
An extended abstract [BRT23a] of this article appears in the proceedings of ACM CCS 2023. The full version [BRT23b] of this article is available in the IACR
eprint archive. The source code of the corresponding proof of concept implementation as well as a simulated performance evaluation is available at our

Github repository [BRT23c].

ASMesh: Anonymous and Secure Messaging in Mesh Networks
Using Stronger, Anonymous Double Ratchet

Alexander Bienstock
New York University

abienstock@cs.nyu.edu

Paul Rösler
FAU Erlangen-Nürnberg
paul.roesler@fau.de

Yi Tang
University of Michigan

yit@umich.edu

ABSTRACT
The majority of secure messengers have single, centralized service
providers that relay ciphertexts between users to enable asynchro-
nous communication. However, in some scenarios such as mass
protests in censored networks, relying on a centralized provider is
fatal. Mesh messengers attempt to solve this problem by building ad
hoc networks in which user clients perform the ciphertext-relaying
task. Yet, recent analyses of widely deployed mesh messengers
discover severe security weaknesses (Albrecht et al. CT-RSA’21 &
USENIX Security’22).

To support the design of secure mesh messengers, we provide
a new, more complete security model for mesh messaging. Our
model captures forward and post-compromise security, as well as
forward and post-compromise anonymity, both of which are es-
pecially important in this setting. We also identify novel, stronger
confidentiality goals that can be achieved due to the special charac-
teristics of mesh networks (e.g., delayed communication, distributed
network and adversary).

Finally, we develop a new protocol, called ASMesh, that provably
satisfies these security goals. For this, we revisit Signal’s Double
Ratchet and propose non-trivial enhancements. On top of that,
we add a mechanism that provides forward and post-compromise
anonymity. Thus, our protocol efficiently provides strong confiden-
tiality and anonymity under past and future user corruptions. Most
of our results are also applicable to traditional messaging.

We prove security of our protocols and evaluate their perfor-
mance in simulated mesh networks. Finally, we develop a proof of
concept implementation.

CCS CONCEPTS
• Security and privacy� Public key encryption;

1 INTRODUCTION
Civil protest movements are often targeted by surveillance and
censorship [Yee22, Sta21, GKH16, EHM17, DSKB21, EM22]. In a
worst case scenario, protesters cannot communicate via public
Internet at all due to a censored or entirely blocked infrastructure.
One strategy [Koe19] to circumvent this issue is to set up an ad
hoc mesh network spanned only by the client devices of individual
participants. Using simple smartphone apps, such a mesh network
can be realized without the need for special technical equipment.
Each participant’s phone is a network-node in such a mesh, only
connected via a wireless protocol (WiFi or Bluetooth) to neighbors
in its immediate range. In order to realize communication between
nodes out of immediate range, the mesh network simply propagates

communication through the entire mesh until the actual receiver is
reached.

Secure Mesh Messaging. Since protesters are prime targets for
adversaries, having secure communication protocols in mesh net-
works is critical. We focus on this problem in this work.

Having the layered OSI model in mind, one could naively argue
that the (messaging) application layer and its underlying network
layout can be designed independently. Following this argument,
one could simply deploy standard secure messaging protocols (e.g.,
Signal’s Double Ratchet) in mesh networks. However, as shown by
Albrecht et al. [AEP22], deploying secure messaging protocols in
mesh networks effectively is non-trivial.

In fact, we illustrate with our definitions and constructions that
it is expedient to take account of the special character of ad hoc
mesh networks when designing a messaging application (protocol)
on top of them. Consider, for example, the following peculiarities
of messaging in mesh networks: Depending on the density and the
size of the network, information travels for a long time across many
hops until it reaches its destination; Each hop has only limited
computational and memory resources; The participants of mesh
networks both have a larger demand of security and are typically
faced with stronger adversaries; Adversaries may not be in control
of the entire network but only of a sub-set of hops therein; More-
over, such adversaries may not even eavesdrop all traffic due to the
distributed data transmission.

Insecure Mesh Messengers. Only a few applications provide
messaging in mesh networks—the comprehensive list of applica-
tions in [ABJM21] shows that almost none directly offer messaging
and are actively maintained. The most prominent and widely used
application, Bridgefy [Bri], was recently analyzed by Albrecht et
al. [ABJM21]: Among other discovered weaknesses, Bridgefy’s pro-
tocol allowed tracking of users and extracting the users’ social
network. One reason for this is that each packet in the mesh net-
work contained sender and receiver identifiers as well as a list of all
nodes who forwarded it. In response to the analysis, Bridgefy imple-
mented Signal’s Double Ratchet [PM16a] and encrypted the list of
forwarding nodes with a network-wide shared symmetric key. This
was, however, insufficient as a second analysis [AEP22] showed
attacks against confidentiality that bypass the implementation of
the Double Ratchet; additionally, user tracking and social network
extraction was still possible because network-wide encryption only
protects against outsiders but not against other, potentially mali-
cious, Bridgefy users.

Anonymous Messaging. Preventing user tracking, hiding meta-
data, and providing anonymity is important for mesh messaging
users. Yet, it is notable that implementing Signal’s Double Ratchet

1

https://www.sigsac.org/ccs/CCS2023/
https://eprint.iacr.org/2023
https://eprint.iacr.org/2023
https://github.com/meshmessaging/ASMesh
http://orcid.org/0000-0001-7640-4974
http://orcid.org/0000-0002-2324-5671

(DR) protocol does not immediately support this goal as the DR does
not hide metadata natively. In contrast, DR ciphertexts implicitly re-
veal to which session they belong and by which user they were sent.
The reason is that these ciphertexts re-send the same cryptographic
values within communication round-trips and contain counters.
Nevertheless, the DR provides confidentiality for communicated
payload, even if the local secrets of a session participant are ever
exposed in the future—Forward Security (FS)—or were exposed in
the past—Post-Compromise Security (PCS).

To add sender anonymity on top of this, the Signal messenger
wraps all DR ciphertexts with the Sealed Sender protocol [jlu18].
This protocol uses the receiver’s static long-term key to hide meta-
data. Therefore, once the receiver’s local secret key is exposed,
metadata of all past and future ciphertexts sent to them is revealed—
i.e., anonymity is only preserved if user secrets are never corrupted.

Confidentiality Anonymity CC
Base FS PCS Base S R FS PCS

Signal (DR+Sealed
Sender) [PM16a, jlu18]

✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Bridgefy1 [Bri] (✓) (✓) (✓) ✗ ✗ ✗ ✗ ✗ ✗

Moby [PJW+22] ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗

PSEB [PSEB22] ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗

DHRR (★) [DHRR22] ✓ ✓✓ ✓✓ ✓ ✓ ✓ ✓✓ ✓✓ ✗

ASMesh 1 ✓ ✓ ✓✓ ✓ ✓ ✗ ✓ ✓✓ ✓

ASMesh 2 ✓ ✓ ✓✓ ✓ ✓ ✓ ✓ ✓✓ ✗

Table 1: Property comparison of relevant (mesh) messag-
ing protocols. Base: Confidentiality/Anonymity without
corruptions; FS: With Forward Security; PCS: With Post-
Compromise Security. S: Anonymity for senders; R: For re-
ceivers. CC: Confidentiality & Anonymity with Contact Co-
operation (see Sec. 2.2). Note on DHRR [DHRR22]: Inefficient
construction for only unidirectional, in-order communica-
tion. Two check marks indicate stronger FS resp. PCS guar-
antees than achieved by plain Double Ratchet [PM16a].

Instead of wrapping ciphertexts within another protocol, vari-
ous recent works opt to explicitly remove certain metadata from
ciphertexts but thereby either lose PCS guarantees [PJW+22] or
do not even aim to provide security under corruption of user se-
crets [PSEB22]. Furthermore, purely removing metadata comes at
the cost of trial decrypting all ciphertexts received in the mesh net-
work, even those not intended for a user, incurring a large efficiency
cost.

In a recent work, Dowling et al. [DHRR22] design a sophisticated
protocol that hides metadata and provides anonymity with strong
FS and PCS guarantees—considerably stronger than those achieved
by our or any other related work. However, since their protocol only
works for unidirectional communication, fails under re-ordered or
dropped ciphertexts, and is rather inefficient, it can be considered
primarily as a theoretical benchmark.

Finally, several works (e.g., [PJW+22, PSEB22, PHE+17]) provide
a means to prevent traffic analysis from revealing sender and re-
ceiver identities, especially in the case that the adversary eavesdrops
the traffic of all nodes in the entire network. One of the studied tech-
niques [PHE+17, PSEB22] is to let the nodes regularly send dummy
ciphertexts for hiding actual communication patterns. Furthermore,

they propose mechanisms to mitigate denial of service and flood-
ing attacks [PJW+22]. We view these engineering techniques as
complementary to any cryptographic techniques for anonymity,
and thus out of scope for this paper. Yet, we emphasize that both
techniques are important for a truly anonymous system. Moreover,
if the adversary is completely global, i.e., sees every message sent
and received by every user, provable anonymity is likely impossi-
ble (without blowing up complexity by letting all users flood the
network with dummy ciphertexts). Our work aims for a solution
that does not reduce other security guarantees if there is a global
adversary, whereas it indeed strengthens anonymity compared to
related work if the adversary is not global, which we consider a
realistic assumption in various settings.

Table 1 summarizes the security properties of related work.

Contributions. Motivated by the lack of secure applications and
practical building blocks, as well as the security properties covered
by recent analyses [ABJM21, AEP22], we begin in Section 2 with
a new security model for Mesh Messaging, capturing impor-
tant guarantees absent in previous models. Indeed, our model
accounts for FS not present in that of [PSEB22], PCS not present in
that of [PJW+22, PSEB22], and (cryptographic) sender anonymity
with FS and PCS for bidirectional communication not present
in that of [PJW+22, PSEB22, DHRR22]. Beyond this, we capture
strengthening of all security against corruptions if the adversary is
non-global, called Contact Cooperation, which is not present in
any of the aforementioned works. In this base model, we opt to
forgo receiver anonymity in favor of Contact Cooperation for sce-
narios in which confidentiality and sender anonymity with stronger
resilience against corruptions are more important. With a tweaked
version of this model, we require sender and receiver anonymity
with FS and PCS, but not Contact Cooperation.

We construct our first Anonymous and Secure ASMesh pro-
tocol to efficiently achieve the security of the base model. One
building block of our new ASMesh protocol is based on Signal’s
Double Ratchet (DR). We revisit the original DR and enhance
it with efficient public-key based extensions that increase its se-
curity against corruptions in Section 3. To overcome the lack of
practical solutions for hiding metadata, we then develop a new,
highly efficient Message Anonymizer (MA) protocol in Sec-
tion 4 that uses only symmetric cryptography. When composed
with our (enhanced) DR variant, this MA protocol offers strong
sender anonymity guarantees with FS and PCS. Due to its sim-
plicity, it is applicable beyond the mesh messaging setting—e.g., for
replacing Sealed Sender in Signal.

The composition of these two building blocks is enriched with
routing and re-encryption procedures, which, in total, yields our
new ASMesh that we detail in Section 5. A (slightly) adjusted ver-
sion of ASMesh indeed achieves the security of the aforementioned
tweaked security model, taking full advantage of the MA protocol
to achieve strong sender and receiver anonymity guarantees
with FS and PCS (with no Contact Cooperation).

We build proof of concept implementationswith open source
code [BRT23c], and evaluate their performance in Section 6. By
simulating mesh networks for several deployment scenarios
(also published open source [BRT23c]), we also demonstrate the
practicality of our constructions in (down-scaled) reality.

2

All formal definitions and security proofs are in the appendix.

2 SECURE MESH MESSAGING
We outline our assumptions on the execution environment, consid-
ered threats, limitations of our work, and future research directions.
Assumed Environment We consider Secure Messaging in a
Mesh Network and focus on (already non-trivial) two-party mes-
saging. In such a mesh network, each user is considered as a node.
There is no other external network which users can use to commu-
nicate; users can only send something from their device if they are
in close proximity to another node. Therefore, messages may have
to travel along a large number of hops through the network before
reaching the destination. Also, messages may arrive at the recipient
out-of-order or even be completely dropped. Furthermore, because
of the structure of the network, message receipt acknowledgments
are not very useful and thus several copies of the same message
may travel through the network, even after successful delivery.
Since nodes in the network are often users’ mobile devices, their
computational and memory resources can be limited. Thus, Secure
Mesh Messaging protocols must be reasonably efficient.
Threat Model Since we consider the usage of mesh networks to
come during times of heightened security threats (e.g., government
shutdown of the internet during protests), users expect a high level
of security against powerful adversaries. Indeed, as a worst-case,
we consider a global adversary that can eavesdrop on all traffic as
it leaves users’ devices. Yet, because of the distributed nature of
the mesh network and communication through it, adversaries may
not be “all-powerful” in the following sense: they may only have
control of a subset of nodes within the mesh network and, hence,
may not actually be able to eavesdrop on all traffic. In this situation,
our threat model requires stronger security properties.

In this work, we focus on strong confidentiality and anonymity
of ciphertexts under temporary state exposures. Due to the already
complex nature of our work, we leave the study of authentication
as future work. Intuitively, we want to retain all confidentiality
guarantees that Secure Messengers in normal network settings
provide (including Forward and Post-Compromise Security due to
users’ state updates). However, we enhance these guarantees along
several dimensions: (i) we believe sacrificing marginal efficiency for
better confidentiality is important in mesh networks, thus we corre-
spondingly strengthen confidentiality; (ii) we believe anonymity is
particularly important in mesh networks, thus we correspondingly
strengthen anonymity (if the adversary is non-global); and (iii) we
take advantage of the (potentially) limited adversarial view of com-
munication through the mesh network to enable strong security
guarantees, which we call Contact Cooperation.
Illustration of Contact Cooperation We provide a motivating
example for (iii): Suppose that Alice sends a ciphertext 𝑐 to Bob
across the mesh network.While 𝑐 travels to Bob in the network, Bob
is temporarily exposed, and then afterwards issues a state update
𝑢 which he sends through the network, too. Then, before some
adversarial node in the network sees ciphertext 𝑐 , honest party
Charlie (who has a session with Bob) sees the update 𝑢, then 𝑐 , and
re-encrypts 𝑐 to obtain 𝑐′. Thus, if the adversary thereafter only
sees 𝑐′, all security is still guaranteed despite the earlier exposure
rendering the original ciphertext 𝑐 insecure.

We again emphasize that Contact Cooperation only strength-
ens security when faced with such a situation; if the adversary
is global, we can no longer hope for this cooperation effect, yet,
we still require all other mentioned guarantees. In a similar way,
our cryptographic notion of anonymity downgrades for global ad-
versaries: We only require that the ciphertexts themselves do not
reveal information about their origin (and destination, for receiver
anonymity), but we do not require obfuscation techniques for the
case that all sent and received traffic is observed.
Limitations and Future Work Our work is focused on the
formal specification, design, and analysis of efficiently achievable
strong confidentiality and anonymity guarantees in two-party com-
munication via mesh networks. For deployment in practice, sev-
eral challenges remain to be solved by future work. First and fore-
most, analyzing our construction in the presence of active attackers
would be a natural, yet complex next step (see [PR18, BRV20, RSS23,
CCD+20, ACD19, CJSV22, BFG+22] for centralized two-party com-
munication definitions with varying levels of active security). Sim-
ilarly, extending our ideas to group communication is important,
especially for the motivating mass protest scenario. Notably, none
of the mentioned mesh messaging applications in Section 1 propose
a solution for groups and several challenges that are already compli-
cated for groups in centralized networks (e.g., concurrency [BDR20]
or dynamic membership [BDG+22]). We refrain from capturing
both aspects—active adversaries and groups—in this work to keep
our formal definitions and proofs (in the appendix) comprehensi-
ble. Finally, some of our contributions are particularly meaningful
against non-global attackers. Focusing on global attackers and in-
vestigating non-cryptographic techniques composed with our ideas
is left for future work, too.

2.1 Mesh Messaging API
A Secure Mesh Messaging protocol MM may consist of the follow-
ing algorithms, the first four of which provide basic functionality:

• MM.gen→$ (st, pk): Generates new public key pk (which
also serves as user identifier) with corresponding secret
state st for a new user.

• MM.enc(st,𝑚, pk) →$ (st, (𝑡, 𝑖)): Issues the encryption of
message𝑚 to receiver public key pk and outputs resulting
new state st with encryption of𝑚 cached inside; output
counters 𝑡 and 𝑖 uniquely specify the current point in the
session with partner pk

• MM.bc(st)→$ (st,𝐶): Broadcasts the cached set of cipher-
texts 𝐶 to network neighbors.

• MM.proc(st,𝐶) →$ (st, PKM): Processes received cipher-
texts 𝐶 and decrypts those messages that were directed
to the executing user; each decrypted message𝑚 is out-
put with the sender’s public key pk and corresponding
session position (𝑡, 𝑖) s.t. (pk,𝑚, (𝑡, 𝑖)) ∈ PKM; remaining
ciphertexts are cached until next broadcast.

To account for practical and modular constructions, we add:

• MM.init(st0, pk0, st1, pk1) →$ (st0, st1,𝐶): Abstractly cap-
tures session initialization between two users pk0 and
pk1 (with secret states st0 and st0, resp.) with public tran-
script 𝐶 .

3

• MM.sup(st, pk) →$ st: Issues a state update for a specific
session with public key pk; the update is cached inside new
output state st.

Example Execution When Alice and Bob become protocol users,
they generate fresh key material: MM.gen →$ (st𝐴, pk𝐴); MM.gen
→$ (st𝐵, pk𝐵). To exchange messages, they initialize a joint session:
MM.init(st𝐴, pk𝐴, st𝐵, pk𝐵) →$ (st𝐴, st𝐵, 𝑐). Alice can now encrypt a
message to Bob:MM.enc(st𝐴,𝑚, pk𝐵)→$ (st𝐴, (𝑡, 𝑖)), which her device
caches until she is in range of another user’s device; when this
happens, these devices exchange cached ciphertexts: MM.bc(st𝐴)
→$ (st𝐴, 𝑐𝐴); MM.bc(st𝐶) →$ (st𝐶 , 𝑐𝐶); MM.proc(st𝐴, 𝑐𝐶) →$ (st𝐴, 𝑀𝐴);
MM.proc(st𝐶 , 𝑐𝐴) →$ (st𝐶 , 𝑀𝐶). Such ciphertext exchanges happen
whenever two members of the mesh network meet (e.g., 𝐶 meets
𝐷 , then 𝐷 meets 𝐸, etc). When Bob meets a user who caches a
ciphertext that decrypts to Alice’s message𝑚, Bob will receive𝑚:
MM.bc(st𝐸)→$ (st𝐸 , 𝑐𝐸); MM.bc(st𝐵)→$ (st𝐵, 𝑐𝐵); MM.proc(st𝐵, 𝑐𝐸)→$
(st𝐵, 𝑀𝐵); (pk𝐴,𝑚, (𝑡, 𝑖)) ∈ 𝑀𝐵 .

Whenever Bob is concerned that his local state was exposed (e.g.,
his device was temporarily confiscated or stolen), he can update
it on demand for each of his sessions: E.g., MM.sup(st𝐵, pk𝐶) →$
st𝐵 updates his session with Charlie. Like payload ciphertexts, this
update propagates through the network via user meetings. When
updates of Bob and payload ciphertexts to Bob are processed by the
same user Charlie, Charlie can internally use her refreshed session
with Bob to re-encrypt the payload ciphertext—strengthening the
security for the remaining transmission through the mesh network.

2.2 Security Properties
In our base security model, formally defined in Appendix B, we
capture strong confidentiality and sender anonymity of ciphertexts
under temporary state exposures against passive adversaries. (How-
ever, we stress that our protocol still uses authenticated encryption
in the same manner as the DR, and thus can be conjectured to
inherit the DR’s authenticity properties (at least).)

Parties P can execute the protocol with the above defined algo-
rithms. We consider adversaries A that can temporarily expose
the state of any party P. This reveals all secrets locally stored by P
at the moment of exposure.2 Furthermore, A can watch and un-
watch any party P at any time, potentially every party in the mesh
network. As long as P is watched, A observes all their meetings
and sees all their exchanged ciphertexts. Yet, if neither of two meet-
ing parties is watched, their ciphertext exchange remains hidden,
which models that an adversary may only control a subset of the
nodes in the mesh network. Against such adversaries, we require:

• Full Confidentiality and Sender Anonymity: Cipher-
texts only reveal payload length, receiver identity, and re-
maining transmission lifetime to anyone besides the actual
receiver. Yet, exposures of receiver and sender states can
inevitably break anonymity or even confidentiality (e.g., of
so far unreceived ciphertexts).

• Confidentiality without Sender Anonymity: Due to
state exposures, some ciphertexts may be confidential,

2To avoid requiring impractical non-commiting cryptographic primitives, we forbid
receiver exposures as long as challenge ciphertexts sent to them were not yet received.

while not anonymous. Such ciphertexts additionally re-
veal sender identity and technical session details (e.g., posi-
tion within the session, number of passed round-trips, etc.)
beyond the above information.

• Forward Security (FS): Confidential (and anonymous)
ciphertexts maintain their guarantees even if the states of
sender and receiver are exposed in the future.

• Post-Compromise Security (PCS): Even if the states of
sender and receiver are exposed, future ciphertexts be-
tween them will be confidential (and anonymous) after a
short recovery time.

• Contact Cooperation: If a node along a ciphertext’s trans-
mission path corresponds to a contact of the receiver, then
the security of the corresponding session between this
contact and the receiver is added to the ciphertext (via
re-encryption; i.e., security may only be strengthened).

Definition 2.1 (Informal). Mesh Messaging protocol MM is se-
cure (according to our base model) if it provides Confidentiality
and Sender Anonymity with Forward Security, Post-Compromise
Security, and Contact Cooperation.

We provide a formal, simulation-based definition in Appendix B.
This definition directly models the above ideal protocol behavior,
where the main technicality is to capture FS and PCS guarantees
via permitted exposures and their effect on the confidentiality and
anonymity of challenge ciphertexts. Looking ahead, we require (and
achieve) stronger FS and PCS than what is typically achieved by
Secure Messenger protocols, such as the Double Ratchet [CCD+20,
ACD19, CJSV22, BFG+22]. More details on this are provided in
Section 3.

Our tweaked security model in addition to the above items re-
quires Receiver Anonymity for fully secure ciphertexts (i.e., the
first item above). However, it no longer requires Contact Coopera-
tion. We provide this alternative definition in Appendix B.1.

Definition 2.2 (Informal). MeshMessaging protocolMM is secure
(according to our alternative model) if it provides Confidentiality
as well as Sender and Receiver Anonymity with Forward Security
and Post-Compromise Security.

2.3 Protocol Overview
We now give a high-level overview of our MM constructions. The
constructions have two main ingredients: (i) Public-Key Double
Ratchet PR (Section 3), which is an enhanced version of the Double
Ratchet, strengthened with additional public key operations and
(ii) A Message Anonymizer MA (Section 4) that takes key material
from PR to wrap PR ciphertexts in an anonymized, symmetric-
encryption-based layer. Intuitively, PR provides the core messaging
functionality for parties in themesh network, whileMA anonymizes
the ciphertexts output by PR.
Public-Key Double Ratchet The Double Ratchet (DR) [PM16a,
CCD+20, ACD19, BFG+22, CJSV22] is an end-to-end secure messag-
ing protocol that allows two users to asynchronously communicate
with robust correctness properties. That is, any message sent from
one party to another must be immediately decryptable by the re-
ceiver, despite any re-ordering or complete drops of messages in

4

the network. Since in our case, the MM protocol will be the highest-
level system actually sending and receiving messages, we just use
the part of the DR that produces keys (that are unique for each
message). Furthermore, as the DR is a well-studied protocol which
we just build on top of, we only briefly describe it here and provide
more details in Section 3.

Even though the DR is asynchronous and robust to ciphertext
reorderings and drops, it proceeds in so-called ratchets, roughly
corresponding to continuous ping-pong round trips. When Alice
starts a new ratchet, Bob agrees that this new ratchet has started
as soon as he receives one such ciphertext from this ratchet (yet
he still can receive ciphertexts from old ratchets, if needed). At a
high-level, with every new ratchet the two parties agree on some
new key material that is deterministically and symetrically used to
encrypt and decrypt each ciphertext in that ratchet.

In terms of security, the DR achieves the confidentiality guar-
antees mentioned above, including (weaker) FS and PCS. Addi-
tionally, in this paper we formalize and extend ideas outlined
in [ACD19, CZ22] to slightly strengthen the security of the DR with
additional public key operations, while maintaining the above ro-
bust correctness properties, and only decreasing efficiency slightly:
We consider it a reasonable requirement that, if the receiver of a ci-
phertext is not corrupted, then (even if the sender was corrupted at
any point before) the encapsulated key should be secure. In contrast,
the original DR does not protect sent ciphertexts against earlier
sender state exposures in the same ratchet, since its key material
for each ratchet is symmetric. Intuitively, we add an extra layer
of Public-Key Encryption which prevents the above attack. That
is, only if a receiver is corrupted should the ciphertexts sent to
them be decryptable by the adversary. In Section 6, we show that
implementing this change only adds ≈ 32 bytes of overhead to each
ciphertext when compared to the original DR.
Message Anonymizer The Public-Key Double Ratchet above
does not provide anonymity on its own. In contrast, technical
variables about sender and session status are contained in the
publicly visible PR transcript. To solve this, we design a Message
Anonymizer (MA) with a quite simple and intuitive construction
that is sketched in Figure 1: With each ratchet of the PR, MA takes
some of the established key material ck0 as input. If this ratchet
was established by party Alice, then Bob uses it for his next ratchet
to send to Alice. For each message in Bob’s next ratchet, he will use
the key material ck𝑖−1 to generate via a Key Derivation Function
(KDF) chain: (1) a pseudo-random tag tag𝑖 , (2) an encryption key 𝑘𝑖 ,
and (3) the new chain key ck𝑖 . Bob will then use 𝑘𝑖 to encrypt the
PR ciphertext and label the resulting outer ciphertext with tag tag𝑖 .
Now, since Alice has the original ck0, for a message with some tag𝑖 ,
she can derive ck𝑖−1 to compute tag𝑖 and thus the corresponding
𝑘𝑖 , with which she obtains the PR ciphertext; Alice actually pre-
populates a hash table for this, to avoid inefficient trial decryptions.
For all 𝑘𝑖 that are unknown to the adversary, the corresponding ci-
phertexts look pseudo-random and thus anonymous. Furthermore,
since the original ck0 for each ratchet is output by PR, ourMA in-
herits the same FS and PCS for the subsequent ratchet. In Section 6,
we show that ourMA implementation only adds ≈ 44 bytes to each
ciphertext for this considerable anonymity.

ck0

(k1,tag1,ck1)

(k2,tag2,ck2)
cPR,3

tag2
k2

cPR,2
tag1

k1

cPR,1

(kn,tagn,ckn)

ck0

(k1,tag1,ck1)

(kn,tagn,ckn)

Store all (tagi,ki)

Find k1 with tag1
for decryption

Find k2 with tag2
for decryption

Alice Bob

Figure 1: Sketch of Message Anonymizer construction.

ASMeshwith Contact Cooperation The construction proceeds
intuitively from the overviews provided above: When a Bob wants
to send a message, he derives a key via the PR protocol, encrypts the
message with that key, and encrypts the resulting non-anonymous
metadata via theMA protocol. In this protocol, Bob also attaches the
receiver’s identifier to the ciphertext. Upon receipt, Alice obtains
the full PR ciphertext by processing the encrypted metadata via the
MA protocol, then processes the PR ciphertext, and finally decrypts
the actual payload. For updating the MA key material, Alice and
Bob alternately extract fresh secrets from the PR execution and
feed it into their MA states. Finally, on a higher level, if Charlie
processes a ciphertext that is intended for her contact Alice with
whom she has initialized a PR session, Charlie uses this session
to re-encrypt the ciphertext. Since each ciphertext that arrives at
Alice thus may have been re-encrypted several times, she actually
has to recursively decrypt the ciphertext.

ASMesh protocol MM inherits the confidentiality guarantees of
PR, as well as the sender anonymity guarantees ofMA, including
FS and PCS for both. Furthermore, due to re-encryptions using
established PR sessions, we obtain contact cooperation which adds
to the ciphertext the security of the PR session between the re-
encryptor and the recipient. In Section 6, we show that our MM
implementation only adds≈ 145 bytes to each ciphertext for each re-
encryption. Thus, tuning implementation parameters to the given
setting such that number of re-encryptions is modest yields an
efficient MM with considerable added security.
ASMeshwith Receiver Anonymity By removing receiver iden-
tifiers from MM ciphertexts and omitting ciphertext re-encryption,
our ASMesh 2 protocol forgoes contact cooperation in favor of
receiver anonymity (still without trial decryption viaMA).

3 PUBLIC-KEY DOUBLE RATCHET
At the core of our mesh messaging construction, we utilize the key
agreement component of the popular Signal Double Ratchet (DR)
Algorithm [PM16a, CCD+20, ACD19, BFG+22, CJSV22]. As men-
tioned in Section 2.3, the DR allows two users to asynchronously
communicate with robust correctness properties. For security, the
DR achieves basic end-to-end confidentiality with PCS and FS. Ad-
ditionally, in this paper we formalize and enhance an idea outlined
in [ACD19] to slightly strengthen the security of the DR with an
additional layer of public-key operations, while maintaining the

5

above robust correctness properties, and only decreasing efficiency
slightly. In short, the extra security we achieve is that if the re-
ceiver of a ciphertext is not corrupted, then (even if the sender was
corrupted at any point before), the underlying key should be secure.

We call our strengthened primitive the Public-Key Double Ratchet
(PR) for which we present the formal security definition in Appen-
dix E, but provide the basic ideas here. As discussed earlier, even
though the PR is asynchronous and robust to ciphertext reorderings
and drops, it proceeds in so-called ratchets, roughly corresponding
to rounds. Based on this, the algorithms of PR work as follows:

• PR.init(𝑘) → (stA, stB): Takes shared key 𝑘 (exchanged
with an external protocol) and outputs initial states stA, stB
for the two parties.

• PR.snd(st) →$ (st, rak, 𝑘mk, 𝑐, ℎ, (𝑡, 𝑖)): Produces a cipher-
text 𝑐 , associated data ℎ, and an associated ratchet key rak
and message key 𝑘mk; the former key rak is produced only
once a new ratchet starts, and the latter is output on every
send. The algorithm also outputs the ratchet number 𝑡 and
corresponding ciphertext count i within ratchet 𝑡 .

• PR.rcv(st, 𝑐, ℎ)→ (rak, 𝑘mk, (𝑡, 𝑖)): Takes a ciphertext 𝑐 and
associated data ℎ, and derives corresponding message key
𝑘mk and ratchet key rak; where 𝑘mk is output on every
reception and rak is output only for new ratchets. Ratchet
number 𝑡 and ciphertext count i within 𝑡 are output, too.

3.1 PR Building Blocks
To build our PR protocol, we first introduce its building blocks:
Continuous Key Agreement (CKA) and Asychonrous Continuous Key
Agreement (ACKA).
ContinuousKeyAgreement CKA [ACD19, BFG+22, DG19] is a
well-established key agreement primitive, especially in the context
of Secure Messaging. It corresponds to the core public ratchet used
in the original DR protocol [PM16a]. CKA allows for two parties
to synchronously send each other key-establishing ciphertexts in a
ping-pong fashion; i.e., Alice sends, then Bob, then again Alice, etc.,
without any repeats. These ping-pongs will correspond exactly to
the “ratchets” in our discussion of PR above. The primitive works
as follows:

• CKA.init(𝑘) → (cstA, cstB): Takes some shared key 𝑘 (ex-
changed externally) and outputs initial states cstA, cstB for
the two parties.

• CKA.snd(cst) →$ (cs, cct): Produces a ciphertext cct and
associated secret cs.

• CKA.rcv(cst, cct)→ (cst, cs): Takes in a ciphertext cct and
derives the associated secret cs.

Intuitively, the secret associated with some cct should be secure
as long as the receiver is only corrupted (i) before it last sent a
ciphertext or (ii) after it receives cct, corresponding to PCS and FS,
respectively. We formally define this in Appendix D.1.

The original group-based instantiation of CKA used by the Dou-
ble Ratchet [PM16a] is essentially just ping-pong invocations of
Diffie-Hellman Key Exchange: Alice starts with exponent 𝑥0, and
Bob with 𝑔𝑥0 . Then Bob samples and stores 𝑥1, sends 𝑔𝑥1 , and de-
rives cs1 = 𝑔𝑥0𝑥1 . Upon reception of 𝑔𝑥1 , Alice can easily compute
cs1. She will also delete 𝑥0 at this point, as it is no longer needed.
Then, when she wants to next send, Alice samples and stores 𝑥2,

sends 𝑔𝑥2 , and derives cs2 = 𝑔𝑥1𝑥2 , which Bob can easily derive, too.
This process continues for as long as the two parties desire.

For security of, e.g., cs2, if Bob is not corrupted after he sends 𝑔𝑥1
and before he receives 𝑔𝑥2 , then 𝑥1 is not revealed to the adversary,
which is a good start. However, if Alice is immediately corrupted,
the adversary will obtain 𝑥2, and thus also cs2, using public 𝑔𝑥1 .
Thus slightly weaker security than what we desired is obtained—
one also must not corrupt the sender until they again receive a new
ciphertext (and thus delete 𝑥2). Bienstock et al. [BFG+22] present
an improved CKA construction that solves this exact problem while
retaining the same communication complexity (i.e., one group ele-
ment per ciphertext). While this stronger CKA is what we actually
use in our PR construction, the reader of the main body can keep
in mind the (slightly) less secure instantiation for simplicity, and
see Appendix D.1 for more details on the improved instantiation.
Asynchonous Continuous Key Agreement ACKA is what
we use to add the extra “public-key” layer to the original Double
Ratchet to build our PR construction, as discussed above. As its
name suggests, one can think of it exactly as a sort of asynchronous
version of the CKA primitive just presented. When Alice starts a
new ratchet 𝑡 , she can now send multiple ciphertexts in that ratchet
instead of one, and each will establish a fresh new secret. Alice will
only start a new ratchet 𝑡 + 2 with her next send once Bob (i) de-
crypts one of the ratchet 𝑡 ciphertexts and (ii) sends his own ratchet
𝑡 + 1 ciphertexts, one of which (iii) Alice receives. In the meantime,
each ciphertext that Alice sends is associated with a new PCS epoch,
pc, for her. Thereby, ratchets and epochs progress independently,
which leads to quicker recovery from state exposures. TheACKA al-
gorithms ACKA.init,ACKA.snd,ACKA.rcv resemble those of CKA
above, except with the above adjustments. Also, ACKA.snd outputs
some bookkeeping metadata md and ACKA.rcv takes it as input.

Similarly to CKA, we expect security for a secret acs associated
with some ciphertext acct sent in ratchet 𝑡 , as long as the following
is obeyed: The receiver is only corrupted (i) before it sent the cipher-
text that the sender most recently received before sending acct or (ii)
after it receives every ciphertext in ratchet 𝑡 (again corresponding
to PCS and FS, resp). This is formalized in Appendix D.2.

The basic group-based instantiation of ACKA follows along very
similar lines as that of CKA above, with the following changes:
Each time Alice sends, she will sample a fresh pair (𝑥, 𝑔𝑥), store
only 𝑥 as her local secret, and send 𝑔𝑥 along with the correspond-
ing PCS epoch, pc. Then, when Bob receives a ciphertext, he will
make sure to store Alice’s latest 𝑔𝑥 as a public key, by comparing
that ciphertext’s pc epoch with those received earlier. When Bob
responds, he will always compute the new secret acs = 𝑔𝑥𝑦 based
on the stored (and thus latest) public key 𝑔𝑥 from Alice.

As for the basic group-based construction ofCKA above, security
can be broken if a sender is corrupted immediately after invoking
ACKA.snd. (However, if this does not happen, the same argument
can be used to show that security is reached as long as if the require-
ments on corruption of the receiver listed above are not violated.)
We thus enhance our actual ACKA construction used in PR with
the same technique from [BFG+22] for CKA to fix this problem.
Again, the reader can for now remember the above (slightly) less
secure variant for simplicity, and see Appendix D.2 for details on
the improved design.

6

3.2 Public-Key Double Ratchet Construction
Our PR construction is presented in Figure 2. As stated above,
it follows the original DR, using the “public ratchet” backbone
provided by CKA and a “symmetric rachet” provided by a KDF
chain, plus our extra “public-key” layer provided by ACKA.

Both parties are initialized with shared root key rk and initial
chain key ck (line 00), as well as material for instantiating CKA
and ACKA (lines 02-03). Each party will maintain their view of the
current ratchet number with variable 𝑡P (line 01).

Proc PR.init(𝑘)
// Items in lines 00-01 used for both A, B
00 (rk, ck[0], 𝑘ACKA, 𝑘CKA)← 𝑘

01 𝑡P, i, ℓprv ← 0; cct, ck[·] ← ⊥; turn← A
02 (cstA, cstB)← CKA.init(𝑘CKA)
03 (acstA, acstB)← ACKA.init(𝑘ACKA)

Proc PR.snd(st)
04 rak ← ⊥
05 If turn = P:
06 (cs, cct)←$ CKA.snd(cst)
07 (rk, ck[𝑡P + 1], rak)← H1(rk, cs)
08 𝑡P ← 𝑡P + 1; i← 0; turn← P
09 (ck[𝑡P], drk)← H2(ck[𝑡P])
10 (acs, acct,md)←$ ACKA.snd(acst)
11 ℎ ← (md, 𝑡P, i, cct, ℓprv)
12 𝑘mk ← H3(acs, drk, (ℎ, acct))
13 i← i + 1
14 Return (rak, 𝑘mk, acct, ℎ, (𝑡P, i − 1))
Proc PR.rcv(st, acct, ℎ)
15 (md, 𝑡, 𝑖′, cct′, ℓ)← ℎ; rak ← ⊥
16 If 𝑡 > 𝑡P:
17 ck[𝑡P] ← ⊥; ℓprv ← i; 𝑡P ← 𝑡 ; turn← P
18 end-ratch(ck[𝑡P − 2], ℓ)
19 (cst, cs)← CKA.rcv(cst, cct′)
20 (rk, ck[𝑡], rak)← H1(rk, cs)
21 drk ← find-and-del-drk(ck[𝑡], 𝑡, 𝑖′)
22 (acst, acs)← ACKA.rcv(acst, acct,md)
23 𝑘mk ← H3(acs, drk, (ℎ, acct))
24 Return (rak, 𝑘mk, (𝑡, 𝑖))

Figure 2: Construction of PKDR. H1,H2,H3 are KDFs. We do
not make states explicit for simplicity.

When a party Pwishes to send a new ciphertext using PR, it first
checks if it is its turn to start a new ratchet 𝑡P + 1 (line 05). If so, it
invokes CKA.snd to create a new CKA ciphertext and inputs the
resulting secret cs with rk to a KDF H1 to create the new root key
and the initial chain key ck[𝑡P + 1] (lines 06-07) for the new ratchet,
as well as key rak. This last key rak will be output and used for
initializing Message Anonymizer ratchets in Section 4. Otherwise,
it will have the chain key for its current sending ratchet already
stored. Next, it inputs the current ratchet’s chain key ck[𝑡P] into
another DKF H2 to get the next double ratchet key drk and an
updated chain key ck[𝑡P] (line 09). Finally, it invokes ACKA.snd
to create a new ACKA ciphertext and inputs the resulting secret

acs with the double ratchet key drk to a final KDF H3 to output the
associated key 𝑘mk for this invocation of PR.snd (lines 10-12). By
combining these secrets, we intuitively amalgamate their security
guarantees. The PR ciphertext will include just the fresh ACKA
ciphertext acct (line 14), while the associated data ℎ will include
the CKA ciphertext cct for the current ratchet, and some additional
bookkeepingmetadata (line 11). This metadata includes the sender’s
current ratchet number view 𝑡P, the current ciphertext number i
within this ratchet, and the number of ciphertexts it sent in its last
sending ratchet ℓprv. Note that in our Mesh Messaging construction,
this associated data will actually be anonymized by the Message
Anonymizer (see Section 4).

When a party Pwishes to receive a new ciphertext, it first checks
if the ciphertext started a new ratchet, by comparing its curent
ratchet count 𝑡P with that included in the ciphertext (line 16). If so,
it invokes CKA.rcv on the included CKA ciphertext cct and inputs
the resulting secret cs with rk to H1 to create the new root key and
initial chain key ck[𝑡] (lines 19-20) for the new ratchet (and also the
additional key rak to be output, as above). It also uses the received
ℓ in the associated data to derive the remaining double ratchet keys
in its previous receiving ratchet for yet unreceived ciphertexts (i.e.,
up to the ℓ-th such key), and deletes the corresponding chain key
ck[𝑡P − 2], via subroutine end-ratch(ck[𝑡P − 2], ℓ) (line 18).

In either case, it uses ck[𝑡], and the received ciphertext num-
ber within that ratchet, i, to derive the appropriate double ratchet
key drk using subroutine find-and-del-drk (line 21). If this stateful
subroutine has not already derived the (𝑡, i)-th double ratchet key,
it will invoke H2 the appropriate number of times on ck[𝑡] to do
so, storing the intermediate keys derived along the way. Note that
some double ratchet keys derived by subroutines end-ratch and
find-and-del-drk may remain unused for some time. This, along
with the fact that H2 can be deterministically used as many times
as needed to get the 𝑖-th double ratchet key of the ratchet, is in part
what allows PR to be robust to out-of-order messages: these double
ratchet keys will be stored until their corresponding ciphertexts are
delivered (at which point they are deleted). Finally, PR.rcv invokes
ACKA.rcv on the included ACKA ciphertext acct and inputs the
resulting secret acs with the double ratchet key drk to H3 to output
the associated key 𝑘mk for this invocation of PR.rcv (lines 22-23).
Security Argument Our construction PR indeed achieves the
intuitive security properties listed at the beginning of this section.
First, it inherits the PCS and FS of the Double Ratchet: if the sender
of a ciphertext 𝑐 in ratchet 𝑡 is only corrupted before ratchet 𝑡
started or after sending 𝑐 , and the receiver is only corrupted before
starting the previous ratchet 𝑡 − 1 or after receiving 𝑐 , then we get
security from that of the CKA primitive, along with the security of
KDFs H1,H2,H3. Furthermore, if a party sends a ciphertext 𝑐 in a
ratchet 𝑡 , then as long as the receiver is only corrupted (i) before it
sent the last ciphertext received by the sender or (ii) after it receives
every ciphertext for ratchet 𝑡 , then we get security from the ACKA
primitive and KDFH3 (sender corruption not restricted in this case).

As explained in Section 5, the Simulator for our eventual Mesh
Messaging construction will have to simulate ciphertexts and cor-
rupted states non-chronologically; i.e., some 𝑖-th ciphertext of a
ratchet 𝑡 may have to be produced by the simulator before it sees
any information on the preceding ciphertexts or states (possibly

7

even for many preceding ratchets). We can achieve this for our PR
by noting that it is history-independent: First, since ACKA and CKA
secret states and ciphertexts will just be random elements inde-
pendent of their history, we can sample them accordingly at any
time, even out of order. Furthermore, we can model H1,H2,H3 as
programmable random oracles so that we can adequately “explain”
states and ciphertexts that were already simulated when we later
need to simulate their preceding state and ciphertext history.

4 MESSAGE ANONYMIZER
Neither the original Double Ratchet [PM16a] nor our strengthened
PR variant from Section 3 provide anonymity. In fact, several com-
ponents of the ciphertexts in both constructions depend on the
current session status, which essentially reveals the session itself
and thus also its participants. We make these components explicit
in Section 3 as the associated data ℎ output by PR.snd. This associ-
ated data ℎ is what will be protected (i.e., encrypted) by the generic
wrapper protocol that we call Message Anonymizer (MA).

We first emphasize that a user who wishes to use a MA protocol
has many sender states, one for each other user it communicates
with, but a single receiver state that works formultiple, independent
sessions in parallel. The reason is that the sender always knows
which state to use for sending a ciphertext in a particular session. In
contrast, a ciphertext should hide its sender and its session, unless
the right key is used. Hence, when receiving a ciphertext, not even
the receiver should know in which session to process it before using
the right key. Therefore, algorithm MA.decR below has to detect
the right session (among all possible ones) for successful decryption
internally. With this in mind, we specify the following MA API:

• MA.upR(stR, usr, 𝑘) → stR: On input user usr and fresh
symmetric key 𝑘 , updates the receiver state stR for the cor-
responding session with usr (usr = pk in our MM protocol);
Initially, the state is empty: stR = ⊥.

• MA.upS(stS, 𝑘)→ stS: Updates sender state stS with fresh
symmetric key 𝑘 ; Initially, the state is empty: stS = ⊥.

• MA.encS(stS,𝑚)→$ (stS, 𝑐): Turns message𝑚 into anony-
mous ciphertext 𝑐 .

• MA.decR(stR, 𝑐) → (stR,𝑚): Derives message 𝑚 from ci-
phertext 𝑐 .

For establishing fresh symmetric keys between senders and re-
ceivers at initialization and state updates, an MA scheme depends
on an external protocol. Our mesh messaging construction, there-
fore, carefully intertwines PR and MA protocols. Furthermore, MA
schemes are parameterized by variable fut that fixes the tolerated
number of sequentially dropped ciphertexts.3 This means that a ci-
phertext is successfully decrypted with algorithm MA.decR if least
one of the last fut ciphertext in the session between sender and
receiver was successfully decrypted, too.
Security The intuitive security requirements for MA schemes are
relatively simple: A sent ciphertext 𝑐 must be indistinguishable from
a random ciphertext under fresh symmetric key 𝑘 , unless (1) sender
state stS was exposed between establishing𝑘 (viaMA.upS) and send-
ing 𝑐 , or (2) corresponding receiver state stR was exposed between

3Most messengers limit “drop-tolerance”: Rösler et al. [RMS18] report fut = 2000
for Signal, and von Arx and Paterson [vAP22] report fut ∈ {400, 2000} for different
Telegram clients.

establishing 𝑘 (viaMA.upR) and receiving 𝑐 . Our mesh messaging
construction refreshes symmetric keys with every ratchet, which
leads to strong FS and PCS anonymity guarantees.

We refrain from formally defining security of MA since our
overall mesh messaging security definition encodes the required
anonymity guarantees already. Extracting the MA-specific compo-
nents from this definition and exploring MA as a general primitive
remains an interesting question for future work.

ProcMA.upR(st = (ht, ST), usr, 𝑘)
00 If necessary, initialize ST [usr]
01 (𝑡now, 𝑖now, 𝑖nxt, cknow, cknxt)← ST [usr]
02 Require cknxt = ⊥
03 cknxt ← 𝑘

04 For all 𝑖nxt : 0 ≤ 𝑖nxt < fut:
05 (mk, tag, cknxt)← H(cknxt)
06 ht .add({tag, (𝑡now + 1, 𝑖nxt)}, (usr,mk))
07 ST [usr] ← (𝑡now, 𝑖now, 𝑖nxt, cknow, cknxt)
08 Return st = (ht, ST)

Proc MA.upS(st, 𝑘)
09 If st = ⊥: 𝑡, 𝑖, ℓprv ← 0
10 Else: (𝑡, 𝑖, ℓprv, ck)← st; 𝑡 ← 𝑡 + 1; ℓprv ← 𝑖 − 1; 𝑖 ← 0
11 Return st = (𝑡, 𝑖, ℓprv, 𝑘)

Proc MA.encS(st = (𝑡, 𝑖, ℓprv, ck),md)
12 (mk, tag, ck)← H(ck)
13 𝑐′ ←$ AE.enc(mk, (𝑡, 𝑖, ℓprv,md), tag)
14 Return (st = (𝑡, 𝑖 + 1, ℓprv, ck), 𝑐 = (tag, 𝑐′))

Proc MA.decR(st = (ht, ST), 𝑐 = (tag, 𝑐′))
15 (usr,mk)← ht .acc(tag)
16 𝑚 ← AE.dec(mk, 𝑐, tag)
17 Require ⊥ ≠𝑚 = (𝑡 ′, 𝑖′, ℓ′prv,md)
18 ht .rem(tag)
19 (𝑡now, 𝑖now, 𝑖nxt, cknow, cknxt)← ST [usr]
20 Require 𝑡 ′ ≤ 𝑡now ∨ (𝑡 ′ = 𝑡now + 1 ∧ cknxt ≠ ⊥)
21 If 𝑡 ′ > 𝑡now:
22 For all 𝑖 : ℓprv < 𝑖 ≤ 𝑖now: ht .rem((𝑡now, 𝑖))
23 For all 𝑖 : 𝑖now ≤ 𝑖 ≤ ℓprv:
24 (mk, tag, cknow)← H(cknow)
25 ht .add({tag, (𝑡now, 𝑖)}, (usr,mk))
26 𝑡now ← 𝑡 ′; 𝑖now ← 𝑖nxt; 𝑖nxt ← 0
27 cknow ← cknxt; cknxt ← ⊥
28 For all 𝑖 : 𝑖now ≤ 𝑖 < 𝑖′ + fut:
29 (mk, tag, cknow)← H(cknow)
30 ht .add({tag, (𝑡now, 𝑖)}, (usr,mk))
31 ST [usr] ← (𝑡now, 𝑖′ + fut − 1, 𝑖nxt, cknow, cknxt)
32 Return (st = (ht, ST),md)

Figure 3: Construction of MA, using hash table HT =

(HT.init,HT.add,HT.acc,HT.rem).

4.1 Construction
The core design of our MA construction is in Figure 3, minor addi-
tional details are in Figure 19, and a sketch is in Figure 1.

8

In principle, Alice establishes an initial key with Bob, fromwhich
both users derive multiple key-tag pairs; Bob then encrypts his mes-
sages to Alice with the derived keys and attaches the corresponding
tags, such that Alice can use the attached tags to find the matching
keys for decryption. In more detail, the protocol execution flows as
follows: Receiver Alice starts by inputting established fresh key 𝑘
in a session with user Bob (usr = 𝐵) toMA.upR. This algorithm first
pre-computes futmany key-tag pairs (Figure 3, lines 04-06) for the
upcoming ratchet 𝑡now+1 by iterating through a KDF chain. Using a
hash table, each derived keymk is stored as the value for two types
of tags: a pseudo-random string tag and an index (𝑡, 𝑖) for ratchet 𝑡
and number 𝑖 in 𝑡 . Querying the hash table with either of both
tags provides the corresponding value mk. This pre-computation
of keys and tags in the upcoming ratchet is necessary for Alice to
be prepared for detecting and decrypting anonymous ciphertext
from Bob in this next ratchet. Bob uses the (same) established key 𝑘
in algorithm MA.upS to actually start the next ratchet; during this,
he fixes the previous ratchet’s length (ℓprv ← 𝑖 − 1). To anonymize
message md (which is metadata from PR in ourMM construction),
algorithmMA.encS derives the next key-tag pair, encryptsmd, and
attaches the tag to the resulting ciphertext. Using the attached tag,
Alice obtains the matching key in algorithm MA.decR via the hash
table, decrypts message md, and removes the tagged item from the
hash table. If the decrypted ciphertext belongs to the next ratchet,
Alice removes all unnecessarily pre-computed items from the hash
table (line 22) and pre-computes both the remaining (relevant) key-
tag pairs for the current ratchet (lines 23-25) and fut key-tag pairs
for the new ratchet (lines 28-30).
Security Argument Our construction computes pseudo-random
key-tag pairs with a forward secure KDF chain, and anonymizes
input messages via encryption. By regularly re-starting the forward
secure KDF chain via updates with fresh keys 𝑘 , we inherit PCS
guarantees from the (external) mechanism that establishes these
keys 𝑘—i.e., from the PR protocol. For full FS, we note that Alice
and Bob delete all key-tag pairs immediately after their actual use.
Broader Context By using only symmetric cryptography and
avoiding trial-decryptions, our MA construction is extremely effi-
cient. As shown in Section 5, the composition with the (Public-Key)
Double Ratchet is very natural and enables anonymity with strong
FS and PCS. Simultaneously, the construction is simple, which sup-
ports implementation and deployment. Therefore, we believe this
sub-result is meaningful beyond our paper. For example, replac-
ing the Sealed Sender [jlu18] in Signal by our MA construction
strengthens anonymity at similar efficiency4. Finally, we note that
limiting tolerated ciphertext drops is common in most messengers.3

5 BUILDING ASMESH
We augment the outlined description of our Mesh Messaging (MM)
protocol ASMesh from Section 2 with technical details here. The
intuition for the protocol is that it protects the confidentiality of ses-
sions by encrypting the payload with keys derived from the Public-
Key Double Ratchet PR from Section 3, and it protects anonymity
by encrypting the non-anonymous parts of the resulting PR cipher-
texts by encrypting them (again) with theMessage AnonymizerMA
4The asymmetric encryption overhead in Sealed Sender may cancel out maintaining
memory for our hash table.

from Section 4. In ASMesh 1, every node that forwards a ciphertext
to one of their contacts re-encrypts this ciphertext (like normal
payload) to provide contact cooperation.

For didactic reasons, we split the presentation into (1) key gener-
ation and session initialization in Figure 4, (2) message encryption,
session update, and ciphertext broadcast in Figure 5, as well as
(3) ciphertext processing in Figure 6. As elaborated in upcoming
Section 5.2, code marked in blue is relevant for ASMesh 1 with con-
tact cooperation but irrelevant forASMesh 2 with receiver anonymity;
the opposite holds for code marked in green . We start here with
a description of the former, before describing the changes for the
latter in Section 5.2; in short, the latter removes receiver identifiers
from ciphertexts and omits all re-encryption procedures.
Parameters Depending on the particular deployment scenario
(e.g., number of users, number of contacts per user, meeting fre-
quency, etc), the delivery behavior of our MM construction can
be adjusted with parameters (pt, nd, fut): pt fixes the maximal
transmission-path length (i.e., number of hops that sequentially
forward a ciphertext aka. lifetime), nd fixes the transmission-graph
degree5 (i.e., the number sequential meetings at which a single
hop keeps forwarding the same ciphertext), and fut fixes the tol-
erated number of sequentially dropped ciphertexts. In summary, a
ciphertext is successfully delivered if the receiver node is in the
transmission graph and not more than fut ciphertext in the session
between sender and receiver were dropped sequentially.

Proc MM.gen
00 (skme, pkme)←$ NK.gen
01 STMA [·] ← ⊥; stMA ← ⊥; STPR [·] ← ⊥
02 st ← (skme, pkme, (STMA, stMA), STPR,𝐶 = ∅)
03 Return (st, pk)

Proc MM.init(st0, pk0, st1, pk1)
04 (sk𝛽me, pk

𝛽
me, (ST

𝛽

MA, st
𝛽

MA), ST
𝛽

PR,𝐶
𝛽)← st𝛽

05 Require pk𝛽 = pk𝛽me
06 (sk𝛽NK, pk

𝛽

NK)←$ NK.gen
07 𝑘EE ← NK.eval(sk0NK, pk

1
NK)

08 𝑘ER ← NK.eval(sk0NK, pk
1)

09 𝑘SE ← NK.eval(sk0me, pk
1
NK)

10 (𝑘PR, 𝑘0MA, 𝑘
1
MA)← G(𝑘EE ⊕ 𝑘ER ⊕ 𝑘SE)

11 (st0PR, st
1
PR)← PR.init(𝑘PR)

12 ST𝛽

PR [pk
1−𝛽] ← st𝛽PR

13 st𝛽MA ← MA.upR(st
𝛽

MA, pk
1−𝛽 , 𝑘𝛽MA)

14 ST1−𝛽
MA [pk

𝛽] ← MA.upS(⊥, 𝑘
𝛽

MA)

15 st𝛽 ← (sk𝛽me, pk
𝛽
me, (ST

𝛽

MA, st
𝛽

MA), ST
𝛽

PR,𝐶
𝛽)

16 𝑐𝛽 ← (pk𝛽me, pk
𝛽

NK)
17 Return (st0, st1, {𝑐0, 𝑐1})

Figure 4: Key generation and session initialization. Lines
with 𝛽 are executed once for each 𝛽 ∈ {0, 1}.

5Due to sender anonymity, update-effectiveness in transmission, and hiding of the
transmission path, “transmission paths” may contain circles s.t. the “transmission tree”
is a graph.

9

Initialization A new user starts with generating a new public-
key-state pair (Figure 4, lines 00-02). We treat the public key as a
user identifier, which means that it remains unchanged throughout
the protocol execution. A user can only change it by generating a
fresh, independent identity. For simplicity, we instantiate the long-
term public key based on Non-Interactive Key Exchange (line 00).

Using a combination of Non-Interactive Key Exchanges (NIKE),
we give an example initialization which can be considered a variant
of the X3DH protocol [PM16b] (lines 06-10). Alternative instantia-
tions could, e.g., be based on forward-secure KEM [GM15, GHJL17].
Since the implementation choice depends on the deployment set-
ting and is independent of the rest of our protocol, we kept this
component simple. Using the established symmetric key (line 10),
the session participants derive initial PR states for this session
(lines 11-12), add this session to their MA receiver states (line 13),
and derive initial MA sender states for this session (line 14).

Proc MM.enc(st = (skme, pkme, 𝑆MA, STPR,𝐶),𝑚, pk)
00 Require STPR [pk] ≠ ⊥
01 (𝑆MA, STPR, 𝑐MA-PR-AE, (𝑡, 𝑖))
←$ enc(pkme, 𝑆MA, STPR, M :𝑚, pk)

02 𝐶
∪← {(nd, (pt, pk, C :𝑐MA-PR-AE))}

03 Return (st = (skme, pkme, 𝑆MA, STPR,𝐶), (𝑡, 𝑖))

Proc MM.sup(st = (skme, pkme, 𝑆MA, STPR,𝐶), pk)
04 Require STPR [pk] ≠ ⊥
05 (𝑆MA, STPR, 𝑐MA-PR-AE, (𝑡, 𝑖))
←$ enc(pkme, 𝑆MA, STPR, 𝜖, pk)

06 𝐶
∪← {(nd, (pt, pk, U :𝑐MA-PR-AE))}

07 Return (st = (skme, pkme, 𝑆MA, STPR,𝐶), (𝑡, 𝑖))

Sub-Proc enc(pkme, 𝑆MA = (STMA, stMA), STPR,𝑚, pk)
08 (STPR [pk], 𝑘MA, 𝑘AE, 𝑐PR,md, (𝑡, 𝑖))
←$ PR.snd(STPR [pk])

09 If 𝑘MA ≠ ⊥: stMA ←$ MA.upR(stMA, pk, 𝑘MA)
10 (STMA [pk], 𝑐MA)←$ MA.encS(STMA [pk], (pkme,md))
11 𝑐AE ←$ AE.enc(𝑘AE,𝑚, (𝑐MA, 𝑐PR))
12 𝑐 ← (𝑐MA, 𝑐PR, 𝑐AE)
13 Return (𝑆MA = (STMA, stMA), STPR, 𝑐, (𝑡, 𝑖))

ProcMM.bc(st = (skme, pkme, 𝑆MA, STPR,𝐶))
14 𝐶′ ← ∅; 𝐶′′ ← ∅
15 For all (nd, 𝑐) ∈ 𝐶:
16 If nd > 1: 𝐶′ ∪← {(nd − 1, 𝑐)}
17 𝐶′′ ∪← {𝑐}
18 Return (st = (skme, pkme, 𝑆MA, STPR,𝐶

′),𝐶′′)

Figure 5: Message encryption, on-demand session update,
broadcast, and encryption sub-procedure.

Sending Message encryption (Figure 5, lines 00-03) and session
updates (lines 04-07) follow the same principle: Sub-procedure enc
computes a ciphertext that contains the payload (line 01) resp. an
empty string (line 05). Combined with receiver public key pk and
maximal lifetime counters for remaining broadcasts nd = nd as well
as path length pt = pt, this ciphertext is cached (lines 02,06).

The actual ciphertext computation in sub-procedure enc begins
with executing the PR protocol, which provides a fresh message

key 𝑘AE and, if this starts a new ratchet in this session, a fresh MA
key 𝑘MA (line 08). This fresh MA key 𝑘MA updates the sender’s
underlying MA receiver state (to prepare for the next ratchet in
this session) (line 09). Using the underlying MA sender state for
this session, the non-anonymous part of the PR ciphertext md
is anonymized (line 10). Lastly, the actual payload message𝑚 is
encrypted with an AEAD cipher (line 11).

AlgorithmMM.bc broadcasts all cached ciphertexts 𝐶′′ and re-
caches those with remaining broadcast counter nd > 1 (lines 15-17).
Receiving When a party processes ciphertexts 𝐶′′, algorithm
MM.proc in Figure 6 first uses recursive sub-procedure rec-dec to
decrypt those ciphertexts that are directed to this party (lines 00-02).
Next, all received ciphertexts that are not cached yet and have a
remaining path length of pt > 1 are added to the cache (lines 03-04).
Finally, ciphertexts are re-encrypted if the executing party main-
tains a session with the respective receiver (lines 05-12). For better
efficiency, re-encryption aggregates all ciphertexts directed to the
same receiver (line 05). Each aggregated ciphertext, computed with
sub-procedure enc from Figure 5, is combined with receiver public
key pk and lifetime counters (lines 11-12). We evaluate and balance
delivery success, communication complexity, and computation over-
head in our evaluation in Section 6. We also discuss and extend
our simple policy that sets nd to the aggregated maximum (line 10)
and pt to the aggregated average (line 07).

Recursive decryption reverses (re-)encryption. This begins with
using the MA scheme to identify the corresponding encrytpor of
this encryption layer and deanonymize the corresponding PR ci-
phertext components (line 16). Subsequently, the PR protocol is
executed to compute message key 𝑘AE and, if this starts a new
ratchet in the session with this layer’s sender, MA key 𝑘MA (line 18).
MA key 𝑘MA updates the receiver’s underlying MA sender state for
this session (to prepare for the next ratchet in the session) (line 21).
The actual payload 𝑚′ is AEAD decrypted with 𝑘AE (line 19). If
the payload consists of aggregated ciphertexts (line 25), recursive
decryption is applied on each component ciphertext (lines 27-29).

5.1 Security
In addition to formalizing existing expectations for secure mesh
messengers, our fresh look on messaging in mesh networks offers
new perspectives on desired security goals. With our presented
protocol, we achieve these goals. First and foremost, it achieves
confidentiality with stronger FS and PCS guarantees due to our
advanced PR protocol. Secondly, using our efficient and simple MA
wrapper protocol, it provides similarly strong anonymity guarantees.
Both of these properties are important for targeted user groups of
mesh messengers. Independent of that, our new solutions also apply
to centralized messaging applications (e.g., Signal or WhatsApp).

A crucial component of our protocol is the re-encryption mech-
anism that provides stronger confidentiality and anonymity. In
particular, by strengthening security of ciphertexts in transmission,
the weakening effect of long round-trip times and, therefore, low
session update frequencies is alleviated.

We prove security for the presented construction in Appen-
dix C.3, where we also formalize the following theorem:

Theorem 5.1 (Informal). Taking secure instances of NIKE NK,
PRG G (modeled as a random oracle), PR PR, MA MA (based on

10

Proc MM.proc(st = (skme, pkme, 𝑆MA, STPR,𝐶),𝐶′′)
00 For all (pt, pkme, 𝑐) ∈ 𝐶′′:
01 (𝑆MA, STPR, PKM)← rec-dec(pkme, 𝑆MA, STPR, 𝑐)
02 If PKM ≠ ∅: 𝐶′′ ← 𝐶′′ \ {(pt, pkme, 𝑐)}
03 For all (pt, pk′, 𝑐) ∈ 𝐶′′ : pt > 1 ∧ (·, (·, pk′, 𝑐)) ∉ 𝐶:
04 𝐶

∪← {(nd, (pt − 1, pk′, 𝑐))}
05 For all pk′ : STPR [pk′] ≠ ⊥ ∧ ∃(·, (·, pk′, C :·)) ∈ 𝐶:
06 nd ← 1; 𝑐 ← 𝜖

07 pt ← avg({pt′ : (nd′, (pt′, pk′, C :𝑐′)) ∈ 𝐶})
08 For all (nd′, (pt′, pk′, C :𝑐′)) ∈ 𝐶:
09 𝐶 ← 𝐶 \ {(nd′, (pt′, pk′, C :𝑐′))}
10 nd ← max(nd, nd′); 𝑐 ← (𝑐, C :𝑐′)
11 (𝑆MA, STPR, 𝑐MA-PR-AE, (𝑡, 𝑖))

←$ enc(pkme, 𝑆MA, STPR, R :𝑐, pk)
12 𝐶

∪← {(nd, (pt, pk′, C :𝑐MA-PR-AE))}
13 Return (st = (skme, pkme, 𝑆MA, STPR,𝐶), PKM)

Sub-Proc rec-dec(pkme, (STMA, stMA), STPR, 𝑐)
14 PKM ← ∅
15 Require 𝑐 = U :(𝑐MA, 𝑐PR, 𝑐AE) ∨ 𝑐 = C :(𝑐MA, 𝑐PR, 𝑐AE)
16 (stMA, (pk,md))← MA.decR(stMA, 𝑐MA)
17 If (pk,md) = ⊥: Return (((STMA, stMA), STPR), ∅)
18 (STPR [pk], 𝑘MA, 𝑘AE, (𝑡, 𝑖))
← PR.rcv(STPR [pk], 𝑐PR,md)

19 𝑚′ ← AE.dec(𝑘AE, 𝑐AE, (𝑐MA, 𝑐PR))
20 If𝑚′ = ⊥: Return (((STMA, stMA), STPR), ∅)
21 If 𝑘MA ≠ ⊥: STMA [pk] ← MA.upS(STMA [pk], 𝑘MA)
22 ST ← ((STMA, stMA), STPR)
23 If𝑚′ = 𝜖 : Return (ST , ∅)
24 Else if𝑚′ = M :𝑚: Return (ST , {(pk,𝑚, (𝑡, 𝑖))})
25 Else if𝑚′ = R :𝑐 = R :(C :𝑐MA-PR-AE,𝑖)𝑖∈[𝑙] :
26 (C :𝑐MA-PR-AE,𝑖)𝑖∈[𝑙] ← 𝑐

27 For all 𝑖 ∈ [𝑙]:
28 (ST , PKM′)← rec-dec(pkme, ST , C :𝑐MA-PR-AE,𝑖)
29 PKM ∪← PKM′

30 Return (ST , PKM)

Figure 6: Ciphertext processing algorithm with recursive
decryption sub-procedure.

random oracle H and AEAD AE), and AEAD AE, our ASMesh 1 MM
from Figures 4, 5, and 6 is secure according to Definition 2.1.

Proof Outline The reduction to NIKE for proving that the initial-
ization produces fresh keys is straight forward. In contrast, prov-
ing confidentiality and anonymity of session ciphertexts is more
difficult. The reason is that adversary and simulator observe a non-
chronological view of the (chronological) protocol execution. More
concretely, recall that in the mesh network setting outlined in Sec-
tion 2, the adversary can adaptively “watch” a subset of different
parties in the network. Thus, ciphertexts from the same session
might be seen by the adversary in a very different order than they
were actually sent. Despite this, the simulator still has to create a
sound, adaptive simulation of these non-chronological ciphertexts.
To handle this, in our security proof, we replace components of the
chronological protocol execution with indistinguishable random

counterparts one after another. Once this is done, we show that
this random chronological protocol execution can be simulated fully
non-chronologically.

5.2 Receiver Anonymity
For achieving receiver anonymity instead of contact cooperation, we
change our main ASMesh protocol in the blue and green marked
lines as follows: (1) the receiver public key is removed from ci-
phertexts (Figure 5, lines 02,06, Figure 6 lines 00,02-04); and (2) all
re-encryption, resp., recursive decryption procedures are omitted
(Figure 6 lines 05-12,25-29). It trivially follows from the proof for
the base protocol, provided in Appendix C.3, that removing the
public key from MM ciphertexts yields receiver anonymity. Simul-
taneously, omitting re-encryption by contacts abandons contact
cooperation. We thus have the following theorem (with a formal
variant in Appendix C.3):

Theorem 5.2 (Informal). Taking secure instances of NIKE NK,
PRG G (modeled as a random oracle), PR PR, MA MA (based on
random oracle H and AEAD AE), and AEAD AE, our ASMesh 2 MM
from Figures 4, 5, and 6 is secure according to Definition 2.2.

Beyond trading these security guarantees for each other, the sec-
ondary effect is slightly changed performance: Our second ASMesh
protocol needs to check for all received ciphertexts whether the
MA decryption procedure detects a matching tag (Figure 6 lines 00-
02,16-17) in order to identify those ciphertexts that were actually
meant for the executing receiver. This increases the computation
overhead while, due to omitting re-encryption and recursive de-
cryption, computation overhead is decreased.

6 PERFORMANCE EVALUATION
To analyze its performance, we implement our ASMesh construc-
tions with hash function SHA-512, AEAD AES-256-GCM, and el-
liptic curve 25519; see our code [BRT23c]. The ciphertext over-
head of this instantiation is 145 bytes, and the average encryption-
decryption time (of each layer of (re-)encryption) is about 11ms.6
Compared to plain Double Ratchet, the ciphertext overhead is 76
bytes larger, where 32 bytes are contributed by ACKA and 44 bytes
by MA.We note that re-encryptions have the same overhead as nor-
mal encryptions. The encryption-decryption time is mostly spent
on elliptic curve computations, and thus is very insensitive to the
payload message size. This indicates that the MA layer adds little
performance overhead, andwe have competing efficiency compared
to existing MM protocols based on Double Ratchet such as Bridgefy.
Network Simulation We develop a model for simulating mesh
networks [BRT23c] in order to test the performance of our construc-
tions in various settings. In this model, there are 𝑛 users moving
over a 2-dimensional, 𝐴 ×𝐴 grid. The simulation is discrete-time,
and runs for 𝑇 steps. In each step, each user moves independently
by a random step in [−𝑟, 𝑟] × [−𝑟, 𝑟]. Two users establish a connec-
tion for exchanging ciphertexts when they get 𝑑-close to each other,
i.e., their position difference is in [−𝑑, 𝑑] × [−𝑑,𝑑]. At the beginning
of the simulation, we generate a social network over the 𝑛 users
according to the Watts-Strogatz model [WS98], which involves a
degree parameter 𝛿 and a randomness parameter 𝛽 . Each pair of
6The running time is tested on Apple M1 Pro chip, single thread.

11

Profile 𝑛 𝑟 pt nd #Hops Latency #Re-enc

Standard 600 2 10 25 5.355 5.983 0.503
5.396 6.043 n/a

Dense 3000 10 5 5 4.550 4.550 0.372
4.545 4.545 n/a

Sparse 100 10 10 20 3.356 5.699 0.301
3.367 5.490 n/a

Table 2: Simulation results for standard setting, dense and
sparse network, which have different user numbers and trav-
eling speeds over the field. The performance is measured by
average number of hops, average latency (in discrete steps),
and average number of re-encryptions over received mes-
sages, where the upper row in a group is for ASMesh 1 and
the lower row is for ASMesh 2.

users that are contacts in the social network share a mesh messag-
ing session. In each simulation step, new messages are generated
at each user, and each message is sent to a random receiver that is
contact of the sender; the number of new messages is drawn from a
Poisson distribution with parameter _ (and thus has expectation _).
In our simulations, we fix𝐴 = 25,𝑇 = 100, 𝑑 = 1, 𝛿 = 𝑛/10, 𝛽 = 1/2,
and _ = 0.01.

Parameters pt and nd of our MM protocol control the ciphertext
forwarding policy in the network. Moreover, as a naive routing
control, we implement a dictionary at each user that records the
connection from which the user receives each ciphertext,7 and
avoid forwarding the ciphertexts back to their incoming connec-
tions.8 For re-encryptions, each user also records the ciphertexts
they (re-)encrypt, and those ciphertexts do not participate in fu-
ture batching and re-encryptions by that user, avoiding repeated
re-encryptions to happen locally at a single user. For setting param-
eters pt and nd, we reference the configurations of Bridgefy9. Since
we run the simulation on a single computer instead of distributing
among real nodes in a network, our available memory is limited,
and thus we adopt a 1/10x down-scaling of the “hops limits” and
“maximum propagations” in Bridgefy (our pt and nd, resp). Other
parameters like 𝑛, 𝑟 , etc. are chosen according to this scale, too.
Results In Table 2 we report the simulation results based on
three settings corresponding to profiles in Bridgefy: standard set-
ting, high density network, and sparse network. The density of the
network is controlled by the different numbers of users 𝑛 over the
fixed 𝐴 ×𝐴 field. For sparse network, we assign a higher traveling
speed 𝑟 so that the sparsely distributed users can meet more fre-
quently and messages are able to propagate throughout the field
faster; similarly, we assign a higher traveling speed in high density
network to compensate for the smaller upper bound pt on hop
numbers and let messages propagate far enough; in all simulations,
we have message delivery rates in the range 90%-95%. We measure
the average number of hops, average latency (in discrete steps),
and average number of re-encryptions as the performance of each
setting. In Figure 7, we further study how the delivery rate changes

7For the sake of memory, the dictionary only retains records for recent ciphertexts
within pt time steps.
8We note that in practice the connections can use short-lived identifiers to avoid
user tracking; since our experiments are only simulating a short time period, we use
long-term identifiers for simplicity.
9See propagation profiles at https://bridgefy-1.gitbook.io/sdk/ios/usage.

2 4 6 8
r

0.80

0.85

0.90

0.95

De
liv

er
y

Ra
te

5.0 7.5 10.0 12.5 15.0
pt

0.7

0.8

0.9

De
liv

er
y

Ra
te

5 10 15 20 25
nd

0.850

0.875

0.900

0.925

0.950

De
liv

er
y

Ra
te

0 25 50 75 100
Time Step

10 1

101

103

M
em

or
y

Us
ag

e
pe

r U
se

r

ASMesh 1
ASMesh 2

Figure 7: Top and bottom left: Delivery rate as a function of
𝑟 , pt, and nd in the standard setting for ASMesh 2. (ASMesh 1
and 2 have similar delivery rates; thus, we only experiment
with ASMesh 2 which involves no re-encryption and runs
faster.) The shade depicts 1 standard deviation over 8 inde-
pendent experiments.
Bottom right: Change of average memory usage per user
along time in the standard setting. Memory usage is mea-
sured by the number of stored ciphertext and the dictionaries
for recording previous hops and re-encryptions. The shade
depicts 1 standard deviation over 4 independent experiments.

as a function of the parameters 𝑟 , pt, and nd, in the case of the
standard setting with ASMesh 2. We note that all three curves are
monotonous in the intuitive direction. In the bottom right of Fig-
ure 7, we trace how the average memory usage per user changes
along time, measured by number of entries in the dictionaries used.
We see that ASMesh 2 is space-efficient and adds only about 102
storage to every user, and ASMesh 1 adds about 104 storage due to
re-encryptions that blow up the number of messages in the network.
Memory usage stabilizes after a warm-up phase.

For ASMesh 1, we observe that in high density networks, the
latency is small and (almost) matches the hop number as a result of
high user density—almost every message can be forwarded (in a
progressive direction) at every time step. For sparse networks, all
measured values are lower (partially due to the higher traveling
speed), while however the relative number of re-encryptions (i.e.,
the ratio of number of re-encryptions to number of hops) is much
higher, meaning there is a higher proportion of hops that perform
re-encryptions. For all three settings, the average number of re-
encryptions is at most about 0.5, which indicates the (amortized)
overhead brought by re-encryption in our construction is very
mild. Augmenting these results with the concrete instantiation
from the beginning of this section yields a 70-byte overhead in size
and a 5.5ms overhead in computation time per message. Moreover,
ASMesh 2 has a very similar performance to ASMesh 1 in terms of
average number of hops and latency.

12

https://bridgefy-1.gitbook.io/sdk/ios/usage

7 CONCLUSION
In summary, we provide more complete security models for Mesh
Messaging and accompanying secure constructions. All our build-
ing blocks use practical standard components, which supports effi-
ciency and deployment in practice. Our overall constructions main-
tain robust correctness guarantees and provide strong confidential-
ity and anonymity guarantees. We note that most of our results are
also applicable to traditional, centralized messaging. For example,
recent studies on interoperable messaging [LGGR23, RS23] indicate
that practical, anonymous channels are important tools to preserve
and strengthen user privacy.
Limitations and Future Work Our definitions capture a cryp-
tographic notion of anonymity that our constructions fulfill. Nev-
ertheless, our constructions may reveal communication patterns
that affect a broader sense of anonymity: For example, the lifetime
counter in our ciphertexts reveals the approximate (physical) dis-
tance to the original sender in the network; or a node that takes
a ciphertext as input and later outputs a different ciphertext of
slightly increased size directed to the same receiver may have re-
encrypted this input ciphertext, which reveals that this node is a
contact of that receiver; etc.

Based on this, taking related work into account, and considering
relevant use cases for mesh messaging, our work can be extended
by (1) implementing non-cryptographic techniques to strengthen
anonymity guarantees; (2) studying mesh messaging with group
chats; (3) developing (strong) privacy-preserving authenticity mech-
anisms; (4) designing global state-update algorithms that avoid lin-
ear effort to recover from a state exposure; etc. Another interesting
research direction is to augment Mesh Messaging protocols with
smart, anonymous routing protocols.

REFERENCES
[ABJM21] Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen, and Lenka Mareková.

Mesh messaging in large-scale protests: Breaking Bridgefy. In Kenneth G.
Paterson, editor, CT-RSA 2021, volume 12704 of LNCS, pages 375–398.
Springer, Heidelberg, May 2021.

[ACD19] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet:
Security notions, proofs, and modularization for the Signal protocol. In
Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume
11476 of LNCS, pages 129–158. Springer, Heidelberg, May 2019.

[ACJM20] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. Continuous
group key agreement with active security. In Rafael Pass and Krzysztof
Pietrzak, editors, TCC 2020, Part II, volume 12551 of LNCS, pages 261–290.
Springer, Heidelberg, November 2020.

[AEP22] Martin R. Albrecht, Raphael Eikenberg, and Kenneth G. Paterson. Breaking
bridgefy, again: Adopting libsignal is not enough. In Kevin R. B. Butler
and Kurt Thomas, editors, USENIX Security 2022, pages 269–286. USENIX
Association, August 2022.

[AJM22] Joël Alwen, Daniel Jost, and Marta Mularczyk. On the insider security of
MLS. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part II, volume 13508 of LNCS, pages 34–68. Springer, Heidelberg, August
2022.

[BDG+22] Alexander Bienstock, Yevgeniy Dodis, Sanjam Garg, Garrison Grogan,
Mohammad Hajiabadi, and Paul Rösler. On the worst-case inefficiency of
CGKA. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022, Part II,
volume 13748 of LNCS, pages 213–243. Springer, Heidelberg, November
2022.

[BDHK06] Michael Backes, Markus Dürmuth, Dennis Hofheinz, and Ralf Küsters.
Conditional reactive simulatability. In Dieter Gollmann, Jan Meier, and
Andrei Sabelfeld, editors, ESORICS 2006, volume 4189 of LNCS, pages 424–
443. Springer, Heidelberg, September 2006.

[BDR20] Alexander Bienstock, Yevgeniy Dodis, and Paul Rösler. On the price of
concurrency in group ratcheting protocols. In Rafael Pass and Krzysztof
Pietrzak, editors, TCC 2020, Part II, volume 12551 of LNCS, pages 198–228.
Springer, Heidelberg, November 2020.

[BFG+22] Alexander Bienstock, Jaiden Fairoze, SanjamGarg, PratyayMukherjee, and
Srinivasan Raghuraman. A more complete analysis of the Signal double
ratchet algorithm. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part I, volume 13507 of LNCS, pages 784–813. Springer,
Heidelberg, August 2022.

[Bri] INC. Bridgefy. Website of bridgefy. https://bridgefy.me/.
[BRT23a] Alexander Bienstock, Paul Rösler, and Yi Tang. Asmesh: Anonymous

and secure messaging in mesh networks using stronger, anonymous dou-
ble ratchet. In CCS ’23: 2023 ACM SIGSAC Conference on Computer and
Communications Security 2023. ACM, 2023.

[BRT23b] Alexander Bienstock, Paul Rösler, and Yi Tang. Asmesh: Anonymous and
secure messaging in mesh networks using stronger, anonymous double
ratchet. Cryptology ePrint Archive, Paper 2023, 2023. https://eprint.iacr.
org/2023.

[BRT23c] Alexander Bienstock, Paul Rösler, and Yi Tang. Proof of concept im-
plementation of our ASMesh protocol and mesh network simulation.
https://github.com/meshmessaging/ASMesh, 2023.

[BRV20] Fatih Balli, Paul Rösler, and Serge Vaudenay. Determining the core primi-
tive for optimally secure ratcheting. In Shiho Moriai and Huaxiong Wang,
editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 621–650.
Springer, Heidelberg, December 2020.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001.

[CCD+20] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt,
and Douglas Stebila. A formal security analysis of the signal messaging
protocol. Journal of Cryptology, 33(4):1914–1983, October 2020.

[CJSV22] Ran Canetti, Palak Jain, Marika Swanberg, and Mayank Varia. Universally
composable end-to-end secure messaging. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part II, volume 13508 of LNCS, pages
3–33. Springer, Heidelberg, August 2022.

[CZ22] Cas Cremers and Mang Zhao. Provably post-quantum secure messaging
with strong compromise resilience and immediate decryption. Cryptology
ePrint Archive, Report 2022/1481, 2022. https://eprint.iacr.org/2022/1481.

[DG19] Nir Drucker and Shay Gueron. Continuous key agreement with reduced
bandwidth. In Shlomi Dolev, Danny Hendler, Sachin Lodha, and Moti
Yung, editors, Cyber Security Cryptography and Machine Learning - Third
International Symposium, CSCML 2019, Beer-Sheva, Israel, June 27-28, 2019,
Proceedings, volume 11527 of Lecture Notes in Computer Science, pages
33–46. Springer, 2019.

[DHRR22] Benjamin Dowling, Eduard Hauck, Doreen Riepel, and Paul Rösler.
Strongly anonymous ratcheted key exchange. In Shweta Agrawal and
Dongdai Lin, editors, ASIACRYPT 2022, Part III, volume 13793 of LNCS,
pages 119–150. Springer, Heidelberg, December 2022.

[DSKB21] Alaa Daffalla, Lucy Simko, Tadayoshi Kohno, and Alexandru G. Bardas.
Defensive technology use by political activists during the sudanese revo-
lution. In 2021 IEEE Symposium on Security and Privacy, pages 372–390.
IEEE Computer Society Press, May 2021.

[EHM17] Ksenia Ermoshina, Harry Halpin, and Francesca Musiani. Can johnny
build a protocol? co-ordinating developer and user intentions for privacy-
enhanced secure messaging protocols. In European Workshop on Usable
Security, 2017.

[EM22] Ksenia Ermoshina and Francesca Musiani. Concealing for Freedom: The
Making of Encryption, Secure Messaging and Digital Liberties. 03 2022.

[GHJL17] Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer. 0-RTT key ex-
change with full forward secrecy. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212 of LNCS, pages
519–548. Springer, Heidelberg, April / May 2017.

[GKH16] Seda Gürses, Arun Kundnani, and Joris Van Hoboken. Crypto and empire:
the contradictions of counter-surveillance advocacy. Media, Culture &
Society, 38(4):576–590, 2016.

[GM15] MatthewD. Green and IanMiers. Forward secure asynchronous messaging
from puncturable encryption. In 2015 IEEE Symposium on Security and
Privacy, pages 305–320. IEEE Computer Society Press, May 2015.

[jlu18] jlund. Technology preview: Sealed sender for signal. https://signal.org/b
log/sealed-sender/, 10 2018.

[JMM19] Daniel Jost, Ueli Maurer, and Marta Mularczyk. A unified and composable
take on ratcheting. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019,
Part II, volume 11892 of LNCS, pages 180–210. Springer, Heidelberg, De-
cember 2019.

[Koe19] John Koetsier. Hong kong protestors using mesh messaging app china
can’t block: Usage up 3685%. https://www.forbes.com/sites/johnkoetsier/
2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-c
ant-block-usage-up-3685/, 09 2019.

[LGGR23] Julia Len, Esha Ghosh, Paul Grubbs, and Paul Rösler. Interoperability
in end-to-end encrypted messaging. Cryptology ePrint Archive, Paper
2023/386, 2023. https://eprint.iacr.org/2023/386.

13

https://bridgefy.me/
https://eprint.iacr.org/2023
https://eprint.iacr.org/2023
https://github.com/meshmessaging/ASMesh
https://eprint.iacr.org/2022/1481
https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
https://www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
https://www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
https://eprint.iacr.org/2023/386

[PHE+17] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and
George Danezis. The loopix anonymity system. In Engin Kirda and Thomas
Ristenpart, editors, USENIX Security 2017, pages 1199–1216. USENIX Asso-
ciation, August 2017.

[PJW+22] Amogh Pradeep, Hira Javaid, Ryan Williams, Antoine Rault, David R.
Choffnes, Stevens Le Blond, and Bryan Ford. Moby: A blackout-resistant
anonymity network for mobile devices. PoPETs, 2022(3):247–267, July 2022.

[PM16a] Trevor Perrin and Moxie Marlinspike. The double ratchet algorithm.
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf,
11 2016.

[PM16b] Trevor Perrin and Moxie Marlinspike. The x3dh key agreement protocol.
https://signal.org/docs/specifications/x3dh/x3dh.pdf, 11 2016.

[PR18] Bertram Poettering and Paul Rösler. Towards bidirectional ratcheted
key exchange. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 3–32. Springer, Heidel-
berg, August 2018.

[PSEB22] Neil Perry, Bruce Spang, Saba Eskandarian, and Dan Boneh. Strong
anonymity for mesh messaging, 2022.

[RMS18] Paul Rösler, Christian Mainka, and Jörg Schwenk. More is less: On the
end-to-end security of group chats in Signal, WhatsApp, and Threema.
In 2018 IEEE European Symposium on Security and Privacy, EuroS&P 2018,
London, United Kingdom, April 24-26, 2018, pages 415–429. IEEE, 2018.

[RS23] Paul Rösler and Jörg Schwenk. Interoperability between messaging ser-
vices secure – implementation of encryption. Study for the Federal Net-
work Agency, 2023.

[RSS23] Paul Rösler, Daniel Slamanig, and Christoph Striecks. Unique-path identity
based encryptionwith applications to strongly securemessaging. In Carmit
Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume 14008
of LNCS, pages 3–34. Springer, Heidelberg, April 2023.

[Sta21] Reuters Staff. Encrypted messaging app signal stops working in china.
https://www.reuters.com/article/us-china-tech-signal/encrypted-messa
ging-app-signal-stops-working-in-china-idUSKBN2B8094, 03 2021.

[vAP22] Theo von Arx and Kenneth G. Paterson. On the cryptographic fragility
of the telegram ecosystem. Cryptology ePrint Archive, Report 2022/595,
2022. https://eprint.iacr.org/2022/595.

[WS98] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-
world’ networks. Nature, 393(6684):440–442, 1998.

[Yee22] Vivian Yee. Despite iran’s efforts to block internet, technology has helped
fuel outrage. https://www.nytimes.com/2022/09/29/world/middleeast/iran
-internet-censorship.html, 09 2022.

A UNIVERSAL COMPOSABILITY
We model security and correctness of Mesh Mesaging in the Uni-
versal Composability (UC) framework [Can01].
Physical Communication In UC, parties typically communicate
to one another via a network which is controlled by the adversary
so that, in particular, the adversary sees all (possibly encrypted)
messages sent between parties. However, in mesh messaging, par-
ties do not communicate over centralized, standard networks, and
instead can only communicate when in close proximity to one an-
other (using, e.g., bluetooth). Thus an adversary will often not be
close enough to eavesdrop and will therefore only somtimes learn
information about messages sent between parties. So, the standard
UC modelling of communication does not fit. We instead choose
to model communication in mesh networks via an additional ideal
functionality Fmesh which directly transmits messages from sender
to receiver and only leaks them to the adversary if the adversary
explicitly commands it. We expand on this in the next paragraph.
Corruption Model We utilize the recent corruption models of
(transient, passive) state exposures formalized in [ACJM20, AJM22,
BFG+22, CJSV22]. In a nutshell, this corruption model allows the
adversary to repeatedly expose the states of parties by sending them
a corruption message Expose. Upon receipt of such a message, the
corresponding party first notifies the environment that it has been
corrupted and then sends its current state to the adversary (once
per message).

In the ideal world, corruptions are routed through ideal function-
alities. That is, the simulator announces corruptions to the ideal
functionality, who then notifies the corresponding (dummy) party.

We also allow for another type of corruption which models
adversarial eavesdropping on parties’ close-proximity communica-
tion. Namely, the adversary can repeatedly send them Watch and
Unwatch messages, and the parties respond by simply notifying
the environment. Note that although this on its own does not al-
low for any adversarial behavior (and in fact we assume that the
adversary cannot block messages from being delivered), it enables
the adversary to eavesdrop on parties. Indeed, the following is the
interface of our mesh network communication functionality Fmesh
interacting with simulator S:

• Initialization: Set WXP = ∅.
• On input (Send,𝑚, P′) from P: If {P, P′} ∩WXP ≠ ∅, send

(P, P′,𝑚) to S and wait for it to return OK. Then send𝑚 to
P and P′. Else, send right away.10

• On input (Watch, P) from S: WXP ∪← {P}.
• On input (Unwatch, P) from S: WXP \ {P}.

Note that as above, the ideal functionality will forward allWatch
and Unwatch messages to the (dummy) parties.
Restricted Environments In order to avoid the so-called com-
mittment problem caused by fully adaptive adversaries (e.g., when
an adversary corrupts a receiver while a secure ciphertext is in-
transit), we use a technique of [ACJM20, AJM22] (based on prior
works [BDHK06, JMM19]): In particular, we consider a weakened
variant of UC security that only quantifies over a restricted set of
so-called admissible environments that do not exhibit the commit-
ment problem. Whether an environmentZ is admissible or not is
defined as part of the ideal functionality F : The functionality can
enforce certain boolean conditions by using keyword Require, and
Z is then called admissible (for F), if it has negligible probability
of violating any such condition when interacting with F .

B FORMAL MESH MESSAGING DEFINITION
We provide a formal pseudo-code definition of our ideal functional-
ity in Figures 8, 9, 10, and 11. For comprehensibility, we emphasize
the most relevant lines of code in these Figures. These emphasized
code lines trace the progression in a session with respect to state
updates, which directly influences the encoded forward-security
and post-compromise security requirements. As elaborated in up-
coming Appendix B.1, code marked in blue is relevant for security
with contact cooperation but irrelevant for security with receiver
anonymity. We start here with a description of the former first,
before describing the changes for the latter in Appendix B.1; in
short, the latter removes receiver identifiers from ciphertexts and
omits re-encryptions.

Our ideal functionality models that a party P can generate fresh
key material, initialize a new session with some party P′ (both in
Figure 8), encrypt a message𝑚 to some party P′, update their local
secrets for a particular session with some party P′ (both in Figure 9),
and meet with another party P′ (in Figure 10). When two parties

10We send𝑚 also to P as a modelling artifact, so that it knows S indeed allowed the
message to be delivered as intended.

14

https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/specifications/x3dh/x3dh.pdf
https://www.reuters.com/article/us-china-tech-signal/encrypted-messaging-app-signal-stops-working-in-china-idUSKBN2B8094
https://www.reuters.com/article/us-china-tech-signal/encrypted-messaging-app-signal-stops-working-in-china-idUSKBN2B8094
https://eprint.iacr.org/2022/595
https://www.nytimes.com/2022/09/29/world/middleeast/iran-internet-censorship.html
https://www.nytimes.com/2022/09/29/world/middleeast/iran-internet-censorship.html

meet, they are considered to broadcast all their cached ciphertexts
and process the ciphertexts broadcast by their counterpart.

An adversary A (resp. simulator S) can expose the state of a
party P (in Figure 11). This reveals all secrets stored by P locally at
the moment of exposure. Furthermore, A (resp. S) can watch and
unwatch a party P (also in Figure 11). As long as P is watched, A
(resp. S) sees all ciphertexts exchanged during their meetings. If
neither of twomeeting parties is watched, their ciphertext exchange
remains hidden from the adversary (resp. simulator).

To avoid that our definition induces impractical requirements for
constructions (e.g., non-committing encryption), we carefully trace
the internal state of every party P during each executed operation.
Based on this tracing, we restrict state exposures that trivially
break challenge ciphertexts. More precisely, in case a challenge
ciphertext 𝑐 was seen by the adversary, we forbid the exposure of
the respective receiver state until 𝑐 was received.
State Progression, FS, and PCS With our ideal functionality
definition, we require immediate forward secrecy (FS) as well as
strong post-compromise security (PCS) with respect to confiden-
tiality and anonymity. This means that all received ciphertexts that
were sent in Alice’s sessions remain fully secure even if her state
is exposed anytime later (FS); beyond this, future ciphertexts be-
come fully secure again after an exposure of Alice’s state (PCS). To
specify how far confidentiality and anonymity of ciphertexts are
affected by state exposures more precisely, we consider the state
progression within a session.

The communication in a session between Alice and Bob naturally
contains a continuous “ping-pong” pattern that starts at session
initialization, which we consider the first “ping”. As soon as Alice
receives the first ciphertext from Bob, this is the first “pong”. When
Bob receives the first ciphertext that was sent by Alice after this
“pong”—no matter which ciphertext after this “pong” it is—, we
consider this as another “ping”, and so on. The period from a ping
until the next pong (or from a pong until the next ping) is called a
ratchet.

Independent of ratchets, each ciphertext sent by Alice (resp. Bob)
can be considered a response to the newest ciphertext received from
Bob (resp. Alice) before. Thus, each newest ciphertext received from
Bob (resp. Alice) determines an epoch for Alice (resp. Bob) that
lasts until a newer ciphertext is received.

Finally, we number all ciphertext sent within a ratchet consecu-
tively with an index. This means, each ciphertext in a session has
a unique ratchet-epoch-index triple (𝑡, 𝑙, 𝑖).
Setup The three components provided in Figure 8 basically ini-
tialize variables. The only non-trivial part is that, on input (Init, P′)
from P, the two parties are defined to communicate their newest
key material. This is captured by exchanging the perspective on
their respective partner’s newest epoch via array PC (lines 10-11).
After this, each party increments their epoch counter. Array SP
determines who the sending and receiving party in this session is,
respectively.
Sending Ideal message encryption and session update in Figure 9
are identical except that message encryption internally traces the
encrypted message. For both operations, we first trace if the opera-
tion starts a new ratchet in this session (lines 01-02,14-15). This is
based on whether it is the encrypting, resp., updating party’s turn

Ideal Functionality Initialization:
00 𝐺 [·] ← 0; IN [·] ← 0; CT [·] ← ⊥
01 𝑛 ← 0; AM [·] ← ∅; SM [·] ← ∅; CH ← ∅
02 PC [·] [·] ← 0; FS[·] [·] [·] ← [∞]
03 WXP ← ∅; PXP [·] ← ∅; AXP [·] [·], TXP [·] [·] ← ∅
04 𝐼 [·] [·],𝑇 [·] [·], SP [·] [·], PC2T [·] [·] [·] ← 0

On input Gen from party P:
05 𝐺 [P] ← 1
06 Send (Gen, P) to S
On Input (Init, P′) from party P:
07 Require 𝐺 [P] = 𝐺 [P′] = 1
08 Require IN [{P, P′}] = 0
09 IN [{P, P′}] ← 1
10 PC [P] [P′] ← PC [P′] [P′]
11 PC [P′] [P] ← PC [P] [P]
12 PC [P′] [P′] ← PC [P′] [P′] + 1
13 PC [P] [P] ← PC [P] [P] + 1
14 SP [P] [P′] ← 1; SP [P′] [P] ← 0

Figure 8: Setup and interfaces for key generation and session
initialization of our ideal functionality F pt,nd,eoh

MM . The ideal
functionality is parameterized by pt, the path length for
ciphertexts in the mesh network, nd, the number of meetings
in which a node broadcasts a ciphertext, and eoh, the length
overhead of the corresponding encryption scheme. uniq :
{0, 1}_ → {0, 1}_ is a random permutation.

to do so. More concretely, if, from the perspective of party P, P′
most recently started a new ratchet, then P will start a new ratchet
now. Array 𝑇 keeps track of the current ratchet in each session
from each partner’s perspective.

After this, we assemble all variables that describe the encryption
status of the produced ciphertext (lines 03-05,16-18). Most impor-
tantly, variable enc stores epoch, ratchet, and index in the session
from P’s perspective at the time of encryption. (See the explanations
for epoch, ratchet, and index in above paragraph State Progression, FS,
and PCS.) In addition to this, we attach technical details about the
ciphertext in variable ĉvar that is described in following paragraph
Leaked Technical Variables. Variable upc stores party P’s current
epoch, which models that P updates their own state and attaches a
corresponding key update to the ciphertext when encrypting the
message, resp., performing a session update.

We add the new ciphertext to the set of active ciphertexts AM
that will be broadcast by party P during the next meeting, and to
the set SM of ciphertexts seen by party P (lines 07-08,20-21). Finally,
we increment the index counter for the session between P and P′
and we increment global epoch counter of P.
Meeting Interface Meet in Figure 10 models that two users ex-
change their cached ciphertexts. More concretely, both users first
broadcast the ciphertexts from their own cache and then process the
ciphertexts that were broadcast by the respective counterpart. If
either of the two participants is currently watched by the adversary
(see following paragraph Corruption), this interface forwards infor-
mation about the exchanged ciphertexts as well as the identifiers

15

On input (Enc,𝑚, P′) from P:
00 Require IN [{P, P′}] = 1
01 If 𝑇 [P] [P′] mod 2 ≠ SP [P] [P′]:
02 𝑇 [P] [P′] ← 𝑇 [P] [P′] + 1; 𝐼 [P] [P′] ← 0
03 fw ← (pt, nd)
04 enc ← (PC [P] [P′],𝑇 [P] [P′], 𝐼 [P] [P′], ĉvar)
05 upc ← PC [P] [P]
06 CT [𝑛] ← (P, P′, enc, upc,𝑚, ∅)
07 AM [P] ∪← {(fw, 𝑛)}
08 SM [P] ∪← {𝑛}
09 PC2T [P] [P′] [PC [P] [P]] ← 𝑇 [P] [P′]
10 𝑛 ← 𝑛 + 1
11 𝐼 [P] [P′] ← 𝐼 [P] [P′] + 1
12 PC [P] [P] ← PC [P] [P] + 1
On Input (Up, P′) from P:
13 Require IN [{P, P′}] = 1
14 If 𝑇 [P] [P′] mod 2 ≠ SP [P] [P′]:
15 𝑇 [P] [P′] ← 𝑇 [P] [P′] + 1; 𝐼 [P] [P′] ← 0
16 fw ← (pt, nd)
17 enc ← (PC [P] [P′],𝑇 [P] [P′], 𝐼 [P] [P′], ĉvar)
18 upc ← PC [P] [P]
19 CT [𝑛] ← (P, P′, enc, upc, 𝜖, ∅)
20 AM [P] ∪← {(fw, 𝑛)}
21 SM [P] ∪← {𝑛}
22 PC2T [P] [P′] [PC [P] [P]] ← 𝑇 [P] [P′]
23 𝑛 ← 𝑛 + 1
24 𝐼 [P] [P′] ← 𝐼 [P] [P′] + 1
25 PC [P] [P] ← PC [P] [P] + 1

Figure 9: Interfaces for message encryption and session
update of our ideal functionality F pt,nd,eoh

MM . Parameters
(pt, nd, eoh) are explained in Figure 8. Variable ĉvar is de-
scribed in paragraph Leaked Technical Variables.

of the participants to the simulator (lines 34-35). Such forwarded
ciphertexts are then treated as challenges (line 36).

The interface begins with assembling the set of broadcast ci-
phertexts (lines 02,13-15). We describe helper procedure SimCtxt
below. Additionally, it internally assembles the set of messages that
are decrypted by both participants due to receiving ciphertexts
during the meeting (lines 05-06). We also describe helper procedure
DecCtxt below. For all received ciphertexts that are not decrypted,
the interface updates the receivers’ ciphertext caches (lines 08-12).
In particular, the sets of active and seen ciphertexts are updated.

In the second step, the interface models re-encryption of those
ciphertexts that are directed to session partners of the respective
processing party (lines 16-33). In principle, this re-encryption re-
sembles ordinary encryption from Figure 9. The core difference
is that all ciphertexts to the same receiver are aggregated before
re-encryption (line 17,28,30).

Helper procedure SimCtxt assembles the information leaked per
exchanged ciphertext. More precisely, it recursively unwraps the re-
encryption of a ciphertext (lines 42-46, particularly line 43) and then
leaks its overall length. This length is determined by the lengths

of the contained payloads as well as the overhead of the used en-
cryption scheme, which is defined via parameter eoh. In addition to
this, starting from the outermost (re-)encryption layer, it unwraps
all non-confidential ciphertext layers until the first confidential
one is reached. From those layers, it assembles the technical data
about each unwrapped encryption as well as the potentially con-
tained payload. Depending on whether the identified confidential
ciphertexts are also anonymous, the leaked technical data differs.
Anonymous layers (line 51) only reveal their length, their receiver,
and their forwarding status (i.e., remaining path length and local
re-broadcasts). In addition to that, non-anonymous, confidential
layers (line 53) reveal encrypting (aka. sender) party and technical
encryption information ĉvar . Variable ĉvar is described in para-
graph Leaked Technical Variables. Non-confidential layers (line 57)
reveal either the set of contained ciphertexts or their payload.

Helper procedure DecCtxt derives the contained payload from
a ciphertext and adds the sender identifier as well as the payload
identifier to the output (lines 62-64). For ciphertexts that contain
a set of (re-encrypted) ciphertexts, DecCtxt recursively calls itself
(lines 65-67). Finally, based on processing the decryption, it updates
the receiver’s view of the ratchet, epoch, and index counters as well
as the set of seen ciphertexts (lines 68-71). For this, set FS traces all
received ciphertexts.
Corruption The simulator can query exposure of a party’s local
state and it can start and stop watching a party, which we formalize
in Figure 11.

At state exposure, the interface first performs a dummy exposure
(lines 03-18). Based on the dummy outcome, it decides whether the
exposure is permitted or not (line 19).We permit an exposure if none
of the existing challenge ciphertexts is solved due to the exposure
based on our FS and PCS requirements. By being solved, we mean
that the exposed receiver state can be used to break confidentiality
and/or anonymity of the challenge ciphertext.

The dummy exposure processes one session of the exposed party
after another. It first considers all ratchets in which the exposed
party is a receiver (lines 04-06). The exposed party uses/used the
key material for this ratchet to decrypt responses from the session
partner. The ciphertexts not yet received in these ratchets are thus
marked non-confidential (line 05) and non-anonymous (line 06).
If the current ratchet in the session was started by the exposed
party (line 07), then all following indexes of the current ratchet
are marked possibly non-confidential (line 08). They are considered
ultimately non-confidential if the session partner’s epoch with
which they are associated is exposed, too (lines 17-18). Additionally,
all indexes of the next ratchet are marked possibly non-confidential
(line 09). These indexes become ultimately non-confidential if the
exposed party’s epoch with which they are eventually associated
is exposed, too (lines 17-18). Finally, all following indexes of the
current ratchet, and all indexes of the next two ratchets are marked
non-anonymous (lines 10-12). If, in contrast, the current ratchet
was started by the session partner, all indexes of the next ratchet
are marked non-anonymous (lines 15). Beyond that, all epochs
that were started in ratchets for which their are still (potentially, if
the ratchet after was the session partner’s latest sending ratchet)
undelivered ciphertexts are marked ineffective (lines 17-18).

16

On Input (Meet, P1) from P0:
00 Require 𝐺 [P0] = 𝐺 [P1] = 1
01 𝑀0, 𝑀1,𝐶0,𝐶1,CH ′ ← ∅
02 For all ((pt, nd), 𝑖) ∈ AM [P𝑗] : 𝑗 ∈ {0, 1}:
03 (P𝑠 , P𝑟 , enc, upc,𝑚, ct)← CT [𝑖]
04 AM [P𝑗] ← AM [P𝑗] \ {((pt, nd), 𝑖)}
05 If pt ≥ 0 ∧ P𝑟 = P1− 𝑗 :
06 𝑀1− 𝑗

∪← DecCtxt(P1− 𝑗 , 𝑖)
07 Else:
08 If nd > 0:
09 AM [P𝑗]

∪← {((pt, nd − 1), 𝑖)}
10 If 𝑖 ∉ SM [P1− 𝑗] ∧ pt > 0:
11 AM [P1− 𝑗]

∪← {((pt − 1, nd), 𝑖)}
12 SM [P1− 𝑗]

∪← {𝑖}
13 (·,𝐶′

𝑖
,CH ′

𝑖
)← SimCtxt(𝑖, pt,⊥)

14 𝐶 𝑗
∪← {𝐶′

𝑖
}

15 CH ′ ∪← CH ′
𝑖

16 For all P𝑟 : IN [{P𝑗 , P𝑟 }] = 1, 𝑗 ∈ {0, 1}:
17 FWI ← {(fw, 𝑖) ∈ AM [P𝑗] |CT [𝑖] = (P′, P𝑟 ,
·, ·,𝑚, ·) ∧𝑚 ≠ 𝜖}

18 AM [P𝑗] ← AM [P𝑗] \ FWI
19 If FWI ≠ ∅:
20 If 𝑇 [P𝑗] [P𝑟] mod 2 ≠ SP [P𝑗] [P𝑟]:
21 𝑇 [P𝑗] [P𝑟] ← 𝑇 [P𝑗] [P𝑟] + 1
22 𝐼 [P𝑗] [P𝑟] ← 0
23 enc ← (PC [P𝑗] [P𝑟],𝑇 [P𝑗] [P𝑟], 𝐼 [P𝑗] [P𝑟], ĉvar)
24 upc ← PC [P𝑗] [P𝑗]
25 PC2T [P𝑗] [P𝑟] [PC [P𝑗] [P𝑗]] ← 𝑇 [P𝑗] [P𝑟]
26 PC [P𝑗] [P𝑗] ← PC [P𝑗] [P𝑗] + 1
27 𝐼 [P𝑗] [P𝑟] ← 𝐼 [P𝑗] [P𝑟] + 1
28 ct ← {𝑖 |(fw, 𝑖) ∈ FWI }
29 CT [𝑛] ← (P𝑗 , P𝑟 , enc, upc,⊥, ct)
30 pt ← avg{pt𝑖 |((pt𝑖 , nd𝑖), 𝑖) ∈ FWI }
31 AM [P𝑗]

∪← {((pt, nd), 𝑛)}
32 SM [P𝑗]

∪← {𝑛}
33 𝑛 ← 𝑛 + 1
34 If {P0, P1} ∩WXP ≠ ∅:
35 Send (P0, P1,𝐶0,𝐶1) to S and wait for it

to return OK
36 CH ∪← CH ′

37 Send𝑀0 to P0 and𝑀1 to P1

Proc SimCtxt(𝑖, pt, nd):
38 SC ← ∅
39 ℓ ← 0
40 CH ′ ← ∅
41 (P𝑠 , P𝑟 , enc, upc,𝑚, ct)← CT [𝑖]
42 For all 𝑖′ ∈ ct:
43 (ℓ𝑖′ ,𝐶′𝑖′ ,CH

′
𝑖′)← SimCtxt(𝑖′,⊥,⊥)

44 ℓ ← ℓ + ℓ𝑖′
45 SC ∪← {𝐶′

𝑖′ }
46 CH ′ ∪← CH ′

𝑖′

47 (pc, 𝑡, 𝑙, ĉvar)← enc
48 If pc ∉ PXP [P𝑟] ∨ 𝑙 ∉ TXP [{P𝑠 , P𝑟 }] [𝑡]:
49 CH ′ ← {𝑖}
50 If 𝑙 ∉ AXP [{P𝑠 , P𝑟 }] [𝑡]:
51 𝐶 ← (uniq(𝑖), ℓ+ |𝑚 | + eoh, ∅ ,⊥, P𝑟 , pt, nd,⊥,⊥)
52 Else:
53 𝐶 ← (uniq(𝑖), ℓ+ |𝑚 | + eoh, ∅ , P𝑠 , P𝑟 , pt, nd, ĉvar,⊥)
54 Else:
55 If ct = ∅: 𝑚′ ←𝑚

56 Else:𝑚′ ← ⊥
57 𝐶 ← (uniq(𝑖), ℓ+ |𝑚 | + eoh, SC , P𝑠 , P𝑟 , pt, nd, ĉvar,𝑚′)
58 Return (ℓ+ |𝑚 | + eoh,𝐶,CH ′)
Proc DecCtxt(P, 𝑖):
59 𝑀 ← ∅
60 (P𝑠 , P𝑟 , enc, upc,𝑚, ct)← CT [𝑖]
61 (·, 𝑡𝑠 , 𝑙𝑠 , ·)← enc
62 If ct = ∅∧𝑚 ≠ 𝜖 :
63 If 𝑖 ∉ SM [P]:
64 𝑀

∪← {(P𝑠 , (𝑡𝑠 , 𝑙𝑠),𝑚)}
65 Else if ct ≠ ∅:
66 For all 𝑖′ ∈ ct:
67 𝑀

∪← DecCtxt(P, 𝑖′)
68 𝑇 [P] [P𝑠] ← max{𝑇 [P] [P𝑠], 𝑡𝑠 }
69 FS[P𝑠] [P] [𝑡𝑠] ← FS[P𝑠] [P] [𝑡𝑠] \ {𝑙𝑠 }
70 PC [P] [P𝑠] ← max(PC [P] [P𝑠], upc)
71 SM [P] ∪← {𝑖}
72 Return𝑀

Figure 10:Meeting interface of our ideal functionality F pt,nd,eoh
MM with helper procedures. Parameters (pt, nd, eoh) and permutation

uniq are explained in Figure 8. Variable ĉvar is described in paragraph Leaked Technical Variables.

Based on these variables, our definition permits exposure (line 19)
if for every challenge:

◦ Either the corresponding epoch is still effective (i.e., the
epoch was not exposed; pc ∉ PXP′ [P𝑟])

◦ Or the ciphertext is marked fully confidential (i.e., not even
possibly non-confidential; 𝑙 ∉ TXP′ [{P𝑠 , P𝑟 }] [𝑡])

• And the ciphertext is considered anonymous (𝑙 ∉ AXP′ [{P𝑠 ,
P𝑟 }] [𝑡]).

If the dummy exposure is permitted, it is turned into a real expo-
sure (line 20). Then, information about the set of cached ciphertexts
is assembled and, based on this, the set of challenge ciphertexts
is extended (lines 21-24). Finally, information about the set of ses-
sion secrets is assembled (lines 25-28). We refer the reader to fol-
lowing paragraph Leaked Technical Variables for a description of
variable ŝvar that specifies technical information about the session
status.

17

On input (Expose, P) from S:
00 Require 𝐺 [P] = 1
01 PXP′ ← PXP ; TXP′ ← TXP ; AXP′ ← TXP
02 𝐶 ← ∅
03 For all P′ : IN [{P, P′}] = 1:
04 For all 𝑡 : 𝑡 ≤ 𝑇 [P] [P′] ∧ 𝑡 mod 2 ≠ SP [P] [P′]:
05 TXP′ [{P, P′}] [𝑡] ∪← FS[P′] [P] [𝑡]
06 AXP′ [{P, P′}] [𝑡] ∪← FS[P′] [P] [𝑡]
07 If 𝑇 [P] [P′] mod 2 = SP [P] [P′]:
08 TXP′ [{P, P′}] [𝑇 [P] [P′]] ∪← [∞] \ [𝐼 [P] [P′]]
09 TXP′ [{P, P′}] [𝑇 [P] [P′] + 1] ← [∞]
10 AXP′ [{P, P′}] [𝑇 [P] [P′]] ∪← [∞] \ [𝐼 [P] [P′]]
11 AXP′ [{P, P′}] [𝑇 [P] [P′] + 1] ← [∞]
12 AXP′ [{P, P′}] [𝑇 [P] [P′] + 2] ← [∞]
13 tlast-rcv ← 𝑇 [P] [P′] − 1
14 Else:
15 AXP′ [{P, P′}] [𝑇 [P] [P′] + 1] ← [∞]
16 tlast-rcv ← 𝑇 [P] [P′]
17 For all pc : PC2T [P] [P′] [pc] + 1 = tlast-rcv ∨ ∃𝑖, enc :

(CT [𝑖] = (P′, P, enc, ·, ·, ·) ∧ 𝑖 ∉ SM [P] ∧
enc = (PC2T [P] [P′] [pc] + 1, ·, ·, ·)):

18 PXP′ [P] ∪← {pc}
19 Require ∀𝑖 ∈ CH : (pc ∉ PXP′ [P𝑟]
∨ 𝑙 ∉ TXP′ [{P𝑠 , P𝑟 }] [𝑡]) ∧ 𝑙 ∉ AXP′ [{P𝑠 , P𝑟 }] [𝑡],
(P𝑠 , P𝑟 , enc, ·, ·, ·) = CT [𝑖],
(pc, 𝑡, 𝑙, ·) = enc

20 PXP ← PXP′; TXP ← TXP′; AXP ← AXP′

21 For all ((pt, nd), 𝑖) ∈ AM [P]:
22 (·,𝐶′

𝑖
,CH ′

𝑖
)← SimCtxt(𝑖, pt, nd)

23 𝐶
∪← {𝐶′

𝑖
}

24 CH ∪← CH ′
𝑖

25 SL← ∅
26 For all P′ : IN [{P, P′}] = 1:
27 afs← (𝑡∗, FS[P′] [P] [𝑡∗])𝑡∗≤𝑇 [P] [P′]
28 SL ∪← {(P′,𝑇 [P] [P′], 𝐼 [P] [P′], PC [P] [P′], afs, ŝvar)}
29 Send (P,𝐶, PC [P] [P], SL) to S
On input (Watch, P) from S:
30 Require 𝐺 [P] = 1
31 WXP ∪← {P};
On input (Unwatch, P) from S:
32 Require 𝐺 [P] = 1
33 WXP ← WXP \ {P};

Figure 11: Interfaces for corrupting and watching parties in
our ideal functionality F pt,nd,eoh

MM . Parameters (pt, nd, eoh) are
explained in Figure 8. Variable ŝvar is described in paragraph
Leaked Technical Variables.

The interfaces for starting and stopping to watch a party are
self-explaining.
Leaked Technical Variables Our MM construction from Sec-
tion 5 leaks further, non-critical, technical variables through cipher-
texts and session states. Hence, for being able to prove security

of this construction, we leak corresponding variables also in our
ideal functionality, too. It is important to note that our construction
uses these variables for better efficiency, but leaking these variables
does not harm security. Since we consider these technical vari-
ables construction-specific, we refrain from detailing them in the
pseudo-code description of our ideal functionality fully formally.

For non-anonymous ciphertexts, we leak variable ĉvar that con-
tains the following sub-variables. The variable values are fixed at
the time of encryption, where party P conducts the encryption in
the session with partner P′.

• r̂tc: P’s ratchet counter in this session (𝑇 [P] [P′])
• îxc: P’s index counter in this session (𝐼 [P] [P′])
• êpc: P’s own epoch counter (PC [P] [P])
• pcp: P’s view of P′’s epoch counter (PC [P] [P′])
• r̂pc: P’s view of P′’s epoch counter (PC [P] [P′]) fixed at the

moment when P started their most recent ratchet
• n̂pr : Number of sent ciphertexts in P’s previous ratchet

Each exposed session state of party P with session partner P′
leaks a variable ŝvar . This variable contains the following sub-
variables.

• r̂tc: P’s ratchet counter in this session (𝑇 [P] [P′])
• îxc: P’s index counter in this session (𝐼 [P] [P′])
• êpc: P’s own epoch counter (PC [P] [P])
• pcp: P’s view of P′’s epoch counter (PC [P] [P′])
• r̂pc: P’s view of P′’s epoch counter (PC [P] [P′]) fixed at the

moment when P started their most recent ratchet
• p̂ppc: P′’s view of P’s epoch counter (PC [P′] [P]) fixed at

the moment when P′ started their most recent ratchet (that
P has seen)

• pc2ratch: A dictionary that maps PCS epoch pc to corre-
sponding ratchet 𝑡 in which it was initiated (using array
PC2T)

• n̂pr : Number of sent ciphertexts in P’s previous ratchet
Confidentiality and Anonymity To give a summarized intu-
ition for our ideal functionality, we require confidentiality and
anonymity in the following sense: a secure ciphertext must not
reveal anything besides the length of the contained message(s), the
identity of the receiver, and the remaining lifetime (i.e., the number
of remaining hops on the transmission path).

Due to state exposures, a ciphertext can become entirely insecure,
or provide only confidentiality but not anonymity. Beyond the
data revealed by a secure ciphertext, an entirely insecure ciphertext
reveals the contained message itself, the sender identity, as well
as technical details about the encryption (e.g., position within the
session, number of past round-trips in the session, etc). Except for
the contained message, the same data is revealed by a confidential,
non-anonymous ciphertext.
Re-Encryption We observe that a special feature of mesh net-
works is that honest users can cooperate to increase the security
of transmitted ciphertexts. Intuitively, each hop on the transmis-
sion path of a ciphertext who shares a session with the respective
receiver can re-encrypt this ciphertext before forwarding it to the
next hop. Thereby, an insecure ciphertext can be turned into a
secure one without interaction with sender or receiver.

18

A consequence of this is that a transmitted ciphertext can consist
of multiple encryption layers, some of which can be insecure, confi-
dential but non-anonymous, or fully secure. The outermost secure
(i.e., at least confidential) layer protects all underlying layers. Thus,
our ideal functionality traces the layers of every ciphertext, and
the level of security of each of these layers. For efficiency reasons,
a re-encryption can aggregate all ciphertexts directed to the same
receiver.

B.1 Receiver Anonymity
For defining receiver anonymity instead of contact cooperation, we
change our main ideal functionality in the blue marked lines as
follows: (1) Receiver identifier is not included in the information
revealed to the simulator for ciphertexts deemed anonymous (Fig-
ure 10, line 51); and (2) all procedures and details pertaining to
re-encryption, resp., recursive decryption are omitted (Figure 9,
lines 06,19, Figure 10, lines 03,16-33,38,39,41-46,51,53,55-58,60,62,65-
67). Thus, any protocol that realizes this modified ideal functionality
should additionally have fully anonymous ciphertexts (with PCS
and FS guarantees), but is not required to have contact cooperation.

B.2 Game-Based Attempts
Initially, we tried to define security with a game-based approach.
These attempts were unsatisfactory and eventually unsuccessful
because the preliminary definitions were too complex, incompre-
hensible, and forced us to choose between unnatural modeling
options and unrealistic restrictions of the adversary. We illustrate
this with an example that our ultimate simulation-based defini-
tion in Appendix B solves naturally: Consider a ciphertext 𝑐0 that
is confidential and anonymous. The typical approach to model
anonymity of 𝑐0 is that either this real ciphertext 𝑐0 or a randomly
sampled ciphertext 𝑐1 is given to the adversary. An adversary in our
setting can obtain a (real or random) ciphertext 𝑐𝑏 , 𝑏 ∈ {0, 1} by
either watching a meeting at which 𝑐𝑏 is exchanged or by expos-
ing a party’s state that contains 𝑐𝑏 in the local cache. However, if
the definition has to replace 𝑐0 by 𝑐1 in a party’s exposed state to
model anonymity of that ciphertext, this means that the definition
needs to know how 𝑐0 is embedded in this state. More concretely,
the structure of the exposed state is construction-dependent, and
so the location of cached ciphertext 𝑐0 in this state also depends
on the particular analyzed construction. Hence, in order to model
anonymity of ciphertext with this traditional game-based approach,
we would be forced to introduce construction-dependent artifacts
in the definition. Alternatively, one could forbid exposures of states
that contain an anonymous ciphertext 𝑐𝑏 . We considered both op-
tions unnatural and undesirable. In contrast, the ideal functionality
of our ultimate simulation-based definition models this case by
specifying the information that an anonymous ciphertext would
reveal more generically.

C MESH MESSAGING SECURITY ANALYSIS
To prove security of our MM construction from Section 5 with
respect to our ideal functionality from Appendix B, we design a
simulator in Figure 12. As elaborated upon below, code marked in

blue is relevant for the Simulator of ASMesh 1 with contact coop-
eration but irrelevant for the Simulator of ASMesh 2 with receiver
anonymity.

C.1 Simulator
Our simulator translates the ideal functionality’s output on three
operations into real (looking) counterparts. These operations are
key generation, broadcast during a meeting, and state exposure. Sim-
ulating the key generation is straight forward.
Broadcast To simulate a broadcast, we have to simulate each
broadcast ciphertext individually. For this, helper procedureBuildCtxt
distinguishes between anonymous and non-anonymous ciphertexts.
The former are simply sampled at random.

For the latter, we first use the history-independence PKDR simula-
tor from Figure 18. This simulator creates ciphertexts together with
the keys that are established by them on demand. By on demand, we
mean that a ciphertext-key pair from a session can be created even
if it was actually sent in the middle of this session and the ideal
functionality didn’t provide any information on earlier communi-
cation in this session yet. This on-demand, history-independent
simulation is necessary due to the way adversaries can start and
stop watching parties meetings. (Note that early and late communi-
cation in a session can remain hidden entirely, if the adversary only
watches a short period of meetings; for simulating the ciphertexts
and keys exchanged during these watched meetings, the simulator
has to work on-demand and history-independent.)

If the ciphertext is confidential (but non-anonymous), we sample
the contained message 𝑚 and the key for its encryption 𝑘AE at
random. Otherwise, if the ciphertext is neither confidential nor
anonymous but contains a set of (re-encrypted) ciphertexts, we
compile this set of ciphertext by recursively calling BuildCtxt. Using
our message-anonymizer simulator from Appendix C.2, we encrypt
the actual payload—which is either a re-encrypted set of ciphertexts
or a message—and return the final, composed ciphertext, prepended
with remaining path length pt and receiver public key.

The Simulator for ASMesh 2 is changed in the blue marked
lines to (1) omit procedures pertaining to re-encryption and (2)
omit receiver public keys from all simulated ciphertexts (Note: non-
anonymous ciphertexts are still built in the same way, otherwise).
State Exposure To simulate an exposed state, we begin with
simulating the ciphertexts contained in the state with helper func-
tion BuildCtxt (also prepending with remaining graph forwarding
degree nd). Then, for each session of the exposed party, we obtain
the PKDR session state via the history-independence PKDR simulator
from Figure 18. Furthermore, for every such session, we simulate
the message-anonymizer sender state (see Appendix C.2). Finally,
we build the party’s combined message-anonymizer receiver state
(see Appendix C.2).

C.2 Message Anonymizer Simulator
To keep our overall simulation compact and comprehensible, we
capture the cryptographic simulation of the message-anonymizer
as well as the actual encryption of messages in a separate simu-
lator. This simulator provides three interfaces: one for creating
both a message-anonymizer ciphertext and a payload ciphertext
(MA.encsim), one for composing amessage-anonymizer sender state

19

Simulator Initialization:
00 ST [·] ← ⊥; CT [·] ← ⊥
On input (Gen, P) from IF FMM:
01 (pkNK, skNK)←$ NK.gen
02 STMA [·] ← ⊥; stMA ← ⊥
03 ST [P] ← (skNK, pkNK)
04 Send pkNK to Adversary D
On Input (P0, P1,𝐶0,𝐶1) from IF FMM:
05 𝐶0,𝐶1 ← ∅
06 For all 𝑐 ∈ 𝐶 𝑗 , 𝑗 ∈ {0, 1}:
07 𝐶 𝑗

∪← BuildCtxt(𝑐, M, 1)
08 Send (𝐶0,𝐶1) to Adversary A
09 Send OK to Adversary A
On Input (P,𝐶, PC, SL) from IF FMM:
10 (skNK, pkNK)← ST [P]
11 𝐶 ← ∅
12 For all 𝑐 ∈ 𝐶:
13 𝐶

∪← BuildCtxt(𝑐, ST, 1)
14 P∗ ← ∅; 𝐾∗MA [·] ← ⊥
15 For all P′ : ∃(P′, 𝑡, 𝑖, pc, afs, ŝvar) ∈ SL:
16 If SPR [{P, P′}] = ⊥: SPR [{P, P′}](Init)
17 (sk′NK, pk

′
NK)← ST [P′]

18 (STPR [pk′NK], 𝐾MA)
← SPR [{P, P′}](sim-st, P, ŝvar, afs)

19 STMA [P′] ← MA.stssim(P, P′, ŝvar, 𝐾MA)
20 P∗ ∪← {P′}; 𝐾∗MA [P

′] ← 𝐾MA
21 stMA ← MA.strsim(P, P∗, 𝑡, 𝑖, afs, ŝvar, 𝐾∗MA)
22 st ← (skNK, pkNK, (STMA, stMA), STPR,𝐶)
23 Send st to Adversary A

Proc BuildCtxt(𝑐, type, top):
24 (id, 𝑙, SC , P𝑠 , P𝑟 , pt, nd, ĉvar,𝑚)← 𝑐

25 If CT [id] = ⊥:
26 If P𝑠 = ⊥:
27 𝑐 ←$ C𝑙+eoh
28 CT [id] ← 𝑐

29 Else:
30 (𝑐PR,md, 𝑘AE, 𝑘MA)
← SPR [{P𝑠 , P𝑟 }](sim-ct, P𝑠 , P𝑟 , ĉvar)

31 If𝑚 = ⊥∧SC = ∅ :
32 𝑚 ← 0𝑙
33 𝑘AE ←$ K
34 Else if SC ≠ ∅:
35 𝑚 ← ∅
36 For all 𝑐 ∈ SC:
37 𝑚

∪← BuildCtxt(𝑐, M, 0)
38 (𝑐MA, 𝑐AE)
←$ MA.encsim(P𝑠 , P𝑟 , 𝑡, 𝑖, 𝑐PR,md, 𝑘AE, 𝑘MA, 𝑙,𝑚)

39 CT [id] ← (𝑐MA, 𝑐PR, 𝑐AE)
40 (sk𝑟NK, pk

𝑟
NK)← ST [P𝑟]

41 If top = 0: Return CT [id]
42 Else if type = M: Return (pt, pk𝑟NK ,CT [id])
43 Else: Return (nd, (pt, pk𝑟NK ,CT [id]))

Figure 12: Simulator Spt,nd,eoh for proving security of our mesh messagingMM construction. The simulator is parameterized by
construction-dependent variables pt, nd, and eoh.

(MA.stssim), and one for composing a message-anonymizer receiver
state (MA.strsim). We describe and explain the simulation of these
three interfaces below.

• MA.encsim(P𝑠 , P𝑟 , 𝑡, 𝑖, 𝑐PR,md, 𝑘AE, 𝑘MA, 𝑙,𝑚):
(1) If the initial message-anonymizer key of ratchet 𝑡 in

the session of {P𝑠 , P𝑟 } is not yet set, set it to 𝑘MA
Note: 𝑘MA is the key that initializes the message-
anonymizer key derivation chain that is used in ratchet
𝑡 ; however, 𝑘MA is established by the PKDR protocol
in ratchet 𝑡 − 1

(2) Derive message-anonymizer key 𝑘MA,𝑖 and tag tag𝑖
for index 𝑖 in ratchet 𝑡 via 𝑖 chained evaluations of the
random oracle from 𝑘MA

(3) Use 𝑘MA,𝑖 and tag𝑖 for computing the message-anony-
mizer ciphertext via (tag𝑖 ,AE.enc(𝑘MA,𝑖 , (𝑡, 𝑖, 𝑙,md), tag𝑖))

(4) Encrypt themessage via 𝑐AE ←$ AE.enc(𝑘AE,𝑚, (𝑐MA,
𝑐PR))
For clarity, we neglect the prefix markers M :, C :, U :,
and R : with which our construction differentiates be-
tween payload encryption, session update ciphertext,
and ciphertext re-encryption

(5) Return(𝑐MA, 𝑐AE)
• MA.stssim(P, P′, 𝑡, 𝑖, ŝvar, 𝐾MA):

(1) In our MM construction, we implement an indepen-
dent message-anonymizer for each direction. Since
the sender (and receiver) of one of these message-
anonymizers only increments the ratchet-counterwith
every second ratchet, 𝑡 is adjusted as follows:
If 𝑡 was started by P′: 𝑡 ← 𝑡 + 1

(2) Get 𝑘MA ← 𝐾MA [𝑡] and derive key 𝑘MA,𝑖 for index 𝑖
in ratchet 𝑡 via 𝑖 chained evaluations of the random
oracle from it

(3) Extract n̂pr from ŝvar
(4) To set 𝑡 consistently with the 2-ratchet update fre-

quency within each direction’s message-anonymizer,
it is adjusted to 𝑡 ← 𝑡/2

(5) Return (𝑡, 𝑖, 𝑙, 𝑘) = (𝑡, 𝑖, n̂pr, 𝑘MA,𝑖)
• MA.strsim(P, P∗, 𝑡, 𝑖, afs, ŝvar, 𝐾∗MA):

For each session with P′ ∈ P∗ in which P started ratchet 𝑡 :
(1) Following the observation that ratchet counters in

each direction’s message anonymizer are incremented

20

with halved frequency, we set:
𝑡now ← (𝑡 − 1)/2

(2) 𝑖now is the maximal index 𝑖′ in ratchet 𝑡−1 plus fut−1,
where 𝑖′ is derived from afs

(3) 𝑖nxt ← fut − 1
(4) cknow is the output of the 𝑖now-th evaluation of the

randomoracle chain that startedwith input𝐾∗MA [P
′] [𝑡−

1]
(5) cknxt is the output of the 𝑖nxt-th evaluation of the ran-

dom oracle chain that started with input 𝐾∗MA [P
′] [𝑡 +

1]
For each session with P′ ∈ P∗ in which P′ started ratchet 𝑡 :
(1) 𝑡now ← 𝑡/2
(2) 𝑖now is the maximal index 𝑖′ in ratchet 𝑡 plus fut − 1,

where 𝑖′ is derived from afs
(3) 𝑖nxt ← 0
(4) cknow is the output of the 𝑖now-th evaluation of the

randomoracle chain that startedwith input𝐾∗MA [P
′] [𝑡]

(5) cknxt ←$ ⊥
For each tuple (𝑡 ′, 𝑖′) with session partner P′ ∈ P∗ that is
encoded in afs, i.e., (𝑡 ′, 𝐼 ′) ∈ afs and 𝑖′ ∈ 𝐼 ′:
(1) Obtain the key and tag outputs (𝑘∗MA, tag

∗) of the 𝑖′-
th evaluation of the random oracle chain that started
with input 𝐾∗MA [P

′] [𝑡 ′]
(2) Add (𝑘∗MA, tag

∗)withmessage-anonymizer index-tuple
(𝑡 ′/2, 𝑖′) to hash table ht

Finally, return st = (ht, ST), where ST [pk′NK] = (𝑡now, 𝑖now,
𝑖nxt, cknow, cknxt) is the message-anonymizer receiver ses-
sion state for each partner P′

C.3 Proof by Reduction
Theorem C.1. Assume thatNK is a secure NIKE scheme according

to Definition F.2, PR is a secure PKDR scheme according to Defini-
tion E.1, AE is a secure AEAD scheme with random ciphertexts ac-
cording to Definition F.3, and H and G are modeled as random oracles.
Then base protocol MM 1 UC-realizes base functionality F pt,nd,eoh

MM
in the Fmesh-hybrid model.

Our proof begins with a real, chronological execution of protocol
MM against adversary A. Step by step, we replace components of
this real protocol execution with indistinguishable random coun-
terparts. In the last step, we show that this random chronological
protocol execution can be simulated fully non-chronologically. This
final step is crucial since the adversary against the MM construction
actually doesn’t interact with this construction chronologically. In
contrast, it sees ciphertexts non-chronologically based on when
they are observed during a meeting between watched parties. Since
ciphertexts travel through the network on different paths, and since
the adversary adaptively can start and stop watching parties in the
network, the order in which ciphertexts are seen—and, hence, in
which they are simulated—is independent of the order in which
they are originally sent in a session.

In total, this allows us to prove that our simulation from Ap-
pendices C.1 and C.2, which is based on the interaction with ideal
functionality F pt,nd,eoh

MM from Appendix B, is indistinguishable from
the real, chronological execution of protocol MM. The indistin-
guishability of the modified simulation for ASMesh 2, based on the

interaction with the modified ideal functionality discussed in Ap-
pendix B.1, from the real, chonological protocol execution follows
immediately:

Theorem C.2. Assume thatNK is a secure NIKE scheme according
to Definition F.2, PR is a secure PKDR scheme according to Defini-
tion E.1, AE is a secure AEAD scheme with random ciphertexts ac-
cording to Definition F.3, and H and G are modeled as random oracles.
Then alternative protocol MM 2 UC-realizes alternative functionality
F pt,nd,eoh
MM in the Fmesh-hybrid model.

Game 1: Initialization with NIKE In the first game, we replace
all keys 𝑘EE in session initializationMM.init by random keys 𝑘∗EE
(Figure 4, line 07). Distinguishing this change is trivially reduced
to the security of NIKE scheme NK. The two remaining NIKE keys
exchanged during each session initialization are irrelevant for our
security notion against passive adversaries.

Using random oracle G, we also replace keys 𝑘PR, 𝑘0MA, and 𝑘
1
MA

in each session initialization (Figure 4, line 10), which is detectable
with negligible probability.
Game 2: Random Keys for Encryption and Message-Anony-
mizer with PKDR In our ideal functionality for MM, we care-
fully align the effect of state exposures and the resulting security
requirements for an MM protocol on the one side with the security
guarantees provided by our PKDR security definition on the other
side. As a result, we can now replace both all secure PKDR mes-
sage keys as well as the secure initial MA keys for each ratchet with
random keys, respectively.

However, in this game hop, we already have to regard the non-
chronological interaction between adversary and (simulated) MM
protocol execution. The reason is that, at the moment at which a
ciphertext is sent in the real, chronological protocol execution, it
is unclear whether this ciphertext will provide any security guar-
antees. More concretely, when sending a PKDR ciphertext, it is
unclear whether this ciphertext will provide confidentiality (and
anonymity) or whether a future exposure of the receiver’s state
will render this ciphertext fully insecure. Interestingly, this is not
an issue in the non-chronological interaction between MM simu-
lation and MM adversary: whenever a ciphertext is actually given
to the adversary in this (non-chronological) interaction, our ideal
functionality fixes the provided security guarantees irreversibly
(i.e., if it is insecure, confidential, or confidential and anonymous).
The slightly misleading conclusion is that our chronological MM
protocol execution would have to wait until the non-chronological
adversary sees an MM ciphertext in order to learn the required
security guarantees of that MM ciphertext. This is misleading be-
cause the non-chronological adversary may want to see a later
ciphertext 𝑐2 in a session earlier than an early ciphertext 𝑐1 in that
same session. Waiting until 𝑐1 is seen by the adversary would stall
the chronological protocol execution infinitely.

To close this apparent gap between chronological protocol ex-
ecution and non-chronological adversary interaction, we split the
execution of the PKDR protocol from the remaining components of
our MM protocol—which are: payload encryption and MA proto-
col execution. While the execution of the PKDR protocol remains

21

unchanged, we simulate payload encryption and MA protocol ex-
ecution lazily. This means that we only calculate the payload ci-
phertext and the MA ciphertext as soon as the adversary sees them
(non-chronologically). This simulation behavior is undetectable
because the actual computations remain the same.

Since we know the required security guarantees of anMM cipher-
text at the moment at which we give it to the (non-chronological)
adversary, our lazy simulation can now take advantage of this infor-
mation as follows. For all confidential ciphertexts, we now replace
the used encryption key𝑘AE by a random key𝑘∗AE (Figure 5, lines 08,
11; note that the same replacement is done on the receiver side).
Furthermore, for all confidential ciphertexts, we now replace the
initial MA key 𝑘MA that is input to algorithmMA.upR by a random
key 𝑘∗MA (Figure 5, line 09; again, the same replacement is done on
the receiver side).

Note that the time of establishing keys𝑘AE and𝑘MA via the PKDR
protocol differs from the time our simulation lazily replaces them
for the computation of payload encryption and MA receiver-state
update. Therefore, we now explain how we can simulate payload
encryption and MA protocol execution non-chronologically, on
demand. Since payload encryption is stateless, its on-demand simu-
lation is trivial. Yet, for MA simulation, we have to make sure that
all message-anonmization encryptions in the next ratchet 𝑡 + 1 can
be simulated even before a secure ciphertext from ratchet 𝑡 is given
(non-chronologically) to the adversary. For this, we use a random
oracle that is programmed lazily: For every ciphertext, given to
the adversary, it programs the used MA key tuple (mk, tag, cknow)
(Figure 3, line 12) as output to the random oracle. To maintain con-
sistency for the entire ratchet 𝑡 + 1, all random oracle queries for
the corresponding MA ratchet are pre-programmed. This means,
chaining each output ck to the subsequent input until the last index
in that ratchet is computed. Only the very first random oracle input
ck = 𝑘MA in ratchet 𝑡 + 1 is not pre-programmed. Instead, 𝑘MA is
programmed as soon as an exposed session state or a ciphertext sent
in ratchet 𝑡 fixes it. For the case that a secure ciphertext in ratchet 𝑡
fixes it, we describe its replacement by a random key above.

An adversary that distinguishes the conducted change is reduced
to an adversary that breaks the security of the PKDR protocol. The
reduction simulates the entire PKDR protocol (chronologically)
with the oracles specified in Figure 16. For all secure MM cipher-
texts given to the (non-chronological) MM adversary, the estab-
lished PKDR keys are obtained by (adaptively and retrospectively)
querying oracle Chall. For all insecure MM ciphertexts given to
the (non-chronological) MM adversary, the established PKDR keys
are obtained by (adaptively and retrospectively) querying oracle
Reveal.
Game 3: Random Payload Encryption with AEAD Using the
randomized keys 𝑘∗AE for payload encryption, we now replace the
messages that are encrypted in secure ciphertexts. That means, for
all confidential ciphertexts, we now replace the encrypted mes-
sage𝑚 by an equally long constant bit string 0 |𝑚 | (Figure 5, line 11).
Detecting this change is negligible, as a successful distinguisher is
directly reduced to breaking AEAD security of AE.
Game 4: RandomMessage-Anonymizer Keyswith ROM Our
almost lazy simulation of the MA key derivation chain from Game 3
is now turned fully lazily. That means, we only compute MA key

tuple (mk, tag, cknow) (Figure 3, line 12) as output to the random
oracle as soon as our simulation uses either of these values or as
soon as the adversary queries the random oracle on the matching
input itself. This change is undetectable as it only shifts the time of
computation.

As a second step, we abort the simulation as soon as the adversary
queries the random oracle on an input whose output contains a
keymk that is used for MA encryption of an anonymous ciphertext.
Since a ciphertext is only required to provide anonymity if the
initial MA key 𝑘MA in that ratchet was established by a confidential
ciphertext in the prior ratchet, we can show that the probability of
aborting is negligible. More concretely, due to Game 2, secure initial
MA keys 𝑘MA are replaced by random keys 𝑘∗MA. Hence, querying
the random oracle on any intermediate ck of the key derivation
ratchet that is started by 𝑘∗MA is bounded by the birthday paradox.
The only exception to this is that an intermediate ck is leaked by an
exposed session state. In this case, however, subsequent ciphertexts
in the corresponding MA ratchet are not required to be anonymous
anymore.
Game 5: RandomMAEncryptionwith IND$ Since, byGame 4,
none of the keys for anonymous ciphertexts was ever given to the
adversary, and all of these keys are random bit strings, we can now
change all real anonymous ciphertexts to random ciphertexts. More
concretely, we replace the MA ciphertexts 𝑐′ (Figure 3, line 13) of
all anonymous PKDR ciphertexts by randomMA ciphertexts 𝑐∗ ←$
C |𝑐′ | . Detecting this modification is reduced to breaking the IND$
security of AEAD scheme AE.
Game 6: Non-Chronological Simulation All parts of the MM
protocol except for the PKDR are now simulated on demand, based
on the non-chronological interaction between simulator and adver-
sary. To show that our simulation can run fully non-chronological,
without knowing anything about the protocol execution except for
the ideal functionality’s inputs, we also have to turn the PKDR simu-
lation non-chronological. For this, we use the history-independence
simulator from Figure 18. That is, instead of computing PKDR ci-
phertexts, PKDR session states, and (insecure) PKDR keys with
a real, chronological PKDR protocol execution, we obtain these
values on demand by querying this simulator non-chronologically.

In total, this simulation equals our simulator fromAppendices C.1
and C.2. Showing that the probability of distinguishing a real MM
protocol execution from our simulator is negligible concludes our
proof. □

D ADDITIONAL PRIMITIVES
D.1 CKA
We now provide the formal security definition, detailed (more se-
cure) construction, and corresponding security analysis for the CKA
primitive from Section 3.1 used in our PR construction.
Security In Figure 13, we give a formal game-based security
definition for the CKA primitive introduced in Section 3.1. At a
high-level parties in CKA send key-establishing ciphertexts to one
another in a ping-pong order. The key of a ciphetext should be
secure as long as if the receiver is not corrupted (i) after it sent its
previous ciphertext or (ii) before it receives this ciphertext.

22

This security game is for selective-security, based on challenge
sender and ratchet P∗, 𝑡∗ specified by the adversary. In the security
game, parties are first initialized with some shared random key
(line 02). The adversary can invoke oracle Snd(P)when it is P’s turn
to send to the other party (line 07). The oracle then invokesCKA.snd
(line 09), from which the corresponding key 𝑘 and ciphertext 𝑐 is
returned.

The adversary can also invoke oracle Rcv(P) when it is P’s turn
to receive from the other party (line 19). The oracle then invokes
CKA.rcv (line 20), and the output key 𝑘 is checked with that which
was output by P’s most recent send (lines 22, 17, and 10) for cor-
rectness.

The adversary can also invoke oracle Expose(P) to expose the
state of one of the parties, after checking the following requirements.
If P is the challenge sender, then this exposure is always allowed;
otherwise, if P is the receiver, then it must not have just sent the
ciphertext before the challenge ratchet, for otherwise the adversary
could trivially win (line 12).

Finally, the adversary can invoke Chall(P) to send a challenge
ciphertext. First, the game checks if this challenge is for the correct
party and ratchet (line 14). Then, it invokes CKA.snd (line 16) from
which it returns only the ciphertext.

The goal of the adversary in this game is to recover the key 𝑘∗
corresponding to the challenge ciphertext. We remark that our PR
passes the CKA output through a random oracle, and thus recovery
security suffices for proving security of PR.

Definition D.1. A CKA scheme is selectively-secure against key-
recovery attacks if for any adversary A in the security game of
Figure 13, the probability it guesses challenge key 𝑘∗ is negligible.

History-Independence In order to prove security of our final
Mesh Messaging constructionMM, we need our PR construction to
be history-independent. We thus also require the same property for
the CKA from which we build PR. For CKA, history-independence
intuitively means each CKA state and ciphertext is independent of,
and thus can be simulated without, knowledge of the history of the
execution. We give a formal definition below.

First, let seq = (op1, op2, . . . , opℓ) be some sequence of CKA
operations. Recall that these will be invocation of CKA.snd and
CKA.rcv in ping-pong order. Now consider the execution of some
CKA protocol on seq. Also, let 𝑙 be a counter initialized to 0, and
SCKA be some stateful algorithm that is run given (possibly out-of-
order) information from the execution of seq through two possible
inputs:

• On input (sim-ct, 𝑡), SCKA outputs simulated ciphertext
𝑐 for ratchet 𝑡 , and current dictionary of all known keys,
𝐾 . Let sim-info[𝑙] ← (𝑐, 𝐾) and exec-info[𝑙] be the actual
ciphertext of ratchet 𝑡 , along with the real CKA keys for
ratchets 𝑡 in which 𝐾 [𝑡] ≠ ⊥. Increment 𝑙 = 𝑙 + 1.

• On input (sim-st, P, 𝑡),SCKA outputs some simulated ratchet
𝑡 state st for P, and current dictionary of all known shared
keys, 𝐾 . Let sim-info[𝑙] ← (st, 𝐾) and exec-info[𝑙] be the
actual state of party P at this point in the execution of
seq, along with the real CKA keys for ratchets 𝑡 in which
𝐾 [𝑡] ≠ ⊥. Increment 𝑙 = 𝑙 + 1.

Definition D.2. CKA is history-independent if for every seq, the
distributions sim-info and exec-info are computationally indistin-
guishable (over the randomness sampled by the algorithms of CKA
and SCKA).

Construction Our simple group-based construction presented
below is from [BFG+22]. It is secure and history-independent ifH is
modelled as a programmable random oracle and the Computational
Diffie-Hellman (CDH) assumption holds in the group 𝐺 ; i.e.,𝐺 is
CDH-secure.

• CKA.init(𝑥0) takes exponent 𝑥0, sets cstA ← 𝑔𝑥0 for the
first sender and cstB ← 𝑥0 for the first receiver.

• CKA.snd(cst) takes the current state cst = ℎ and proceeds
as follows:
(1) Samples random exponent 𝑥 , sets key 𝑘 ← ℎ𝑥 , and

ciphertext 𝑐 ← 𝑔𝑥 .
(2) Then sets new state cst ← 𝑥 · H(𝑘).
(3) Returns (cst, 𝑘, 𝑐)

• CKA.rcv(cst, ℎ) takes the current state cst = 𝑥 and message
ℎ and proceeds as follows:
(1) Computes key 𝑘 = ℎ𝑥 and sets new state cst ← ℎH(𝑘).
(2) Returns (cst, 𝑘).

Security Analysis We now prove that our CKA scheme is secure
and history-independent.

Theorem D.3. If H is modelled as a random oracle and𝐺 is CDH-
secure according to Definition [?], then CKA is selectively-secure
against key-recovery attacks.

Proof. Let (𝑔𝑎, 𝑔𝑏) be the CDH challenge. The reduction sim-
ulates the CKA protocol in a straight-forward way, except for
when embedding the CDH challenge. I.e., for every ratchet 𝑡 ∉

{𝑡∗ − 1, 𝑡∗, 𝑡∗ + 1}, it proceeds as normally in the protocol. Then:
• In ratchet 𝑡∗−1, it sets cct𝑡∗−1 ← 𝑔𝑎 , 𝑘𝑡∗−1 ← 𝑔𝑎 ·𝑥 ·H(𝑘𝑡∗−2)

and cstP∗ ← ⊥, where 𝑥 is the exponent used to simulate
cct𝑡∗−2 = 𝑔𝑥 .

• In ratchet 𝑡∗, it sets cct𝑡∗ ← 𝑔𝑏 , 𝑘𝑡∗ ← 𝑔𝑎𝑏 ·H(𝑘𝑡∗−1) (implic-
itly), 𝑦 ←$ X, and cstP∗ ← 𝑦.

• In ratchet 𝑡∗ + 1, it randomly samples 𝑥 ′ as in the protocol,
and sets cct𝑡∗+1 ← 𝑔𝑥

′
, 𝑘𝑡∗+1 ← 𝑔𝑦𝑥

′
.

The reduction guesses whether and when the adversary queries
the random oracle on 𝑘𝑡∗ . If it guesses that it does, it exponentiates
the corresponding input by H(𝑘𝑡∗−1)−1 and forwards this to its
challenger. Otherwise, it does the same for the adversary’s guess of
𝑘′. Note that the adversary can only distinguish randomly sampled
𝑦 from 𝑏 · H(𝑘𝑡∗) if it indeed queries the random oracle on 𝑘∗. If
it does before the reduction guesses so, the reduction will simply
forward a random group element to its challenger. Security thus
follows from that of the CDH-security of group 𝐺 .

Correctness of the scheme easily follows, too. □

Theorem D.4. CKA is history-independent if H is modelled as a
programmable random oracle.

Proof. We first specify SCKA. It initializes X[·], S[·],K[·] ← ⊥.
For every input (sim-ct, 𝑡), it samples random exponentX[𝑡]. If S[𝑡−
1] = ⊥, it samples it randomly. Then it sets K[𝑡] ← 𝑔X[𝑡] ·S[𝑡−1] .
Let 𝑡 ′ ← 𝑡 . It now runs the following function, which we call

23

Game RECP∗,𝑡∗
CKA (A)

00 𝑡A, 𝑡B ← 0
01 𝑘 ←$ K
02 (stA, stB)← CKA.init(𝑘)
03 𝑆 ← 𝐴; 𝑅 ← ⊥
04 𝑘last ← ⊥
05 𝑘′ ←$ A
06 Stop with 𝑘′ ?

= 𝑘∗

Oracle Snd(P)
07 Require 𝑆 = P
08 𝑡P ← 𝑡P + 1; 𝑆 ← ⊥; 𝑅 ← P
09 (stP, 𝑘, 𝑐)←$ CKA.snd(stP)
10 𝑘last ← 𝑘

11 Return (𝑘, 𝑐)

Oracle Expose(P)
12 Require P = P∗ ∨ 𝑡P ≠ 𝑡∗ − 1
13 Return stP

Oracle Chall(P)
14 Require 𝑆 = P = P∗ ∧ 𝑡P = 𝑡∗ − 1:
15 𝑡P ← 𝑡P + 1; 𝑆 ← ⊥; 𝑅 ← P
16 (stP, 𝑘∗, 𝑐)←$ CKA.snd(stP)
17 𝑘last ← 𝑘∗

18 Return 𝑐

Oracle Rcv(P)
19 Require 𝑅 = P
20 𝑡P ← 𝑡P + 1; 𝑅 ← ⊥; 𝑆 ← P
21 (stP, 𝑘)←$ CKA.rcv(stP, 𝑐)
22 If 𝑘 ≠ 𝑘last: WIN
23 Return

Figure 13: Game REC for defining security of CKA.

prog-loop(𝑡 ′): While S[𝑡 ′] = ⊥ ∧ X[𝑡 ′ + 1] ≠ ⊥; it sets S[𝑡 ′] ←
X[𝑡 ′] · H(K[𝑡 ′]) and K[𝑡 ′ + 1] ← 𝑔S[𝑡

′] ·X[𝑡 ′+1] , and increments
𝑡 ′ ← 𝑡 ′+1. Once the loop exits, if S[𝑡 ′] ≠ ⊥, it programsH(K[𝑡 ′]) B
S[𝑡 ′]/X[𝑡 ′]; otherwise, it sets S[𝑡 ′] ← X[𝑡 ′] · H(K[𝑡 ′]). After the
above execution of prog-loop(𝑡 ′), it returns (𝑔X[𝑡] ,K).

For every input (sim-st, P, 𝑡), if P sent in ratchet 𝑡 , SCKA checks
if S[𝑡] = ⊥. If so, it samples random exponent S[𝑡], and if also
X[𝑡 + 1] ≠ ⊥, it sets K[𝑡 + 1] ← 𝑔S[𝑡] ·X[𝑡+1] and 𝑡 ′ ← 𝑡 + 1, then
runs prog-loop(𝑡 ′). Finally, it returns (S[𝑡],K).

If P received in ratchet 𝑡 , SCKA checks if S[𝑡] ≠ ⊥. If so, it
returns (𝑔S[𝑡] , 𝐾); otherwise, it samples random S[𝑡], and if also
X[𝑡 + 1] ≠ ⊥, it sets K[𝑡 + 1] ← 𝑔S[𝑡] ·X[𝑡+1] and 𝑡 ′ ← 𝑡 + 1, then
runs prog-loop(𝑡 ′). Finally, it returns 𝑔S[𝑡] .

Now that we have specified SCKA, we argue that it provides
history-independence. Indeed, we can easily see that the distribu-
tions sim-info and exec-info are computationally-indistinguishable.
This is because in both, ciphertexts are always sampled randomly.
Also, states are always computed in an identical manner, except
for the case in which SCKA does not have sufficient information
to compute one and instead samples it randomly. H is modelled
as a programmable random oracle, so this is still an identical dis-
tribution because (i) if there is always insufficient information to
compute it; it is an output of H, so it is also randomly distributed
in exec-info, and (ii) if at some point there is sufficient information
to compute it; we can program H, so we still get an identical view
as in exec-info. A similar argument holds for the keys 𝐾 output
by the simulator. (There is only some negligible probability that
the distinguisher suceeds due to the fact that (with some negligible
probability), the random oracle can be queried on values before
they are programmed) □

D.2 Asynchronous CKA
We now provide the formal security definition, detailed (more se-
cure) construction, and corresponding security analysis for the
ACKA primitive from Section 3.1 used in our PR construction.
Security In Figure 14, we give a formal game-based security
definition for the ACKA primitive introduced in Section 3.1. At a
high-level parties in ACKA send key-establishing ciphertexts to
one another asynchronously in ratchets. Each new send esatblishes
a new PCS epoch pc for the sender. The key of a ciphetext in ratchet
𝑡 should be secure as long as if the receiver is not corrupted (i) after
it sent the newest ciphertext which the sender of the challenge
ciphertext had received before sending the challenge or (ii) before
it receives all ciphertexts of ratchet 𝑡 .

This security game is for selective-security, based on challenge
sender, ratchet, and pcs epoch: P∗, 𝑡∗, pc∗, respectively, specified
by the adversary. In the security game, parties are first initialized
with a shared random key (line 06). The adversary can query oracle
Snd(P) to send a new ciphertext from P. First, the oracle checks if P
should start a new ratchet, and if so, does it (lines 10-11). Then, it
invokes ACKA.snd on behalf of P (line 12), from which it returns
the corresponding 𝑘, 𝑐,md.

The adversary can also query oracle Expose(P) to expose the
state of one of the parties. The oracle first checks that if P is not
the challenge sender, that a challenge is currently not in progress
(line 16). If so, it adds to the set XPP of exposed PCS epochs for
P: Those epochs between P’s current view of P’s PCS latest PCS
epoch, and P’s actual PCS epoch (line 17).

The adversary can also query oracle Chall(P) which sends a chal-
lenge ciphertext. First, the oracle checks if P should start a new
ratchet, and if so, does it (lines 20-21). Then it checks (i) if P is the
challenge party P∗, and if their current ratchet and pcs epoch are
𝑡∗, pc∗; and (ii) that the epoch which P views as P’s current epoch
is not exposed (line 22). If these checks pass, then it sets that a chal-
lenge is currently in progress (line 24). It then invokes ACKA.snd

24

(line 25) and returns the corresponding challenge ciphertext and
medadata.

Finally, the adversary can query oracle Rcv(P, 𝑐,md), which in-
structs P to receive ciphertext and metadata 𝑐,md. First, the oracle
checks that this ciphertext, metadata pair is indeed in-transit from
P. (line 29). If so, it invokes ACKA.rcv on this pair (line 30). Then
it checks that the key and corresponding ratchet that ACKA.rcv
outputs is indeed correct (line 32). Finally, the oracle sets that a chal-
lenge is no longer in progress if every ciphertext from the challenge
ratchet has been received (line 36).

The goal of the adversary in this game is to recover the key 𝑘∗
corresponding to the challenge ciphertext. We remark that our
PR passes the ACKA output through a random oracle, and thus
recovery security suffices for proving security of PR.

Definition D.5. An ACKA scheme is selectively-secure against
key-recovery attacks if for any adversary A in the security game of
Figure 14, the probability it guessees challenge key 𝑘∗ is negligible.

History-Independence In order to prove security of our final
Mesh Messaging constructionMM, we need our PR construction to
be history-independent. We thus also require the same property for
theACKA fromwhichwe build PR. ForACKA, history-independence
intuitively means each ACKA state and ciphertext is independent
of, and thus can be simulated without, knowledge of the history of
the execution. We give a formal definition below.

First, let seq = (op1, op2, . . . , opℓ) be some sequence of ACKA
operations. We will take advantage of the bookkeeping in the secu-
rity game of Figure 14, and thus will specify this sequence in terms
of oracle calls to Snd, Rcv (as in Section E.2). Now consider the
execution of some ACKA protocol on seq. Also, let 𝑙 be a counter
initialized to 0, and SACKA be some stateful algorithm that is run
given (possibly out-of-order) information from the execution of seq
through two possible inputs:

• On input (sim-ct, P, 𝑡, 𝑖, pc, pcp, pcpinit, ℓprv), SACKA simu-
lates the 𝑖-th ciphertext 𝑐 and key 𝑘 of ratchet 𝑡 on behalf
of P, with P’s PCS epoch pc and P’s PCS epoch pcp. Ad-
ditionally pcpinit is P’s view of P’s PCS epoch at the start
of ratchet 𝑡 and ℓprv is the number of ciphertexts sent in
ratchet 𝑡 − 2. Let sim-info[𝑙] ← (𝑐, 𝑘) and exec-info[𝑙] be
the actual 𝑖-th ciphertext and key of ratchet 𝑡 produced
during the execution of seq. Increment 𝑙 = 𝑙 + 1.

• Let (𝑡, pc, pcp) be the respective values of (𝑡P, PCP [P], PCP [P])
at some point in the execution of seq. Also let 𝑖 be the num-
ber of times a ciphertext was sent in 𝑡P at this point in the
execution, and pc2ratch be a dictionary mapping pc values
to the ratchets 𝑡 in which they were initiated at this point
in the execution (i.e., the ratchet 𝑡 in which PCP [P] was
equal to pc). Let all-rcvd be an array storing 1 for index 𝑡 if
all messages of that ratchet have been received by P; 0 oth-
erwise. Finally, let pcprv, pcpinit, ℓprv be as above. On input
(sim-st, P, 𝑡, 𝑖, pc, pcp, pcprv, pcpinit, ℓprv, pc2ratch, all-rcvd),
SACKA outputs a simulated st. Let sim-info[𝑙] ← st and
exec-info[𝑙] be the actual state of party P at this point in
the execution of seq. Increment 𝑙 = 𝑙 + 1.

Definition D.6. ACKA is history-independent if for every seq,
the distributions sim-info and exec-info are computationally indis-
tinguishable (over the randomness sampled by the algorithms of
ACKA and SACKA).

Construction Our simple group-based construction presented
in Figure 15 is very similar to our CKA construction and relies on
techniques from [BFG+22]. It is secure and history-independent if
H is modelled as a programmable random oracle and the Computa-
tional Diffie-Hellman (CDH) assumptions holds in the group𝐺 ; i.e.,
𝐺 is CDH-secure.

The parties are first initialized with their own starting secret
exponent 𝑥 [0], and their counterpart’s starting public key 𝑔𝑥 [0]
(lines 03-04).

When one party P wants to send, it first checks if it should
start a new ratchet, and if so, does it (lines 07-08). It then samples
new exponent 𝑥 , computes the secret key acs by exponentiating
its current view of P’s public key ℎ with 𝑥 , and stores a new secret
exponent 𝑥 · H(acs) (lines 10-12).

When a party P wants to receive a ciphertext ℎ𝑐 ,md, it first
checks if the ciphertext establishes a new ratchet (line 20). If so,
it advances to the new ratchet, and uses subroutine end-ratch to
ensure that once all of the ciphertexts for the previous receiving
ratchet have been received, the secret keys which may have been
encrypted to during that ratchet are all deleted (lines 20-24). Next,
it derives the secret key acs by exponentiating the ℎ𝑐 part of the
ciphertext with the stored secret exponent corresponding to the
PCS epoch pcp′ of P which P indicated it sent to in md (line 25).
Finally, P checks if it needs to update its current PCS epoch view
of P, and if so, updates the public key for P by exponentiating the
ℎ𝑐 part of the ciphertext by H(acs) just derived (lines 26-28).
Security Analysis We now prove that our ACKA scheme is
secure and history-independent.

Theorem D.7. If H is modelled as a random oracle and 𝐺 is
CDH-secure according to Definition F.1, then ACKA in Figure 15
is selectively-secure against key-recovery attacks.

Proof. Let (𝑔𝑎, 𝑔𝑏) be the CDH challenge. The reduction sim-
ulates the ACKA protocol in a straight-forward way, except for
when embedding the CDH challenge. I.e., for every ratchet 𝑡 ∉

{𝑡∗ − 1, 𝑡∗, 𝑡∗ + 1}, it proceeds as normal in the protocol. Then:
• In ratchet 𝑡∗−1, it guesses pcs epoch pc to be that which P∗

will use to establish the challenge key; if it guesses wrong,
it returns a random group element to the challenger. It is
easy to see that the reduction can make this guess with
only non-negligible loss in success probability. For the it-
eration of ACKA.snd corresponding to pc, let pc′ be the
corresponding pcs epoch of P∗ for which a key is estab-
lished. The reduction sets acct ← 𝑔𝑎 , acs ← 𝑔𝑎·𝑥P∗ [pc

′]

and 𝑥P∗ [pc] ← ⊥. For all other iterations, it will proceed
as in the protocol.

• In ratchet 𝑡∗, for all pc ≠ pc∗, it will proceed as in the
protocol. For pc∗, it will set acct ← 𝑔𝑏 , acs∗ ← 𝑔𝑎𝑏 ·H(acs)

(implicitly), 𝑦 ←$ X and 𝑥P∗ [pc∗] ← 𝑦.
• In ratchet 𝑡∗ + 1, when P establishes keys with pcs epoch

pc∗ of P∗ and its own pcs epoch pc′′, it randomly samples
25

Game RECP∗,𝑡∗,pc∗
ACKA (A)

00 ACA [·],ACB [·] ← ⊥
01 PCA [·], PCB [·] ← 0
02 𝑡A, 𝑡B ← 0
03 ch← 0
04 XPA,XPB ← ∅
05 𝑘 ←$ K
06 (stA, stB)← ACKA.init(𝑘)
07 snd-parA ← 1; snd-parB ← 0
08 𝑘′ ←$ A
09 Stop with 𝑘′ ?

= 𝑘∗

Oracle Snd(P)
10 If 𝑡P mod 2 ≠ snd-parP:
11 𝑡P ← 𝑡P + 1
12 (stP, 𝑘, 𝑐,md)←$ ACKA.snd(stP)
13 ACP [(𝑐,md)] ← (𝑡P, PCP [P], 𝑘)
14 PCP [P] ← PCP [P] + 1
15 Return (𝑘, 𝑐,md)

Oracle Expose(P)
16 Require P = P∗ ∨ ch = 0
17 XPP

∪← {pc : PCP [P] ≤ pc < PCP [P]}
18 Return stP

Oracle Chall(P)
19 𝑡 ′P ← 𝑡P
20 If 𝑡 ′P mod 2 ≠ snd-parP:
21 𝑡 ′P ← 𝑡P + 1
22 Require P = P∗ ∧ 𝑡 ′P = 𝑡∗ ∧

PCP [P] = pc∗ ∧ PCP [P] ∉ XPP
23 𝑡P ← 𝑡 ′P
24 ch← 1
25 (stP, 𝑘∗, 𝑐,md)←$ ACKA.snd(stP)
26 ACP [(𝑐,md)] ← (𝑡P, PCP [P], 𝑘∗)
27 PCP [P] ← PCP [P] + 1
28 Return (𝑐,md)

Oracle Rcv(P, 𝑐,md)
29 Require ACP [(𝑐,md)] ≠ ⊥
30 (stP, 𝑘, (𝑡, ℓ))←$ ACKA.rcv(stP, 𝑐,md)
31 (𝑡 ′, pc′, 𝑘′)← ACP [(𝑐,md)]
32 If (𝑡 ′, 𝑘′) ≠ (𝑘, 𝑡): WIN
33 𝑡P ← max{𝑡P, 𝑡}
34 PCP [P] ← max{PCP [P], pc′}
35 ACP [(𝑐,md)] ← ⊥
36 If ch = 1 ∧ P = P∗ ∧ 𝑡P ≥ 𝑡∗ + 2 ∧
�(𝑐′,md′) : ACP [(𝑐

′,md′)] = (𝑡∗, ·, ·):
37 ch← 0
38 Return

Figure 14: Game REC for defining security of ACKA.

𝑥P∗ [pc
′′] as in the protocol, and sets acct ← 𝑔

𝑥P∗ [pc
′′] ,

acs′ ← 𝑔
𝑥P∗ [pc∗] ·𝑥P∗ [pc

′′] .

The reduction guesses whether and when the adversary queries the
random oracle on acs∗. If it guessues that it does, it exponentiates
the corresponding input by H(acs)−1 and forwards this to its chal-
lenger. Otherwise, it does the sme for the adverary’s guess of acs∗.
Note that the adversary can only distinguish randomly sampled
𝑥P∗ [pc∗] from 𝑏 · H(acs∗) if it indeed queries the random oracle on
acs∗. If it does before the reduction guesses so, the reduction will
simply forward a random group element to its challenger. Thus
security follows.

Correctness of the scheme easily follows, too. □

Theorem D.8. ACKA is history-independent if H is modelled as
a programmable random oracle.

Proof. We first specify SACKA. It initializes XA [·] [·], SA [·],
XB [·] [·], SB [·], PCA [·] [·], PCB [·] [·], KA [·], KB [·] ← ⊥. For every
input (sim-ct, P, 𝑡, 𝑖, pc, pcp, pcpinit, ℓprv):

• Samples random exponent XP [𝑡] [𝑖] and sets PCP [𝑡] [𝑖] ←
(pc, pcp).
• If SP [pcp] = ⊥: samples random SP [pcp].
• Sets KP [pc] ← 𝑔SP [pcp] ·XP [𝑡] [𝑖]

• If SP [pc] = ⊥:
– Sets SP [pc] ← XP [𝑡] [𝑖] · H(KP [pc]).

– Sets pc′ ← pc, 𝑡 ′ ← 𝑡 + 1, 𝑖′ ← min{𝑖∗ : PCP [𝑡
′ +

1] [𝑖∗] [1] = pc},11 P′ ← P
– Runs prog-loop(pc′, 𝑡 ′, 𝑖′, P′) (defined below).

• Otherwise, it programs H(KP [pc]) B SP [pc]/XP [𝑡] [𝑖].
• Finally, it returns (𝑔XP [𝑡] [𝑖] , (𝑡, pc, pcp, pcpinit, ℓprv),KP [pc]]).

prog-loop(pc′, 𝑡 ′, 𝑖′, P′) is defined as follows:
• While PC[𝑡 ′] [𝑖′] [1] = pc′:

(1) If XP′ [𝑡 ′] [𝑖′] ≠ ⊥: sets
KP′ [PC[𝑡 ′] [𝑖′] [0]] ← 𝑔

SP′ [pc
′] ·XP′ [𝑡 ′] [𝑖′] ; otherwise

skips to step 4.
(2) Then, if SP′ [PC[𝑡 ′] [𝑖′] [0]] = ⊥;

it sets SP′ [PC[𝑡 ′] [𝑖′] [0]]
← XP′ [𝑡 ′] [𝑖′] · H(KP′ [PC[𝑡 ′] [𝑖′] [0]])
and pc′ ← PC[𝑡 ′] [𝑖′] [0], 𝑡 ′ ← 𝑡 ′ + 1,
𝑗 ′ ← min{ 𝑗∗ : PCP′ [𝑡

′ + 1] [𝑗∗] [1] = pc′}, P′ ← P′,
then runs prog-loop(pc′, 𝑡 ′, 𝑗 ′, P′).

(3) Otherwise, it programs H(KP′ [PC[𝑡 ′] [𝑖′] [0]])
B SP′ [PC[𝑡 ′] [𝑖′] [0]]/XP′ [𝑡 ′] [𝑖′].

(4) Finally, increments 𝑖′ ← 𝑖′ + 1.
For every input (sim-st, P, 𝑡, 𝑖, pc, pcp, pcprv, pcpinit, ℓprv, pc2ratch,

all-rcvd), SACKA executes:
• Sets 𝑥P [·] ← ⊥
• For every pc′ ≤ pc : ¬all-rcvd(pc2ratch[pc′]):

– If SP [pc′] = ⊥: samples random SP [pc′] and sets
pc′′ ← pc′, 𝑡 ′ ← pc2ratch[pc′] + 1, 𝑖′ ← min{𝑖∗ :

11𝑖′ ←∞ if there is no such 𝑖∗

26

Proc ACKA.init(𝑘)
00 pc, pcp, pcprv, pcpinit, 𝑡, 𝑖, ℓprv ← 0
01 (𝑥A [0], 𝑥B [0])← 𝑘

02 snd-parA ← 1; snd-parB ← 0
03 stA ← (snd-parA, pc, pcp, pcprv,

pcpinit, 𝑡, 𝑖, ℓprv, 𝑥A, 𝑔
𝑥B [0])

04 stB ← (snd-parB, pc, pcp, pcprv,
pcpinit, 𝑡, 𝑖, ℓprv, 𝑥B, 𝑔

𝑥A [0])
05 Return (stA, stB)

Proc ACKA.snd(st)
06 (snd-parP, pc, pcp, pcprv,

pcpinit, 𝑡, 𝑖, ℓprv, 𝑥P, ℎ)← st
07 If 𝑡P mod 2 ≠ snd-parP:
08 𝑡P ← 𝑡P + 1; 𝑖 ← 0
09 pcpinit ← pcp
10 𝑥 ←$ X
11 acs← ℎ𝑥

12 𝑥P [pc + 1] ← 𝑥 · H(acs)
13 pc ← pc + 1
14 𝑖 ← 𝑖 + 1
15 st ← (snd-parP, pc, pcp, pcprv,

pcpinit, 𝑡, 𝑖, ℓprv, 𝑥P, ℎ)
16 md ← (𝑡P, pc, pcp, pcpinit, ℓprv)
17 Return (st, acs, 𝑔𝑥 ,md)

Proc ACKA.rcv(st, ℎ𝑐 ,md)
18 (snd-parP, pc, pcp, pcprv,

pcpinit, 𝑡, 𝑖, ℓprv, 𝑥P, ℎ)← st
19 (𝑡, pc′, pcp′, pcp′init, ℓ)← md
20 If 𝑡 > 𝑡P:
21 ℓprv ← 𝑖

22 end-ratch(𝑥P, pcprv, pcp′init − 1, ℓ)
23 pcprv ← pcp′init
24 𝑡P ← 𝑡

25 acs← ℎ
𝑥P [pcp′]
𝑐

26 If pc′ > pcp:
27 pcp← pc′

28 ℎ ← ℎ
H(acs)
𝑐

29 st ← (snd-parP, pc, pcp, pcprv,
pcpinit, 𝑡, 𝑖, ℓprv, 𝑥P, ℎ)

30 Return (𝑠𝑡, acs, (𝑡P, ℓ))

Figure 15: Construction of ACKA. end-ratch(𝑋, strt, end, ℓ) remembers ℓ internally such that once 𝑋 [𝑦] for 𝑦 ∈ [strt, end] have
collectively been used to receive ℓ keys, they are each deleted. The construction includes in medadata md components which
will appear duplicated in the medadata of our PR construction. We thus remove these duplicates in PR in our ultimate
implementation.

PCP [𝑡
′] [𝑖∗] = pc′}, and P′ ← P,

then runs prog-loop(pc′′, 𝑡 ′, 𝑖′, P′).
– Sets 𝑥P [pc′] ← SP [pc′]

• If SP [pcp] = ⊥:
– Samples random SP [pcp] and sets 𝑡 ′ ← 𝑡 + 1 if P

received in epoch 𝑡 , or 𝑡 ′ ← 𝑡 if P sent in epoch 𝑡 ,
𝑖′ ← min{𝑖∗ : PCP [𝑡 ′] [𝑖∗] = pcp}, and P′ ← P, then
runs prog-loop(pc′, 𝑡 ′, 𝑖′, P′).

• Returns (snd-parP, pc, pcp, pcprv, pcpinit, 𝑡, 𝑖, ℓprv,𝑥P, 𝑔
SP [pcp])

Now that we have specified SACKA, we argue that it provides
history-independence. Indeed, we can easily see that the distribu-
tions sim-info and exec-info are computationally-indistinguishable.
This is because in both, ciphertexts are always sampled randomly.
Also, states are always computed in an identical manner, except
for the case in which SACKA does not have sufficient information
to compute one and instead samples it randomly. H is modelled
as a programmable random oracle, so this is still an identical dis-
tribution because (i) if there is always insufficient information to
compute it; it is an output of H, so it is also randomly distributed
in exec-info, and (ii) if at some point there is sufficient information
to compute it; we can program H, so we still get an identical view
as in exec-info. (There is only some negligible probability that the
distinguisher suceeds due to the fact that (with some negligible

probability), the random oracle can be queried on values before
they are programmed) □

E PUBLIC-KEY DOUBLE RATCHET FORMAL
DETAILS

We now provide the formal security definition for the Public-Key
Double Ratchet (PR) and the security analysis for our construction
from Section 3.

E.1 Security
In Figure 16, we give a formal game-based security definition for
the PR. The game first initializes the parties with some shared key
material (line 08).

The adversary can query oracle Snd(P) for a send from party P.
The oracle first checks if P should start a new ratchet, and accounts
for it if so (lines 12-13). It then invokes PR.snd (line 14), from which
it returns ciphertext and metadata (𝑐,md).

The adversary can also query oracle Reveal(𝑡, 𝑖), which reveals
the key generated for index 𝑖 of ratchet 𝑡 . The oracle first checks
that the corresponding ciphertext has been sent already (line 44)
and that (𝑡, 𝑖) has not already been challenged (line 46). It then
returns the key.

The adversary can query oracle Rcv(P, 𝑐,md) which instructs
party P to receive ciphertext (𝑐,md). The oracle first checks that

27

this ciphertext is indeed in-transit (line 21). Then, it invokes PR.rcv
on (𝑐,md) (line 22). The game then checks that the output keys
rak and 𝑘 , as well as index 𝑖 within ratchet 𝑡 for this ciphertext are
correct (line 25). Finally, the oracle checks for each old receiving
ratchet whether all ciphertexts for that ratchet have been received;
if so, it sets that the PCS epochs for this ratchet are no longer
challenged (lines 29-30).

The adversary can also query oracle Expose(P) which exposes
the state of party P. First, the oracle checks that none of P’s PCS
epochs are currently being challenged and there are no challenge
ciphertexts in-transit (33). It then sets all unreceived double ratchet
keys as exposed (lines 34-39). It then sets as exposed all PCS epochs
that are used for decrypting ciphertexts in ratchets where there are
still in-transit ciphertexts (lines 41-42).

Finally, the adversary can query oracle Chall(𝑡, 𝑖) which gives
it a real-or-random key corresponding to the 𝑖-th index of ratchet
𝑡 . For this, it first checks that (i) the corresponding ciphertext has
already been sent, (ii) the key has not already been revealed, and (iii)
either the corresponding pcs epoch or double ratchet key is secure
(lines 50-57). Then, if security relies on the pcs epoch, it sets as such
for the ratchet (lines 58-59). Finally, depending on challenge bit 𝑏,
it returns either random challenge key or the actual key computed
for the (𝑡, 𝑖) ciphertext (lines 61-64).

The goal of the adversary is to successfully guess the challenge
bit 𝑏.

Definition E.1. A PR scheme is secure if for any adversary A in
the security game of Figure 16, the probability it guesses challenge
bit 𝑏 is at most 1/2+ negligible.

E.2 History-Independence
For our Mesh Messaging construction, we require an additional
property from our PR construction thatwe name history-independence.
Intuitively, we require that future ciphertexts and secret values in
future states look pseudorandom even given current ciphertexts
and secret values in current states. Now we give a more formal
definition.

First, let seq = (op1, op2, . . . , opℓ) be some sequence of PR oper-
ations. We will take advantage of the bookkeeping in the security
game of Figure 16, and thus will specify this sequence in terms of
oracle calls. Namely, each op𝑖 is of the form Snd(P) or Rcv(P, 𝑐,md),
for P ∈ {A, B}. Now consider the execution of some PR protocol on
seq, where first lines 00-09 of Figure 16 are executed:

• For each op𝑖 of the form (PR.snd, P), the code of oracle call
Snd(P) is executed.

• For each op𝑖 of the form (PR.rcv, P, 𝑐,md), the code of ora-
cle call Rcv(P, 𝑐,md) is executed.

Now, let 𝑙 be a counter initialized to 0, and SPR be some stateful
algorithm that is run given information from the execution of seq
through two possible inputs:

• On input (sim-ct, P𝑠 , P𝑟 , 𝑡, 𝑖, pc, pcp, pcpinit, ℓprv), SPR sim-
ulates (i) ciphertext 𝑐 with (ii) associated data ℎ and (iii)
corresponding message key 𝑘mk from P𝑠 to P𝑟 in ratchet
𝑡 at index 𝑖 with P𝑠 ’s PCS epoch pc and P𝑟 ’s PCS epoch
pcp, and (iv) ratchet key rak output by P𝑟 ’s most recent
ratchet. Additionally pcpinit is P𝑠 ’s view of P𝑟 ’s PCS epoch

at the start of ratchet 𝑡 and ℓprv is the number of cipher-
texts sent in ratchet 𝑡 − 2. Let sim-info[𝑙] ← (𝑐, ℎ, 𝑘mk, rak)
and exec-info[𝑙] be the actual ciphertext, associated data,
message key, and ratchet key output by the Snd(P) oracle
corresponding to the operation op𝑗 ∈ seq at the beginning
of which 𝑡P = 𝑡 and 𝑖P = 𝑖 . Increment 𝑙 = 𝑙 + 1.

• Let (𝑡, 𝑖, pc, afs) be the respective values of (𝑡P, 𝑖P, PCP [P], FSP)
at some point in the execution of seq. Also let 𝑖 be the num-
ber of times a ciphertext was sent in 𝑡P at this point in
the execution, and pc2ratch be a dictionary mapping pc
values to the ratchets 𝑡 in which they were initiated at this
point in the execution (i.e., the ratchet 𝑡 in which PCP [P]
was set to pc). Let all-rcvd be an array storing 1 for index
𝑡 if all messages of that ratchet have been received by P;
0 otherwise. Finally, let pcprv, pcpinit, ℓprv be as above. On
input (sim-st, P, 𝑡, 𝑖, pc, pcp, pcprv, pcpinit, ℓprv, afs, pc2ratch,
all-rcvd), SPR outputs (i) a simulated state st for P with
these state variables and (ii) array of ratchet keys rak
generated with ratchets 𝑡, 𝑡 + 1 and all previous 𝑡 ′ for
which all-rcvd [𝑡 ′] = 0. Let sim-info[𝑙] ← (st, rak) and
exec-info[𝑙] be the actual state of party P along with the
corresponding ratchet key array rak at this point in the
execution of seq. Increment 𝑙 = 𝑙 + 1.

Definition E.2. PR is history-independent if for every seq, the
distributions sim-info and exec-info are computationally indistin-
guishable (over the randomness sampled by the algorithms of PR
and SPR).

E.3 PR Full Construction and Comparison to
ACD19

We provide the full version of our PR construction in Figure 17. We
simply make the states explicit and write out subroutine find-and-
del-drk in full.

We here also compare the added public-key layer of security to
the original DR which our PR provides to that of [ACD19]. First,
their construction provides a public-key layer of authenticity, via
digital signatures, which we do not attempt to provide at all. Their
construction also provides a public-key layer of confidentiality (like
ours). Yet, their confidentiality guarantees are weaker than ours.
Their construction only has a user publish a new public key for
each new ratchet, while our construction has a user publish a new
public key for each new message sent, which is clearly more secure.

E.4 PR Security Analysis
Theorem E.3. If CKA is a secure CKA, ACKA is a secure ACKA,

H1 and H3 are modelled as random oracles, and H2 is a PRG, then
PR in Figure 2 is secure.

For simplicity, we first consider those adversaries that only query
the challenge oracle once. Security against those adversaries which
query the challenge oracle an arbitary polynomially-many times
follows by a standard hybrid argument.

Now, we consider two types of adversaries:
(1) Adversaries who query the challenge oracle for ratchet

and index 𝑡∗, 𝑖∗ such that 𝑖∗ ∉ TXP [𝑡∗]
(2) All other adversaries.

28

Game IND𝑏
PR(A)

00 ACA [·],ACB [·],K [·] [·] [·] ← ⊥
01 CH , REV ← ∅
02 PCA [·], PCB [·], PCCH [·] ← 0
03 PC2TA [·], PC2TB [·] ← 0
04 𝑡A, 𝑡B ← 0; 𝑖A, 𝑖B ← 0;
05 FSA [·], FSB [·] ← [∞]
06 PXPA, PXPB, TXP [·] ← ∅
07 𝑘 ←$ K
08 (stA, stB)← PR.init(𝑘)
09 snd-parA ← 1; snd-parB ← 0
10 𝑏′ ←$ A
11 Stop with 𝑏′

Oracle Snd(P)
12 If 𝑡P mod 2 ≠ snd-parP:
13 𝑡P ← 𝑡P + 1; 𝑖P ← 0
14 (stP, rak, 𝑘, 𝑐,md)←$ PR.snd(stP)
15 ACP [(𝑐,md)] ← (𝑡P, 𝑖P, PCP [P], rak, 𝑘)
16 K [𝑡P] [𝑖P] [PCP [P]] ← (rak, 𝑘)
17 PC2TP [PCP [P]] ← 𝑡P
18 PCP [P] ← PCP [P] + 1
19 𝑖P ← 𝑖P + 1
20 Return (𝑐,md)

Oracle Rcv(P, 𝑐,md)
21 Require ACP [(𝑐,md)] ≠ ⊥
22 (stP, rak, 𝑘, (𝑡, 𝑖))←$ PR.rcv(stP, 𝑐,md)
23 𝑡P ← max{𝑡P, 𝑡}
24 (𝑡 ′, 𝑖′, pc′, rak′, 𝑘′)← ACP [(𝑐,md)]
25 If (rak′, 𝑘′, 𝑡 ′, 𝑖′) ≠ (rak, 𝑘, 𝑡, 𝑖): WIN
26 FSP [𝑡] ← FSP [𝑡] \ {𝑖}
27 PCP [P] ← max{PCP [P], pc′}
28 ACP [(𝑐,md)] ← ⊥
29 For all 𝑡 ≤ 𝑡P − 2 : 𝑡 mod 2 ≠ snd-parP:
30 If �(𝑐′,md′) : ACP [(𝑐

′,md′)] = (𝑡, ·, ·, ·, ·):
31 PCCH [𝑡] ← 0
32 Return

Oracle Expose(P)
33 Require (∀𝑡 : 𝑡 mod 2 ≠ snd-parP :

PCCH [𝑡] = 0 ∧ �(𝑡, 𝑖) ∈ CH :
∃(𝑐,md) : ACP [(𝑐,md)] = (𝑡, 𝑖, ·, ·, ·))

34 For all 𝑡 : 𝑡 ≤ 𝑡P ∧ 𝑡 mod 2 ≠ snd-parP:
35 TXP [𝑡] ∪← FSP [𝑡]
36 tlast-rcv ← 𝑡P
37 If 𝑡P mod 2 = snd-parP:
38 TXP [𝑡P]

∪← [∞] \ [𝑖P]
39 TXP [𝑡P + 1] ← [∞]
40 tlast-rcv ← 𝑡P − 1
41 For all pc : PC2TP [pc] + 1 = tlast-rcv∨
∃(𝑐,md) : ACP [(𝑐,md)] = (PC2TP [pc] + 1, ·, ·, ·, ·) :

42 PXPP
∪← {pc}

43 Return stP
Oracle Reveal(𝑡, 𝑖)
44 P← P′ : 𝑡 mod 2 = snd-parP′
45 Require 𝑡P ≥ 𝑡 ∧ 𝑖P > 𝑖

46 Require (𝑡, 𝑖) ∉ CH
47 REV ∪← {(𝑡, 𝑖)}
48 pc ← pc′ : K [𝑡] [𝑖] [pc′] ≠ ⊥
49 Return K [𝑡] [𝑖] [pc]
Oracle Chall(𝑡, 𝑖)
50 P← P′ : 𝑡 mod 2 = snd-parP′
51 Require 𝑡P ≥ 𝑡 ∧ 𝑖P > 𝑖

52 Require (𝑡, 𝑖) ∉ REV
53 pc ← pc′ : K [𝑡] [𝑖] [pc′] ≠ ⊥
54 If 𝑖 = 0:
55 Require 𝑖 ∉ TXP [𝑡]
56 Else:
57 Require pc ∉ PXPP ∨ 𝑖 ∉ TXP [𝑡]
58 If 𝑖 ∈ TXP [𝑡] ∧ (𝑡P < 𝑡 + 2 ∨ ∃(𝑐,md) :

ACP [(𝑐,md)] = (𝑡, ·, ·, ·, ·)):
59 PCCH [𝑡] ← 1
60 CH ∪← {(𝑡, 𝑖)}
61 If 𝑏 = 1:
62 𝑘 ←$ K ; rak ← ⊥
63 If 𝑖 = 0: rak ←$ RAK
64 Else: (rak, 𝑘)← K [𝑡] [𝑖] [pc]
65 Return (rak, 𝑘)

Figure 16: Game IND for defining security of PKDR.

First, we handle Type 1 adversaries.

Lemma E.4. If CKA is a secure CKA, H1,H3 are random oracles,
and H2 is a PRG, then PR in Figure 2 is secure against Type 1 adver-
saries.

We first prove security with respect to a weakened PR secu-
rity notion. Namely, at the beginning of the game, the adversary
specifies P, 𝑡∗, 𝑖∗, 𝑡PL , and 𝑡

P
L , where P is the party that creates the

challenge key, 𝑡∗, 𝑖∗ are the ratchet and index within that ratchet,
respectively, of the challenge key, and 𝑡PL , 𝑡

P
L are the last ratchets

in which P, P (according to their view of the latest ratchet) will
be corrupted before 𝑡∗. The Chall oracle is augmented to have an
additional “Require” statement that mandates queried (𝑡, 𝑖) = (𝑡∗, 𝑖∗).
The Reveal oracle is correspondingly augmented to have an addi-
tional “Require” statement that mandates queried (𝑡, 𝑖) ≠ (𝑡∗, 𝑖∗).
Also, if for any query to Expose(P), 𝑡P ∈ {𝑡PL + 1, . . . , 𝑡

∗ − 1}, the
attacker immediately loses the game. Similarly, if for any query to
Expose(P), 𝑡P ∈ {𝑡

P
L + 1, . . . , 𝑡

∗ − 2}, the attacker immediately loses
the game.

29

Proc PR.init(𝑘)
00 (rk, ck[0], 𝑘ACKA, 𝑘CKA)← 𝑘

01 𝑡, i, 𝑖rcv, ℓprv ← 0; cct, ck[·], drk[·] [·] ← ⊥
02 turn← A
03 (cstA, cstB)← CKA.init(𝑘CKA)
04 (acstA, acstB)← ACKA.init(𝑘ACKA)
05 stA ← (rk, cstA, cct, acstA, ck, drk, turn, 𝑡, i, 𝑖rcv, ℓprv)
06 stB ← (rk, cstB, cct, acstB, ck, drk, turn, 𝑡, i, 𝑖rcv, ℓprv)

Proc PR.snd(st)
07 (rk, cst, cct, acst, ck, drk, turn, 𝑡P, i, 𝑖rcv, ℓprv)← st
08 rak ← ⊥
09 If turn = P:
10 (cs, cct)←$ CKA.snd(cst)
11 (rk, ck[𝑡P + 1], rak)← H1(rk, cs)
12 𝑡P ← 𝑡P + 1; i← 0; turn← P
13 (ck[𝑡P], drk)← H2(ck[𝑡P])
14 (acs, acct,md)←$ ACKA.snd(acst)
15 ℎ ← (md, 𝑡P, i, cct, ℓprv)
16 𝑘mk ← H3(acs, drk, (ℎ, acct))
17 i← i + 1
18 st ← (rk, cst, cct, acst, ck, drk, turn, 𝑡P, i, 𝑖rcv, ℓprv)
19 Return (st, rak, 𝑘mk, acct, ℎ, (𝑡P, i − 1))

Proc PR.rcv(st, acct, ℎ)
20 (rk, cst, cct, acst, ck, drk, turn, 𝑡P, 𝑖, 𝑖rcv, ℓprv)← st
21 (md, 𝑡, 𝑖, cct′, ℓ)← ℎ

22 rak ← ⊥
23 If 𝑡 > 𝑡P:
24 ck[𝑡P] ← ⊥; ℓprv ← i; 𝑖rcv ← 0
25 𝑡P ← 𝑡 ; turn← P
26 end-ratch(ck[𝑡P − 2], ℓ)
27 (cst, cs)← CKA.rcv(cst, cct′)
28 (rk, ck[𝑡], rak)← H1(rk, cs)
29 𝑘 ← drk[𝑡] [𝑖]
30 drk[𝑡] [𝑖] ← ⊥
31 If 𝑘 = ⊥ ∧ (𝑡 ≤ 𝑡P − 2 ∨ 𝑖 < 𝑖rcv):
32 Return (st,⊥)
33 Else if 𝑘 = ⊥ ∧ 𝑡 > 𝑡P − 2 ∧ 𝑖 ≥ 𝑖rcv:
34 While 𝑖rcv < 𝑖:
35 (ck[𝑡], drk[𝑡] [𝑖rcv])← H2(ck[𝑡])
36 𝑖rcv ← 𝑖rcv + 1
37 (ck[𝑡], 𝑘)← H2(ck[𝑡])
38 𝑖rcv ← 𝑖 + 1
39 (acst, acs)← ACKA.rcv(acst, acct,md)
40 𝑘mk ← H3(acs, drk, (ℎ, acct))
41 st ← (rk, cst, cct, acst, ck, drk, turn, 𝑡P, i, 𝑖rcv, ℓprv)
42 Return (st, rak, 𝑘mk, (𝑡, 𝑖))

Figure 17: Full version of PR construction from Section 3.

First we show that if a PR is secure with respect to the weakened
notion, then it is secure with respect to our standard notion (with
some security loss).

Lemma E.5. If PR is secure with respect to the weakened security
notion described above, then it is secure with respect to the game of
Figure 16, both against a Type 1 adversary.

Proof. The reduction will first guess 𝑡PL , 𝑡
P
L , 𝑡
∗, 𝑖∗ such that 𝑡PL <

𝑡∗ and 𝑡PL < 𝑡∗ − 1. It can easily be seen that the reduction can
make these guesses with only non-negligible security loss. Indeed,
if the adversary queries Chall for (𝑡P, 𝑖P) ≠ (𝑡∗, 𝑖∗), or Reveal for
(𝑡∗, 𝑖∗), the reduction simply sends a random guess bit 𝑏 to its chal-
lenger. Moreover, if the adversary queries Expose(P) for 𝑡P > 𝑡PL or
Expose(P) for 𝑡P > 𝑡PL , the reduction does the same.

For all other queries from the adversary, the reduction simply
forwards them to its challenger, and outputs the response back to
the adversary. This can easily be seen to simulate the stronger game
properly. The reduction then simply forwards the guess bit 𝑏′ from
the adversary to its challenger. □

Now, we show that PR is secure with respect to the weakened
notion against Type 1 adversaries via a sequence of hybrids.

Hybrid H0. This is the original weakened security game with
challenge bit 𝑏 = 0.

HybridH1. Denote by (rk1, ck[1]), (rk2, ck[2]), . . . the outputs of
H1 for each ratchet, and let 𝑡L ← max{𝑡PL , 𝑡

P
L }. If the sender of 𝑡L is

indeed corrupted, then let 𝑡heal ← 𝑡L+2; otherwise, let 𝑡heal ← 𝑡L+1.

H1 works asH0, except that (rk𝑡 , ck[𝑡]) are replacedwith uniformly
random values for all 𝑡heal ≤ 𝑡 ≤ 𝑡∗

Lemma E.6. If CKA is a secure CKA and H1 is modelled as a
random oracle, then hybridsH0 andH1 are indistinguishable.

Proof. We proceed by a simple reduction to the security ofCKA.
The reduction initializes state as normal, except that it implicitly
intializes the state of CKA via the challenger, with challenge ratchet
𝑡heal. To simulate all Snd queries except for the first one in ratchet
𝑡heal, and all Rcv queries, the reduction performs all steps as normal,
except it queries the respective oracles of the CKA game and uses
its outputs accordingly. For the first Snd query in ratchet 𝑡heal, the
reduction performs all steps as normal, except it queries its CKA
Chall oracle and uses its output 𝑐 along with its own randomly
sampled (rk𝑡heal , ck[𝑡heal]). For Reveal queries, the reduction outputs
the key it computed for ratchet 𝑡 , index 𝑖 . For the adversary’s Chall
query, the reduction outputs the key it computed for ratchet 𝑡∗,
index 𝑖∗. To simluate Expose queries, the reduction will query the
Expose oracle of the CKA game to obtain cst and return the entire
state as normal.

It is easy to see that the reduction simulates both H0 and H1
correctly and the adversary can only attempt to succesfully find
out otherwise if it queries the random oracle on cs∗, the challenge
CKA key. Indeed, for corruptions, due to 𝑡heal’s relation to 𝑡PL and
𝑡PL , corruptions will be allowed by the CKA game. So the reduction
guesses which random oracle query corresponds to the above, and
forwards its input to the challenger. □

30

HybridH3.H3 works asH2, except 𝑘mk output by H3 for index
𝑖∗ of ratchet 𝑡∗ is replaced by uniformly random.

Lemma E.7. If H2 is a PRG and H3 is modelled as a random oracle,
then HybridsH2 andH3 are indistinguishable.

Proof. Denote by (ck1, 𝑘1), (ck2, 𝑘2), . . . the outputs of H2 for
all indices 𝑖 of ratchet 𝑡∗. This lemma follows by a straightforward
hybrid argument to the PRG security of H2, for each 𝑖 ≤ 𝑖∗. Namely,
for each such 𝑖 we use the fact that ck𝑖−1 is uniformly random
to argue that (ck𝑖 , 𝑘𝑖) is indistinguishable from uniformly random.
Based on 𝑘𝑖∗ being uniformly random, so too is 𝑘mk. □

Proof of Lemma E.4. Immediately follows from Lemmas E.5
through E.7. □

Now, we handle Type 2 adversaries.

Lemma E.8. If ACKA is a secure ACKA and H3 is modelled as a
random oracle, then PR in Figure 2 is secure against Type 2 adversaries.

Proof. This proof proceeds by a straight forward reduction
to the security of ACKA. First, the reduction guesses for which
party, ratchet, and pcs epoch the adversary will query the challenge
oracle. It can easily be seen that the reduction can make this guess
with only non-negligible security loss. It then initializes the ACKA
challenger with this guess.

Now, to simulate the PR security game, the reduction first ini-
tializes all parts of the state of both parties using freshly sampled
randomness, except for ACKA, which is implicitly initialized by the
challenger, with corresponding challenge party, ratchet, and pcs
epoch. To simulate Snd queries except for the challenge one, and
Rcv queries, the reduction will perform all steps as normal, except
it will query the respective oracles of the ACKA game, and use the
outputs acs, acct,md and acs, (𝑡, ℓ), respectively. To simulate Expose
queries, the reduction will query the Expose oracle of the ACKA
game to obtain acst and return the entire state as normal. Finally,
for the Snd query corresponding to the challenge, the reduction will
perform all steps as normal, except it will query the Chall oracle of
the ACKA game, and use the output acct,md, along with its own
randomly sampled 𝑘mk. For Reveal queries, the reduction outputs
the key it computed for ratchet 𝑡 , index 𝑖 . For the adversary’s Chall
query, the reduction outputs the key it computes for ratchet 𝑡∗,
index 𝑖∗.

The adversary can only distinguish between the actual security
game and the simulation if it queries the random oracle on acs∗. So,
the reduction guesses which query corresponds to this guess, and
forwards this input to its challenger. It is fairly easy to see that this
is a proper simulation of the PR security game otherwise. Indeed,
all outputs of Snd, Rcv, Reveal are easily seen to be proper. Fur-
thermore, because of our assumption that the adversary is Type 2,
and thus when it queries the challenge oracle, challenge epoch
pc∗ ∉ PXPP, the same will hold for PCP [P] = pc∗ in the reduction’s
query to the ACKA game. For similar reasons, all Expose queries
are properly simulated. □

Proof of Theorem E.3. This easily follows from Lemmas E.4
and E.8. □

Theorem E.9. PR of Figure 2 is history-independent if ACKA
is history-independent, CKA is history-independent, and H1,H2 are
modelled as programmable random oracles.

Proof. In Figure 18, we first define a history-independence
simulator SPR for the PR in Figure 2.

The proof follows in a series of hybrids. HybridH0 is the view
of the real execution. Hybrid H1 is the real world, except ACKA
ciphertexts and states are produced by SACKA. It is easy to see that
these two hybrids are computationally indistinguishable, from the
fact that ACKA is history-independent.

Finally, hybrid H2 is the view of the simulated execution pro-
duced by SPR. To argue thatH1 andH2 we reduce to the history-
independence of CKA, with access to programmable random ora-
cles modelling H1,H2. This reduction uses outputs from the CKA
history-independence game so that CKA ciphertexts, states, and
keys are output according to either a realCKA execution, or one pro-
duced by the simulator SCKA. Now, PR ciphertexts are completely
determined by the ACKA and CKA (and deterministic information
known by the reduction), the latter of which, as above, will deter-
mine which hybrid we are in. We next argue that all components
of states, besides those produced by the CKA, are distributed the
same in bothH1 andH2 due to the programmable random oracles.
Indeed, when sufficient information is known, all root keys, chain
keys, and message keys are computed exactly the same in both
hybrids. When insufficient information is known, the reduction
picks random keys. This is a proper simulation, since if there is
never sufficient information, the keys are all outputs of random or-
acles, so they are properly simulated. If sufficient information does
become known, we simply program the random oracle to make
things consistent. Moreover, the distinguisher is poly-time, so they
will only query the random oracles on these values before they are
programmed with negligible probability.

ThusH1 andH2 are computationally indistinguishable, so we
conclude that H0 and H2 are computationally indistinguishable,
and thus PR is history-independent. □

F STANDARD DEFINITIONS
Definition F.1 (CDH Problem). The advantage of an adversary

against the Computational Diffie-Hellman problem in group 𝐺 is

Advcdh
𝐺
B Pr[A(𝐺,𝑔𝑎, 𝑔𝑏)→$ 𝑔

𝑎𝑏 | 𝑔𝑎, 𝑔𝑏 ←$ 𝐺].

The CDH problem is considered hard if the advantage is negligi-
ble.

Definition F.2 (Secure NIKE). The advantage of an adversary
against a Non-Interactive Key Exchange protocol NK = (NK.gen,
NK.eval) is

AdvindNK B | Pr[A(pk𝐴, pk𝐵, 𝑘)→$ 1 | (sk𝐴, pk𝐴)←$ NK.gen,
(sk𝐵, pk𝐵)←$ NK.gen, 𝑘 ← NK.eval(sk𝐴, pk𝐵)]
− Pr[A(pk𝐴, pk𝐵, 𝑘)→$ 1 | (sk𝐴, pk𝐴)←$ NK.gen,

(sk𝐵, pk𝐵)←$ NK.gen, 𝑘 ←$ KNK] |.

A NIKE construction is considered secure if the advantage is
negligible.

31

Definition F.3 (Secure AEAD). Let AE.enc(𝑘, ·, ·) be an oracle that
on input of variables (𝑚, ad) outputs AE.enc(𝑘,𝑚, ad) and $(·, ·) an
oracle that on input of variables (𝑚, ad) outputs a random string
𝑐 ∈ {0, 1} |AE.enc(𝑘,𝑚,ad) | . The advantage of an adversary against
an Authenticated Encryption scheme with Associated Data AE =

(AE.enc,AE.dec) is

Advind$-cpaAE B | Pr[AAE.enc(𝑘,·,·) →$ 1 | 𝑘 ←$ K]

− Pr[A$(·,·) →$ 1] |.

An AEAD construction is considered (passively) secure if the
advantage is negligible.

32

SPR Init
00 cct [·], cs[·], rak[·], ck[·] [·], drk[·] [·], rk[·] ← ⊥
01 snd-parA ← 1; snd-parB ← 0
02 st ← (rk, cct, cs, rak, ck, drk, snd-parA, snd-parB)
03 Initialize SCKA,SACKA
04 Return st

On input (sim-ct, P𝑠 , P𝑟 , 𝑡, 𝑖, pc, pcp, pcpinit, ℓprv)
05 (rk, cct, cs, rak, ck, drk, snd-parA, snd-parB)← st
06 If rak[𝑡 − 1] = ⊥:
07 rak[𝑡 − 1] ←$ RAK
08 If rk[𝑡 − 1] = ⊥: rk[𝑡 − 1] ←$ K
09 root-prog(𝑡)
10 If cct [𝑡] = ⊥:
11 (cs[𝑡], cct [𝑡])← SCKA(sim-ct, 𝑡)
12 If rk[𝑡 − 1] ≠ ⊥: root-prog(𝑡)
13 If drk[𝑡] [𝑖] = ⊥: drk[𝑡] [𝑖] ←$ K
14 (acct,md, acs)← SACKA(sim-ct, P𝑠 , 𝑡, 𝑖, pc, pcp, pcpinit, ℓprv)
15 ℎ ← (md, 𝑡, 𝑖, cct [𝑡], ℓprv)
16 𝑘mk ← H3(acs, drk[𝑡] [𝑖], (ℎ, acct))
17 Return (acct, ℎ, 𝑘mk, rak[𝑡 − 1])
Proc root-prog(𝑡 ′)
18 While rk[𝑡 ′] = ⊥ ∧ cs[𝑡 ′] ≠ ⊥:
19 (rk[𝑡 ′], ck[𝑡 ′] [0], rak[𝑡 ′])← H1(rk[𝑡 ′ − 1], cs[𝑡 ′])
20 chain-prog(𝑡 ′, 1)
21 𝑡 ′ ← 𝑡 ′ + 1
22 If rk[𝑡 ′] ≠ ⊥ ∧ cs[𝑡 ′] ≠ ⊥:
23 Program H1(rk[𝑡 ′ − 1], cs[𝑡 ′]) B (rk[𝑡 ′], ck[𝑡 ′] [0], rak[𝑡 ′])
Proc chain-prog(𝑡 ′, 𝑖′)
24 While ck[𝑡 ′] [𝑖′] = ⊥ ∧ ∃𝑖∗ ≥ 𝑖′ :

(ck[𝑡 ′] [𝑖∗] ≠ ⊥ ∨ drk[𝑡 ′] [𝑖∗] ≠ ⊥):
25 (ck[𝑡] [𝑖′], drk[𝑡] [𝑖′])← H2(ck[𝑡] [𝑖′ − 1])
26 𝑖′ ← 𝑖′ + 1
27 If (ck[𝑡 ′] [𝑖′] ∨ drk[𝑡 ′] [𝑖′]) ≠ ⊥:
28 Program H2(ck[𝑡 ′] [𝑖′ − 1]) B (ck[𝑡 ′] [𝑖′], drk[𝑡] [𝑖′])
Proc chain-comp(𝑡 ′, 𝑖′, 𝑙 ′)
29 While 𝑙 ′ < 𝑖′:
30 (ck[𝑡 ′] [𝑙 ′ + 1], drk[𝑡] [𝑙 ′ + 1])← H2(ck[𝑡] [𝑙 ′])
31 𝑙 ′ ← 𝑙 ′ + 1

On input (sim-st, P, 𝑡, 𝑖, pc, pcp, pcprv, pcpinit, ℓprv,
afs, pc2ratch, all-rcvd)
32 (rk, cct, cs, rak, ck, drk, snd-parA, snd-parB)← st
33 (cst, cs[𝑡])← SCKA(sim-st, P, 𝑡)
34 𝑡 ′ ← (𝑡 mod 2 = snd-parP ? 𝑡 : 𝑡 − 1)
35 If cct [𝑡 ′] = ⊥:
36 (cs[𝑡 ′], cct [𝑡 ′])← SCKA(sim-ct, 𝑡 ′)
37 If rk[𝑡 ′ − 1] ≠ ⊥: root-prog(𝑡 ′)
38 cct′ ← cct [𝑡 ′]
39 rak′ [·] ← ⊥
40 For 𝑡∗ ∈ {𝑡, 𝑡 + 1}:
41 If rak[𝑡∗] = ⊥:
42 rak[𝑡∗] ←$ RAK
43 If rk[𝑡∗] = ⊥: rk[𝑡∗] ←$ K
44 root-prog(𝑡∗ + 1)
45 rak′ [𝑡∗] ← rak[𝑡∗]
46 ck′ [·] ← ⊥
47 𝑡 ′ ← (𝑡 mod 2 = snd-parP ? 𝑡 − 1 : 𝑡)
48 𝑗∗∗ ← max{ 𝑗 : 𝑗 ∉ afs[𝑡 ′]}
49 𝑙∗ ← max{𝑙 ≤ 𝑗∗∗ : ck[𝑡 ′] [𝑙] ≠ ⊥}a
50 If 𝑙∗ ≥ 0: chain-comp(𝑡 ′, 𝑙∗, 𝑗∗∗)
51 Else:
52 ck[𝑡 ′] [𝑗∗] ←$ K
53 chain-prog(𝑡 ′, 𝑗∗ + 1)
54 If 𝑡 mod 2 = snd-parP:
55 𝑙∗ ← max{𝑙 ≤ 𝑖 : ck[𝑡] [𝑙] ≠ ⊥}
56 If 𝑙∗ ≥ 0: chain-comp(𝑡, 𝑖, 𝑙∗)
57 Else:
58 ck[𝑡] [𝑖] ←$ K
59 chain-prog(𝑡, 𝑖 + 1)
60 ck′ [𝑡 − 1] ← ck[𝑡] [𝑗∗]; ck′ [𝑡] ← ck[𝑡] [𝑖]
61 Else: ck′ [𝑡] ← ck[𝑡] [𝑗∗]
62 drk′ [·] [·] ← ⊥
63 For 𝑡∗ : 𝑡∗ ≤ 𝑡 ∧ 𝑡∗ mod 2 ≠ snd-parP:
64 If all-rcvd [𝑡∗] = 1: continue
65 If rak[𝑡∗] = ⊥:
66 rak[𝑡∗] ←$ RAK
67 If rk[𝑡∗] = ⊥: rk[𝑡∗] ←$ K
68 root-prog(𝑡∗)
69 rak′ [𝑡∗] ← rak[𝑡∗]
70 𝑗∗ ← max{ 𝑗 : 𝑗 ∉ afs[𝑡∗]}
71 𝑙∗ ← max{𝑙 < 𝑗∗ : ck[𝑡∗] [𝑙] ≠ ⊥}
72 If 𝑙∗ ≥ 0: chain-comp(𝑡∗, 𝑙∗, 𝑗∗)
73 Else:
74 For 𝑗 ≤ 𝑗∗ : 𝑗 ∈ afs[𝑡∗]: drk[𝑡∗] [𝑗] ←$ K
75 For 𝑗 ≤ 𝑗∗ : 𝑗 ∈ afs[𝑡∗]:
76 drk′ [𝑡∗] [𝑗] ← drk[𝑡∗] [𝑗]
77 acst ← SACKA(sim-st, P, 𝑡, 𝑖, pc, pcp, pcprv,

pcpinit, ℓprv, pc2ratch, all-rcvd)
78 Return ((rk[𝑡], cst, cct′, acst, ck′, drk′,

snd-parP, 𝑡, 𝑖, 𝑗∗∗, ℓprv), rak
′)

a: max returns −1 if there is no such 𝑙 .

Figure 18: History-independence simulator SPR for the PR of Figure 2, where hash functions H1,H2,H3 are modelled as
programmable random oracles.

33

Proc MA.encS(st,md)
00 (𝑡, 𝑖, 𝑙, ck)← st
01 (mk, tag, ck)← H(ck)
02 𝑐′ ←$ AE.enc(mk, (𝑡, 𝑖, 𝑙,md), tag)
03 𝑐 ← (tag, 𝑐′)
04 𝑖 ← 𝑖 + 1
05 st ← (𝑡, 𝑖, 𝑙, ck)
06 Return (st, 𝑐)

Proc MA.decR(st, 𝑐)
07 (ht, ST)← st
08 (tag, 𝑐′)← 𝑐

09 (usr,mk)← ht .acc(tag)
10 𝑚 ← AE.dec(mk, 𝑐, tag)
11 Require ⊥ ≠𝑚 = (𝑡 ′, 𝑖′, 𝑙 ′,md)
12 ht .rem(tag)
13 (𝑡now, 𝑖now, 𝑖nxt, cknow, cknxt)← ST [usr]
14 Require 𝑡 ′ ≤ 𝑡now ∨ (𝑡 ′ = 𝑡now + 1 ∧ cknxt ≠ ⊥)
15 If 𝑡 ′ > 𝑡now:
16 For all 𝑖 : 𝑙 < 𝑖 ≤ 𝑖now:
17 ht .rem((𝑡now, 𝑖))
18 For all 𝑖 : 𝑖now ≤ 𝑖 ≤ 𝑙 :
19 (mk, tag, cknow)← H(cknow)
20 ht .add({tag, (𝑡now, 𝑖)}, (usr,mk))
21 𝑡now ← 𝑡 ′

22 𝑖now ← 𝑖nxt
23 𝑖nxt ← 0
24 cknow ← cknxt
25 cknxt ← ⊥
26 For all 𝑖 : 𝑖now ≤ 𝑖 < 𝑖′ + fut:
27 (mk, tag, cknow)← H(cknow)
28 ht .add({tag, (𝑡now, 𝑖)}, (usr,mk))
29 𝑖now ← 𝑖′ + fut − 1
30 ST [usr] ← (𝑡now, 𝑖now, 𝑖nxt, cknow, cknxt)
31 st ← (ht, ST)
32 Return (𝑠𝑡,md)

ProcMA.upR(st, usr, 𝑘)
33 If st = ⊥:
34 ht ← HT.init()
35 ST [·] ← ⊥
36 Else: (ht, ST)← st
37 If ST [usr] = ⊥:
38 𝑡now ←$ −1
39 𝑖now, 𝑖nxt ← 0
40 cknow, cknxt ← ⊥
41 Else: (𝑡now, 𝑖now, 𝑖nxt, cknow, cknxt)← ST [usr]
42 Require cknxt = ⊥
43 cknxt ← 𝑘

44 For all 𝑖 : 𝑖nxt ≤ 𝑖 < fut:
45 (mk, tag, cknxt)← H(cknxt)
46 ht .add({tag, (𝑡now + 1, 𝑖)}, (usr,mk))
47 𝑖nxt ← fut − 1
48 ST [usr] ← (𝑡now, 𝑖now, 𝑖nxt, cknow, cknxt)
49 st ← (ht, ST)
50 Return st

ProcMA.upS(st, 𝑘)
51 If st = ⊥:
52 𝑡, 𝑖, 𝑙 ← 0
53 Else:
54 (𝑡, 𝑖, 𝑙, ck)← st
55 𝑡 ← 𝑡 + 1
56 𝑙 ← 𝑖 − 1
57 𝑖 ← 0
58 st ← (𝑡, 𝑖, 𝑙, 𝑘)
59 Return st

Figure 19: Full construction of MA, using a hash table HT = (HT.init,HT.add,HT.acc,HT.rem). The first parameter of algorithm
HT.add takes a set of tags from which one suffices to access (via HT.acc) or remove (via HT.rem) the value (i.e., the second
parameter). Constant fut specifies the number of pre-computed tags for which anonymous decryption of ciphertexts is
successful.

34

	Abstract
	1 Introduction
	2 Secure Mesh Messaging
	2.1 Mesh Messaging API
	2.2 Security Properties
	2.3 Protocol Overview

	3 Public-Key Double Ratchet
	3.1 PR Building Blocks
	3.2 Public-Key Double Ratchet Construction

	4 Message Anonymizer
	4.1 Construction

	5 Building ASMesh
	5.1 Security
	5.2 Receiver Anonymity

	6 Performance Evaluation
	7 Conclusion
	References
	A Universal Composability
	B Formal Mesh Messaging Definition
	B.1 Receiver Anonymity
	B.2 Game-Based Attempts

	C Mesh Messaging Security Analysis
	C.1 Simulator
	C.2 Message Anonymizer Simulator
	C.3 Proof by Reduction

	D Additional Primitives
	D.1 CKA
	D.2 Asynchronous CKA

	E Public-Key Double Ratchet Formal Details
	E.1 Security
	E.2 History-Independence
	E.3 PR Full Construction and Comparison to ACD19
	E.4 PR Security Analysis

	F Standard Definitions

