
Implementation and performance of a

RLWE-based commitment scheme and ZKPoK

for its linear and multiplicative relations

Ramiro Mart́ınez ∗1, Paz Morillo 1, and Sergi Rovira 2

1Department of Mathematics, Universitat Politècnica de
Catalunya, Jordi Girona 31, 08034, Barcelona, Catalonia, Spain
2WiSeCom-DTIC, Universitat Pompeu Fabra, Tànger, 122-140,

08018, Barcelona, Catalonia, Spain

July 2, 2023

Abstract

In this paper we provide the implementation details and performance
analysis of the lattice-based post-quantum commitment scheme intro-
duced by Mart́ınez and Morillo in their work titled RLWE-Based Zero-
Knowledge Proofs for Linear and Multiplicative Relations together with
the corresponding Zero-Knowledge Proofs of Knowledge (ZKPoK) of valid
openings, linear and multiplicative relations among committed elements.
We bridge the gap between the existing theoretical proposals and practi-
cal applications, thoroughly revisiting the security proofs of the aforemen-
tioned paper to obtain tight conditions that allow us to find the best sets
of parameters for actual instantiations of the commitment scheme and its
companion ZKPoK. Our implementation is very flexible and its param-
eters can be adjusted to obtain a trade-off between speed and memory
usage, analyzing how suitable for practical use are the underlying lattice-
based techniques. Moreover, our implementation further extends the lit-
erature of exact Zero-Knowledge proofs, providing ZKPoK of committed
elements without any soundness slack.

Keywords— Lattice-based Cryptography, Post-Quantum Cryptography, Im-
plementation, Commitment Scheme, Zero-Knowledge Proofs of Knowledge.

1 Introduction

Lattice-based cryptography is currently a prolific research topic as it allows
building many cryptographic primitives from post-quantum assumptions, that

∗Corresponding Author: ramiro.martinez@upc.edu

1

https://orcid.org/0000-0003-0496-6462
https://orcid.org/0000-0002-0063-2716
https://orcid.org/0000-0001-8440-9345

is, basing its security on computational problems believed to be hard even for
quantum computers. This became a significant concern since the publication
of Shor’s quantum algorithm [34], that efficiently solves both factorization and
discrete logarithm problems.

In the future, a powerful enough quantum computer could be used to break
the security of widely used cryptographic protocols, hence post-quantum alter-
natives have to be developed. Furthermore, any malicious agent could be storing
current communications in order to access them whenever quantum computers
are available. For this reason, quantum-safe cryptographic constructions are not
only a future issue but a current desirable property to provide that long-term
privacy.

Consequently, it is fundamental to study the practicality of lattice-based
proposals. In this work we provide an efficient implementation1 of Mart́ınez and
Morillo commitment scheme, presented in [32], together with the corresponding
Zero-Knowledge Proofs of Knowledge (ZKPoK) of valid openings and linear
and multiplicative relations among committed elements. Such a commitment
scheme with these Proofs of Knowledge is a very flexible building block for
more advanced cryptographic constructions, since it allows the realization of
any arithmetic circuit.

The aim of this work is to bridge the gap between the existing theoretical
proposals and practical applications, thoroughly revisiting the security proofs
from [32] to obtain tight conditions that allow us to find the best sets of pa-
rameters for actual instantiations of the commitment scheme and its companion
ZKPoK. The analysis of this implementation illustrates the usefulness of this
construction and allows comparing it with alternative proposals.

1.1 Related Work

Multiple cryptographic constructions make use of ZKPoK derived from the sem-
inal code-based identification scheme designed by Stern in [37]. It provides
the most efficient ZKPoK for code-based cryptography [35] but has also been
adapted to lattices. Examples of commitment schemes derived from Stern’s
protocol are [20] by Jain et al. that applies them to the Learning Parity with
Noise problem and [39] by Xie et al. that adapts it to the lattice setting. The
Stern-based techniques in [32] that we implement in this paper are an improve-
ment of those of [39], while the notation is the same as yet another lattice-based
commitment scheme presented by Benhamouda et al. in [10]. The latter uses a
different approach called rejection sampling. This alternative has been further
explored by Baum et al. in [9].

On the one hand, several improvements have recently been made on rejection
sampling techniques for proving relations among committed elements. While [9]
already had an efficient proof for linear relations, the recent work of Attema
et al. [7] provides new proofs for multiplicative relations for this commitment

1We give the implementation as open-source in https://github.com/rammmiro/RLWE-
commitment

2

https://github.com/rammmiro/RLWE-commitment
https://github.com/rammmiro/RLWE-commitment

scheme. It has also been modified to provide more efficient opening proofs
in [38].

On the other hand, Stern-based techniques have been applied to prove knowl-
edge of several relations (including multiplications) when committing (using lat-
tices) to exponentially large integers using a polynomially large modulus q, as it
was done by Libert et al. in [26]. This has been outperformed by Kuchta et al.
in [24] and also in [29] by Lyubashevsky et al., using the rejection sampling sce-
nario. A general technique useful to reduce the soundness error of Stern-based
protocols was presented in [11], greatly reducing the proof sizes at the expanse
of significantly increasing the computational cost.

It is important to notice that some of these ZKPoK for committed elements
relax the notion of soundness (with rejection sampling techniques the set of valid
openings is strictly larger than the set of honestly generated commitments). For
example, Bootle et al. [12] present some succinct Zero-Knowledge arguments
with large soundness slack. A prover knowing a certain bound on the error
term can only convince a verifier that they are able to extract an error which is
exponentially larger. For that matter, the particular parameter that appears in
the exponent has to be fixed, and the others adapted accordingly to satisfy the
rest of the properties.

Some proposals as [13] or [19] try to circumvent these issues, verifying ad-
ditional conditions. A very prolific research path is the use of a relaxed com-
mitment scheme with companion rejection sampling ZKPoK, usually (variants
of) [9], as a subroutine of a more complex protocol that then obtains efficient
exact proofs. That is the case of [40, 18, 30, 28]. Nevertheless, our implementa-
tion increases the literature of exact Zero-Knowledge proofs, providing ZKPoK
of committed elements without any soundness slack. This allows us to tightly
choose all parameters as we do not have to take into account any error growth.

1.2 Notation

We follow the usual notation, denoting vectors with boldface roman letters as
v. If A is an algorithm we use a← A to denote that a is the output of A, if X
is a set we use x← X to denote that x is sampled uniformly at random from X
and if D is a probability distribution we use d← D to denote that d is sampled
following the distribution D.

We denote by R any poly-time verifiable polynomial binary relation, i.e. if
(x,w) ∈ R then the size of the witness w is polynomially bounded by the size
of the statement x, that is, there exists a polynomial p such that |w| ≤ p(|x|).
We abuse notation and write x ̸∈ R (and say x is false) if there is no w such
that (x,w) ∈ R, or x ∈ R (and say x is true) otherwise.

We denote the security parameter by λ in all security proofs.

1.3 Paper organization

In Section 2 we give the necessary cryptographic background for the rest of the
paper, including commitment schemes, Zero-Knowledge proofs and hardness

3

assumptions. In Section 3 we detail the changes made to the original protocols
of [32] and provide the pseudocode for all the protocols. In Section 4 we give
the implementation details and our choices for the computation tasks of lattice
membership, discrete Gaussian sampling, uniform sampling and multiplication
in a truncated polynomial ring. In Section 5 we offer the experimental results
and explain how to choose parameters for our protocols. We also provide a
discussion on some interesting trade-offs. Finally, in 6, we provide conclusions
and give some interesting future work.

2 Cryptographic background

In this section we briefly and informally describe commitment schemes, Zero-
Knowledge Proofs of Knowledge and the Ring Learning with Errors problem
(RLWE). We assume that the reader has (basic) prior knowledge of standard
concepts of public-key cryptography. For additional formal definitions, we refer
the reader to [32].

2.1 Commitment schemes

A commitment scheme is a two-party protocol with two phases that allows one
party (the sender) to commit to a value that will only be revealed to another
party (the receiver) showing an opening in the future. The following two re-
quirements should be satisfied:

• Hiding: The receiver should not be able to gain any meaningful knowledge
of the sender’s value without the opening.

• Binding: It should be infeasible for the sender to output a commitment
that can be opened to two different values.

These requirements should be satisfied even if the parties’ behavior is malicious.
For example, a straightforward secure commitment scheme can be built from a
random oracle O. The sender chooses uniformly at random a sufficiently large
string r ∈ {0, 1}λ, where λ would be the security parameter, and computes c←
O(m∥r) where m is the message to be committed and ∥ indicates concatenation
of strings. To open it they just have to reveal m and r. In fact, this is the
underlying auxiliary commitment scheme used in the protocols that will be
briefly introduced in Section 3.

2.2 Zero-Knowledge Proofs of Knowledge

A Non-Interactive Zero-Knowledge Proof of Knowledge (NIZKPoK) allows a
prover P to convince a verifier V that a certain statement x is true because
they know some secret information w (a witness) that satisfies a given relation
(x,w) ∈ R while preserving confidentiality of such secret. In our case, the
statement would be a commitment key and a commitment and the witness would

4

be a valid opening (or three commitments and three valid openings satisfying
linear or multiplicative relations). More formally, P takes x and w as input and
produces a proof Π and V accepts or rejects the proof by looking at x and Π.
Every NIZKPoK system must satisfy the following properties:

• Completeness: If an honest prover knows the witness, then an honest ver-
ifier will always accept the proof provided that the protocol was followed.

• (Knowledge) Soundness: A protocol is said to be sound if no computation-
ally bounded (for example with a limited number of oracle queries) dis-
honest adversary can produce a valid proof for a false statement (x ̸∈ R),
except with negligible probability.

A protocol is said to have the stronger property of Knowledge-Soundness
if there is an extractor such that provided A is an adversary that produces
valid proofs for a statement x then the extractor is able to use it to obtain
a valid witness such that (x,w) ∈ R with a similar success probability.

• Zero-Knowledge: The proof itself should not reveal any additional infor-
mation about the witness besides the fact that it exists.

2.3 Ring Learning with Errors

Let f(x) = xn + 1 where n is a power of 2. Let q ≥ 3 be an odd integer. Let
R = Z[x]/⟨xn + 1⟩ and Rq = R/qR. For the sake of being able to define norms
of polynomials and vectors of polynomials, we choose {−⌊q/2⌋, . . . , ⌊q/2⌋} as
representatives for Zq. Let χ be a distribution over R. The RLWEn,q,χ problem
is to distinguish the following two distributions over {(ai, bi)}i ⊂ R2

q defined as
follows: In the first distribution one samples (ai, bi) uniformly at random from
R2

q and, in the second distribution, one secretly samples s← Rq uniformly and
then defines (ai, bi = ai · s + ei) ∈ R2

q by sampling ai ← Rq uniformly and
ei ← χ. The RLWEn,q,χ assumption is that the RLWEn,q,χ problem is hard.

2.4 CSPRNG and XOF

A cryptographically secure pseudorandom number generator (CSPRNG) is a
PRNG with the following additional properties:

• Given n consecutive bits of a random sequence obtained from the CSPRNG,
there is no polynomial-time algorithm that can predict correctly the (n+
1)th with non-negligible probability better than 0.5.

• If part or all the state is revealed, it should be impossible to reconstruct
the stream of randomness produced before the leak.

In our implementation, we use OpenSSL to sample from a CSPRNG with at
least 128 bits security level.

5

An eXtendable Output Function (XOF) is a generalization of a hash function.
While a hash function produces an output of fixed length, an XOF can produce
a digest of arbitrary length. Moreover, the extension of the length of the output
(requesting more digest bits) only costs the generation of these extra bits. In
our implementation, we use an XOF (SHAKE-128) to obtain an appropriate
length buffer to store the cryptographically secure pseudorandom bytes used to
sample an integer uniformly at random from a given interval.

3 The commitment and the ZKPoK

In this section, we describe the implementation approach and the modifications
from the original protocols of [32]. For that matter, we first fix notation and
provide a summarized description of the protocols that we have implemented
in Section 3.1. In Section 3.2, we detail the modifications made to the ZKPoK
protocols. Moreover, in Section 3.3 we establish all the conditions that guarantee
each of the security notions (binding, hiding, soundness, zero-knowledge and
correctness). Finally, in Section 3.4 we have included the full description of each
of the protocols taking into account the tools that we have used to instantiate
them.

Throughout the rest of the paper we will work over the quotient ring of
polynomials Rq = Zq[x]/⟨xn + 1⟩ where n is a power of two and q is an odd
prime.

As error distribution χ we are going to use Dn
σ,B the truncated discrete

Gaussian distribution over R. More specifically, when sampling a polynomial
p← Dn

σ,B we independently sample each coefficient from a discrete Gaussian dis-
tribution over Z of parameter σ, Dσ, conditioned to be in the interval [−B,B),
where the bound B is another power of two. We sometimes abuse notation writ-
ing ||p||∞ ≤ B while what we are going to check is whether all the coefficients
from p belong to the interval [−B,B). The discrete Gaussian distribution of pa-
rameter σ over the integers assigns to x ∈ Z a probability which is proportional
to

ρσ(x) = exp
(
−1

2
x2/σ2

)
.

3.1 The Commitment Scheme and the companion ZKPoK

Our commitment scheme consists of the following three algorithms.

• Key Generation: This procedure takes as input lattice dimension n,
modulus q, the number d of factors xn+1 splits in when considered modulo

q and vector dimension k and outputs a public key pk = (a,b) ∈ (Rk
q)

2
.

• Commitment: On input a message m ∈ Rq and a public key (a,b) ∈
(Rk

q)
2
it outputs a commitment c = am + br + e ∈ Rk

q and an opening

o = (m, r, e) where r ← Rq and e←
(
Dn

σ,B

)k
.

6

• Verification: On input a a public key (a,b), a commitment c and an
opening o = (m, r, e) it accepts if c = am + br + e and ||e||∞ ≤ B and
rejects otherwise.

Regarding the parameters, this scheme is secure under the assumption that
the RLWEn,q,Dn

σ,B
problem is hard if we choose n, q, σ and the number of

samples k satisfying the properties that are going to be described in Section 3.3.
The companion opening, linear and multiplicative ZKPoK allow a prover to

convince a verifier that they know a valid opening of a given commitment, three
valid openings such that m3 = λ1m1+λ2m2 for given λ1, λ2 ∈ Rq or three valid
openings such that m3 = m1 ·m2 respectively, without revealing any additional
information about the specific messages and openings.

The main idea is to prove that coefficients of e are small by proving they
have a binary decomposition with the desired limited length. Notice that our
commitment scheme is not homomorphic, that is, the sum of two commitments
does not always form a valid commitment (the norm of the added noise terms
might exceed the bound). For that reason we cannot just add the two original
commitments, and we would need to create a new commitment to the sum and
prove knowledge of the linear relation (in a protocol that essentially runs the
opening protocol three times in parallel disclosing the linear relation). To prove
the product relation we again have to prove knowledge of the three openings in
parallel, but this time taking care of the crossed terms that would appear when
multiplying the secret messages while masked.

3.2 Protocol modifications

In this subsection, we describe what modifications we have introduced in the
ZKPoK protocols defined in [32] in order to allow better security reductions and
performance improvements. The implementation of the commitment scheme
does not have any important difference from the original description of [32] and
therefore it is omitted.

In order to choose secure sets of parameters that allow us to build an efficient
implementation we first redo the security proofs from [32], as, in the same man-
ner than [10], they were sometimes far from tight, and some relations were only
asymptotically defined. To do so we have removed some constants, introduced
new ones and replaced some conditions with others that play the same role but
allow a tighter analysis.

It is important to emphasize that this is one of the main challenges when
instantiating real world cryptographic protocols from a theoretic paper. Prov-
ing security from a theoretical point of view requires asymptotical proofs, as
its goal is ensuring that undesired events occur with as low probability as we
desire provided some parameters are large enough. These proofs guarantee the
existence of parameters for any security level (under certain hypothesis), but
do not inform of the particular parameters given that they might not explicitly
describe how large these parameters should be, and have to be generic enough
to work with any set of parameters.

7

Claiming a specific security level is something different, as the constants
hidden in the asymptotic relations play a really important role, and we are able
to tailor some inequalities to the specific set of parameters we would like to work
with. These different proofs might lead to a different set of constraints for the
parameters, that we are going to enumerate in the following subsection.

Both [32, 10] use σ ∈ O
(
n3/4

)
as error parameter, but this is not useful

for instantiating the commitment. On the one hand, fixing a particular rela-
tion σ = c · n3/4 might require absurdly large n for the properties to hold for
some c, or, on the other hand, it might produce far from tight inequalities. Ex-
plicitly computing how large n has to be, or how tight are the proofs, is not
straightforward in general.

Asymptotic relations are defined for functions, but, in order to study the
best σ for a given n, a different analysis is required. It is also relevant to notice
that the original proofs used as an assumption the hardness of the underlying
RLWE problem, but did not discuss how the relations among the parameters
affect this hardness. This again has to be specifically consider when instantiating
the commitment.

Remove intermediate constant γ. Consequently, we no longer make
use of the intermediate constant γ controlling the relation between q and n
(inherited from [10], and useful to compare both schemes from a theoretical
point of view, but not for choosing parameters) as we now explicitly check the
relations between q and n for each security property.

Decoupling of noise bound from n introducing new bound B.
Both [10] and [32] bounded the error term by n, so that σ could be asymp-
totically defined with respect to n and security proofs could be easily done.
As we have mentioned, choosing specific parameters requires computing actual
probabilities, and not its asymptotic behavior. Doing so we found out that
it is possible to choose much tighter bounds on the error terms preserving all
the other properties. For that matter, we have introduced a new parameter B,
intended to be a much tighter upper bound to the norm of the error term.

Alternative constraint of the modulus q. Besides redoing the proofs
for security considerations, we also change another condition, regarding the
modulus q, to allow further optimizations.

To improve the efficiency of polynomial multiplications, we use the partial
FFT approach described in [33] or [31]. The main idea of FFT multiplication
algorithms (the specifics will be briefly described in section 4.4) is to transform
the polynomials into a different domain where products are computationally
cheaper, and then antitransform back the result.

This new approach requires q ≡ 2d + 1 mod 4d so that xn + 1 factorizes
in d irreducible polynomials in Zq[x]. Notice that when d = 2, which is the
most efficient case as we will discuss, this translates into q ≡ 5 mod 8 while
the original proposals [10, 32] required q ≡ 3 mod 8 so that xn + 1 factorizes
as well into two irreducible polynomials in Zq[x].

Transform the Interactive protocols into Non-Interactive ones. We
have also transformed, via Fiat-Shamir, the original Interactive-ZKPoK into
NIZKPoK, computing the challenges from a cryptographically secure pseudo-

8

random number generator seeded with the previous elements from the conver-
sation. To make the non-interactive version secure the number of repetitions of
the protocols, denoted by δOL in the opening and linear proofs and by δM in
the multiplicative one, have to be increased.

Redefine the input of the key generation algorithm. While the orig-
inal version of the key generation algorithm Gen from [32] takes as input just
the security parameter written in unary 1λ we have split this process. First,
we describe in Section 5.1 how to obtain a valid set of parameters (and we
prove in Appendix C that this procedure produces indeed a set of parameters
that guarantees certain security properties). In the GitHub repository we pro-
vide a sagemath script that takes as input (λ, n, q, d) and outputs the optimal
(λ, n, q, d, k, σ,B, δOL, δM). Then the proper key generation algorithm takes
these parameters as input and outputs the key pair (a,b) and the auxiliary
elements.

Increase the length of the openings for the auxiliary commitments
so they take up an integer number of bytes. To instantiate the auxiliary
commitment scheme we have chosen to use SHA3-256 as a hash function, com-

puting aCom(m, o) = SHA3-256(m∥o) with o ← {0, 1}λ
′
, where λ′ := 8 · ⌈λ/8⌉

for convenience, so that the opening has an integer number of bytes.
Reduce the proof size generating multiple seeds from a master

seed. While in the original proposal the prover was supposed to send a different
seed for each of the permutations, we choose to define just one master seed for
every iteration from which the others are derived using SHAKE-128 as XOF.

3.3 Security conditions

In this subsection we establish all the conditions, some inherited from [32] and
some improved ones, that guarantee each of the security notions.

For a detailed proof discussing why these specific conditions guarantee secu-
rity, the reader is encouraged to read Appendices A and B.

Binding:

The binding property is guaranteed similarly than in [32] and [10], using a count-
ing argument to ensure that no two valid openings exist for a single commitment
except with a very small probability in the sampling of the commitment key.
The argument is generalized to the fact that xn +1 factorizes into d irreducible
polynomials (instead of only considering 2) and bounding the undesired proba-
bility by a specific 2−λ instead of proving that it is asymptotically negligible in
n. The conditions are:

• q ≡ 2d+ 1 (mod 4d) (1)

• k ≥ λ+2n log2(q)
n(log2(q)/d−log2(4B−1))

(2)

• d < log2(q)
log2(4B−1)

. (3)

9

https://github.com/sergirovira/RLWE-commitment

Hiding:

To ensure the commitment is hiding we just have to check that the underlying
computational problem is hard enough (we denote by bitsec(RLWE) the num-
ber of security bits estimated by Albrecht et al. Lattice Estimator2 [1]) and that
the noise distribution is bounded with sufficient probability (as we are going to
truncate it). The inequalities are:

• bitsec(RLWE) ≥ λ (4)

• Pr
[
||e||∞ ≤ B

∣∣∣ e← Dkn
σe

]
≥ 1− 2−λ. (5’)

Regarding the second condition, we recall that we abuse notation writing
||e||∞ ≤ B as what we really assume is that every coefficient e of each of the
polynomials in the vector of polynomials e satisfies −B ≤ e < B.

The condition we need is (5’), but, provided that we do not know how
to explicitly compute that probability, we are going to latter define a slightly
stronger condition in eq. (5) that will imply (5’). This condition will be presented
in Section 5.1 as it uses several definitions that are going to be introduced there.

Soundness:

Soundness is ensured by combining the knowledge-soundness of the interactive
protocol with the security guarantees of the Fiat-Shamir transform. Soundness
is immediate for the Fiat-Shamir transform of classical special sound Σ-protocols
(with only 3 moves), but needs a more detailed analysis when the protocol has
2µ+ 1 rounds and requires parallel repetitions.

The original proposal[32] already showed that the soundness error of the
opening and the linear relation was κδOL

OL and κδM
M with κOL = (q + 1)/2q and

κM = (q2 + 3q − 2)/2q2 respectively.
We take advantage of the more fine-graded special-soundness definitions for

multiple round protocols and the proofs from [4] to show that κδOL

OL and κδM
M

are also the knowledge error of their respective protocols with the standard
definitions. For that matter, the first necessary security conditions are inherited
from [32]:

• ((q + 1)/2q)
δOL ≤ 2−λ (6)

•
(
(q2 + 3q − 2)/2q2

)δM ≤ 2−λ. (7)

Then in order to be able to directly apply the known results about the
Fiat-Shamir transformation of a multi-round protocol we formally prove in sec-
tion A.3 that both soundness and knowledge-soundness are preserved in the
ROM if the verifier just sends some seeds from which the actual challenges are

2Commit f9f4b3c69d5be6df2c16243e8b1faa80703f020c from github.com/malb/

lattice-estimator

10

github.com/malb/lattice-estimator
github.com/malb/lattice-estimator

latter pseudorandomly derived, provided the seed space is large enough. We
believe that formal proof is of independent interest, and it provides the next
condition, where S is the seed space (in the Non-Interactive version is the out-
put space of the extendable output function that is applied to the previous
elements to get the challenge):

• |S| ≥ 2λqδ. (8)

Finally, we can use the known results about the security of the Fiat-Shamir
transform, that ensure soundness and knowledge-soundness are preserved but
with a security loss of O(Q4) or O(Q2) depending on if we consider it in the
QROM or in the plain ROM respectively, where Q is the number of oracle
queries made by the adversary.

To get provable security, one should increase δOL and δM up to the order of
3λ or 5λ so that κδ ≈ 2−3λ or κδ ≈ 2−5λ to compensate for the respective ROM
or QROM security loss.

While these security losses are tight in general, it is usually assumed that
for practical protocols it is milder (and sometimes it is even completely dis-
regarded). We follow an intermediate approach and study how the currently
known attacks could be applied to the considered protocols in appendix B. We
provide upper bounds to the success probability of the best attacks (to the best
of our knowledge, the family of attacks presented in [5], the full version of [6])
and get conditions on the parameters that ensure these probabilities are below
2−λ. From that, we get the final soundness condition that should apply to both
δ = δOL and δ = δM , which will be satisfied if the number of repetitions δ is
large enough:

(2λ− 1) log2

(
2λ− 1

δ(1− q−1)

)
+

+(δ − 2λ+ 1) log2

(
δ − 2λ+ 1

δq−1

)
≥ 2λ.

(9)

Zero-Knowledge:

The interactive version of the protocol is Honest-Verifier Zero-Knowledge be-
cause there exists a simulator that taking the challenges as input outputs con-
versations that follow the same distribution as real conversations between an
honest prover and an honest verifier.

Provided that the conversation itself is then distributed as something that
can be computed by an algorithm that does not know the witness, we can ensure
no relevant information is leaked, because anything that can be computed from
the conversation could also be efficiently computed using the simulator.

Finally, in the ROM, as we assume challenges in the Fiat-Shamir transformed
version follow a uniform distribution, the non-interactive proof would be in that
sense equivalent to the interactive conversation, and we can ensure again that no
information is leaked. We use cryptographically secure pseudorandom number
generators, so the Zero-Knowledge property is only computational.

11

Correctness:

It is unconditional, as we already truncate the error distributions so that every
verification holds.

3.4 Pseudocode

Before detailing the protocols, we require extra notation and several auxiliary
functions.

Let ϕ be the function that takes as input a vector of size 2nk from Z2nk
q

and outputs a vector of k polynomials in Rk
q that has as coefficients the first k

blocks of n elements in the input vector3.
Let B be the vector of k polynomials from Rk

q that has all its coefficients
equal to the bound B.

Let Hash and XOF be a hash function and an extendable output function,
respectively.

And finally, let πτ be the function that takes as input a vector of integers and
permutes its elements using a pseudorandom permutation derived from the seed

τ ∈ {0, 1}8⌈λ/8⌉ (the specific procedure is going to be defined in Section 4.3).

We will call τi ∈ {0, 1}8⌈λ/8⌉ the master seed for the ith iteration and expand

it into log2(B) + 1 seeds τij ∈ {0, 1}8⌈λ/8⌉ using XOF.
A vector of polynomials e ∈ Rk

q with small coefficients, all of them in the
interval [−B,B), can be transformed into another vector of non-negative small
coefficients by adding B. Then we can decompose and extend it into log2(B)+1
binary vectors e′j of length 2nk whose first half contains k blocks of n bits that
represent the jth bits of the binary decomposition of the coefficients of each of
the polynomials once B has been added and the second half contains one block
of 0 followed by one block of 1 so that e′j has the same number of each (then
permuting vectors extended this way allows us to hide all information but the
fact that the norm of the original polynomials is bounded by B, see [32]).

We denote by expand the function that takes as input a vector of polynomials
e with all its coefficients in [−B,B) and outputs log2(B)+1 vectors e′j following
the previously described procedure.

We denote by Bn ⊂ {0, 1}2n the set of binary strings of length 2n with
exactly n zeroes and n ones, so that correctly computed e′j belong to Bnk.

We denote by PRN a function that takes as input a seed and outputs vectors
of pseudorandom integers from Zq. Analogously, we denote by PRB a function
that takes as input a seed and outputs δ pseudorandom bits.

3Notice that the function ϕ does not consider the second half of the input vector.

12

Protocol 1
Proving Knowledge of a Valid Opening

1: {e′
j}j ← expand(e)

2: for i ∈ 1, . . . , δOL do

3: τi ← {0, 1}8⌈λ/8⌉

4: {τij}j ← XOF(τi)

5: {fij}j ← Z2nk
q

6: µi, ρi ← Rq

7: o1i, o2i ← {0, 1}8⌈λ/8⌉

8: yi = aµi + bρi + ϕ(
∑

j 2jfij)

9: c1i ← Hash(τi∥yi∥o1i)
10: c2i ← Hash({πτij

(fij)}j∥{πτij
(e′

j)}j∥o2i)

11: seed1 ← XOF(a∥b∥c∥{c1i, c2i}i)
12: {αi}i ← PRN(seed1)

13: for i ∈ 1, . . . , δOL do
14: for j ∈ 0, . . . , log2(B) do
15: gij = πτij

(fij + αie
′
j)

16: seed2 ← XOF(a∥b∥c∥seed1∥{gij}ij)
17: {bi}i ← PRB(seed2)

18: for i ∈ 1, . . . , δOL do
19: if bi = 0 then
20: si = ρi + αir
21: else if bi = 1 then
22: for j ∈ 0, . . . , log2(B) do
23: ẽ′

ij = πτij
(e′

j)

24: return {ci1, ci2}i,{gij}ij ,
{
(τi,yi, si, o1i)

}
i s.t. bi=0

,
{
({ẽ′

ij}j , o2i)
}
i s.t. bi=1

Protocol 2
Verifying Knowledge of a Valid Opening

1: seed1 ← XOF(a∥b∥c∥{c1i, c2i}i)
2: seed2 ← XOF(a∥b∥c∥seed1∥{gij}ij)
3: {αi}i ← PRN(seed1)
4: {bi}i ← PRB(seed2)
5: for i ∈ 1, . . . , δOL do
6: if bi = 0 then
7: {τij}j ← XOF(τi)

8: c1i
?
= Hash(τi∥yi∥o1i)

9: zi := yi + αi(c + B)− bsi − ϕ(
∑

j 2jπ−1
τij

(gij))

10: zi

?
∈ L(a)

11: else if bi = 1 then

12: c2i
?
= Hash

(
{gij − αiẽ

′
ij}j∥{ẽ

′
ij}j∥o2i

)
13: for j ∈ 0, . . . , log2(B) do

14: ẽ′
ij

?
∈ Bnk

13

Protocol 3
Proving Knowledge of a Linear Relation

1: for h ∈ 1, 2, 3 do
2: {e′

hj}j ← expand(eh)

3: for i ∈ 1, . . . , δOL do
4: for h ∈ 1, 2, 3 do

5: τhi ← {0, 1}8⌈λ/8⌉

6: {τhij}j ← XOF(τhi)

7: {fhij}j ← Z2nk
q

8: µ1i, µ2i, {ρhi}h ← Rq

9: µ3i := λ1µ1i + λ2µ2i

10: o1i, o2i ← {0, 1}8⌈λ/8⌉

11: for h ∈ 1, 2, 3 do
12: yhi = aµhi + bρhi + ϕ(

∑
j 2jfhij)

13: c1i ← Hash({τhi}h∥{yhi}h∥o1i)
14: c2i ← Hash({πτhij

(fhij)}hj∥{πτhij
(e′

hj)}hj∥o2i)

15: seed1 ← XOF(a∥b∥{ch}h∥λ1∥λ2∥{c1i, c2i}i)
16: {αi}i ← PRN (seed1)

17: for i ∈ 1, . . . , δOL do
18: for h ∈ 1, 2, 3 do
19: for j ∈ 0, . . . , log2(B) do
20: ghij = πτhij

(fhij + αie
′
hj)

21: seed2 ← XOF(a∥b∥{ch}h∥λ1∥λ2∥seed1∥{ghij}hij)
22: {bi}i ← PRB(seed2)

23: for i ∈ 1, . . . , δOL do
24: if bi = 0 then
25: for h ∈ 1, 2, 3 do
26: shi = ρhi + αirhi

27: else if bi = 1 then
28: for h ∈ 1, 2, 3 do
29: for j ∈ 0, . . . , log2(B) do
30: ẽ′

hij = πτhij
(e′

hj)

31: return {c1i, c2i}i,{ghij}hij ,{
{τhi}h, {yhi}h, {shi}h, o1i

}
i s.t. bi=0

,{
{ẽ′

hij}hj , o2i
}

i s.t. bi=1

14

Protocol 4
Proving Knowledge of a Multiplicative Relation

1: for h ∈ 1, 2, 3 do
2: {e′

hj}j ← expand(eh)

3: for i ∈ 1, . . . , δM do
4: for h ∈ 1, 2, 3 do

5: τhi ← {0, 1}8⌈λ/8⌉

6: {τhij}j ← XOF(τhi)

7: {fhij}j ← Z2nk
q

8: µhi, ρhi ← Rq

9: yhi = aµhi + bρhi + ϕ(
∑

j 2jfhij)

10: µ×i, µ+i ← Rq

11: m×i = µ1iµ2i, m+i = µ1im2 + µ2im1

12: o1i, o2i, o3i, o4i, o5i ← {0, 1}8⌈λ/8⌉

13: c1i ← Hash({τhi}h∥{yhi}h∥o1i)
14: c2i ← Hash(µ3i∥µ×i∥µ+i∥o2i)
15: c3i ← Hash({πτhij

(fhij)}hj∥{πτhij
(e′

hj)}hj∥o3i)
16: c4i ← Hash(µ×i + m×i∥µ+i + m+i∥o4i)

17: seed1 ← XOF(a∥b∥{ch}h∥{c1i, c2i, c3i, c4i}i)
18: {αi, βi}i ← PRN(seed1)

19: for i ∈ 1, . . . , δM do
20: γ1i := αi, γ2i := αi, γ3i := βi

21: ci5 ← Hash(βµ×i + αiβiµ+i + αi
2µ3i∥oi5)

22: for h ∈ 1, 2, 3 do
23: for j ∈ 0, . . . , log2(B) do
24: ghij = πτhij

(fhij + γhie
′
hj)

25: seed2 ← XOF(a∥b∥{ch}h∥seed1∥{c5i}i∥{ghij}hij)
26: {bi}i ← PRB(seed2)

27: for i ∈ 1, . . . , δM do
28: if bi = 0 then
29: t×i = µ×i + m×i, t+i = µ+i + m+i

30: for h ∈ 1, 2, 3 do
31: shi = ρhi + γhirh
32: else if bi = 1 then
33: for h ∈ 1, 2, 3 do
34: for j ∈ 0, . . . , log2(B) do
35: ẽ′

hij = πτhij
(e′

hj)

36: return {c1i, c2i, c3i, c4i, c5i}i , {ghij}hij ,{
({τhi}h, {yhi}h, t×i, t+i, {shi}h, o1i, o4i, o5i)

}
i s.t.
bi=0

,{
({ẽ′

hij}hj , µ3i, µ×i, µ+i, o2i, o3i, o5i)
}

i s.t.
bi=1

15

Protocol 5
Verifying Knowledge of a Linear Relation

1: seed1 ← XOF(a∥b∥{ch}h∥λ1∥λ2∥{c1i, c2i}i)
2: seed2 ← XOF(a∥b∥{ch}h∥λ1∥λ2∥seed1∥{ghij}hij)
3: {αi}i ← PRN(seed1)
4: {bi}i ← PRB(seed2)
5: for i ∈ 1, . . . , δOL do
6: if bi = 0 then
7: for h ∈ 1, 2, 3 do
8: {τhij}j ← XOF(τhi)

9: zhi := yhi + αi(ch + B)− bshi − ϕ(
∑

j 2jπ−1
τhij

(ghij))

10: zhi

?
∈ L(a)

11: c1i
?
= Hash ({τhi}h∥{yhi}h∥o1i)

12: z3i
?
= λ1z1i + λ2z2i

13: else if bi = 1 then

14: c2i
?
= Hash({ghij − αiẽ

′
hij}hj∥{ẽ′

hij}hj∥o2i)
15: for h ∈ 1, 2, 3 do
16: for j ∈ 0, . . . , log2(B) do

17: ẽ′
hij

?
∈ Bnk

Protocol 6
Verifying Knowledge of a Multiplicative Relation

1: seed1 ← XOF(a∥b∥{ch}h∥{c1i, c2i, c3i, c4i}i)
2: seed2 ← XOF(a∥b∥{ch}h∥seed1∥{c5i}i∥{ghij}hij)
3: {αi, βi}i ← PRN (seed1)
4: {bi}i ← PRB(seed2)
5: for i ∈ 1, . . . , δM do
6: γ1i := αi, γ2i := αi, γ3i := βi

7: if bi = 0 then
8: for h ∈ 1, 2, 3 do
9: zhi := yhi + γhi(ch + B)− bshi − ϕ(

∑
j 2jπ−1

τhij
(ghij))

10: zhi

?
∈ L(a)

11: Let thi ∈ Rq s.t. zhi = athi

12: c1i
?
= Hash({τhi}h∥{yhi}h∥o1i)

13: c4i
?
= Hash(t×i∥t+i∥o4i)

14: c5i
?
= Hash(βit×i + αiβit+i + αi

2t3i − βit1it2i∥o5i)
15: else if bi = 1 then

16: c2i
?
= Hash(µ3i∥µ×i∥µ+i∥o2i)

17: c3i
?
= Hash({ghij − γhiẽ

′
hij}hj∥{ẽ′

hij}hj∥o3i)

18: c5i
?
= Hash(βiµ×i + αiβiµ+i + αi

2µ3i∥o5i)
19: for h ∈ 1, 2, 3 do
20: for j ∈ 0, . . . , log2(B) do

21: ẽ′
hij

?
∈ Bnk

16

Protocols 1, 3 and 4 and Protocols 2, 5 and 6 respectively show the tasks of
a prover P and a verifier V to create and verify proofs of knowledge of a valid
opening to commitment c with public key (a,b), a linear or a multiplicative
relation (that is the committed messages m1, m2 and m3 from commitments
c1,c2 and c3 either satisfy m3 = λ1m1 + λ2m2 for given λ1, λ2 ∈ Rq or m3 =
m1 ·m2).

In order to get NIZKPoK from the original public coin interactive protocols,
we run multiple parallel iterations to achieve a small soundness error and replace
the verifier answers with pseudorandom responses that depend on the previous
elements and the statement of the proof. To ease the comparison with the
original interactive protocols, we highlight these responses in the pseudocode
by writing them justified to the right.

4 Implementation

In this section we explain in detail the choices that we have made in our imple-
mentation.

All the algorithms are implemented in C. In order to account for as wide a
range of applications as possible, we have chosen to work with arbitrary precision
arithmetic. We use the GNU MP library (GMP v6.2.1) and FLINT (v2.9.0) to
do so. Finally, we use the OpenSSL library (v3.0.2) to compute hash values
and for the implementation of a cryptographically secure uniform sampler of
integers in Zq.

One of the main drawbacks of Stern’s approach is that the non-negligible
soundness error requires multiple repetitions to obtain soundness. Nevertheless,
we can take advantage of the parallel repetitions to parallelize the execution and
speed up the protocols. We use OpenMP for that, and it has a great impact on
the final performance.

The two main computational tasks that we require to implement our schemes
are sampling (from a discrete Gaussian distribution, uniformly random integers
in Zq and uniformly random permutations) and multiplying in a truncated poly-
nomial ring. It is also relevant to describe how to check if a vector of polynomials
belongs to a given lattice. In the following subsections, we will give an overview
of the approach that we have followed to instantiate such tasks in our imple-
mentation.

4.1 Lattice membership

The original description of the protocol presented in [32] did not detail how to
check if a point z belongs to L(a), the ideal lattice defined by a, neither how to
recover its coordinates. In order to efficiently do so we use one property of the
commitment key that was not mentioned either, but that can be deduced from
the binding property of the commitment scheme.

Lemma 1. If (a,b) ∈
(
Rk

q

)2
defines a commitment key for a binding com-

mitment scheme in a ring Rq = Zq[x]/ ⟨xn + 1⟩ such that xn + 1 splits in d

17

irreducible pj(x) modulo q for j ∈ {1, . . . , d} then there exist d indexes ij such
that the component aij ∈ Rq is invertible modulo pj(x).

Proof. This can be directly proved by contradiction. Assume it is not the case
and for some j ∈ {1, . . . , d} we have that ai ≡ 0 modulo pj(x) for all i ∈
{1, . . . , k}.

Then we can define m0 such that m0 ≡ 0 mod pj′(x) for all j′ ̸= j and
m0 ≡ 1 mod pj(x). By construction m0 ̸= 0 but am0 = 0, and therefore, we
could open any commitment to any message m to a different message m+m0,
breaking the binding property of the commitment scheme.

We explicitly check this condition (and abort if it is not satisfied) in the
key generation protocol, but it will hold except with negligible probability if
the used set of parameters is secure. We also output the specific indexes ij and
the inverses aij

−1 mod pj as auxiliary parameters during the key generation
protocol (even if omitted during the text, it is implicit that participants receiving
the public key (a,b) also get these auxiliary elements precomputed).

With that property in mind now we can see that, provided a vector of poly-
nomials z ∈ Rk

q if there exists a polynomial t such that z = a · t this t should
verify that zij ≡ aij t mod pj(x) and we could completely determine it from
t ≡ aij

−1zij mod pj(x).
Since we have already restricted the possible candidates for t to one single

polynomial, we would just need to check that for every i ∈ {1, . . . , k} and every
j ∈ {1, . . . , d} it holds that zi ≡ aiaij

−1zij mod pj(x).
Observe that, in order to check if z ∈ L(a) it is not even necessary to

explicitly compute the t such that z = a · t, as, using again the invertibility of
the aij , it is sufficient to just check aijzi ≡ zijai mod pj(x).

Following a similar argument for the linear relation ZKPoK in order to ensure
that t3 = λ1t1 + λ2t2 we just check that z1, z2, z3 ∈ L(a) and z3,ij = λ1z1,ij +
λ2z2,ij for every j ∈ {1, . . . , d}.

Only in the case of the multiplicative relation protocol, we have chosen to
explicitly compute internally the actual t’s involved. In this case, we thought
computations were cleaner this way, but an argument similar to the previous
could work too.

4.2 Discrete Gaussian sampling

We want our schemes to be useful for as many types of devices as possible. For
this reason, we have chosen to instantiate discrete Gaussian sampling using the
Discrete Ziggurat (DZ) algorithm [21]. We have implemented the protocol from
scratch, and it can work with multi-precision arithmetic. This protocol allows us
to choose a trade-off between computational speed and memory usage. When
we have no restriction on memory consumption, DZ achieves a performance
close to the fastest known algorithm for this task [23]. Using DZ has another
advantage, it allows us to directly sample from a bounded discrete Gaussian
distribution. The details of DZ are out of scope of this work, and we refer the
interested reader to the original paper.

18

4.3 Uniform sampling

Even if computationally simpler than Gaussian sampling, the implemented pro-
tocols make heavy use of uniform sampling of integers in Zq and it ends up
being more computationally expensive.

Our implementation makes use of the RAND priv bytes function from OpenSSL
as a source of pseudorandomness. To sample from Zq we have to do rejec-
tion sampling. We can sample ⌈log28(q)⌉ bytes to get an integer uniformly
distributed in [0, 28⌈log28 (q)⌉ − 1] and then reduce it mod 2⌈log2(q)⌉ to get an
integer s uniformly distributed in [0, 2⌈log2(q)⌉ − 1]. We keep s if s < q and
otherwise we discard it and start again.

The intermediate reduction modulo a power of 2 guarantees a reasonable
rejection rate smaller than 1/2, which is really worthy as reducing modulo a
power of two can be done at a low level and is computationally cheap, so this
approach turns out to be a faster option than similar alternatives which require
reductions modulo q.

If we have to sample multiple integers, for example to sample vectors of
polynomials in Zq[x]/ ⟨xn + 1⟩, in order to amortize the cost of calling the
RAND priv bytes function we first populate a buffer of pseudorandom bytes and
use them sequentially, only refreshing the buffer with new randomness when
there are less than ⌈log28(q)⌉ bytes left.

To deterministically sample integers from Zq using a seed we use the same
approach, replacing RAND priv bytes with an XOF as SHAKE-128 initialized
with both the seed and a counter that keeps track of how many times we have
already refreshed the buffer. We denote by PRN the function that takes as input
a given seed and outputs the desired number of pseudorandom integers modulo
q following this procedure.

We also need to uniformly sample multiple permutations from the set of
permutations of 2nk elements. We encode a permutation as a product of 2nk
transpositions (1, i1)(2, i2) . . . (2nk − 1, i2nk−1)(2nk, i2nk) where (j, ij) is such
that ij ≥ j. That way, sampling 2nk indexes uniformly in the respective inter-
vals ij ← [j, 2nk] determines a permutation uniformly distributed in the set of
permutations of 2nk elements (i.e. following the Fisher-Yates algorithm).

We can deterministically compute such pseudorandom indexes from a seed
in a similar manner than before. Sampling from an interval [j, 2nk] is equiva-
lent to sampling from [0, 2nk − j] and then adding j. However, for this case,
where indexes to be sampled are much smaller, we alternate the order of the
rejection and the modular reduction to reduce the rejection rate. To sample an
integer uniformly from [0, 2nk−j] we can also sample an integer uniformly from
[0,m(2nk − j + 1)− 1] for any m ∈ Z and then reduce it mod (2nk − j + 1).
The greater multiple of (2nk− j +1) smaller or equal than 28⌈log28 (2nk−j+1)⌉ is
28⌈log28 (2nk−j+1)⌉ − (28⌈log28 (2nk−j+1)⌉ mod (2nk − j + 1)). We start sampling
s← [0, 28⌈log28 (2nk−j+1)⌉ − 1]. Then we reduce it mod (2nk − j + 1) and add
j if s < 28⌈log28 (2nk−j+1)⌉ − (28⌈log28 (2nk−j+1)⌉ mod (2nk − j + 1)) or reject it
and repeat otherwise.

We denote by πτ the permutation obtained following this procedure from a

19

seed τ ∈ {0, 1}8⌈λ/8⌉.
This approach greatly reduces the rejection rate and improves the efficiency

of the algorithm. It was not the case for the Zq sampler because in that case
the modular reduction over q would cost more than the modular reduction over
a power of two, and the benefit obtained from the reduced rejection rate would
not compensate that. Now we are in a different scenario, provided that 2nk is
much smaller than q and modular reductions are much more efficient when we
do not have to deal with arbitrary large integers.

4.4 Multiplication in a truncated polynomial ring

It is well-known that the fastest algorithm to date to compute products of
polynomials in a ring is the Fast Fourier Transform (FFT) which can do so in
quasilinear time. To be able to use the power of FFT it is required that the
polynomial xn+1 splits into linear factors. Unfortunately, the security proof of
our scheme heavily relies on xn+1 not splitting into many factors. To tackle this
issue we changed the condition of the modulus q so that it splits into d factors
of degree n/d in order to be able to implement a polynomial multiplication
algorithm using a partial FFT which allows as fast as possible multiplications
for this kind of rings. This family of techniques are folklore, but the particular
details on how and when can we implement different generalizations and how
to precompute the required auxiliary elements might be cumbersome and are
detailed in [33].

This partial FFT involves computing as many steps of the regular FFT as
possible, ending with d polynomials of degree n/d in the transformed domain,
that can be multiplied using any other multiplication algorithm. We choose
to multiply the d pairs of smaller polynomials using Karatsuba’s multiplication
algorithm.

Most of the computations we have to do, as sampling uniformly random
polynomials, adding them and verifying equalities, can also be done in the trans-
formed domain, so in our implementation almost every polynomial is directly
represented in the transformed domain and never anti-transformed back.

5 Instantiation and performance

In this section we first explain how to obtain secure sets of parameters to instan-
tiate our commitment scheme, and then we provide some results, in terms of
running time and size, for both the commitment algorithms and the companion
NIZKPoK.

As we have already mentioned, we estimate the hardness of the underlying
RLWE problem using the Lattice Estimator of Albrecht et al. [1].

20

5.1 How to choose parameters

We have already seen in Section 3 (and it will be developed in Appendix A) that
defining the security theoretically, i.e. with asymptotic proofs, requires a differ-
ent analysis than the one necessary for claiming a specific level of security for
a particular set of parameters. Besides that, finding the best set of parameters
that fulfills these particular conditions is not direct either.

The requirement of equation (5’) states that a probability has to be bounded,
but we do not know how to explicitly compute that probability. Then our only
option is to impose a stronger condition that implies (5’). We can do it using
two auxiliary functions, boundedPr and vecBoundedPr.

boundedPr(σ,B) := max

{
0,

B2

2σ2
log2(e)− 1

}
Proposition 2. boundedPr outputs the greater a for which we can guarantee
that the probability of a sample from Dσ not belonging to [−B,B] is lower or
equal than 2−a.

Proof. Directly comes from Lemma 4.4 in [27].

vecBoundedPr(a, d) := max {a− log2(d), 0}

Proposition 3. vecBoundedPr outputs the greater b for which we can ensure
that the sub-infinity norm of a vector of dimension d not being bounded by a
certain bound has a probability smaller or equal to 2−b if a single sample has a
probability smaller or equal to 2−a.

Proof. Direct, iteratively applying the triangular inequality to bound the sta-
tistical distance.

Then, in practice, we replace (5’) with

vecBoundedPr(boundedPr(σ,B − 1), k · n) ≥ λ. (5)

Notice that we use B− 1 as the event we want to consider is given by the error
terms belonging to [−B,B) which is ensured if they belong to [−(B−1), B−1].
A more tight analysis of this probability would not significantly change the final
parameters.

An additional problem is to choose the best set of parameters that satisfies
the required conditions. There are many inequalities that should hold at the
same time, and reducing one parameter might end up making another condition
more restrictive and yielding us to a worse global outcome.

To obtain our results, we have chosen to carefully study the selection of
parameters and define a specific procedure that ends up in an optimal outcome
for this particular scheme. We summarize it here and detail the procedure
(proving and explaining in what sense the outcome is optimal) in Appendix C.

21

Given λ, n and q (that also define the possible d such that q ≡ 2d + 1
mod 4d) we can compute the rest of parameters.

We can explicitly compute the minimum number of repetitions for the open-
ing or linear and multiplicative ZKPoK, δOL and δM respectively, needed to
satisfy eqs. (6) and (7), and then we just increase them until they also satisfy
eq. (9).

We notice that, if the bound B was fixed, we could obtain the optimal (in
this case smaller possible) k from the binding condition. Similarly, if B and
k were fixed we could find the optimal (in this case greatest possible) σ that
still satisfies the hiding condition related to the tails probability and check if it
is enough for the hiding requirement regarding the hardness of the underlying
RLWE problem.

The best B is the minimum one that ensures that the implied best k allows
the existence of an available σ. We compute it explicitly, testing increasing
powers of 2 until we find the first that works.

5.2 Size and running time

In this section we present the sizes of the commitment, the NIZKPoK of a valid
opening, a linear and a multiplicative relation, and the running time for the
keygen, commit, verifier, proveropening, verifieropening, proverlinear, verifierlinear,
provermultiplicative and verifiermultiplicative algorithms for some sets of param-
eters of interest.

The performance values presented in this section and in Appendix D cor-
respond to the average of 100 executions of each algorithm, compiled with gcc
(version 11.3.0 and -O3 -march=native flags) using an Intel® Core™ i7-8700 CPU
(6 cores and 12 threads) running at 3.20GHz with Ubuntu 22.04.1 LTS and 16GB
of RAM.

We have chosen to represent sets of parameters with λ = 100 security bits,
lattice dimension n ∈ {512, 1024}, and d = 2 as long as the multiplicative
NIZKPoK takes less than 512 MB. For each modulus bitsize b we have chosen
four q modules such that 2b < q < 2b+1 (equally spaced in the log scale). Finally,
for each of these (λ, n, q, d) the optimal set of parameters has been computed
following Section 5.1.

This is not an exhaustive list of parameters. In Appendix D we extend these
results to d = 4, which is the only other possibility for which secure sets of
parameters exist, but we will see that d = 2 is, by all means, the best choice.
Even if we do not test the running times of parameter sets when the size of
the multiplicative proof would exceed 512 MB we include the size analysis of
additional sets of parameters, again in Appendix D, and explain why there is
no possible trade-off that would provide better results.

We start by plotting in Figure 1 the size of the commitment in kB for the
best set of parameters against the size of the modulus, for both n = 512 and
n = 1024, together with the hardness of the underlying RLWE problem.

It is interesting to see a zig-zag pattern in the n = 512 figure that we can
easily understand looking at the RLWE hardness data. The discrete nature

22

10 15 20
log2(q)

0

8

16

24

32

40

48

56

64

kB

comm. size RLWE hardness bits

0

100

R
LW

E
 h

ar
dn

es
s

(a) λ = 100, n = 512, d = 2

10 15 20 25 30 35 40
log2(q)

0

8

16

24

32

40

48

56

64

kB

comm. size RLWE hardness bits

0

100

R
LW

E
 h

ar
dn

es
s

(b) λ = 100, n = 1024, d = 2

Figure 1 Commitment sizes

of the parameters, for example the power of two bound B of the noise terms,
means that even if we target 2100 as RLWE hardness the minimum B that
induces a σ that provides that level already achieves a greater value. This
margin allows increasing q without having to increment B, because even if the
hardness decreases when the ratio of σ/q does it might still be greater than 2100.
The intermingled restrictions from the security conditions imply that, while B
can remain constant, even if choosing a greater q implies using greater integers
the minimum dimension of the vectors k decreases and the commitment sizes
can be smaller. This happens up to the point when the security would decrease
below the 2100 level, which forces us to use the next power of 2 for B and that
modifies all the relations ending up with the jumps visible in Figure 1.

While the smaller size is achieved with n = 512 the commitments with n =
1024 start with a much harder RLWE problem, and that grants the existence
of a much wider range of still reasonable sizes, given that the jumps start for
much greater q and the zig-zag pattern is much less prominent.

This non-smooth behavior, a consequence of the numerous non-linear re-
strictions on the parameters, forces the final user to do a thorough study of the
available parameters for this kind of schemes, like the one we are presenting in
this section, because even starting with very similar q we could end up defining
two instances with very different performance.

We then plot the running times of the key generation, the commitment, and
the verification of an opening in Figure 2.

The times are highly correlated with the sizes, and the jumps are even more
significant. We see that key generation and verification are extremely fast, and
committing can also be done very efficiently.

The NIZKPoK sizes are plotted in Figure 3 and running times in Figure 4.
Proofs of linear and multiplicative relations take almost the same space and
have the same running time. In both cases, it is roughly three times the amount
required for the proof of knowledge of a valid opening.

23

10 15 20
log2(q)

0.00

0.05

0.10

0.15

0.20

0.25

S
ec

on
ds

comm. ver. keygen

(a) λ = 100, n = 512, d = 2

10 15 20 25 30 35 40
log2(q)

0.00

0.05

0.10

0.15

0.20

0.25

S
ec

on
ds

comm. ver. keygen

(b) λ = 100, n = 1024, d = 2

Figure 2 Commitment times

Using the proposed NIZKPoK, we can prove knowledge of an opening under
a second, and enjoy an even faster verification of the proofs, slightly above half
the time required for generating the proof. We see however that in this case,
the performance escalates worse with larger q than the commitment time. That
is the case because now an increase in B not only affects the rest of parameters
but also the size and running time themselves, because the bit decomposition
of the errors implies that both grow with log2(B).

In what follows we present several secure sets of parameters that we choose
to highlight because they are optimum regarding size, time or commitment to
message ratio. We introduce them in Table 1, show their commitment and proof
sizes in Table 2 and their associated running times for each protocol in Table 3.
For each of these criteria, we have picked the best with n = 512 and the best
with n = 1024, highlighting in boldface the best value for each n. Some sets are
optimal regarding many different aspects, while others only stand out in one
table and not in the others.

We want to remark that Table 1 contains only one set of parameters with
n = 512 because this set is the best option regarding the ratio k between the
commitment and the message size as well as size and running time of every
protocol. It is not the case with n = 1024 where different sets are better for
different characteristics. We present in boldface the k that are optimal for each
n.

It is noticeable that all the modulus q are smaller than 232, so arbitrary-
precision arithmetic is not essential for these sets of parameters. While de-
composing the errors into bits seems a great overhead, it is not that expensive
provided that the bound B can be as small as just 8.

Then in Table 2 we show the commitment and proof sizes of the previous
sets of parameters, again highlighting in boldface the best cases for each n.

We see that the commitment sizes that we can obtain are completely prac-

24

10 15 20
log2(q)

0

64

128

192

256

320

384

448

512

M
B

op. zkp lin. zkp mult. zkp

(a) λ = 100, n = 512, d = 2

10 15 20 25 30 35 40
log2(q)

0

64

128

192

256

320

384

448

512

M
B

op. zkp lin. zkp mult. zkp

(b) λ = 100, n = 1024, d = 2

Figure 3 NIZKPoK sizes

Table 1: Best parameters with n = 512 and n = 1024

n q d λ k σ B δOL δM

512 16381 2 100 14 0.55 8 221 221
1024 1048573 2 100 8 0.55 8 213 213
1024 11863253 2 100 7 0.55 8 211 211
1024 16777213 2 100 7 0.55 8 210 210
1024 67108837 2 100 7 0.55 8 209 209
1024 1073741789 2 100 6 0.55 8 208 208
1024 1276901389 2 100 6 0.55 8 208 208
1024 1518500213 2 100 6 0.55 8 208 208
1024 1805811253 2 100 6 0.55 8 208 208

tical. On the other hand, proof sizes are still quite large. We see here that we
have 12 kB commitments when n = 512 and around 20 kB commitments when
n = 1024. The opening proof size with n = 512 is of the order of 20 MB, and
almost a 60% more when n = 1024 and tripling the respective opening proof
size for relation proofs.

We finally present all protocol times, in milliseconds, in Table 3. Again, we
highlight with boldface the optimum results.

Execution time is definitely the main asset of this scheme, as we already
obtain very fast committing and verifying time and almost practical proving
and proof verifying times regarding that we have only developed a prototype
implementation that could benefit from higher parallelization and further opti-
mizations. It is interesting to notice that regarding running time, there is not
much difference between n = 512 and n = 1024.

It is important to notice that while we can obtain the smallest commitment

25

10 15 20
log2(q)

0

2

4

6

8

10
S

ec
on

ds

prov. op.
ver. op.

prov. lin.
ver. lin.

prov. mult.
ver. mult.

(a) λ = 100, n = 512, d = 2

10 15 20 25 30 35 40
log2(q)

0

2

4

6

8

10

S
ec

on
ds

prov. op.
ver. op.

prov. lin.
ver. lin.

prov. mult.
ver. mult.

(b) λ = 100, n = 1024, d = 2

Figure 4 NIZKPoK times

Table 2: Sizes of the best parameters

n q com. size op. size lin. size mult. size

512 16381 12 kB 23.34 MB 69.99 MB 70.48 MB
1024 1048573 20 kB 36.47 MB 109.38 MB 110.70 MB
1024 11863253 21 kB 37.83 MB 113.45 MB 115.02 MB
1024 16777213 21 kB 37.65 MB 112.91 MB 114.48 MB
1024 67108837 22 kB 40.53 MB 121.56 MB 123.24 MB
1024 1073741789 22 kB 39.85 MB 119.53 MB 121.46 MB
1024 1276901389 23 kB 41.16 MB 123.46 MB 125.45 MB
1024 1518500213 23 kB 41.16 MB 123.46 MB 125.45 MB
1024 1805811253 23 kB 41.16 MB 123.46 MB 125.45 MB

size for secure instantiations with n = 512 the ratio between the size of the
commitment and the size of the committed message can be much smaller, k = 6,
if we choose n = 1024, and even if the sizes increase the running times are still
reasonable.

This alone proves the value of the approach from [32]. Even if the commit-
ment itself has the same structure as the one from [10] the latter imposes

k >
18⌊log2(q)/ log2(n)⌋

3⌊log2(q)/ log2(n)⌋ − 16

with the additional restriction of ⌊log2(q)/ log2(n)⌋ > 6. While asymptotically
the bound is k > 6 for the minimal possible q ∼ 270 when n = 1024 one would
start with k ≥ 26, and even increasing q ∼ 2100 one would still have k ≥ 13.

Even with the modifications proposed in [9], that substantially change the
original scheme using the Module Learning With Errors (MLWE) problem, while

26

Table 3: Running time of the best parameters (in milliseconds)

n q com. ver. key. Pop Vop Plin Vlin Pmult Vmult

512 16381 46 2 3 742 380 2228 1146 2154 1149
1024 1048573 53 3 6 877 478 2627 1426 2595 1453
1024 11863253 46 3 6 783 416 2365 1251 2315 1266
1024 16777213 47 3 6 765 413 2286 1243 2250 1260
1024 67108837 46 3 6 810 462 2462 1371 2394 1383
1024 1073741789 41 3 8 748 437 2244 1275 2202 1298
1024 1276901389 42 4 9 781 434 2348 1301 2318 1326
1024 1518500213 41 4 9 770 435 2302 1307 2286 1326
1024 1805811253 42 4 8 764 434 2290 1306 2255 1326

their proposed overhead is again k = 6, they still need larger q and their pro-
posed instantiation of a modified [10] produces 54.5 kB commitments, much
greater than the values we have obtained.

In the previous graphs and tables the verifier times measure the time re-
quired to verify the total δOL or δM parallel verifications from which, on average,
half of them correspond to bi = 0 challenges and half of them to bi = 1 chal-
lenges. It is relevant to point out that the second case is much faster than the
first. We provide a general implementation where these challenges bi are chosen
pseudorandomly approximating a uniform distribution over {0, 1}. However,
a specific implementation for a particular set of parameters where the specific
running-time ratio between the two options can be computed could be opti-
mized drawing the challenges from a non-uniform distribution, choosing more
frequently the faster option b = 1. That would require an increase in the num-
ber of rounds to preserve the security level, but it could produce a significant
net benefit (the details of this strategy, called Thrifty Zero-Knowledge, are well
described in [15]).

5.3 Discussion and trade-offs

In this section, we provide a few additional comments regarding our implemen-
tation and possible changes to it that offer trade-offs that could be beneficial
for some applications.

Discussion

• Disclaimer. Our implementation is a prototype, and it is therefore not
ready for production. We provide it with a pure academic interest in
mind. Nevertheless, we have tried to offer the most secure instantiation
of our protocols as possible, but we are aware that there are security
checks that we have not done. For example, we have not tried to make

27

our implementation constant time. Our tests only intend to benchmark
the protocols, so commitments, proofs and intermediate results are kept
in memory. Only the first two should be output to a file in order to later
verify them, ensuring that the verifier has no access to the prover’s private
information. Taking care of these security issues is beyond the scope of
this work and should be considered by any interested party that wants to
use and deploy our protocols in a real-world scenario.

• Non-exhaustive list of parameters. We have provided experiments
for a significant number of parameters. We believe that these should be
enough to cover most of the use-cases that could take advantage of our
protocols. However, our list is not exhaustive and there are other sets of
parameters that could be of interest which we have not considered in this
work.

Possible trade-offs

• Interactive vs non-interactive. We provide the non-interactive version
of the protocols of[32]. However, there might be a case where an inter-
active version is needed, and our implementation can be adapted to the
interactive setting with minor changes. Provided that in an interactive
identification scheme scenario multiple failed attempts could be easily de-
tected, it could be feasible to consider admissible non-negligible soundness
errors such as the standard 2−32 instead of the 2−100 bound considered in
the non-interactive case where the cheating probability can be amplified
retrying again and again. Given that our protocol uses parallel repetitions
to reduce the soundness error, the communication size would proportion-
ally decrease if the targeted threshold can be reduced.

• Native integers vs arbitrarily long ones. To account for a wide
range of applications, our instantiation works with arbitrarily long inte-
gers. However, this adds an unnecessary overhead on time and memory
when the modulus q can fit in a native integer of the given language.
Adapting our code to work only for native integers is a time-consuming
task but straightforward task that we believe could be worth undertaking
for some practical scenarios.

6 Conclusion and future work

We have provided an efficient and flexible implementation of the lattice-based
commitment scheme proposed in[32]. Besides the commitment scheme, we have
also implemented the non-interactive version of the ZKPoK for its opening and
linear and multiplicative relations. Moreover, this work shows that current
theoretical lattice-based schemes can be made usable in practice under careful
implementation choices.

28

That is, with our implementation we can commit to a value in less than
50 milliseconds. The key generation and verification of a commitment are ex-
tremely fast, taking between 2 and 6 milliseconds. The prover’s work for an
opening takes 0.7 seconds, and for a linear/multiplicative relation it takes about
2 seconds. Verification costs a little more than half that time. Regarding sizes,
a commitment requires 12 kB for n = 512 and 20 kB for n = 1024. An opening
requires around 24 MB for n = 512 and 37 MB for n = 1024. Finally, for a
linear/multiplicative relation, we need about 70 MB for n = 512 and about
110 MB for n = 1024.

We have given an extensive and detailed analysis on the modifications re-
quired to port the protocols presented in[32] from theory to practice. To do so,
we have reworked the security proofs, moving away from a theoretical asymp-
totic analysis and focusing on unveiling how the security requirements affect our
choice of parameters.

A thorough explanation on how to choose optimal parameters and our pref-
erences for performing key computational tasks such as lattice membership test-
ing, discrete Gaussian sampling and multiplication in a truncated polynomial
ring is also provided.

Although we have tried to include as many optimizations as possible, there
are still some interesting paths to explore that we believe could lead to efficiency
improvements. We explain some of them below.

Throughout this paper, we have been balancing two clashing outcomes re-
garding the error size. The hiding property of the commitment scheme benefits
from larger errors that increase the hardness of the underlying RLWE problem,
but we had to bound them in order to be able to define the correctness of the
commitment and the soundness of the ZKPoK, getting greater sizes the higher
the bound has to be.

In order to enforce hiding, we have used that the probability of the tails
is small enough so that the statistical distance between the two distributions
(truncated and not) is again small. Besides that, there is an alternative similar
strategy that allows us to relate the probability of an undesired event (breaking
the hiding property) when we replace a distribution using the Rényi divergence
of the two distributions (see [25] for the definition and its probability preser-
vation property and [8] for how to compute the divergence between Gaussians
and truncated Gaussians) instead of their statistical distance. It would require
a specific analysis, more involved than the one with the statistical distance, but
it would lead to bounds that might allow increasing the σ parameter without
increasing the bound B (or to reduce the bound B without decreasing σ) and
still preserve hiding, so we leave it as future work.

We also want to remark that, provided that additions and multiplications
are compatible with the partial FFT, one can choose to define as message spaces
the quotients of Rq over each of the factors p1(x), p2(x), . . . , pd(x) of x

n+1 and
compute commitments and proofs to d polynomials of degree n/d (directly from
the transformed domain) in parallel. However, it would be even more interesting
to explore how the binding proof would improve if we just restrict the message
space to Rq/ ⟨p1(x)⟩ and encode a message m ∈ Rq/ ⟨p1(x)⟩ as the polynomial

29

m′ ∈ Rq such that m ≡ m′ mod pi(x) for i from 1 to d, that way ensuring that
the difference of encodings of different messages is different modulo each pi(x).

This strategy might provide an interesting trade-off between the message
space size and the commitments and proofs sizes and efficiency, that is out of
the scope of this work as it greatly deviates from the original scheme that we
are implementing but should be considered for applications where the size of
the message space can be reduced.

Finally, an additional research path would be to redesign these ZKPoK to
base their security in the Module Learning With Errors instead of the Ring
Learning With Errors problem, provided that the most succinct lattice-based
commitments and ZKPoK to date are based on the first, and it would be inter-
esting to analyze how practical are Stern-based techniques when dealing with
the MLWE the same way we have done in this paper with the RLWE case.

Regardless of the possible improvements we believe that the thorough analy-
sis presented in this work is of interest to the community, even if the techniques
described are not the smallest lattice-based NIZKPoK, because it is important
to get quantitative results in order to be able to compare different alternatives
and find out the main bottlenecks. It is also important to provide detailed
instructions on how the parameters have been obtained because lattice-based
cryptography is an active research field, and these computations should always
be easily recomputable just updating the hardness estimation (in our case using
a new version of the lattice estimator module), without requiring every reader
to redo the analysis on its own in order to get up-to-date secure parameters or
different security levels.

Declarations

• Funding: This work is supported by the European Union PROMETHEUS
project (Horizon 2020 Research and Innovation Program, grant 780701),
the Spanish Ministry of Economy and Competitiveness under Project
MTM2016-77213-R and the Spanish Ministry of Science and Innovation
under Projects PID2019-109379RB-I00 and RTI2018-102112-B-I00.

• Competing interests: All authors certify that they have no affiliations with
or involvement in any organization or entity with any financial interest or
non-financial interest in the subject matter or materials discussed in this
manuscript.

References

[1] Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hard-
ness of learning with errors. Journal of Mathematical Cryptology, 9(3):169–
203, 2015.

30

[2] Richard Arratia and Louis Gordon. Tutorial on large deviations for the bi-
nomial distribution. Bulletin of mathematical biology, 51(1):125–131, 1989.

[3] Thomas Attema, Ronald Cramer, and Lisa Kohl. A compressed Σ-
protocol theory for lattices. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part II, volume 12826 of LNCS, pages 549–579, Vir-
tual Event, August 16–20, 2021. Springer, Heidelberg, Germany. doi:

10.1007/978-3-030-84245-1_19.

[4] Thomas Attema and Serge Fehr. Parallel repetition of (k1, . . . , kµ)-special-
sound multi-round interactive proofs. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages
415–443, California, USA, August 15–18, 2022. Springer, Heidelberg, Ger-
many. doi:10.1007/978-3-031-15802-5_15.

[5] Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-shamir transforma-
tion of multi-round interactive proofs. Cryptology ePrint Archive, Report
2021/1377, 2021. https://eprint.iacr.org/2021/1377.

[6] Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-shamir transforma-
tion of multi-round interactive proofs. In Eike Kiltz and Vinod Vaikun-
tanathan, editors, TCC 2022, Part I, volume 13747 of LNCS, pages 113–
142, Chicago, IL, USA, November 7–10, 2022. Springer, Heidelberg, Ger-
many. doi:10.1007/978-3-031-22318-1_5.

[7] Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. Practical prod-
uct proofs for lattice commitments. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages
470–499, California, USA, August 17–21, 2020. Springer, Heidelberg, Ger-
many. doi:10.1007/978-3-030-56880-1_17.

[8] Shi Bai, Tancrède Lepoint, Adeline Roux-Langlois, Amin Sakzad, Damien
Stehlé, and Ron Steinfeld. Improved security proofs in lattice-based cryp-
tography: Using the Rényi divergence rather than the statistical dis-
tance. Journal of Cryptology, 31(2):610–640, April 2018. doi:10.1007/

s00145-017-9265-9.

[9] Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine Oechsner, and
Chris Peikert. More efficient commitments from structured lattice assump-
tions. In Dario Catalano and Roberto De Prisco, editors, SCN 18, vol-
ume 11035 of LNCS, pages 368–385, Amalfi, Italy, September 5–7, 2018.
Springer, Heidelberg, Germany. doi:10.1007/978-3-319-98113-0_20.

[10] Fabrice Benhamouda, Stephan Krenn, Vadim Lyubashevsky, and Krzysztof
Pietrzak. Efficient zero-knowledge proofs for commitments from learning
with errors over rings. In Günther Pernul, Peter Y. A. Ryan, and Edgar R.
Weippl, editors, ESORICS 2015, Part I, volume 9326 of LNCS, pages 305–
325, Vienna, Austria, September 21–25, 2015. Springer, Heidelberg, Ger-
many. doi:10.1007/978-3-319-24174-6_16.

31

https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1007/978-3-031-15802-5_15
https://eprint.iacr.org/2021/1377
https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1007/978-3-030-56880-1_17
https://doi.org/10.1007/s00145-017-9265-9
https://doi.org/10.1007/s00145-017-9265-9
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-319-24174-6_16

[11] Ward Beullens. Sigma protocols for MQ, PKP and SIS, and Fishy sig-
nature schemes. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part III, volume 12107 of LNCS, pages 183–211, Zagreb,
Croatia, May 10–14, 2020. Springer, Heidelberg, Germany. doi:10.1007/
978-3-030-45727-3_7.

[12] Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gre-
gor Seiler. A non-PCP approach to succinct quantum-safe zero-knowledge.
In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part II, volume 12171 of LNCS, pages 441–469, California, USA,
August 17–21, 2020. Springer, Heidelberg, Germany. doi:10.1007/

978-3-030-56880-1_16.

[13] Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic tech-
niques for short(er) exact lattice-based zero-knowledge proofs. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, vol-
ume 11692 of LNCS, pages 176–202, California, USA, August 18–22, 2019.
Springer, Heidelberg, Germany. doi:10.1007/978-3-030-26948-7_7.

[14] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samard-
jiska, and Peter Schwabe. From 5-pass MQ-based identification to MQ-
based signatures. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, Part II, volume 10032 of LNCS, pages 135–165, Hanoi,
Vietnam, December 4–8, 2016. Springer, Heidelberg, Germany. doi:

10.1007/978-3-662-53890-6_5.

[15] Simon Cogliani, Houda Ferradi, Rémi Géraud, and David Naccache.
Thrifty zero-knowledge. In Feng Bao, Liqun Chen, Robert H. Deng,
and Guojun Wang, editors, Information Security Practice and Experience,
pages 344–353, Cham, 2016. Springer International Publishing.

[16] Jelle Don, Serge Fehr, and Christian Majenz. The measure-and-reprogram
technique 2.0: Multi-round fiat-shamir and more. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172
of LNCS, pages 602–631, California, USA, August 17–21, 2020. Springer,
Heidelberg, Germany. doi:10.1007/978-3-030-56877-1_21.

[17] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner.
Security of the Fiat-Shamir transformation in the quantum random-
oracle model. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part II, volume 11693 of LNCS, pages 356–383, Cali-
fornia, USA, August 18–22, 2019. Springer, Heidelberg, Germany. doi:

10.1007/978-3-030-26951-7_13.

[18] Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical
exact proofs from lattices: New techniques to exploit fully-splitting rings. In
Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part II, vol-
ume 12492 of LNCS, pages 259–288, Daejeon, South Korea, December 7–11,

32

https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-030-56880-1_16
https://doi.org/10.1007/978-3-030-56880-1_16
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-662-53890-6_5
https://doi.org/10.1007/978-3-662-53890-6_5
https://doi.org/10.1007/978-3-030-56877-1_21
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-030-26951-7_13

2020. Springer, Heidelberg, Germany. doi:10.1007/978-3-030-64834-3_
9.

[19] Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu.
Lattice-based zero-knowledge proofs: New techniques for shorter and faster
constructions and applications. In Alexandra Boldyreva and Daniele Mic-
ciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages
115–146, California, USA, August 18–22, 2019. Springer, Heidelberg, Ger-
many. doi:10.1007/978-3-030-26948-7_5.

[20] Abhishek Jain, Stephan Krenn, Krzysztof Pietrzak, and Aris Tentes. Com-
mitments and efficient zero-knowledge proofs from learning parity with
noise. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, vol-
ume 7658 of LNCS, pages 663–680, Beijing, China, December 2–6, 2012.
Springer, Heidelberg, Germany. doi:10.1007/978-3-642-34961-4_40.

[21] Buchmann Johannes, Cabarcas Daniel, G¨opfert Florian, H¨ulsing An-
dreas, and Patrick Weiden. Discrete Ziggurat: A Time-Memory Trade-off
for Sampling from a Gaussian Distribution over the Integers Johannes. Se-
lected Areas in Cryptography – SAC 2013. SAC 2013. Lecture Notes in
Computer Science, 8282, 2013. doi:10.1007/978-3-662-43414-7_20.

[22] Daniel Kales and Greg Zaverucha. An attack on some signature schemes
constructed from five-pass identification schemes. In Stephan Krenn, Haya
Shulman, and Serge Vaudenay, editors, CANS 20, volume 12579 of LNCS,
pages 3–22, Vienna, Austria, December 14–16, 2020. Springer, Heidelberg,
Germany. doi:10.1007/978-3-030-65411-5_1.

[23] D. Knuth and A. Yao. Algorithms and Complexity: New Directions and
Recent Results, chapter The complexity of nonuniform random number gen-
eration. Academic Press, Orlando, USA, 1976.

[24] Veronika Kuchta, Amin Sakzad, Ron Steinfeld, and Joseph K. Liu.
Lattice-based zero-knowledge arguments for additive and multi-
plicative relations. Designs, Codes, and Cryptography, 89(5):925 –
963, 2021. URL: https://www.scopus.com/inward/record.uri?

eid=2-s2.0-85102024795&doi=10.1007%2fs10623-021-00851-1&

partnerID=40&md5=9eb6bb6828951701a504a75d39132b0c, doi:

10.1007/s10623-021-00851-1.

[25] Adeline Langlois, Damien Stehlé, and Ron Steinfeld. GGHLite: More effi-
cient multilinear maps from ideal lattices. In Phong Q. Nguyen and Elis-
abeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages
239–256, Copenhagen, Denmark, May 11–15, 2014. Springer, Heidelberg,
Germany. doi:10.1007/978-3-642-55220-5_14.

[26] Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Lattice-
based zero-knowledge arguments for integer relations. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992

33

https://doi.org/10.1007/978-3-030-64834-3_9
https://doi.org/10.1007/978-3-030-64834-3_9
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/978-3-642-34961-4_40
https://doi.org/10.1007/978-3-662-43414-7_20
https://doi.org/10.1007/978-3-030-65411-5_1
https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85102024795&doi=10.1007%2fs10623-021-00851-1&partnerID=40& md5=9eb6bb6828951701a504a75d39132b0c
https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85102024795&doi=10.1007%2fs10623-021-00851-1&partnerID=40& md5=9eb6bb6828951701a504a75d39132b0c
https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85102024795&doi=10.1007%2fs10623-021-00851-1&partnerID=40& md5=9eb6bb6828951701a504a75d39132b0c
https://doi.org/10.1007/s10623-021-00851-1
https://doi.org/10.1007/s10623-021-00851-1
https://doi.org/10.1007/978-3-642-55220-5_14

of LNCS, pages 700–732, California, USA, August 19–23, 2018. Springer,
Heidelberg, Germany. doi:10.1007/978-3-319-96881-0_24.

[27] Vadim Lyubashevsky. Lattice signatures without trapdoors. Cryptology
ePrint Archive, Report 2011/537, 2011. https://eprint.iacr.org/2011/
537.

[28] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. Lattice-
based zero-knowledge proofs and applications: Shorter, simpler, and
more general. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part II, volume 13508 of LNCS, pages 71–101, Califor-
nia, USA, August 15–18, 2022. Springer, Heidelberg, Germany. doi:

10.1007/978-3-031-15979-4_3.

[29] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Practical
lattice-based zero-knowledge proofs for integer relations. In Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020,
pages 1051–1070, Virtual Event, USA, November 9–13, 2020. ACM Press.
doi:10.1145/3372297.3417894.

[30] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter
lattice-based zero-knowledge proofs via one-time commitments. In Juan
Garay, editor, PKC 2021, Part I, volume 12710 of LNCS, pages 215–241,
Virtual Event, May 10–13, 2021. Springer, Heidelberg, Germany. doi:

10.1007/978-3-030-75245-3_9.

[31] Vadim Lyubashevsky and Gregor Seiler. Short, invertible elements in
partially splitting cyclotomic rings and applications to lattice-based zero-
knowledge proofs. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 204–224, Tel
Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany.
doi:10.1007/978-3-319-78381-9_8.

[32] Ramiro Mart́ınez and Paz Morillo. RLWE-based zero-knowledge proofs
for linear and multiplicative relations. In Martin Albrecht, editor, 17th
IMA International Conference on Cryptography and Coding, volume 11929
of LNCS, pages 252–277, Oxford, UK, December 16–18, 2019. Springer,
Heidelberg, Germany. doi:10.1007/978-3-030-35199-1_13.

[33] Ramiro Mart́ınez and Paz Morillo. Revisiting fast fourier multiplication
algorithms on quotient rings, 2023. doi:10.48550/arXiv.2304.08860.

[34] P. W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th Annual Symposium on Foundations of Com-
puter Science, pages 124–134, 1994. doi:10.1109/SFCS.1994.365700.

[35] Yongcheng Song, Jiang Zhang, Xinyi Huang, Wei Wu, and Haining
Yang. Statistical zero-knowledge and analysis of rank-metric zero-
knowledge proofs of knowledge. Theoretical Computer Science, 952:113731,

34

https://doi.org/10.1007/978-3-319-96881-0_24
https://eprint.iacr.org/2011/537
https://eprint.iacr.org/2011/537
https://doi.org/10.1007/978-3-031-15979-4_3
https://doi.org/10.1007/978-3-031-15979-4_3
https://doi.org/10.1145/3372297.3417894
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-319-78381-9_8
https://doi.org/10.1007/978-3-030-35199-1_13
https://doi.org/10.48550/arXiv.2304.08860
https://doi.org/10.1109/SFCS.1994.365700

2023. URL: https://www.sciencedirect.com/science/article/pii/

S0304397523000440, doi:10.1016/j.tcs.2023.113731.

[36] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Ef-
ficient public key encryption based on ideal lattices. In Mitsuru Mat-
sui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 617–635,
Tokyo, Japan, December 6–10, 2009. Springer, Heidelberg, Germany.
doi:10.1007/978-3-642-10366-7_36.

[37] Jacques Stern. A new identification scheme based on syndrome decoding. In
Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 13–
21, California, USA, August 22–26, 1994. Springer, Heidelberg, Germany.
doi:10.1007/3-540-48329-2_2.

[38] Yang Tao, Xi Wang, and Rui Zhang. Short zero-knowledge proof of
knowledge for lattice-based commitment. In Jintai Ding and Jean-Pierre
Tillich, editors, Post-Quantum Cryptography - 11th International Confer-
ence, PQCrypto 2020, pages 268–283, Paris, France, April 15–17, 2020.
Springer, Heidelberg, Germany. doi:10.1007/978-3-030-44223-1_15.

[39] Xiang Xie, Rui Xue, and Minqian Wang. Zero knowledge proofs from
ring-LWE. In Michel Abdalla, Cristina Nita-Rotaru, and Ricardo Da-
hab, editors, CANS 13, volume 8257 of LNCS, pages 57–73, Paraty,
Brazil, November 20–22, 2013. Springer, Heidelberg, Germany. doi:

10.1007/978-3-319-02937-5_4.

[40] Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu,
and William Whyte. Efficient lattice-based zero-knowledge arguments
with standard soundness: Construction and applications. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, vol-
ume 11692 of LNCS, pages 147–175, California, USA, August 18–22, 2019.
Springer, Heidelberg, Germany. doi:10.1007/978-3-030-26948-7_6.

35

https://www.sciencedirect.com/science/article/pii/ S0304397523000440
https://www.sciencedirect.com/science/article/pii/ S0304397523000440
https://doi.org/10.1016/j.tcs.2023.113731
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/3-540-48329-2_2
https://doi.org/10.1007/978-3-030-44223-1_15
https://doi.org/10.1007/978-3-319-02937-5_4
https://doi.org/10.1007/978-3-319-02937-5_4
https://doi.org/10.1007/978-3-030-26948-7_6

Appendix A Security Proofs

Throughout this appendix, we are going to establish sufficient conditions for
each of the security properties of the commitment scheme and the associated
NIZKPoK.

A.1 Binding

The binding property proofs of [10, 32] rely on the algebraic structure of Rq =
Zq [x] / ⟨xn + 1⟩. This structure heavily depends on the modulus q, as it has an
impact on the factorization of xn + 1, which is irreducible over the integers but
splits into two irreducible polynomials of degree n/2 when q ≡ 3 (mod 8) [36].

However, changing this structure allows some efficiency improvements. Lyuba-
shevsky and Seiler proved in [31] an interesting characterization of Rq whenever
q satisfies a different condition, summarized in Lemma 4.

Lemma 4 (Corollary 1.2 in [31]). Let n ≥ d > 1 be powers of 2 and q ≡ 2d+1
(mod 4d) be a prime. Then the polynomial xn + 1 factors as

xn + 1 ≡
d∏

j=1

(
xn/d − αj

)
(mod q)

for distinct αj ∈ Z∗q , where xn/d − αj are irreducible in Rq.

That is the condition we are going to use.

q ≡ 2d+ 1 (mod 4d). (eq. (1))

There is an important trade-off in the result of Lemma 4, the more factors
the faster the multiplication of ring elements can be implemented (the optimum
is achieved when xn + 1 splits into linear factors, and we can apply FFT mul-
tiplication), but achieving the binding property becomes harder. Considering
that we might end up with a larger commitment size or, if d is too large, we
might end up not being able to find a secure set of parameters at all.

In the following paragraphs, we redo the binding property proof for a mod-
ulus q satisfying the conditions of Lemma 4 with an arbitrary d. That is, we
want to prove that, with overwhelming probability over the choice of a,b ∈ Rk

q

we have that
accept← Ver (c,m′, o′; pk) , and

accept← Ver (c,m′′, o′′; pk) =⇒ m′ = m′′.

Two accepted openings to the same commitment would be:

c = am′ + br′ + e′

c = am′′ + br′′ + e′′

Therefore, if m′ ̸= m′′ we have that a(m′−m′′)+b(r′− r′′)+ (e′− e′′) = 0.
If q ≡ 2d+1 (mod 4d), with overwhelming probability over the choice of a and

36

b, and provided that k is large enough, there are no m, r ∈ Rq and e ∈ Rk
q small

such that am+ br + e = 0 holds and m ̸= 0.

We bound the probability that this solution exists. For a fixed m, r and e
we count the proportion of pairs (a,b) for which the equality holds. In order to
estimate the overall probability of choosing a pair (a,b) such that there exists a
solution, we use a union bound adding up all previous probabilities. We finally
see that it is negligible if parameters are carefully selected.

Fixed m, r and e for each b we have am = −br − e. In each component
aim = −bir − ei. q ≡ 2d + 1 (mod 4d) implies that xn + 1 splits into d irre-
ducible polynomials p1(x), p2(x), . . . , pd(x) of degree n/d. We know that m ̸≡ 0
mod xn + 1, therefore, m ̸≡ 0 mod pj(x) for some j ∈ {1, . . . , d}.

For this case we know that choosing different ai we have that aim takes
at least qn/d different values (mod pj(x)). There are qn/d equivalence classes
(mod pj(x)) and only one of them is −bir − ei (mod pj(x)), therefore at most
1/qn/d of the possible ai hold the equation. As this is independently true for each
i, we have that the probability of (a,b) to fit the equation for these particular
m, r and e is at most 1/qnk/d.

If we want to consider the possibility that there exists a solution, we can
bound this probability with a union bound. There are qn possible m, qn possible
r and (4B − 1)

kn
possible e. Therefore, if (a,b) ← keygen(n, q, d, k), we can

upper bound the probability

Pr
(a,b)

[
∃m, r, e

∣∣∣∣ am+ br + e = 0

∧e ∈ [−2B + 1, 2B − 1]
k

]
by

q2n(4B − 1)
kn

qnk/d
≤ 2−λ.

Taking logarithms, the condition that has to be satisfied is

n(2 log2(q) + k(log2(4B − 1)− log2(q)/d)) ≤ −λ.

If we ensure (log2(4B − 1) − log2(q)/d) is negative then we only need to
choose

k ≥ λ+ 2n log2(q)

n(log2(q)/d− log2(4B − 1))
. (eq. (2))

Notice here the first condition just imposes the maximum value of d we can
still use, preserving the binding property

d <
log2(q)

log2(4B − 1)
. (eq. (3))

37

The smaller the error bound B gets the more options we have for this trade-
off. As larger bounds also increase the size of the proof, our goal would be to
find the smaller bound B that still ensures the hiding property.

A.2 Hiding

The advantage of an adversary against the hiding property is defined as the abil-
ity they would have distinguishing two commitments to two different messages
chosen by themselves. More formally, we define Advhid(A) as∣∣∣∣∣∣∣∣Pr

b = b′

∣∣∣∣∣∣∣∣
(m0,m1, aux)← A1(a,b),

r ← Rq, e← Dn
σ,B

k

b′ ← {0, 1}, c = amb′ + br + e
b← A2(c, aux)

− 1

2

∣∣∣∣∣∣∣∣ .
From a standard analysis, we can ensure

Advhid (A) ≤

max
B
{AdvRLWE(B)}+ Pr

[
||e||∞ > B

∣∣∣e← Dσ
kn
]
,

where AdvRLWE(B) is the advantage of another adversary against the decisional
version of the RLWE problem.

The usual reduction implies that the maximum is taken among adversaries B
that perform the same plus a constant number of operations as A. Its particular
advantage against the decisional RLWE problem can not be precisely bounded
either, as the best we can do is estimate the hardness of the underlying problem
using Albrecht et al.’s Lattice Estimator.

For that matter, we just ensure that

bitsec(RLWE) ≥ λ. (eq. (4))

The other term comes from the fact that we are not using discrete Gaus-
sian distributed errors but truncated discrete Gaussian distributed errors. The
advantage difference can be bounded by the statistical distance among the dis-
crete Gaussian distribution and the truncated distribution, that is, precisely
the probability of the tails we are omitting. For that reason, since we want the
advantage to be negligible we need to ensure that

Pr
[
||e||∞ > B

∣∣∣ e← Dσ
kn
]
≤ 2−λ. (eq. (5’))

As we have mentioned, it is implied by

vecBoundedPr(boundedPr(σ,B − 1), k · n) ≥ λ. (eq. (5))

38

A.3 Soundness

Soundness comes from the knowledge-soundness of the interactive version from [32]
and the soundness preservation of the Fiat-Shamir transform. For that reason,
eqs. (6) and (7) are directly inherited from [32].

Notice that the original soundness proof from [32] implicitly assumes that
given z ∈ L(a) one can compute t ∈ Rq such that z = at. This has been
shown to be true under the conditions that imply the binding property of the
commitment in Section 4.1.

The proof is based on the ROM, sampling the first challenges αi (and βi in
the multiplicative proof) following the rejection sampling procedure described
in Section 4.3 that uses SHAKE-128 as XOF and the second challenge directly
from SHAKE-128 again both using as input the statement of the proof and
the previous elements of the underlying interactive conversation. Both pseu-
dorandom functions are modelled as random oracles to apply the Fiat-Shamir
transform.

The equivalence between special-soundness and knowledge-soundness and
the soundness preservation of the Fiat-Shamir transform are immediate for
Σ-protocols (the canonical 3-move form of most interactive ZKPoK protocols).
Even if sometimes it is taken for granted that is not the case for protocols with
a non-negligible soundness error that therefore require parallel repetitions, pro-
tocols with more than 3 moves, or protocols with both more than 3 moves and
parallel repetitions (which is our case).

A.3.1 Knowledge-Soundness for interactive (2µ + 1)-move protocols
with parallel repetitions

The [32] soundness proof already partially addressed these issues, providing a
witness extractor sufficient to ensure soundness of the interactive protocol. We
further improve their analysis to show that the protocols satisfy the standard
definition of knowledge-soundness.

Soundness of an interactive protocol imposes that for any malicious prover
P∗ we have Pr

[
⟨P∗,V⟩ (x) = accept

∣∣ x ̸∈ R
]
≤ ϵ. We can request a stronger

property, ensuring that the prover not only can prove that x is valid but also
that they know a witness w of (x,w) ∈ R. More formally we say that there
exists an extractor that, given oracle access to a successful enough prover, can
be used to efficiently compute a witness with sufficient probability.

Definition 5 (Knowledge-Soundness of an interactive protocol as in [4]). An
interactive proof ⟨P,V⟩ for relation R is knowledge sound with knowledge error
κ(x) if there exists a positive polynomial p and an algorithm E with the following

39

properties. The extractor E given input x and rewindable oracle access to a
(potentially dishonest) prover P∗ is expected to run in polynomial time in |x|
and outputs a witness w such that (x,w) ∈ R with probability

Pr
[
(x,w) ∈ R

∣∣ w ← EP∗
(x)

]
≥

Pr
[
⟨P∗,V⟩ (x) = accept

]
− κ(x)

p(|x|)
.

It implies the regular soundness definition (if κ < ϵ a witness can be com-
puted with a positive probability and therefore x is valid) and can usually be
more directly proved.

The additional property of being public-coin is usually combined with the
previous one, but we prefer to define it separately.

Definition 6 (Public-Coin). An interactive protocol ⟨P,V⟩ is public-coin if all
of V’s random choices are made public.

To be able to prove soundness, [32] uses yet another property called k-special-
soundness (see [32] for the formal definition) that states that a witness can be
extracted from k accepting conversations with different challenges. Notice that
this does not immediate provide knowledge-soundness, as one has to build the
extractor that efficiently gets these k conversations.

The original soundness proof from [32] manages to prove that, provided
oracle access to a malicious prover that produces accepting conversations with
probability ϵ ≥ ((q + 1)/2q)δ, lets call κ = (q + 1)/2q, there exists an efficient
extractor that outputs a valid witness with probability 2(ϵ − κδ)3/27. It was
sufficient to prove soundness of the interactive proof for which it is sufficient to
see that a witness can be extracted with positive probability, but it does not
satisfy the standard notion of knowledge-soundness with knowledge error κδ that
would require the probability to be proportional to (ϵ−κδ), while that proof only
achieves a relaxed version where we have a cubic loss in the probability. The
standard definition also asks for an extractor that, given oracle access to any
successful enough malicious prover, outputs a witness with sufficient probability.
The current proof proves the existence of such an extractor that works with each
prover, but that extractor could be different each time. That is because the
original proof shows that it is sufficient to focus on a single individual thread
of the δ repetitions, however the index of that thread could be different for
each prover. This could be näıvely addressed and the extractor can be made
universal by choosing that index at random (at the expense of dividing by δ the
guaranteed success probability) or trying it for every index (at the expense of
increasing its computational cost by a factor δ).

Many proposals in the literature do not even analyze how the extractor would
work. As it was mentioned in [32] the potential execution tree considering all

40

possible challenges would be of the order of qδ. Their proposed extractor would
work in a running time just proportional to q (or to δq to comply with the
standard definition as we have seen). Once a useful node in the execution tree
(an initial message for which the prover can correctly answer to sufficiently many
challenges) is found, all the q+2 transcripts have to be obtained rewinding the
prover. That is still a significant work regarding that only 4 of them are really
relevant, as the witness can be obtained from 4 transcripts with α as the first
challenge in two of them, α′ ̸= α in the other two, and both b = 0 and b = 1 for
each α. We can say, as it is done in [32], that q+2 transcripts with different pairs
of challenges in Zq × {0, 1} ensure by the pigeonhole principle the existence of
the four transcripts that we really need, but it seems an overkill as the k-special-
soundness definition from [32] does not fully capture the nature of multi-round
protocols. A more fine-graded definition for (2µ+ 1)-protocols is the following.

Definition 7 ((k1, . . . , kµ)-Special Soundness as in [3]). A (2µ+1)-move public-
coin protocol is (k1, . . . , kµ)-special sound if there is an efficient algorithm that
on input

∏µ
j=1 kj accepting transcripts{

(x, a, {ci1,...,ij}
µ
j=1, {bi1,...,ij}

µ
j=1)

}
ij∈{1,...,kj}

such that ci1,...,ij ̸= ci1,...,i′j when ij ̸= i′j, outputs a witness w such that (x,w) ∈
R.

It is clear that a single iteration of our opening protocol is (2, 2)-special
sound, as we just need four transcripts with α and α′ as the first challenge and
both b = 0 and b = 1 as the second. The same applies to the protocol proving
a linear relation.

The multiplicative protocol is more interesting, as we need six pairs (β, α1),
(β, α2), (β, α3) and (β′, α′1), (β

′, α′2), (β
′, α′3) for which there are transcripts for

both b = 0 and b = 1. This structure is that of a (2, 3, 2)-special sound 7-move
protocol. Of course, our 5-move protocol can be artificially transformed into
that just sending β as first challenge, waiting for an empty response from the
prover, and finally sending α as a second challenge. Since these two protocols are
by all means equivalent any property that we can deduce when interpreting it
as a (2, 3, 2)-special sound 7-move interactive protocol would also be satisfied by
our 5-move multiplicative protocol (the non-interactive version would differ as it
would require a different number of oracle calls, for that reason we would think
of it as a 7-move protocol when proving properties of the interactive version and
as a 5-move protocol when transforming it into a non-interactive protocol).

To see how it implies knowledge-soundness it remains to specify how to
efficiently obtain such tree of conversations (see Figure 1 of [4] for a nice vi-
sualization of the tree structure). A general tight efficient extractor was first
defined in [3]. It is significantly more involved to extract the useful accepting
conversations from δ parallel repetitions of a (k1, . . . , kµ)-special sound protocol.

41

Fortunately [4] proves (Theorem 3 in their paper) that a (k1, . . . , kµ)-special
sound protocol is knowledge sound with knowledge error

κ = 1−
µ∏

j=1

|Cj | − kj + 1

|Cj |
.

That means a single repetition of the opening or linear interactive protocols
would be knowledge sound with knowledge error κOL = (q+1)/2q and a single
repetition of the interactive multiplicative protocol would be knowledge sound
with knowledge error κM = (q2 + 3q − 2)/2q2.

Furthermore, the really novel contribution of [4] (presented in their Theo-
rem 4) is that the parallel repetition of a (k1, . . . , kµ)-special sound protocol δ
times is knowledge sound with knowledge error κδ (when the δ parallel repeti-
tions effectively reduce the knowledge error from κ to κδ they call it a strong
parallel repetition result).

This knowledge error is the same as the soundness error obtained by [32]
(equal to the standard cheating probability obtained by a prover that tries to
guess the challenge in advance) but now the knowledge-soundness satisfies the
standard definition with probability directly proportional to (ϵ − κδ). Besides
that the extractor would only requiere a number of rewinds proportional to∏µ

i=1 ki (proportional to 4 in the opening and linear or 12 for the multiplicative
protocol), instead of proportional to q.

A.3.2 Multiple vs. single challenge set

Notice that our notion of a public-coin interactive protocol assumes that in each
move the challenge is uniformly drawn from a possibly different challenge set
Ci. Some articles proving security of the Fiat-Shamir transform, as [6] or [16],
assume for convenience that all challenges are drawn from a single universal
challenge set C. In [6] the authors mention that the proof of their main result
(which unfortunately does not apply to our protocols) could be rewritten to
admit arbitrary challenge sets. We think that a detailed general proof of why
this assumption of having a single challenge set can be taken without any loss
of generality in the ROM is of independent interest and it allows us to use any
transformation regardless of their challenge sets convention without any extra
work.

Theorem 8 (Single vs. Multiple Challenge sets). Any public-coin (2µ + 1)-
move Honest Verifier Zero-Knowledge Proof of Knowledge between a prover P
and a verifier V, where challenge ci in the ith round is uniformly sampled by V
from a challenge set Ci, can be transformed (in the ROM) into another public-
coin (2µ+1)-move Honest Verifier Zero-Knowledge Proof of Knowledge between

42

another prover P ′ and another verifier V ′ where every challenge si is uniformly
sampled from a sufficiently large single challenge set S preserving completness,
Zero-Knowledge, soundness and knowledge-soundness.

That new protocol is defined in the following way. P ′ computes its initial
commitment a as P would do and sends it to V ′. In each round i the verifier
V ′ samples a seed uniformly at random from the challenge set si ← S, and the
prover P ′ then calls a random oracle Oi that outputs uniformly random elements
ci from Ci if the seed had not been called before or the previous response other-
wise. Then P ′ answers bi in the same way P would do if challenged with that
ci. Finally, V ′ checks the verifying equations as V would do with the challenges
ci ← Oi(si).

Proof. It is clear that completeness is directly inherited from the original proto-
col. Honest Verifier Zero-Knowledge is also preserved, as one can compute the
ci calling the oracles with the si and then use the original simulator. Provided
that the oracles output uniformly random ci and after that point everything is
computed in the same manner, the simulated conversations would again follow
the same distributions as the ones between honest P ′ and V ′.

The only properties that require a dedicated insightful analysis are soundness
and knowledge-soundness. Let P◦ be a malicious prover against the single
challenge set protocol with access to µ oracles {Oi}µi=1 and a success probability
ϵ. We can also construct a prover P∗ against the multiple challenge protocol,
interacting with P◦ providing its challenges and simulating their oracle queries.
We will refer to si as the inner challenges and the corresponding ci ← Oi(si) as
the outer challenges. We can do it following the next procedure.

P∗ starts running P◦ to produce the first commitment a. Whenever P◦
calls oracle Oi with an s ∈ S then P∗ samples c ← Ci uniformly at random if
s was never queried before or returns the previously sampled or programmed
element. To compute the si ∈ S inner challenge seeds prover P∗ gets challenges
ci from the verifier and outputs with some probability p

(ci)
i a uniformly random

seed from the ones that have already been queried to the oracle Oi and had
been answered with the outer challenge ci or otherwise P∗ chooses a uniformly
random seed from the ones that have not been asked by P◦ to the oracle Oi

and program its simulated oracle to subsequently answer ci to that seed si.

Let’s define some disjoint partitions of S useful to define these probabilities
and prove the desired properties. Let Sci ⊆ S be the subset of seeds that have
been oracle called by P◦ to Oi and have received c as answer. Let S¬ci ⊆ S
be the subset of seeds that have been oracle called by P◦ and have received an
answer different from c. And finally, let S∅i ⊆ S be the subset of seeds that
have not been queried yet. That way at any time we have S = Sci ⊔ S¬ci ⊔ S

∅
i

for every i and c.

43

If we fix p
(ci)
i = (|Scii | · |Ci|)/ |S| then the success probability of P∗ would be

that of P◦. Intuitively the expected value of seeds that would be mapped to ci
would be |S| / |Ci| and we already have |Sci | many so this seems the right guess
for that probability, and we are going to confirm that it indeed works. Observe
this is always a viable strategy if |S| is large enough. On the one hand if Sci = ∅
then p

(c)
i = 0 and we never have to sample from an empty set. On the other

hand we can ensure that p
(c)
i ≤ 1 if |S| ≥ Qi |Ci| where Qi is the number of

oracle queries to oracle Oi and therefore is an upper bound of |Sci |. This also
guarantees that S∅i ̸= ∅ either.

To prove that the success probability is the same, we need to check that the
challenges si and the oracle answers simulated by P∗ follow the same distribution
than the ones P◦ would receive interacting with an honest verifier and random
oracles.

Let’s analyze the probability of providing P◦ with a given s as the ith inner
challenge. Either this s has been submitted before to Oi by P◦ or not. In the
first case, let’s denote by c the answer P∗ gave it. The probability of choosing
such s is the probability of the ith outer challenge being c multiplied by the

probability p
(c)
i of choosing s among the Sci already queried seeds that output c

multiplied again by the probability of getting that particular seed when sampling
uniformly from that set:

Pr
[
si = s

∣∣ s ∈ Sci] = 1

|Ci|
· |S

c
i | · |Ci|
|S|

· 1

|Sci |
=

1

|S|

On the other hand, if s was not submitted before, i.e. s ∈ S∅i , for each possible

challenge c its probability is now 1−p(c)i multiplied by the probability of choosing
that s from S∅i :

Pr
[
si = s

∣∣ s ∈ S∅i]
=

∑
c∈Ci

1

|Ci|
· |S| − |S

c
i | · |Ci|
|S|

· 1∣∣S∅i ∣∣
=

1

|S|
·
|S| −

∑
c∈Ci |S

c
i |∣∣S∅i ∣∣

=
1

|S|
·
∣∣S∅i ∣∣∣∣S∅i ∣∣ = 1

|S|

Then, as every s has the same probability, P◦ receives challenges uniformly
distributed in S the same way it would have if it was interacting with a real
honest verifier.

44

P◦ P∗ V

O(·)
←−−−−−−→

a−−−−−−−→
a−−−−−−−→

c1 ← C1
c1←−−−−−−−

s1 ← Sc11 wp p
(c1)
1

s1 ← S∅1
let O1(c1) = s1

o/w

s1←−−−−−−−
O(·)

←−−−−−−→
b1−−−−−−−→

b1−−−−−−−→
...

bµ−−−−−−−→
bµ−−−−−−−→

cµ ← Cµ
cµ←−−−−−−−

sµ ← S
cµ
µ wp p

(cµ)
µ

sµ ← S∅µ
let Oµ(cµ) = sµ

o/w

sµ←−−−−−−−
O(·)

←−−−−−−→
bµ−−−−−−−→

bµ−−−−−−−→
Protocol 7: Multiple from single challenge set adversary.4

4The usual abbreviations wp and o/w are used for “with probability” and “otherwise”.

45

Regarding its calls to the oracle, every query with an s that has not been
set as inner challenge is answered as usual, sampling a uniform c. Every si
that they have received as inner challenge has already a defined answered ci.
Nevertheless, provided that this ci has been sent by an honest verifier it also
follows a uniformly random distribution as an oracle call would do.

As we have granted that the interaction P∗ has with P◦ follows the same
distribution as the interaction with a verifier and µ random oracles then the
success probability is exactly the same, as we wanted to prove. That implies
that the soundness error of the new single-oracle protocol is at most equal to
the one from the multi-challenge protocol, because any success probability of
the former can also be realized with the latter.

Knowledge-soundness preservation comes from the same transformation, as
we can again use the constructed P∗ with the original extractor to obtain a
witness with the same probability.

We can use this proof to ensure the security of a version with a single chal-
lenge set, which allows us to continue the proof using the literature that builds
their theorems under this assumption. Although the reduction might seem ar-
tificial it is not far from the real world as our own implementation internally
uses some seeds to generate the pseudorandom challenges, precisely as described
(and therefore can be interpreted as having different challenge sets or a single
one just depending on if we consider as challenge the seed or the corresponding
pseudorandom output). This general proof is also easier to apply than redoing
the proof of the Fiat-Shamir transform security or redefining (k1, . . . , kµ)-special
soundness.

A.3.3 The Fiat-Shamir transform

Now that we have verified that the interactive version of our protocol would sat-
isfy the standard notions of soundness we can apply the Fiat-Shamir transform
to obtain a sound non-interactive proof.

With the last transformation, we can see that our protocol satisfies the
definition of a Public-Coin Interactive Proof system (PCIP) as defined in [16],
as they assume every challenge is sampled from the same set.

Definition 9 (Fiat-Shamir transform for general PCIP adapted from [16]). The
Fiat-Shamir transform for general PCIP defines a non-interactive proof system
where the proof Π is generated by a prover PH

FS by computing the prover messages
of the transcript of an interactive protocol with challenges deterministically ob-
tained from the previous elements, c1 = H(0, x, a) and ci = H(i−1, x, ci−1, bi−1)
for i > 1, where H is a hash function with the appropriate domain. The verifier

46

VH
FS accepts if the transcript obtained when computing the challenges is accept-

ing (we denote by VH
FS(x,Π) the output of verifier VH

FS when presented with a
proof Π for a statement x).

Remark 10. Their original definition does not include the statement x in the
ci challenges with i > 1, as it is already implicit because each hash takes as input
the previous challenge and the first does have x as part of its input. Nevertheless,
they mention that “any additional strings can be included in the argument when
computing ci using H, without influencing the security properties of the non-
interactive proof system in a detrimental way”. This transform also corresponds
to the alternative definition proposed in [5].

The model assumes that H behaves as a (Quantum) Random Oracle and
our goal is to prove soundness in that setting. We first recall that the soundness
of non-interactive proof systems can not be directly addressed as before. The
success probability of an adversary might unavoidably grow by just trying again
if it fails at the first attempt. For that reason, we can only bound its proba-
bility when restricting the number of oracle queries Q, ensuring it only grows
polynomially with it.

Definition 11 (Soundness of a non-interactive proof system (PH
FS ,VH

FS), adapted
from [17]). We say that a non-interactive proof system (PH

FS ,VH
FS) is sound if

there exists a negligible function η(λ) and a constant e such that for any adver-
sary A making Q queries to a uniformly random H and any λ ∈ N:

Pr
H

[
VH

FS(x,Π) = accept ∧ x ̸∈ R
∣∣ (x,Π)← AH]

≤ Q
e
η(λ).

We can prove it in the QROM using the recent result from [16] that ensures
the existence of a quantum algorithm B such that we can lower bound

Pr
[
x = x◦ ∧ v = accept

∣∣ (x, v)← 〈
BA,V

〉]
by

C · Pr
H

[
x = x◦ ∧ VH

FS(x,Π) = accept
∣∣ (x,Π)← AH

]
− ϵx◦

where C = µ!
(2Q+µ+1)2µ

, the additive error term ϵx◦ is equal to µ!/ |C| when
summed over all x◦, and can be made arbitrarily small. Following the notation
from [16] (x, v)←

〈
BA,V

〉
means that BA first outputs a statement x and then

interacts with V so that v =
〈
BA,V

〉
(x).

As [16] mentions, this implies soundness preservation as long as the challenge
space C has size superpolynomial in the security parameter since µ is constant
and Q is polynomial in the security parameter. That makes ϵx◦ negligible and
we can also aim to make the bound on the success probability of the interactive
version κδ negligible in λ by choosing large enough δ. There we have the neg-
ligible function required by the definition. Then, provided that µ is constant,
(2Q+ µ+ 1)2µ/(µ!) can be bounded by some power of Q.

47

In order to target a provable security level one would just need to choose
|C| and δ large enough so that the κδ + µ!/ |C| compensates the (2Q + µ +
1)2µ/(µ!) security loss. One could achieve a soundness error smaller than 2−λ

choosing both δ ≈ log2(|C|) ≈ 5λ, as we can always assume Q < 2λ and get
(κδ + µ!/ |C|)(2Q+ µ+ 1)2µ/(µ!) ≲ 2−λ, increasing the proofs by a factor of 5.

This O(Q2µ) security loss is tight in general, as discussed in [16]. The 2
in the exponent comes from the fact that we are considering the QROM, the
quantum version of the ROM, and have to consider Grover-search attacks.

Similar proofs with the plain ROM exist with a security loss of just (Q+ 1)
µ
,

as informally claimed in [6]. In this important work they show that for many
interactive proofs, mainly those with (k1, . . . , kµ)-special soundness, one can
prove a better bound on the security loss of only O(µQ), linear instead of expo-
nential in the number of rounds. However, that is not the case of the considered
scheme, as the parallel repetition of a (k1, . . . , kµ)-special sound protocol is not
(k1, . . . , kµ)-special sound itself.

Besides soundness, one can similarly prove knowledge-soundness because it
is also preserved by Fiat-Shamir.

Definition 12 (Proof of Knowledge as in [17]). The non-interactive proof sys-
tem (PFS ,VFS) is a computational proof of knowledge if there exists a polynomial-
time algorithm E, a polynomial p(η), constants d, e ≥ 0 and a negligible function
µ(η), such that for any (quantum) polynomial-time algorithm A making at most
Q oracle queries, any η ∈ N and any x we can bound

Pr
[
(x,w) ∈ R

∣∣ w ← EA(x)]
by

≤ 1

Qep(η)
Pr
H

[
VH
FS(x,Π)

∣∣ Π← AH
]d − µ(η).

It can be similarly defined for adaptive adversaries allowing A to choose x

As [16] mentions in their Corollary 15 the Proof of Knowledge property is
preserved in the QROM because any dishonest prover against the Fiat-Shamir
version with success probability ϵ can be used to get a dishonest prover against
the interactive protocol with a success probability of ϵ · (2Q + 1)−2µ, that can
be used to extract a witness.

A.4 Zero-Knowledge

The only additional condition would be to use a cryptographically secure Pseudo
Random Number Generator to obtain computational Zero-Knowledge.

48

For our prototype implementation, we choose SHA3-256 as hash function
and SHAKE-128 as XOF.

A.5 Correctness

As we mentioned before, correctness is unconditional.

Appendix B Known Attacks

Quoting from [6]:

If one wants to rely on the proven security reduction, one needs to
choose a large security parameter for Π, in order to compensate for
the order Qµ security loss, effecting its efficiency; alternatively, one
has to give up on proven security and simply assume that the security
loss is much milder than what the general bound suggests. Often, the
security loss is simply ignored.

Disregarding additional security losses is called the ϵδ-heuristic, as one di-
rectly assumes the soundness error exponentially decreases with parallel repeti-
tions without considering any possible attacks [22].

However, even if assuming the security loss is milder than the worst case
scenario we should still consider which is the best known attack. For example,
the post-quantum signature scheme [14], which has a structure very similar to
the one considered through this paper as it is based too on a q2-identification
scheme, was successfully attacked in [22]. We remark that the existence of these
attacks only implies that larger parameters should be chosen. We can ensure
that the Fiat-Shamir transform is not inherently broken because if we suffi-
ciently increase these parameters (number of repetitions and challenge space
size) we could obtain provable security. Regarding the studied protocols, as far
as we are concerned, the best known attack is the general strategy presented
in [5] against the parallel repetition of (k1, . . . , kµ)-special sound protocols that
satisfy an additional property they call (l1, . . . , lµ)-special unsoundness (some-
times (l1, . . . , lµ)-out-of-(|C1| , . . . , |Cµ|)-special unsoundness) with N responses
per round. Let’s formally introduce that concept, show that the studied pro-
tocols satisfy the definition and reanalyze accordingly the security of the non-
interactive proofs.

Definition 13 ((l1, . . . , lµ)-special unsoundness with N potential responses
per round as in [6]). We say that a public-coin interactive proof ⟨P,V⟩ has

49

(l1, . . . , lµ)-special unsoundness if there exists a dishonest prover A such that
when interacting with V on input x the following holds:

• A starts in active mode, meaning that at every round after A’s message
there exists a subset Γi ⊆ Ci of size li such that if the challenge ci ∈ Γi

then A switches to passive mode.

• If A switches to passive mode then it remains in passive mode and the
final conversation is accepting.

Besides that, we say that it has (l1, . . . , lµ)-special unsoundness with N po-
tential responses per round if during the active mode A can efficiently produce
N distinct messages with the previously mentioned property.

As they say, many (k1, . . . , kµ)-special sound protocols are also (k1−1, . . . , kµ−
1)-special unsound. It is possible to design an adversary A against the interac-
tive version of the opening protocol that shows it is (1, 1)-special unsound.

In the first round A just needs to guess Γ1 = {α̃} ⊆ Zq and prepare both
commitments so that they would be able to pass every verification if the chal-
lenge α turns out to be α̃. A can do so making up e′j ← Bnk (so that the

πτj (e
′
j)

?
∈ Bnk verification checks out), and also making up z ← L(a) and

preparing the first commitment choosing y = z− (α̃(c+B)−bs−ϕ(
∑

j 2
j(fj +

α̃e′j))) with a random s ∈ Rq so that everything checks if α turns out to be α̃
(as then z̃ would be z and therefore it would belong to L(a)). If the guess is
right they can switch to passive mode and satisfactorily answer with the made
up s or e′j . Observe they have many options for z, s or e′j so it has the many
responses per round property.

If the guess was wrong, the adversary could still try to guess the second
challenge. If they guess that Γ2 = {1} then they only need to answer with the
usual gj = πτj (fj +αe′j) and then they would be able to satisfactorily answer if
the challenge is indeed b = 1 with the made up e′j . However, in this case they
would only have one possibility. Therefore, to be able to have many responses
per round the adversary should guess Γ2 = {0} and prepare the gj so that the
b = 0 checks are satisfied. It can just randomly sample gj for j ≥ 1 and then
solve for g0 so that z = y + α(c +B) − bs − ϕ(

∑
j 2

jπτj
−1(gj)) and they can

satisfactorily answer if the challenge is b = 0. The freedom of choosing gj for
j ≥ 1 now guarantees the many responses per round property.

The opening protocol is therefore (1, 1)-special unsound with O(qnk) re-
sponses per round. Then we can ensure the existence of an attack exploiting
the parallel repetition structure of our non-interactive proof.

Theorem 14 (δ-fold parallel repetition attack from [5]). Let Π be a (2µ+ 1)-
move public-coin interactive proof with challenge spaces C1, . . . , Cµ. Suppose Π

50

has (l1, . . . , lµ)-special unsoundness with N responses per round. Let Πδ be the
δ-fold parallel repetition of Π. Let m1, . . . ,mµ ∈ N such that

∑µ
i=1 mi = δ. Let

Q = µQ′ for Q′ ∈ N with Q′
∑µ

i=1(li/ |Ci|)mi < 1/4 and Q′ ≤ N . There is
a Q-query dishonest prover against FS[Πδ] so that for every statement x the
probability

Pr
[
VRO
FS (x,P∗,RO) = accept

]
is bigger than

1

2

(
Q

µ

)µ µ∏
i=1

(li/ |Ci|)mi .

The theorem from [5] provides a lower bound on the attacker success proba-
bility because they want to emphasize that the security loss can be O(Qµ) and
not only O(µQ). However, in order to choose parameters so that the scheme is
secure against this attack what we want is an upper bound. Lets describe the
attack strategy and find that upper bound.

The idea is the following. Choosing m1, . . . ,mµ ∈ N such that
∑µ

i=1 mi = δ
the attacker tries to guess the challenges, because if ci ∈ Γi for some of the
parallel executions then they would be able to change into passive mode for
that repetition and continue answering till the end. Their goal is to get at
least

∑i
j=1 mj parallel executions in passive mode before moving to the next

round, so that they end with a complete fake proof. If not sufficiently many new
guesses are correct in a given round to move to the next they just resample new
messages to get fresh challenges. To get into account the fact that the adversary
is computationally limited and only queries the oracle Q times its designed to
abort after Q/µ unsuccessful attempts per round. See [5] for a full description.

We need to upper bound the success probability of the attack and select the
number of repetitions in a way that ensures this upper bound is smaller than
2−λ. Lets first analyze the involved probability distributions and recap some
useful probability propositions.

Definition 15 (Binomial Distribution). The binomial distribution of parame-
ters n and p, denoted B(n, p), is the discrete probability distribution that counts
the number of successes in n independent experiments, each of them having two
possible outcomes, success with probability p or failure with probability 1− p.

Considering the attack at the ith round there are δ−m′i−1 parallel protocols
in active mode (we denote by m′i−1 ≥

∑
j<i mj , with m′0 = 0 the number of

repetitions in passive mode after the (i−1)th round) and each of them turns into
passive mode with probability li/ |Ci| (the probability of c ∈ Γi if c← Ci). The
number of protocol repetitions that turn into passive mode follows a binomial
distribution of parameters δ −m′i−1 and li/ |Ci|.

Definition 16 (Geometric Distribution). The geometric distribution of param-
eter p, denoted Geo(p), is the discrete probability distribution that counts the

51

number of trials until the first success (including the successful one) when se-
quentially conducting independent experiments, each of them having two posible
outcomes, success with probability p or failure with probability 1− p.

The attacker advances a round of the protocol if the number of parallel
repetitions that turn into passive mode is at least (

∑
j≤i mj) −m′i−1, lets say

that happens with probability pi (it is the probability of a certain binomial
distribution surpassing a certain threshold). If that is not the case then it
computes a different message and tries again. If no limit was imposed, the
number of trials until it continues to the next round would follow a geometric
distribution of parameter pi.

Particularizing that to our current protocol, let

X ∼ B(δ, q−1)

be the probability distribution that models the number of parallel repetitions in
which the adversary would be able to correctly answer in passive mode. They
continue if that number is at least m1 (recall that m1,m2 ∈ Z≥0 are any two
non-negative integers such that m1 +m2 = δ). The number of attempts until
that would happen would follow a distribution

Y ∼ Geo(Pr[X ≥ m1])

and therefore the adversary that aborts if they cannot continue after Q/µ tries
advance to the second round with probability Pr[Y ≤ Q/2].

Provided that m′1 repetitions are already in passive mode, which happens
with probability Pr[X = m′1 | X ≥ m1], the adversary can only fake the proof
if it guesses the remaining δ −m′1 challenges.

For that reason, we analogously define

Wm ∼ B(δ −m, 1/2) and,

Zm ∼ Geo(Pr[Wm = δ −m])

as we might need to consider the case m′1 = m for any m1 ≤ m ≤ δ. These two
distributions model the number of correctly guessed challenges and the number
of trials until all remaining challenges are guessed. The adversary successfully
fakes a proof if Zm ≤ Q/µ.

In conclusion, the adversary success probability is

ϵ = Pr
[
Y ≤ Q/2

]
·

δ∑
m=m1

Ps(m),

52

where
Ps(m) := Pr

[
X = m

∣∣ X ≥ m1

]
Pr

[
Zm ≤ Q/2

]
.

Before we start, let’s recall some useful probability propositions. We might
indicate that we are using them, placing a reference in a parenthesis next to
where the property has been used.

Proposition 17 (Bernoulli’s inequality). For every integer r ≥ 1 and every
real number x > −1 we have (1 + x)r ≥ 1 + rx.

Corollary 18. Let A ∼ Geo(p), then Pr[A ≤ k] ≤ kp.

Proof. That is the case because Pr[A ≤ k] = 1−(1−p)k
(Prop. 17)

≤ 1−(1−kp) =
kp.

Proposition 19 (Chernoff bound for the binomial distribution). Let A ∼
B(n, p), then the probability Pr[A ≥ k] is smaller than

exp

(
−n

(
n− k

n
ln

(
n− k

n(1− p)

)
+

k

n
ln

(
k

np

)))
.

Proof. Theorem 1 from [2].

We can use these tools to bound the attack success probability. Observe that
the adversary can choose m1,m2 as long as m1 + m2 = δ to obtain different
strategies. However, if m1 is too large, obtaining enough challenges in Γ1 might
be too difficult, and they would not be able to continue to the second round
except with too small probability.

Case Pr[X ≥ m1] ≤ 2−(2λ−1).

If m1 is so large that Pr[X ≥ m1] ≤ 2−(2λ−1) then

ϵ ≤ Pr
[
Y ≤ Q/2

] (Cor. 18)

≤ Q/2Pr[X ≥ m1]

≤ Q2−2λ
(Q<2λ)

≤ 2−λ.

We can continue studying different cases.

Case 2−(2λ−1) < Pr[X ≥ m1] ≤ 2−(λ−1).

If m1 is not that large but still implies that 2−(2λ−1) < Pr[X ≥ m1] ≤
2−(λ−1) we can nevertheless use Corollary 18 with Pr

[
Y ≤ Q/2

]
to get a non-

trivial bound Pr
[
Y ≤ Q/2

]
≤ Q/2Pr[X ≥ m1], but we still have to consider

what happens in the second round.

53

Observe that the success probability of the second round is Ps(m)

We can guarantee the first probability is small if m is large enough, and we
can only guarantee the second is small if m is small enough. For that matter,
we have to split the summation. On the one hand, we can use Corollary 18 to
bound

Pr
[
Y ≤ Q/2

]
≤ Q/2Pr[X ≥ m1]

and also

Pr

[
Zm ≤

Q

2

]
≤ Q

2
Pr

[
Wm = δ −m

]
≤ 2−(δ−m+1)Q.

Using these bounds and the fact that 2−(δ−m) ≤ 2−2λ, we find that we can
bound

Pr
[
Y ≤ Q/2

] δ−2λ∑
m=m1

Ps(m)

by

≤ Q22−2(λ+1) Pr[X ≥ m1]

δ−2λ∑
m=m1

Pr
[
X = m

∣∣ X ≥ m1

]
= Q22−2(λ+1) Pr[X ≥ m1] Pr

[
X ≤ δ − 2λ

∣∣ X ≥ m1

]
≤ Q22−2(λ+1) Pr[X ≥ m1]

≤ Q22−2(λ+1)2−(λ−1)

< 2−(λ+1). (Q < 2λ)

Using a similar argument, we can bound

Pr
[
Y ≤ Q/2

] δ∑
m=δ−2λ+1

Ps(m)

by

≤ Q/2Pr[X ≥ m1]
Pr

[
X ≥ δ − 2λ+ 1

]
Pr

[
X ≥ m1

]
< 2λ−1 Pr

[
X ≥ δ − 2λ+ 1

]
(Q < 2λ)

≤ 2−(λ+1) (provided δ is large enough)

What we need is to choose δ so that Pr
[
X ≥ δ − 2λ + 1

]
≤ 2−2λ. It is

always possible if δ is large enough, as it represents the probability of succeeding
in all but a constant number of experiments. We would latter find a sufficient
condition using Proposition 17.

54

Notice we are splitting the summation considering m1 ≤ δ − 2λ. If that is
not the case, the first would be an empty sum, and we could even remove some
terms from the second sum. In any case, it is clear that, provided δ satisfies the
requirement, ϵ < 2−(λ+1) + 2−(λ+1) = 2−λ.

We can finally analyze the case where we cannot take advantage of the
adversary aborting before moving to attack the second round.

Case 2−(λ−1) < Pr[X ≥ m1].

We just have to follow a similar approach, splitting again the summation.
We start bounding the first part.

Pr
[
Y ≤ Q/2

] δ−2λ∑
m=m1

Ps(m) ≤

≤
δ−2λ∑
m=m1

Pr
[
X = m

∣∣ X ≥ m1

]
Pr

[
Zm ≤ Q/2

]
≤

δ−2λ∑
m=m1

Pr
[
X = m

∣∣ X ≥ m1

]
Q2−(δ−m+1)

≤ Q2−(2λ+1)
δ−2λ∑
m=m1

Pr
[
X = m

∣∣ X ≥ m1

]
(2−(δ−m+1) ≤ 2−(2λ+1))

= Q2−(2λ+1) Pr
[
X ≤ δ − 2λ

∣∣ X ≥ m1

]
≤ Q2−(2λ+1) (Q < 2λ)

< 2−(λ+1)

And bound again the second part.

55

Pr
[
Y ≤ Q/2

] δ∑
m=δ−2λ+1

Ps(m) ≤

≤
δ∑

m=δ−2λ+1

Pr
[
X = m

∣∣ X ≥ m1

]
Pr

[
Zm ≤

Q

2

]

≤
δ∑

m=δ−2λ+1

Pr
[
X = m

∣∣ X ≥ m1

]
=

Pr
[
X ≥ δ − 2λ+ 1

]
Pr

[
X ≥ m1

]
≤

Pr
[
X ≥ δ − 2λ+ 1

]
2−(λ−1)

≤ 2−(λ+1) (provided δ is large enough)

And again the only condition is that we wave to choose δ large enough so
that

Pr
[
X ≥ δ − 2λ+ 1

]
≤ 2−2λ

and therefore
ϵ < 2−(λ+1) + 2−(λ+1) = 2−λ.

It only remains to obtain a sufficient condition for Pr
[
X ≥ δ−2λ+1

]
≤ 2−2λ

using the Proposition 19. Let

A =
2λ− 1

δ(1− q−1)

and

B =
δ − 2λ+ 1

δq−1
.

Then, we can bound

Pr
[
X ≥ δ − 2λ+ 1

]
≤

≤ exp
(
−δ

(
(1− q−1)A ln(A) + q−1B ln(B)

))
.

It would be sufficient to ensure that this expression can be upper bounded
by 2−2λ. Taking (base 2) logarithms (and replacing natural logarithms with
binary logarithms) the final condition would be

56

(2λ− 1) log2

(
2λ− 1

δ(1− q−1)

)
+

+ (δ − 2λ+ 1) log2

(
δ − 2λ+ 1

δq−1

)
≥ 2λ.

Provided that it is not a difficult computation, we can just try increasing δ
until we find the first one that satisfies the condition.

Observe that the success probability of the attack could be slightly improved
by tweaking some design decisions (for example, the fact that the Q maximum
number of queries is equally split among both rounds), but that would not have
any meaningful impact. On the other hand, some assumptions are ostensibly
conservative. When considering the hardness of the RLWE problems, we wanted
to ensure that known attacks take more than 2λ operations. Here however we
are bounding by 2λ just the number of oracle calls, not the number of total
operations, that would be much greater. By analyzing the expected running
time, one could then bound it by 2λ and get stricter upper bounds for Q.

One can see that an equivalent analysis applies to the linear relation protocol.
It is also (1, 1)-special unsound, and an adversary can be constructed by repeat-
ing the same strategy three times in parallel, just defining z3 = λ1z1 + λ2z2.
Then the same kind of attack applies with the same success, and the conditions
to the parameters also apply to the linear case.

It is more difficult to assess the security of the multiplicative relation pro-
tocol. Recall that the (2, 3, 2)-special soundness is that of a 7-move protocol.
However, although in the interactive version the protocol is equivalent whether
the verifier sends α and β sequentially or at the same time that is not the case in
the non-interactive version after applying Fiat-Shamir as both challenges come
from the same hash in the 5-move version and would require two different hashes
if transforming the 7-move version.

It is possible to prove that it is (1, 1)-out-of-(q2, 2)-unsound, following a
similar strategy than the one used with the linear protocol. Nonetheless, the
success probability would be lower, as the first challenge set is now Z2

q and
guessing pairs of integers is harder than guessing a single integer. However,
there is still a partial attack with the same success probability as the one against
the opening protocol because a malicious adversary A knowing valid openings
to two commitments c1 = am1 + br1 + e1 and c2 = am2 + br2 + e2 could fake
a multiplicative proof with an arbitrary c3 ∈ Rk

q just guessing β. They would

choose Γ1 = {(α, β̃) | α ∈ Zq} and proceed as an honest prover with regard to
c1 and c2 and as the adversary against the opening protocol with regard to c3.
To make everything satisfy the checks if the challenge β turns out to be β̃ they
just need to choose z3 = a(µ3+ β̃m1m2) (with minor additional changes on how

57

the other commitments are computed if the guess turns out to be wrong).

In the end (q, 1)-out-of-(q2, 2)-special unsoundness is by all means equiva-
lent to the (1, 1)-out-of-(q, 2)-special unsoundness (the analysis on the success
probability only depends on l1/ |C|1 and l2/ |C|2, and these two are equal for
both scenarios), and the same condition on the parameters would apply for the
multiplicative protocol.

Appendix C Finding parameters

Analyzing the security for concrete parameters, we have established a set of
restrictions, eqs. (1) to (9), that ensure that a commitment scheme would have
a certain security under established hypothesis.

However, finding a set of parameters that fulfils all these conditions might
not be direct. It is even harder to find the best set of parameters. On the one
hand it depends on what is the final purpose as we might prefer a smaller com-
mitment size, smaller NIZKPoK sizes, faster implementations, lower overhead
between the commitment and the message sizes. . . and we might have additional
restrictions, again on the size of certain parameters or in any other characteris-
tic.

One has to consider that decreasing one parameter that reduces the com-
mitment size might reduce the suitable space for other parameters, forcing us to
increase them, therefore (possibly) increasing the proof size, or any other kind
of trade-offs.

Our strategy consists on finding an order such that when the previous param-
eters are fixed we can find an optimum value for the next one, where optimum
means that, conditioned on the previously fixed parameters, it is the value that
minimizes size and number of operations of both the commitments and proofs
while still satisfying the relations and, most importantly, it makes the condi-
tions for the remaining parameters as loose as possible (i.e. it does not further
restrict the available search space more than it is strictly necessary).

For this particular commitment scheme λ, n and q are design parameters
that we can freely select depending on the level of security (λ), message space
(n,q), or additional properties that we desire. The power of 2 denoted by d that
determines the number of irreducible factors xn +1 splits into when considered
modulo q is directly determined by q as the only d that satisfies eq. (1). In fact,
one should first choose d in order to find a suitable q, so we include it in the set
of four parameters characterizing a commitment instantiation set of parameters
(λ, n, q, d).

58

In order to ease the explanation, we are going to present the procedure from
the last to the first parameter. If we had already fixed (λ, n, q, d, δOL, δM , B, k)
satisfying eqs. (1) to (3) and (6) to (9) then σ would be upper bounded by the
condition from eq. (5). This bound for σ would be our best candidate.

The only other remaining condition is eq. (4), and we use Albrecht et al.’s
Lattice Estimator as a black box to compute the hardness of the underlying
RLWE problem. Albeit it is only reasonable to assume that greater errors
would yield to a harder problem, that is, bitsec should be increasing in σ. Then
there are two options, either the σ that comes from the bound derived from
eq. (5) satisfies eq. (4), and we choose it, or it does not and we can conclude
that no σ exists so that we can add it to the previous (λ, n, q, d,B, k) to get
a secure set of parameters. Let pp = (n, q, σ, k), and abbreviate bitsec(pp) by
bsec(pp). We define

bestσ(λ, n, q, d,B, k) :=

=

{
FromBσ(vecPrTo(λ, kn), B − 1) if bsec(pp) ≥ λ

⊥ otherwise

where FromBσ(a,B) outputs the greater σ so that we can still ensure a
sample from Dσ would be strictly greater than B with a probability lower or
equal than 2−a,

FromBσ(a,B) := B

√
log2(e)

2(a+ 1)
,

and vecPrTo(b, l) outputs the smaller a so that we can ensure that if a sample
from a distribution holds a condition except with some probability smaller than
2−a then all l independent samples from the same distribution will hold the same
condition except with a probability smaller than 2−b, vecPrTo(b, l) := b+log2(l),
so that the final result is, if possible, the greater σ satisfying eq. (5).

In a completely analogous way to Propositions 2 and 3 about boundedPr
and vecBoundedPr these two formulas come again from Lemma 4.4 in [27] and
the triangular inequality of the Statistical Distance (as the Statistical Distance
between a Gaussian and a bounded Gaussian is the probability of the tails).

Something similar happens with k if we assume (λ, n, q, δOL, δM , d, B) fixed
satisfying eqs. (1), (3) and (6) to (9). The condition defined by eq. (2) establishes
a lower bound, and it is the best candidate because a smaller k implies smaller
commitments and proofs and a larger k would reduce the available search space
for σ satisfying the remaining conditions defined by eqs. (4) and (5) (now it is
clear the hardness is decreasing in k, and the upper bound on σ is also decreasing
in k). Then we could safely choose:

bestK(λ, n, q, d,B) :=

⌈
λ+ 2n log2(q)

n (log2(q)/d− log2(4B − 1))

⌉

59

Regarding B, fixing (λ, n, q, d, δOL, δM), the size of the proofs would be smaller
the smaller its size. With regard to k a larger B would make the lower bound
for k derived from eq. (2) greater, effectively reducing the available search space.
However, the condition imposed by eq. (5) is stricter with smaller B, therefore if
B is too small it might be the case that, even with the less restrictive k defined
by bestK there is no large enough σ satisfying the remaining conditions eqs. (4)
and (5) that make the underlying RLWE problem sufficiently hard. For that
matter, in this case we cannot explicitate a formula for B. We can implicitly
define it as:

bestB(λ, n, q, d) :=

= min
{
2e
∣∣∣e ∈ Z>0, ∃k, σ s.t. eqs. (2) to (5) hold

}
.

We will set bestB(λ, n, q, d) =⊥ when the best B cannot be defined.

In order to compute it, we just need to test increasing powers of 2 verifying
if with ke := bestK(λ, n, q, d, 2e) we have σe := bestσ(λ, n, q, d, 2

e, ke) different
from ⊥. Condition (3) imposes an upper bound to B, and we can use it to stop
the search because if we reach it then we know that no suitable parameter set
exists with such (λ, n, q, d, δOL, δM).

Once we have fixed a specific tuple of (λ, n, q, d) we notice that, provided
δOL and δM only appear in eqs. (6) to (9), respectively, and these equations only
involve λ and q, choosing them would not restrict the search space for the rest
of parameters. Regarding δOL and δM specifically, as they denote the number
of repetitions to achieve soundness, the minimum value that satisfies eqs. (6),
(7) and (9) will produce the shorter proofs. Then we can directly choose:

initCandδOL
(λ, q) :=

⌈
λ

log2(2q)− log2(q + 1)

⌉

initCandδM (λ, q) :=

⌈
λ

log2(2q
2)− log2(q

2 + 3q − 2)

⌉

and keep increasing them until they satisfy eq. (9).

The size of the seeds used to compute the challenges can be directly com-
puted as 8⌈(λ+ δ log2(q))/8⌉ to satisfy eq. (8).

Notice these two parameters are not entangled with the others and could be
chosen at any other moment, but for the rest we have a clear order defined by
(λ, n, q, d)→ B → k → σ.

60

Appendix D Additional results

We have chosen to only present in the main article results from a selected
subset of parameters. The mere existence of worse sets of parameters has no
special theoretical interest, neither practical consequences. However, we can
still extract some insights that are relevant enough to devote this last appendix
to these additional parameters.

As we have already said, in order to get meaningful plots, we have only
benchmarked the algorithms with sets that produce multiplicative NIZKPoK of
at most 512 MB, because after some point the sizes blow up. Nevertheless, we
have also computed secure sets of parameters for larger q’s. Given that the sizes
only depend on ⌈q⌉ for these additional sets of parameters we have only tried
one 2b < q < 2b+1 for each b ∈ N (notice some restrictions are related to q itself
and not its bit-size, so this is again not an exhaustive search).

We observe that, for a fixed n, we can find secure sets of parameters for
many moduli q, but only until some size, from which no secure set of parameters
satisfying the desired constraints seems to exist. Provided that we compute the
hardness of the problem using the Lattice Estimator as a black box, we can only
explain it pointing out that the log2 of the optimum B seems to grow faster than
linearly in the log2 of q to preserve the hardness of the underlying problem, up
until a point where Equation (3) cannot be honored. This is important because
in theoretical proposals it is usual to say that some condition will be fulfilled
for sufficiently large modulus, but it can be the case that, when considering all
conditions at the same time no secure set of parameters with such large modulus
exists satisfying all of them.

We show the sizes defined by all these additional parameters in Figure 5,
again truncating the y-axis because some sets are only secure with absurdly
large k, which would imply much greater sizes. These additional sets are only
interesting to see the general picture of the parameter space, not because any
of these are of practical interest.

We have not stopped searching for additional parameters at the first q such
that no secure set existed, because we cannot ensure that no more secure sets
exist for even larger q’s. We have, however, discarded the existence of additional
secure sets of parameters that would yield to smaller commitment sizes than the
ones presented in Table 2. From Equation (2) we can see that k ≥ 4 and this
allows us to define a lower bound on the sizes of the commitments that we
would obtain before explicitly computing them. We have tested different q up
to the point when this lower bound (not tight at all) is already greater than the
commitments we have obtained in Table 2 and stopped there. No additional
secure sets have been found. We have also used a similar approach to discard
the existence of better sets of parameters with n = 256 (for which no secure set
has been found either) or n > 1024 (for which secure sets can be found but with

61

5 10 15 20 25 30 35
log2(q)

0

128

256

384

512

640

768

896

1024

kB

comm. size RLWE hardness bits

0

100

R
LW

E
 h

ar
dn

es
s

(a) λ = 100, n = 512, d = 2

0 10 20 30 40 50 60 70 80 90 100
log2(q)

0

128

256

384

512

640

768

896

1024

kB

comm. size RLWE hardness bits

0

100

R
LW

E
 h

ar
dn

es
s

(b) λ = 100, n = 1024, d = 2

5 10 15 20 25 30 35
log2(q)

0

512

1024

1536

2048

2560

3072

3584

4096

M
B

op. zkp lin. zkp mult. zkp

0

20

40

60

80

100

(c) λ = 100, n = 512, d = 2

0 10 20 30 40 50 60 70 80 90 100
log2(q)

0

512

1024

1536

2048

2560

3072

3584

4096

M
B

op. zkp lin. zkp mult. zkp

0

20

40

60

80

100

(d) λ = 100, n = 1024, d = 2

Figure 5 Additional commitment and NIZKPoK sizes

greater commitment sizes).

Besides these additional parameters regarding n and q we also explore here
the existing trade-off regarding parameter d. The product of polynomials com-
putation using the partial-FFT multiplication algorithm is more efficient the
higher the d, but we can see that secure sets of parameters only exists with
d = 4 besides the already explored d = 2 and the more restrictive conditions
imply a greater k that ends up producing not even greater sizes (Figure 6)
but also slower times (Figure 7). Therefore, this trade-off is not actually useful
because of the restrictions implied by the current design of the binding property.

To ease comparisons with other schemes we present in Table 4 a version
of Table 3 detailing the performance of the protocols in millions of processor
cycles.

62

28 29 30
log2(q)

0

16

32

48

64

80

96

112

128

kB

comm. size RLWE hardness bits

0

100

R
LW

E
 h

ar
dn

es
s

(a) λ = 100, n = 1024, d = 4

28 29 30
log2(q)

0

64

128

192

256

320

384

448

512

M
B

op. zkp lin. zkp mult. zkp

0

20

40

60

80

100

(b) λ = 100, n = 1024, d = 4

Figure 6 Commitment and NIZKPoK sizes

28 29 30
log2(q)

0.0

0.2

0.4

0.6

0.8

1.0

S
ec

on
ds

comm. ver. keygen

(a) λ = 100, n = 1024, d = 4

28 29 30
log2(q)

0

2

4

6

8

10

S
ec

on
ds

prov. op.
ver. op.

prov. lin.
ver. lin.

prov. mult.
ver. mult.

(b) λ = 100, n = 1024, d = 4

Figure 7 Commitment and NIZKPoK times

63

Table 4: Running time of the best parameters (in mill. of processor cycles)

n q com. ver. key. Pop Vop Plin Vlin Pmult Vmult

512 16381 147.37 6.96 9.47 2368.29 1212.89 2817.98 3658.69 2580.35 3668.70
1024 1048573 168.67 8.86 19.12 2800.07 1525.85 2930.43 428.74 3988.30 342.63
1024 11863253 148.36 8.22 19.89 2499.80 1327.29 3254.21 3992.30 3094.35 4042.38
1024 16777213 148.51 8.25 19.36 2443.48 1318.44 3000.48 3966.21 2886.83 3980.50
1024 67108837 148.04 8.47 19.10 2587.04 1474.27 3564.68 423.43 3347.62 247.97
1024 1073741789 131.37 10.55 25.29 2386.08 1393.49 2868.73 3982.53 2734.25 4098.82
1024 1276901389 132.52 11.38 27.13 2492.12 1386.63 3199.94 3852.37 3102.74 3286.20
1024 1518500213 132.37 11.36 27.24 2457.95 1386.97 3053.65 3870.64 3002.06 3243.41
1024 1805811253 133.07 11.37 26.91 2439.11 1384.01 3016.04 3868.50 2903.86 3374.66

64

	Introduction
	Related Work
	Notation
	Paper organization

	Cryptographic background
	Commitment schemes
	Zero-Knowledge Proofs of Knowledge
	Ring Learning with Errors
	CSPRNG and XOF

	The commitment and the ZKPoK
	The Commitment Scheme and the companion ZKPoK
	Protocol modifications
	Security conditions
	Pseudocode

	Implementation
	Lattice membership
	Discrete Gaussian sampling
	Uniform sampling
	Multiplication in a truncated polynomial ring

	Instantiation and performance
	How to choose parameters
	Size and running time
	Discussion and trade-offs

	Conclusion and future work
	Security Proofs
	Binding
	Hiding
	Soundness
	Knowledge-Soundness for interactive (2μ+1)-move protocols with parallel repetitions
	Multiple vs. single challenge set
	The Fiat-Shamir transform

	Zero-Knowledge
	Correctness

	Known Attacks
	Finding parameters
	Additional results

