
Faster Secret Keys for (T)FHE

Loris Bergerat∗1, Ilaria Chillotti†1, Damien Ligier‡1, Jean-Baptiste
Orfila§1, Adeline Roux-Langlois¶2, and Samuel Tap‖1

1Zama, Paris, France - https://zama.ai/
2Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC

14000 Caen, France

Abstract

GLWE secret keys come with some associated public information, like their
size or the distribution probability of their coefficients. Those information
have an impact on the FHE algorithms, their computational cost, their noise
growth, and the overall security level.

In this paper, we identify two limitations with (T)FHE: there is no fine-
grained control over the size of a GLWE secret key, and there is a minimal
noise variance which leads to an unnecessary increment of the level of security
with large GLWE secret keys.

We introduce two (non exclusive) new types of secret keys for GLWE-based
cryptosystems, that are designed to overcome the aforementioned limitations.
We explain why these are as secure as the traditional ones, and detail all the
improvements that they brought to the FHE algorithms. We provide many
comparisons with state-of-the-art TFHE techniques, and benchmarks showing
computational speed-ups between 1.3 and 2.4 while keeping the same level of
security and failure probability. Furthermore, the size of the public material
(i.e., key switching and bootstrapping keys) is also reduced by factors from
1.5 and 2.7.
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1 Introduction

Fully homomorphic encryption (FHE) is a technology allowing to perform com-
putations over encrypted data. After the first solution proposed in 2009 by Gen-
try [Gen09], the field has received a huge interest and has experienced a drastic
improvement in the following decade. Gentry introduced a vital technique called
bootstrapping, able to reduce the noise inside ciphertexts. Indeed, FHE cipher-
texts contain noise for security reasons, and every time an homomorphic operation
is performed, the noise level grows. If not controlled, too much noise will eventu-
ally compromise the message. Nowadays, practical FHE schemes are all inspired
by Gentry’s solution and are based on the Learning With Errors (LWE) prob-
lem [Reg05], its Ring variants (RLWE) [SSTX09, LPR10] and the General approach
(GLWE) [LS15, BGV12]. One of these schemes is called TFHE [CGGI20], and will
be the focus of this paper. TFHE differs from other FHE schemes because it pro-
posed a very efficient bootstrapping technique that reduces the noise and, at the
same time, is able to homomorphically evaluate a function, represented as a look-up
table (LUT).

TFHE, as many other (R)LWE based schemes, works with a cyclotomic ring
Rq,N = Zq [X] /

〈
XN + 1

〉
, withN a power of 2. The parameterN has a huge impact

on the precision of the messages that can be bootstrapped. Roughly speaking, in
order to bootstrap an additional bit of message, we need to double the size of N ,
which implies doubling the size of the secret key and more than double the cost of
the operation. Apart from being used to encrypt and decrypt messages, secret keys
are used in bootstrapping and key switching (an operation used to homomorphically
switch from a secret key to another) procedures.

In this paper we propose new ways to generate secret keys allowing to reduce
the size of the public keys, and the cost of some homomorphic algorithms.

Impact of parameter choices. As mentioned above, the choice of parameters
has a huge impact on performance, and it has to guarantee the desired security as
well as the desired correctness for a given message precision. Several parameters are
brought into play to estimate the level of security: the ciphertext modulo q, the sizes
of the secret keys (either n in LWE keys or kN in GLWE keys), the distributions of
the secret keys and the variances of the noise in fresh encryptions.

In TFHE implementations, q is often chosen equal to 232 or 264, in order to be
able to work with 32 or 64 bit integers, respectively, since they are native types in
the majority of machines used nowadays. The polynomial size N often has to be a
power of 2. In order to keep the same security level when increasing n, we can reduce
the variance σ2 of the noise, but the value of q imposes a lower bound on this value,
meaning that starting from a certain point, we cannot reduce the variance anymore,
otherwise we lose security. Notice that a small increase of the value of n allows for
a small decrease of the value of σ2. But when working with polynomials, moving
to a bigger power of 2 for N will lead to a large increase of the size of the secret
key, from kN to k · 2N , and so a large decrease of σ2 when allowed. For the same
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security reason as above, at some point we reach a limit where we cannot reduce
the variance σ2 of the noise anymore. The consequence is that to avoid having no
security at all, we end up with a security level way higher than desired. This is of
course not a problem in terms of security, but maybe there could be a third option
that could lead to keep the desired level of security and improve the efficiency of the
homomorphic computation.

We can now sum up a couple of limitations for TFHE:

1. there is no fine-grained control over the size of a GLWE secret key, it is of the
form kN with N a power of two;

2. there is a minimal value for the variance σ2 of the noise for a given security
level and a given ciphertext modulus q. So when one increases either n (or
kN), they eventually reach a plateau in terms of noise variance. We write
nplateau the first value of this plateau, and we evaluated it’s value to be 2443
for 128 bits of security and q = 264.

Our contribution. In this paper, we investigate how we could get rid of those
limitations by modifying the way secret keys are generated.

A key switch is an FHE operator that can be costly. It allows to convert a
ciphertext encrypted under a secret key s1 to another secret key s2, and consists
in evaluating a linear combination between public ciphertext values and the key
switching key, which is composed of individual encryptions of the elements of s1
under the secret key s2. Roughly speaking, reducing the size of the first secret
key reduces the amount of operations in this linear combination, and so improves
the key switching in terms of computational cost, noise growth and size of the
key switching key. Furthermore, if s1 publicly shares some elements with s2, this
would improve the key switching operation as well since some operations in the
linear combinations would become unnecessary. This phenomenon resemble to
what happens during the relinearization technique (e.g. [Bra12, FV12]), where only
a part of the mask of the ciphertext is relinearized.

Following all these observations, we propose two new kinds of secret keys: partial
secret keys and shared randomness secret keys. The first kind consists in allowing
a GLWE secret key traditionally containing kN random elements, to contain less
random elements, the rest being zeros. The second kind, the shared randomness
secret keys, consists in reusing the randomness from a bigger key inside a smaller
key, instead of generating it independently as done traditionally.

We provide details justifying the security of our new types of secret keys. In order
to exploit them, we adapted TFHE’s algorithms, which lead to variants offering
smaller noise growth, smaller amount of computation and smaller needed public
material. We also share benchmarks comparing the running time needed with and
without the new secret keys. Our simulations, done with the optimization tool
proposed in [BBB+22], show that the use of these new secret keys improve the state
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of the art for all precisions. These results are confirmed by practical experiments,
showing a speed up between 1.3 and 2.4 times, while keeping the same level of
security and failure probability. Furthermore, the use of these new key types allows
to reduce the size of the public material (i.e., key switching and bootstrapping keys)
by a factor between 1.5 and 2.7.

Related Works. To the best of our knowledge, there are no mentions of such
GLWE secret keys or something similar in the prior art. The closest work we
can mention is by Lee and Yoon [LY23] where the server can publicly transform
a bootstrapping key encrypted under a traditional secret key to an extended version
encrypted under a secret key containing zeros between each secret coefficients. This
extended bootstrapping key allows the authors to bootstrap messages with bigger
precision, but it does not improve the noise growth. All this contribution only
involves traditional GLWE secret keys for encryption.

Concurrent Works. Lee et al. [LMSS23] introduced new types of secret keys.
They call it block binary keys, which are different from our contribution but concur-
rently exploit the advantage of having nested secret keys, re-using their randomness,
as we also introduce in this paper as shared randomness secret keys.

Paper Organization. In Section 2 we recall mathematics and FHE notations
and security notions. In Section 3 we introduce the concept of partial GLWE secret
keys and provide intuitions of security as well as all the FHE algorithms that benefit
from them either in terms of noise growth or in terms of computation. Section 4 is
composed in the same manner, but it introduces the concept of shared randomness
secret keys this time. In Section 5 we detail what can be exploited when combining
both partial and shared randomness secret keys, and we give a few applications
for them. In Section 6, we illustrate how useful those new types of secret keys are
by comparing the techniques we introduced in this paper and the state-of-the-art.
Finally, in Section 7, we conclude and speak about potential future work.
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2 Preliminaries

Notations. Let q be a positive integer and let N be a power of 2. In this paper
we mostly work with Zq, which refers to the ring Z/qZ, and with the ring Rq,N =
Zq [X] /

〈
XN + 1

〉
. For error distributions, we note χ for a generic distribution and

𝒩σ2 for a Gaussian distribution with a mean set to zero and a standard deviation set
to σ. We note by 𝒰 (S) a uniform distribution in the generic set S and by 𝒟 (S) a
generic probability distribution in the generic set S. We use the symbol || for vector
concatenation. We note with upper cases (e.g. M,A, S,B,E) polynomials and with
lower cases (e.g., m, a, s, b, e) scalars. We use bold characters to note vectors of
polynomials (e.g., A,S) and vectors of coefficients (e.g. a, s).

Definition 1 (General Learning With Errors (GLWE) Decision Problem)
Let S = (S0, · · · , Sk−1) ∈ Rk

q,N be a secret, where Si =
∑N−1

j=0 si,jX
j is sampled from

a given distribution 𝒟 (Rq,N) for all 0 ≤ i < k, and let χ be an error distribution.

We define (A, B =
∑k

i=0Ai ·Si+E) ∈ Rk+1
q,N to be a sample from the general learning

with errors (GLWEN,k,χ) distribution, such that A = (A0, . . . , Ak−1) ←↩ 𝒰 (Rq,N)
k,

meaning that all the coefficients of Ai are sampled uniformly from Zq, and the error
(noise) polynomial E ∈ Rq,N is such that all the coefficients are sampled from χ.

The decisional GLWEN,k,χ problem [LS15, BGV12] consists in distinguishing

m independent samples from 𝒰 (Rq,N)
k+1 from the same amount of samples from

GLWEN,k,χ, where S ∈ Rk
q,N follows a given distribution 𝒟.

In general, the secret key distribution 𝒟 (Rq,N) is such that the polynomial
coefficients are usually either sampled from a uniform binary distribution, a uniform
ternary distribution or a Gaussian distribution ([BJRLW23, ACPS09]).

Starting from the GLWE problem, we can define GLWE ciphertexts.

Definition 2 (GLWE Ciphertexts) A GLWE ciphertext of a plaintext M ∈
Rq,N under the secret key S ∈ Rk

q,N is defined as follows:

CT =

(
A, B =

k−1∑
i=0

Ai · Si +M + E

)
∈ GLWES(M) ⊆ Rk+1

q,N (1)

such that A = (A0, . . . , Ak−1) ←↩ 𝒰 (Rq,N)
k and E ∈ Rq,N is such that all its

coefficients are sampled from a gaussian distribution 𝒩σ2.

Remark 1 (LWE and RLWE) We recall that, when N = 1, the GLWE prob-
lem (resp. ciphertext) becomes the LWE problem (resp. ciphertext): GLWE1,k,χ =
LWEn=k,χ. In this case we consider the parameter n = k to be the size of the LWE
secret key and we note the ciphertext, the message and the secret with a lower case:
ct ∈ LWEs(m). When k = 1, the GLWE problem (resp. ciphertext) becomes the
RLWE problem (resp. ciphertext): GLWEN,1,χ = RLWEN,χ. In this case, since we
are still working with polynomials, we keep upper cases for ciphertexts, messages and
secret key: CT ∈ RLWES(M).

6 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila, A. Roux-Langlois & S. Tap



Faster Secret Keys for (T)FHE

Definition 3 (Flatten Representation of a GLWE Secret Key) A GLWE

secret key S =
(
S0 =

∑N−1
j=0 s0,jX

j, · · · , Sk−1 =
∑N−1

j=0 sk−1,jX
j
)
∈ Rk

q,N can be

flattened into an LWE secret key s̄ = (s̄0, · · · , s̄kN−1) ∈ ZkN in the following
manner: s̄iN+j := si,j, for 0 ≤ i < k and 0 ≤ j < N .

In TFHE, apart from LWE, RLWE and GLWE ciphertexts, there are two
additional constructions that are used, that are called GLev [CLOT21] and
GGSW [GSW13]. A GLev ciphertext is a collection of GLWE ciphertexts, while
a GGSW is a collection of GLev ciphertexts. In the same way as GLWE can be spe-
cialized as LWE and as RLWE ciphertext, GLev and GGSW can be specialized as
Lev and GSW respectively, and as RLev and RGSW. We give the general definition
below.

Definition 4 (GLev Ciphertexts [CLOT21]) Given a decomposition base β ∈
N∗ and a decomposition level ℓ ∈ N∗, a GLev ciphertext of a plaintext M ∈ Rq,N

under a GLWE secret key S ∈ Rk
q,N is defined as follows:

CT = (CT0, . . . ,CTℓ−1) ∈ GLEV
(β,ℓ)
S (M) ⊆ R

ℓ×(k+1)
q,N (2)

such that CTj ∈ GLWES

(
q

βj+1M
)
⊆ Rk+1

q,N for 0 ≤ j < ℓ.

Definition 5 (GGSW Ciphertexts [GSW13, CLOT21]) Given a decomposi-
tion base β ∈ N∗ and a decomposition level ℓ ∈ N∗, a GGSW ciphertext of a plaintext
M ∈ Rq,N under a GLWE secret key S ∈ Rk

q,N is defined as follows:

CT =
(
CT0, . . . ,CTk

)
∈ GGSW

(β,ℓ)
S (M) ⊆ R

(k+1)×ℓ×(k+1)
q,N

(3)

such that CTi ∈ GLEV
(β,ℓ)
S (−Si ·M) ⊆ R

ℓ×(k+1)
q,N for 0 ≤ i ≤ k.

Programmable Bootstrapping (PBS). We call Programmable Bootstrap-
ping [CGGI20, CJL+20, CJP21], or PBS, any FHE operator that enables to reset
the noise in a ciphertext to a fixed level (when certain conditions are fulfilled) and
to evaluate, at the same time, a lookup-table homomorphically on the encrypted
message. Such an operator takes as input an LWE ciphertext encrypting a message
m, a bootstrapping key BSK (i.e., a list of GGSW ciphertexts encrypting the ele-
ments of the secret key used to encrypt the message m), an encryption of a lookup
table L, and outputs an LWE ciphertext with a fixed level of noise encrypting the
message L[m] when the process is successful. There is a failure probability that can
be estimated and that we note pfail.

Remark 2 (FFT Error) Inside TFHE PBS, polynomial multiplications are per-
formed with an FFT. While very efficient, it introduces a noise due to the casting
of the bootstrapping key (64-bit integers) into floating points (double with 53-bits
mantissa) and the accumulation of the error along the computation in the Fourier
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domain. We use the corrective formula from [BBB+22] to model this noise. It
consists into adding to the noise of an external product the following formula

FftErrork,N,β,ℓ = 2ω1 · ℓ · β2 ·N2 · (k + 1)

with ω1 ≈ 22 − 2.6, the GLWE dimension k, the polynomial size N and the
decomposition parameters (β, ℓ).

Secret Keys With Fixed Hamming Weight (FHW). A fixed-Hamming-
weight (FHW) binary (resp. ternary) GLWE secret key of hamming weight h ∈ N
is a GLWE secret key such that its polynomial coefficients are in {0, 1} (resp.
{−1, 0, 1}) and contains exactly h non-zero coefficients. We note these two distribu-
tions ℱℋ𝒲 (h, {0, 1}) and ℱℋ𝒲 (h, {−1, 0, 1}) respectively. Such keys come with
public knowledge: the dimension k, the polynomial ring Rq,N (including the poly-
nomial degree N), the distribution (binary or ternary), the hamming weight h. This
type of secret keys has already been used in FHE schemes, such as CKKS [CKKS17],
because it offers a lower value for the worst case noise growth.

Table 1 summarizes public knowledge for different secret key types used in FHE.

Key Type Size Ring Distribution Hamming Weight

Uniform Binary k Rq,N 𝒰 ({0, 1}) unknown
Uniform Ternary k Rq,N 𝒰 ({−1, 0, 1}) unknown

Gaussian k Rq,N 𝒩µσ
2 unknown

Small Uniform k Rq,N 𝒰 (Zα) unknown
Uniform k Rq,N 𝒰 (Zq) unknown

FHW Binary k Rq,N ℱℋ𝒲 (h, {0, 1}) h
FHW Ternary k Rq,N ℱℋ𝒲 (h, {−1, 0, 1}) h

Table 1: Comparison between secret key types in terms of public knowledge.

2.1 Setting the parameters

Attacks on LWE. We quickly recall the known attacks against LWE which are
important to choose parameters. These attacks and the associated references are
the one used in the lattice estimator [APS15]. This tool is used1 to find out the
smallest noise variance σ2 guarantying the desired level of security λ.

The first well known kind of attacks is the so called LWE primal attacks. This
attack was first formulated in [ADPS16] and studied and verified in [AGVW17,
DSDGR20, PV21]. It consists of using lattice reduction to solve an instance of
uSVP (unique Shortest Vector Problem) generated from LWE samples. The most
common way to perform this reduction, is to use the BKZ algorithm [SE94] to reduce
a lattice basis by using an SVP (Shortest Vector Problem) oracle. So, based on this
attack, the security of an LWE instance is based on the cost of lattice reduction for

1https://github.com/zama-ai/concrete/tree/main/tools/parameter-curves
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solving uSVP. In the paper [ADPS16], the authors propose to analyze the hardness
of RLWE as an LWE problem. All the research on this attack tend to find the best
cost of solving uSVP in order to find the closest model of security for LWE and by
extension for RLWE.

The second type of attack is the LWE dual attacks. This attack is explained
in [MR09] and upgraded with the dual hybrid attacks in [Alb17]. It consist of
solving SIS (Short Integer Solution problem) in the dual lattice of the lattice formed
by LWE samples. As for the first type of attacks, the security of an LWE instance
is based on the cost of solving the problem SIS.

The third well known kind of attacks is the coded-BKW attacks, which are
based on the algorithm BKW (Blum, Kalai and Wasserman [BKW03]). This attack
is explained in [GJS15, KF15]. BKW algorithm is a recursive dimension reduction
for LWE instances. In [GJS15], authors use these attacks on RLWE. To do that,
the RLWE problem is seen as a sub problem of LWE.

Attacks on RLWE/GLWE. In the last decade, some attacks (as exem-
ple [CDW17, PMHS19, BRL20, BLNRL23]) tried to take advantage of the structure
of the RLWE and GLWE to solve the id-SVP (ideal-Shortest Vector Problem).
Nonetheless, none of this attacks is as efficient as the LWE attacks presented be-
fore. It means that when one wants to efficiently break GLWE, they actually use
LWE attacks so the security of GLWE ∈ Rk+1

N,q is estimated from the security of

LWE ∈ ZkN+1
q .

Other Attacks. Some other attacks are not based on classical problem reduction
but on the leakage of some fraction of the coordinates of the NTT transform of the
RLWE secret. It’s the case of the article [DSGKS18] which propose a more direct
attacks against RLWE.

9 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila, A. Roux-Langlois & S. Tap
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3 Partial GLWE Secret Key

A GLWE secret key usually contains kN random elements. Our first observation is
that we can allow this secret key to only contain a number ϕ of random elements and
the rest of them will be set to zero. We first formally define this notion of partial
secret key, then explain why this should not have an impact on the hardness of the
underlying GLWE problem. After discussing the hardness of such keys, we list the
different advantages and improvements which they offer.

A partial GLWE secret key is composed of two parts, the first one contains secret
random elements (sampled from a distribution 𝒟) and the second part is filled with
known zeros. As a simple example we could define the following partial GLWE
secret key:

S = (S0, S1) ∈ R2
q,N with S0 =

∑N−1
j=0 s0,jX

j and S1 =
∑N/2−1

j=0 s1,jX
j

where s0,0, · · · , s0,N−1 and s1,0, · · · , s1,N
2
−1 are sampled from 𝒟, and the other coef-

ficients are publicly known to be set to zero.

Definition 6 (GLWE Partial Secret Key) A Partial GLWE secret key is a vec-
tor S[ϕ] ∈ Rk

q,N associated with its filling amount ϕ such that 0 ≤ ϕ ≤ kN . Indeed,
this key will have ϕ random coefficients sampled from a distribution 𝒟 and kN − ϕ
known zeros. Both the locations of the random elements and the known zeros are
public. By convention, we fill the coefficients starting at coefficient s0,0, then s0,1 and
so on, and when the first polynomial is entirely filled, we fill the second polynomial
starting at s1,0 and so on, until we fill ϕ coefficients, up to sk−1,N−1.

When we write Var
(
S[ϕ]

)
(resp. E

(
S[ϕ]

)
), we refer to the variance (resp. the

expectation) of 𝒟 (either uniform binary distribution, uniform ternary distribution,
Gaussian distribution, small uniform distribution). When 𝒟 is a uniform binary

distribution, Var
(
S[ϕ]

)
= 1/4 and E

(
S[ϕ]

)
= 1/2.

We now define the flatten representation of a partial GLWE secret key.

Definition 7 (Flatten Representation of a Partial GLWE Secret Key) A

partial GLWE secret key S[ϕ] =
(
S0 =

∑N−1
j=0 s0,jX

j, · · · , Sk−1 =
∑N−1

j=0 sk−1,jX
j
)
∈

Rk
q,N (Definition 6) can be viewed as a flatten LWE secret key s̄ = (s̄0, · · · , s̄ϕ−1) ∈

Zϕ in the following manner: s̄iN+j := si,j, for 0 ≤ j < N and 0 ≤ i < k with
iN + j < ϕ. This flatten representation contains only the ϕ unknown coefficients.

Before checking the security in detail, this type of keys seem to be a secure
solution, taking into account the plateau limitation (Limitation 2). They also seem
to offer a nice in-between solution.

10 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila, A. Roux-Langlois & S. Tap
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3.1 Hardness of Partial GLWE

The GLWE partial secret key problem S[ϕ] ∈ Rk
q,N , as defined in Definition 6, seems

to be at least as hard as a GLWE problem in a ring of dimension ϕ. First, we present
the GLWE alternate partial secret key, a key where the secret elements are separated
by 2ν − 1 known zeros. We prove the security of a such secret key distribution by
proving that the GLWE problem in Rk+1

q,N is equivalent to the GLWE problem in

Rk+1
q,2νN instantiated with alternate partial GLWE secret keys.
Next, we will use this result to generalized the idea to the partial GLWE secret

keys.

Definition 8 (Alternate Partial GLWE Secret Key) An alternate partial
GLWE (P-GLWE2νN,k,χ) secret, is a GLWE secret where the key alternates between
one unknown element and 2ν − 1 known elements. This key is composed of N
random coefficients sampled from a distribution 𝒟 and (2ν − 1)N known zero
coefficients. As for the partial GLWE secret key (Definition 6), both the locations
of the random elements and the known zeros are public. For example, we have
S =

∑N−1
k=0 sk · Xk·2ν , with si ←↩ 𝒰 ({0, 1}), is the binary version of partial secret

key in Rq,2νN .

We show in Theorem 1 that the alternate partial GLWE problem defined in
Definition 8 on the ring Rq,2νN is at least as hard as the GLWE problem on the ring
Rq,N .

Theorem 1 (Hardness of P-GLWE) For any ν ∈ Z, the P-GLWE2νN,k,χ sample
in Rk+1

q,2νN is as least as hard than 2ν GLWEN,k,χ samples in Rk+1
q,N .

Proof 1 (Theorem 1) The idea of this proof is to pack 2ν GLWEN,k,χ samples
in one P-GLWE2νN,k,χ sample. To do so, we differentiate the 2ν samples from
GLWEN,k,χ in Rk+1

N,q , by noting them GLWEw
S(X) with w ∈ J0, 2νJ. Observe that

all of them are encrypted under the same secret key S = (S0, . . . , Sk−1) ∈ Rk
q,N , with

Si =
∑N−1

j=0 si,jX
j.

Each one of the k polynomials composing the GLWEw
S(X) sample is noted with

an exponent w: Aw
i =

∑N−1
j=0 awi,jX

j, with i ∈ J0, kJ. Starting from these 2ν samples,
we define a new sample from P-GLWE2νN,k,χ. First, for each sample GLWEw

S(X) ∈
Rk+1

q,N , we need to evaluate each polynomial in Xν:

Rq,N −→ Rq,2νN ,

Aw
i (X) =

N−1∑
j=0

awi,j ·Xj 7−→ Aw
i (X

2ν ) =
N−1∑
j=0

awi,j ·Xj·2ν .

So, for each sample GLWEw
S(X) in Rk+1

q,N , we obtain:

GLWEw
S(X) −→ G̃LWE

w

S(X2ν ),(
Aw

0 (X), . . . , Aw
k−1(X), Bw(X)

)
7−→

(
Aw

0 (X
2ν ), . . . , Aw

k−1(X
2ν ), Bw(X2ν )

)
.

11 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila, A. Roux-Langlois & S. Tap
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We notice that for each polynomial, each coefficient is separated from the other
by 2ν − 1 zeros. Following the previous definition of P-GLWE (Definition 8), the
secret key is in the desired shape. But the Aw

i (X
2ν ) polynomials are not uniform

anymore, only the coefficients of degree multiple of 2ν are. So we can’t already

define G̃LWE
w

S(X2ν ) as a sample of P-GLWE2νN,k,χ. Now for each G̃LWE
w

S(X2ν ) we
rotate all the Aw

i and the Bw polynomials by Xw:(
Aw

0 (X
2ν ) ·Xw, . . . , Aw

k−1(X
2ν ) ·Xw, Bw(X2ν ) ·Xw

)
.

We now sum all of them together to obtain the expected sample from
P-GLWE2νN,k,χ ∈ ℛk+1

q,2νN :

2ν−1∑
w=0

(
Aw

0 (X
2ν )Xw, . . . , Aw

k−1(X
2ν )Xw, Bw(X2ν )Xw

)
= (A0, . . . , Ak−1, B) ∈ P-GLWE2νN,k,χ

with:

Si =

N−1∑
j=0

si,j ·Xj·2ν =

2νN−1∑
j=0

s̃i,j ·Xj for i ∈ J0, kJ

Ai =

2ν−1∑
w=0

Aw
i (X

2ν )Xw =

2ν−1∑
w=0

N−1∑
j=0

awi,jX
j·2ν+w =

2νN−1∑
j=0

ãi,jX
j for i ∈ J0, kJ

B =

2ν−1∑
w=0

Bw(X2ν )Xw =

2ν−1∑
w=0

N−1∑
j=0

bwj X
j·2ν+w =

2νN−1∑
j=0

b̃jX
j

Lets focus on how bwj evolve all along the reduction:

bwj =

k−1∑
i=0

 j∑
τ=0

awi,τ · si,j−τ −
N−1∑

τ=j+1

awi,τ · si,N+j−τ

+ ewj

=

k−1∑
i=0

 j∑
τ=0

ãi,τ2ν+w · s̃i,(j−τ)2ν −
N−1∑

τ=j+1

ãi,τ2ν+w · s̃i,(N+j−τ)2ν

+ ẽj2ν+w

=

k−1∑
i=0

j2ν+w∑
τ=0

ãi,τ · s̃i,j2ν+w−τ −
2νN−1∑

τ=j2ν+w+1

ãi,τ · s̃i,2ν(N+j)+w−τ

+ ẽj2ν+w

= b̃j2ν+w

Each coefficient is correctly decrypted and each b̃j2ν+w is equal to bwj . Moreover,
the polynomials Ai of the new P-GLWE2νN,k,χ sample follows the same distribution
as the polynomials Aw

i , we can make the same remark for the polynomial B. To
conclude, we have packed several GLWEN,k,χ ciphertext in one P-GLWE2νN,k,χ ci-
phertext by increasing the dimension of this new ciphertext without changing the
noise distribution χ. □

This reduction proves that this specific case of partial key is at least as secure
as 2ν GLWE samples. In this case, we showed that increasing the size of the poly-
nomials without changing the noise and slightly changing the key doesn’t affect the
security (it only increases the number of samples).
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Remark 3 (Security of Partial Secret Key) The reduction presented in Theo-
rem 1 proves that the partial alternate secret keys (Definition 8) problem in Rk

q,2νN

is at least as hard as a GLWE problem in Rk
q,N . So adding some zeros in the secret

key at specific places doesn’t impact the security.
Now, if we take two GLWE samples such that the first one is encrypted under

an alternate partial key and the second one is encrypted under a secret partial key
which have the same amount of unknown coefficients, this two samples should to be
indistinguishable. With LWE samples, increasing the size of the secret key increases
the security, so to keep the same level of security, we can reduce the noise. Regarding
this observation and the previous proof, increasing the number of known coefficients
in a partial secret key allows us to reduce the noise and keep the same level of
security.

To sum up, to guarantee a given level of security for RLWE samples encrypted
under a partial secret key with ϕ random elements, we use the noise parameter given
for LWE samples of dimension n = ϕ with the same level of security.

Impact of Partial Key on the Noise Distribution. Regarding the security of
the partial secret key and the different attacks presented in Section 2.1, we can use
the lattice estimator to find out the smallest noise variance σ2 for an LWE ∈ Zϕ+1

q

guarantying the desired level of security λ. By using this same σ2 for GLWE ∈ Rk+1
q,N

with partial secret key S[ϕ] we obtain the same level of security λ.

3.2 Advantages of Partial GLWE Secret Keys

Partial GLWE secret keys enable, in many contexts, to have a smaller computational
cost for certain algorithms and/or to have a smaller noise growth. This will lead
to faster parameter sets (for a given failure probability and security level) after
optimization. For more details refer to Section 6.

3.2.1 Advantage with Sample Extraction

Algorithms 6 and 7 in Supplementary Material C explain how to compute a sample
extraction (i.e., transforming one of the GLWE ciphertext coefficient into an LWE
ciphertext) in the context of a partial GLWE secret key. They are generalizations of
the same algorithm used for “traditional” secret keys. Indeed, a traditional secret
key is captured when ϕ = k × N . We prove the correctness of those algorithms in
Supplementary Material A.

Remark 4 (Noise and Cost of Sample Extraction) A sample extraction,
whether it includes a partial secret key or not, does not add any noise to the
plaintext. The cost of the sample extraction is also roughly the same and it is
negligible.
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3.2.2 Noise Advantage with GLWE Key Switch

A GLWE-to-GLWE key switching with N ̸= 1, as described in Algorithm 4 in
Supplementary Material B, takes as input a GLWE ciphertext CTin ∈ Rkin+1

q,N en-

crypting the plaintext P ∈ Rq,N under the secret key S[ϕin] ∈ Rkin
q,N , and outputs

CTout ∈ Rkout+1
q,N encrypting the plaintext P + EKS ∈ Rq,N under the secret key

S[ϕout] ∈ Rkout
q,N . The added noise during this procedure EKS, is composed of a rounding

error plus a linear combination of the noise from the key switching key ciphertexts.
The larger ϕin is, the larger the amount of rounding error is.

Theorem 2 (Noise of GLWE Key Switch) After performing a key switching
(Algorithm 4), taking as input a GLWE ciphertext CTin ∈ Rkin+1

q,N under the secret

key S
[ϕin]
in ∈ Rkin

q,N and a key switching key with noise variance σ2
KSK, and outputting a

GLWE ciphertext CTout ∈ Rkout+1
q,N under the secret key S

[ϕout]
out ∈ Rkout

q,N , the variance of
the noise of each coefficient of the output can be estimated by the following formula:

Var (CTout) = σ2
in + ϕin

(
q2 − β2ℓ

12β2ℓ

)(
Var
(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))
+

ϕin

4
Var
(
S

[ϕin]
in

)
+ ℓkinNσ2

ksk

β2 + 2

12

(4)

where, β and ℓ are the decomposition base and level respectively.

The proof of Theorem 2 is a noise analysis of the result of the operation as done
in [CLOT21]. Note that when ϕin = kin ·N we end up with the same formula given
in the mentioned paper. It computes the first step of the decryption, extracts the
error and analyzes its variance. We report the detailed proof in Supplementary
Material A.

Remark 5 (Cost of GLWE Key Switch) We recall that the cost of a GLWE-
to-GLWE key switching, which is the same whether it involves partial secret keys or
not, is:

𝒞 (FftLweKeySwitch) = kinℓ ·𝒞 (FFTN) + (kout + 1) ·𝒞 (iFFTN)

+Nkinℓ · (kout + 1) ·𝒞 (×C)

+N · (kinℓ− 1) · (kout + 1) ·𝒞 (+C)

(5)

where +C and ×C represent a double-complex addition and multiplication (in the
FFT domain) respectively, and FFTN (resp. iFFTN) the Fast Fourier Transform
(resp. inverse FFT).

3.2.3 Noise Advantage with Secret Product GLWE Key Switch

A GLWE-to-GLWE key switch also computing a product with a secret polynomial
as described in Algorithm 5, follows the exact same definition than above, except
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that the output ciphertext encrypts Q·P+EKS with Q ∈ Rq,N the secret polynomial
hidden in the key switching key. The added noise EKS also depends on the input
secret key S[ϕin] and its filling amount ϕin. Indeed, this term is the product between
the rounding term (dependent on ϕin) and the polynomial Q.

Theorem 3 (Noise of Secret-Product GLWE Key Switch) After perform-
ing a Secret-Product key switching (Algorithm 5), taking in input a GLWE

ciphertext CTin ∈ Rkin+1
q,N under the secret key S

[ϕin]
in ∈ Rkin

q,N and a key switching key

with noise variance σ2
KSK encrypting a secret message M2, and outputting a GLWE

ciphertext CTout ∈ Rkout+1
q,N under the secret key S

[ϕout]
out ∈ Rkout

q,N , the variance of the
noise of each coefficient of the output can be estimated by the following formula:

Var (CTout) = ℓ(kin + 1)Nσ2
KSK

β2 + 2

12

+ ||M2||22 ·
(
σ2
in +

(
q2 − β2ℓ

12β2ℓ

)(
1 + ϕin

(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

)))
+

ϕin

4
Var

(
S

[ϕin]
in

))

The proof of this theorem is very similar to the proof of Theorem 2, so we include
it in Supplementary Material A.

3.2.4 Noise Advantage with External Product

A GLWE external product is a special case of a secret-product GLWE-to-GLWE
key switch where the input secret key and the output secret key are the same. It
is pretty easy to compute the noise this procedure will add. The cost to compute a
GLWE external product whether it includes a partial secret key or not, is the same.

Theorem 4 (Noise of GLWE External Product) The external product algo-
rithm is the same as the algorithm of secret-product GLWE key switch (Algorithm 5).

The only difference is that the external product uses the same key S[ϕ] ∈ Rk
q,N as

input and as output, and the key switching key is now seen as a GGSW ciphertext
of message M2 encrypted with noise variance σ2

2. For each coefficient of the output
CTout, the noise can be estimated by the following formula:

Var (CTout) = ℓ(k + 1)Nσ2
2

β2 + 2

12

+ ||M2||22 ·
(
σ2
in +

(
q2 − β2ℓ

12β2ℓ

)(
1 + ϕ

(
Var

(
S[ϕ]

)
+ E2

(
S[ϕ]

)))
+

ϕ

4
Var

(
S[ϕ]

))

Proof 2 (Theorem 4) This proof is the same than the proof of Theorem 3. Here

we have k = kin = kout and S[ϕ] = S
[ϕin]
in = S

[ϕout]
out . □

Noise Advantage with TFHE’s PBS. Using a partial GLWE secret key to
encrypt a bootstrapping key for TFHE’s programmable bootstrapping enables two
convenient features: on one hand to have a smaller output LWE ciphertext with less
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than k ·N +1 coefficients, and on the other hand it offers a smaller noise growth in
each external product (see Proof in Supplementary Material 11. External product is
the main operation used in the CMuxes of the blind rotation), as explained above.
The direct consequence of having smaller output ciphertexts is the fact that we can
perform smaller LWE-to-LWE key switchings before the next PBS. Furthermore,
when k ·N is big enough to reach the noise plateau (as explained in Limitation 2),
partial secret keys enable to avoid adding unnecessary noise to the bootstrapping.

3.3 LWE-to-LWE Key Switch

Partial GLWE secret key can be used to design a new LWE-to-LWE key switch-
ing that is FFT-based. The idea is an adaptation of the work done by Chen et
al. [CDKS20] but now exploits the use of partial GLWE secret keys. First one casts
the input LWE ciphertext into a GLWE ciphertext (Algorithm 10) so we can apply
to it a GLWE-to-GLWE key switching (Algorithm 4) to go to a partial GLWE secret
key, and finally compute a sample extraction (Algorithm 6). Indeed, the GLWE-
to-GLWE key switch can exploit the speed-up coming from the FFT. Details about
this new LWE-to-LWE key switch are provided in Algorithm 1.

Algorithm 1: ctout ← FftLweKeySwitch(ctin,KSK)

Context:



nin ≤ kin ·N, nout ≤ kout ·N
sin = (s0, · · · , snin−1) ∈ Znin

q : the input LWE secret key

sout =
(
s′0, · · · , s′nout−1

)
∈ Znout

q : the output LWE secret key

ℓ ∈ N : the number of levels in the decomposition

β ∈ N : the base in the decomposition

S
[nin]
in = (Sin,0, · · · , Sin,kin−1) ∈ Rkin

q,N : a partial secret

key (Definition 6) such that its flattened version is sin

S
[nout]
out = (Sout,0, · · · , Sout,kout−1) ∈ Rkout

q,N : a partial secret

key (Definition 6) such that its flattened version is sout

Input:

{
ctin ∈ LWEsin (p) ⊆ Znin+1

q , with p ∈ Zq

KSK = {KSKi}0≤i<kin
, with KSKi ∈ GLEV

(β,ℓ)

S
[ϕout]
out

(Sin,i) : a key switching key

Output: ctout ∈ LWEsout (p) ⊆ Znout+1
q

/* Inverse of a constant sample extraction (Algorithm 10) */

1 Set CT← ConstantSampleExtraction−1 (ctin, kin, N) ∈ Rkin+1
q,N

/* GLWE-to-GLWE key switch based on the FFT (Algorithm 4) */

2 Set CT′ ← GlweKeySwitch (CT,KSK) ∈ Rkout+1
q,N

/* Constant sample extraction (Algorithm 6) */

3 Set ctout ← ConstantSampleExtract
(
CT′) ∈ Znout+1

q

4 return ctout

Remark 6 (Inverse Constant Sample Extraction) Algorithm 10, presented in
Supplementary Material C, trivially casts an LWE ciphertext of size n + 1 into a
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GLWE ciphertext of size k + 1 and with polynomials of size N . We obviously need
that n ≤ kN . If n = kN , the output is a GLWE ciphertext under a traditional secret
key, otherwise it is a GLWE ciphertext under a partial GLWE secret key. Note that
the constant term of the output GLWE plaintext is exactly the plaintext of the input
LWE ciphertext, however the rest of the coefficients of the output GLWE ciphertext
are filled with uniformly random values.

We have the property that for all p ∈ Zq, for all s ∈ Zn
q , for all ct ∈ LWEs (p) ⊆

Zn+1
q and for all (k,N) ∈ N2 such that n ≤ kN :

ct = ConstantSampleExtract
(
ConstantSampleExtract−1 (ct, k,N)

)
.

Theorem 5 (Noise & Cost of FFT-Based LWE Key Switch) We consider
the new LWE-to-LWE key switch as detailed in Algorithm 1. The cost of such key
switching is the same as the cost of a GLWE-to-GLWE key switch as introduced in
Remark 5 i.e, 𝒞 (FftLweKeySwitch) = 𝒞 (GlweKeySwitch).

The output noise can be expressed from the noise formula of the GLWE-to-GLWE
key switch (Theorem 2). To sum up, the output noise is:

Var (FftLweKeySwitch) = FftErrorkmax,N,β,ℓ + Var (GlweKeySwitch)

with ϕin = nin and ϕout = nout, kmax = max (kin, kout) and FftErrorkmax,N,β,ℓ being the
error added by the FFT conversions.

Proof 3 (Theorem 5) The cost is quite straight forward, since we can neglect the
complexity of the sample extraction and its inverse. The estimation of the variance
of the error is as well immediate. We use the corrective formula introduced in
Remark 2 to estimate an upper bound on the FFT error. Indeed, it is easy to see
that the FFT-based LWE key switch with kin and kout, is a special case of an external
product with k = max (kin, kout) where some of the ciphertexts composing the GGSW
are trivial encryptions of 0 or 1 (no noise, all mask elements set to zero and the
clear plaintext in the b/B part). □

Practical Improvement. The use of partial secret keys brings a practical non-
negligible improvement to homomorphic computations. Figure 1, presents a com-
parison between our techniques and the state of the art [CJP21]. More details on
the experiments are reported in Section 6.1.
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Figure 1: Comparison in terms of estimated computation, between traditional CJP,
our baseline, and three variants of CJP based on partial secret keys. Details can be
found in Section 6.1 and exact plotted values can be found in Tables 2, 3 and 4.

4 Shared Randomness Secret Keys

To use FHE schemes, one needs to generate several secret keys of different sizes.
Our second observation is that instead of sampling those keys independently, we
can generate a list of α nested GLWE keys with the same level of security λ. It
means that it is publicly known that all the secret coefficients of a smaller key will
be included in a larger secret key.

As a simple example we can consider three integers 1 < n0 < n1 < n2 and a
secret key s(2) ∈ Zn2

q generated in the traditional manner (either sampled from an
uniform binary/ternary, or a small Gaussian). Let’s write it as a concatenation of 3
vectors: s(2) = r(0)||r(1)||r(2). We can now build two smaller secret keys out of s(2)

such that for all pair of keys, the smaller one will be included in the bigger one, in
its first coefficients:

s(0) = r(0) ∈ Zn0
q and s(1) = r(0)||r(1) ∈ Zn1

q .

This kind of secret keys are useful for key switching and for bootstrapping pro-
cedures. Note that each of those secret keys will use a different variance for the
noise added during encryption: the smaller the secret key, the bigger the variance,
so they can all guarantee the same level of security λ.
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Definition 9 (GLWE Shared Randomness Secret Keys) Two GLWE secret
keys S ∈ Rk

q,N and S′ ∈ Rk′

q,N ′, with kN ≤ k′N ′, are said to share randomness if we
have that for all 0 ≤ i < kN, s̄i = s̄′i, where the s̄i and the s̄′i respectively come from
the flatten view (Definition 3) of S and S′. We note by S ≺ S′ this relationship
between secret keys.

s(0) : r0 · · · rn0−1

s(1) : r0 · · · rn0−1 rn0 · · · rn1−1

s(2) : r0 · · · rn0−1 rn0 · · · rn1−1 rn1 · · · rn2−1

free

free

n1 − n0 elements

n2 − n1 elements

shrinking key switch

enlarging key switch

Figure 2: Illustration of simplified key switch procedures between three shared ran-
domness LWE secret keys.

4.1 Hardness of Shared Randomness Secret Keys

Let us consider different samples of GLWE with shared randomness. By taking
independently the samples under the same secret key, all the samples are secure and
have the same level of security. We now study the level of security of several samples
of GLWE considered together with shared secret keys.

First, we present the decisional LWE problem with shared randomness and prove
that, under certain conditions, this problem can be reduced to a LWE problem. Next
we show that the new operations offered by the shared randomness secret key can
not impact the security. Indeed, with this new secret keys using shared randomness,
it becomes possible to combine two ciphertexts encrypted under different secret keys.

Definition 10 (Shared Randomness Secret Key Decisional Problem)
Let n1 > n0. Given a secret key s(0) ∈ Zn0

q following a given dis-
tribution 𝒟, a secret r ∈ Zn1−n0

q following the same distribution 𝒟,
and two errors distribution χ0 and χ1, we define the LWE with shared
randomness secret samples – and we note sh-LWEn0,χ0,n1,χ1 – the pairs(
(a0, b0 =

〈
a0, s

(0)
〉
+ e0), (a1, b1 =

〈
a1, s

(1)
〉
+ e1)

)
∈ Zn0+1

q × Zn1+1
q , where

s(1) = s(0)||r, a0 ←↩ 𝒰 (Zq)
n0, a1 ←↩ 𝒰 (Zq)

n1, e0 ←↩ χ0 and e1 ←↩ χ1.
The decision sh-LWEn0,χ0,n1,χ1 problem consist of distinguishing m independent

samples from 𝒰
(
Zn0+1

q × Zn1+1
q

)
from m independent samples ((a0, b0), (a1, b1)) ∈

LWEn0,χ0 ×LWEn1,χ1 ⊆ Zn0+1
q × Zn1+1

q as defined above.

Theorem 6 (Hardness of sh-LWE) If we have three random distributions χ0, χ1

and χ′ such that, if we sample e1 ←↩ χ1 and e′ ←↩ χ′, e1 + e′ follows the distribution
χ0. Then sh-LWEn0,χ0,n1,χ1 with m samples is at least as hard than LWEn0,χ1 with
2m samples.
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Remark 7 (Error Distribution χ) In GLWE-based FHE schemes, χ usually fol-
lows a discrete normal distribution. The condition for Theorem 6 is then always
verified. In the following, the goal is to use a noise variance σ0 for χ0 and a noise
variance σ1 for χ1 such that n0 < n1 and σ0 > σ1.

Proof 4 (Theorem 6) We define an instance of LWEn0,χ1 where the samples are
encrypted under a secret key s(0) ∈ Zn0

q which follows a given distribution 𝒟, and
where for the given distribution χ1 it exists a distribution χ′ such that, for any
e1 ←↩ χ1 and for any e′ ←↩ χ′, we have that e1 + e′ follows a distribution χ0.

We now prove that solving the problem sh-LWEn0,χ0,n1,χ1 is at least as hard than
solving the problem LWEn0,χ1. To do so, we consider an oracle that can solve the de-
cision sh-LWEn0,χ0,n1,χ1 problem and show that a such oracle can solve the decisional
LWEn0,χ1 instance.

Observe that, starting from an LWEn0,χ1 sample, we can easily create either an
LWEn0,χ0 sample or an LWEn1,χ1 sample. To create an LWEn0,χ0 sample (a0, b0 =〈
a0, s

(0)
〉
+ e0) ∈ Zn0+1

q , with e0 coming from a distribution χ0, from an LWEn0,χ1

sample (a1, b1 =
〈
a1, s

(0)
〉
+ e1) ∈ Zn0+1

q , with e1 coming from a distribution χ1, we
only need to take a0 = a1 and modify the noise. Following the condition above, it is
sufficient to sample e′ ←↩ χ′ and then take b0 = b1 + e′, which makes the new noise
in b0 equal to e1 + e′, which follows the distribution χ0 as we wanted.

To create an LWEn1,χ1 sample (a1, b1 =
〈
a1, s

(1)
〉
+e1) ∈ Zn1+1

q from a LWEn0,χ1

sample (a0, b0 =
〈
a0, s

(0)
〉
+ e1) ∈ Zn0+1

q , we start by generating an random key

r ∈ Zn1−n0
q , which follows the same distribution 𝒟 than s(0), as well as a new vector

a′ ∈ 𝒰
(
Zn1−n0

q

)
. Then, we take a1 = a0||a′ and b1 = b0 + ⟨a′, r′⟩, which give us an

LWEn1,χ1 sample as expected.
Following what just described, we observe that given 2m LWEn0,χ1 samples, we

can generate m LWEn0,χ0 samples and m LWEn1,χ1 samples. Now we can provide
all the valid samples of LWEn0,χ0 ×LWEn1,χ1 to the oracle. Otherwise, when the
decisional LWEn0,χ1 problem send uniform samples in Zn0

q , the two transformations
proposed before also return uniform samples in Zn0

q or in Zn1
q . As the oracle can solve

the decision sh-LWEn0,χ0,n1,χ1 problem, we can solve the decision LWEn0,χ1 problem.
□

Remark 8 (Security With More Than Two Shared Keys.) The Proof 4,
can easily be adapted to more than only two shared keys.

Operations Under Shared Randomness Any known homomorphic operation
(that we know) that makes two or more ciphertexts interact (encrypted under the
same key or different keys) will have as a result a ciphertext with a level of security
at least as high as the input with the lowest security level. In light of the common
existing attacks, the level of security of a set of GLWE samples encrypted under
shared randomness secret keys is then lower bounded by the level of security of the
GLWE having the smallest level of security.

As for the partial secret keys, this new type of keys may lead to new unknown
attacks and the level of security could be impacted. But at the current state of the

20 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila, A. Roux-Langlois & S. Tap



Faster Secret Keys for (T)FHE

art, no attacks seem to have an impact on shared randomness secret key. On the
other hand, if one of the key sets is compromised, the other key sets will be impacted
consequently.

4.2 Advantages of Shared Randomness Secret Keys

Using shared randomness secret keys enables to speed up homomorphic computa-
tions and reduce the amount of noise added by these operations. It is particularly
useful for LWE-to-LWE key switch procedures.

4.2.1 Cost & Noise Advantage with LWE-to-LWE Key Switch

Shared randomness secret keys enable to key switch more efficiently and add less
noise during the procedure. Figure 2 illustrates key switching processes between
three LWE shared randomness secret keys. A key switch from a key to a bigger key
is represented with dotted arrows and is called Enlarging Key Switch. A key switch
from a key to a smaller key is represented with solid arrows and is called Shrinking
Key Switch.

Enlarging Key Switch. When we consider a ciphertext ctin =
(a0, · · · , an1−1, b) ∈ LWEs(1) (m) ⊆ Zn1+1

q under the secret key s(1) ∈ Zn1
q and

we want to key switch it to the secret key s(2) ∈ Zn2
q , where s(1) ≺ s(2), the

algorithm translates into simply adding zeros at the end of the ciphertext:

ctout := (a0, · · · , an1−1, 0, · · · , 0, b) ∈ LWEs(2) (m) ⊆ Zn2+1
q

Algorithm 8, reported in Supplementary Material C, describes this procedure in
detail. In this paper we only use this algorithm with LWE ciphertexts, but it can
trivially be extended to GLWE ciphertexts as well.

To sum up, with shared randomness secret keys, the enlarging key switchings
are basically free and they do not require the use of a public key. They also add no
noise, instead of adding a linear combination of freshly encrypted ciphertexts under
s(2).

Theorem 7 (Cost & Noise of Enlarging Key Switching) When working
with shared randomness secret keys, the cost of an enlarging key switching (Algo-
rithm 8) is reduced to zero, and the noise in output is the same as the one in input
(no noise is added).

The proof of this theorem is trivial.

Shrinking Key Switch. When we consider a ciphertext ctin =
(a0, · · · , an2−1, b) ∈ Zn2+1

q under the secret key s(2) ∈ Zn2
q and we want to

key switch it to the secret key s(1) ∈ Zn1
q , where s(1) ≺ s(2) and s(2) = s(1)||r(2), the

algorithm is simplified because of the shared randomness:
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1. the parts (a0, · · · , an1−1) and b do not need to be processed but simply reor-
ganized into a temporary ciphertext: ct = (a0, · · · , an1−1, b) ∈ Zn1+1

q ,

2. the part (an1 , · · · , an2−1) has to be key switched, which can be viewed somehow
as a traditional key switching algorithm: i.e., key switching the ciphertext
(an1 , · · · , an2−1, 0) ∈ Zn2−n1+1

q with a key switching key going from the secret

key r(2) to s(1), and at the end, add it to ct and return the result.

Algorithm 9, reported in Supplementary Material C, describes this procedure in
detail. In this paper we only use this algorithm with LWE ciphertexts, but it can
be also trivially extended to GLWE ciphertexts.

To sum up, with shared randomness secret keys, the shrinking key switching
requires smaller key switching keys: indeed their size is proportional to n2 − n1

instead of n2. As a consequence, the computation is faster, equivalent to key switch
a ciphertext of size n2 − n1 + 1 instead of n2 + 1. Finally, the noise in output is
also smaller because the algorithm involves a smaller linear combination of freshly
encrypted ciphertexts under s(1).

Theorem 8 (Cost & Noise of Shrinking Key Switching) We consider two
shared randomness secret keys s(0) ≺ s(1) with s(0) ∈ Zn0

q , s(1) ∈ Zn1
q and

1 < n0 < n1. Let β ∈ N∗ and ℓ ∈ N∗ be the decomposition base and level used in key
switching. The cost of shrinking key switching (Algorithm 9) is ℓ (n1 − n0) (n0 + 1)
integer multiplications and (ℓ (n1 − n0)− 1) (n0 + 1) integer additions.

The added noise during such a shrinking key switching is:

Var(ShrinkingKeySwitch) = (n1 − n0)

(
q2 − β2ℓ

12β2ℓ

)(
Var (sin) + E2 (sin)

)
+

(n1 − n0)

4
Var (sin) + ℓ · (n1 − n0) ·

β2 + 2

12
σ2
KSK

The details of this proof can be found in Supplementary Material 12.

4.2.2 Stair Key Switch

In Section 4.2.1, we saw that when one uses different secret keys within an FHE use
case, it is convenient to have shared randomness secret keys. However, this concept
can be used locally inside a key switch procedure to explore a cost/noise trade-off.

For simplicity, let’s consider an FHE use case where there are only two LWE
secret keys, and only a key switch from the big one to the small one. We start by
setting the two secret keys as shared randomness. The idea here is to add one or
many shared randomness secret keys, only during the key switch procedure.

For example, let’s assume a fixed decomposition base β, a fixed number of levels
ℓ and let s(2) be our big secret key and s(0) be our small (as defined in Section 4.2.1).
To key switch from s(2) to s(0), we will this time add one intermediate shared ran-
domness secret key s(1) and compute first a key switch from s(2) to s(1) and then a
key switch from s(1) to s(0). This algorithm will be more costly, because its first part

22 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila, A. Roux-Langlois & S. Tap



Faster Secret Keys for (T)FHE

will be a linear combination of (n2 − n1) ciphertexts of size n1 + 1, and its second
part a linear combination of (n1 − n0) ciphertexts of smaller size n0 + 1, instead of
having a single linear combination of n2− n0 ciphertexts of size n0 + 1: so the total
number of ciphertexts in the linear combination and in the key switching key has
not changed (n2 − n1 + n1 − n0 = n2 − n0 as in the key switching from s(2) to s(0)),
but the linear combinations are slightly more costly and the ciphertexts composing
the key switching keys slightly larger. On the other hand, this algorithm adds less
noise: indeed its first part has ciphertexts with less noise inside because they are
encrypted under a bigger secret key.

Here is the trade-off we want to study. The extreme is to go from s(nb) to s(0)

by key switching one element of the key in each key switching, meaning that we
will have a total number of nb = nnb − n0 shrinking key switching (Algorithm 9)
to perform. So nb corresponds to the steps in the stair. This means considering
a total number of shared keys equal to nb + 1, including secret keys s(nb) and s(0)

which are at the extremes of the stair. We call the added keys between s(nb) and
s(0) intermediate secret keys, so we have a total of nb− 1 intermediate secret keys.
In practice, this means that we start with coefficient annb−1 and key switch it to the
secret key with nnb − 1 elements, add it to the rest, and do the same with the next
last element, and so on until we reach the desired secret key, one coefficient at a
time. The other extreme is when we key switch directly from s(1) and s(0) without
intermediary key switchings, so nb = 1.

Algorithm 2 gives details about this procedure. It is important to point out that
there are now nb couples of decomposition parameters (βα, ℓα) for 0 ≤ α ≤ nb− 1,
one for each step of the stairs. Note that we could also allow to have more than one
such couple per step as well.

Theorem 9 (Cost & Noise of Stair Shrinking Key Switching) We consider
the stair key switch as detailed in Algorithm 2. The cost of such a stair
shrinking key switch is

∑nb−1
α=0 ℓα (nα+1 − nα) (nα + 1) integer multiplications and∑nb−1

α=0 (ℓα (nα+1 − nα)− 1) (nα + 1) integer additions.
The added noise during stair shrinking key switching is:

Var(StairShrinkKS) =
nb−1∑
α=0

(nα+1 − nα)

(
q2 − β2ℓα

α

12β2ℓα
α

)(
Var
(
s(α+1)

)
+ E2

(
s(α+1)

))
+

(nα+1 − nα)

4
Var
(
s(α+1)

)
+ ℓα · (nα+1 − nα) ·

β2
α + 2

12
σ2
KSKα

Proof 5 (Theorem 9) The cost and noise of the stair shirnking key switching can
be trivially deduced from the Theorem 8. Indeed, at step α of the loop in Algo-
rithm 2, the cost of the shrinking key switching is ℓα (nα+1 − nα) (nα + 1) integer
multiplications and (ℓα (nα+1 − nα)− 1) (nα + 1) integer additions.
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Algorithm 2: ctout ← StairKeySwitch
(
ctin, {KSKα}0≤α≤nb−1

)

Context:



nb ∈ N : the number of steps in the algorithm

n0 < n1 < · · · < nnb

s(nb) ∈ Znnb
q : the input secret key

s(0) ∈ Zn0
q : the output secret key

s(α) ∈ Znα
q ,∀1 ≤ α ≤ nb− 1 : intermediate secret keys

s(0) ≺ s(1) ≺ · · · ≺ s(nb) : shared randomness secret keys (Definition 9)

Input:


ctin ∈ LWEs(nb) (p) ⊆ Znnb+1

q , with p ∈ Zq

{KSKα}0≤α≤nb−1 : intermediate key switching key as in Algorithm 9

where KSKα switches from s(α+1) to s(α)

Output: ctout ∈ LWEs(0) (p) ⊆ Zn0+1
q

/* Set the counter to go from nb− 1 to 0 */

1 Set α := nb− 1

/* Set the initial ciphertext */

2 Set ct := ctin

3 while α >= 0 do

/* Call to Algorithm 9 */

4 Update ct← ShrinkingKeySwitch(ct,KSKα) ∈ LWEs(α) (p) ⊆ Znα+1
q

5 α := α− 1

6 return ctout := ct

The variance of the noise added at the step α is:

Var(ShrinkKSα) = (nα+1 − nα)

(
q2 − β2ℓα

α

12β2ℓα
α

)(
Var
(
s(α+1)

)
+ E2

(
s(α+1)

))
+

(nα+1 − nα)

4
Var
(
s(α+1)

)
+ ℓα · (nα+1 − nα) ·

β2
α + 2

12
σ2
KSKα

To obtain the total cost of the algorithm and the total variance of the noise added,
it is sufficient to iterate from α = 0, . . . , nb− 1.

□

Remark 9 (Stairs in the Blind Rotation.) A similar process could be intro-
duced in the blind rotation algorithm. The idea would be, during the blind rotation,
to progressively use GLWE partial secret keys (Definition 6) with a smaller filling
amount ϕ which will reduce the output noise of the blind rotate. As with the stair
shrinking key switch, we could use different bases and levels for the external products
offering potentially some overall speed-up.

Practical Improvement. The use of shared secret keys brings a practical non-
negligible improvement to homomorphic computations, has it happened with partial
secret keys. Figure 3, presents a comparison between our techniques and the state
of the art [CJP21]. More details on the experiments are reported in Section 6.2.
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Figure 3: Comparison in terms of estimated computation, between traditional CJP,
our baseline, and two variants of CJP based on shared randomness secret keys. De-
tails can be found in Section 6.2 and exact plotted values can be found in Tables 2, 3
and 4.

5 Combining Both Techniques & Their Applica-

tions

In this section, we start by providing details on FHE algorithms that benefit from
having secret keys that are both partial and shared randomness. Later we describe
some nice applications coming from using such types of secret keys.

5.1 Combining Both Techniques

Shared randomness partial GLWE secret keys are a list of partial GLWE secret keys
(Section 3) with some public knowledge about shared coefficients (in the exact same
way as in Section 4). This type of keys is a combination of shared randomness secret
keys and partial secret keys, offering the advantages from both sides.

It is possible to design a faster shrinking key switch (Algorithm 1) which uses
partial secret keys (Definition 6). This means that for this faster algorithm, we use
both partial secret keys and shared randomness secret keys. Details about this new
procedure is given in Algorithm 3.
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Algorithm 3: ctout ← FftShrinkingKeySwitch(ctin,KSK)

Context:



nout < nin, nin − nout ≤ kKSK,in ·NKSK and nout ≤ kKSK,out ·NKSK

sout ≺ sin : shared randomness secret keys (Definition 9)

sout ∈ Znout
q : the output LWE secret key

s = (snout , · · · , snin−1) ∈ Znin−nout
q

sin = sout||s ∈ Znin
q : the input LWE secret key

Input:

{
ctin = (a0, · · · , anin−1, b) ∈ LWEsin (p) ⊆ Znin+1

q , where p ∈ Zq

KSK : the key switching key suited for Algorithm 1

Output: ctout ∈ LWEsout (p)

/* Split the input LWE ciphertext into two parts: one related to sout, and

the rest */

1 Set ct0 := (a0, · · · , anout−1, b) ∈ Znout+1
q

2 Set ct1 := (anout , · · · , anin−1, 0) ∈ Znin−nout+1
q

/* Call Algorithm 1 */

3 Set ct′1 ← FftLweKeySwitch (ct1,KSK) ∈ Znout+1
q

4 return ctout = ct0 + ct′1

Theorem 10 (Noise & Cost of the FFT-Based Shrinking Key Switch)
We consider the FFT-based LWE shrinking key switching as detailed in Algorithm 3.
The cost of such a key switching can be expressed expressed with the cost of a GLWE-
to-GLWE key switch (Remark 5) since we neglect the cost of a sample extraction
and its inverse. The cost is then 𝒞 (FftShrinkingKeySwitch) = 𝒞 (GlweKeySwitch).
Note that the kin is smaller thanks to the shared randomness feature of the secret
keys, which leads to a faster procedure.

The added noise can be expressed from the noise formula of the GLWE-
to-GLWE key switch (Theorem 2). To sum up, the noise added is
Var (FftShrinkingKeySwitch) = FftErrorkmax,N,β,ℓ + Var (GlweKeySwitch) with ϕin =
nout − nin and kmax = max (kin, kout).

Proof 6 (Theorem 10) The estimation of the variance of the error is immediate.
For the FFT error, we refer to Remark 2 and Proof 3.

Theorem 11 (Noise of GLWE Key Switching With Partial & Shared Randomness
Keys) After performing a key switching (Algorithm 11) from CTin ∈ Rkin+1

q,N under the

secret key S
[ϕin]
in ∈ Rkin

q,N , to CTout ∈ Rkout+1
q,N under the secret key S

[ϕout]
out ∈ Rkout

q,N , where

the key are shared and partial, i.e., S
[ϕout]
out ≺ S

[ϕin]
in , each coefficient of the output has

some added noise variance that can be estimated from the following variance:

Var(GlweKeySwitch′) = (ϕin − ϕout)

(
q2 − β2ℓ

12β2ℓ

)(
Var
(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))
+
ϕin − ϕout

4
Var
(
S

[ϕin]
in

)
+ ℓ(kin − kout)Nσ2

ksk

β2 + 2

12

The proof of this theorem can be found in Supplementary Material 13.
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Figure 4: Comparison in terms of estimated computation, between traditional CJP,
our baseline, and two variants of CJP based on both partial secret keys and shared
randomness secret keys. Details can be found in Section 6.3 and exact plotted values
can be found in Tables 2, 3 and 4.

5.2 Some Higher Level Applications

Through Sections 3.2, 4.2 and 5.1, we detailed the many advantages of using partial
and/or shared randomness secret keys in FHE algorithms. Now we start giving
higher level advantages.

Key Switching Key Compression. When one is deploying an FHE instance, if
they use for all their secret keys the shared randomness property, it is then possible
to reduce the amount of public material for key switching keys. Indeed, they only
need to generate all the shrinking key switching keys (Algorithm 9), from the biggest
key to the smallest. All of these shrinking key switching keys are way smaller than
the sum of all the traditional key switching keys that would be needed. Note that
it is possible to provide more levels in some of the key switching keys, and only use
the one that are needed at a moment for a given noise constraint.

Bootstrapping Key Compression. In the same manner, with shared random-
ness secret keys, it is possible to reduce the amount of public material for boot-
strapping keys. When the polynomial size N is shared, since a bootstrapping key
is a list of GGSW ciphertexts, each one encrypting a secret key coefficient of the
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Figure 5: Comparison in terms of size of public material, between traditional CJP,
our baseline, and two variants of CJP based on both partial secret keys and shared
randomness secret keys. Details can be found in Section 6.3 and exact plotted values
can be found in Tables 2, 3 and 4.

input LWE secret key, it is possible to only provide all the GGSW ciphertexts for
the longer LWE secret key of the instance. Then, when it is needed to bootstrap
an LWE ciphertext with a smaller dimension, one will only use the first part of the
bootstrapping key. In the same manner, additional levels can be added, and only
used when needed.

Easier Parameter Set Conversion. In [BBB+22], the authors consider use-
cases where there are a couple of parameter sets coexisting, and it is necessary to
move from one parameter set to the other. Using shared (and partial) secret keys will
help converting in a faster manner ciphertexts between the two (or more) parameter
sets and will add less noise during the process. Without the shared randomness
property, this would require lots of key switching keys and some more computation.

Multikey Compatibility. Both the partial and shared randomness properties
are preserved by the MK-FHE approaches (such as [KKL+22, KMS22]) and by
threshold-FHE approaches. Indeed, summing two partial secret keys results in an-
other partial secret key, and summing two pairs of shared randomness secret keys
together results in a new pair of shared randomness secret keys. Those new secret
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keys could improve performance of MK-FHE and threshold-FHE, which are in gen-
eral less efficient that the ones of (single key) FHE, as well as reducing the size of
the public material.

Other FHE Schemes. Partial and shared randomness secret keys could be used
in other FHE schemes such as FHEW [DM15] or NTRU-based schemes (such
as [BIP+22]). This types of keys could also be used in either BFV [Bra12, FV12] or
CKKS [CKKS17] if it is needed to have bigger polynomials while keeping the same
modulo q, for instance.

Combined With Fixed-Hamming Weight. Both partial and shared random-
ness secret keys could be instantiated with a fixed Hamming weight if needed.

LWE Encryption Public Key With GLWE Material. If one wants to take
advantage of the FFT to encrypt fresh LWE ciphertexts with a secret key s ∈ Zn

q ,
and/or shrink the size of ciphertexts, with partial GLWE secret key, it is possible to
provide a GLWE encryption public key for a partial GLWE secret key S[ϕ=n] ∈ Rk

q,N

such that its flatten version is actually s. In this case, one could encrypt with a
GLWE encryption procedure and sample extract right after to obtain the desired
LWE encryption.
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6 Parameters & Benchmarks

In this section, we describe how we generated FHE parameters for all our exper-
iments. We use the procedure introduced in [BBB+22] to compare the different
approaches. To demonstrate the impact of partial and/or shared randomness se-
cret keys, we will use the Atomic Pattern (AP) called CJP in [BBB+22] (the name
coming from the paper [CJP21]).

Below, we explain how we optimized parameters for the different experiments
and we show the different improvement (both in computational time and size of
public material) brought by each of the new procedures introduced in this paper.

In real life applications, there are additions and multiplications by integers (i.e.
a dot product) between two consecutive bootstrappings. Formally, given a list of
ciphertexts {cti}i∈[[1,α]] ∈ (LWEsin)

α (with independent noise values) and a list of

integers {ωi}i∈[[1,α]] ∈ Zα, we can compute
∑α

i=1 ωi · cti. In that case we have ν2 =∑α
i=1 ω

2
i . This value ν is used to fully describe the noise growth during a dot product

and follows the formalization of [BBB+22]. In this paper, we will set ν = 2p with p
the precision of the message.

For every experiments below, we set probability of failure pfail ≤ 2−13.9. Note
that with the FHE parameter generation process used in this paper, is is possible
to set it to any other probability.

6.1 Partial GLWE Secret Key

We conducted three experiments with partial GLWE secret keys (Definition 6), and
we plotted the results predicted with an optimizer in Figure 1. On the X axis,
there is precision p and on the Y axis there is the 2-log of the estimated cost by the
optimizer.

Our baseline is CJP, the blue dashed curve with the • symbol.
The first experiment is the CJP atomic pattern where we allow the GLWE secret

key to be partial, i.e. it has a filling amount ϕ. On the figure, it is the red solid
curve with the + symbol. During optimization, we set ϕ to the minimum between
k · N and the value nplateau explained in limitation 2. As expected, we can see an
improvement mostly with larger precisions, starting at p = 6 where the plateau is
actually reached.

The second experiment is the CJP atomic pattern where the traditional LWE-to-
LWE key switch is replaced with the FFT-base LWE key switch that we introduced
in this paper in Algorithm 1. On the figure, it is the greed dotted curve with the
▼ symbol. During the optimization, we had to introduce new FHE parameters
for this particular key switch: an input GLWE dimension kin, an output GLWE
dimension kout and a polynomial size NKS. We can see a non-negligible improvement
for all precisions when using this key switch, but it is more visible with the smaller
precision, between 1 and 6.

The third and last experiment is the combination of the two first ones: we allow
the GLWE secret key to be partial (when the plateau is reached) and we use the
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FFT-base LWE key switch (Algorithm 1). On the figure, it is the brown dashed
curve with the ■ symbol. As expected the curve is below the two others because it
is indeed exploiting the best of the two improvements. We can see a non-negligible
improvement for all precisions.

Note that there is no way to build an LWE-to-LWE key switch based on the
FFT without partial secret keys, so we cannot compare with this here.

Figure 6: Comparison in terms of time of computation, between traditional CJP,
our baseline, and two variants of CJP based on both partial secret keys and shared
randomness secret keys. Details can be found in Section 6.3 and exact plotted values
can be found in Tables 2, 3 and 4.

6.2 Shared Randomness Secret Keys

We conducted two experiments with shared randomness secret keys (Definition 9),
and we plotted the results predicted with an optimizer in Figure 3. This figure
follows the same logic as the previous one. Our baseline is still CJP, the blue
dashed curve with the • symbol.

The first experiment is the CJP atomic pattern where we allow the secret keys
to share their randomness, so we can use the shrinking LWE key switch detailed in
Algorithm 9. On the figure, it is the red solid curve with the + symbol. We can see
a non-negligible improvement with smaller precisions, until p = 6.

The second and last experiment is the CJP atomic pattern where we allow the
secret keys to share their randomness, so we can use the 2-step stair LWE key
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switch detailed in Algorithm 2. On the figure, it is the green dotted curve with the
▼ symbol. We can see a non-negligible improvement at all precisions when we use
such a key switch.

Note that if one tries to trivially have a 2-step stair key switch without any
shared randomness, the computational cost is basically the same as in CJP.

6.3 Combining Both

Figure 7: Comparison in terms of time of computation, between traditional CJP,
our baseline, and two variants of CJP based on both partial secret keys and shared
randomness secret keys. Details can be found in Section 6.3 and exact plotted values
can be found in Tables 2, 3 and 4.

We conducted two experiments with both partial (Definition 6) and shared ran-
domness secret keys (Definition 9). First we plotted the predicted computational
cost in Figure 4 obtained with an optimizer. This figure follows the same logic as
the previous ones. Our baseline is again CJP, the blue dashed curve with the •
symbol.

The first experiment is the CJP atomic pattern where we allow the secret keys
to be partial and share their randomness. We use the 2-step stair LWE key switch
detailed in Algorithm 2 and we allow the GLWE secret key to be partial (when the
plateau is reached). On the figure, it is the red solid curve with the + symbol. We
can see a non-negligible improvement at all precisions with such a strategy.
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The second and last experiment is also the CJP atomic pattern where we allow
the secret keys to be partial and share their randomness. We allow the GLWE
secret key to be partial (when the plateau is reached), we use the FFT-base LWE
key switch (Algorithm 3) since our secret keys also share randomness. On the
figure, it is the green dotted curve with the ▼ symbol. We can see a similar
improvement at all precisions with such a strategy.

For those experiments, we also plotted the size of the public material needed in
Figure 5 to demonstrate their benefit in this matter. The legends corresponding
to the experiments are the same as the ones described above for Figure 4. Both
the stair key switch curve and the FFT shrinking key switch curve are below our
baseline. They actually follow pretty much the curves of the predictions plotted in
Figure 4.

For those experiments, we finally plotted the timings we obtained with our bench-
marks in Figures 6 and 7 to validate our predictions. The legends corresponding to
the experiments are the same as described above for Figure 4, except for the Y axis,
which is not logarithmic anymore, so one can easily read the timings. Both the stair
key switch curve and the FFT shrinking key switch curve are below our baseline as
predicted, and we even have better results with the FFT shrinking key switch than
expected. Note that at precision p = 3 we have a 2.4 speed-up comparing to the
baseline (Figure 6).

All the experiments have been done on AWS with a m6i.metal instance Intel
Xeon 8375C (Ice Lake) at 3.5 GHz, with 128 vCPUs and 512.0 GiB of memory
using the TFHE-rs library2.

In Supplementary Material D.2, in Tables 2, 3 and 4 we provide all the parameter
sets used to estimate the cost in Figure 4, their benchmarks and their size of public
materials.

2https://github.com/zama-ai/tfhe-rs
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7 Conclusion

To sum up, the traditional way of generating GLWE secret keys leads to unnecessary
computation, larger noise growth and bigger public material. In this paper we
introduced two (as secure) new ways to generate GLWE secret keys: partial and/or
shared randomness. The benefits are indeed non negligible as demonstrated in
practical experiments covering a wide range of message precisions. In this paper, we
also described several applications exploiting such secret keys.

As future work, it will be interesting to investigate how to optimize the (shrink-
ing) stair key switch in terms of number of steps, their size and decomposition
parameters.
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Supplementary Material

A Proofs

In this section we provide some useful proofs.

Proof 7 (Correctness for Constant Sample Extraction) As in algorithm 6, we

consider a GLWE ciphertext CTin := (A0, · · · , Ak−1, B) ∈ GLWES[ϕ] (P ) ⊆ Rk+1
q,N where P =∑N−1

i=0 piX
i ∈ Rq,N and for all 0 ≤ i ≤ k − 1 we have Ai =

∑N−1
j=0 ai,jX

j and B =
∑N−1

j=0 bjX
j.

The GLWE secret key is noted S[ϕ] = (S0, · · · , Sk−1) ∈ Rk
q,N and follows Definition 6. By definition

of GLWE ciphertexts, it means that it exists an error polynomial E =
∑N−1

i=0 eiX
i ∈ Rq,N such

that B −
∑k−1

i=0 Ai · Si = P + E.
Following Algorithm 6, the constant sample extraction outputs the following LWE ciphertext:

ctout = (aout,0, · · · , aout,ϕ−1, bout) ∈ LWEs̄ (p0) ⊆ Zϕ+1
q encrypted under the LWE secret key s̄ =

(s̄0, · · · , s̄ϕ−1) ∈ Zϕ
q obtained as defined in Definition 7.

First we define two index functions, the first one is ι : i 7→
(⌊

i
N

⌋
, i mod N

)
and the second

one is ι̃ : i 7→
(⌊

i
N

⌋
, (N − i) mod N

)
. We also need to define a last function γ : i 7→ 1 −

((i mod N) == 0)

bout −
ϕ−1∑
i=0

aout,i · s̄i = b0 −
ϕ−1∑
i=0

aout,i · s̄i −
kN−1∑
i=ϕ

(−1)γ(i) · aι̃(i) · sι(i)︸ ︷︷ ︸
null since all sι(i)=0 because it is a partial key)

= b0 −
ϕ−1∑
i=0

(−1)γ(i) · aι̃(i) · sι(i)︸ ︷︷ ︸
lines 2 and 3 in Algorithm 6

−
kN−1∑
i=ϕ

(−1)γ(i) · aι̃(i) · sι(i)

= b0 −
kN−1∑
i=0

(−1)γ(i) · aι̃(i) · sι(i) = b0 −
k−1∑
i=0

N−1∑
j=0

ai,N−j · si,j

= b0 −
k−1∑
i=0

N−1∑
j=0

ai,(N−j) mod NX(N−j) mod N · si,jXj

(6)

This quantity is what we have on the constant term of the polynomial resulting from the de-
cryption of CTin:

B −
k−1∑
i=0

Ai · Si = B −
k−1∑
i=0

N−1∑
j=0

N−1∑
j′=0

ai,jX
j · si,j′Xj′

= X0 ·

b0 −
k−1∑
i=0

N−1∑
j=0

ai,(N−j) mod NX(N−j) mod N · si,jXj


︸ ︷︷ ︸

constant coefficient with the same quantity

+X1 · (b1 − . . .) + · · · +XN−1 · (bN−1 − . . .)︸ ︷︷ ︸
non-constant coefficients

(7)

□
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Proof 8 (Correctness for Sample Extraction) We follow the context and in-
puts of Algorithm 7. It is trivial to show that the α-th coefficient of the decryption
of CTin is equal to what is in the constant coefficient of X−α · CTin.

□

Proof 9 (Theorem 2) The inputs of a GLWE-to-GLWE key switching (Algo-
rithm 4) are:

• The input GLWE ciphertext: CTin = (Ain, Bin) ∈ GLWE
S

[ϕin]

in

(∆ ·M) ⊆
Rkin+1

q,N , where Bin =
∑kin−1

i=0 Ain,i · Sin,i +∆ ·M +Ein, Ain,i =
∑N−1

j=0 ai,j ·Xj ←↩
𝒰 (Rq,N) for all i ∈ J0, kJ and Ein =

∑N−1
j=0 ej · Xj, and ej ←↩ 𝒩σ2

in
for all

j ∈ J0, N − 1J.

• The key switch key: KSK = (KSK0, . . . ,KSKkin−1), where KSKi ∈
GLEV

(β,ℓ)

S
[ϕout]
out

(Sin,i) =
(
GLWE

S
[ϕout]
out

(
q
β
Sin,i

)
, · · · ,GLWE

S
[ϕout]
out

(
q
βℓSin,i

))
for all

0 ≤ i < kin. We note by KSKi,j = (Ai,j , Bi,j) ∈ GLWE
S

[ϕout]
out

(
q

βj+1Sin,i

)
, for

all 0 ≤ i < kin and for all 0 ≤ j < ℓ, where Bi,j =
∑kout−1

τ=0 Ai,j,τ · S[ϕout]
out,τ +

q
βj+1Sin,i + Eksk,i,j, and Eksk,i,j =

∑N−1
τ=0 eksk,i,j,τ ·Xτ and eksk,i,j,τ ←↩ 𝒩σ2

ksk
.

The output of this algorithm is: CTout = (Aout, Bout) ∈ GLWE
S

[ϕout]
out

(∆ ·M) ⊆
Rkout+1

q,N . By definition, in the decomposition described in Supplementary Mate-

rial B, we have that Dec(β,ℓ) (Ain,i) =
(
Ãin,i,0, · · · , Ãin,i,ℓ−1

)
such that Ãin,i =∑ℓ−1

j=0
q

βj+1 Ãin,i,j, for all 0 ≤ i < kin.

Let define Āin,i = Ain,i − Ãin,i, |āi,τ | = |ai,τ − ãi,τ | < q
2βℓ , āi,τ ∈

r
−q
2βℓ ,

q
2βℓ

r
for

all 0 ≤ τ < N . So we have that their expectations and variances are respectively
E (āi,τ ) = −1

2
, Var (āi,τ ) =

q2

12β2ℓ − 1
12
, E (ãi,τ ) = −1

2
and Var (ãi,τ ) =

β2−1
12

.

Now, we can decrypt:

Bout −
〈
Aout,S

[ϕout]
out

〉
=
〈
(Aout, Bout) ,

(
−S[ϕout]

out , 1
)〉

=

〈
(0, Bin)−

kin−1∑
i=0

Dec(β,ℓ) (Ain,i) · KSKi,
(
−S[ϕout]

out , 1
)〉

=Bin −
kin−1∑
i=0

ℓ−1∑
j=0

Ãin,i,j

〈
KSKi,j ,

(
−S[ϕout]

out , 1
)〉

=Bin −
kin−1∑
i=0

ℓ−1∑
j=0

Ãin,i,j

(
q

βj+1
Sin,i + Eksk,i,j

)

=Bin −
kin−1∑
i=0

Ãin,iSin,i︸ ︷︷ ︸
(I)

−
kin−1∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Eksk,i,j︸ ︷︷ ︸
(II)
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Now let’s focus on the wth coefficient of part (I):

bin,w −
kin−1∑
i=0

(
w∑

τ=0

ãin,i,w−τ · sin,i,τ −
N−1∑

τ=w+1

ãin,i,N+w−τ · sin,i,τ

)

= bin,w −
kin−1∑
i=0

(
w∑

τ=0

(ain,i,w−τ − āin,i,w−τ ) · sin,i,τ −
N−1∑

τ=w+1

(ain,i,N+w−τ − āin,i,N+w−τ ) · sin,i,τ

)

= ∆mw + ew +

kin−1∑
i=0

(
w∑

τ=0

āin,i,w−τ · sin,i,τ −
N−1∑

τ=w+1

āin,i,N+w−τ · sin,i,τ

)

Now let’s focus on the wth coefficient of part (II):

kin−1∑
i=0

ℓ−1∑
j=0

(
w∑

τ=0

ãin,i,j,w−τ · eksk,i,j,τ −
N−1∑

τ=w+1

ãin,i,j,N+w−τ · eksk,i,j,τ

)

We can now isolate the output error for the wth coefficient and remove the message
coefficient. We obtain that the output error is:

e′w = ew +

kin−1∑
i=0

(
w∑

τ=0

āin,i,w−τ · sin,i,τ −
N−1∑

τ=w+1

āin,i,N+w−τ · sin,i,τ

)
︸ ︷︷ ︸

(∗)

+

kin−1∑
i=0

ℓ−1∑
j=0

(
w∑

τ=0

ãin,i,j,w−τ · eksk,i,j,τ −
N−1∑

τ=w+1

ãin,i,j,N+w−τ · eksk,i,j,τ

)

Observe that in the term (∗) there are kinN − ϕin terms of type āin,i,· · sin,i,· that
are equal to 0. So we have:

Var(e′w) = Var(ew) + ϕin · Var (āin,i,· · sin,i,·) + kin · ℓ ·N · Var (ãin,i,j,· · eksk,i,j,·)
= σ2

in + ϕin

(
Var (āin,i,·)Var (sin,i,·) + Var (āin,i,·)E2 (sin,i,·) + E2(āin,i,·)Var (sin,i,·)

)
+ ℓkinN

(
Var (ãin,i,j,·)Var (eksk,i,j,·) + E2 (ãin,i,j,·)Var (eksk,i,j,·)

+ Var (ãin,i,j,·)E2 (eksk,i,j,·)
)

= σ2
in + ϕin

(
q2 − β2ℓ

12β2ℓ

)(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))
+

ϕin

4
Var

(
S

[ϕin]
in

)
+ ℓkinN

β2 + 2

12
σ2
ksk.

□

Proof 10 (Theorem 3) This proof is similar to the proof proposed for the key switch with
partial key (proof 9).
The inputs of secret-product GLWE key switch (Algorithm 5) are:

• The input GLWE ciphertext: CTin = (Ain, Bin) ∈ GLWE
S

[ϕin]

in

(∆ ·M1) ⊆ Rkin+1
q,N , where

Bin =
∑kin−1

i=0 Ain,i ·S[ϕin]
in,i +∆ ·M1 +Ein, Ain,i =

∑k−1
j=0 ai,j ·Xj ←↩ 𝒰 (Rq,N ) for all i ∈ J0, kJ

and Ein =
∑k−1

j=0 ej ·Xj, and ej ←↩ 𝒩σ2
in
for all j ∈ J0, N − 1J.
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• The secret product key switch key : KSK = (KSK0, . . . ,KSKkin), where KSKi ∈
GLEV

(β,ℓ)

S
[ϕout]
out

(
−M2S

[ϕin]
in,i

)
=
(
GLWE

S
[ϕout]
out

(
− qM2

β S
[ϕin]
in,i

)
, · · · ,GLWE

S
[ϕout]
out

(
− qM2

βℓ S
[ϕin]
in,i

))
for

all 0 ≤ i ≤ kin ( for this proof, we define Skin = −1). We note by KSKi,j =

(Ai,j , Bi,j) ∈ GLWE
S

[ϕout]
out

(
− qM2

βj+1S
[ϕin]
in,i

)
, for all 0 ≤ i < kin and for all 0 ≤ j < ℓ, where

Bi,j =
∑kout−1

τ=0 Ai,j,τ · S[ϕout]
out,τ + qM2

βj+1S
[ϕin]
in,i + Eksk,i,j, and Eksk,i,j =

∑N−1
τ=0 eksk,i,j,τ · Xτ and

eksk,i,j,m ←↩ 𝒩σ2
ksk
.

In output we obtain: CTout = (Aout, Bout) ∈ GLWE
S

[ϕout]
out

(∆ ·M1 ·M2) ⊆ Rkout+1
q,N .

By definition, for any random polynomial Ai, we have Ai =
∑N−1

j=0 ai,j ·Xj where ai,j ∼ U (Zq),(

ai,j ∈
q−q

2 , q
2

q
).

By definition, for the decomposition (describe in Annex B), we have Dec(β,ℓ) (Ai) =(
Ãi,0, · · · , Ãi,ℓ−1

)
such that Ãi =

∑ℓ−1
j=0

q
βj+1 Ãi,j.

Let define Āi = |Ai − Ãi|, āi,j = |ai,j − ˜ai,j | < q
2βℓ ; āi,j ∈

r
−q
2βℓ ,

q
2βℓ

r
. Finally we obtain:

E(āi) = − 1
2 ; Var(āi) =

q2

12β2ℓ − 1
12 ; E(ãi,j) = −

1
2 ; Var(ãi) =

β2−1
12 .

As Bi is seen as an uniform polynomial, we obtain the same results for the variance and the
expectation for B̃i (resp. B̄i) than Ãi (Resp. Āi). In the next calculations, B̃in,j · Ej will be write

as −Ãin,kin,j · Ekin,j

Now, we can compute the decryption:

Bout −
〈
Aout,S

[ϕout]
out

〉
=
〈
(Aout, Bout) ;

(
−S[ϕout]

out , 1
)〉

=
〈
Dec(β,ℓ) (Bin) · KSKkin +

kin−1∑
i=0

Dec(β,ℓ) (Ain,i) · KSKi;
(
−S[ϕout], 1

)〉
=M2

(
B̃in,i −

kin−1∑
i=0

Ãin,i · Sin,i

)
−

kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j

=M2

(
∆M1 + Ein + B̄in,i −

kin−1∑
i=0

Āin,i · Sin,i

)
−

kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j

=∆M2 ·M1 +M2

(
Ein + B̄in,i −

kin−1∑
i=0

Āin,i · Sin,i

)
−

kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j

By following the same idea as the proof for the key switch (proof 9), we can isolate the noise and
compute his variance. We obtain:

Var

M2

(
E + B̄in,i −

kin−1∑
i=0

Āin,i · Sin,i

)
−

kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j


= ||M2||22 · Var

(
E + B̄in,i −

kin−1∑
i=0

Āin,i · Sin,i

)
+ Var

 kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j


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where

Var

(
E + B̄in,i −

kin−1∑
i=0

Āin,i · Sin,i

)

= σ2
in +

(
q2

12β2ℓ
− 1

12

)
+ ϕin

(
q2

12β2ℓ
− 1

12

)(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))
+

ϕin

4
Var

(
S

[ϕin]
in

)
= σ2

in +

(
q2 − β2ℓ

12β2ℓ

)(
1 + ϕin

(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

)))
+

ϕin

4
Var

(
S

[ϕin]
in

)
and

Var

 kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j

 = ℓ(kin + 1)Nσ2
KSK

β2 + 2

12

□

Proof 11 (Noise Eternal Product in Bootstrapping) The Theorem 2 gave us
the following noise for an external product:

Var

M2

(
E + B̄in,i −

kin−1∑
i=0

Āin,i · Sin,i

)
−

kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j


= ||M2||22 · Var

(
E + B̄in,i −

kin−1∑
i=0

Āin,i · Sin,i

)
+ Var

 kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j


where

Var

(
E + B̄in,i −

kin−1∑
i=0

Āin,i · Sin,i

)

= σ2
in +

(
q2

12β2ℓ
− 1

12

)
+ ϕin

(
q2

12β2ℓ
− 1

12

)(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))
+

ϕin

4
Var

(
S

[ϕin]
in

)
= σ2

in +

(
q2 − β2ℓ

12β2ℓ

)(
1 + ϕin

(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

)))
+

ϕin

4
Var

(
S

[ϕin]
in

)
and

Var

 kin∑
i=0

ℓ−1∑
j=0

Ãin,i,j · Ei,j

 = ℓ(kin + 1)Nσ2
in

β2 + 2

12

In TFHE, we use binary key to perform the bootstrap. So we have M ∈ {0, 1}
which represent a bit of the binary key. Var(M2) =

1
4
and E(M2) =

1
2
. Let focus on

the part with the message:
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Var

(
M2

(
E + B̄in,i −

kin−1∑
i=0

Āin,i · Sin,i

))

=
(
Var(M2) + E2(M2)

)
Var

(
E + B̄in,i −

kin−1∑
i=0

Āin,i · Sin,i

)

+ Var (M2)E2

(
E + B̄in,i −

kin−1∑
i=0

Āin,i · Sin,i

)

=
1

2
Var

(
E + B̄in,i −

kin−1∑
i=0

Āin,i · Sin,i

)
+

1

4
E2

(
E + B̄in,i −

kin−1∑
i=0

Āin,i · Sin,i

)

We have:

E2

(
E + B̄in,i −

kin−1∑
i=0

Āin,i · Sin,i

)
=

(
E(E) + E(B̄in,i)− E

(
kin−1∑
i=0

Āin,i · Sin,i

))2

=

(
0− 1

2
− ϕinE (āin,i)E (sin,i)

)2

=
1

4

(
−1 + ϕinE

(
S

[ϕin]
in

))2
Finally, for each coefficient after one external product in the bootstrapping, we
obtain the following formula for the noise variance:

σ2
in

2
+

(
q2 − β2ℓ

24β2ℓ

)(
1 + ϕin

(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

)))
+

ϕin

8
Var

(
S

[ϕin]
in

)
+

1

16

(
−1 + ϕinE

(
S

[ϕin]
in

)2)
+ ℓ(kin + 1)Nσ2

in

β2 + 2

12

□

Proof 12 (Theorem 8) The proof of this theorem follows the same footprint as the
other key switching proofs presented in this paper (e.g., Theorem 2). We generalize
the proof of this theorem to the GLWE case: the LWE result presented in the theorem
follows by taking k0 = n0, k1 = n1 and N = 1.

We consider two shared randomness GLWE secret keys S(0) ≺ S(1) with S(0) =(
S
(0)
0 , . . . , S

(0)
k0−1

)
∈ Rk0

q,N , S
(1) =

(
S
(1)
0 , . . . , S

(1)
k1−1

)
∈ Rk1

q,N , 1 < k0 < k1 and S
(1)
i =

S
(0)
i for all 0 ≤ i < k0. We take in input:

• A GLWE ciphertext: CTin = (Ain, Bin) ∈ GLWES(1) (∆M) ⊆ Rk1+1
q,N , where

Bin =
∑k1−1

i=0 Ain,i · S(1)
i +∆M +Ein, Ain,i =

∑N−1
j=0 ai,j ·Xj ←↩ 𝒰 (Rq,N) for all

i ∈ J0, kJ and Ein =
∑N−1

j=0 ej ·Xj, and ej ←↩ 𝒩σ2
1
for all j ∈ J0, N − 1J.

• The key switching key: KSK = (KSK0, . . . ,KSKk1−k0−1), where KSKi ∈
GLEV

(β,ℓ)

S(0)

(
S
(1)
k0+i

)
=
(
GLWES(0)

(
q
β
S
(1)
k0+i

)
, · · · ,GLWES(0)

(
q
βℓS

(1)
k0+i

))
for all
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0 ≤ i < k1. We note by KSKi,j = (Ai,j , Bi,j) ∈ GLWES(0)

(
q

βj+1S
(1)
k0+i

)
, for all

0 ≤ i < k1 and for all 0 ≤ j < ℓ, where Bi,j =
∑k0−1

τ=0 Ai,j,τ ·S(0)
τ + q

βj+1S
(1)
k0+i +

Eksk,i,j, and Eksk,i,j =
∑N−1

τ=0 eksk,i,j,τ ·Xτ and eksk,i,j,τ ←↩ 𝒩σ2
ksk
.

The output of this algorithm is computed as:

(Ain,0, . . . , Ain,k0−1, Bin)−
k1−k0−1∑

i=0

Dec(β,ℓ) (Ain,k0+i) · KSKi ∈ GLWES(0) (∆M) ⊆ Rk0+1
q,N

By definition, in the decomposition described in Supplementary Material B, we have

that Dec(β,ℓ) (Ain,i) =
(
Ãin,i,0, · · · , Ãin,i,ℓ−1

)
such that Ãin,i =

∑ℓ−1
j=0

q
βj+1 Ãin,i,j, for all

k0 ≤ i < k1.

Let define Āin,i = Ain,i − Ãin,i, |āi,τ | = |ai,τ − ãi,τ | < q
2βℓ , āi,τ ∈

r
−q
2βℓ ,

q
2βℓ

r
for

all 0 ≤ τ < N . So we have that their expectations and variances are respectively
E (āi,τ ) = −1

2
, Var (āi,τ ) =

q2

12β2ℓ − 1
12
, E (ãi,τ ) = −1

2
and Var (ãi,τ ) =

β2−1
12

.

Now, we can decrypt:〈
(Ain,0, . . . , Ain,k0−1, Bin)−

k1−k0−1∑
i=0

Dec(β,ℓ) (Ain,k0+i) · KSKi,
(
−S(0), 1

)〉

= Bin −
k0−1∑
i=0

Ain,i · S(0)
i −

k1−k0−1∑
i=0

ℓ−1∑
j=0

Ãin,k0+i,j ·
〈
KSKi,j ,

(
−S(0), 1

)〉

= Bin −
k0−1∑
i=0

Ain,i · S(0)
i −

k1−k0−1∑
i=0

ℓ−1∑
j=0

Ãin,k0+i,j ·
(

q

βj+1
S
(1)
k0+i + Eksk,i,j

)

= Bin −
k0−1∑
i=0

Ain,i · S(0)
i −

k1−k0−1∑
i=0

Ãin,k0+i · S(1)
k0+i −

k1−k0−1∑
i=0

ℓ−1∑
j=0

Ãin,k0+i,j · Eksk,i,j

= Bin −
k0−1∑
i=0

Ain,i · S(0)
i −

k1−k0−1∑
i=0

(
Ain,k0+i − Āin,k0+i

)
· S(1)

k0+i −
k1−k0−1∑

i=0

ℓ−1∑
j=0

Ãin,k0+i,j · Eksk,i,j

Since S
(0)
i = S

(1)
i for all 0 ≤ i < k0, the equation becomes:

= Bin −
k0−1∑
i=0

Ain,i · S(1)
i −

k1−k0−1∑
i=0

(
Ain,k0+i − Āin,k0+i

)
· S(1)

k0+i −
k1−k0−1∑

i=0

ℓ−1∑
j=0

Ãin,k0+i,j · Eksk,i,j

= ∆M + Ein +

k1−k0−1∑
i=0

Āin,k0+i · S(1)
k0+i︸ ︷︷ ︸

(I)

−
k1−k0−1∑

i=0

ℓ−1∑
j=0

Ãin,k0+i,j · Eksk,i,j︸ ︷︷ ︸
(II)

The wth coefficient of part (I) is equal to:

k1−1∑
i=k0

(
w∑

τ=0

āin,i,w−τ · s(1)i,τ −
N−1∑

τ=w+1

āin,i,N+w−τ · s(1)i,τ

)

45 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila, A. Roux-Langlois & S. Tap



Faster Secret Keys for (T)FHE

The wth coefficient of part (II) is equal to:

k1−k0−1∑
i=0

ℓ−1∑
j=0

(
w∑

τ=0

ãin,k0+i,j,w−τ · eksk,i,j,τ −
N−1∑

τ=w+1

ãin,k0+i,j,N+w−τ · eksk,i,j,τ

)

We can now isolate the output error for the wth coefficient and remove the message
coefficient. We obtain that the output error is:

e′w = ein,w +

k1−1∑
i=k0

(
w∑

τ=0

āin,i,w−τ · s(1)i,τ −
N−1∑

τ=w+1

āin,i,N+w−τ · s(1)i,τ

)

−
k1−k0−1∑

i=0

ℓ−1∑
j=0

(
w∑

τ=0

ãin,k0+i,j,w−τ · eksk,i,j,τ −
N−1∑

τ=w+1

ãin,k0+i,j,N+w−τ · eksk,i,j,τ

)

So the variance is:

Var(e′w) = Var(ein,w) + (k1 − k0)NVar
(
āin,i,·s

(1)
i,·

)
+ (k1 − k0)ℓNVar (ãin,i,j,· · eksk,i,j,·)

= σ2
in + (k1 − k0)N

(
q2 − β2ℓ

12β2ℓ

)(
Var

(
S(1)

)
+ E2

(
S(1)

))
+

(k1 − k0)N

4
Var

(
S(1)

)
+ (k1 − k0)ℓN

β2 + 2

12
σ2
KSK.

□

Proof 13 (Theorem 11) Lets consider two shared and partial secret keys such

that S
[ϕout]
out ≺ S

[ϕin]
in . We have S

[ϕout]
out = (Sout,0, · · · , Sout,kout−1), where Sout,kout−1 =∑ϕout−(kout−1)N−1

i=0 sout,kout−1,iX
i we call Sout,kout−1 : S.

We have S
[ϕin]
in = (Sin,0, · · · , Sin,kin−1) such that for all j ∈ J0, kout − 1J, Sout,j =

Sin,j and Sin,kout−1 = S + S̄ where S̄ =
∑N−1

j=ϕout−(kout−1)N sin,kout−1,jX
j.

The inputs of a GLWE key switching with partial & shared randomness keys
(Algorithm 11) are:

• The input GLWE ciphertext: CTin = (Ain, Bin) ∈ GLWE
S

[ϕin]

in

(∆ ·M) ⊆
Rkin+1

q,N , where Bin =
∑kin−1

i=0 Ain,i · Sin,i +∆ ·M + Ein, Ain,i =
∑k−1

j=0 ai,j ·Xj ←↩
𝒰 (Rq,N) for all i ∈ J0, kJ and Ein =

∑k−1
j=0 ej · Xj, and ej ←↩ 𝒩σ2

in
for all

j ∈ J0, N − 1J.

• The key switch key: KSK = (KSKkout−1 ,KSKkout · · · ,KSKkin−1), where KSKi ∈
GLEV

(β,ℓ)

S
[ϕout]
out

(Sin,i) =
(
GLWE

S
[ϕout]
out

(
q
β
Sin,i

)
, · · · ,GLWE

S
[ϕout]
out

(
q
βℓSin,i

))
for all kout ≤ i < kin, and KSKkout−1 ∈ GLEV

(β,ℓ)

S
[ϕout]
out

(
S̄
)

=(
GLWE

S
[ϕout]
out

(
q
β
S̄
)
, · · · ,GLWE

S
[ϕout]
out

(
q
βℓ S̄
))

We note by KSKi,j = (Ai,j, Bi,j) ∈ GLWE
S

[ϕout]
out

(
q

βj+1Sin,i

)
, for all kout ≤ i <

kin for all 0 ≤ j < ℓ, where Bi,j =
∑kout−1

τ=0 Ai,j,τ ·Sout,τ +
q

βj+1Sin,i+Eksk,i,j, and

Eksk,i,j =
∑N−1

τ=0 eksk,i,j,τ ·Xτ and eksk,i,j,m ←↩ 𝒩σ2
ksk
.
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We note KSKkout−1,j = (Akout−1,j, Bkout−1,j) ∈ GLWE
S

[ϕout]
out

(
q

βj+1 S̄
)
for all 0 ≤

j < ℓ, where Bkout−1,j =
∑kout−1

τ=0 Akout−1,j,τ · Sout,τ + q
βj+1 S̄ + Eksk,kout−1,j, and

Eksk,kout−1,j =
∑N−1

τ=0 eksk,kout−1,j,τ ·Xτ and eksk,kout−1,j,m ←↩ 𝒩σ2
ksk
.

The output of this algorithm is: CTout = (Aout, Bout) ∈ GLWE
S

[ϕout]
out

(∆ ·M) ⊆
Rkout+1

q,N .
By definition, for any polynomial Ain,i, we have the decomposition (described in

Supplementary Material B), Dec(β,ℓ) (Ain,i) =
(
Ãin,i,1, · · · , Ãin,i,ℓ

)
such that Ãin,i =∑ℓ−1

j=0
q

βj+1 Ãin,i,j. Now, we can decrypt:

Bout −
〈
Aout,S

[ϕout]
out

〉
=
〈
(Aout, Bout) ,

(
−S[ϕout]

out , 1
)〉

=
〈
(Ain,0, · · · , Ain,kout−1, 0 · · · , 0, Bin)−Dec(β,ℓ) (Ain,kout−1)KSKkout−1

−
kin−1∑
i=kout

Dec(β,ℓ) (Ain,i)KSKi,
(
−S[ϕout]

out , 1
)〉

= Bin −
kout−1∑
i=0

Ain,iSout,i −
ℓ−1∑
j=0

Ãin,kout−1,j

〈
KSKkout−1,j ,

(
−S[ϕout]

out , 1
)〉

−
kin−1∑
i=kout

ℓ−1∑
j=0

Ãin,i,j

〈
KSKi,j ,

(
−S[ϕout]

out , 1
)〉

= Bin −
kout−2∑
i=0

Ain,iSin,i −Ain,kout−1S −
ℓ−1∑
j=0

Ãin,kout−1,j

(
q

βj+1
S̄ + Eksk,kout−1,j

)

−
kin−1∑
i=kout

ℓ−1∑
j=0

Ãin,i,j

(
q

βj+1
Sin,i + Eksk,i,j

)

= Bin −
kout−1∑
i=0

Ain,iSin,i −Ain,kout−1S︸ ︷︷ ︸
(I)

−Ãin,kout−1S̄ −
ℓ−1∑
j=0

Ãin,kout−1,j · Eksk,kout−1,j︸ ︷︷ ︸
(II)

−
kin−1∑
i=kout

Ãin,iSin,i −
kin−1∑
i=kout

ℓ−1∑
j=0

Ãin,i,j · Eksk,i,j︸ ︷︷ ︸
(III)

After decrypting, we can split the previous result in three distinct part and analyze
the noise provide by each of them. The first part of the result (term (I)) is only
composed of the noise present in the Bin.
The second part of the result (term (II)) can be seen as a key switching with partial
key (Algorithm 4) from S̄ to Sout. The proof of noise add by this part follows the
proof of Theorem 2.
As for the second part of the result, the third part of the result (term (III)) can be
seen as a key switching with partial key (Algorithm 4) from (Sin,kout , · · · , Sin,kin−1) to
Sout. The proof of noise add by this part follows as well the proof of Theorem 2.
By adding this different noises, we will obtain Var(eout) = Var(I)+Var(II)+Var(III)
where :
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Var(I) = σ2
in

Var(II) = (Nkout − ϕout)

(
q2 − β2ℓ

12β2ℓ

)(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))
+

Nkout − ϕout

4
Var

(
S

[ϕin]
in

)
+ ℓNσ2

ksk

β2 + 2

12

Var(III) = (ϕin −Nkout)

(
q2 − β2ℓ

12β2ℓ

)(
Var

(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))
+

ϕin −Nkout
4

Var
(
S

[ϕin]
in

)
+ ℓ(kin − kout − 1)Nσ2

ksk

β2 + 2

12

To conclude we have :

Var(eout) = σ2
in + (ϕin − ϕout)

(
q2 − β2ℓ

12β2ℓ

)(
Var
(
S

[ϕin]
in

)
+ E2

(
S

[ϕin]
in

))
+

ϕin − ϕout

4
Var
(
S

[ϕin]
in

)
+ ℓ(kin − kout)Nσ2

ksk

β2 + 2

12

□

B Algorithms From Literature

In this section we recall a few useful algorithms from the literature such as the
GLWE-to-GLWE key switch with and without a secret product, and the decompo-
sition algorithm.

Decomposition Algorithms. Let β ∈ N∗ be a decomposition base and ℓ ∈ N∗

be a decomposition level. The decomposition algorithm with respect to β and ℓ is
noted Dec(β,ℓ): it takes as input an integer x ∈ Zq and outputs a decomposition
vector of integers (x1, · · · , xℓ) ∈ Zℓ

q such that:〈
Dec(β,ℓ)(x),

(
q

β
· · · q

βℓ

)〉
=

⌊
x · β

ℓ

q

⌉
· q
βℓ
∈ Zq.

Usually, the decomposition is done starting from the most significant bits. When
applying the decomposition on a vector of integers, the result is a vector of decom-
position vectors of integers.

Note that it is possible to decompose an integer polynomials X ∈ Rq with this
algorithm i.e., 〈

Dec(β,ℓ)(X),

(
q

β
· · · q

βℓ

)〉
=

⌊
X · β

ℓ

q

⌉
· q

βℓ
∈ Rq

After applying this kind of decomposition on a vector of polynomials, the output
is a vector of vector of polynomials.
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Algorithm 4: CTout ← GlweKeySwitch(CTin,KSK)

Context:



(kin − 1)N < ϕin ≤ kinN and (kout − 1)N < ϕout ≤ koutN

S
[ϕin]
in ∈ Rkin

q,N : the input partial secret key (Definition 6)

S
[ϕin]
in = (Sin,0, · · · , Sin,kin−1)

S
[ϕout]
out ∈ Rkout

q,N : the output partial secret key (Definition 6)

ℓ ∈ N : the number of levels in the decomposition

β ∈ N : the base in the decomposition

Input:


CTin = (A0, · · · , Akin−1, B) ∈ GLWE

S
[ϕin]

in

(P ) ⊆ Rkin+1
q,N , with P ∈ Rq,N

KSK = {KSKi = {KSKi,j}0≤j≤ℓ−1}0≤i≤kin−1 , with

KSKi,j ∈ GLWE
S

[ϕout]
out

(
q
βj · Sin,i

)
, for 0 ≤ i ≤ kin − 1 and 0 ≤ j ≤ ℓ− 1

Output: CTout ∈ GLWE
S

[ϕout]
out

(P )

/* Keep the B part */

1 Set CTout := (0, · · · , 0, B) ∈ Rkout+1
q,N

2 for i ∈ J0; kin − 1K do

/* Decompose the mask */

3 Update CTout = CTout −
〈
Ki,Dec(β,ℓ) (Ai)

〉
4 return CTout

Algorithm 5: CTout ← SecretProductGlweKeySwitch(CTin,KSK)

Context:



S
[ϕin]
in ∈ Rkin

q,N : the input partial secret key (Definition 6)

S
[ϕin]
in = (Sin,0, · · · , Sin,kin−1)

S
[ϕout]
out ∈ Rkout

q,N : the output partial secret key (Definition 6)

(kin − 1)N < ϕin ≤ kinN and (kout − 1)N < ϕout ≤ koutN

Q ∈ Rq,N

CTin = (A0, · · · , Akin−1, B) ∈ Rkin+1
q,N

CTi,j ∈ GLWE
S

[ϕout]
out

(
q
βj ·Q · Sin,i

)
, for 0 ≤ i ≤ kin − 1 and 0 ≤ j ≤ ℓ− 1

CTkin,j ∈ GLWE
S

[ϕout]
out

(
q
βj ·Q

)
, for 0 ≤ j ≤ ℓ− 1

ℓ ∈ N : the number of levels in the decomposition

β ∈ N : the base in the decomposition

Input:

{
CTin ∈ GLWE

S
[ϕin]

in

(P ) , with P ∈ Rq,N

KSK = {Ki = (CTi,0, · · · ,CTi,ℓ−1)}0≤i≤kin

Output: CTout ∈ GLWE
S

[ϕout]
out

(Q · P )

/* Decompose the B part */

1 Set CTout =
〈
Kkin ,Decomp(β,ℓ) (B)

〉
2 for i ∈ J0; k − 1K do

/* Decompose the mask */

3 Update CTout = CTout −
〈
Ki,Decomp(β,ℓ) (Ai)

〉
4 return CTout
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C Algorithms in Details

In this section we give details about some algorithms introduced in this paper, such
as the different sample extraction algorithms (and its inverse) when dealing with
partial GLWE secret keys, the enlarging/shrinking key switch when dealing with
shared randomness secret keys, and the GLWE-to-GLWE key switch when dealing
with both partial and shared randomness secret keys.

Algorithm 6: ctout ← ConstantSampleExtract(CTin)

Context:



S[ϕ] ∈ Rk
q,N : a partial secret key (Definition 6)

(k − 1)N + 1 ≤ ϕ ≤ kN : filling amount of the partial secret key

s̄ ∈ Zϕ : the flattened version of S[ϕ] (Definition 7)

P :=
∑N−1

i=0 piX
i ∈ Rq,N

CTin =
(∑N−1

i=0 a0,iX
i, · · · ,

∑N−1
i=0 ak−1,iX

i,
∑N−1

i=0 biX
i
)
∈ Rk+1

q,N

Input: CTin ∈ GLWES[ϕ] (P ) : a GLWE encryption of the plaintext P

Output: ctout ∈ LWEs̄ (p0) : an LWE encryption of the plaintext p0

1 for i ∈ J0;ϕ− 1K do

2 set α :=
⌊

i
N

⌋
, β := (N − i) mod N and γ := 1− (β == 0)

3 set aout,i := (−1)γ · aα,β

4 return ctout := (aout,0, · · · , aout,ϕ−1, b0) ∈ Zϕ+1
q

Algorithm 7: ctout ← SampleExtract (CTin, α)

Context:


S[ϕ] ∈ Rk

q,N : a partial secret key (Definition 6)

(k − 1)N + 1 ≤ ϕ ≤ kN : filling amount of the partial secret key

s̄ ∈ Zϕ : the flattened version of S[ϕ] (Definition 7)

P :=
∑N−1

i=0 piX
i ∈ Rq,N

Input:

{
CTin ∈ GLWES[ϕ] (P ) : a GLWE encryption of the plaintext P

0 ≤ α ≤ N − 1 : the coefficient to extract

Output: ctout ∈ LWEs̄ (pα) : an LWE encryption of the plaintext pα

/* Rotation of the GLWE ciphertext */

1 set CT := X−α · CTin

/* Call to Algorithm 6 */

2 return ctout := ConstantSampleExtract (CT)
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Algorithm 8: ctout ← EnlargingKeySwitch(ctin)

Context:



sin ∈ Znin
q : the input secret key

sout ∈ Znout
q : the output secret key

sin ≺ sout : shared randomness secret keys (Definition 9)

p ∈ Zq

ctin = (a0, · · · , anin−1, b) ∈ Znin+1
q

Input: ctin ∈ LWEsin (p)
Output: ctout ∈ LWEsout (p)

/* Pad with zeros between the mask and the b part */

1 Set ctout := (a0, · · · , an−1, 0, · · · , 0, b) ∈ Znout+1
q

2 return ctout

Algorithm 9: ctout ← ShrinkingKeySwitch(ctin,KSK)

Context:



sin = (s0, · · · , snin−1) ∈ Znin
q : the input secret key

sout ∈ Znout
q : the output secret key

nout < nin

sout ≺ sin : shared randomness secret keys (Definition 9)

p ∈ Zq

ctin = (a0, · · · , anin−1, b) ∈ Znin+1
q

cti,j ∈ LWEsout

(
q
βj · si

)
, for nout ≤ i ≤ nin − 1 and 0 ≤ j ≤ ℓ− 1

ℓ ∈ N : the number of levels in the decomposition

β ∈ N : the base in the decomposition

Input:

{
ctin ∈ LWEsin (p)

KSK = {ki = (cti,0, · · · , cti,ℓ−1)}nout≤i≤nin−1

Output: ctout ∈ LWEsout (p)

/* Keep the beginning of the mask and the B part */

1 Set ctout := (a0, · · · , anout−1, b) ∈ Znout+1
q

2 for i ∈ Jnout;nin − 1K do

/* Decompose the rest of the mask */

3 Update ctout = ctout −
〈
ki,Dec(β,ℓ) (ai)

〉
4 return ctout
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Algorithm 10: CTout ← ConstantSampleExtract−1(ctin, k,N)

Context:



s ∈ Zn
q : the input LWE secret key

S[n] ∈ Rk
q,N : a partial secret key (Definition 6)

such that its flattened version is s (Definition 7)

R :=
∑N−1

i=1 ri ·Xi ∈ Rq,N , where ri are uniformly random

ctin = (a0, · · · , an−1, b) ∈ Zn+1
q

p ∈ Zq

Input:


ctin ∈ LWEs (p) : an LWE encryption of the plaintext p

k ∈ N : the output GLWE dimension

N ∈ N : the output polynomial size

Output: CTout ∈ GLWES[n] (p0 +R) : a GLWE encryption

/* put the b part in a polynomial */

1 set B′ := b ∈ Rq,N

/* put the rest in polynomials */

2 for i ∈ J0; k ·NK do

3 set α :=
⌊

i
N

⌋
, β := (N − i) mod N and γ := 1− (β == 0)

4 if i ≤ ϕ− 1 then
5 set a′α,β := (−1)γ · ai
6 else
7 set a′α,β := 0

8 return CTout :=
(
A′

0 :=
∑N−1

j=0 a′0,jX
j , · · · , A′

k−1 :=
∑N−1

j=0 a′k−1,jX
j , B′

)
∈ Rk+1

q,N
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Algorithm 11: CTout ← GlweKeySwitch′(CTin,KSK)

Context:



S
[ϕin]
in ∈ Rkin

q,N : the input partial secret key (Definition 6)

S
[ϕin]
in = (Sin,0, · · · , Sin,kin−1)

S
[ϕout]
out ∈ Rkout

q,N : the output partial secret key (Definition 6)

S
[ϕout]
out = (Sout,0, · · · , Sout,kout−1)

(kin − 1)N < ϕin ≤ kinN and (kout − 1)N < ϕout ≤ koutN

S
[ϕout]
out ≺ S

[ϕin]
in : shared randomness secret keys (Definition 9)

S
[ϕin]
in ̸= S

[ϕout]
out and kout ≤ kin

k ∈ {kout − 1, kout} such that ∀0 ≤ i < k, Sin,i = Sout,i

P ∈ Rq,N

CTin = (A0, · · · , Akin−1, B) ∈ Rkin+1
q,N

CTi,j ∈ GLWE
S

[ϕout]
out

(
q
βj · Sin,i

)
, for kout ≤ i < kin and 0 ≤ j ≤ ℓ− 1

if k = kout − 1 :

CTk,j ∈ GLWE
S

[ϕout]
out

(
q
βj · (Sin,k − Sout,k)

)
, for 0 ≤ j ≤ ℓ− 1

ℓ ∈ N : the number of levels in the decomposition

β ∈ N : the base in the decomposition

Input:

{
CTin ∈ GLWE

S
[ϕin]

in

(P )

KSK = {Ki = (CTi,0, · · · ,CTi,ℓ−1)}k≤i<kin

Output: CTout ∈ GLWE
S

[ϕout]
out

(P )

/* Keep the B part and the first part of the mask */

1 Set CTout := (A0, · · · , Akout−1, B) ∈ Rkout+1
q,N

/* Different public material for this potential partial-shared secret key

polynomial */

2 if k = kout − 1 then

3 Update CTout = CTout −
〈
Kk,Dec(β,ℓ) (Ak)

〉
/* Same process as in Algorithm 4 */

4 for i ∈ Jkout; kin − 1K do

/* Decompose the mask */

5 Update CTout = CTout −
〈
Ki,Dec(β,ℓ) (Ai)

〉
6 return CTout

D Parameter Sets

In this section we provide the formulae to compute the size of the key switching
keys and bootstrapping keys, and we also give the most important parameter sets
we used for our experiments. They are displayed in Tables 2, 3 and 4. To compute
the filling amount of the FFT-KS ϕin of the FFT-based shrinking key switch, one
needs to compute ϕPBS − n.
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D.1 Size of Public Material

The size (in MB) of the traditional LWE-to-LWE key switching key Size (KSK) is
computed with the following formula:

Size (KSK) := (n+ 1) · ℓKS · k ·N · 2−17

The size (in MB) of the traditional bootstrapping key Size (BSK) is computed
with the following formula:

Size (BSK) := n · ℓPBS · (k + 1)2 ·N · 2−17

The size (in MB) of the FFT-Shrinking keyswitching key Size (FFT-KS) is com-
puted with the following formula:

Size (FFT-KS) := (kout + 1) · ℓKS · kin ·N · 2−17

The size (in MB) of the Stair keyswitching key Size (Stair-KS) with 2 steps is
computed with the following formula:

Size (Stair-KS) := ((nKS + 1) · ℓKS1 · (ϕ− nKS) + (n+ 1) · ℓKS2 · (nKS − n)) · 2−17

For the shrinking key switch, it is enough to use one of the formulae above
and changing some parameters. For instance, for an LWE-to-LWE shrinking (Algo-
rithm 9) key switch one uses Size (KSK) with n = nin − nout.

D.2 Parameter Sets

The following parameter sets are for a failure probability of pfail ≤ 2−13.9.
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p
Partial

LWE-KS GLWE Parameters PBS Parameters
LWE-KS

Metrics
Shared

Algorithm
Parameters

Keys Parameter Value Parameter Value Parameter Value Name Value

1 ✗
traditional

n 588
time 6.6480

LWE-to-LWE

log2 (σn) −12.66 log2 (βPBS) 15 log2 (βKS) 3
k 5

log2 (N) 8 ℓPBS 1 ℓKS 3 size 58.6
log2 (σk·N ) −31.07

n 532 nKS 782

log2 (σn) −11.17
log2 (βPBS) 15

log2

(
σnKS

)
−17.82 time 4.9808

1 ✓
2 steps k 5 log2

(
βKS1

)
9

(Alg. 2) log2 (N) 8
ℓPBS 1

ℓKS1 1

ϕ 1280 log2

(
βKS2

)
2 size 44.45

log2
(
σϕ

)
−31.07 ℓKS2 4

FFT-based

n 534
kin 3

(Alg. 3)

log2 (σn) −11.22
log2 (βPBS) 15 kout 3

time 3.8792

1 ✓
k 5

log2 (NKS) 8
log2 (N) 8

ℓPBS 1 log2 (βKS) 1
ϕ 1280

ℓKS 9
size 37.76

log2
(
σϕ

)
−31.07

2 ✗
traditional

n 668
time 10.185

LWE-to-LWE

log2 (σn) −14.79 log2 (βPBS) 18 log2 (βKS) 4
k 6

log2 (N) 8 ℓPBS 1 ℓKS 3 size 87.45
log2 (σk·N ) −37.88

n 576 nKS 896

log2 (σn) −12.34
log2 (βPBS) 18

log2

(
σnKS

)
−20.85 time 7.7625

2 ✓
2 steps k 6 log2

(
βKS1

)
10

(Alg. 2) log2 (N) 8
ℓPBS 1

ℓKS1 1

ϕ 1536 log2

(
βKS2

)
2 size 66.55

log2
(
σϕ

)
−37.88 ℓKS2 5

FFT-based

n 590
kin 1

(Alg. 3)

log2 (σn) −12.71
log2 (βPBS) 18 kout 1

time 5.9151

2 ✓
k 6

log2 (NKS) 10
log2 (N) 8

ℓPBS 1 log2 (βKS) 1
ϕ 1536

ℓKS 11
size 56.64

log2
(
σϕ

)
−37.88

3 ✗
traditional

n 720
time 14.704

LWE-to-LWE

log2 (σn) −16.17 log2 (βPBS) 21 log2 (βKS) 4
k 4

log2 (N) 9 ℓPBS 1 ℓKS 3 size 104.1
log2 (σk·N ) −51.49

n 648 nKS 944

log2 (σn) −14.25
log2 (βPBS) 18

log2

(
σnKS

)
−22.13 time 8.4892

3 ✓
2 steps k 3 log2

(
βKS1

)
7

(Alg. 2) log2 (N) 9
ℓPBS 1

ℓKS1 2

ϕ 1536 log2

(
βKS2

)
2 size 57.83

log2
(
σϕ

)
−37.88 ℓKS2 6

FFT-based

n 686
kin 1

(Alg. 3)

log2 (σn) −15.27
log2 (βPBS) 18 kout 1

time 6.0204

3 ✓
k 3

log2 (NKS) 10
log2 (N) 9

ℓPBS 1 log2 (βKS) 1
ϕ 1536

ℓKS 13
size 43.08

log2
(
σϕ

)
−37.88

4 ✗
traditional

n 788
time 16.265

LWE-to-LWE

log2 (σn) −17.98 log2 (βPBS) 23 log2 (βKS) 4
k 2

log2 (N) 10 ℓPBS 1 ℓKS 3 size 92.39
log2 (σk·N ) −51.49

n 664 nKS 1126

log2 (σn) −14.68
log2 (βPBS) 22

log2

(
σnKS

)
−26.97 time 12.658

4 ✓
2 steps k 2 log2

(
βKS1

)
13

(Alg. 2) log2 (N) 10
ℓPBS 1

ℓKS1 1

ϕ 2048 log2

(
βKS2

)
2 size 68.68

log2
(
σϕ

)
−51.49 ℓKS2 6

FFT-based

n 682
kin 3

(Alg. 3)

log2 (σn) −15.16
log2 (βPBS) 23 kout 3

time 8.7397

4 ✓
k 2

log2 (NKS) 9
log2 (N) 10

ℓPBS 1 log2 (βKS) 1
ϕ 2048

ℓKS 14
size 48.61

log2
(
σϕ

)
−51.49

Table 2: Parameter sets, benchmarks for PBS+LWE-KS and sizes of public material
for CJP and two variants based on both partial and shared randomness secret keys.
Note that we use log2 (ν) = p. Sizes are given in MB and times in milliseconds.

55 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila, A. Roux-Langlois & S. Tap



Faster Secret Keys for (T)FHE

p
Partial

LWE-KS GLWE Parameters PBS Parameters
LWE-KS

Metrics
Shared

Algorithm
Parameters

Keys Parameter Value Parameter Value Parameter Value Name Value

5 ✗
traditional

n 840
time 24.964

LWE-to-LWE

log2 (σn) −19.36 log2 (βPBS) 23 log2 (βKS) 3
k 1

log2 (N) 11 ℓPBS 1 ℓKS 6 size 131.3
log2 (σk·N ) −51.49

n 732 nKS 1171

log2 (σn) −16.49
log2 (βPBS) 23

log2

(
σnKS

)
−28.17 time 18.638

5 ✓
2 steps k 1 log2

(
βKS1

)
9

(Alg. 2) log2 (N) 11
ℓPBS 1

ℓKS1 2

ϕ 2048 log2

(
βKS2

)
2 size 78.62

log2
(
σϕ

)
−51.49 ℓKS2 7

FFT-based

n 766
kin 3

(Alg. 3)

log2 (σn) −17.39
log2 (βPBS) 23 kout 3

time 13.089

5 ✓
k 1

log2 (NKS) 9
log2 (N) 11

ℓPBS 1 log2 (βKS) 1
ϕ 2048

ℓKS 15
size 48.58

log2
(
σϕ

)
−51.49

6 ✗
traditional

n 840
time 67.688

LWE-to-LWE

log2 (σn) −19.36 log2 (βPBS) 14 log2 (βKS) 3
k 1

log2 (N) 12 ℓPBS 2 ℓKS 5 size 341.4
log2 (σk·N ) −62.00

n 748 nKS 1313

log2 (σn) −16.91
log2 (βPBS) 14

log2

(
σnKS

)
−31.94 time 53.320

6 ✓
2 steps k 1 log2

(
βKS1

)
16

(Alg. 2) log2 (N) 12
ℓPBS 2

ℓKS1 1

ϕ 2443 log2

(
βKS2

)
2 size 224.2

log2
(
σϕ

)
−62.00 ℓKS2 8

FFT-based

n 774
kin 1

(Alg. 3)

log2 (σn) −17.61
log2 (βPBS) 14 kout 1

time 45.647

6 ✓
k 1

log2 (NKS) 11
log2 (N) 12

ℓPBS 2 log2 (βKS) 1
ϕ 2443

ℓKS 15
size 194.0

log2
(
σϕ

)
−62.00

7 ✗
traditional

n 896
time 147.05

LWE-to-LWE

log2 (σn) −20.85 log2 (βPBS) 15 log2 (βKS) 3
k 1

log2 (N) 13 ℓPBS 2 ℓKS 6 size 784.4
log2 (σk·N ) −62.00

n 776 nKS 1332

log2 (σn) −17.66
log2 (βPBS) 15

log2

(
σnKS

)
−32.45 time 111.14

7 ✓
2 steps k 1 log2

(
βKS1

)
10

(Alg. 2) log2 (N) 13
ℓPBS 2

ℓKS1 2

ϕ 2443 log2

(
βKS2

)
1 size 463.3

log2
(
σϕ

)
−62.00 ℓKS2 16

FFT-based

n 818
kin 1

(Alg. 3)

log2 (σn) −18.78
log2 (βPBS) 14 kout 1

time 98.870

7 ✓
k 1

log2 (NKS) 11
log2 (N) 13

ℓPBS 2 log2 (βKS) 1
ϕ 2443

ℓKS 16
size 409.5

log2
(
σϕ

)
−62.00

8 ✗
traditional

n 968
time 467.25

LWE-to-LWE

log2 (σn) −22.77 log2 (βPBS) 11 log2 (βKS) 3
k 1

log2 (N) 14 ℓPBS 3 ℓKS 6 size 2179
log2 (σk·N ) −62.00

n 816 nKS 1359

log2 (σn) −18.72
log2 (βPBS) 11

log2

(
σnKS

)
−33.17 time 351.64

8 ✓
2 steps k 1 log2

(
βKS1

)
9

(Alg. 2) log2 (N) 14
ℓPBS 3

ℓKS1 2

ϕ 2443 log2

(
βKS2

)
1 size 1304

log2
(
σϕ

)
−62.00 ℓKS2 17

FFT-based

n 854
kin 1

(Alg. 3)

log2 (σn) −19.73
log2 (βPBS) 11 kout 1

time 326.44

8 ✓
k 1

log2 (NKS) 11
log2 (N) 14

ℓPBS 3 log2 (βKS) 1
ϕ 2443

ℓKS 18
size 1282

log2
(
σϕ

)
−62.00

Table 3: Parameter sets, benchmarks for PBS+LWE-KS and sizes of public material
for CJP and two variants based on both partial and shared randomness secret keys.
Note that we use log2 (ν) = p. Sizes are given in MB and times in milliseconds.

56 L. Bergerat, I. Chillotti, D. Ligier, J.B. Orfila, A. Roux-Langlois & S. Tap



Faster Secret Keys for (T)FHE

p
Partial

LWE-KS GLWE Parameters PBS Parameters
LWE-KS

Metrics
Shared

Algorithm
Parameters

Keys Parameter Value Parameter Value Parameter Value Name Value

9 ✗
traditional

n 1024
time 1383.8

LWE-to-LWE

log2 (σn) −24.26 log2 (βPBS) 9 log2 (βKS) 3
k 1

log2 (N) 15 ℓPBS 4 ℓKS 7 size 5890
log2 (σk·N ) −62.00

n 860 nKS 1388

log2 (σn) −19.89
log2 (βPBS) 8

log2

(
σnKS

)
−33.94 time 1148.1

9 ✓
2 steps k 1 log2

(
βKS1

)
10

(Alg. 2) log2 (N) 15
ℓPBS 4

ℓKS1 2

ϕ 2443 log2

(
βKS2

)
1 size 3525

log2
(
σϕ

)
−62.00 ℓKS2 18

FFT-based

n 902
kin 1

(Alg. 3)

log2 (σn) −21.01
log2 (βPBS) 8 kout 1

time 1058.1

9 ✓
k 1

log2 (NKS) 11
log2 (N) 15

ℓPBS 4 log2 (βKS) 1
ϕ 2443

ℓKS 18
size 3609

log2
(
σϕ

)
−62.00

10 ✗
traditional

n 1096
time 4794.4

LWE-to-LWE

log2 (σn) −26.17 log2 (βPBS) 6 log2 (βKS) 2
k 1

log2 (N) 16 ℓPBS 6 ℓKS 12 size 19730
log2 (σk·N ) −62.00

n 904 nKS 1417

log2 (σn) −21.06
log2 (βPBS) 6

log2

(
σnKS

)
−34.71 time 3721.0

10 ✓
2 steps k 1 log2

(
βKS1

)
11

(Alg. 2) log2 (N) 16
ℓPBS 6

ℓKS1 2

ϕ 2443 log2

(
βKS2

)
1 size 10940

log2
(
σϕ

)
−62.00 ℓKS2 19

FFT-based

n 938
kin 3

(Alg. 3)

log2 (σn) −21.97
log2 (βPBS) 6 kout 3

time 3628.1

10 ✓
k 1

log2 (NKS) 9
log2 (N) 16

ℓPBS 6 log2 (βKS) 1
ϕ 2443

ℓKS 20
size 11260

log2
(
σϕ

)
−62.00

11 ✗
traditional

n 1132
time 37795

LWE-to-LWE

log2 (σn) −27.13 log2 (βPBS) 2 log2 (βKS) 2
k 1

log2 (N) 17 ℓPBS 20 ℓKS 13 size 105300
log2 (σk·N ) −62.00

n 984 nKS 1471

log2 (σn) −23.19
log2 (βPBS) 3

log2

(
σnKS

)
−36.15 time 18237

11 ✓
2 steps k 1 log2

(
βKS1

)
11

(Alg. 2) log2 (N) 17
ℓPBS 12

ℓKS1 2

ϕ 2443 log2

(
βKS2

)
1 size 47330

log2
(
σϕ

)
−62.00 ℓKS2 21

FFT-based

n 1018
kin 3

(Alg. 3)

log2 (σn) −24.10
log2 (βPBS) 3 kout 3

time 19224

11 ✓
k 1

log2 (NKS) 9
log2 (N) 17

ℓPBS 13 log2 (βKS) 1
ϕ 2443

ℓKS 22
size 52940

log2
(
σϕ

)
−62.00

Table 4: Parameter sets, benchmarks for PBS+LWE-KS and sizes of public material
for CJP and two variants based on both partial and shared randomness secret keys.
Note that we use log2 (ν) = p. Sizes are given in MB and times in milliseconds.
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