for any PPT adversary,

22λ·(n−1) · AdvACR(λ) = negl(λ).

Observe that |Ω| = 2λ·(n−1). We conclude that with overwhelming probability over hki, there exist no
collisions in Ω. Otherwise, the adversary that simply outputs two random elements in Ω would break the
above assumption. We can therefore, prove indistinguishability conditioned on this event occurring.

19 If ŷ is already the maximum of {0, 1}t(λ), we augment {0, 1}t(λ) with an imaginary element that is strictly greater
than all other values. Let ŷ′ be such value.

111

DProg02[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

(i)
1 ,K, f, ω]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K2, the encryption program EPi,
the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors (τ je)j 6=i, the PPRF key K

(i)
1 , the

PPRF key K, the ELF f , the hybrid index ω.
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. If (hkj ,EPj)j 6=i <lex ω:

di ← DProgLs[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K, f]

(
(hkj ,EPj , πj)j 6=i

)
(see Fig. 28)

2. Otherwise,

di ← DProg2[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

(i)
1]
(

(hkj ,EPj , πj)j 6=i
)

(see Fig. 30)

3. Output di

Fig. 58. Hybrid ω.0: the unobfuscated decryption program of party Pi

We proceed once again through a series of indistinguishable hybrids. Their number will be superpolyno-
mial. In particular, we repeat the following sequence for every ω ∈ Ω (Ω was defined in the proof of Claim
C). We initially set ω to be the minimum in Ω according to the lexicographical order. Then, we gradually
increment it until we reach the maximum. In the proof, we use ω to denote the tuple (hkj ,EPj)j∈[n] where
(hki,EPi) are the hash key and the encryption program chosen by party Pi, and (hkj ,EPj)j 6=i = ω.

Hybrid ω.0. In this hybrid, we modify the decryption program DPi sent in the ι-th NewSession query,
switching to an obfuscation of DProg02 (see Fig. 58). The new program will have the hybrid index ω hardcoded.
Whenever the input (hkj ,EPj)j 6=i is strictly smaller than ω according to the lexicographical order, DPi will
compute the output using DProgLs (see Fig. 28), otherwise it will use DProg2 (see Fig. 30). Also the answer
to the sampling queries is modified: if the adversary queries messages (Uj)j 6=i for the ι-th session such that
(hkj ,EPj)j 6=i is strictly smaller than ω, the challenger replies as in Hybrid 4.ι.4. In the other cases, it replies
as in Hybrid 4.ι.3.

When ω is the minimum in Ω, Hybrid ω.0 is indistinguishable from Hybrid 4.ι.3 by the security of
obfuscation. Indeed, all (hkj ,EPj)j 6=i that are strictly smaller than ω contain a malformed pair (hkj ,EPj).
Since the NIZK extraction fails, DProg2 always outputs ⊥ in these cases. The same does DPi in Hybrid
4.ι.4. Clearly, the programs behave identically when (hkj ,EPj)j 6=i ≥lex ω. When ω in not the minimum in
Ω, instead, this hybrid is identical to the previous one, i.e. Hybrid ω̂.4 where ω̂ is the previous value of ω.

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following.

1. K
$← F.Gen(1lλ)

2. EPi
$← iO(1lλ,EProgLs[K

(i)
2 , i]) (see Fig. 27)

3. DPi
$← iO(1lλ,DProg02[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

(i)
1 ,K, f, ω]) (see Fig. 58)

4. Output Ui := (hki,EPi,DPi, πi, π
′
i).

Hybrid ω.1. In this hybrid, we modify the decryption program DPi sent in the ι-th NewSession query,

switching to an obfuscation of DProg12 (see Fig. 59). The keys K
(i)
1 and K stored in DPi will now be punctured

in yi = Hash(hki, ω) and f(ω), respectively. We also hardcode the value R̂ that DProg2 feeds into the partial
decryption simulator when ω is given as input. The behaviour of DPi remains as in the previous hybrid,
with the exception that when (hkj ,EPj)j 6=i = ω and the NIZK extraction succeeds, the program directly

feeds the hardcoded R̂ into the partial decryption simulator. We highlight that, the modified program will

never need to evaluate K
(i)
1 in yi. Indeed, by the subexponential collision resistance of the hash function,

the only preimage of yi in Ω will be ω. Moreover, K will never be evaluated in f(ω) as the ELF is set in
injective mode. Since the input-output behaviour of DPi has not changed (notice that all the witnesses for

112

DProg12[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

∗
1 ,K

∗, f, ω, R̂]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K
(i)
2 , the encryption program

EPi, the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors (τ je)j 6=i, the punctured PRF
keys K∗1 and K∗, the ELF f , the hybrid index ω, the sample R̂.
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. If (hkj ,EPj)j 6=i <lex ω:

di ← DProgLs[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

∗, f]
(

(hkj ,EPj , πj)j 6=i
)

(see Fig. 28)

2. If (hkj ,EPj)j 6=i = ω :
(a) ∀j 6= i : bj ← NIZK.Verify

(
σ, πj , (j, hkj ,EPj)

)
(b) ∀j 6= i :

(
K

(j)
1 ,K

(j)
2

)
← NIZK.Extract

(
τ je , πj , (j, hkj ,EPj)

)
a

(c) If ∃j 6= i such that bj = 0 or
(
K

(j)
1 ,K

(j)
2

)
= ⊥, output ⊥

(d) ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
(e) ∀j 6= i : sj ← F1(K

(j)
1 , yj)

(f) ∀j ∈ [n] : (rj , r
′
j , r
′′
j , ηj , η

′
j)← F2(K

(j)
2 , yj)

(g) (φ, pki, ci)← mkFHE.Sim1(1lλ, i; r′′i)

(h) di ← mkFHE.Sim2

(
φ, D̃, R̂, (sj , rj , r′j)j 6=i; η′i

)
(see bottom of Fig. 26)

3. Otherwise,

di ← DProg2[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

∗
1]
(

(hkj ,EPj , πj)j 6=i
)

(see Fig. 30)

4. Output di

Fig. 59. Hybrid ω.1: the unobfuscated decryption program of party Pi

the NIZK statement lead to the same ski by the injectivity of iO), this hybrid and the previous one are
indistinguishable under the security of iO.

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become

the following. Below, we rewrite ω as (hkj ,EPj)j 6=i. We denote the first PRF key hardcoded in EPj by K
(j)
1

(we recall that we are only considering EPjs that are well-formed). For the reduction, since ω is fixed and

the adversary is non-uniform, we can assume it knows K
(j)
1 for every j 6= i (the latter is uniquely determined

by ω by the injectivity of iO).

1. K
$← F.Gen(1lλ)

2. EPi
$← iO(1lλ,EProgLs[K

(i)
2 , i]) (see Fig. 27)

3. z ← f(ω)
4. K∗ ← F.Punct(K, z)
5. ∀j ∈ [n] : yj ← Hash

(
hkj , (hkl,EPl)l 6=j

)
6. K∗1 ← F1.Punct(K

(i)
1 , yi)

7. ∀j ∈ [n] : sj ← F1(K
(j)
1 , yj)

8. R̂← D(1lλ; s1 ⊕ s2 ⊕ · · · ⊕ sn)

9. DPi
$← iO(1lλ,DProg12[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

∗
1 ,K

∗, f, ω, R̂]) (see Fig. 59)
10. Output Ui := (hki,EPi,DPi, πi, π

′
i).

Hybrid ω.2. In this hybrid, in the ι-th NewSession query, we generate R̂ using true randomness instead

of using s1 ⊕ · · · ⊕ sn where sj ← F1(K
(j)
1 , yj). Furthermore, if the adversary issues any sampling queries

(Uj)j 6=i for the ι-th session where the NIZKs verify, the extraction succeeds and (hkj ,EPj)j 6=i coincides with

ω, the challenger replies with R̂.
Indistinguishability between this hybrid and the previous one is a consequence of the security of the

puncturable PRF F1. Indeed, we are able to substitute si with a truly random string without the adversary

113

noticing it. Furthermore, observe that the challenger never needs to evaluate F1 over yi := Hash(hki, ω).
Indeed, with overwhelming probability, there exists no pair of well-formed tuples (hkj ,EPj)j 6=i having yi as
digest.

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become

the following. Below, we rewrite ω as (hkj ,EPj)j 6=i. We denote the first PRF key hardcoded in EPj by K
(j)
1

(we recall that we are only considering EPjs that are well-formed). For the reduction, since ω is fixed and

the adversary is non-uniform, we can assume it knows K
(j)
1 for every j 6= i (the latter is uniquely determined

by ω by the injectivity of iO).

1. K
$← F.Gen(1lλ)

2. EPi
$← iO(1lλ,EProgLs[K

(i)
2 , i]) (see Fig. 27)

3. z ← f(ω)
4. K∗ ← F.Punct(K, z)
5. yi ← Hash(hki, ω)

6. K∗1 ← F1.Punct(K
(i)
1 , yi)

7. R̂
$← D(1lλ)

8. DPi
$← iO(1lλ,DProg12[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

∗
1 ,K

∗, f, ω, R̂]) (see Fig. 59)
9. Output Ui := (hki,EPi,DPi, πi, π

′
i).

Hybrid ω.3. In this hybrid, in the ι-th NewSession query, we generate the randomness of R̂ using F (K, z)
where z = f(ω). Indistinguishability is a consequence of the security of the puncturable PRF F .

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following. Below, we rewrite ω as (hkj ,EPj)j 6=i.

1. K
$← F.Gen(1lλ)

2. EPi
$← iO(1lλ,EProgLs[K

(i)
2 , i]) (see Fig. 27)

3. z ← f(ω)
4. K∗ ← F.Punct(K, z)
5. yi ← Hash(hki, ω)

6. K∗1 ← F1.Punct(K
(i)
1 , yi)

7. s← F (K, z)
8. R̂← D(1lλ; s)

9. DPi
$← iO(1lλ,DProg12[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

∗
1 ,K

∗, f, ω, R̂]) (see Fig. 59)
10. Output Ui := (hki,EPi,DPi, πi, π

′
i).

When the adversary issues any sampling queries (Uj)j 6=i for the ι-th session where the NIZKs verify, the
extraction succeeds and (hkj ,EPj)j 6=i coincides with ω, the challenger replies as follows.

1. z ← f
(
(hkj ,EPj)j∈[n]

)
2. s← F (K, z)
3. R← D(1lλ; s)

Hybrid ω.4. In this hybrid, we modify the decryption program DPi sent in the ι-th NewSession query,
switching back to an obfuscation of DProg02 (see Fig. 58). This time, however, the we do not hardcode ω into
it, but the next element in Ω. We denote it by ω′20. The input-output behaviour of DPi has not changed
since the last hybrid, so, we can argue for indistinguishability under the security of iO.

We observe, indeed, that the behaviour of the program can change only if the input satisfies ω ≤lex

(hkj ,EPj)j 6=i <lex ω
′. If ω <lex (hkj ,EPj)j 6=i <lex ω

′, the programs always output ⊥ because one (hkj ,EPj)
must be malformed, so the NIZK extraction always fails.

20 If ω is already the maximum of Ω, we augment Ω with an imaginary element that is strictly greater than all other
values. Let ω′ be such value.

114

We therefore focus on the case (hkj ,EPj)j 6=i = ω. We observe that in this case, the behaviour of the new

DPi is the same as in the previous hybrid. In particular, if the NIZK is not rejected, the value R̂ computed
by the new DPi was the same that was previously hardcoded.

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following. Below, we rewrite ω as (hkj ,EPj)j 6=i.

1. K
$← F.Gen(1lλ)

2. EPi
$← iO(1lλ,EProg1[K

(i)
2 , i]) (see Fig. 56)

3. DPi
$← iO(1lλ,DProg02[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

(i)
1 ,K, f, ω′]) (see Fig. 58)

4. Output Ui := (hki,EPi,DPi, πi, π
′
i).

We conclude the proof of the claim by observing that when ω reaches the maximum in Ω, Hybrid ω.4 is
indistinguishable from Hybrid 4.ι.4 under the security of iO. Indeed, in Hybrid ω.4, DPi computed all the
outputs running DProgLs. �

Hybrid 5. In this hybrid, we modify the sampling queries. In particular, we do not try anymore to
extract the witnesses from the NIZKs provided by the adversary, we simply verify the proofs. If the check
succeeds, we proceed by inputting (hkj ,EPj)j∈[n] in the ELF, we feed the result into F and we use the output

as randomness for D(1lλ). If the verification fails, we reply with ⊥.
This hybrid is indistinguishable from hybrid 4.(M + 1).4. Indeed, an adversary can distinguish if and

only if, in Hybrid 4.(M + 1).4, it can generate a proof that verifies but cannot be extracted. Such adversary
would also be able to distinguish between Hybrid 0 and Hybrid 4.(M + 1).4. However, we proved that such
adversary cannot exist.

Hybrid 6. In this hybrid, we switch the ELF f to lossy mode. Let p′(λ) be a polynomial upper bound on
the running time of the lossy distributed sampler challenger in Hybrid 5 when it interacts with an adversary
running in time a most p(λ). We choose the polynomial q(λ) parametrising the lossy mode so that no
adversary running in time at most p(λ) + p′(λ) can distinguish between the injective mode and the lossy
mode with advantage greater than δ/2.

We highlight that Hybrid 5 and Hybrid 6 can be distinguished with non-negligible advantage. However,
by the security of ELFs, no adversary running in time at most p(λ) can distinguish between them with
advantage greater than δ/2.

In order to conclude the proof, we show that it is possible to choose the security parameters of the subex-
ponentially secure primitives so that Claim C and Claim C are all true. This is an immediate consequence of
the fact that the dependency graph among subexponentially secure primitives in Fig. 32 contains no cycles.

Regularity. Assume that the ELF is regular. We observe that the output of Project is either ⊥ or an
element in the image of f . The output of Z(ζ) is ⊥ with probability 1/2. Otherwise, the output is f(x)
where x is uniformly sampled over the domain of f . By the regularity of the ELF, we know that there exists
a polynomial s(logM, q) such that, with overwhelming probability over ELF.Gen(M, q),

Pr
x

[f(x) = z] ≥ 1

s(logM, q)

for every element z in the image of f , where Pr
x

denotes the probability over the randomness of x. Since

logM is polynomial in λ, we conclude that our lossy distributed sampler is regular.

Programmability. We prove the property by means of a series of indistinguishable hybrids.
Hybrid 0. This hybrid corresponds to the programmability game in which b = 0. In particular, the

distributed sampler message Ui received by the adversary as computed as follows.

1. K
$← F.Gen(1lλ)

115

2. K
(i)
2

$← F2.Gen(1lλ)

3. hki
$← Hash.Gen(1lλ)

4. EPi
$← iO(1lλ,EProgLs[K

(i)
2 , i]) (see Fig. 27)

5. ∀j 6= i : τ je
$← NIZK.Trap

(
τe, (sid, j)

)
6. DPi

$← iO(1lλ,DProgLs[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K, f]) (see Fig. 28)

7. πi
$← NIZK.SimProve

(
τs, (sid, i), (i, hki,EPi)

)
8. π′i

$← NIZK′.SimProve
(
τ ′, (i, sid, hki,EPi,DPi, πi, σ)

)
9. Output Ui := (hki,EPi,DPi, πi, π

′
i) and ξe := K.

During the sampling phase, after querying Uj := (hkj ,EPj ,DPj , πj , π
′
j) for every j 6= i, the adversary is

provided with a value R computed as follows:

1. ∀j ∈ [n] : bj ← NIZK′.Verify
(
σ′, π′j , (j, sid, hkj ,EPj ,DPj , πj , σ)

)
2. If there exists j ∈ [n] such that bj = 0, output ⊥.
3. z ← f

(
(hkj ,EPj)j∈[n]

)
4. s← F (K, z)
5. Output D(1lλ; s).

Hybrid 1. In this hybrid, we modify the decryption program DPi switching to an obfuscation of DProgPr
(see Fig. 35). In particular, the PRF key K hardcoded in the program will be punctured in the position z
chosen by the adversary. Moreover, we hardcode into the program the value R := D(1lλ; s) where s = F (K, z).
When the output of the ELF in the modified decryption program coincides with z, DPi will directly input
R in the partial decryption simulator. We formalise below the operations used for the generation of Ui.

1. K
$← F.Gen(1lλ)

2. K∗ ← F.Punct(K, z)
3. s← F (K, z)
4. R← D(1lλ; s)

5. K
(i)
2

$← F2.Gen(1lλ)

6. hki
$← Hash.Gen(1lλ)

7. EPi
$← iO(1lλ,EProgLs[K

(i)
2 , i]) (see Fig. 27)

8. ∀j 6= i : τ je
$← NIZK.Trap

(
τe, (sid, j)

)
9. DPi

$← iO(1lλ,DProgPr[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

∗, z, f, R]) (see Fig. 35)

10. πi
$← NIZK.SimProve

(
τs, (sid, i), (i, hki,EPi)

)
11. π′i

$← NIZK′.SimProve
(
τ ′, (i, sid, hki,EPi,DPi, πi, σ)

)
12. Output Ui := (hki,EPi,DPi, πi, π

′
i) and ξe := K.

Observe that this hybrid is indistinguishable from the previous one thanks to the security of iO.
Hybrid 2. In this hybrid, instead of generating R using the randomness output by F , we use an ideal

sample. If, in the sampling phase, the adversary selects values (Uj)j 6=i such that f
(
(hkj ,EPj)j∈[n]

)
= z 6= ⊥

and, for every j 6= i,
NIZK′.Verify

(
σ′, π′j , (j, sid, hkj ,EPj ,DPj , πj , σ)

)
= 1,

the challenger immediately provides R to the adversary.
This hybrid is indistinguishable from the previous one by the security of the puncturable PRF F . We

formalise below the operations used for the generation of Ui.

1. K
$← F.Gen(1lλ)

2. K∗ ← F.Punct(K, z)

3. R
$← D(1lλ)

4. K
(i)
2

$← F2.Gen(1lλ)

116

5. hki
$← Hash.Gen(1lλ)

6. EPi
$← iO(1lλ,EProgLs[K

(i)
2 , i]) (see Fig. 27)

7. ∀j 6= i : τ je
$← NIZK.Trap

(
τe, (sid, j)

)
8. DPi

$← iO(1lλ,DProgPr[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

∗, z, f, R]) (see Fig. 35)

9. πi
$← NIZK.SimProve

(
τs, (sid, i), (i, hki,EPi)

)
10. π′i

$← NIZK′.SimProve
(
τ ′, (i, sid, hki,EPi,DPi, πi, σ)

)
11. Output Ui := (hki,EPi,DPi, πi, π

′
i) and ξe := K.

We observe that the last hybrid is identical to the programmability game with b = 1.
ut

D Proof of Hardness Preservation

Proof. Let DS = (Setup,Gen,Sample, LossySetup, LossyGen,Project,Extract) be our n-party regular and pro-
grammable lossy distributed sampler for the distribution D(1lλ). Let A ∈ AClass be any PPT adversary such
that, in the hardness-preserving game G in Fig. 17,

Pr
[
GAHP(1lλ) = 1

∣∣∣b = 0
]

= nonegl(λ).

Our goal is to prove that

Pr
[
GAHP(1lλ) = 1

∣∣∣b = 1
]

= nonegl(λ).

We define ε(λ) := Pr
[
GAHP(1lλ) = 1

∣∣∣b = 0
]
. Since ε(λ) is non-negligible, we know that there exists a

polynomial e(λ) such that for every λ ∈ N, there is a λ ≥ λ such that ε(λ) ≥ 1/e(λ). Let p(λ) be a
polynomial upper-bounding twice the running times of A.

We proceed by means of a Hybrid argument.
Hybrid 0. This stage corresponds to GAHP. In particular, the challenger provides the adversary with a pair

(crs, Ui) generated using the algorithms Setup(1lλ) and Gen(1lλ, sid, i, crs). The sample given to A is instead
computed using Sample.

Hybrid 1. In this hybrid, we change the distribution of crs, Ui and R. Specifically, we use the algorithms
LossySetup

(
1lλ, q(λ)

)
, LossyGen(1lλ, sid, i, ζ), Project

(
ζ, (Uj)j∈[n], sid

)
and Extract(ξ, z). The polynomial q(λ)

is chosen so that all adversaries running in time at most p(λ) distinguish between the standard mode and
the lossy mode parametrised by q(λ) with advantage asymptotically smaller than 1/

(
2e(λ)

)
. We denote the

output of the adversary A after the interaction with the modified challenger by GAHP1
.

Claim. In Hybrid 1, Pr
[
GAHP1

(1lλ) = 1
]

= nonegl(λ).

Proof of the claim. Assume, by contradiction, that our claim is false. We construct an adversary that runs
in time at most p(λ) distinguishing between the standard mode and the lossy mode with advantage that is
not asymptotically smaller than 1/

(
2e(λ)

)
.

Our new adversary, denoted by B, runs an internal copy of A. The adversary B provides A with the value
crs obtained from its challenger, after which, it obtains i ∈ [n] and sid = (tag, idj1 , . . . , idjn). The adversary B
forwards idj1 , . . . , idjn to its challenger. Next, it issues a NewSession query with identity (sid, i). The answer
Ui is forwarded to A. When A replies with (Uj)j 6=i, the adversary B queries

(
Sample, sid, (Uj)j 6=i

)
to its

challenger and relays the result to A. Finally, B outputs 1 if and only A outputs 1 and the distributed
sampler output is not ⊥.

The distinguishing advantage AdvB(λ) of B is |ε(λ)−negl(λ)|. For λ sufficiently big, we have that AdvB(λ)
is greater than ε(λ) − 1/

(
4e(λ)

)
. So, we conclude that for every λ ∈ N, there exists a λ ≥ λ such that

AdvB(λ) ≥ 3/
(
4e(λ)

)
. Since B at most in time p(λ), we reached a contradiction. Notice that B is uniform if

and only A is uniform. �

117

Claim. Let E be the event in which Z(ζ) = Project
(
ζ, (Uj)j∈[n], sid

)
. In Hybrid 1, we have

Pr[GAHP1
(1lλ) = 1, E] = nonegl(λ).

Proof of the claim.
Let V denote the event in which

Pr
Z

[
Z(ζ) = Project

(
ζ, (Uj)j∈[n], sid

)]
<

1

s
(
λ, q(λ)

)
for some (Uj)j∈[n] ∈ {0, 1}∗ where the above probability is taken only over the randomness of Z. By the
regularity of the lossy distributed sampler Pr[V] = negl(λ). We conclude that

Pr[GAHP1
(1lλ) = 1, E] ≥

≥Pr[GAHP1
(1lλ) = 1, E, V] + negl(λ) =

= Pr
[
E
∣∣∣GAHP1

(1lλ) = 1, V
]
· Pr

[
GAHP1

(1lλ) = 1, V
]

+ negl(λ) ≥

≥ 1

s
(
λ, q(λ)

) · Pr[GAHP1
(1lλ) = 1, V] + negl(λ) ≥

≥ 1

s
(
λ, q(λ)

) · Pr[GAHP1
(1lλ) = 1] + 2 · negl(λ).

We conclude the proof of the claim by observing that Pr[GAHP1
(1lλ) = 1] is non-negligible by Claim D. �

Hybrid 2. In this hybrid, we generate Ui and ξ using ProgGen(1lλ, sid, i, z, R, ζ) where R
$← D(1lλ) and

z
$← Z(ζ). If the adversary selects (Uj)j 6=i such that Project

(
ζ, (Uj)j∈[n], sid

)
= z and z 6= ⊥, we provide

the adversary with R. If instead Project
(
ζ, (Uj)j∈[n], sid

)
= ⊥, we provide the adversary with ⊥. The rest

remains as in the previous hybrid. We denote the output of the adversary A after the interaction with the
modified challenger by GAHP2

.

Claim. In the new game GAHP2
, we have

Pr[GAHP2
(1lλ) = 1, E] = nonegl(λ).

Proof of the claim. Suppose that our claim is false. Then, we can find a PPT adversary B that breaks
the programmability of the lossy distributed sampler. The adversary B provides the CRS it receives from

its challenger to an internal copy of A. Then, it samples z
$← Z(ζ). Notice that ζ is given to B by its

challenger. When A selects sid and i ∈ [n], B sends sid, i, z to its challenger. It then proceeds by relaying all
the communications between A and its challenger. At the end of its execution, B outputs 1 if and only if A
outputs 1, the distributed sampler output is not ⊥ and Project

(
ζ, (Uj)j∈[n], sid

)
= z.

Notice that the advantage of B is∣∣∣Pr[GAHP1
(1lλ) = 1, E]− Pr[GAHP2

(1lλ) = 1, E]
∣∣∣ = nonegl(λ)− negl(λ).

Observe also that B is uniform if and only A is uniform. We reached a contradiction. �

Hybrid 3. In this hybrid, we modify GAHP2
. Instead of providingA with Extract

(
ξ,Project

(
ζ, (Uj)j∈[n], sid

))
,

we now provide it with the value R hidden in Ui. We call the resulting game GAHP3
.

Claim. In the new game GAHP3
, we have Pr[GAHP3

(1lλ) = 1] = nonegl(λ).

118

Proof of the claim. We prove that Pr[GAHP3
(1lλ) = 1, E] = nonegl(λ). The result follows from the fact that

Pr[GAHP3
(1lλ) = 1] ≥ Pr[GAHP3

(1lλ) = 1, E].

We notice that in both GAHP2
and GAHP3

, when E occurs, the adversary is always provided with either R

or ⊥. In the second case, both GAHP2
(1lλ) = 0 and GAHP3

(1lλ) = 0. We conclude that, by Claim D,

Pr[GAHP3
(1lλ) = 1, E] = Pr[GAHP2

(1lλ) = 1, E] = nonegl(λ).

�

Hybrid 3 corresponds to the ideal world execution of the hardness-preserving distributed sampler. In par-
ticular, SimSetupA just performs the same operations as LossySetup. The simulator SimGenA(1lλ, sid, i, ζ, R)

instead outputs the message Ui generate by ProgGen(1lλ, sid, i, z, R, ζ) where z
$← Z(ζ). Notice that the

polynomial q(λ) used for the ELF depends on the running time of A. Claim D proves that

Pr
[
GAHP(1lλ) = 1

∣∣∣b = 1
]

= nonegl(λ).

ut

E Proof of Indistinguishability Preservation

Proof. Let A be any PPT adversary in AClass that distinguishes between G′0 and G′1 with non-negligible
advantage ε(λ). In particular, we know that there exists a polynomial e(λ) such that, for every λ ∈ N, there
exists a λ ≥ λ such that ε(λ) ≥ 1/e(λ). We proceed by means of a hybrid argument starting from G′0. Let i
be the index of a honest party. Let p(λ) be a polynomial upper-bounding the running time of A. Let p′(λ) be
a polynomial upper-bounding the running time of the challengers in G′0 and G′1 when the adversary runs in
time at most p(λ). We select the polynomial q(λ) so that every adversary running in time at most p(λ)+p′(λ)
distinguishes between the standard mode and the lossy mode of both the ELF and the distributed sampler
with advantage definitively smaller than 1/(4e(λ)). Notice that by Theorem 15, such polynomial q(λ) exists.

Hybrid 0. This hybrid corresponds to G′0
Hybrid 1. In this hybrid, the challenger witched the distributed sampler to lossy mode. Specifically,

it generates the distributed sampler CRS crs using LossySetup
(
1lλ, q(λ)

)
. Furthermore, in every NewSession

query, it generates the last distributed sampler message sent by a honest party using the lossy mode of the
distributed sampler, i.e.,

Ui
$← LossyGen(1lλ, sid, i, ζ).

Finally, when all the distributed sampler messages have been exchanged, the challenger computes the output
R using Project and Extract instead of Sample. The rest remains exactly as in G′0.

Notice that, by the first property of lossy distributed samplers, the distinguishable advantage ofA between
Hybrid 0 and Hybrid 1 is asymptotically smaller than 1/(4e(λ)). The reduction is pretty straightforward.
The new adversary B receives the CRS crs from the lossy distributed sampler challenger. It uses the latter
to simulate G′0 to an internal copy of A. When A sends a new session identity sid, B performs the same
operations as the challenger in G′0. Things change when the last honest party sends its distributed sampler
message. Let idji be the identity of the corresponding party. The adversary B queries (NewSession, sid, i) to
its challenger and relays the answer to A. Then, when all the distributed sampler messages (Uj)j∈[n] have

been exchanged, B queries
(
Sample, sid, (Uj)j 6=i

)
to its challenger and provides the answer to the copy of

Ch0. The new adversary B outputs the same value as A. We observe that if A is uniform, B is uniform
too. Furthermore, the running time of B is at most p(λ) + p′(λ). By the first property of lossy distributed
samplers, the advantage of B is asymptotically smaller than 1/(4e(λ)).

Hybrid 2. In this hybrid, the challenger uses Ch1 instead of Ch0 in every NewSession query. Notice that
Ch1 is just provided with a sample R, but not with any trapdoor T .

Claim. No PPT adversary A can distinguish between Hybrid 1 and Hybrid 2.

119

Proof of the claim. Let M(λ) be a polynomial upper-bound on the number of NewSession queries issued by
the adversary A. For every ι ∈ [M] ∪ {0}, we define Hybrid’ ι in which the first ι NewSession queries are
dealt using Ch1, whereas the rest are dealt using Ch0. We prove that, for every ι ∈ [M], no PPT adversary
can distinguish between Hybrid’ ι− 1 and Hybrid’ ι.

We do this by means of a reduction to the chosen-sample indistinguishability of G0 and G1. In the
reduction, we build a new adversary B having a copy of A. The adversary B starts its execution by producing
a distributed sampler CRS crs using LossySetup. In the process, it obtains also ζ. In the first ι−1 NewSession
queries, B simulates the game in Hybrid 1 using Ch1 as challenger. Starting from the (ι+ 1)-th query, B uses
instead Ch0. For the ι-th session, B sends the corresponding auxiliary information aux and the set of honest
parties H ′ := {l ∈ [n]|jl ∈ H} to its challenger. It then relays the messages between its challenger and A.
In all the sessions, including the ι-th one, B generates the distributed sampler messages as in Hybrid 1. In
particular, the last honest distributed sampler message sent in every session is produced using LossyGen and
ζ. Furthermore, the output of the distributed sampler is computed using Project and Extract. In the ι-th
session, B gives the output of Extract to its challenger.

We have just proven that Hybrid’ ι−1 and Hybrid’ ι are indistinguishable for every ι ∈ [M]. We conclude
that Hybrid’ 0 and Hybrid’ M are indistinguishable too. The latter are identical to Hybrid 1 and Hybrid 2
respectively. That ends the proof of the claim. �

Hybrid 3. For any session of identity sid = (tag, idj1 , . . . , idjn), let ji be the index of the last honest
party sending a distributed sampler message. In this hybrid, the challenger generates the decryption program
DPi in Ui by obfuscating the program DProgIP (see Fig. 38) instead of DProgLs (see Fig. 28). In DProgIP
we hardcode the auxiliary information aux′ given by Ch1. Notice that we now generate the outputs of the
distributed sampler using the trapdoored distribution D′(1lλ, aux′).

After computing the output of the distributed sampler R̂, the challenger provides G1 with a trapdoor T̂ .
The latter is retrieved by rerunning the computations of DPi in clear. Specifically, we perform the following
operations

1. z ← Project
(
ζ, (Uj)j∈[n], sid

)
2. s← F (ξ, z)
3. (R̂, T̂)← D′(1lλ, aux′; s)

We recall that ξ is computed by LossyGen together with Ui and consists of the PPRF key K hardcoded in
DPi.

Claim. Hybrid 3 is computationally indistinguishable from Hybrid 2.

Proof of the claim. Let N(λ) be a polynomial upper-bound on the number of NewSession queries issued
by the adversary A. For every ι ∈ [N] ∪ {0}, we define Hybrid’ ι in which the first ι NewSession queries
are answered as in Hybrid 3. The remaining sessions are answered as in Hybrid 2. Notice that Hybrid’ 0 is
identical to Hybrid 2. Similarly, Hybrid’ N is identical to Hybrid 3. We show that, for every i ∈ [N], Hybrid’
ι and Hybrid’ ι− 1 are computationally indistinguishable. That will immediately imply our claim.

We prove that Hybrid’ ι and Hybrid’ ι−1 are indistinguishable by means of a sequence of indistinguishable
hybrids.

Hybrid” 0. In this hybrid, we answer the first ι− 1 NewSession queries as in Hybrid” 3. Starting from
the (ι + 1)-th query, we instead answer as in Hybrid” 2. We deviate from the usual behaviour in the ι-th

query. We sample x
$← [M] and we compute ẑ ← f(x). Then, if ẑ 6= f

(
(hkj ,EPj)j∈[n]

)
, where (hkj ,EPj)j∈[n]

are the hash keys and encryption programs exchanged in the ι-th session, we rewind the adversary and we
retry. Observe that, with overwhelming probability, we succeed within t(λ) tries for some polynomial t. This
hybrid is perfectly indistinguishable from Hybrid’ ι− 1.

Hybrid” 1. In this hybrid, we behave as in Hybrid” 0 with minor changes in the answer to the ι-th
NewSession query. Let idji be the identity of the last honest party sending a distributed sampler message in
the ι-th session. We generate the decryption program DPi by obfuscating DProg0Ls (see Fig. 61): after receiving
the input (hkj ,EPj , πj)j 6=i, DProg

0
Ls immediately checks if f

(
(hkj ,EPj)j∈[n]

)
= ẑ. If that is the case, instead

120

DProg0Ls[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

∗, f, ẑ, R]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K
(i)
2 , the encryption program

EPi, the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors (τ je)j 6=i, the punctured PRF
key K∗, the ELF f , the value ẑ, the sample R.
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. If f
(
(hkj ,EPj)j∈[n]

)
6= ẑ, output

di ← DProgLs[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

∗, f]
(
(hkj ,EPj , πj)j 6=i

)
(see Fig. 28)

2. If f
(
(hkj ,EPj)j∈[n]

)
= ẑ, perform the following operations:

(a) ∀j 6= i : bj ← NIZK.Verify
(
σ, (sid, j), πj , (hkj ,EPj)

)
(b) ∀j 6= i :

(
K

(j)
1 ,K

(j)
2

)
← NIZK.Extract

(
τ je , πj , (j, hkj ,EPj)

)
a

(c) If ∃j 6= i such that bj = 0 or
(
K

(j)
1 ,K

(j)
2

)
= ⊥, output ⊥

(d) ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
(e) ∀j 6= i : sj ← F1

(
K

(j)
1 , yj

)
(f) ∀j ∈ [n] : (rj , r

′
j , r
′′
j , ηj , η

′
j)← F2

(
K

(j)
2 , yj

)
(g) (φ, pki, ski)← mkFHE.Sim1(1lλ, i; r′′i)

(h) di ← mkFHE.Sim2

(
φ, D̃, R, (sj , rj , r′j)j 6=i; η′i

)
(see bottom of Fig. 26)

(i) Output di

Fig. 60. The unobfuscated decryption program for Hybrid” 1

of inputting R̂ into the partial decryption simulator, the program inputs R := D(1lλ; s) where s = F (K, ẑ).
Such value R is hardcoded into DProg0Ls. If instead f

(
(hkj ,EPj)j∈[n]

)
6= ẑ, the program computes the output

using K∗ instead of K, where K∗ denotes the puncturing of K in position ẑ. Observe that the input-output
behaviour of the program remains the same as in the previous hybrid. We conclude that Hybrid” 0 and
Hybrid” 1 are indistinguishable due to the security of iO.

Hybrid” 2. In this hybrid, in the ι-th session, instead of generating the sample R hardcoded into

DPi using the randomness produced by F (K, ẑ), the challenger simply samples R
$← D(1lλ). When all the

distributed sampler messages have been exchanged, the challenger verifies the NIZKs. If any check fails or
f
(
(hkj ,EPj)j∈[n]

)
6= ẑ, the challenger behaves as before. Otherwise, it directly provides R to Ch1. Since we

provide the adversary only with K∗, this hybrid is indistinguishable from the previous one by the security
of the puncturable PRF F .

Hybrid” 3. In this hybrid, in the ι-th session, the challenger generates the sample R hardcoded in DPi
using (R, T)

$← D′(1lλ, aux′). This hybrid is indistinguishable from the previous one since D′ is a trapdoored
distribution for D.

Hybrid” 4. In this hybrid, in the ι-th session, if all the NIZKs in the distributed sampler messages verify
and f

(
(hkj ,EPj)j∈[n]

)
= ẑ, the challenger provides Ch1 with the trapdoor T produced by D′ along with R.

This hybrid is indistinguishable from the previous one by the trapdoor security of G1.

In the reduction, we build an adversary B holding a copy of A. Upon activation, B simulates the G′0
as in Hybrid” 3 to A. It behaves differently in the ι-th session. Let aux be corresponding auxiliary input
and let sid = (tag, idj1 , . . . , idjn) be the corresponding session identity. Let idji , be the identity of the last
honest party sending a distributed sampler message. The adversary B provides its challenger with aux and
H ′ := {l ∈ [n]|jl ∈ H}. Then, it keeps relaying the messages between its challenger and A. The distributed
sampler messages in the ι-th session are produced by B as in Hybrid” 3, except for the fact that B uses
the sample R provided by its challenger when it is time to generate DPi. When all the distributed sampler
messages have been sent, B checks whether the NIZKs verify and f

(
(hkj ,EPj)j∈[n]

)
= ẑ. If that is the case,

B keeps relaying the messages between its challenger and A and outputs the same value as A. In the other

121

DProg1Ls[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K, f, ẑ, aux

′, γ]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K
(i)
2 , the encryption program

EPi, the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors (τ je)j 6=i, the PPRF key K,
the ELF f , the value ẑ, the auxiliary information aux′, the hybrid index γ.
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. If f
(
(hkj ,EPj)j∈[n]

)
<lex γ or f

(
(hkj ,EPj)j∈[n]

)
= ẑ, output

di ← DProgIP[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K, f, aux

′]
(
(hkj ,EPj , πj)j 6=i

)
(see Fig. 38)

2. Otherwise, output
di ← DProgLs[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K, f]

(
(hkj ,EPj , πj)j 6=i

)
(see Fig. 28)

Fig. 61. The unobfuscated decryption program for Hybrid” ω.0

cases, B simply outputs a random bit. Observe that the advantage of B against the trapdoor security of G1
is the same as the advantage of A in distinguishing between Hybrid” 3 and 4.

Hybrid” 5. In this hybrid, in the ι-th session, we generate the sample R hardcoded in DPi using

(R, T)
$← D′(1lλ, aux′; s) where s = F (K, ẑ). All the rest remains as in the previous hybrid. Since we provide

the adversary only with K∗, this hybrid is indistinguishable from the previous one by the security of the
puncturable PRF F .

We now proceed with a sequence of q(λ) hybrids, where q(λ) is the polynomial given as input to LossySetup
(the total number of hybrids is polynomial). Let γ denote the ω-th element in the image of f that differs
from ẑ, if we order the latter according to the lexicographical order. Notice that since the ELF is regular, it is
also strongly efficiently enumerable [Zha16], so, given f , we can efficiently compute γ. Throughout the proof,
we assume that f has an image with at most q(λ) elements and that the challenger successfully retrieves the
whole image of f . This is enough to prove our claim as these events occur with overwhelming probability.

Hybrid” ω.0. We behave as in Hybrid” 5, except in the ι-th NewSession query. Let idji be the identity
of the last honest party sending a distributed sampler message in the ι-th session. We generate the decryp-
tion program DPi by obfuscating DProg1Ls (see Fig. 61): after receiving the input (hkj ,EPj , πj)j 6=i, DProg

1
Ls

immediately checks if f
(
(hkj ,EPj)j∈[n]

)
<lex γ or f

(
(hkj ,EPj)j∈[n]

)
= ẑ. If that is the case, it behaves as

DProgIP (see Fig. 38), otherwise, it performs the same operations as DProgLs (see Fig. 28).

We observe that if ω = 1, this hybrid is indistinguishable from Hybrid” 5 by the security of iO. Indeed, x
is the minimum in the image of f , so f

(
(hkj ,EPj)j∈[n]

)
will always be greater or equal to x. In other words,

DPi will always behave as DProg0Ls. If instead ω > 1, this hybrid is identical to the previous one, i.e. Hybrid”
(ω − 1).5.

Hybrid” ω.1. In this hybrid, we change the decryption program DPi of the last honest party sending
a distributed sampler message in the ι-th session. Specifically, instead of obfuscating DProg1Ls, we obfus-
cate DProg2Ls (see Fig. 62). In the latter, the PRF key K is punctured in position γ, we denote it by
K∗. After receiving the input (hkj ,EPj , πj)j 6=i, DProg

2
Ls immediately checks if f

(
(hkj ,EPj)j∈[n]

)
<lex γ or

f
(
(hkj ,EPj)j∈[n]

)
= ẑ. If that is the case, it behaves as DProgIP (see Fig. 38). Otherwise, DProg2Ls performs

the same operations as DProgLs (see Fig. 28) with only one exception: when f
(
(hkj ,EPj)j∈[n]

)
= γ, instead

of inputting R̂ into the partial decryption simulator, the program inputs R := D(1lλ; s) where s = F (K, γ).
Such value R is hardcoded into DProg2Ls.

All the rest remains as in the previous hybrid. Since the input-output behaviour of DPi has not changed,
this hybrid is indistinguishable from the previous one by the security of iO.

Hybrid” ω.2. In this hybrid, in the ι-th session, instead of generating the sample R hardcoded into DPi
using the randomness produced by F (K, γ), the challenger simply samples R

$← D(1lλ). Since we provide
the adversary only with K∗, this hybrid is indistinguishable from the previous one by the security of the
puncturable PRF F .

122

DProg2Ls[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

∗, f, ẑ, aux′, γ, R]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K
(i)
2 , the encryption program

EPi, the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors (τ je)j 6=i, the punctured PRF
key K∗, the ELF f , the value ẑ, the auxiliary information aux′, the hybrid index γ, the sample R.
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. If f
(
(hkj ,EPj)j∈[n]

)
<lex γ or f

(
(hkj ,EPj)j∈[n]

)
= ẑ, output

di←DProgIP[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

∗, f, aux′]
(
(hkj ,EPj , πj)j 6=i

)
(see Fig. 38)

2. If f
(
(hkj ,EPj)j∈[n]

)
= γ, perform the following operations:

(a) ∀j 6= i : bj ← NIZK.Verify
(
σ, (sid, j), πj , (hkj ,EPj)

)
(b) ∀j 6= i :

(
K

(j)
1 ,K

(j)
2

)
← NIZK.Extract

(
τ je , πj , (j, hkj ,EPj)

)
a

(c) If ∃j 6= i such that bj = 0 or
(
K

(j)
1 ,K

(j)
2

)
= ⊥, output ⊥

(d) ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l6=j

)
(e) ∀j 6= i : sj ← F1

(
K

(j)
1 , yj

)
(f) ∀j ∈ [n] : (rj , r

′
j , r
′′
j , ηj , η

′
j)← F2

(
K

(j)
2 , yj

)
(g) (φ, pki, ski)← mkFHE.Sim1(1lλ, i; r′′i)

(h) di ← mkFHE.Sim2

(
φ, D̃, R, (sj , rj , r′j)j 6=i; η′i

)
(see bottom of Fig. 26)

(i) Output di
3. Otherwise, output

di ← DProgLs[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e)j 6=i,K

∗, f]
(
(hkj ,EPj , πj)j 6=i

)
(see Fig. 28)

Fig. 62. The unobfuscated decryption program for Hybrid” ω.1

Hybrid” ω.3. In this hybrid, in the ι-th session, the challenger generates the sample R hardcoded in DPi
using (R, T)

$← D′(1lλ, aux′). This hybrid is indistinguishable from the previous one since D′ is a trapdoored
distribution for D.

Hybrid” ω.4. In this hybrid, in the ι-th session, we generate the sample R hardcoded in DPi using

(R, T)
$← D′(1lλ, aux′; s) where s = F (K, γ). All the rest remains as in the previous hybrid. Since we provide

the adversary only with K∗, this hybrid is indistinguishable from the previous one by the security of the
puncturable PRF F .

Hybrid” ω.5. In this hybrid, in the ι-th session, the challenger generates the decryption program DPi
by obfuscating DProg1Ls (see Fig. 61), however, instead of hardcoding γ, it will hardcode the next value
in the image of f that differs from ẑ21. In other words, DPi will behave as DProgIP (see Fig. 38) when-
ever f

(
(hkj ,EPj)j∈[n]

)
≤lex γ or f

(
(hkj ,EPj)j∈[n]

)
= ẑ. In the other cases, it will behave as DProgLs (see

Fig. 28). Notice that the input-output behaviour of DPi has not changed. We conclude that this hybrid is
indistinguishable from the previous one by the security of iO.

When ω = q(λ), the last hybrid is indistinguishable from Hybrid 3 by the security of iO. Indeed, DPi
always behaves as DProgIP as there are no elements in the image of f such that f

(
(hkj ,EPj)j∈[n]

)
>lex γ.

This ends the proof of the claim. �

Hybrid 4. In this hybrid, we switch the ELF to injective mode. Observe that this stage corresponds
to game G′1. Observe that the distinguishability advantage of A against Hybrid 3 and Hybrid 4 is at most
1/(4e(λ)).

We conclude that the distinguishability advantage of A between G′0 and G′1 is at most 1/(2e(λ))+negl(λ).
The latter is asymptotically smaller than 1/e(λ). We reached a contradiction, so no PPT adversary can
distinguish between G′0 and G′1. ut
21 If γ is already the maximum in the image of f , we augment the latter with an imaginary element that is strictly

greater than all other values and we hardcode it into DProg1Ls.

123

	Security-Preserving Distributed Samplers: How to Generate any CRS in One Round without Random Oracles
	Introduction
	Our Work

	Technical Overview
	New notions of distributed sampler
	Building lossy distributed samplers
	Security Proof Challenge 1: Simultaneous Extraction and Statistical Soundness
	Security Proof Challenge 2: More Differing Inputs
	Building indistinguishability-preserving distributed samplers.
	Building almost everywhere extractable NIZKs
	CRS-less NIZKs in the Uniform Setting

	Notation and Preliminaries
	Distributed Samplers

	Almost Everywhere Extractable NIZKs
	Building almost everywhere extractable NIZKs

	Weakening Distributed Samplers to Avoid Random Oracles
	Hardness-Preserving Distributed Samplers.
	Indistinguishability Preserving Distributed Samplers

	Lossy Distributed Samplers
	Building Lossy Distributed Samplers
	Introducing ELFs to Achieve Lossy Properties
	Proving Security
	Formalising the Results

	Building Hardness-Preserving Distributed Samplers
	Building Indistinguishability Preserving Distributed Samplers

	NIZKs with no CRS in the Uniform Setting
	Building restricted simulation-sound U-NIZKs without CRS
	Building simulation-sound U-NIZKs without CRS
	Building simulation-extractable U-NIZKs without CRS

	Almost Everywhere Extractable NIZKs without CRS in the Uniform Setting
	Building simulation almost everywhere extractable U-NIZKs without CRS

	Additional Preliminaried
	One-Way Functions
	Puncturable PRFs
	Hash Functions
	Commitments
	Strong One-Time Signatures
	Non-Interactive Witness Indistinguishability
	Identity-Based Encryption
	Indistinguishability Obfuscation
	Multi-Key FHE
	Extremely Lossy Functions

	Proof of Theorem 11
	Proof of Theorem 15
	Proof of Hardness Preservation
	Proof of Indistinguishability Preservation

