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Abstract

Statistical sender privacy (SSP) is the strongest achievable security notion for two-message oblivious
transfer (OT) in the standard model, providing statistical security against malicious receivers and com-
putational security against semi-honest senders. In this work we provide a novel construction of SSP
OT from the Decisional Diffie-Hellman (DDH) and the Learning Parity with Noise (LPN) assumptions
achieving (asymptotically) optimal amortized communication complexity, i.e. it achieves rate 1. Con-
cretely, the total communication complexity for k OT instances is 2k(1 + o(1)), which (asymptotically)
approaches the information-theoretic lower bound. Previously, it was only known how to realize this
primitive using heavy rate-1 FHE techniques [Brakerski et al., Gentry and Halevi TCC’19].

At the heart of our construction is a primitive called statistical co-PIR, essentially a a public key
encryption scheme which statistically erases bits of the message in a few hidden locations. Our scheme
achieves nearly optimal ciphertext size and provides statistical security against malicious receivers. Com-
putational security against semi-honest senders holds under the DDH assumption.

1 Introduction

Oblivious Transfer Oblivious transfer (OT) [Rab05] is one of the central objects of study in secure
computation: OT is complete for secure two- and multiparty computation in the sense that given a secure
OT protocol, any distributed function can be computed securely. In its basic form, OT is a protocol between
a receiver, holding a bit b ∈ {0, 1} and a sender holding two bits m0,m1 ∈ {0, 1}. It allows the receiver to
retrieve the bit mb in such a way that the sender learns nothing about b, while the receiver learns nothing
about m1−b.

In the two party setting, OT protocols 1 cannot be information-theoretically secure against both parties,
hence a cryptographic communication overhead of size poly(λ) is necessary. To amortize this overhead, one
of the protocol parameters has to grow polynomially. In string-OT, the sender transfers (potentially) long
message strings m0,m1 ∈ {0, 1}poly(λ).

The batch-setting offers a different angle on amortization: Rather than increasing the length of the
messages to size poly(λ), one can bundle the joint execution of many (say, k) OT-instances into a single
protocol.

Oblivious Transfer with High Rate. Minimizing the communication overhead of OT in the string and
batch setting has received considerable attention in recent years [IKNP03, BCGI18, BCG+19b, BCG+19a,
BCG+19b, DGI+19, BCG+20a, BCG+20b, GHO20, CGH+21, ADD+22]. This line of research has cul-
minated in constructions of OT protocols from several hardness assumptions [BDGM19, GH19, BBDP22]

1without the help of additional trust assumptions such as e.g. secure hardware
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achieving optimal communication of 2k(1 + o(1)), which approaches the information theoretic lower-bound
2k.2 The rate of an OT protocol in the batch setting is defined as the ratio between the information-
theoretic lower bound and the overall communication of a given protocol, hence protocols with communica-
tion 2k(1 + o(1)) have rate 1/(1 + o(1)) = 1− o(1) which approaches 1.

Compared to “low-rate” OT protocols, say protocols with rate ≤ 1/2, such high-rate OT protocols
have been notoriously hard to build and there is a fundamental reason for this. Achieving communication
seems to involve a phase-transition and should be viewed as more than a constant factor improvement.
For example, (two-message) OT with download-rate beyond this threshold implies the existence of lossy
trapdoor functions [DGI+19]3 or succinct two-round protocols for branching program evaluation and PIR
schemes [IP07, DGI+19].

The techniques developed in this context found surprising applications, and where instrumental in several
constructions of correlation-intractable hash functions, which gave rise to non-interactive zero-knowledge
protocols [BKM20, JJ21] or batch arguments [KLVW22] from weaker assumptions.

The goal of this paper is to study what is the strongest notion of security we can achieve for OT in the
plain model (i.e., without any trusted setup assumptions) while preserving optimal communication.

Statistical Sender Privacy. The standard (simulation-based) security definition of OT is given with
respect to semi-honest adversaries. To achieve simulation-based security against malicious parties, one has
to either rely on trusted setup assumptions (or random oracles), or increase the round complexity of the
protocol. Statistical sender privacy provides a meaningful relaxation to the standard notion of malicious
security and has been shown to be achievable with two-message protocols without making use of setup
assumptions [NP01, AIR01]. Since then, SSP OT was built from several assumptions such as DDH [NP01,
AIR01, ADD+22], QR (or DCR) [HK12], lattice based assumptions [BD18, MS20], or LPN together with a
derandomization assumption [BF22].

SSP OT protocols provide security against a computationally bounded sender, but a strong statistical
security notion against malicious and unbounded receivers. In essence, this notion requires the existence of
an unbounded simulator which extracts the receiver’s choice bit b∗ from his (potentially malformed) protocol
message, and simulates the response of an honest sender given only the message mb∗ the receiver is supposed
to obtain.

SSP OT has been the critical ingredient in the construction of several strong primitives, most notably
the construction of malicious circuit-private FHE [OPP14], two-round statistical zaps [JKKR17, BGI+17a,
KKS18, BFJ+20, GJJM20], non-malleable commitments [KS17] or two-party computation with statistical
security [KM20, BPS22].

SSP OT with Rate 1. The rate-1 and SSP properties are not orthogonal, but intricately connected.
Specifically, SSP OT can be constructed from any rate 1 OT [BGI+17a, DGI+19]. The catch is, however, that
this transformation (and in fact any such generic transformation) does not preserve rate 1, but necessarily
makes the rate drop below 1/2.

Further note that rate 1 (batch or string) OT is by no means automatically SSP. For string OT a malicious
receiver might learn half of the bits of m0 and m1, whereas for batch OT a malicious receiver might learn
both message bits m0 and m1 for some of the batch instances. Indeed, with no safeguards against such
attacks in place, it is relatively straightforward to construct malformed receiver messages to implement this
attack e.g. against the scheme of Brakerski et al. [BBDP22].

One may thus raise the question whether rate 1 and SSP security can actually be achieved simultaneously.
Indeed, this question was answered affirmatively by Brakerski et al. [BDGM19] and by Gentry and Halevi
[GH19] under the LWE assumption, whose constructions of rate-1 statistically circuit private FHE give rise
to rate-1 SSP OT, both in the string OT and the batch OT setting.

2The communication complexity of any, even insecure, OT is at least 2k. We can achieve this by sacrificing sender’s security
(the sender sends both (m0,m1)) or receiver’s security (the receiver sends b and obtains mb from the sender).

3This is the main reason for why one could expect such a protocol to inherently be heavier on public-key operations.
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Their constructions, however, relies on heavy FHE machinery and on specifics of the LWE problem
which allow for ciphertext compression. As a consequence, their result should be seen as a feasibility result.
Furthermore, due to its heavy reliance on FHE-specific (non-black-box) techniques their result does not
provide a recipe on how to construct high-rate SSP OT from a wider range of assumptions, or how to
realize this primitive with concrete efficiency. This is unsatisfactory both from a theoretical and an applied
perspective: the foundation of rate 1 SSP OT is as narrow as that of FHE, and the heavy non-black-box
machinery in their construction constitutes a serious roadblock for actually using this primitive.

More recently, in the string OT setting, Aggarwal et al [ADD+22] showed that download rate-1 SSP
string OT (for asymptotically long strings) can be achieved from the standard DDH assumption via a fully
black box construction.

However, in the setting of rate-1 SSP batch OT, the FHE-based constructions of [BDGM19, GH19] are
currently the only candidates.

1.1 Our Results

A framework for SSP OT with optimal rate. Our main result is a new framework for the construction
of SSP batch OT schemes with optimal communication complexity in the plain model (i.e., no random oracles
or common reference string).

Statistical co-PIR. Our framework is a refinement of the blueprint of [BBDP22]. One of the key tools
in [BBDP22] is a primitive called co-PIR. On a high level, a co-PIR scheme can be seen as a rate-1 public
key encryption scheme (for long messages) which erases some bits of the sender’s message in a way such that
they are not recoverable by the receiver.

We identify the construction of co-PIR in [BBDP22] as one of the main bottlenecks towards an SSP
secure rate 1 batch OT construction. The main reason is that their construction is only computationally
secure, and the lost bits of the sender’s message are only computationally hidden from the receiver.

Our first contribution is a statistically secure construction of co-PIR, which guarantees that the lost bits
of the sender’s message are statistically hidden from the receiver. As such, a statistical co-PIR scheme can
be seen somewhere statistically hiding encryption scheme.

Theorem 1 (Informal). There exists a co-PIR scheme that is statistically secure against malicious receivers
and computationally secure against semi-honest senders assuming the DDH assumption. Additionally, the
scheme fulfills the following efficiency properties:

• The sender’s computational complexity is subquadratic in the size of the database, |D|1+ε · t · poly(λ)
where D represents the input of the sender and t represents the size of the receiver’s input and 1 > ε > 0.
The receiver’s computational complexity is |D| · t · poly(λ).

• The size of the sender’s message is |D|+ o(|D|) when t = o(|D|).

We further provide a generic construction of a co-PIR scheme from any (statistically sender private)
rate-1 block-PIR scheme, i.e. a PIR scheme which transfers large blocks. Such rate-1 block PIR schemes
can be constructed from the DDH assumption [ADD+22]. A comparison between different co-PIR schemes
is presented in Table 1.

Rate-1 SSP batch OT from DDH and LPN We provide instantiations of the primitives of our frame-
work from the DDH assumption. We thus obtain a rate-1 SSP batch OT scheme from the DDH and LPN
(with inverse polynomial noise rate) assumptions. Specifically, to execute k independent OTs, the overall
communication complexity required by our protocol is 2k(1 + o(1)).

Theorem 2 (Informal). There exists a SSP OT scheme with optimal rate where security for the receiver
holds assuming both DDH and LPN (with inverse polynomial noise-rate) assumptions.
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Security
Hardness

Assumption
Sender’s
Work

[BBDP22] Semi-honest
DDH, QR,

LWE
|D| · t · poly(λ)

This work SSP DDH |D|1+ε · t · poly(λ)
This work
Appendix B

SSP Rate-1 PIR |D|2 · t · poly(λ)

Table 1: Comparison between existing co-PIR schemes. Here, D represents the input of the sender (i.e.,
the database), t represents the size of the receiver’s input (i.e., how many indices will be erased) and
1 > ε > 0. SSP stands for statistical sender privacy. All schemes achieve (asymptotic) download-rate 1
and the receiver’s message is of size poly(t, λ) · polylog(|D|). For all schemes, the receiver’s computational
complexity is |D| · t · poly(λ).

Our result improves upon Brakerski et al.[BBDP22] (henceforth, denoted as BBDP scheme) in terms
of security: Our work achieves a stronger notion of security, namely we prove security against unbounded
malicious receivers whereas the BBDP scheme achieves only computational security against semi-honest re-
ceivers. We stress that, although the BBPD scheme achieves download rate 1, it only provides computational
(instead of statistical) security against semi-honest receivers. This is because a computationally unbounded
semi-honest receiver has enough information to break a subset of the OTs. A comparison with BBDP is
given in Table 2

Security
Hardness

Assumption
Sender’s
Work

[BBDP22] Semi-honest

{
DDH, QR,

LWE

}
+ LPN k1+ε0 · poly(λ)

This work
Section 10

SSP DDH + LPN k1+ε1 · poly(λ)

Table 2: Comparison between existing optimal-rate OT schemes. Here, k represents the number of OT
executions, and 1 > ε0, ε1 > 0. SSP stands for statistical sender privacy. For all schemes, the receiver’s
computational complexity is slightly superlinear k1+ε · poly(λ).

Communication-efficient 2PC. As an application of main result, we give a construction of a 2PC
protocol that has statistical security against one of the parties and has constant communication overhead.
We obtain this protocol by instantiating the GMW protocol [GMW87] using our SSP OT scheme. An
informal statement of this result is given below.

Theorem 3 (Informal). There exists a two-party secure computation scheme with communication complexity
of O(|C|)+ |x|+ |y|+poly(λ) where C is the circuit being computed and x, y are the inputs of the parties. The
scheme achieves statistical security against one of the parties and computational security against the other
one (assuming both DDH and LPN assumptions) in the semi-honest setting.

Previously, 2PC protocols for general circuits with constant overhead in the size of the circuit (or, better)
and which provide semi-honest statistical security against one of the parties were known either from circuit-
private FHE [OPP14] or SSP OT along with PRGs in NC0 [IKOS08].

2 Technical Overview

Throughout this technical overview, we refer to the ratio between the size of the receiver’s protocol message
and the size of the receiver’s input as the upload rate, and the ratio between the size of the sender’s protocol
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message and the size of the receiver’s output as the download rate.

2.1 Optimal-Rate OT Secure Against Semi-Honest Adversaries

Our starting point is the recent construction of semi-honestly secure rate-1 batch OT by Brakerski et
al. [BBDP22]. In their construction semi-honest security against both senders and receivers holds com-
putationally.

The core idea in [BBDP22] is the following: The receiver encrypts his choice-bits under a specific rate-
1 private key encryption scheme, and encrypts the (short) keys under a linearly homomorphic public-key
encryption (LHE) scheme. The private-key encryption scheme has the feature that approximate decryption
is a linear operation. This allows the sender to decrypt the private-key ciphertext under the hood of the
LHE an thus obtain a noisy LHE encryption of the receiver’s choice. The actual OT function f(x) =
(m1 −m0)⊙ x+m0 (where (m0,m1) is the sender’s input) can now be evaluated homomorphically on the
receiver’s choice bits 4. Here, ⊙ denotes the component-wise multiplication.

Given that the LHE scheme supports post-evaluation ciphertext compression, the ciphertext thus gener-
ated can be compressed into a rate-1 ciphertext, which is then sent to the receiver.

In [BBDP22], the private-key scheme is instantiated from the LPN assumption and the LHE with post-
evaluation compression mechanism using decisional Diffie-Hellman (DDH), quadratic residuosity (QR) or
learning with errors (LWE) by adapting the ciphertext compression techniques from [BGI16, DGI+19,
BBD+20, BBDP22].

Co-Private Information Retrieval. While the basic outline of the above scheme intuitively makes sense,
there is a subtle issue we have glossed over: the decryption of the private key scheme is only approximate.
Consequently, this will lead to a correctness error which causes the receiver to learn outputs he was not
supposed to learn.

More concretely, the private-key encryption scheme in [BBDP22] is realized as a basic LPN encryption
scheme, where A←$Fn×m

2 is a public random matrix, s ∈ Fn
2 is the secret key, and ciphertexts are of the

form c = sA+ e+ b, where e ∈ Fm
2 is a sparse random noise term, and b is the vector of choice bits . The

noisy plaintext can be recovered by computing c− sA = b+ e.
Consequently, in positions i where ei = 1, the receiver will obtain the wrong OT output, namely m⃗1−b⃗1,i

.
Note that this does not just constitute a correctness issue, but a security issue as the receiver is not supposed
to learn this value.

To address this issue, [BBDP22] introduced a new primitive called co-Private Information Retrieval
(co-PIR). A co-PIR scheme allows a receiver to retrieve a database from a sender with the guarantee that
some positions (unknown to the sender) are erased. More precisely, in a co-PIR scheme, the receiver starts
by choosing a subset of indices S ⊂ [m] and computes a first message copir1. S denotes the set of indices that
the receiver wants to be erased. The sender, with input a database D ∈ {0, 1}m, computes a second message
copir2 that allows the receiver to retrieve a database D̃. The correctness property guarantees that D and D̃
coincide for all the locations [m] \ S. For security, we require that the sender obtains no information about
the receiver’s input and the receiver in turn learns nothing about the positions Di for i ∈ S.5 In terms of
efficiency, we require that the size of the receiver’s message copir1 to only grow polylogarithmically in the
size of the database m and polynomially on the size of S. Moreover, the size of sender’s message copir2
should be D+ o(D) and we call such a co-PIR scheme to have near optimal download rate.

[BBDP22] provided a computationally secure construction of co-PIR from puncturable pseudorandom
functions and PIR, or alternatively GGM PRFs [GGM86] and (low-rate) OT following [BCG+19a] (also
known as punctured OT [BGI17b]). Moreover, these constructions achieve near optimal download rate.
From a technical perspective, these constructions are inherently limited to computational security due to
the way they use puncturable PRFs.

4For subtle technical reasons, the decryption and OT functions are combined into a single linear function
5Co-PIR can be seen as the opposite of PIR: In a PIR the receiver retrieves the positions of the database that it is asking

for, whereas in a co-PIR it gets the entire database except for those positions.

5



The above-mentioned issue can now be adressed as follows using both co-PIR and a (sender-private) PIR:
The receiver generates a co-PIR message which erases all the locations corresponding to LPN errors (note
that the error-locations are known to the receiver). Furthermore, he generates PIR instances which retrieve
information at the locations corresponding to LPN errors. The sender will now transmit the compressed
LHE ciphertext using the co-PIR, and use the PIR scheme to transmit the correct outputs at the erased
positions.

2.2 Towards Statistical Sender Privacy

In order to adapt the BBDP-framework to the setting of statistical sender privacy while preserving rate-1,
we encounter the following challenges.

1. Statistical co-PIR. Clearly, the biggest issue with the BBDP construction with respect to SSP
security lies in the fact that their co-PIR scheme offers only computational security, even against semi-
honest receiver. Hence it seems inevitable that we have to take a different route to construct statistical
co-PIR. Additionally, we need this statistical secure co-PIR scheme to have near optimal download
rate.

2. Consistency of Inputs. We need the input set S sent by the receiver as part of PIR and co-PIR
messages to be the same. Otherwise, a malicious receiver can cheat and learn both messages m0,i and
m1,i for some position i and thus, breaking the sender security of OT.

3. Well-formedness of ciphertexts. The protocol described above assumes that the ciphertext ct
(encrypting the LPN secret) generated by the receiver is well-formed. Namely, this ciphertext should
encrypt bits and have a special structure that allows for packing of ciphertexts.

In the following, we will outline our approach to deal with these issues.

2.3 Statistical co-PIR

Our main challenge is to construct a co-PIR scheme that provides statistical security against malicious
receivers and has near optimal download rate. We build such a co-PIR scheme in a sequence of steps:

1. We start by building a one-query statistical semi-honest co-PIR, which erases only a single block of
bits and provides semi-honest security for both the receiver and the sender.

2. We then show how to achieve a one-query statistical semi-honest co-PIR that erases a single bit (instead
of an entire block).

3. In the next transformation, we show how to bootstrap a co-PIR that only allows to erase one bit into
one where multiple bits are erased.

4. Finally, we show how to achieve statistical sender privacy.

2.3.1 One-Query Statistical Semi-Honest Co-PIR

We first tackle the simpler task of constructing a statistical co-PIR which only erases one position of the
database and the security is required to hold only against semi-honest adversaries. We will call this primitive
a one-query semi-honest co-PIR.
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One-query Semi-honest co-PIR from PIR. One-query semi-honest co-PIR can be constructed in a
generic way from PIR. The receiver’s input to the PIR corresponds to the position that it wants to be erased.
The sender’s input to the PIR corresponds to vectors D̂1, . . . , D̂m where each D̂i corresponds to the database
D with the i-th position erased. By the correctness of the PIR, the receiver obtains D̂i.

For the resulting co-PIR scheme to be rate-1 and provide statistical security for the sender, we need that
the underlying PIR to fulfill these requirements. Such a PIR scheme was recently constructed in the work
of Aggarwal et al. [ADD+22].

However, a drawback of this construction is that the sender’s work is proportional to |D|2, which is the
size of the sender’s input to the PIR, whereas the receiver’s work is proportional to |D|. We now explain
how to build a co-PIR scheme which achieves better efficiency for the sender.

All-but-one lossiness. Our first observation is that a one-query statistical co-PIR resembles a primitive
called all-but-one trapdoor lossy function (ABO-TDF) [PW08]. Loosely speaking, an ABO-TDF is a function
parametrized by some public key and which is invertible everywhere except for some specified one branch
where it loses information. Crucially, the public key should not reveal about the lossy branch.

Peikert and Waters provide a simple construction of ABO-TDF from a linear homomorphic scheme
LHE such as El Gamal: to generate an ABO-TDF public key which is lossy on a branch i∗, one first
generates (pk, sk) ← LHE.KeyGen(1λ) and encrypts ct ← LHE.Enc(pk, i∗). The new ABO-TDF public key
is composed by (pk, ct). To encrypt a message m ∈ Z2 under index i, we homomorphically compute the
function f(x) = (i− x) ·m and obtain a new ciphertext c̃t.

It is easy to see that for all i ̸= i∗, decryption can recover m = LHE.Dec(sk, c̃t) · (i − i∗)−1. However,
when i = i∗ all information about m is statistically hidden, assuming that LHE is function private.

A simple statistical co-PIR with large computation. In the following, let p be the order of a DDH
group and LHE be a function private LHE scheme over a smaller field Zq for q = poly(λ), such as the one
presented in [BBDP22]. Let D ∈ Zm

q be the database of the sender, where q will be later defined. As a first
approach consider the following protocol for co-PIR:

• The receiver creates a pair of public/secret keys (pk, sk) ← LHE.KeyGen(1λ) and encrypts ct ←
LHE.Enc(pk, i∗) for i∗ ∈ [m].

• For all i ∈ [m] the sender homomorphically computes fi(x) = (i−x)·Di over ct and obtains ciphertexts
c̃t1, . . . , c̃tm.

• For all i ̸= i∗ the receiver obtains Di ← LHE.Dec(sk, c̃ti).

It is easy to see that correctness holds for all i ̸= i∗. Semi-honest security for the receiver follows from
the IND-CPA of LHE and semi-honest statistical security for the sender follows from the statistical function
privacy of LHE and from the fact that (i∗ − i∗) ·m = 0 ·m = 0.

In terms of efficiency, the receiver’s message is composed by a public key and an encryption and hence
its size is independent of |D|. However, the sender’s message is composed by m uncompressed ciphertexts.
So the scheme does not achieve near optimal download rate.

To achieve near optimal download rate, we will use the ciphertext compression technique for El Gamal
presented in [BBDP22] (which is itself based on previous works [BGI16, DGI+19, BBD+20]). These tech-
niques are specially designed for packed El Gamal and to use these packing techniques, we need the following
two conditions to hold.

1. The receiver’s message needs to encrypt a matrix rather than a single value i∗, in order for packing to
be possible. That is, ct← LHE.Enc(pk, i∗ · I) where I is the identity matrix of size k.

2. We need Di to be in Zk
q for large enough k in order to amortize the size of the ciphertext for a single

block. Moreover, we need that q > m. The latter condition comes from the fact that the operation
(i− i∗) needs to be performed over a modulus greater than m. If that was not the case, then it might
happen that (i− i∗) = 0 mod q for i ̸= i∗ over the integers and we will loose correctness.
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This gives us a statistical semi-honest one-query co-PIR for databases of size D = (D1, . . . ,Dm) where
each Di ∈ Zk

q for q > m.
In terms of computation, the scheme still incurs a quadratic blowup for both the sender and the receiver.

All ciphertext compression mechanisms for DDH [BGI16, DGI+19, BBD+20, BBDP22] have computational
complexity scaling with q for both the sender and the receiver. Since q > m, for each block, both parties have
to spend computational work proportional to m. Since there are m blocks, we end up with computational
complexity proportional to at least m2. Thus, we have not achieved any significant gains over the simple
solution from PIR.

An efficient statistical co-PIR. To improve the computational complexity of the protocol, we need a
way to make the complexity of encrypting and decrypting each block independent of m. Towards this goal,
we use a standard trick of embedding the underlying messages in an extension field.

To be a bit more specific, our idea is to parse the database D as a vector over an extension field F2µ

where µ = ⌈logm⌉. That is, we parse D = (D1, . . . ,Dm) ∈ Fk·m
2µ where each Di ∈ Fk

2µ .
We rely on the fact that for any two elements x̂, â ∈ F2µ , where x̂ = x1 + x2α + · · · + xµα

µ−1 for some
symbol α, each coefficient of the product x̂ · â can be expressed as a linear function depending only on â.
That is,

x̂ · â = f1,â(x) + f2,â(x)α+ · · ·+ fµ,â(x)α
µ−1

where x = (x1, . . . , xµ) and each fi,â is a Z2-linear function that depends solely on â.
Given this, the new scheme with improved computational complexity can be obtained as follows:

• Given an index i∗ ∈ [m], the receiver first decomposes it into its binary decomposition i∗ = (i∗1, . . . , i
∗
µ).

Then, it creates (pk, sk) ← LHE.KeyGen(1λ) and encrypts each i∗1, that is, ctj ← LHE.Enc(pk, i∗j · I)
where I is the identity matrix of size k. It sends pk and the ciphertexts ctj to the sender.

• The sender parses D = (D1, . . . ,Dm) ∈ Fk·m
2µ where each Di ∈ Fk

2µ . For each ℓ ∈ [m] it evaluates the

function fi(X̂) = (ℓ̂ · I − X̂) ·Dℓ over F2µ where ℓ̂ is the embbeding of ℓ in F2µ (by first converting
into its binary decomposition and then interpreting it as a F2µ element). As we have seen, fi can be
expressed as a Z2-linear function. Let c̃tℓ be the resulting ciphertexts. It compresses the ciphertexts
c̃tℓ to make them rate 1.

• Finally, the receiver decrypts each c̃tℓ for ℓ ̸= i∗, interprets the result as a Fk
2µ vector u and computes

D̃ℓ = (ℓ̂− î∗)−1 · u over F2µ .

Correctness, semi-honest security for the receiver and semi-honest statistical sender security hold as in
the protocol above.

Computational complexity. Unlike the previous protocol, the sender needs to compress m ciphertexts
of size µ · k. However, now all ciphertexts encrypt bits instead of messages over a larger modulus. Hence,
the sender’s computational complexity grows only linearly with the size m · k · µ of the database. Similarly,
the receiver needs to decrypt the ciphertexts (encrypting bits) sent by the sender, hence the computational
complexity for the receiver grows only linearly with the size of the database.

2.3.2 Full-Fledged Statistical Co-PIR

Until now we have discussed how to obtain a semi-honest statistical one-query co-PIR. However, for our OT
application, the co-PIR needs to i) provide statistical security against a malicious receiver, and ii) support
more than one query. Additionally, to obtain a bit-OT, we need our co-PIR to erase a single bit of the
database whereas the construction presented above only works for large erased blocks.
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Bit co-PIR from block co-PIR. We start by the simplest task of turning a co-PIR which erases an
entire block, or block co-PIR, into one that erases a single bit, or bit co-PIR.

Assume that the receiver wants to erase the j∗ bit of the i∗ block. We show that a bit co-PIR can be
built from a block co-PIR by additionally assuming the existence of a PIR scheme. The block co-PIR will
erase an entire block Di∗ = (Di∗,1, . . . , Di∗,k). The remaining positions Di∗,j for j ̸= j∗ can be sent to the
receiver via a PIR. The resulting scheme can be seen as a (one-query) bit co-PIR as only Di∗,j∗ is erased
from the perspective of the receiver. Importantly, we show that this scheme preserves security even against
malicious receivers. This is because if the PIR message points to another block, then the malicious receiver
obtains strictly lesser information and this does not violate the privacy of the honest sender.

Additionally, in terms of communication the scheme preserves i) short message from the receiver as the
PIR receiver’s message is small compared to the size of the database |D| = mk, and ii) near optimal download
rate as the sender’s PIR message only grows with k.

In terms of computation, the scheme preserves the computational complexity for the receiver. However,
the sender now as to run k PIR second message which makes its work to grow proportionally with |D| · k.
Setting k to be sublinear in m yields subquadratic work in the size of the database for the sender.

Multiple-query co-PIR via recursion. We now discuss how to obtain a co-PIR where the receiver’s
input is a set S of indices instead of a single index.

Assume that the message of the sender can be decomposed into bit ciphertexts. That is, copir2 can be
decomposed into (h, α1, . . . , αm) where h is a header of size poly(λ) and each αi decrypts to Di ∈ {0, 1},
where D = (D1, . . . , Dm) is the sender’s input.

The crucial idea of this transformation is that, since the underlying one-query co-PIR has near optimal
download rate, the sender can recurse the co-PIR without any blowup in the communication. Concretely
the protocol works as follows:

• The receiver sends t first one-query co-PIR messages {copir1,i}i∈[t] to the sender, each one encoding
an index ai to be erased.

• The sender computes the first one-query co-PIR message copir2,1 using the input database D ∈ {0, 1}m

and copir1,1. Recall that copir2,1 can be decomposed into (h1, α
(1)
1 , . . . , α

(1)
m ). The sender now creates

a second copir2,2 using a new database D1 = (α
(1)
1 , . . . , α

(1)
m )s and copir1,2. The sender repeats this

process until it obtains copir2,t (together with all previous headers) and sends this to the receiver.

• The receiver can recursively decrypt each copir2,t+1−i for i ∈ [t]. At each step, the at+1−i position of

(α
(t+1−i)
1 , . . . , α

(t+1−i)
m ) is erased and information about Dat+1−i

is statistically erased.

Since the underlying one-query co-PIR has near optimal download rate, each iteration of the recursion
maintains this property as long as t is sublinear in the size of the initial database D. Furthermore, if the
starting co-PIR is statistically secure against malicious receivers, then so is the transformed co-PIR.

Achieving statistical sender privacy against malicious receivers. So far we have only discussed
how to achieve semi-honest statistical security. It remains to show how to turn the protocol statistically
secure for the sender against malicious receivers who might send malformed first round messages.

If we are able to guarantee that the receiver’s message is well-formed, then we can use the semi-honest
(statistical) security to argue malicious (statistical) security. As a first approach, we will discuss how to use
a statistically sender secure conditional disclosure of secrets (CDS) to achieve the stronger notion of security.

Let L be an NP language. Recall that in a CDS scheme, the receiver holding a witness w for a statement
x, sends a first message cds1 to the sender that commits to w. The sender holding a message m computes
a second CDS message cds2 which allows the receiver to retrieve m iff x ∈ L and w is a valid witness. In
terms of security, we want that if x /∈ L, then m is statistically hidden from the receiver.
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It is well-known that statistically sender secure CDS schemes for NC1 can be constructed using (low-rate)
SSP OT and information theoretic garbled circuits [IK00, AIK04, App17]. Moreover, any NP language can
be verified by a NC1 circuit [GGH+13].

In order to achieve statistical sender security against malicious receivers, we will use a CDS that guar-
antees that the receiver’s message is well-formed. Consider the following language

LCoPIR′ = {copir1 : ∃(S, r) s.t. copir1 ← CoPIR′.Query(S; r)}

that is the language of well formed receiver’s messages, where CoPIR′ is the semi-honest protocol6 described
in the previous sections. Additionally, recall that our co-PIR scheme has a decomposability feature that the
sender’s message copir2 can be decomposed into (α1, . . . , αm) where each αi encodes Di.

The statistically secure protocol can be roughly described as follows:

• The receiver sends a co-PIR message copir1 ← CoPIR′.Query(S; r) for a set of indices S of size t using
random coins r. It additionally sends a first message cds1 for language LCoPIR′ using (S, r) as the
witness.

• The sender computes copir2 ← CoPIR′.Send(copir1,D) and decomposes copir2 into (α1, . . . , αm). It
now samples random β1, . . . , βt and computes

v = (α1, . . . , αm) + (β1, . . . , βt, 0, . . . , 0)

that is the first t coordinates of copir2 are hidden using β1, . . . , βt. It now sends a CDS message
cds2 ← CDS.Send(cds1, (β1, . . . , βt)) encrypting the values (β1, . . . , βt).

If copir1 is well-formed then the receiver can retrieve the values β1, . . . , βt, recover copir2 and retrieve
(α1, . . . , αm). In this case, we can use the semi-honest (statistical) security of the underlying CoPIR′ to
argue that the scheme is statistically secure. On the other hand, if copir1 is malformed, then the values
β1, . . . , βt are statistically hidden from the receiver given that CDS is statistically secure. In this case, the
values α1, . . . , αt are statistically hidden from the receiver’s point of view and thus, the first t positions of
D are statistically hidden.

In terms of communication, the scheme has near optimal download rate as the CDS communication only
depends on t (i.e., the size of the receiver’s message) and this is typically set to be sub-linear in the size of
the database.

While this gives us a generic solution to achieve SSP co-PIR, it incurs in a huge overhead as we need to
make non black-box use of the underlying semi-honest co-PIR.

A black-box solution. To achieve a better concrete efficiency, we show how to build a black-box CDS
scheme specifically for our purposes.

Recall that the receiver’s message is composed by a ciphertext encrypting a square matrix of size k.7

That is, a well formed receiver’s message consists of ct ← LHE.Enc(pk, b · I) where b ∈ {0, 1} and I is the
identity matrix. However, if the receiver behaves maliciously, then it can encrypt any matrix A so that it
learns partial (or total) information about the erased block.

Algebraic restriction codes. This is where algebraic restriction (AR) [ADD+22] codes come into play.
Roughly speaking, an AR code restricts the class of functions that an adversary can apply over an encoded
value.

More precisely, let ŷi ← AR.Encode(yi) for i = 1, 2. The work of [ADD+22] provides a construction of
AR codes that restrict the class of any linear function g(ŷ1, ŷ2) = ŷ1 ·A + ŷ2 over the encoded values to
the class of f(y1,y2) = y1 · (c · I) + y2 where I is the identity matrix and c ∈ Zp. The security of AR codes
allow to statistically simulate the evaluation of g over two encoded values ŷ1, ŷ2 given just the output of the
decoding f(y1,y2) where f is a function that depends on g.

6Technically speaking, we need the co-PIR scheme to be semi-malicious secure but for the sake of this overview, we will
ignore this difference. Our co-PIR scheme constructed before satisfies semi-malicious security.

7The receiver’s message is actually composed by several of these ciphertexts but for simplicity we assume that we only have
one ciphertext.
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A CDS from AR codes. Our main idea is to recast the construction of [ADD+22] in terms of CDS.
Specifically, the sender sets

y1 =

(
r0
r1

)
and y1 =

(
m

m− r1

)
where r0, r1←$Zk

p and m is the message that the sender wants to send.
However, instead of evaluating F (X) = y1 ·X+ y2 (that depends on y1,y2) over ct, it first AR encodes

both y1,y2, applies G(X) = ŷ1 ·X+ ŷ2 and finally homomorphically decodes the result.8

The AR codes security guarantees that the receiver will decrypt to something of the form

y1 · (cI) + y2 =

(
cr0 +m

cr1 +m− r1

)
.

If c = 0, 1 then the receiver can retrieve m. However, if c ̸= 0, 1 then the message m is statistically hidden
from the receiver.

2.4 Consistency of Inputs

Recall that we need a mechanism to ensure that the same set is used by a malicious receiver to generate a
PIR and a co-PIR message. First, note that the underlying PIR also needs to be statistically sender secure,
and this can be instantiated using the scheme of [ADD+22]. Our second crucial observation is that the
co-PIR receiver message comprises of a public key pk and encryptions of ai · I for ai ∈ {0, 1} which means
that the co-PIR messages are identical to the PIR messages of the scheme of [ADD+22]!9 This means that
the receiver does not have to send separate PIR messages: the sender can just interpret the co-PIR messages
as PIR messages and this guarantees consistency of inputs.

2.5 Well-formedness of Ciphertexts

The last missing piece is how to ensure that the ciphertexts encrypting the LPN secrets are well-formed.
These ciphertexts need to have a special structure i.e., they need to be encrypting bits, but in the current
form, there is nothing that prevents the adversary from sending malformed ciphertexts and learn additional
information.

Unfortunately, we cannot use a generic CDS protocol as we will lose optimal sender’s message length
or statistical security against the receivers. This is where we use rate-1 CDS. A rate-1 CDS is a standard
statistical sender secure CDS with one additional efficiency property: we require the size of the sender’s
message to be |m|+ o(|m|) for sufficiently long m (which is larger than the size of the NP verification).

Assume for now that we have a download rate-1 CDS scheme which is statistically secure against malicious
receivers. The sender encrypts its OT message using this CDS, and this message will be released to the
receiver iff the ciphertexts are well-formed. Since the CDS scheme is rate-1, there is no blowup in the size
of the sender’s message. Moreover, the receiver’s CDS message is small as its size only depends on the size
of the LPN secrets and the size of the NP relation to be verified is independent of the size of the sender’s
input.

To construct such a rate-1 CDS scheme, we plug the (download rate-1) OT scheme of [ADD+22] together
with the encryption scheme of [IP07] which yields a CDS scheme for branching programs (which contains
NC1 circuits) and this is sufficient for our purposes.

2.6 Future Directions

Except for the use of the general purpose rate-1 CDS scheme used in the last step, our scheme uses only
black-box techniques in the sense that it does not use explicit circuit-level description of cryptographic

8For this to work, we need the decoding function of the AR codes to be a linear function and this is indeed the case for AR
codes from [ADD+22].

9Our actual co-PIR scheme is a bit more complex as it also contains PIR messages as a result of the block-to-bit transfor-
mation. However, our co-PIR scheme is still “PIR-compatible” for a variant of the PIR scheme of [ADD+22].
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primitives. Coming up with a black-box technique that guarantees well-formedness of the ciphertexts of the
receiver is a interesting open problem.

3 Preliminaries

The acronym PPT denotes “probabilistic polynomial time”. Throughout this work, λ denotes the security
parameter. By negl(λ), we denote a negligible function in λ, that is, a function that vanishes faster than any
inverse polynomial in λ. Let n ∈ N. Then, [n] denotes the set {1, . . . , n}. If A is an algorithm, we denote by
y ← A(x) the output y after running A on input x. If S is a (finite) set, we denote by x←$S the experiment
of sampling uniformly at random an element x from S. If D is a distribution over S, we denote by x←$D
the element x sampled from S according to D. We denote by S[i] the i-th element of S (where the elements
are ordered by ascending order except when explicitly stated otherwise)

For two probability distributions X,Y , we use the notation X ≈s Y to state that the distributions are
statistically indistinguishable.

For two vectors u,v ∈ Fn over a finite field F, we denote by u⊙ v their component-wise multiplication.
We denote by Supp(u) the support of u, that is, the set of indices where u is different from 0.10 For S ⊆ [n],
uS denotes the vector (ui)i∈S . Finally, uT denotes the transpose of u and hw(u) denotes the Hamming
weight of u (that is, the number of coordinates of u different from 0).

Let Diag(n,v) be the algorithm that takes a vector v = (v1, . . . , vn) ∈ {0, 1}n and outputs a matrix

D =

v1 0
. . .

0 vn

 ∈ {0, 1}n×n,

i.e. D ∈ {0, 1}n×n is a diagonal matrix with the components of v on its diagonal.
Addtionally let SingleRowMatrix(ℓ, n, i,v) be the algorithm that takes i ∈ [ℓ] and a row-vector v ∈ {0, 1}n

and outputs a matrix

V =



0 . . . 0
...

...
0 . . . 0
— v —
0 . . . 0
...

...
0 . . . 0


∈ {0, 1}ℓ×n,

i.e. the i-th row of V is v, but V is 0 everywhere else.

3.1 Algebraic Restriction Codes

We recall the definition of algebraic restriction (AR) codes presented in [ADD+22]. In essence, an AR code
restricts an adversary to evaluate a specific function over an encoding.

Definition 1. An algebraic restriction (AR) code for a function family F is composed by a tuple of algorithms
(Encode,Eval,Decode) such that

• Encode(s, x) takes as input a seed s and an input x. it outputs a codeword c.

• Eval(c, f) takes as input a codeword c and a function f ∈ F . It outputs a new codeword d.

• Decode(s, d) takes as input a seed s and a codeword d. It outputs a value y.

10If there is only one index different from zero, Supp(u) denotes this index.
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An AR code should fulfill the following properties.

Definition 2 (Correctness). An AR code AR = (Encode,Eval,Decode) is said to be correct if for all seeds
s, all inputs x and all functions f ∈ F we have that

Pr [Decode(s,Eval(Encode(s, x), f)) = f(x)] = 1.

Let G and F be two classes of functions. AR codes gives us the guarantee that if we evaluate a function
from G then we learn no extra information as if we had evaluate some function from F . This intuition is
captured by a simulation security definition.

Definition 3 (Restriction security). An AR code AR = (Encode,Eval,Decode) is G-F restriction secure if
there exists an extractor Ext and a simulator Sim such that for every x and every function g ∈ G we have
that for all adversaries A

|Pr [1← A(s, g(Encode(s, x)), aux)]− Pr [1← A(s,Sim(s, aux, f(x)), aux)]| ≤ negl(λ)

where s is chosen uniformly at random and (f, aux)← Ext(g).

The work of [ADD+22] constructs AR codes that restricts the adversary from arbitrary linear functions
to simple linear functions.

Lemma 1 ([ADD+22]). Let q, n > 0, m > 2n+ 2 + 2λ and Fq be a field of order q. Consider the following
classes of functions:

• F consists of all functions f : Fn
q × Fn

q → Fn
q of the form f(x,y) = a · x+ y where a ∈ Fq.

• G consists of all functions g : Fm
q × Fm

q → Fm
q of the form g(x,y) = xA+ y where A ∈ Fm×m

q .

Then, there exists an AR code AR that statistically restricts G to F . Importantly, the decoding algorithm of
the construction can be described as a linear function. That is, given a codeword c ← AR.Encode(s,x), the
output of the algorithm Decode can be obtained by computing x = Rsc

T for some matrix Rs defined by the
seed s.

3.2 Learning Parity with Noise

Informally, the LPN assumption states that it is hard to find a solution for a noisy system of linear equations
over Z2. We now give the precise definition of the assumption.

Definition 4 (LPN assumption). Let n,m, t ∈ N such that n ∈ poly(λ) and let χm,t be uniform distribution
over the set of error vectors of size m and hamming weight t. The Learning Parity with Noise (LPN)
assumption LPN(n,m, ρ) holds if for any PPT adversary A we have that∣∣∣∣∣∣Pr

1← A(A, sA+ e) :
A←$ {0, 1}n×m

s←$ {0, 1}n
e←$χm,t

− Pr

[
1← A(A,y) :

A←$ {0, 1}n×m

y←$ {0, 1}m
]∣∣∣∣∣∣ ≤ negl(λ)

where ρ = m/t (ρ is called the noise rate).

In this work, we assume that the noise rate ρ is m1−ε for any constant ε > 0. The LPN assumption is
believed to be hard for that noise rate (see e.g. [BCG+19a] and references therein).

We also use the LPN over large fields assumption LPN(n,m, ρ, q) where the all components come from
a larger field Zq instead of {0, 1}. This assumption has been extensively used in previous works (e.g.
[BCG+19a, JLS21]).
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3.3 Cryptographic Primitives

3.3.1 Rate-1 Circuit-Private Linearly Homomorphic Encryption

Here we present the definition of packed LHE. The LHE that we need in this work should fulfill circuit
privacy and have ciphertexts with rate 1.

Definition 5. A (packed) linearly homomorphic encryption (LHE) scheme LHE over a finite group G is
composed by a tuple of algorithms (Keygen,Enc,Eval,Shrink,DecShrink) such that:

• KeyGen(1λ, k) takes as input a security parameter λ and k ∈ N. It outputs a pair of public and secret
keys (pk, sk).

• Enc(pk,m = (m1, . . . ,mk)) takes as input a public key pk and a message m = (m1, . . . ,mk) ∈ Gk. It
outputs a ciphertext ct.

• Eval(pk, f, (ct1, . . . , ctℓ)) takes as input a public key pk, a linear function f : (Gk)ℓ → Gk and ℓ
ciphertexts (ct1, . . . , ctℓ). It outputs a new ciphertext c̃t.

• Shrink(pk, ct) takes as input a public key pk and a ciphertext ct. It outputs a new shrunken ciphertext
ct′.

• DecShrink(sk, ct) takes as input a secret key sk and a shrunken ciphertext ct. It outputs a message m.

For simplicity, we define the algorithm Eval&Shrink(pk, f, (ct1 . . . , ctℓ)) which outputs a ciphertext c̃t and
is defined as

Eval&Shrink(pk, f, (ct1 . . . , ctℓ)) = Shrink(pk,Eval(pk, f, (ct1, . . . , ctℓ)))

for any linear function f .
We require the following properties from a (circuit-private) packed LHE: Correctness, semantic security,

compactness and circuit-privacy.

Definition 6 (Correctness). A packed LHE scheme LHE is said to be correct if for any ℓ ∈ N, any messages
m1, . . . ,mℓ and any linear function f : (Gk)ℓ → Gk we have that

Pr

m̃← DecShrink(sk, c̃t) :
(pk, sk)← KeyGen(1λ, k)

cti ← Enc(pk,mi) for i ∈ [ℓ]
c̃t← Eval&Shrink(pk, , f, (ct1 . . . , ctℓ))

 = 1

where m̃← f(m1, . . . ,mℓ).

Definition 7 (Semantic Security). A packed LHE scheme LHE is said to be semantically secure if for all
PPT λ ∈ N, all k = poly(λ) and all adversaries A = (A0,A1) we have that∣∣∣∣∣∣∣∣Pr

b← A1(st, ct) :

(pk, sk)← KeyGen(1λ, k)
(m0,m1, st)← A0(pk)

b←$ {0, 1}
ct← Enc(pk,mb)

− 1

2

∣∣∣∣∣∣∣∣ ≤ negl(λ).

Definition 8 (Compactness). We require that a packed LHE scheme LHE has the following compactness
properties:

• For (pk, sk)← KeyGen(1λ, k), the size of the public key |pk| is bounded by k · poly(λ).

• For any linear function f : (Gk)ℓ → Gk and any (m1, . . . ,mℓ) ∈ (Gk)ℓ we have that

lim
λ→∞

inf
|f(m1, . . . ,mℓ)|

|Eval&Shrink(pk, , f, (ct1 . . . , ctℓ))|
→ 1

for sufficiently large k, where (pk, sk)← KeyGen(1λ, k) and cti ← Enc(pk,mi) for i ∈ [ℓ]. In this case,
we say that the scheme has rate 1.
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We also need that the packed LHE scheme fulfills circuit privacy in the malicious case.

Definition 9 (Circuit privacy). A packed LHE scheme LHE is said to be statistically circuit-private if for
all messages (m1, . . . ,mℓ) ∈ (Gk)ℓ and all linear functions f : (Gk)ℓ → Gk, there exists a simulator Sim
such that for all public keys (pk, sk)← KeyGen(1λ, k) and all ciphertexts cti ← Enc(pk,m1) we have that{

(pk, sk, c̃t) : c̃t← Eval&Shrink(pk, , f, (ct1 . . . , ctℓ))
}
≈s

{
(pk, sk, c̃t) : c̃t← Sim(pk, m̃)

}
.

In other words, since Sim does not use f to compute c̃t, no information about it is leaked from c̃t (apart
from what is trivially leaked by f).

Encryption of matrices. Above, we defined LHE that supports encryption of vectors m ∈ Gk. We can
easily extend the definition to support encryption of matrices M ∈ Gk×α for any α = poly(λ): Given a
public key pk, an encryption Enc(pk,M) of M is defined as

Enc(pk,M) =

 | |
Enc

(
pk,m(1)

)
. . . Enc

(
pk,m(α)

)
| |


where m(i) is the i-th column of M.

Instantiations. The work of [BBDP22] presents a construction that fulfills the requirements above from
the DDH assumption where G = Zq for any q = poly(λ).

3.3.2 Conditional Disclosure of Secrets

We now define the sintax of CDS.

Definition 10 (Conditional disclosure of secrets). A conditional disclosure of secrets (CDS) scheme CDS
for a language L is composed by the following algorithms:

• EncL(1
λ, w) takes as input the security parameter λ and a witness w ∈ W. It outputs a first message

cds1 and a state st.

• SendL(cds1, x,m) takes as input a first message cds1, a statement x ∈ X and a message m. It outputs
a second message cds2.

• Release(cds2, st) takes as input a second message cds2 and a private state st. It outputs a message m.

Definition 11 (Correctness). A CDS scheme CDS is said to be correct if for any x ∈ L and any message
m we have that

Pr

[
m← Release(cds2, st) :

(cds1, st)← Enc(1λ, w)
cds2 ← Send(cds1, x,m)

]
= 1.

Definition 12 (Receiver security). A CDS scheme CDS is said to be receiver secure if for any adversary A
and any pair of (w0, w1) ∈ W2 we have that∣∣∣∣ Pr

[
1← A(cds1) : (cds1, st)← Enc(1λ, w0)

]
−

Pr
[
1← A(cds1) : (cds1, st)← Enc(1λ, w1)

] ∣∣∣∣ ≤ negl(λ).

Definition 13 (Statistical sender security). A CDS scheme CDS is said to be statistical sender secure if
there is a (possibly computationally inefficient) extractor CDS.Ext such that for any message cds1 and any
pair of messages (m0,m1), if (x,w) /∈ RL (where RL is the relation of L) then

Send(cds1, x,m0) ≈s Send(cds1, x,m1)

where w ← CDS.Ext(cds1).
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Recall that any NP verification algorithm can be described as a NC1 circuit [GGH+13]. Then we have
the following lemma.

Lemma 2 ([IK02, OPP14]). Assuming the existence of SSP-OT together with an information-theoretical
version of Yao’s garbling, there exists a statistically sender secure CDS for functions in NC1.

3.3.3 Rate-1 Statistically Sender Secure Conditional Disclosure of Secrets

In this section we show how we can recast the results in [ADD+22] as a rate-1 CDS. A rate-1 CDS is a
CDS scheme where the ratio between the sender’s message and sender’s input is close to 1. Moreover the
receiver’s CDS message is independent of the size of the sender’s input.

Recall that [ADD+22] gives an download rate-1 SSP OT which together with [IP07] gives us a two-round
protocol (or homomorphic encryption for branching programs) with the following properties: i) statistical
branching program privacy, and ii) semi-compactness which means that the size of the evaluated ciphertext
grows with the depth of the branching program but not with its size. Let 2PC = (Enc,Eval,Receive) be such
a protocol where

• Enc(1λ, x) takes as input a value x. It outputs ct and a private state st.

• Eval(ct,B) takes as input a ciphertext and a branching program B. It outputs an evaluated ciphertext
c̃t.

• Receive(c̃t, st) takes as input an evaluated ciphertext c̃t and a private state st. It outputs a value y.

In terms of correctness, we want that y = B(x) with overwhelming probability. In terms of security, we
want that i) receiver security holds if Enc(1λ, x1) and Enc(1λ, x2) are computationally indistinguishable for
any two x1, x2; and ii) statistical sender security holds if there exists an extractor Ext such that for any two
branching programs B1,B2 such that B1(x) = B2(x) then Eval(ct,B1) ≈s Eval(ct,B2) for any ct and where
x← Ext(ct).

Lemma 3 ([IP07, ADD+22]). There exists a statistically sender secure homomorphic encryption scheme
2PC = (Enc,Eval,Receive) as described above such that

• |ct| = poly(|x|, λ) where ct← Enc(1λ, x).

• |c̃t| = |B(x)|+ poly(D,λ) where c̃t← Eval(ct,B) and D is the depth of B.

Recall that any verification circuit can be implemented by an NC1 circuit [GGSW13] and that any NC1
can be described as a branching program whose depth depends polynomially on the size of the input (which
for a NP verification circuit depends polynomially on the size of the statement and the size of the witness).

Corollary 1. There exists a two-round CDS scheme for any NP language where:

• semi-honest receiver security holds under the DDH assumption and malicious sender security holds
statistically.

• The size of cds1 is poly(|x|, |w|, λ) and the size of cds2 is |m|+poly(|x|, |w|, λ) where cds1 ← CDS.Enc(1λ, w),
cds2 ← CDS.Send(cds1, x,m), x is the statement and w is the witness.

3.3.4 Private Information Retrieval

Private Information Retrieval (PIR) schemes [CGKS95] allow a user to retrieve the i-th bit of an n-bit
database, without revealing to the database holder the value of i. We use PIR schemes with sender privacy
[DMO00, ADD+22].

Definition 14 (PIR). A private information retrieval (PIR) scheme PIR is composed by the following
algorithms:
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• Query(n, i) takes as input an index i ∈ [n]. It outputs a query q and a state sti.

• Send(D, q) takes as input a database D = (D1, . . . ,Dn) ∈ ({0, 1}B)n (where each Di ∈ {0, 1}B) and a
message q. It outputs a response r.

• Retrieve(r, sti) takes as input a response r and a state sti. It retrieves the entry Di.

We will slightly overload the notation and write Query(n, S) where S is a set of size t to denote
{Query(n, S[i])}i∈[t].

Definition 15 (Correctness). A PIR scheme PIR is said to be correct if for any n = poly(λ), D ∈ ({0, 1}B)n
and i ∈ [n], we have that

Pr

[
Di = Retrieve(sti, r) :

(sti, q)← Query(n, i)
r← Send(D, q)

]
= 1.

Definition 16 (User privacy). A PIR scheme PIR is said to be user private if for any PPT adversary A,
any n, λ ∈ N,D ∈ ({0, 1}B)n and i, j ∈ [n], we have that∣∣∣∣ Pr[1← A(1λ,D, qi) : (sti, qi)← Query(n, i)]−

Pr[1← A(1λ,D, qj) : (stj, qj)← Query(n, j)]

∣∣∣∣ ≤ negl(λ).

Definition 17 (Statistical sender privacy). A PIR scheme PIR is said to be statistical sender private if there
exists an extractor Ext such that for any λ ∈ N, any n = poly(λ), any first message qi we have that

{ri : ri ← Send(Dx, qi)} ≈s {ri : ri ← Send(Dy, qi)}

where i← Ext(qi) and Dx,Dy ∈ {0, 1}n are two databases such that Dx
i = Dy

i .

The ADD+ scheme. A scheme fulfilling these properties was presented in [ADD+22] and its security
is based on DDH. We will refer to such scheme as ADD+ scheme. Additionally, this scheme achieves
the following communication complexity: Let B be the size of the block received by the receiver and let
D = (D1, . . . ,Dm) ∈ {0, 1}mB where each Di ∈ {0, 1}B . Of course the size of the block retrieved by the
receiver can be made arbitrarily large by making the sender to reuse the receiver’s message.

• Receiver’s message. The bitsize of q is upper-bounded by B · poly(λ).

• Sender’s message. The bitsize of r is upper-bounded by |D|+ poly(λ) · polylog(|D|).

The [ADD+22] scheme makes use of a LHE scheme LHE with rate-1 ciphertexts. Moreover, the first mes-
sage sent by the receiver for an input index j ∈ [n] is composed by

(
pk, {CTi}i∈[mu]

)
where each component

is composed in the following way: i)(pk, sk) ← LHE.KeyGen(1λ, B), and ii) each CTi ← LHE.Enc(pk, ji · IB)
where (j1, . . . , jµ) is the binary decomposition of i and IB is the identity matrix of size B.

3.3.5 Two-Round Statistical Sender Private Oblivious Transfer

Oblivious transfer (OT) allows the receiver to encode a bit b and send it to the sender. The sender creates
a response given this encoding and a pair of messages (m0,m1). Finally, the receiver recovers mb.

Definition 18. A two-round statistical sender private oblivious transfer (SSP OT) scheme OT is composed
by the following algorithms:

• OTR(1λ,b) takes as input the security parameter λ and a vector b = (b1, . . . , bn) ∈ {0, 1}n. It outputs
a message ot1 and a private state st.
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• OTS(ot1,m0,m1) takes as input a first OT message ot1 and two vectors m0,m1 ∈ {0, 1}n.11 It outputs
a second OT message ot2.

• OTD(ot2, st) takes as input a second OT message ot2 and a private state st. It outputs a vector m̃.

An OT should be correct, sender secure and receiver secure. Here, we consider a special sender security
definition called statistical sender security.

Definition 19 (Correctness). An OT scheme OT is said to be correct if for any n ∈ poly(λ), any pair of
messages (m0,m1) ∈ ({0, 1}n)2 and any b ∈ {0, 1}, we have that

Pr

[
mb = OTD(ot2, st) :

(ot1, st)← OTR(1λ, b)
ot2 ← OTS(ot1,m0,m1)

]
= 1.

Definition 20 (Statistical sender privacy). An OT scheme OT is said to be statistical sender private if for
any λ ∈ N, any n = poly(λ), there exists an extractor OT.Ext such that for any two messages m0,m1 ∈
{0, 1}n and any ot1 we have that

OTS(ot1,m0,m1) ≈s OTS(ot1,mb′ ,mb′)

where b′ ← OT.Ext(ot1).

Definition 21 (Receiver security). An OT scheme OT is said to be receiver secure if for any PPT adversary
A, λ and any b, b′ ∈ {0, 1} we have that∣∣∣∣ Pr[1← A(1λ, ot1) : (ot1, st)← OTR(1λ, b)]−

Pr[1← A(1λ, ot1) : (ot1, st)← OTR(1λ, b′)]

∣∣∣∣ ≤ negl(λ).

Efficiency. We consider two-round OT protocols where ot1 is the message sent by the receiver and ot2 is
the message sent by the sender. Let b = (b1, . . . , bn) be the input of the receiver and let mb be its output.

We call upload rate to the value limλ→∞ inf |ot1|
|b| and download rate to the value limλ→∞ inf |ot1|

|mb| . When

both values tend to 1 then we say that the scheme has overall rate 1.

4 Conditional Disclosure of Secrets for DDH-based Encryption

In this section we present a black-box construction of a CDS for a specific language. Namely, our scheme
guarantees that an El-Gamal public key is well-formed and that a certain ciphertext encrypts a bit. The
scheme fulfills statistical sender privacy.

Before presenting our CDS scheme, we extend the definition of packed LHE of Definition 5. This definition
only considers operations over a polynomial size field. However, the El Gamal encryption also allows for
operations over Zp and this is captured by the algorithm AltEval1. The second algorithm AltEval2 captures
a different type of homomorphism accross slots. After using this evaluation algorithm, the applied function
needs to be known in order to decrypt the resulting ciphertext.

Definition 22 (Alternative Eval algorithm for LHE). Consider a rate-1 circuit-private LHE scheme LHE =
(KeyGen,Enc,Eval,Shrink,DecShrink) that supports evaluation of ciphertexts over Z2 as described in Defini-
tion 5. We say that LHE supports alternative linear homomorphism if there are algorithms (AltEval1,AltEval2,AltDec)
such that

• AltEval1(pk, (a,b),CT) takes as input a matrix CT of ciphertexts ct1, . . . , ctm of size n, a ∈ Zm
p and

b ∈ Zn
p . It outputs a new ciphertext ct.

11We use the term bit OT to denote the case where n = 1.
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• AltEval2(pk,R ∈ Zm×n
p , ct) takes as input a public key pk, a matrix R and a ciphertext ct. It outputs

a new ciphertext c̃t.

• AltDec(sk,R, c̃t) takes as input a secret key sk, a matrix R and a ciphertext ct. It outputs a message
m.

The correctness requirement we need is the following: for all matrices M ∈ Zn×m
2 ,a ∈ Zm

p ,b ∈ Zn
p ,R ∈ Zm×n

2

Pr

R · (M · aT + bT ) = AltDec(sk,R, c̃t) :

(pk, sk)← KeyGen(1λ, k)
CT← Enc(pk,M)

ct← AltEval1(pk, (a,b),CT)
ct∗ ← AltEval2(pk,R, ct)

c̃t← Shrink(pk, ct∗)

 = 1

if each coordinate of R · (M · aT + bT ) is in poly(λ).

It is shown in [ADD+22] that the standard El Gamal encryption scheme supports these two types of
homomorphism. We present the scheme in Appendix A. Additionally the scheme fulfills statistical malicious
circuit privacy.

Construction. We will now focus on the construction. Let µ > 0. In the following, consider the following
language parametrized by a public key pk in the range of LHE.KeyGen

Lpk =

{
{cti}i∈[µ] :

cti ← LHE.Enc(pk, ai · Iℓ; ri)
ai ∈ {0, 1}

}
where Iℓ is the identity matrix of dimension ℓ.

Ingredients. We will need the following ingredients:

• Let AR = (Encode,Eval,Decode) be an AR code with linear decoding as the one presented in Lemma
1. That is, to decode a codeword y, one computes Rs · yT for a matrix Rs ∈ Z2n×ℓ

q specified by the
seed s.12

• Let LHE = (KeyGen,Enc,Eval, ,Shrink,DecShrink) be a packed rate-1 circuit-private LHE with alterna-
tive evaluation algorithms (AltEval1,AltEval2,AltDec) as described in Definition 22.

• Let (pk, sk)← LHE.KeyGen(1λ, ℓ).

Construction 1. We now show how to build a CDS scheme for the languange Lpk.

Enc(1λ, w, aux = sk):

• Parse w as a1, . . . , aµ, where each ai ∈ {0, 1}.

• Output cds1 =⊥ and st = (w, sk).

12Recall that AR codes restricts the class of functions that the adversary can evaluate evaluating. In our case, we use
the construction of Lemma 1 which restricts the adversary to evaluating scalar functions of the form f(x,y) = a · x + y or
equivalently f(x,y) = I · x+ y where I is the identity matrix.
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Send(cds1,Lpk,d ∈ {0, 1}n):

• Sample d1, . . . ,dµ←$ {0, 1}n such that d =
∑µ

i=1 di.

• Sample a seed Rs←$Z2n×ℓ
p for the AR code.

• For all i ∈ [µ], sample r0,i, r1,i←$Zn
p . Set y1,i =

(
r0,i
r1,i

)
and y2,i =

(
di

di − r1,i

)
.

• For all i ∈ [µ], compute ŷ1,i ← AR.Encode(s,y1,i) and ŷ2,i ← AR.Encode(s,y2,i).

• For all i ∈ [µ], let Gi(X) = X · ŷT
1,i + ŷT

2,i. Compute ĉti ← LHE.AltEval1(pk, Gi, cti).

• For all i ∈ [µ],compute c̃ti ← LHE.AltEval2(pk,Rs, ĉti)

• Output cds2 = ({c̃ti}i∈[µ],Rs).

Release(cds2, st):

• Parse cds2 as ({c̃ti}i∈[µ],Rs) and st = (w, sk) where w = a1, . . . , aµ.

• For all i ∈ [µ], compute wi ← LHE.AltDec(sk,Rs, c̃ti). Parse wi =

(
zi,0
zi,1

)
and set d̃i = zi,ai .

• Output d̃ =
∑µ

i=1 d̃i.

Lemma 4 (Correctness). The scheme presented in Construction 1 is correct assuming that LHE and AR are
correct.

Proof. By the correctness of the alternative evaluation algorithms, we have that for all i ∈ [µ]

wi =

(
zi,0
zi,1

)
= LHE.AltDec(sk,R, c̃ti)

= Rs ·
(
(ai · Iℓ) · ŷT

1,i + ŷT
2,i

)
= Rs ·

(
ai · ŷT

1,i + ŷT
2,i

)
= ai · yT

1,i + yT
2,i = ai ·

(
r0,i
r1,i

)
+

(
di

di − r1,i

)
=

(
ai · r0,i + di

ai · r1,i + di − r1,i

)
where the fourth equality follows from the correcness of the AR code. Hence, if ai = 0 then d̃i = zi,0 = di.

Else if ai = 1 then d̃i = zi,1 = di.

Since d̃i = di for all i ∈ [µ], then we have that
∑µ

i=1 d̃i = d.

Lemma 5 (Receiver security). The scheme presented in Construction 1 is receiver secure.

This follows immediately from the fact that the receiver sends no additional information to the sender.

Lemma 6 (Statistical sender security). The scheme presented in Construction 1 is statistical sender secure
assuming that LHE is statistically malicious circuit private and AR restricts functions of the form g(ŷ1, ŷ2) =
LHE.AltEval1(pk, Gi, cti) to linear functions of the form f(y1,y2) = ay1 + y2 or f(y1,y2) = y1.

Proof. We first describe the extractor CDS.Ext. This algorithm uses the AR extractor AR.Ext as a subroutine.
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CDS.Ext(cds1):

• Run A1, . . . ,Aµ ← LHE.Ext(pk, ct1, . . . , ctµ) where each A ∈ Zℓ×ℓ
p .

• For all i ∈ [µ] define gi(ŷ1, ŷ2) = A · ŷT
1 + ŷT

2 .

• For all i ∈ [µ] run (fi, auxi)← AR.Ext(gi).

• If fi is of the form fi(y1,y2) = y1, output ai =⊥. Else if fi is of the form fi(y1,y2) = aiy1 + y2,
output ai.

Hybrid H0. This is the real game.

Hybrid H1,i. This hybrid is identical to the previous one except that the simulator first extractsA1, . . . ,Aµ ←
LHE.Ext(pk, ct1, . . . , ctµ) where each A ∈ Zℓ×ℓ

p . Then it computes zi = Rs ·Ai · ŷT
1,i + ŷT

2,i and computes

c̃ti ← LHE.Sim(pk, zi). This hybrid is defined for i = 1, . . . , µ.
Statistical indistinguishability of hybrids follows from the statistical malicious circuit privacy of the

underlying LHE.

Hybrid H2,i. This hybrid is identical to the previous one except that the simulator extracts (fi, auxi) ←
AR.Ext(gi). This hybrid is defined for i = 1, . . . , µ.

Now assume that ai ̸= 0, 1. In the following, let AR.Sim be the simulator of the AR code. Assume that
fi is of the form fi(y1,y2) = aiy1 + y2 where ai ̸= 0, 1. Then note that

f(y1,iy2,i) = ai ·
(
r0,i
r1,i

)
+

(
di

di − r1,i

)
=

(
di

di

)
+

(
air0,i

(ai − 1)r1,i

)
≈s

(
r0,i
r1,i

)
where the last step follows from the fact that ai ̸= 0, 1 and both r0,i, r1,i are uniformly distributed. Again,
by the security of AR codes, we can replace ĉti by AR.Sim(aux, r) and this change goes unnoticed except
with negligible probability.

Communication complexity. We now analyze the communication complexity of the scheme. The
sender’s message cds2 is composed by {c̃ti}i∈[µ],Rs where

• |{c̃ti}i∈[µ]| = µ · n · poly(λ)

• |Rs| = 2n · ℓ · poly(λ).

Thus, the total communication complexity is µ · n · poly(λ) + 2n · ℓ · poly(λ) = poly(µ, |d|, ℓ, λ).

Remark 1. A CDS protocol can be seen as a two-round witness encryption scheme. We remark that the
protocol presented in Construction 1 can also be seen as a witness encryption for the language Lpk (where the
witness that allows for decryption is the secret key associated with pk) since the first message by the receiver
cds1 is just the empty string.
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5 Definition of Co-Private Information Retrieval

We start by defining co-PIR in an identical way as in [BBDP22]. A co-PIR is a primitive that allows a
sender to transmit a database to a receiver, except for some positions which will be (statistically) erased.

Definition 23 (Co-PIR). Let H be a group. A co-private information retrieval (co-PIR) scheme is parametrized
by a integer m = poly(λ) and is given by a tuple of algorithms (Query,Send,Rec) with the following sintax:

• Query(1λ, S) takes as input the security parameter λ and a subset of indices S = {i1, . . . , it} ⊆ [m] of
size t. It outputs a first co-PIR message copir1 and a private state st.

• Send(copir1,D) takes as input a first co-PIR message copir1 and a database D ∈ Hm.13 It outputs a
second co-PIR message copir2.

• Rec(copir2, st) takes as input a second co-PIR message copir2 and a private state st. It outputs a
database D̃ ∈ Hm.

A co-PIR scheme should fulfill the following properties.

Definition 24 (Correctness). A co-PIR scheme is said to be correct if for any m = poly(λ) and S ⊆ [m]

Pr

DS̄ = D̃S̄ :
(copir1, st)← Query(1λ, S)
copir2 ← Send(copir1,D)

D̃← Rec(copir2, st)

 = 1

where S̄ = [m] \ S. In other words, Di = D̃i for all i /∈ S.

We also define a slightly stronger notion of security that we call locally correct.

Definition 25 (Locally correctness). A co-PIR scheme is locally correct if the following holds: i) copir2
is of the form (α1, . . . , αm), and ii) The Rec algorithm can be divided into subalgorithms Reci such that
Di ← Reci(αi, st) for all i /∈ S.

Definition 26 (Efficiency). A co-PIR scheme is said to be efficient if the it fulfills the following requirements:

• |copir1| = polylog(|D|) · poly(λ, |S|).14

• Download rate 1: If t is sublinear in |D| (that is t = o(|D|)) then limλ→∞ sup |copir2|
|D| → 1 for

sufficiently large |D| where D ∈ Hm and copir2 ← Send(copir1,D).15

Definition 27 (Receiver security). A co-PIR scheme CoPIR is said to be receiver secure if for all m =
poly(λ), any subsets S1, S2 ⊆ [m] we have that for any adversary A∣∣∣∣ Pr

[
1← A(k, copir1) : (copir1, st)← Query(1λ, S1)

]
−

Pr
[
1← A(k, copir1) : (copir1, st)← Query(1λ, S2)

] ∣∣∣∣ ≤ negl(λ).

13We use the term bit co-PIR to denote the case when H = {0, 1}. Otherwise, we use the term block co-PIR.
14We usually consider co-PIR protocols where the first message depends polylogarithmically on the size of D, similarly to

PIR protocols. However, for our OT application in Section 10, it is enough to consider copir1 to depend sublinearly on the size
of D.

15In a co-PIR, we allow the sender’s message to be of the same size of the sender’s input (or even slightly larger by an additive
term depending on t) instead of the usual rate-1 definition which compares the sender’s message with the receiver’s input. This
is the reason why we e define a co-PIR to be rate-1 only for t = o(D) erased positions, which is enough for our applications.
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Sender security. We define two notions for statistical sender security. The first one, which is the strongest
one, considers malicious and computationally unbounded receivers.

Definition 28 (Statistical sender security). A co-PIR is said to be statistically sender secure if there is a
(possibly computationally inefficient) extractor CoPIR.Ext such that for any message copir1 and any pair of
databases (D,D′)

Send(copir1,D) ≈s Send(copir1,D
′)

where S ← CoPIR.Ext(copir1) and D′
i = Di for i /∈ S. Here, S is a set of size at most t.

We also consider a relaxation of sender security that only considers semi-honest and computationally
unbounded receivers.

Definition 29 (Semi-honest statistical sender security). A one-query co-PIR scheme CoPIR is said to be
semi-honest sender secure if for all S ⊆ [m] of size t we have that

Send(copir1,D) ≈s Send(copir1,D
′)

for all D,D′ ∈ Hm such that D′
i = Di for i /∈ S, and all copir1 ← Query(1λ, S).

A co-PIR fulfilling the latter security definition is called a semi-honest co-PIR.

One-query co-PIR. We also define a one-query co-PIR scheme, that is, a co-PIR where the receiver’s
query is composed by a single index.

Definition 30 (One-query co-PIR). A one-query co-PIR scheme is identical to a co-PIR except that the
input of the receiver is composed by a single index. That is, the set S in Definition 23 is of the form S = {i∗}.
Correctness, statistical sender security and receiver security are defined in an analogous way.

Self-reducibility. Another property that we will need is self-reducibility.16 This ensures that the output
of a one-query co-PIR has the same form as the database and thus can be input into a new one-query co-PIR.

Definition 31 (Self-reducibility). A one-query co-PIR scheme is said to be self-reducible if the sender’s
message is of the form copir2 = (head, α1, . . . , αm). Moreover, for any i∗ ∈ [m], any two databases D,D′

such that Di = D′
i for all i ̸= i∗ and any copir1 message we have that

(head, α1, . . . , αi∗−1, αi∗+1, . . . , αm) ≈s (head
′, α′

1, . . . , α
′
i∗−1, α

′
i∗+1, . . . , α

′
m)

where copir2 = (head, α1, . . . , αm)← Send(copir1,D), copir′2 = (head′, α′
1, . . . , α

′
m)← Send(copir1,D

′).

In other words, self-reducibility states that all information about the block/bit Di of the database is
contained in a single block/bit of the copir2 message. This property will be essential for recursion.17

PIR compatibility. Let PIR be a PIR scheme and CoPIR be a co-PIR scheme. We say that CoPIR is
PIR-compatible if the first message copir1 ← CoPIR.Query(1λ, S) can be used as a first message of the PIR
scheme. That is, we can parse copir1 as q and compute r ← PIR.Send(D, q) while preserving correctness,
receiver security and (statistical) sender security.

16The work of [BCM22] defines an identical property for OT.
17In this definition we assume that the i-th block/bit of copir erases Di. However, this does not need to be the case in general:

it might happen that the i-th block/bit of copir erases Dj , which is what happens with our construction in Section 7. However,
both definitions are equivalent up to a reordering of the database.
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6 Semi-Honest One-Query Co-PIR

We first present a construction of a one-query co-PIR that achieves semi-honest statistical sender security.
Before presenting our scheme we show how we can convert a LHE scheme over Z2 that supports ciphertext

shrinking into an LHE scheme over Fq where q = 2µ for some µ = poly(λ). Here, we rely on the fact that
multiplication over Fq can be expressed as a linear function over the field Z2. That is, suppose that an
element x ∈ Fq is of the form x = x1 + x2α+ · · ·+ xµα

µ−1 where each xi ∈ Z2 and α is a symbol. Then, for
elements a, x ∈ Fq the product

xa = f1,a(x) + f2,a(x)α+ · · ·+ fµ,a(x)α
µ−1

where x = (x1, . . . , xµ) and each fi,a : Zµ
2 → Z2 is a Z2-linear function which depends solely on a. This

means that there is a square matrix A (determined by a) such that the coefficients of the product x · a over
Fq are the coefficients of x ·A over Z2.

We now define the following functions.

• FieldMult(a ∈ Fq, µ) takes as input an element a ∈ Fq where q = 2µ. It outputs a matrix A ∈ {0, 1}µ×µ

such that the coefficients of xA ∈ {0, 1}µ correspond to the coefficients of x · a over Fq (here x is a
binary vector whose coefficients are the ones of x ∈ Fq).

Ingredients. We need the following ingredients: Let k,m ∈ poly(λ), µ > ⌈logm⌉ and q = 2µ. Let

• LHE = (KeyGen,Enc,Eval,Shrink,DecShrink) be a rate-1 packed LHE scheme over Z2.

• bin : [m]→ {0, 1}µ be the function that outputs the binary decomposition.

Construction 2. We now present the full construction.

Query(1λ, i∗ ∈ [m]):

• Compute i∗ = (i∗1, . . . , i
∗
µ)← bin(i∗).

• For all ℓ ∈ [µ] set

T∗
ℓ = i∗ℓ · Iℓ =


i∗ℓ 0 . . . 0
0 i∗ℓ . . . 0
...

. . .
...

0 . . . 0 i∗ℓ

 ∈ {0, 1}k×k

where Ik is the identity matrix of size k.

• Create (pk, sk)← LHE.KeyGen(1λ, k).

• For all ℓ ∈ [µ] compute ctℓ ← LHE.Enc(pk,T∗
ℓ ).

18

• Output copir1 = (pk, {ctℓ}ℓ∈[µ]) and st = (sk, i∗).

Send
(
copir1,D ∈

(
Fk
q

)m)
:

• Parse copir1 as (pk, ct). Additionally, parse D = (D1, . . . ,Dm) where each Di = (di,1, . . . , di,k) ∈ Fk
q

and di,j ∈ Fq for all j ∈ [k].

• For all i ∈ [m] and j ∈ [k] determine Ai,j ← FieldMult(di,j , µ). Parse Ai,j =

− ai,j,1 −
...

− ai,j,µ −

 ∈
{0, 1}µ×µ.

18Recall that an ecryption of a matrix is defined as individual packed encryptions of each column.
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• For all i ∈ [m], j ∈ [k] and ℓ ∈ [µ] compute Ci,j,ℓ ← SingleRowMatrix(k, µ, j,ai,j,ℓ).

• For all i ∈ [m], compute ei = (ei,1, . . . , ei,µ) ← bin(i). Additionally for all ℓ ∈ [µ] set Ui,ℓ =
Diag(k, ei,ℓ).

• For all i ∈ [m] consider the following Z2 function fi : ({0, 1}k×k)µ → {0, 1}k×µ defined by

fi(X1, . . . ,Xµ) =

k∑
j=1

µ∑
ℓ=1

(Ui,ℓ −Xℓ) ·Ci,j,ℓ.

• For all i ∈ [m] compute c̃ti ← LHE.Eval&Shrink(pk, fi, (ct1, . . . , ctµ)).

• Output copir2 = {c̃ti}i∈[m].

Rec(copir2, st):

• Parse copir2 as {c̃ti}i∈[m] and st as (sk, i∗).

• For all i ∈ [m] \ {i∗} compute Wi ← LHE.Dec(sk, c̃ti). For each j ∈ [k] parse each row wi,j ∈ {0, 1}µ
of Wi as an element wi,j ∈ Fq.

• For all i ∈ [m] \ {i∗}, set ei ← bin(i). Parse ei and i∗ as Fq elements (that is, êi, î
∗ ∈ Fq are

the elements whose coefficients correspond to the coefficients of ei, i
∗ ∈ {0, 1}µ). Compute D̃i =

(êi − î∗)−1 · (wi,1, . . . , wi,k) over Fq. Note that D̃i ∈ Fq.

• Output D̃ = (D̃1, . . . , D̃i∗−1,0, D̃i∗+1, . . . , D̃m).

Lemma 7 (Locally correctness). The scheme presented in Construction 2 is locally correct given that LHE
is correct.

Proof. By the correctness of the LHE we have that for all i ∈ [m] \ {i∗}

Wi = LHE.Dec(sk, cti)

= LHE.Dec(sk, LHE.Eval&Shrink(pk, fi, (LHE.Enc(pk,T
∗
1), . . . , LHE.Enc(pk,T

∗
µ)))

= fi(T
∗
1, . . . ,T

∗
µ) =

k∑
j=1

µ∑
ℓ=1

(Ui,ℓ −T∗
ℓ ) ·Ci,j,ℓ =

k∑
j=1

µ∑
ℓ=1

Diag(k, ei,ℓ − i∗ℓ ) ·Ci,j,ℓ

=

k∑
j=1

µ∑
ℓ=1

(ei,ℓ − i∗ℓ ) · SingleRowMatrix(k, µ, j,ai,j,ℓ)

=


∑µ

ℓ=1(ei,ℓ − i∗ℓ ) · ai,1,ℓ
...∑µ

ℓ=1(ei,ℓ − i∗ℓ ) · ai,k,ℓ

 =

(ei − i∗) ·Ai,1

...
(ei − i∗) ·Ai,k


Let wi,j be the j-th row of Wi and parse it as an element wi,j ∈ Fq. Then wi,j = (êi − î∗) · di,j over Fq

where êi, î
∗ ∈ Fq are the vectors ei, i

∗ ∈ {0, 1}µ parsed as elements in Fq. This follows from the definition of
the algorithm FieldMult.

Thus

D̃i = (êi − î∗)−1 · (wi,1, . . . , wi,k)

= (êi − î∗)−1 · ((êi − î∗) · di,1, . . . , (êi − î∗) · di,k)
= (di,1, . . . , di,k) = Di
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for all i ∈ [m] \ {i∗}.
Finally, note that each block i ∈ [m] \ {i∗} can be recovered independently. Hence, we have local

correctness.

Lemma 8 (Receiver security). The scheme presented in Construction 2 is receiver secure given that LHE is
IND-CPA secure.

Proof. The receiver’s message is composed by (pk, ct) where ct← LHE.Enc(pk,T). We can build a reduction
that breaks the IND-CPA security of LHE given that there is an adversary that breaks the receiver security
of the scheme. The reduction, after receiving a public key pk, simply sets m0 = T∗

0 and m1 = T∗
1 where each

T∗
b corresponds to the matrix encoding an index i∗b . Upon receiving ct from the challender, it sends (pk, ct)

to the adversary that outputs whatever the adversary outputs.

Lemma 9 (Semi-honest statistical sender security). The scheme presented in Construction 2 is semi-honest
statistically sender secure given that LHE is statistically circuit-private.

Proof. Let copir1 = (pk, ct) be a message in the range of Query(1λ, i∗). Additionally, let LHE.Sim be the
simulator of Definition 9. The proof follows from the following sequence of hybrids.

Hybrid H0. This is the real protocol.

Hybrid H1. In this hybrid, we replace cti∗ by cti∗ ← LHE.Sim(pk,0). First note that

fi∗(T
∗
1, . . . ,T

∗
µ) =

k∑
j=1

µ∑
ℓ=1

(Ui∗,ℓ −T∗
ℓ ) ·Ci∗,j,ℓ =

k∑
j=1

µ∑
ℓ=1

Diag(k, ei∗,ℓ − i∗ℓ ) ·Ci∗,j,ℓ

=

k∑
j=1

µ∑
ℓ=1

Diag(k, 0) ·Ci∗,j,ℓ = 0

where the third equality holds since for i = i∗ we have that ei = i∗, Hence statistical indistinguishability
between the hybrids follows from the function privacy of the LHE.

Note that, in this hybrid, Di∗ is not used. Hence, no information about it is leaked to the receiver.

Self-reducibility. We show that the scheme presented in Construction 2 is self-reducible. First, note that
copir2 = (ct1, . . . , ctm) hence it has the prescribed form. Furthermore, each cti is computed using only Di

(and not other block Dj for j ̸= i). Hence, we have self-reducibility.

PIR-compatibility. The first message of the scheme presented in Construction 2 is composed by copir1 =
(pk, {ctj}j∈[µ]) where each ctj encrypts i

∗
j ·Iℓ. Hence, copir1 has the same form as a first message PIR scheme

ADD+ (sketched in Section 3.3.4).

Communication complexity. We now analyze the communication complexity of the scheme.

• Size of copir1. The message copir1 is composed by (pk, ct). We have that

– |pk| = k · poly(λ)
– ct = µ · k2 · poly(λ).

Hence |copir1| = k · poly(λ) + µ · k2 · poly(λ) = poly(k, λ) which is independent of m as required.
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• Download rate. Let 1 + ρLHE be the rate of LHE for encryptions of size k. The message copir2 is
composed by m ciphertexts cti encrypting k · µ bits each. The bitsize of of the sender’s message is

|copir2| = m · k · µ · (1 + ρLHE).

This means that the rate of the scheme is

ρdown =
m · k · µ · (1 + ρLHE)

mkµ
= 1 + ρLHE.

For large enough k and µ = k1−ε (for ε > 0, we can instantiate LHE such that ρLHE = 1/poly(k) and
we can upperbound ρdown by 1 + 1/poly(k).

Computational complexity. We now analyze the computational complexity of the scheme in terms of
the size of D.

• Receiver. The Query algorithm is independent of m. In the Rec algorithm, one needs to perform a
decryption for each element in [m]. Hence, the receiver’s computational complexity can be bounded
by |D| · poly(λ).

• Sender. Similarly, for each element in [m] the Send algorithm needs to perform an evaluation over
a ciphertext and shrink the resulting ciphertext (which takes work O(k × µ)). Hence, the sender’s
computational complexity can be bounded by m · O(k · µ) = |D| · poly(λ).

7 Bit One-Query Co-PIR from Block One-Query Co-PIR

We now show how we can build a co-PIR that erases only one bit from the database (which we will refer to
as bit co-PIR) from a co-PIR that erases an entire block from the database.

The main idea behind is that part of the erased block can be transmitted to the receiver via a PIR
without incuring in additional communication. A bit care needs to be taken in order to preserve the PIR-
compatibility of the scheme. We prove that the transformation preserves semi-honest security but it also
preserves statistical sender security if the underlying PIR is statistical sender secure.

Ingredients. We will need the following ingredients:

• A block PIR scheme PIRk = (Query,Send,Retrieve) parametrized by k.

• A block PIR scheme PIRm = (Query,Send,Retrieve) parametrized by m.

• A block co-PIR scheme 1QCoPIR = (Query,Send,Rec) for databases in ({0, 1}k)m parametrized by m
that is PIRm-compatible.

Construction 3 (Bit co-PIR). We now described the scheme in full detail.

Query(1λ, (i∗, j∗) ∈ [m]× [k]):

• Compute (copir′1, st
′)← 1QCoPIR.Query(1λ, i∗).

• Compute (q, st′′)← PIRk.Query(1
λ, j∗).

• Output copir1 = (copir′1, q) and st = (st′st′′).
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Send(copir1,D ∈ ({0, 1}k)m):

• Parse D = (D1), . . . ,Dm) where each Di ∈ {0, 1}k, copir1 as (copir′1, q). Addtionally parse copir′1 as a
PIRm first message q′.

• Compute copir′2 ← 1QCoPIR.Send(copir′1,D).

• For all i ∈ [m] and all j ∈ [k] consider Ci,j ∈ {0, 1}k which is equal to Di except for the j-th position
which is equal to 0.

• For all i ∈ [m] compute ri ← PIRk.Send(q, (Ci,1, . . . ,Ci,k)).

• Compute r′ ← PIRm.Send(q′, (r1, . . . , rm)).

• Output copir2 = (copir′2, r
′).

Rec(copir2, st):

• Parse copir2 as (copir′2, r
′) and st as (st′, st′′).

• Compute D̂← 1QCoPIR.Rec(copir′2, st
′).

• Compute r← PIRm.Retrieve(st′, r′).

• Compute C← PIRk.Retrieve(st
′′, r) where C ∈ {0, 1}k.

• Set D̃ such that

D̃i,j =

{
D̂i,j if i ̸= i∗

Ci,j if i = i∗ ∧ j ̸= j∗

• Output D̃.

Lemma 10 (Correctness). The scheme presented in Construction 3 is correct assuming that both 1QCoPIR
and PIR are correct.

Proof. By the correctness of the CoPIR scheme we have that for all blocks i ̸= i∗ D̃i = Di.
Moreover, for i = i∗ we have that r = ri∗ by the correctness of PIRm. Hence PIRk.Retrieve(st, ri∗) = C

where Cj = Di∗,j for all j ̸= j∗.

Lemma 11 (Receiver security). The scheme presented in Construction 3 is receiver secure given that both
1QCoPIR and PIRk are receiver secure.

Proof. Let (i∗1, j
∗
1 ), (i

∗
2, j

∗
2 ) ∈ [m]× [k]. The proof follows from the sequence of hybrids:

Hybrid H0. In this game, copir1 ← Query(1λ, (i∗1, j
∗
1 )).

Hybrid H1. This hybrid is identical to the previous one except that we compute (copir′1, st
′)← 1QCoPIR.Query(1λ, i∗2).

Indistinguishability of hybrids H1 and H0 follows from the receiver security of the underlying 1QCoPIR.

Hybrid H2. This hybrid is identical to the previous one except that we compute (q, st′′)← PIRk.Query(1
λ, j∗2 ).

Indistinguishability of hybrids H2 and H1 follows from the receiver security of the underlying PIR. Note
that this hybrid corresponds to copir1 ← Query(1λ, (i∗2, j

∗
2 )).

Lemma 12 (Statistical sender security). The scheme presented in Construction 3 is semi-honest sender
secure given that 1QCoPIR and PIR are semi-honest sender secure.

Proof. Let D and D′ be two different databases such that Di,j = D′
i,j for all pairs (i, j) ̸= (i∗, j∗). The

proof follows the following sequence of hybrids.
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Hybrid H0. This is the real game.

Hybrid H1. In this hybrid, we replace Di,j for D′
i,j for i = i∗ and for all j ̸= j∗. Security follows from

PIRk.

Hybrid H2. In this hybrid, we replace ri for all i ̸= i∗ for ri ← PIRk.Send(q,Di,j∗ . Security follows from
the sender security of PIRm.

Hybrid H3. In this hybrid, we replace copir′1 ← 1QCoPIR.Send(1λ,D′). Security follows from the security
of 1QCoPIR.

Communication complexity. We now analyze the communication complexity of our scheme. In the
following, let 1 + ρ be the rate of the underlying CoPIR scheme.

• Size of copir1. The message copir1 is composed by (copir′1, q). We have that

– |copir′1| = polylog(|D|) · poly(λ)
– |q| = |ri| · polylog(m|ri|) · poly(λ) where |ri| = k · poly(λ).

Thus, the total size of |copir1| is polylog(|D|) · poly(λ, k) as required.

• Download rate. The message copir1 is composed by (copir′2, {qi∗i ,j}i∈[t], j ∈ [k] \ {j∗i }). We have that

– |copir′2| = |D| · (1 + ρ).

– |r| = k · polylog(|D|) · poly(λ).

Hence, the download rate of the scheme in Construction 3 is

ρdown =
|D| · (1 + ρ) + ·k · polylog(|D|) · poly(λ)

|D|
= 1 + ρ+

·k · polylog(|D|) · poly(λ)
|D|

which tends to 1 for large enough |D|.

PIR-compatibility. The receiver’s message is composed by copir′1, q where copir′1 can be parsed as a (k-
block) PIRm first message. Then the scheme is PIR′-compatible where PIR′ is the scheme which first applies
q to every k-block of D and then these m responses are fed into PIRm.

Self-reducibility. The final co-PIR sender’s message is composed by copir2 = (copir′2, r). Assume that the
underlying block co-PIR and PIR are both self-reducible. Then the new bit co-PIR protocol is self-reducible
modulo a reordering of the database. Let (i∗, j∗) be the input of the receiver, i.e., the position that is going
to be erased. Since the underlying block co-PIR is statistically secure then all information about the block
Di∗ is contained in r. Now, assuming that the underlying PIR is self-reducible then so is the final protocol.

Looking ahead, the final copir2 is supposed to have this structure to be compatible with recursion. This
structure is compatible with recursion modulo a reordering of the database.

Computational complexity. We analyze the computational complexity for each of the parties individu-
ally. Let CCP

Pr be the computational complexity of party P in protocol Pr.

• Receiver. The receiver’s computational complexity is equal to CCR
1QCoPIR + CCR

PIRm
+ CCR

PIRk
.

• Sender. The sender’s computational complexity is equal to CCS
1QCoPIR + CCS

PIRm
+m · CCS

PIRk
.

Instantiating 1QCoPIR with the scheme from Section 6 and PIRk with ADD+ scheme we obtain a scheme
where the receiver’s computational complexity is |D|poly(λ) and the sender’s computational complexity is
|D| · k · poly(λ).
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8 Semi-Honest Co-PIR from Semi-Honest One-Query Co-PIR

We now show how to bootstrap a one-query co-PIR into a multiple-query co-PIR. This construction works
by recursing the one-query co-PIR multiple times and, at each step, one position of the database is erased.
Since the underlying one-query co-PIR has rate 1, then there is no blowup in communication when we recurse
it.

Construction 4. Let {Hi}i∈[t] be groups. For i ∈ [t] let 1QCoPIR(i) = (Query,Send,Rec) be a one-query

co-PIR scheme such that the outputs of 1QCoPIR(i).Send are of the form (head, α1, . . . , αm) where αj ∈ Hi.

Query(1λ, S):

• Parse S = {a1, . . . , at}.

• For i ∈ [t] compute (copir1,i, sti)← 1QCoPIR(i).Query(1λ, ai).

• Output copir1 = {copir1,i}i∈[t] and st = {sti}i∈[t].

Send(copir1,D ∈ Hm):

• Parse copir1 as {copir1,i}i∈[t]. Set DB0 = D.

• For i ∈ [t] do the following:

– Compute copir2,i ← 1QCoPIR(i).Send(copir1,i,DBi−1).

– Parse copir2,i as (headi, αi,1, . . . , αi,m).

– Set DBi = (αi,1, . . . , αi,m).

• Set DB∗ = DBt.

• Output copir2 = (DB∗, head1, . . . , headt).

Rec(copir2, st):

• Parse copir2 as DB∗ and st as {sti}i∈[t].

• Set DB′
t = DB∗.

• For i = t to 1, set copir′2,i = (headi,DB
′
i) and compute DB′

i−1 ← 1QCoPIR(i).Rec(copir′2,i, sti).

• Output D̃ = DB′
0.

Lemma 13 (Correctness). The scheme presented in Construction 4 is correct assuming that 1QCoPIR is
locally correct.

Proof. For all i = t to 1, we have that α′
i−1,j = αi−1,j where α′

i−1,j ← 1QCoPIR(i).Rec(α′
i,j , sti) for all

j /∈ {at, . . . , ai} given that 1QCoPIR(i) is locally correct. This means that DB′
i−1,j = DBi−1,j for all j ∈ [t]

such that j ̸=/∈ {at, . . . , ai}, where DB′
i−1 = (α′

i−1,1, . . . , α
′
i−1,m).

Thus DB′
0 = DB0 for all positions j /∈ {at, . . . , a1}. Thus D′

j = Dj for all j /∈ {at, . . . , a1}.

Lemma 14 (Receiver security). The scheme presented in Construction 4 is receiver secure given that
1QCoPIR is receiver secure.

Proof. Let S1, S2 ⊆ [m]t be any two sets where S1 = {a1, . . . , at} and S2 = {a′1, . . . , a′t}. The proof follows
from the sequence of hybrids:
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Hybrid H0. In this game, copir1 ← Query(1λ, S1).

Hybrid H1,i. This hybrid is identical to the previous one except that we compute

(copir1,i, sti)← 1QCoPIR.Query(1λ, a′i; r
′
i)

using random coins r′i ∈ {0, 1}λ. This hybrid is defined for i = 1, . . . , t.
Indistinguishability of hybrids H1,i−1 and H1,i follows from the receiver security of the underlying

1QCoPIR for all i = 1, . . . , t where (H1,0 = H0). Note that this hybrid corresponds to copir1 ← Query(1λ, S2).

Lemma 15 (Semi-honest sender security). The scheme presented in Construction 4 is semi-honest staris-
tically sender secure given that 1QCoPIR is self-reducible and semi-honest statistically sender secure.

Proof. The proof follows the sequence of hybrids.

Hybrid H0. This is the real experiment.
For all i = 1, . . . , t consider the following hybrids.

Hybrid Hi,1. This hybrid is identical to the previous one except that we replace αt−i,at+1−i
by 0.

Indistinguishability of hybrids Hi,1 and Hi,0 (where Hi,0 = H0 for i = 1 and Hi,0 = Hi−1,t+1−i for i > 1)
follows from the semi-honest sender security of the underlying 1QCoPIR.

Hybrid Hi,j. This hybrid is identical to the previous one except that we replace αt−i−j,at+1−i
by 0. This

hybrid is defined for j = 1, . . . , t+ 1− i.
Indistinguishability of hybridsHi,j andHi,j−1 (whereHi,0 = Hi−1,t+1−i) follows from the self-reducibility

of the underlying 1QCoPIR.
Note that in the last hybrid we set α0,ai

= 0 for all i ∈ [t]. This means that we set the input database
D to be 0 for all coordinates in S.

Communication complexity. We now analyze the communication complexity of our scheme. Let 1 + ρ
be the download rate of the underlying 1QCoPIR scheme.

• Size of copir1. The message copir1 is composed by {copir1,i}i∈[t]. For some i ∈ [t] we have that

|copir1,i| = polylog(|D|(1+ ρ)i−1)) · poly(λ) since the database increases in size by a factor of (1+ ρ) at
each step. Hence

|copir1,i| = polylog(|D|(1 + ρ)i−1)) · poly(λ) ≤ polylog(|D|) · poly(i, λ).

Thus, the total size of |copir1| is polylog(D) · poly(λ, t), which depends only polylogarithmically on m
as required.

• Dowload rate. The message copir2 is composed by DB∗. We have that |DB∗| = |D|(1 + ρ)t ≤
|D|(1 + tρ) (by the Bernoulli inequality).

Hence, the download rate of the scheme is

ρdown =
|copir2|

D
≤ |D|(1 + tρ) + poly(t, λ)

|D|
= 1 + tρ+

poly(t, λ)

|D|
.

If t = ρ−1+ε for some 0 < ε < 1 then we can upperbound the download rate by 1 + ρε + poly(t,λ)
|D| .
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Self-reducibility. First, note that the sender’s message is of the form (head, α1, . . . , αm) where head =
(head1, . . . , headt) and DB∗ = (α1, . . . , αm). Second, if the underlying one query co-PIR 1QCoPIR is self-
reducible then so is the resulting (multiple query) co-PIR. To see this, note that if we erase the i-th position
of DB∗, then by self-reducibility of 1QCoPIR all information about Di is erased since all information about
the i-th position of all intermediate DBj is erased).

PIR-compatibility. Let PIR be a PIR scheme. If the underlying 1QCoPIR is PIR compatible then so is
the final construction since the receiver’s message is composed by t first message co-PIR copir1,i. Hence, the
message copir1 can be used as a PIR message with the same input set S.

Computational complexity. We now analyze the computational complexity of the scheme in terms of
the size of D and t. Let CCR and CCS be the computational complexity of the receiver and of the sender in
the underlying 1QCoPIR scheme.

• Receiver. The Query algorithm is independent ofm and it only depends on t. In the Rec algorithm, one
needs to run the 1QCoPIR.Rec for each element in [t]. Hence, the receiver’s computational complexity
can be bounded by t · CCR.

• Sender. Similarly, the Send algorithm needs to run 1QCoPIR.Send for each element in [t] Hence, the
sender’s computational complexity can be bounded by t · CCS.

Instantiation. The scheme from Construction 3 is a one-query co-PIR (for bits) that is semi-honest, self-
reducible and PIR-compatible for some PIR scheme (in particular it is compatible with some modified version
of the ADD+ scheme, see Section 7). Instantiating the scheme presented in Construction 4 with the scheme
from Construction 3, we obtain a (multiple query) co-PIR for bits which is semi-honest, self-reducible and
PIR-compatible for some PIR scheme.

9 Statistical Sender Secure Co-PIR

In this section we present a scheme for statistical sender secure co-PIR. Our scheme works by bootstrapping
a semi-honest co-PIR into a statistical sender secure one. We also show in Appendix B an alternative
construction for SSP co-PIR from SSP PIR, albeit at the cost of slightly worse overall communication
complexity.

We now show how to boostrap a semi-honest co-PIR into a statistical sender secure co-PIR using a CDS.
Essentially, the CDS will ensure that the first message of the receiver is well-formed.

Let CoPIR be a semi-honest co-PIR scheme parametrized by m. Consider the following languange LCoPIR

parametrized by CoPIR

LCoPIR =
{
copir1 : ∃(S, r) ∈ [m]t × {0, 1}λ s.t. copir1 ← CoPIR.Query(1λ, S; r)

}
.

Clearly this is a NP languange thus there exists a statistical sender secure CDS scheme for this particular
languange [IK02, OPP14].

Ingredients. Let H be a group. Let

• CoPIR = (Query,Send,Rec) be a co-PIR scheme where the outputs of CoPIR.Send are of the form
(α1, . . . , αm) where αi ∈ H.

• CDS = (Enc,Send,Release) be a statistical sender secure CDS scheme for the the language LCoPIR.
Looking ahead, we will use the CDS construction from Section 4 to obtain a black-box construction.

Construction 5. We now describe the construction in full detail.
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Query(1λ, S):

• Parse S = {a1, . . . , at}.

• Compute (copir′1, st
′)← CoPIR.Query(1λ, S; r) using random coins r ∈ {0, 1}λ.

• Compute (cds1, st
′′)← CDS.Enc(1λ, (S, r)).

• Output copir1 = (copir′1, cds1) and st = (st′, st′′).

Send(copir1,D ∈ Gm):

• Parse copir1 as (copir′1, cds1).

• Compute copir′2 ← CoPIR.Send(copir1,D).

• Parse copir′2 as (α1, . . . , αm) and set DB = (α1, . . . , αm).

• For all i ∈ [t] sample βi←$H.

• Set DB∗ = DB+ (β1, . . . , βt, 0 . . . , 0).

• Compute cds2 ← CDS.Send(cds1,LCoPIR, (β1, . . . , βt)).

• Output copir2 = (DB∗, cds2).

Rec(copir2, st):

• Parse copir2 as (DB∗, cds2) and st as (st′, st′′).

• Compute (β′
1, . . . , β

′
t)← CDS.Release(cds2, st

′′).

• Compute DB′ ← DB∗ − (β′
1, . . . , β

′
t, 0, . . . , 0).

• Set copir′2 = DB′ and compute D̃← CoPIR.Rec(copir′2, st
′).

• Output D̃.

We now prove correctness and security of our scheme.

Lemma 16 (Correctness). The scheme presented in Construction 5 is correct assuming that both CoPIR
and CDS are correct.

Proof. By the correctness of CDS, we have that (β′
1, . . . , β

′
t) = (β1, . . . , βt) where (β

′
1, . . . , β

′
t)← CDS.Release(cds2, st

′).
Thus

DB′ = DB∗ − (β′
1, . . . , β

′
t, 0, . . . , 0)

= DB+ (β1, . . . , βt, 0 . . . , 0)− (β′
1, . . . , β

′
t, 0, . . . , 0)

= DB.

Now, by the correctness of the underlying CoPIR scheme, we have thatDi = D̃i where D̃← CoPIR.Rec(DB′, st′),
for all i /∈ S.

Lemma 17 (Receiver security). The scheme presented in Construction 5 is receiver secure given that both
CoPIR and CDS are receiver secure.

Proof. Let S1, S2 ⊆ [m]t be any two sets. The proof follows from the sequence of hybrids:

Hybrid H0. In this game, copir1 ← Query(1λ, S1).
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Hybrid H1. This hybrid is identical to the previous one except that we compute (cds1, st
′)← CDS.Enc(1λ, (0, 0)).

Indistinguishability of hybrids follows from the receiver security of the underlying CDS.

Hybrid H2. This hybrid is identical to the previous one except that we compute (copir′1, st
′)← CoPIR.Query(1λ, S2; r2)

using random coins r2 ∈ {0, 1}λ.
Indistinguishability of hybrids H2 and H1 follows from the receiver security of the underlying CoPIR.

Hybrid H3. This hybrid is identical to the previous one except that we compute (cds1, st
′)← CDS.Enc(1λ, (S2, r2))

for some random coins r2.
Indistinguishability of hybrids follows from the receiver security of the underlying CDS. Note that this

hybrid corresponds to copir1 ← Query(1λ, S2).

Lemma 18 (Statistical sender security). The scheme presented in Construction 5 is statistical sender secure
given that CoPIR is self-reducible and semi-honest (statistical) sender secure and CDS is statistical sender
secure.

Proof. We first define the extractor CoPIR.Ext that takes as input a first message copir1 and outputs a set
S = {a1, . . . , at}, where |S| ≤ t. Let CDS.Ext be the extractor of the CDS scheme as defined in Definition
13.

CoPIR.Ext(copir1):

• Parse copir1 as (copir′1, cds1).

• Run w ← CDS.Ext(cds1) and parse w = (S, r) (here S is a set of size at most t).

• If (copir′1, w) ∈ LCoPIR then output S.

• Else, set S = {1, . . . , t} and output S.

We now show that for any pair of databases (D,D′)

Send(copir1,D) ≈s Send(copir1,D
′)

where S ← CoPIR.Ext(copir1) and D′
j = Dj for j /∈ S. We divide the proof in two cases.

Case 1. In the first case, we assume that (copir′1, w) /∈ LCoPIR. Now consider the following sequence of
hybrids.

Hybrid H0. This is the real experiment.

Hybrid H1. This hybrid is identical to the previous one except that we compute cds2 ← CDS.Send(cds1,LCoPIR, (γ1, . . . , γt))
for uniformly chosen γi←$H.

Statistical indistinguishability of hybrids H0 and H1 follows from the statistical sender security of the
underlying CDS since (copir′1, w) /∈ LCoPIR.

Hybrid H2,i. This hybrid is identical to the previous one except that we replace the i-th position of DB∗

by δi←$H. This hybrid is defined for i = 1, . . . , t.
The hybrids H2,i−1 and H2,i are identically distributed since DB∗

i + βi ≈s δi for all i = 1, . . . , t where
(H2,0 = H1).
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Hybrid H3,i. This hybrid is identical to the previous one except that we replace Di by D′
i. This hybrid

is defined for i = 1, . . . , t.
Statistical indistinguishability ofH3,i−1 andH3,i follows from the self-reducibility of the underlying CoPIR

scheme.
Note that the hybrid H3,t corresponds to the game where copir2 ← Send(copir1,D

′) where D′
i = D for

all i /∈ S.

Case 2. In this case, we assume that (copir′1, w) ∈ LCoPIR. In this case copir′1 is well-formed. Now consider
the following sequence of hybrids.

Hybrid H0. This is the real experiment.

Hybrid H1. This hybrid is identical to the previous one except that we replace D by D′ where D′ is such
that D′

i = Di for all i /∈ S.
Statistical indistinguishability of hybrids H0 and H1 follows from the semi-honest statistical security of

the underlying CoPIR.

Communication complexity. We now analyze the communication complexity of our scheme. In the
following, let 1 + ρ be the rate of the underlying semi-honest CoPIR scheme. Moreover, let F be the
verification circuit of LCoPIR which is of size poly(t, λ)

• Size of copir1. The message copir1 is composed by (copir′1, cds1). We have that

– |copir′1| = polylog(|D|) · poly(λ)
– |cds1| = poly(λ, |F |) = poly(t, λ).

Thus, the total size of |copir1| is polylog(|D|) · poly(λ, t) as required.

• Download rate. The message copir1 is composed by (copir′2, cds2). We have that

– |copir′2| = |D| · (1 + ρ).

– |cds2| = poly(λ, t).

Hence, the download rate of the scheme in Construction 5 is

ρdown =
|D| · (1 + ρ) + poly(λ, t)

|D|
= 1 + ρ+

poly(λ, t)

|D|

which tends to 1 if t < |D|1−ε for some ε > 0.

PIR-compatibility. Assume that the underlying CoPIR scheme is PIR-compatible. Then the scheme
presented in construction 5 is also PIR compatible. To see this, note that the first message copir1 is composed
by (copir′1, cds1). Hence, the PIR scheme can just ignore cds1 and interpret copir′1 as a first message.

Computational complexity. Since the computational complexity of the CDS scheme is independent of
m, the scheme inherits the computational complexity of the underlying CoPIR scheme.
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Instantiation. We now explain how we can instantiate the building blocks of our construction to obtain
a black-box construction for SSP co-PIR. The underlying semi-honest co-PIR scheme CoPIR is intantiated
using the scheme in Construction 4 which is semi-honest secure, self-reducible and PIR-compatible for some
PIR scheme (see Section 8).

Note that the receiver’s message is composed by t first messages of the underlying CoPIR scheme. Hence,
if we use the scheme from Construction 4 (which is itself instantiated using the Constructions 2 and 3) then
the receiver’s message is composed by {copir1,i}i∈[t] = {pki, {cti,j}j∈[µ], qi}i∈[t], where each cti,j encrypts a
matrix ai,j · I where ai,j ∈ {0, 1} and I is the identity matrix, and qi is a PIR message parametrized by the
block size k (which is used in the block-to-bit co-PIR transformation of Section 7).

If we use a SSP PIR scheme then we are guaranteed that the receiver learns nothing additional from the
answers to qi (note that the input of the receiver to the PIR can be arbitrary). Hence, to guarantee SSP for
our overall protocol we just need to guarantee that copir1,i are well-formed. This is done via a CDS (as in
the construction above) and note that we can instantiate the CDS using the scheme of Construction 1 from
Section 4. That is, the language of well-formed copir1,i is exactly the language Lpk defined in Section 4.

This gives us a black-box construction for SSP co-PIR.
As a side note, we remark that the CDS scheme in the construction above can also be instantiated with any

generic CDS scheme with the required properties at the cost of making non black-box use of cryptographic
primitives.

10 Statistical Sender Private Oblivious Transfer with Optimal
Rate

As an application for our statistical sender secure co-PIR scheme, we build an OT scheme. This OT scheme
has overall rate 1 and achieves statistical sender privacy.

Before presenting our construction, we present some notation that we will use throughout this section.

• RowMatrix(ℓ, n,v1, . . . ,vℓ): Takes row-vectors v1, . . . ,vℓ ∈ {0, 1}n and outputs a matrix

V =

— v1 —
...

— vℓ —

 ,

i.e. for every i ∈ [ℓ] the i-th row of V is the row-vector vi.

Ingredients. We will need the following ingredients for our protocol:

• A PIR scheme PIR = (Query,Send,Retrieve).

• A (bit) co-PIR scheme CoPIR = (Query,Send,Rec) that is PIR-compatible parametrized by m.

• A rate-1 circuit-private LHE scheme LHE = (KeyGen,Enc,Eval,Shrink,DecShrink) with plaintext space
{0, 1}ℓ and for which shrinked ciphertexts have the form ct = (g, d1, . . . , dℓ) where g ∈ G is a group
element (for some large enough group G, namely a DDH group) and di ∈ {0, 1}.

• A download rate-1 CDS scheme CDS = (Enc,Send,Release) for the language

L =

pk, {cti}i∈[ℓ] : ∃(r, si, ri) s.t.
(pk, sk)← LHE.KeyGen(1λ, ℓ; r)
Si = SingleRowMatrix(ℓ, n, i, si)

cti ← LHE.Enc(pk,Si; ri)


for some si ∈ {0, 1}n.

• The binary LPN(n,m, ρ) problem with dimension n = poly(λ), m = n · ℓ · poly(λ) samples and slightly
sub-constant noise-rate ρ = m1−ϵ.

Construction 6 (Optimal-rate SSP OT). We now describe the scheme in full detail.
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OTR(1λ,b ∈ {0, 1}mℓ) :

• Parse b = (b1, . . . ,bℓ), where the bi ∈ {0, 1}m are blocks of size m.

• Choose A←$ {0, 1}n×m uniformly at random and compute a pair of public and secret key (pk, sk) ←
LHE.KeyGen(1λ, ℓ; r) using random coins r ∈ {0, 1}λ.

• For all i ∈ [ℓ], choose si←$ {0, 1}n, and ei←$χm,t, compute ci ← siA + ei + bi, and set Si ←
SingleRowMatrix(ℓ, n, i, si). Compute a matrix-ciphertext cti ← LHE.Enc(pk,Si; ri) using random coins
ri ∈ {0, 1}λ.

• Compute (cds1, s̃t)← CDS.Enc(1λ, w) where w = (r, {Si, ri}i∈[ℓ]).

• For all i ∈ [ℓ] set Ji = Supp(ei) to be the support of ei. Compute (copir1,i, sti)← CoPIR.Query(Ji).
19

• Output ot1 =
(
pk,A, {cti, ci, copir1,i}i∈[ℓ], cds1

)
and st = (sk, {sti, Ji}i∈[ℓ], s̃t).

OTS(ot1, (m0,m1) ∈ ({0, 1}mℓ)2) :

• Parse m0 = (m0,1, . . . ,m0,ℓ) and m1 = (m1,1, . . . ,m1,ℓ), where each mb,i = (mb,i,1, . . . ,mb,i,m) ∈
{0, 1}m. Parse ot1 =

(
pk,A, {cti, ci, copir1,i}i∈[ℓ], cds1

)
.

• For i ∈ [ℓ] set zi = m0,i.

• Set Z = RowMatrix(ℓ,m, z1, . . . , zℓ).

• For all i ∈ [ℓ] set Ci = SingleRowMatrix(ℓ,m, i, ci) and Di = Diag(m,m1,i −m0,i).

• Define the Z2-linear function f : ({0, 1}ℓ×n)ℓ → {0, 1}ℓ×m via

f(X1, . . . ,Xℓ) =

(
ℓ∑

i=1

(−XiA+Ci) ·Di

)
+ Z.

Additionally, define the Z2-linear function g : ({0, 1}ℓ×n)ℓ → {0, 1}ℓ×m via

g(X1, . . . ,Xℓ) =

(
ℓ∑

i=1

(−XiA+Ci +Ui) ·Di

)
+ Z.

where Ui ← SingleRowMatrix(ℓ,m, i,1) and 1 = (1, . . . , 1) is the vector of length m which is 1 every-
where.

• Compute CT1 ← LHE.Eval&Shrink(pk, f, ct1, . . . , ctℓ) and CT2 ← LHE.Eval&Shrink(pk, g, ct1, . . . , ctℓ).

• Parse CT1 as {gi, di,1, . . . , di,ℓ}i∈[m] where each gi ∈ G and di,j ∈ {0, 1}. Similarly parse CT2 as
{hi, fi,1, . . . , fi,ℓ}i∈[m] each hi ∈ G and fi,j ∈ {0, 1}.

• For all i ∈ [ℓ] set Di = (d1,i, . . . , dm,i) and Fi = (f1,i, . . . , fm,i). Compute copir2,i ← CoPIR.Send(copir1,i,Di)
and ri ← PIR.Send(qi,Fi) where copir1,i is parsed as the PIR message qi.

• Set ot′2 = {gi, copir2,i, hi, ri}i∈[ℓ].

• Compute cds2 ← CDS.Send(cds1,L, ot′2).

• Output ot2 = cds2.

19Recall that, since the CoPIR scheme is PIR-compatible then copir1,i also corresponds to a first message PIR with input Ji.

37



OTD(ot2, st) :

• Parse ot2 as cds2 and st = (sk, {sti, Ji}i∈[ℓ], s̃t).

• Compute ot′2 ← CDS.Release(cds2, s̃t). Parse ot′2 as {gi, copir2,i, hi, ri}i∈[ℓ].

• For all i ∈ [ℓ] compute D̃i = (d̃1,i, . . . , d̃m,i)← CoPIR.Retrieve(copir2,i, sti).

• Set C̃T1 to be {gi, d̃i,1, . . . , d̃i,ℓ}i∈[m]. Compute W ← LHE.DecShrink(sk, C̃T1) where W ∈ {0, 1}ℓ×m.
Parse W = (wi,j)i∈[ℓ],j∈[m] where wi,j ∈ {0, 1}

• For all i ∈ [ℓ] compute (vi,Ji[1], . . . , vi,Ji[t])← PIR.Retrieve(ri, sti). Additionally for all j ∈ [t], compute
yi,Ji[j] ← LHE.Dec(hJi[j], vi,Ji[j]).

• Set M = (mi,j)i∈[ℓ],j∈[m] ∈ {0, 1}ℓ×m where

mi,j =

{
yi,Ji[l] if l = Ji[l]

wi,j otherwise
.

• Output M.

We now analyze our scheme. We first show that it is correct and secure.

Theorem 4 (Correctness). The scheme presented in Construction 6 is correct given that LHE, CoPIR and
PIR are correct.

Proof. First, by the correctness of the underlying CDS scheme we have that ot′2 = CDS.Release(cds2, s̃t)
where ot′2 = {gi, copir2,i, hi, ri}i∈[ℓ].

By the correctness of the underlying CoPIR we have that for all i ∈ [ℓ] di,j = d̃i,j for j /∈ Ji.
By the linear homomorphism correctness of LHE, the ciphertext CT1 encrypts

W̃ = f(S1, . . . ,Sℓ)

=

(
k∑

i=1

(−SiA+Ci) ·Di

)
+ Z

where each row w̃i of W̃ is equal to

w̃i = (−siA+ ci)Di + zi

= (−siA+ siAi + ei + bi)Di +m0,i

= bi ⊙ (m1,i −m0,i) +m0,i + ei ⊙ (m1,i −m0,i).

For all positions j /∈ Ji
w̃i,j = bi,j(m1,i,j −m0,i,j) +m0,i,j .

This means that applying LHE.DecShrink on ˜CT1 we obtain W such that wi,j = w̃i,j since CT1 = CT1 for
all coordinates i ∈ [ℓ] and j /∈ Ji.

Similarly, CT2 encrypts

X̃ = f(S1, . . . ,Sℓ)

=

(
k∑

i=1

(−SiA+Ci +Ui) ·Di

)
+ Z
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where each row x̃i of X̃ is equal to

x̃i = (−siA+ ci + 1)Di + zi

= (−siA+ siAi + ei + bi + 1)Di +m0,i

= bi ⊙ (m1,i −m0,i) +m0,i + ei ⊙ (m1,i −m0,i) + 1⊙ (m1,i −m0,i).

For all positions j ∈ Ji we have that

x̃i,j = (bi,j + ei,j + 1)(m1,i,j −m0,i,j) +m0,i,j (1)

= bi,j(m1,i,j −m0,i,j) +m0,i,j (2)

since the coordinates of the error vector ei cancel out with 1.
By the correctness of the PIR, vi,Ji[l] = fi,Ji[l] for all l ∈ [t]. This means that applying LHE.DecShrink on

(hJi[l], fi,Ji[l]) yields x̃i,Ji[l] for all l ∈ [t].

Theorem 5 (Receiver security). The scheme presented in Construction 6 is receiver secure assuming that
LHE is IND-CPA, CDS, CoPIR and PIR are receiver secure and that the LPN(n,m, ρ) assumption holds for
slightly sub-constant noise-rate ρ = m1−ϵ where ϵ > 0.

Proof. The proof follows the following sequence of hybrids.

Hybrid H0. This hybrid is the real game.

Hybrid H1. This hybrid is identical to the previous one except that the receiver computes cds1 ←
CDS.Enc(1λ, w) where w = 0.

Indistinguishability of hybrids follows from the receiver security of the underlying CDS.

Hybrid H2,i. This hybrid is identical to the previous one except that the receiver computes cti ←
LHE.Enc(pk,0). The hybrid is defined for i = 1, . . . , ℓ.

Indistinguishability of hybrids H2,i−1 and H2,i for i = 1, . . . , ℓ (where H2,0 = H1) follows from the
IND-CPA security of LHE.

Hybrid H3,i. This hybrid is identical to the previous one except that the receiver computes (copir1,i, sti)←
CoPIR.Query(J ′

i) where J
′
i is a uniformly chosen subset of [m] of size t. This hybrid is defined for i = 1, . . . , ℓ.

Indistinguishability of hybrids H3,i−1 and H3,i for i = 1, . . . , ℓ (where H3,0 = H2,ℓ) follows from the
receiver security of CoPIR.

Hybrid H4,i. This hybrid is identical to the previous one except that the receiver samples ci←$ {0, 1}m.
This hybrid is defined for i = 1, . . . , ℓ.

Indistinguishability of hybrids H4,i−1 and H4,i for i = 1, . . . , ℓ (where H4,0 = H3,ℓ) follows from the LPN
assumption.

Note that the last hybrid is independent of b and we conclude the proof.

Theorem 6 (Statistical sender security). The scheme presented in Construction 6 is statistical sender secure
assuming that LHE is statistically circuit private and that CDS, CoPIR and PIR are statistical sender secure.

Proof. Let CoPIR.Ext and CDS.Ext be the extractors for the CoPIR and CDS schemes respectively. Let R be
the relation for the language L described above.
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OT.Ext(ot1):

• Parse ot1 as
(
pk,A, {cti, ci, copir1,i}i∈[ℓ], cds1

)
.

• Run w ← CDS.Ext(cds1) where w = (r,Si, ri). Set x = (pk, {cti}i∈[ℓ]).

• If R(x,w) = 1 then do the following:

– For all i ∈ [ℓ] recover Ji ← CoPIR.Ext(copir1,i) where Ji is a set of size at most t. Set ei ∈ Zm
2 to

be the vector such that Supp(ei) = Ji.

– For all i ∈ [ℓ] set bi = siA+ ei + ci mod 2.

– Output b = (b1, . . . ,bℓ).

• Else if R(x,w) = 0 then output b = 0.

We now prove that for any two messages m0,m1 ∈ {0, 1}mℓ and any ot1 we have that

OTS(ot1,m0,m1) ≈s OTS(ot1,mb′ ,mb′)

where b′ ← OT.Ext(ot1). The proof divides into two cases:

Case 1. We first analyze the case where R(x,w) = 1. That is, cti are valid encryptions of Si where
Si = SingleRowMatrix(ℓ, n, i, si)

Hybrid H0. This hybrid is the real experiment.

Hybrid H1. This hybrid is identical to the previous one except that we set W∗ ← f(S̃1, . . . , S̃ℓ) and
compute CT1 ← LHE.Sim(aux, pk,W∗). Statistical indistinguishability of hybrids H1 and H0 follows from
the statistical circuit-privacy of LHE.

Hybrid H2. This hybrid is identical to the previous one except that we set X∗ ← g(S̃1, . . . , S̃ℓ) and
compute CT1 ← LHE.Sim(aux, pk,X∗). Statistical indistinguishability of hybrids H2 and H1 follows from
the statistical circuit-privacy of LHE.

Hybrid H3,i. This hybrid is identical to the previous one except that we set Di to be (d1,i, . . . , dm,i)
where for j /∈ Ji, dj,i is computed as in the previous hybrid and for j ∈ Ji we set dj,i = 0, where Ji ←
CoPIR.Ext(copir1,i). The hybrid is defined for i = 1, . . . , ℓ.

Statistical indistinguishability of hybrids H3,i−1 and H3,i for i = 1, . . . , ℓ (where H3,0 = H2) follows from
the statistical sender security of the underlying CoPIR.

Hybrid H4,i. This hybrid is identical to the previous one except that we set Fi to be (f1,i, . . . , fm,i)
where for j /∈ Ji we set fj,i = 0 and for j ∈ Ji we set fj,i = 0 as in the previous hybrid, where Ji ←
CoPIR.Ext(copir1,i).

20 The hybrid is defined for i = 1, . . . , ℓ.
Statistical indistinguishability of hybrids H4,i−1 and H4,i for i = 1, . . . , ℓ (where H4,0 = H3,ℓ) follows

from the statistical sender security of the underlying PIR.

Hybrid H5. This hybrid is identical to the previous one except that W∗ is computed in the following way.:
Let wi = (wi,1, . . . , wi,m) be the rows of W∗. For all positions j /∈ Ji, wi,j is computed as in the previous
hybrid, whereas for all positions j ∈ Ji, we set wi,j = 0.

Note that dj,i = 0 is the part of the ciphertext encoding wi,j . Hence, the hybrids are identically dis-
tributed.

20Recall that due to the PIR compatibility, we have that PIR.Ext(qi) = CoPIR.Ext(copir1,i) where qi = copir1,i.
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Hybrid H6. This hybrid is identical to the previous one except that X∗ is computed in the following way.:
Let xi = (xi,1, . . . , xi,m) be the rows of X∗. For all positions j ∈ Ji, xi,j is computed as in the previous
hybrid, whereas for all positions j /∈ Ji, we set xi,j = 0.

Note that fj,i = 0 is the part of the ciphertext encoding xi,j . Hence, the hybrids are identically dis-
tributed.

Note that the last hybrid does not depend on m1−b.

Case 2. In the second case we assume that R(x,w) = 0. Since in this case the statement is false we can
replace ot′2 by 0 and compute cds2 ← CDS.Send(cds1,L, 0). Statistical indistinguishability follows from the
statistical sender security of the underlying CDS scheme.

Communication complexity. We now analyze the communication complexity of our scheme. We start
by analyzing the size of the receiver’s message.

• Size of ot1. The message ot1 is composed by
(
pk,A, {cti, ci, copir1,i}i∈[ℓ], cds1

)
. We have that

– |pk| = ℓ · poly(λ)
– |A| = n×m

– |{cti}i∈[ℓ]| = ℓ2 · n · poly(λ)
– |{copir1,i}i∈[ℓ]| = t · poly(λ) ·m1−δ.

– |cds1| = ℓ2 · n · poly(λ).

Thus the upload rate ρup can be upper-bounded by

ρup =
ℓ · poly(λ) + n ·m+ ℓ2 · n · poly(λ) +m1−δ · t · poly(λ)

m · ℓ

≤ 1 +
poly(λ)

m
+

n

ℓ
+

ℓ · n · poly(λ)
m

+
t · poly(λ)

m · ℓ
.

Setting ℓ = λn, m = n2poly(λ) (for a sufficiently large poly(λ), then the upload-rate can be upper
bounded by 1 +O(1/λ).

• Size of ot2. The message ot2 is composed by cds2. We have that |cds2| = |ot′2| + poly(x,w, λ) =
|ot′2|+ poly(ℓ, n, λ). The message ot′2 is composed by

(
{gi, copir2,i, hi, ri}i∈[ℓ]

)
. Let 1 + ρ be the rate of

the underlying CoPIR scheme. We have that

– |{gi}i∈[ℓ]| = ℓ · poly(λ)
– |{copir2,i}i∈[ℓ]| = ℓ · |Di| · (1 + ρ) where |D| = m.

– |{hi}i∈[ℓ]| = ℓ · poly(λ)
– |{ri}i∈[ℓ]| = ℓ · polylog(m)poly(λ).

Thus the dowload rate ρdown can be upper bounded by

ρdown =
2 · ℓ · poly(λ) + ℓ ·m · (1 + ρ) + ℓ · polylog(m)poly(λ) + poly(ℓ, n, λ)

ℓ ·m

≤ 1 + ρ+
2poly(λ)

m
+

polylog(m) · poly(λ)
m

+
poly(ℓ, n, λ)

ℓ ·m
.

Setting t = (ℓ)1−ε for some ε > 0 and m to be sufficiently large such that poly(ℓ, n, λ) = m1−ε′ , then
we obtain a download rate that tends to 1 for large enough m.
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Computational complexity. We briefly analyze the computational complexity of our protocol. Let
M = mℓ be the total number of OTs performed. Moreover let T = tℓ.

• Receiver’s work. Let CR
CoPIR, C

R
PIR, C

R
CDS be the receiver’s computational complexity in the underlying

CoPIR, PIR and CDS schemes. The receiver needs to encrypt ℓ matrices of size ℓ×n (which takes work
sublinear in M for a proper choice of m) and prepare ℓ LPN samples which takes work proportional
to M . Moreover the receiver needs to run once CoPIR, PIR and CDS all of which take work at most
O(M2−γT ) (for some 1 > γ > 0 if we use the scheme from Section 9). For a proper choice of t (i.e.
sublinear in m) then the total computational complexity grows with M1+εpoly(λ) for 1 > ε > 0.

• Sender’s work. Similarly, the sender’s computational complexity is dominated by the CoPIR which
takes work O(M2−γT ). A similar analysis as above gives us that the total computational complexity
grows with M1+εpoly(λ) for 1 > ε > 0.

11 Statistical Sender Private Oblivious Linear Evaluation with
Overall Rate 1

Similarly to [DGI+19, BBDP22], our SSP OT protocol presented in Construction 6 can be extended to an
OLE over finite fields of polynomial order.

We first describe the OLE primitive.

Definition 32. Let F be a finite field. A two-round statistical sender private oblivious linear evaluation
(SSP OLE) scheme OLE over F is composed by the following algorithms:

• OLER(1λ,b) takes as input the security parameter λ and a vector x = (x1, . . . , xn) ∈ Fn. It outputs a
message ole1 and a private state st.

• OLES(ole1,a,b) takes as input a first OLE message ole1 and two vectors a,b ∈ Fn. It outputs a second
OLE message ole2.

• OLED(ole2, st) takes as input a second OLE message ole2 and a private state st. It outputs a vector y.

An OLE should be correct, sender secure and receiver secure. Here, we consider a special sender security
definition called statistical sender security.

Definition 33 (Correctness). An OLE scheme OLE is said to be correct if for any n ∈ poly(λ), any pair
a,b ∈ Fn and any x ∈ Fn, we have that

Pr

yi = xiai + bi∀i ∈ [n] :
(ole1, st)← OLER(1λ,x)
ole2 ← OLES(ole1,a,b)
y = OLED(ole2, st)

 = 1.

Definition 34 (Statistical sender privacy). An OLE scheme OLE is said to be statistical sender private if
for any λ ∈ N, any n = poly(λ), there exists an extractor OLE.Ext and a simulator OLE.Sim such that for
any pair a,b ∈ Fn and any ole1 we have that

OLES(ole1,a,b) ≈s Sim(ole1,y)

where x← OT.Ext(ole1) and y = (y1, . . . , yn) such that yi = xiai + bi for all i ∈ [n].

Definition 35 (Receiver security). An OLE scheme OLE is said to be receiver secure if for any PPT
adversary A, λ and any x,x′ ∈ Fn we have that∣∣∣∣ Pr[1← A(1λ, ole1) : (ole1, st)← OLER(1λ,x)]−

Pr[1← A(1λ, ole1) : (ole1, st)← OLER(1λ,x′)]

∣∣∣∣ ≤ negl(λ).
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A non-compact scheme. We remark that it is easy to build a SSP OLE over Zp for some p = poly(λ) from
any statistically malicious circuit-private LHE over Zp such as the scheme presented in Appendix A. The
resulting scheme is non-compact meaning that i) the size of the receiver’s rate is poly(λ, |x|) = poly(λ, log p)
where x ∈ Zp is the receiver’s input; and ii) the size of the sender’s message is poly(λ, |a|, |b|) = poly(λ, log p)
where (a, b) is the input of the sender.

11.1 Extension to Co-PIR over Zq.

We first sketch how our SSP co-PIR scheme (in which the database D is over Z2) can be extended into
an SSP co-PIR over Zq for a prime q such that q = poly(λ). To show this, we will show that each of the
individual steps can be extended to support values over Zq.

Semi-honest one-query co-PIR. The scheme from Section 6 can easily be extended to support databases
of the form D ∈ (Zk

q )
m, by considering the following modifications: We use as building blocks codes C1, C2

and a LHE LHE over Zq (instead of schemes over Zq) and a function decompq which decomposes an integer
into base q (instead of the function {0, 1}).

The arguments for correctness, receiver security and statistical (semi-honest) sender security can be
straightforwardly adapted to the Zq case, where q = poly(λ). It is also easy to see that the scheme also
fulfills local correctness and self-reducibility using the same arguments.

SSP Co-PIR over Zq. The transformations from sections 7 (here we consider position co-PIR where the
receiver obtains a single component of the block), 8 and 9 work for any modulus q. Since the semi-honest
one-query co-PIR has all the required properties, we can first apply the transformation of Section 8 followed
by the one of Section 9. The resulting scheme is a SSP co-PIR over Zq. Finally, turning a block co-PIR into
a single element co-PIR is easy as some of the erased positions can be sent to the receiver via a PIR just as
in Section 7.

CDS for DDH-based encryption. It remains to show how the CDS scheme from Section 4 can be
adapted for the language

Lpk =
{
{cti}i∈[µ] : cti ← LHE.Enc(pk, ai · Iℓ) ∧ ai ∈ Zq

}
for q = poly(λ). The main difference is that the sender samples rj,i for all j ∈ [q] and sets

y1,i =

r1,i
...

r1,i

 and y2,i =


di

di − r2,i
...

di − (q − 1)rq,i

 .

For correctness note that if ai ∈ Zq then the i-th row of wi reveals di. The argument for statistical
sender security can also be straightforwardly adapted to the Zq case.

11.2 Statistical Sender Private OLE with Optimal Rate

We now present the protocol for SSP OLE with optimal rate. The construction follows the same outline as
in Construction 6. The main difference is that, for the positions where there is an LPN error, the receiver
is going to send a first message of a non-compact OLE. The sender computes the second message of the
non-compact OLE scheme for all possible values in its database and then sends the results over a PIR to the
receiver.

This construction can also be seen as a compiler that takes a non-compact OLE and turns it into an
optimal-rate OLE by additionally assuming LPN and DDH.
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Ingredients. Let p be a prime number. We will describe an OLE over Zp for p = poly(λ). We will need
the following ingredients for our protocol:

• A PIR scheme PIR = (Query,Send,Retrieve).

• A (single position) co-PIR scheme CoPIR = (Query,Send,Rec) that is PIR-compatible parametrized by
m.

• A rate-1 circuit-private LHE scheme LHE = (KeyGen,Enc,Eval,Shrink,DecShrink) with plaintext space
Zℓ
p and for which shrinked ciphertexts have the form ct = (g, d1, . . . , dℓ) where g ∈ G (for some large

enough group G) and di ∈ Zp.

• An (low-rate) OLE scheme LROLE = (Rec,Send,Dec) over Zp.

• A download rate-1 CDS scheme CDS = (Enc,Send,Release) for the language

L =

pk, {cti}i∈[ℓ] : ∃(r, si, ri) s.t.
(pk, sk)← LHE.KeyGen(1λ, ℓ; r)
Si = SingleRowMatrix(ℓ, n, i, si)

cti ← LHE.Enc(pk,Si; ri)


for some si ∈ Zn

p .

• The binary LPN(n,m, ρ, p) problem with dimension n = poly(λ), m = n ·ℓ ·poly(λ) samples and slightly
sub-constant noise-rate ρ = m1−ϵ.

Construction 7 (Optimal-rate SSP OLE). We now describe the scheme in full detail.

OLER(1λ,b ∈ Zmℓ
p ) :

• Parse b = (b1, . . . ,bℓ), where the bi ∈ Zm
p are blocks of size m.

• Choose A←$Zn×m
p uniformly at random and compute a pair of public and secret key (pk, sk) ←

LHE.KeyGen(1λ, ℓ).

• For all i ∈ [ℓ], choose si←$Zn
p , and ei←$χp,m,t, compute ci ← siA + ei + bi, and set Si ←

SingleRowMatrix(ℓ, n, i, si). Compute a matrix-ciphertext cti ← LHE.Enc(pk,Si).

• Compute (cds1, s̃t)← CDS.Enc(1λ, w) where w = (r, {Si, ri}i∈[ℓ]).

• For all i ∈ [ℓ] set Ji = Supp(ei) to be the support of ei. Compute (copir1,i, sti)← CoPIR.Query(Ji).
21

• For all i ∈ [ℓ] and all j ∈ [t], compute (lrole1,i,j , st
′
i,j)← LROLE.Rec(1λ, bi,J[j]).

• Output ole1 =
(
pk,A, {cti, ci, copir1,i, {lrolei,j}j∈[t]}i∈[ℓ], cds1

)
and st = (sk, {sti, Ji, {st′i,j}j∈[t]}i∈[ℓ], s̃t).

OLES(ole1, (v0,v1) ∈ (Zmℓ
p )2) :

• Parse v0 = (v0,1, . . . ,v0,ℓ) and v1 = (v1,1, . . . ,v1,ℓ), where each vb,i = (vb,i,1, . . . , vb,i,m) ∈ Zm
p and

vb,i,j ∈ Zp. Parse ole1 as
(
pk,A, {cti, ci, copir1,i, {lrolei,j}j∈[t]}i∈[ℓ], cds1

)
.

• For i ∈ [ℓ] set zi = v1,i.

• Set Z = RowMatrix(ℓ,m, z1, . . . , zℓ).

• For all i ∈ [ℓ] set Ci = SingleRowMatrix(ℓ,m, i, ci) and Di = Diag(m,v0,i).

21Recall that, since the CoPIR scheme is PIR-compatible then copir1,i also corresponds to a first message PIR with input Ji.
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• Define the Zp-linear function f : (Zℓ×n
p )ℓ → Zℓ×m

p via

f(X1, . . . ,Xℓ) =

(
ℓ∑

i=1

(−XiA+Ci) ·Di

)
+ Z.

• For all i ∈ [ℓ], j ∈ [t] and o ∈ [m] compute lrole2,i,j,o ← LROLE(lrolei,j , v0,i,o, v1,i,o).

• Compute CT1 ← LHE.Eval&Shrink(pk, f, ct1, . . . , ctℓ).

• Parse CT1 as {gi, di,1, . . . , di,ℓ}i∈[m] where each gi ∈ G and di,j ∈ Zp.

• For all i ∈ [ℓ] set Di = (d1,i, . . . , dm,i).Compute copir2,i ← CoPIR.Send(copir1,i,Di)

• For all i ∈ [ℓ], parse copir1,i as qi = (qi,1, . . . , qi,t).

• For all i ∈ [ℓ] and j ∈ [t] set Fi,j = (lrole2,i,j,1, . . . , lrole2,i,j,m). Compute ri,j ← PIR.Send(qi,j ,Fi,j).

• Set ole′2 = {gi, copir2,i, {ri,j}j∈[t]}i∈[ℓ].

• Compute cds2 ← CDS.Send(cds1,L, ole′2).

• Output ole2 = cds2.

OLED(ole2, st) :

• Parse ole2 as cds2 and st = (sk, {sti, Ji, {st′i,j}j∈[t]}i∈[ℓ]s̃t).

• Run ole′2 ← CDS.Release(cds2, s̃t). Parse ole′2 as {gi, copir2,i, {ri,j}j∈[t]}i∈[ℓ].

• For all i ∈ [ℓ] compute D̃i = (d̃1,i, . . . , d̃m,i)← CoPIR.Retrieve(copir2,i, sti).

• Set C̃T1 to be {gi, d̃i,1, . . . , d̃i,ℓ}i∈[m]. Compute W← LHE.DecShrink(sk, C̃T1) where W ∈ Zℓ×m
p . Parse

W = (wi,j)i∈[ℓ],j∈[m] where wi,j ∈ Zp

• For all i ∈ [ℓ] and all j ∈ [t] compute lrole2,i,Ji[t] ← PIR.Retrieve(ri,j , sti). Additionally, compute
yi,Ji[j] ← LROLE.Dec(lrole2,i,Ji[t], st

′
i,j).

• Set M = (mi,j)i∈[ℓ],j∈[m] ∈ Zℓ×mk
p where

mi,j =

{
yi,Ji[l] if l = Ji[l]

wi,j otherwise
.

• Output M.

The proofs of the following theorems follow the same reasoning as the proofs of theorems 4, 5 and 6
respectively.

Theorem 7 (Correctness). Assume that p = poly(λ). The scheme presented in Construction 7 is correct
assuming that LHE, CDS, CoPIR, PIR and LROLE are correct.

Theorem 8 (Receiver security). The scheme presented in Construction 7 is receiver secure assuming that
LHE is IND-CPA, CoPIR, CDS, PIR and LROLE are receiver secure and that the LPN(n,m, ρ) assumption
holds for slightly sub-constant noise-rate ρ = m1−ϵ where ϵ > 0.

Theorem 9 (Statistical sender security). The scheme presented in Construction 7 is statistical sender secure
assuming that LHE is statistically circuit private and that CDS, CoPIR, PIR and LROLE are statistical sender
secure.
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Communication complexity. We now analyze the communication complexity of the scheme. Let p =
poly(λ) (which is a necessary condition for correctness).

• Size of ot1. The message ot1 is composed by
(
pk,A, {cti, ci, copir1,i, {lrolei,j}j∈[t]}i∈[ℓ]

)
. We have that

– |pk| = ℓ · poly(λ)
– |A| = n ·m · log p
– |{cti}i∈[ℓ]| = ℓ2 · n · poly(λ)
– |{copir1,i}i∈[ℓ]| = t · poly(λ) ·m1−δ.

– |{lrolei,j}i∈[ℓ],j∈[t]| = ℓ · t · poly(λ, log q).
– |cds1| = ℓ·n · poly(λ).

Thus the upload rate ρup can be upper-bounded by

ρup ≤ 1 +
poly(λ)

m
+

n

ℓ
+

ℓ · n · poly(λ)
m

+
t · poly(λ)

m · ℓ
+

t · poly(λ)
m

.

Setting ℓ, n,m and t as in Section 10, the upload-rate can be upper bounded by 1 +O(1/λ).

• Size of ot2. Following a very similar argument as in Section 10, we can upper-bound the download
rate ρdown by

ρdown ≤ 1 + ρ+
poly(λ)

m
+

t · polylog(m) · poly(λ)
m

where 1 + ρ is the rate of the underlying CoPIR scheme. Again, choosing t,m as in Section 10 yields
overall rate 1.

12 Two-Party Secure Computation with Overall Communication
of O(|C|) + poly(λ)

We now show an application of our optimal overall rate SSP OT. This application is in constructing a 2-Party
secure computation (2PC) scheme with overall communication of O(|C|) + poly(λ), where C is the circuit
to be computed and provides statistical semi-honest security against one of the parties and computational
semi-honest security against the other party.

The protocol is just the classical GMW protocol [GMW87] in the OT correlations model where the OT
correlations are generated using our SSP OT.

Specifically, to compute a secret sharing of the AND of two wires whose values are themselves secret
shared as (a1, a2) and (b1, b2) respectively, the parties first compute locally a1 · b1 and a2 · b2. One of the
parties acts as the sender and the other acts as the receiver in two instances of 1-out-of-2 OT. Assume
w.l.o.g. that P1 acts as the sender and P2 acts as the receiver. P2 uses a2 and b2 as its choice bits and P1

uses (r1, b1 + r1) and (r2, a1 + r2) respectively as the sender messages. P2 obtains a2b1 + r1 and a1b2 + r2
as the outputs of the two OT executions. P1 sets the share of the AND to be a1b1 + r1 + r2 and P2 sets its
share to be a2b2 + a1b2 + r1 + a2b1 + r2. Note that instantiating the GMW protocol with an OT scheme
that does not have overall rate-1 incurs an communication complexity of poly(|C|, λ).

Lemma 19 ([GMW87]). Given a circuit C : {0, 1}n×{0, 1}m → {0, 1}, there exists a two-party O(|C|)-round
protocol in the OT-correlation model such that

• The protocol provides semi-honest statistical security.

• The communication complexity is upper-bounded by 6|C|+ n+m+ poly(λ).
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• Both parties share 2|C| OT correlations.

For each gate, the parties need to perform 2 chosen input OTs. If they share 2 random OT correlations,
these can be derandomized using the standard transformation from random OT to chosen input OT which
takes 3 bits of communication per OT. Thus, the total communication is 6 bits per gate. If we setup the
OT correlations using our SSP OT scheme, we obtain the following corollary.

Corollary 2. Given a circuit C : {0, 1}n×{0, 1}m → {0, 1}, there exists a two-party α-round protocol in the
standard model such that

• The protocol is semi-honest secure against one of the parties and statistically semi-honest secure against
the other one.

• The communication complexity is upperbounded by 10|C|+ n+m+ poly(λ).

The 2 · |C| OT correlations can be shared using the OT scheme from Section 10 incurring in total
communication approaching 4|C| + poly(λ) for large enough |C|. Plugging this with the lemma above, we
obtain a scheme with total communication 10|C|+ n+m+ poly(λ). Moreover, statistical security for one of
the parties follow from the SSP property of the underlying OT.
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[BDGM19] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Leveraging linear decryp-
tion: Rate-1 fully-homomorphic encryption and time-lock puzzles. In Dennis Hofheinz and Alon
Rosen, editors, TCC 2019: 17th Theory of Cryptography Conference, Part II, volume 11892 of
Lecture Notes in Computer Science, pages 407–437, Nuremberg, Germany, December 1–5, 2019.
Springer, Heidelberg, Germany.

[BF22] Nir Bitansky and Sapir Freizeit. Statistically sender-private OT from LPN and derandomization.
Cryptology ePrint Archive, Paper 2022/185, 2022. https://eprint.iacr.org/2022/185.

[BFJ+20] Saikrishna Badrinarayanan, Rex Fernando, Aayush Jain, Dakshita Khurana, and Amit Sahai.
Statistical ZAP arguments. In Vincent Rijmen and Yuval Ishai, editors, Advances in Cryptology
– EUROCRYPT 2020, Part III, Lecture Notes in Computer Science, pages 642–667. Springer,
Heidelberg, Germany, May 2020.

48

https://eprint.iacr.org/2022/185


[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure compu-
tation under DDH. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology
– CRYPTO 2016, Part I, volume 9814 of Lecture Notes in Computer Science, pages 509–539,
Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[BGI+17a] Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wadia. Two-
message witness indistinguishability and secure computation in the plain model from new as-
sumptions. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology – ASI-
ACRYPT 2017, Part III, volume 10626 of Lecture Notes in Computer Science, pages 275–303,
Hong Kong, China, December 3–7, 2017. Springer, Heidelberg, Germany.

[BGI17b] Elette Boyle, Niv Gilboa, and Yuval Ishai. Group-based secure computation: Optimizing rounds,
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A Rate-1 Linearly-Homomorphic Encryption from DDH

In this section we present a rate-1 LHE from DDH that fulfills malicious circuit-privacy.
In the following, let G be a (prime-order) group generator, that is, G is an algorithm that takes as an input

a security parameter 1λ and outputs (G, p, g), where G is the description of a multiplicative cyclic group, p
is the order of the group which is always a prime number unless differently specified, and g is a generator of
the group. In the following we state the decisional version of the Diffie-Hellman (DDH) assumption.

Definition 36 (Decisional Diffie-Hellman Assumption). Let (G, p, g)←$G(1λ). We say that the DDH as-
sumption holds (with respect to G) if for any PPT adversary A∣∣Pr[1← A((G, p, g), (ga, gb, gab))]− Pr[1← A((G, p, g), (ga, gb, gc))]

∣∣ ≤ negl(λ)

where a, b, c←$Zp.

Randomized rounding. Let ρs(x) be probability distribution of the Gaussian distribution over Rn with
parameter s and centered in 0. We define the discrete Gaussian distribution DS,s over S and with parameter
s by the probability distribution ρs(x)/ρ(S) for all x ∈ S (where ρs(S) =

∑
x∈S ρs(x)).

Definition 37 ([Pei10]). Let σ > 0. For any x ∈ R, the gaussian rounding ⌈x⌋σ is a random variable
supported on Z defined by

⌈x⌋σ = x+DZ−x,σ.

In other words, ⌈x⌋σ is a discrete gaussian centered on x ∈ R but supported on Z.
We will use the following convolution lemma which provides a simulation property for gaussian rounding.

This lemma follows from a lemma presented in [GMPW20].

Lemma 20 ([BBDP22]). Let ϵ > 0 be bounded by a sufficiently small constant and let σ1, σ2 ≥ ηϵ(Z). Then
it holds for all x, y ∈ R that

⌈x⌋σ1
+ ⌈y⌋σ2

≈s ⌈x+ y⌋√
σ2
1+σ2

2

.

It immediately follows from Lemma 20 that it holds for every integer p ≥ 2 that

⌈x⌋σ1
+ ⌈y⌋σ2

mod p ≈s ⌈x+ y⌋√
σ2
1+σ2

2

mod p.

Shrinking ciphertexts. We present lemmas from previous works that guarantee the existence of shrinking
algorithms. That is, given a specific (packed) El Gamal encryption, there are algorithms that allow us to
shrink the ciphertext to a rate-1 ciphertext. Both algorithms are inspired by previous works [BGI16, DGI+19,
BBD+20].

In the following let (G, p, g)←$G(1λ) and k ∈ Z. Consider an El Gamal public key of the form pk =
(g, (h1, . . . , hk) = (g, (gx1 , . . . , gxk)) ∈ Gk+1 for x1, . . . , xk←$Zp (here, x = (x1, . . . , xk) is the secret key).
Consider the modified El Gamal encryption algorithm where a ciphertext for m = (m1, . . . ,mk) ∈ {0, 1}k is
of the form ct = (c1, (c2,1, . . . , c2,k)) ∈ Gk+1 where c1 = gr and c2,i = hr

i g
⌈mi(p/2)⌋σ .

Lemma 21 ([BBDP22]). There exists a pair of (expected) PPT algorithms (ShrinkDDH,DecShrinkDDH) such
that if ct = (g, h1, . . . , hn) is a modified El Gamal ciphertext encrypting a message m ∈ {0, 1}n (as described
above) the we have that

• (c,K, b1, . . . , bn)← ShrinkDDH(ct).

• m← DecShrinkDDH(sk,ShrinkDDH(ct)).
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A.1 Construction

We now sketch the construction which is heavily based on the constructions from [ADD+22, BBDP22].

Construction 8. Let (GShrinkDDH,GDecShrinkDDH) be the pair of algorithms described in Lemma 21.

KeyGen(1λ, k) :

• (G, p, g)←$G(1λ)

• Sample x1, . . . , xk←$Zp. Compute hi = gxi .

• Output pk = (G, p, g, h1, . . . , hk) and sk = x = (x1, . . . , xk).

Enc(pk,m = (m1, . . . ,mk)) :

• Parse pk as (G, p, g, h1, . . . , hk).

• Sample r←$Zp. Compute c1 = gr and c2,i = hr
i g

mi for i ∈ [k].

• Output ct = (c1, (c2,1, . . . , c2,k)).

Eval(pk, f, (ct1, . . . , ctℓ))

• Parse pk as (G, p, g, h1, . . . , hk), f as f(x1, . . . ,xℓ) =
∑ℓ

i=1 aixi + b for a = (a1, . . . , aℓ) ∈ Zℓ
2 and

b ∈ Zk
2 and cti as (c1,i, c2,i) where c2,i = (c2,1,i, . . . , c2,k,i)) for i ∈ [ℓ].

• Compute c̄t = (c̄1, (c̄2,1, . . . , c̄2,1)) where

c̄1 =

ℓ∏
i=1

(
c
⌈ai

p
2 ⌋σ

1,i · (g · c−1
1,i )

⌈0⌋σ

)
· gt

and

c̄2 =

ℓ⊙
i=1

(
c
⌈ai

p
2 ⌋σ

2,i ⊙ (g · c−1
2,i )

⌈0⌋σ

)
⊙
(
g⌈b1

p
2 ⌋σ , . . . , g⌈bk

p
2 ⌋σ
)
⊙ (ht

1, . . . , h
t
k)

for t←$Zp and where ⊙ denotes the component-wise multiplication.

• Output c̄t.

Shrink(pk, ct) : Output c̄t← ShrinkDDH(pk, ct).

DecShrink(sk, ct) : Output m← DecShrinkDDH(sk, c̄t).

Proofs for correctness, IND-CPA, and semi-honest statistical circuit privacy are presented in [BBDP22].

A.2 Alternative Evaluation

We now show how to implement the alternative evaluation algorithms that we need in Section 4. These al-
ternative evaluation algorithms are presented in [ADD+22]. We refer the reader for the proofs of correctness.

Construction 9 (Alternative evaluation algorithms). Let LHE = (KeyGen,Enc) be the algorithms described
in Construction 8.
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AltEval1(pk, (a,b),CT) :

• Parse pk as (G, p, g, h1, . . . , hk), a = (a1, . . . , am) ∈ Zm
p , b ∈ Zk

p and CT = (ct1, . . . , ctm) where
cti = (gi, di,1, . . . , di,k) = (gi,di).

• Sample r←$Zp.

• Compute c = gr
∏m

i=1 g
ai
i and d = h (

⊙m
i=1 d

ai
i ) · gb.

• Output ct = (c,d).

AltEval2(pk,R ∈ Zm×n
p , ct) :

• Parse pk as (G, p, g, h1, . . . , hk), R = (ri,j) ∈ Zm×k
p and ct as (f, d1, . . . , dk).

• Compute the new public key pkR = (h′
1, . . . , hk).

• For all j ∈ [m] compute ej = h
′tj
j ·

∏k
i=0 d

ri,j
i where ti is a random element. Set e = (e1, . . . , em).

• Output ct = (f, e).

AltDec(sk,R, c̃t) :

• Parse sk = (x1, . . . , xk), R = (ri,j) ∈ Zm×k
p and ct = (c, e).

• Compute s′ = RsT and m = dlogg(e/c
s′).

• Output m.

The scheme fulfills a form of malicious statistical circuit privacy that we now describe. There exists
an extractor and a simulator such that for all messages M, all functions f(X) = R(XaT + bT ) where
R←$Zm×n

p is a uniform matrix where m > n, all public keys pk and all ciphertexts CT we have that{
(R, c̃t)

}
≈s

{
(R, ĉt

}
where c̃t is obtained by applying AltEval1 and AltEval2 (as in Definition 22) to CT and ĉt← LHE.Sim(pk, aux, f(M))
where M← LHE.Ext(pk,CT).

Lemma 22. The scheme presented above is statistically malicious circuit private.

Proof. We first describe the extractor for the LHE. The extractor LHE.Ext(pk, ct) first extracts the secret
key from pk. That is, it finds xi such that gxi = hi. Let x be the secret key.

The simulator now samples a random R, computes the new secret key RxT . Given f(M) the simulator
computes a fresh encryption of f(M) under the new public key.

B Statistical Sender Secure Co-PIR from PIR

Here we present an alternative construction for SSP co-PIR from PIR. First, we show how to construction
a SSP one-query co-PIR from PIR. Then, we can recurse it using the transformation from Construction
4 to obtain a co-PIR. Statistical sender security of the final construction follows from the security of the
underlying PIR.
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B.1 One-Query Co-PIR from PIR.

A one-query co-PIR can also be built from a PIR scheme. The resulting one-query co-PIR inherits the
security of the underlying PIR. Thus, using the scheme of [ADD+22], which is a PIR that is statistical
sender secure, we obtain a statistical sender secure one-query co-PIR.

Construction 10. Let PIR = (Query,Send,Retrieve) be a (download rate-1) PIR with statistical security for
the sender.

Query(1λ, i∗ ∈ [m]):

• Compute (q, st1)← PIR.Query(1λ,m, i∗).

• Output copir1 = q and st = st1.

Send(copir1,D ∈ ({0, 1}m):

• Parse copir1 = q. Additionally, parse D = (D1, . . . , Dm).

• For all i ∈ [m] set
Ci = (D1, . . . , Di−1, 0, Di+1, . . . , Dm).

That is, Ci is equal to D except that the i-th coordinate is set to 0.

• Compute r← PIR.Send(q, (C1, . . . ,Cm)).

• Output copir2 = r.

Rec(copir2, st):

• Parse copir2 = r and st as st1.

• Compute C̃← PIR.Retrieve(rj , st1).

• Output D̃ = C̃.

Lemma 23 (Correctness). The scheme presented in Construction 10 is correct given that the underlying
PIR is correct.

Proof. By the correctness of the underlying PIR scheme we have that

C̃ = (D1, . . . , Di∗−1, 0, Di∗+1, . . . , Dm).

Hence D̃i = Di for all i ̸= i∗.

Lemma 24 (Receiver security). The scheme presented in Construction 10 is receiver secure given that PIR
is receiver secure.

Proof. The receiver’s message contains only a PIR message. Thus, if we have an adversary that breaks
the receiver security of the scheme then we can build an adversary that breaks the receiver security of the
underlying PIR scheme.

Lemma 25 (Statistical sender security). The scheme presented in Construction 10 is statistically sender
secure given that the underlying PIR scheme is statistically sender secure.

Using the extractor of the underlying PIR we can extract i∗ from a maliciously chosen q. Then, we can
replace all Ci by 0 for all i ̸= i∗. This change goes unnoticed by the statistical security of the underlying
PIR scheme. Finally, we can replace all ocurrences of 0 by C′

i where C′
i is equal to D′ except for the i-th

position which is equal to 0 and where D′ is equal to D everywhere except for the i∗ position. This last
hybrid corresponds to Send(copir,D′).
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Communication complexity. We now analyze the communication complexity of the scheme. Suppose
that PIR has a first message of size |q| = B ·poly(λ) and a second message of size |r| = B+poly(λ) ·polylog(m)
and that allows the receiver to retrieve blocks of size B. By reusing the receiver’s message, we can make
|r| = Bpoly(λ) + poly(λ) · polylog(m). Recall that th ADD+ scheme fulfills these requirements.

• Size of |copir1|. The bitsize of the message copir1 = q is bounded by poly(λ)polylog(m).

• Download rate. The bitsize of the sender’s message copir2 = r can be bounded by |m| + poly(λ) ·
polylog(m). Hence, it achieves download rate-1.

Computational complexity. We now analyze the computational complexity of the scheme in terms of
the size of D.

• Receiver. The Query algorithm is independent of m. In the Rec algorithm, one needs to perform a
decryption for each element in [m]. Hence, the receiver’s computational complexity can be bounded
by |D| · poly(λ).

• Sender. The Send algorithm needs to a database of size m for each entry of the underlying PIR (which
itself has m entries). Hence, the sender’s computational complexity can be bounded by |D|2 · poly(λ).

PIR-compatibility. The message copir1 is composed by a first message q of a PIR scheme. Hence, we
can also use it as a first message of PIR scheme. This means that the scheme from Construction 10 is
PIR-compatible.

Self-reducibility. If we instantiate the PIR scheme with the scheme of [ADD+22] then we have self-
reducibility as the sender’s message in [ADD+22] is a ciphertext where each component encrypts a single of
of the database. This follows from the following property of [ADD+22]: the output r of ADD+.Send(q,D)
can be decomposed into r = (head, α1, . . . , αm) where each αi encodes a bit of D = (D1, . . . , Dm) and
|head| = polylog(|D|) · poly(λ).

B.2 Bootstrapping into a SSP Co-PIR.

First, note that the construction described above already yields a bit co-PIR. We can use the transformation
of Section 8 to obtain a multiple query co-PIR. The scheme described above already provides (malicious)
statistical sender security if the underlying PIR has statistical sender security. Hence, we do not need to
apply the transformation of Section 9.

C Yet Another Co-PIR Construction

In this section we sketch an alternative construction for semi-honest co-PIR which can then be bootstrapped
into a full-fledge co-PIR using the transformations of Sections 8, 9 and 7.

The receiver message is constructed as the first message of Construction 2. The sender has as input a
database D = (D1, . . . ,Dm) where each Di ∈ Zk

q . It then computes the function (i − i∗).Di over Zq and
compresses the resulting evaluated ciphertext into a value over Zq. The receiver decrypts the ciphertext.

It can be easily shown that this scheme is correct and secure following a similar rational as the ones in
the proofs of Section 6. Moreover, the communication complexity analysis can be done in a similar way.

However, in terms of communication, this scheme achieves complexity scaling with m2. To see this first
notice that q > m otherwise the equation i− i∗ = 0 mod p may have multiple solutions for i ∈ [m] and we
want it to have a single solution. Additionally, the computational complexity of the compression mechanism
of the underlying LHE scales with q as it needs to compute all q breakpoints before making a decision on
which to sent/decrypt. This happens for both the sender and the receiver.
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