
Threshold BBS+ From Pseudorandom
Correlations

Sebastian Faust1, Carmit Hazay2, David Kretzler1, and Benjamin Schlosser1

1 Technical University of Darmstadt, Germany
{first.last}@tu-darmstadt.de

2 Bar-Ilan University, Israel
carmit.hazay@biu.ac.il

Abstract. The BBS+ signature scheme is one of the most prominent
solutions for realizing anonymous credentials. In particular, due to prop-
erties like selective disclosure and efficient protocols for creating and
showing possession of credentials. In recent years, research in cryptogra-
phy has increasingly focused on the distribution of cryptographic tasks
to mitigate attack surfaces and remove single points of failure.
In this work, we present a threshold BBS+ protocol in the preprocess-
ing model. Our protocol supports an arbitrary t-out-of-n threshold and
achieves non-interactive signing in the online phase. It relies on a new
pseudorandom correlation-based offline protocol producing preprocess-
ing material with sublinear communication complexity in the number
of signatures. Both our offline and online protocols are actively secure
under the Universal Composability framework. Finally, we estimate the
concrete efficiency of our protocol, including an implementation of the
online phase. The online protocol without network latency takes less
than 15ms for t ≤ 30 and credentials sizes up to 10. Further, our re-
sults indicate that the influence of t on the online signing is insignificant,
< 6% for t ≤ 30, and the overhead of the thresholdization occurs almost
exclusively in the offline phase.

Keywords: Threshold Signature · BBS+ · Pseudorandom Correlation
Functions · Pseudorandom Correlation Generators

1 Introduction

Anonymous credential schemes are becoming increasingly important in today’s
digital world, where privacy and security are significant concerns. They were
introduced by Chaum in 1985 [Cha85] and refined by a line of work [Che95,
LRSW99, CL01, CL04, Cam06, CDHK15, CKL+15, BBDE19, YAY19]. Such
schemes allow an issuing party to create credentials for users, which then can
prove specific attributes about themselves without revealing their identities. This
selective disclosure is particularly beneficial when individuals want to keep their
personal information private but still need to prove that they are authorized to
access specific resources or services. The essential properties satisfied by these
schemes are unlinkability and unforgeability. While unlinkability ensures that

verifiers cannot link two disclosures of credentials to the same identity, unforge-
ability guarantees that only the issuer can generate credentials.

The BBS+ signature scheme [ASM06, CDL16] named after the group signa-
ture scheme of Boneh, Boyen, and Shacham [BBS04] is one of the most promi-
nent solutions for realizing anonymous credential schemes. BBS+ signatures are
specifically suited for anonymous credentials because of their appealing features,
including the ability to sign an array of messages while keeping the signature
size constant, efficient protocols for blind signing and proving possession of a
signature in zero knowledge, and selective disclosure. The scheme is already be-
ing implemented by companies, such as Trinsic [Tri23], MATTR [MAT23] and
Microsoft [Mic23], and to build applications like direct anonymous attestation
(DAA) [Che09, BL10, CDL16], k-times anonymous authentication [ASM06] and
Intel SGX’s EPID [BL11]. Recently, the scheme also attracted renewed atten-
tion in the research community [TZ23, DKL+23]. Moreover, due to the promi-
nence and real-life usage of BBS+, several organizations are actively working
on a standardized specification of it, including the W3C Verifiable Credentials
Group [LS23] and the IETF [LKWL23].

In recent years, research in cryptography has increasingly focused on the
distribution (also called thresholdization) of cryptographic tasks. One example
of this paradigm shift is the huge line of work on threshold ECDSA, including
[Lin17, GG18, LN18, DKLS19, SA19, CCL+20, CGG+20, KMOS21, ANO+22]
and more. Instead of running the task on a single machine, a set of servers runs
a potentially interactive protocol producing the desired output without leaking
any additional information. A major reason for this development is the increased
use of digital payment methods, which, in addition to apparent advantages,
also bring additional security risks. In a traditional, non-distributed system, an
attacker who breaks into that system gains full access to the system’s capabilities,
e.g., can authorize arbitrary payments. This is referred to as a single point of
failure. In a distributed system, single intrusions can be tolerated; the attacker
must break into various devices to access the system’s capabilities. Also, in the
context of credentials, it is highly desirable to avoid a single point of failure as
an attacker who learns the single key can create arbitrary credentials. Due to
anonymity, credentials created by the attacker cannot be detected, and due to its
use in authorizing access to potential sensible data and services, the consequences
might be severe. A thresholdization of the signing algorithm of the BBS+ scheme
allows the replacement of the single certificate issuer by a committee of issuing
servers and hence reduces the risk of an attacker getting access to sufficient secret
key material to forge credentials. Additionally, threshold BBS+ enables more
use cases, such as two-factor authentication, and supports enforcing company
policies, such as the four-eye principle.

The thresholdization of cryptographic tasks often comes with significant over-
head in computation, communication, and round complexity. This is also the
case with BBS+. The BBS+ signature algorithm requires the exponentiation
of the inverse of the secret key added to some random nonce. This operation
is highly non-linear and hence hard to distribute. A popular approach in se-

2

cure distributed computation to cope with the high complexities of protocols is
to split the computation into an input-independent offline and input-dependent
online phase [DPSZ12, NNOB12, WRK17a, WRK17b]. The offline phase pro-
vides precomputation material used to accelerate the online phase, which com-
putes the desired outcome efficiently. In the setting of signature schemes, we
call this precomputation material presignatures [EGM96]. In recent years, Boyle
et al. [BCGI18, BCG+19b, BCG+20a] introduced the concept of pseudorandom
correlation-based precomputation (PCP). This concept allows the generation
of precomputation material with sublinear communication complexity in the
amount of generated precomputation material. Recently, this technique also at-
tracted interest in the realm of threshold signature protocols [ANO+22, KOR23].
In PCP, precomputed values are generated by a pseudorandom correlation gen-
erator (PCG) or a pseudorandom correlation function (PCF). These primitives
include a potentially interactive setup phase where short keys are generated
and distributed. Then, in the evaluation phase, every party locally evaluates
on its key and a common input. The resulting outputs look pseudorandom but
still satisfy some correlation, such as oblivious linear evaluation (OLE), oblivious
transfer (OT), or multiplication triples (MT). The type of correlation determines
the efficiency of the instantiations.

In this work, we explore the opportunities of designing an efficient threshold
BBS+ scheme in the PCP setting. We aim for a non-interactive online phase as
we assess it unlikely for the servers to be closely located. The major reasons for
thresholdizing the credential issuance are to avoid a single point of failure and
provide robustness, which means that the system should continue functioning
even if some servers are unavailable. When avoiding a single point of failure, we
often want to distribute the trust among several machines and involve several
legal entities, e.g., several companies, most likely not within the same local net-
work. For robustness, it makes sense to distribute the servers over a larger area
to prevent environmental influences, such as network outages, from affecting too
many servers at once.

1.1 Contribution

We propose a novel t-out-of-n threshold BBS+ signature scheme secure against
active corruption and arbitrary security threshold t ≤ n. Our threshold BBS+
scheme is the first in the offline-online model and has been developed concur-
rently and independently to the first overall threshold BBS+ signature scheme [DKL+23].
We deliberately design preprocessing in the offline phase to achieve a non-
interactive online signing process. Upon receiving a signing request, servers reply
with a single message without additional cross-server communication.

The communication of the offline phase is restricted to the execution of a seed
generation protocol. Using techniques known as silent preprocessing, i.e., PCGs
or PCFs, we realize the seed generation protocol with sublinear complexity in
the number of signatures. Our scheme has no additional per-signature interac-
tion during the offline phase. In particular, parties expand their seeds to valid
presignatures without any communication.

3

While our precomputation can be instantiated with both PCGs and PCFs,
we focus on PCFs for the protocol specification. Conceptually, PCFs are bet-
ter suited for preprocessing signatures as PCFs allow servers to compute one
presignature after another. At the same time, PCGs require the generation of a
large batch of presignatures at once that need to be stored. Unlike prior work
using a silent preprocessing in the context of threshold signatures [ANO+22], we
use the PCF primitive in a black-box way allowing for more modularity. In this
process, we identify several issues in using the PCF primitive in a black-box way,
extend the definitional framework of PCFs accordingly, and prove the security
of existing constructions under the adapted properties.

Finally, we provide an extensive evaluation of our protocol, including an im-
plementation and experimental evaluation of the online phase. The total runtime
of the online signing protocol, is below 13.595 ms plus one round trip time of
the slowest client-server connection for t ≤ 30 signers and message arrays of size
k ≤ 10. Our benchmarks show that the influence of the number of signers on the
runtime of the online protocol is minimal; increasing the number of signers from
2 to 30 increases the runtime by just 1.14% − 5.52% (for message array sizes
between 2 and 50). Further, our results show that the cost of thresholdization
occurs almost exclusively in the offline phase; a threshold signature on a single
message array takes 7.536 ms in our protocol, while a non-threshold signature,
including verification of the received signature, takes 7.248 ms; ignoring network
delays which are the same in both settings.

1.2 Technical Overview

BBS+ Signatures. Let (G1,G2,GT) be a bilinear pairing of order p with gener-
ators g1 ∈ G1 and g2 ∈ G2. A BBS+ signature on a message array {mℓ}ℓ∈[k] is

a tuple (A, e, s) with A = (g1 ·hs
0 ·
∏

ℓ∈[k] h
mℓ

ℓ)
1

x+e for random nonces e, s ∈R Zp,

secret key x ∈ Zp and a set of random G1 elements {hℓ}ℓ∈[0..k].

Distributed inverse calculation. The main difficulty in thresholdizing the BBS+
signature algorithm comes from the signing operation requiring the computation
of the inverse of x + s without leaking x. This highly non-linear operation is
elaborate to be computed in a distributed way. Similar challenges are known from
other signature schemes relying on exponentiation (or a scalar multiplication in
additive notion) of the inverse of secret values, e.g., ECDSA [AHS20, CGG+20,

ANO+22, WMYC23, BS23]. The typical approach to compute M
1
y for a group

element M and a secret y is to separately open B = Ma and δ = a · y for a
secret shared random a based on the classical inversion protocol by Bar-Ilan and

Beaver [BB89]. The desired result can be reconstructed by computingM
1
y = B

1
δ .

Computing δ as the product of two secret shared values is still a non-linear
operation requiring interaction between the parties. Nevertheless, as δ is inde-
pendent of the actual message, several such values can be precomputed in an
offline phase. As explained next, a similar, yet more involved, approach can
be applied to the BBS+ protocol allowing an efficient online signing based on
correlated precomputation material.

4

The threshold BBS+ protocol. We describe a simplified, n-out-of-n version of our
threshold BBS+ protocol. Assume a BBS+ secret key x, G1 elements {hℓ}ℓ∈[0..k]

and n servers, each having access to a preprocessed tuple (ai, ei, si, δi, αi) ∈ Z5
p,

in the following called presignature, such that∑
i∈[n]

δi = a(x+ e),
∑
i∈[n]

αi = as

for a =
∑
i∈[n]

ai, e =
∑
i∈[n]

ei, s =
∑
i∈[n]

si.
(1)

To sign a message array {mℓ}ℓ∈[k], each server computes Ai := (g1 ·
∏

ℓ∈[k] g
mℓ

ℓ)ai ·
hαi
0 and outputs a partial signature σi := (ei, si, δi, Ai). This allows the receiver

of the partial signatures to reconstruct δ, e and s and compute

A = (
∏
i∈[n]

Ai)
1
δ = ((g1 ·

∏
ℓ∈[k]

hmℓ

ℓ)a · has
0)

1
a(x+e)

such that the tuple (A, e, s) constitutes a valid BBS+ signature. Each signature
requires a new preprocessed tuple to prevent straightforward forgeries.

The specialized layout of our presignatures allows us to realize a non-interactive
signing procedure. Using plain multiplication triples, as often done in multi-party
computation protocols [Bea91, DPSZ12], would require an additional round of
communication, which is highly undesirable. Our non-interactive signing pro-
cedure enables a highly efficient online signature creation and provides active
security at a low cost. Given that the presignatures are created securely, it is
sufficient for the signature receiver to validate the received signature to achieve
active security.

The preprocessing protocol. An appealing choice for instantiating the preprocess-
ing protocol is the promising technique of pseudorandom correlation generators
(PCG) or functions (PCF), as they enable the efficient generation of correlated
random tuples. More precisely, PCGs and PCFs allow two parties to expand
short seeds to fresh correlated random tuples locally. While the distributed
generation of the seeds requires more involved protocols and general-purpose
multi-party computation, the seed size and the communication complexity of
the generating protocols are sublinear in the size of the expanded correlated
tuples [BCGI18, BCG+19b].

When using PCGs, the parties must expand all the PCG’s outputs at once in
a single batch, which has to be kept in storage. These batches need to be rather
large to amortize the cost of the expensive setup procedure; prior work using
similar correlations reports 216 - 225[ANO+22, BCG+20b] tuples to be reason-
able. In contrast, PCFs allow for generating individual tuples ad-hoc, removing
the necessity of storing a large amount of preprocessing material. We do not
expect thousands of signatures to be issued in short intervals, so we assess PCFs
as better suited for preprocessing threshold signatures. While state-of-the-art

5

solutions of PCFs incur high storage costs for PCF keys, we deem them concep-
tually better suited. Moreover, the research on PCF is a young field. Thus we
expect further progress in this direction.

The correlated pseudorandom presignatures required by our online signing
procedure are specifically tailored to the BBS+ setting (cf. (1)). For these spe-
cific presignatures, there exist no tailored PCG or PCF constructions. Instead,
we show how to obtain these presignatures from simple correlations. Specifically,
we leverage oblivious linear evaluation (OLE) and vector oblivious linear evalu-
ation (VOLE) correlations. For both of these correlations, there exist PCG and
PCF constructions [BCGI18, BCG+19b, BCG+20a, BCG+20b, CRR21, OSY21,
BCG+22]. An OLE tuple is a 2-party correlation, in which party P1 gets random
values (a, u) and party P2 gets random values (s, v) such that a · s = u + v. A
VOLE tuple provides the same correlation but fixes b over all tuples computed
by the particular PCG or PCF instance. In these tuples, we call a and s the
input value of party P1 and P2. Further, the PCGs/PCFs used by our protocol
provide a so-called reusability feature, allowing parties to fix the input values
over several PCG/PCF instances.

If parties want to compute shares of α =
∑

i∈[n] ai ·
∑

i∈[n] si, each party Pi

computes aisi locally and uses an OLE correlation to get an additive share of
the cross terms aisj and ajsi for j ̸= i. As a- and s-values are input values, they
can be fixed over several PCG/PCF instances. By summing up aisi with all the
additive shares of the OLE relations, Pi gets an additive share of α. Shares of
a · e and a · x are computed accordingly and combined to shares of a · (e+ x).

Using PCFs in a black-box way. Boyle et al. [BCG+20a] define pseudorandom
correlation functions (PCFs) and provide constructions for different correlations,
such as VOLE, based on function secret sharing of a family of weak pseudo-
random functions (PRFs). They differentiate between weak and strong PCFs.
Similar to weak and strong PRFs, the definition of weak PCF considers ran-
dom inputs, while a strong PCF allows the adversary to query PCF outputs on
arbitrary inputs. [BCG+20a] also shows a generic transformation from weak to
strong PCF in the programmable random oracle model.

In our work, we aim to deal with PCFs in a black-box way such that we can
instantiate our protocols with arbitrary PCFs fulfilling our requirements. These
requirements include the active security setting and the opportunity to reuse
inputs, as emphasized above. We rely on strong PCFs to cover active security
and allow the adversary to choose arbitrary input. While Boyle et al. [BCG+20a]
lay out the foundations for the reusability property, which they call programma-
bility, they define the property only in the passive security setting. We make the
following changes to cover active security.

First, we allow the adversary to specify its input in generating PCF keys.
To capture this behavior, we introduce a new key indistinguishability property,
informally stating that the adversary cannot learn any information about the
other party’s input from its key. Second, the basic correctness and security prop-
erties must also hold if the adversary specifies its input to the key generation.
Therefore, we extend the existing definitions of these properties by the additional

6

power of the adversary. Note that this extension is only required for PCFs with
reusable inputs, as the adversary cannot provide input to the key generation
otherwise. As the definitions of strong PCFs and reusable PCFs are linked to-
gether, we merge them. Finally, our resulting definition of strong reusable PCFs
captures the reusability feature in the active security setting. We prove that the
VOLE PCF construction by Boyle et al. [BCG+20a] fulfills our new definition.
Additionally, we present an extension of this construction for OLE correlations
and again show its security.

The t-out-of-n setting. So far, we discussed a setting where n-out-of-n servers
must contribute to the signature creation. However, it is highly desirable for
many use cases to support the more flexible t-out-of-n setting with t ≤ n. In
this setting, the secret key material is distributed to n servers, but only t must
contribute to the signing protocol. A threshold t ≤ n improves the flexibility and
robustness of the signing process, as not all servers must be online.

The typical approach in the t-out-of-n setting is to share the secret key
material using Shamir’s secret sharing [Sha79] instead of an additive sharing
as done above. While additive shares are reconstructed by summation, Shamir-
style shares must be aggregated using Lagrange interpolation, either on the
client- or server-side. While reconstruction on the client side is favorable as it
increases flexibility and reduces coordination, our PCF-based precomputation
poses challenges that urge us to reconstruct on the server side. While this design
choice is not optimal, prior threshold signature schemes leveraging PCF/PCGs
(e.g., [ANO+22, KOR23]) achieves only n-out-of-n, in contrast to a flexible t-
out-of-n setting.

On a technical level, the challenge for client-side reconstruction is due to
(V)OLE correlations providing us with 2-party additive sharing of multiplica-
tions, e.g., ui,j + vi,j = aisj . For a product of two additively shared values
a · s, we can rewrite the product as

∑
i∈[n] ai ·

∑
i∈[n] si =

∑
i∈[n]

∑
j∈[n] aisj =∑

i∈[n]

∑
j∈[n] ui,j + vi,j . Here, ui,j and vi,j can be interpreted as additive shares

of the product. These additive shares are sufficient for the n-out-of-n setting.
However, it is unclear how (V)OLE outputs can be transformed to Shamir-style
sharing of a · s required for t-out-of-n.

We therefore incorporate a share conversion mechanism from Shamir-style
shared key material into additively shared presignatures on the server side. Our
mechanism consists of the servers applying the corresponding Lagrange inter-
polation directly to the outputs of the VOLE correlation. More precisely, as
described above, each party Pi gets additive shares of the cross terms aixj and
ajxi for every other party Pj . Let ci,j be the additive share of aixj , then party Pi

multiplies the Lagrange coefficient Lj,T to this share and Li,T to cj,i, where T is
the set of t signers. To enable the servers to compute the interpolation, the client
provides the set of servers as part of the signing request. Note that the signer
set can be obtained by hashing the message to reduce bandwidth complexity.

7

1.3 Related Work

Most related to our work is the work by Gennaro et al. [GGI19] and Doerner
et al. [DKL+23], proposing threshold protocols for the BBS+ signing algorithm.
While [GGI19] focuses on a group signature scheme with threshold issuance
based on the BBS signatures, their techniques can be directly applied to BBS+.
[DKL+23] presents a threshold anonymous credential scheme based on BBS+.
Both schemes compute the inverse using classical techniques of Bar-Ilan and
Beaver [BB89]. Moreover, they realize the multiplication of two secret shared
values by multiplying each pair of shares. While [GGI19] uses a three-round
multiplication protocol based on an additively homomorphic encryption scheme,
[DKL+23] integrates a two-round OT-based multiplier. Although the OT-based
multiplier requires a one-time setup, both schemes do not use precomputed val-
ues per signing request. This is in contrast to our scheme, but at the cost of re-
quiring several rounds of communication during signing. In addition, they show
security in a model tailored to the BBS+ signature scheme, while we consider a
more generic threshold signature ideal functionality.

In the non-threshold setting, Tessaro and Zhu [TZ23] show that short BBS+
signatures, where the signature consists only of A and e, are also secure under
the q-SDH assumption. Their results suggest removing s to reduce the signature
size to one group element and a scalar. Like prior proofs of BBS+, their security
proof in the standard model incurs a multiplicative loss. However, they present a
tight proof in the Algebraic Group Model [FKL18]. We elaborate on the influence
of their work on our evaluation in Appendix J.

A different signature scheme for anonymous credentials is proposed by Camin-
sch and Lysyanskaya [CL04]. However, these CL signatures are based on RSA.
Therefore, they have large keys, credentials, and files for revocation. Further-
more, the generation of signing keys takes a long time (10-20 seconds) due to
finding a large set of random prime numbers.

Another anonymous credential scheme with threshold issuance, called Co-
conut, is proposed by Sonnino et al. [SAB+19] and the follow-up work by Rial
and Piotrowska [RP22]. Their scheme is based on the Pointcheval-Sanders (PS)
signature scheme, which is less popular than BBS+ and is secure under an inter-
active assumption similar but different to the LRSW assumption. However, the
structure of PS signatures enables a non-interactive issuance phase without co-
ordination or precomputation. While their scheme also supports multi-attribute
credentials and selective disclosure, in the case of multi-attribute credentials,
the secret and public key size increases linearly in the number of attributes. In
BBS+, the key size is constant. The security of Coconut was not shown under
concurrent composition while our scheme is analyzed in the Universal Compos-
ability framework.

Like our work, [ANO+22] and [KOR23] leverage pseudorandom correlation
for threshold signatures. [ANO+22] presents a ECDSA scheme, while [KOR23]
focuses on Schnorr signatures. In contrast to our scheme, [ANO+22] constructs a
tailored PCG, presents an n-out-of-n protocol without a flexible threshold, and
requires interaction in the presigning phase. [KOR23] introduces the new notion

8

of a discrete log PCF, and construct a 2-party protocol based on this primitive.
In contrast to our work, [KOR23] captures only the 2-out-of-2 setting and takes
two rounds for signing.

2 Preliminaries

Throughout this work, we denote the security parameter by λ ∈ N, the set
{1, . . . , k} as [k], the set {0, 1, . . . , k} as [0..k], the number of parties by n and a
specific party by Pi. The set of indices of corrupted parties is denoted by C ⊊ [n]
and honest parties are denoted by H = [n] \ C.

We model our protocol in the Universal Composability (UC) framework by
Canetti [Can01]. We refer to Appendix A for a brief introduction to UC. We
model a malicious adversary corrupting up to t ≤ n parties. We consider static
corruption and a rushing adversary. Moreover, our protocols are in the syn-
chronous communication model.

2.1 Bilinear Maps

We briefly recall the basics of bilinear maps following [BF01, BBS04]. Let BGen
be a randomized algorithm that on input a security parameter λ outputs a prime
p, such that log2(p) = O(κ), three cyclic groups (G1,G2,GT) of prime order p,
generators g1 of G1 and g2 of G2, and a pairing e : G1 ×G→ GT .

We call e a bilinear map if the following properties hold:

– Bilinearity: For all u ∈ G1, v ∈ G2 and a, b ∈ Zp, we have e(ua, vb) =
e(u, v)ab.

– Non-degeneracy: For generators g1 ofG1 and g2 ofG2 it holds that e(g1, g2) ̸=
1. Since GT is of prime order p, this implies that e(g1, g2) is a generator of
GT .

– Efficiency: e can be computed efficiently in polynomial time in λ.

The literature differentiates between three types of pairings [GPS06]: Type-1
with G1 = G2, Type-2 with G1 ̸= G2 and existence of an efficiently computable
isomorphism ϕ : G2 → G1, and Type-3 with G1 ̸= G2 and no such isomoprhism
ϕ.

2.2 The BBS+ Signature Scheme

Let k be the size of the message arrays, G = (G1,G2,GT , p, g1, g2, e) be a bilinear
mapping tuple and {hℓ}ℓ∈[0..k] be random elements of G1. The BBS+ signature
scheme is defined as follows:

– KeyGen(λ): Sample x
$← Z∗

p, compute y = gx2 , and output (pk, sk) = (y, x).

– Signsk({mℓ}ℓ∈[k] ∈ Zk
p): Sample e, s

$← Zp, computeA := (g1·hs
0·
∏

ℓ∈[k] h
mℓ

ℓ)
1

x+e

and output σ = (A, e, s).
– Verifypk({mℓ}ℓ∈[k] ∈ Zk

p, σ): Output 1 iff e(A, y ·ge2) = e(g1 ·hs
0 ·
∏

ℓ∈[k] h
mℓ

ℓ , g2)

9

The BBS+ signature scheme is proven strong unforgeable under the q-strong
Diffie Hellman (SDH) assumption for pairings of type 1, 2, and 3 [ASM06,
CDL16, TZ23]. Intuitively, strong unforgeability means that the attacker is not
possible to come up with a forgery even for messages that have been signed
before. We refer to [TZ23] for further details.

Optimized scheme of Tessaro and Zhu [TZ23] Concurrently to our work, Tessaro
and Zhu showed an optimized version of the BBS+ signatures, reducing the

signature size. In their scheme, the signer samples only one random value, e
$←

Zp, computes A := (g1 ·
∏

ℓ∈[k] h
mℓ

ℓ)
1

x+e , and outputs σ = (A, e). The verification
works as before, with the only difference that the term hs

0 is removed. Note that
if the first message m1 is sampled randomly, then the short version is equal to
the original version. While we describe our protocol in the original BBS+ scheme
by Au et al. [ASM06], we elaborate on the influence of [TZ23] on our evaluation
in Appendix J.

3 Reusable Pseudorandom Correlation Function

On a high level, a pseudorandom correlation function (PCF) allows two parties to
generate a large amount of correlated randomness from short seeds. PCF extends
the notion of a pseudorandom correlation generator (PCG) in a similar way as
a pseudorandom function extends a pseudorandom generator. While a PCG
generates a large batch of correlated randomness during one-time expansion, a
PCF allows the creation of correlation samples on the fly.

A PCF consists of two algorithms, Gen and Eval. The Gen algorithm computes
a pair of short keys distributed to two parties. Then, each party can locally
evaluate the Eval algorithm using its key and public input to generate an output
of the target correlation. One example of such a correlation is the oblivious linear
evaluation (OLE) correlation, defined by a pair of random values (y0, y1) where
y0 = (a, u) and y1 = (b, v) such that v = ab + u. Other meaningful correlations
are oblivious transfer (OT) and multiplication triples.

PCFs are helpful in two- and multi-party protocols, where parties first set
up correlated randomness and then use this data to speed up the computation
[DILO22, ANO+22, KOR23].

This section presents our definition of reusable PCFs, extending the definition
of a programmable PCF from [BCG+20a], which is stated in Appendix B for
completeness. Furthermore, we state constructions of reusable PCFs and argue
why they satisfy our new definition in Appendix C.

Our modifications and extensions of the definition [BCG+20a] reflect the
challenges we faced when using PCFs as black-box primitives in our threshold
BBS+ protocol. We present our definition and highlight these challenges and
changes in the following.

10

3.1 Definition

As mentioned above, a pseudorandom correlation function (PCF) realizes a tar-
get correlation Y. For some correlations, like VOLE, parts of the correlation
outputs are fixed over all outputs. In the example of VOLE, where the corre-
lation is v = ab + u over some ring R, the b value is fixed for all correlation
tuples.

Additionally, in a multi-party setting, we like PCF constructions that allow
parties to obtain the same values for parts of the correlation output in multiple
PCF instances. Concretely, assume party Pi evaluates one VOLE PCF instance
with party Pj and one with party Pk. Pi evaluates the PCF to (ai,j , ui,j) for
the first instance and (ai,k, ui,k) for the second instance. Here, we want to give
party Pi the opportunity to get ai,j = ai,k when applied on the same input. This
property is necessary to construct multi-party correlations from two-party PCF
instances.

To formally model the abovementioned properties, we define a target corre-
lation as a tuple of probabilistic algorithms (Setup,Y), where Setup takes two
inputs and creates a master key mk. These inputs enable fixing parts of the cor-
relation, e.g., the fixed value b. Algorithm Y uses the master key and an index
i to sample correlation outputs. The index i helps to sample the same value if
one of the Setup inputs is identical for multiple invocations.

Finally, we follow [BCG+20a] and require a target correlation to be reverse-
sampleable to facilitate a suitable definition of PCFs. In contrast to [BCG+20a],
our definition of a target correlation explicitly considers the reusability of values
over multiple invocations.

In the following, we formally define a reverse-sampleable and indexable cor-
relation with setup.

Definition 1 (Reverse-sampleable and indexable correlation with setup).
Let ℓ0(λ), ℓ1(λ) ≤ poly(λ) be output length functions. Let (Setup,Y) be a tuple of
probabilistic algorithms, such that Setup on input 1λ and two parameters ρ0, ρ1
returns a master key mk and Y on input 1λ, mk, and index i returns a pair of

outputs (y
(i)
0 , y

(i)
1) ∈ {0, 1}ℓ0(λ) × {0, 1}ℓ1(λ).

We say that the tuple (Setup,Y) defines a reverse-sampleable and indexable
correlation with setup if there exists a probabilistic polynomial time algorithm

RSample that takes as input 1λ,mk, σ ∈ {0, 1}, y(i)σ ∈ {0, 1}ℓσ(λ) and i, and

outputs y
(i)
1−σ ∈ {0, 1}ℓ1−σ(λ), such that for all mk,mk′ in the range of Setup, all

σ ∈ {0, 1} and all i ∈ {0, 1}∗ the following distributions are statistically close:

{(y(i)0 , y
(i)
1)|(y(i)0 , y

(i)
1)

$← Y(1λ,mk, i)}

{(y(i)0 , y
(i)
1)|(y′(i)0 , y

′(i)
1)

$← Y(1λ,mk′, i),

y(i)σ ← y′(i)σ , y
(i)
1−σ ← RSample(1λ,mk, σ, yσ, i)}

Given the definition of a reverse-sampleable and indexable correlation with
setup, we define our primitive called strong reusable PCF (srPCF). Our defi-
nition builds on the definition of a strong PCF of Boyle et al. [BCG+20a] and

11

extends it by a reusability feature. Note that [BCG+20a] presents a separate
definition of this reusability feature for PCFs, but this property also affects the
other properties of a PCF. Therefore, we merge these definitions. Additionally,
the reusability definition of Boyle et al. works only for the semi-honest setting,
while our definition covers malicious adversaries.

A PCF must fulfill two properties. First, the pseudorandomness property
intuitively states that the joint outputs of the Eval algorithm are computationally
indistinguishable from outputs of the correlation Y. Second, the security property
intuitively guarantees the output being pseudorandomly even when knowing one
key.

Similarly to the notions of weak and strong PRFs, there exist the notions of
weak and strong PCFs. For a weak PCF, we consider the Eval algorithm to be
executed on randomly chosen inputs, while for a strong PCF, we consider arbi-
trarily chosen inputs. Boyle et al. [BCG+20a] showed a generic transformation
from a weak to a strong PCF using a hash function modeled as a programmable
random oracle. We use this transformation later in constructing srPCFs.

A PCF needs to meet two additional requirements to satisfy the reusabil-
ity features. First, an adversary cannot learn any information about the other
party’s input used for the key generation from its own key. This is modeled by
the key indistinguishability property and the corresponding game in Figure 3.
On a high level, the game captures the fact that the adversary cannot tell what
value was used by the honest party for the PCF key generation, given the key of
the corrupted party. To model this, the challenger samples two random values
and uses one for the key generation. Then, given the corrupted party’s key and
random values, the adversary has to identify which value was used. Second, two
efficiently computable functions must exist to compute the reusable parts of the
correlation from the setup input and the public evaluation input. Formally, we
state the definition of a strong reusable PCF next.

Definition 2 (Strong reusable pseudorandom correlation function (sr-
PCF)). Let (Setup,Y) be a reverse-sampleable and indexable correlation with
setup which has output length functions ℓ0(λ), ℓ1(λ), and let λ ≤ n(λ) ≤ poly(λ)
be an input length function. Let (PCF.Gen,PCF.Eval) be a pair of algorithms with
the following syntax:

– PCF.Gen(1λ, ρ0, ρ1) is a probabilistic polynomial-time algorithm that on input
the security parameter 1λ and reusable inputs ρ0, ρ1 outputs a pair of keys
(k0, k1).

– PCF.Eval(σ, kσ, x) is a deterministic polynomial-time algorithm that on input
σ ∈ {0, 1}, key kσ and input value x ∈ {0, 1}n(λ) outputs a value yσ ∈
{0, 1}ℓσ(λ).

We say (PCF.Gen,PCF.Eval) is a strong reusable (N,B, ϵ)-secure pseudorandom
correlation function (srPCF) for (Setup,Y), if the following conditions hold:

– Strong pseudorandom Y-correlated outputs. For every non-uniform
adversary A of size B(λ) asking at most N(λ) queries to the oracle Ob(·),

12

it holds ∣∣∣∣Pr[Exps-prA (λ) = 1]− 1

2

∣∣∣∣ ≤ ϵ(λ)

for all sufficiently large λ, where Exps-prA (λ) is as defined in Figure 1.
– Strong security. For each σ ∈ {0, 1} and non-uniform adversary A of size

B(λ) asking at most N(λ) queries to oracle Ob(·), it holds∣∣∣∣Pr[Exps-secA,σ (λ) = 1]− 1

2

∣∣∣∣ ≤ ϵ(λ)

for all sufficiently large λ, where Exps-secA,σ (λ) is as defined in Figure 2.
– Programmability. There exist public efficiently computable functions f0, f1

for which

Pr

ρ0, ρ1

$← {0, 1}∗,

(k0, k1)← PCF.Gen(1λ, ρ0, ρ1)

(a, c)← PCF.Eval(0, k0, x),

(b, d)← PCF.Eval(1, k1, x)

:
a = f0(ρ0, x)

b = f1(ρ1, x)

 ≥ 1− negl(λ).

– Key indistinguishability. For any σ ∈ {0, 1} and non-uniform adversary
A = (A0,A1), it holds

Pr[Expkey-indPCF,A,σ(λ) = 1] ≤ 1

2
+ negl(λ)

for all sufficiently large λ, where Expkey-indPCF,A,σ is as defined in Figure 3.

We say that (PCF.Gen,PCF.Eval) is a srPCF for Y if it is a (p, 1/p, p)-secure
sPCF for Y for every polynomial p. If B = N , we write (B, ϵ)-secure sPCF for
short.

3.2 Correlations

Next, we state the correlations that are used in our preprocessing protocol. These
are the oblivious linear evaluation (OLE) and vector OLE (VOLE) correlations.
We present PCF constructions realizing these correlations in Appendix C.

Our OLE correlation over ring R is given by c1 = ab+ c0, where a, b, c0, c1 ∈
R. Moreover, we require a and b being computed by a weak psuedorandom
function (PRF). Formally, we define the reverse-sampleable and indexable target
correlation with setup (SetupOLE,YOLE) over ring R as

(k, k′)← SetupOLE(1
λ, k, k′) ,

((Fk(i), u), (Fk′(i), v))← YOLE(1
λ, (k, k′), i) such that

v = Fk(i) · Fk′(i) + u ,

(2)

13

Exps-prA (λ) :

(ρ0, ρ1)← A0(1
λ)

mk← Setup(1λ, ρ0, ρ1)

(k0, k1)← PCF.Gen(1λ, ρ0, ρ1)
Q = ∅
b

$← {0, 1}
b′ ← AOb(·)

1 (1λ)
if b = b′return 1
else return 0

O0(x) :

if (x, y0, y1) ∈ Q :
return (y0, y1)

else :

(y0, y1)← Y(1λ,mk, x)

Q = Q∪ {(x, y0, y1)}
return (y0, y1)

O1(x) :

for σ ∈ {0, 1} :
yσ ← PCF.Eval(σ, kσ, x)

return (y0, y1)

Fig. 1: Strong pseudorandom Y-correlated outputs of a PCF.

Exps-secA,σ(λ) :

(ρ0, ρ1)← A0(1
λ)

mk← Setup(1λ, ρ0, ρ1)

(k0, k1)← PCF.Gen(1λ, ρ0, ρ1)

b
$← {0, 1}

b′ ← AOb(·)
1 (1λ, σ, kσ)

if b = b′return 1
else return 0

O0(x) :

y1−σ ← PCF.Eval(1− σ, k1−σ, x)

return y1−σ

O1(x) :

yσ ← PCF.Eval(σ, kσ, x)

y1−σ ← RSample(1λ,mk, σ, yσ, x)

return y1−σ

Fig. 2: Strong security of a PCF.

where u, v ∈ R and F being a (PRF) with key k, k′. Note that while the Setup al-
gorithm for our OLE and also VOLE is essentially the identity function, the algo-
rithm might be more complex for other correlations. The reverse-sampling algo-
rithm is defined such that (Fk′(x), Fk(i)·Fk′(x)+u)← RSampleOLE(1

λ, (k, k′), 0, (Fk(i), u), i)
and
(Fk(i), u)← RSampleOLE(1

λ, (k, k′), 1, (Fk′(x), v), i).

Next, we state the VOLE correlation. In contrast to OLE, the value b is
fixed over multiple correlation samples, i.e., c⃗1 = a⃗b+ c⃗0, where each correlation
sample contains one component of the vectors. We formally define the reverse-
sampleable and indexable target correlation with setup (SetupVOLE,YVOLE) over

14

Expkey-indA,σ (λ) :

b
$← {0, 1}

ρ
(0)
1−σ, ρ

(1)
1−σ

$← {0, 1}∗

ρ1−σ ← ρ
(b)
1−σ

ρσ ← A0(1
λ)

(k0, k1)← PCF.Genp(1
λ, ρ0, ρ1)

b′ ← A1(1
λ, kσ, ρ

(0)
1−σ, ρ

(1)
1−σ)

if b′ = b return 1
else return 0

Fig. 3: Key Indistinguishability of a reusable PCF.

ring R as

(k, b)← SetupVOLE(1
λ, k, b) ,

((Fk(i), u), (b, v))← YVOLE(1
λ, (k, b), i) such that

v = Fk(i) · b+ u ,

(3)

where b, u, v ∈ R and F being a weak pseudorandom function (PRF) with
key k. The reverse-sampling algorithm is defined such that (b, Fk(i) · b + u) ←
RSampleVOLE(1

λ, (k, b), 0, (Fk(i), u), i) and (Fk(i), u)← RSampleVOLE(1
λ, (k, b), 1, (b, v), i).

We state PCF constructions realizing these definitions of OLE and VOLE
correlations in Appendix C.

4 Threshold Online Protocol

In this section, we present our threshold BBS+ protocol. This protocol yields a
signing phase without interaction between the signers and a flexible threshold
parameter t. Moreover, we show the security of our protocol against a malicious
adversary statically corrupting up to t− 1 parties in the UC framework.

Section 4.1 states our modifications to the ideal functionality for threshold
signature schemes introduced by Canetti et al. [CGG+20]. The full functionality
is given in Appendix D. We use this functionality to prove UC security of our
scheme. To be more generic, we deliberately chose the generic threshold signature
functionality by Canetti et al. [CGG+20] over a specific BBS+ functionality such
as the one used in [DKL+23]. Proving security under a generic threshold func-
tionality enables our threshold BBS+ protocol to be used whenever a threshold
signature scheme is required and not only when a BBS+ scheme is required.

Our protocol uses precomputation to accelerate online signing. An intuitive
description of the used precomputation is given in Section 1.2. We formally model
the precomputation by describing our protocol in a hybrid model where parties

15

can access a hybrid preprocessing functionality FPrep. Section 4.2 states the hy-
brid functionality FPrep. Using a hybrid model allows us to abstract from the
concrete instantiation of the preprocessing functionality. We present a concrete
instantiation of FPrep in Section 5.

Finally, Section 4.3 formally states our threshold BBS+ protocol and provides
proof in the UC framework. We refer the reader to the technical overview in
Section 1.2 for an intuitive description of our protocol.

4.1 Ideal Threshold Signature Functionality

We base our security analysis on the ideal threshold signature functionality Ftsig

of Canetti et al. [CGG+20]. We slightly modify the functionality in the following
aspects. First, we allow the parties to specify a set of signers T during the sign-
ing request. Specifying T helps us to account for a flexible threshold of signers
instead of requiring all n parties to sign. Second, we model the signed message
as an array of messages. This change accounts for signature schemes allowing
signing k messages simultaneously, such as BBS+. Third, we remove the iden-
tifiability property, the key-refresh, and the corruption/decorruption interface.
The key-refresh and the corruption/decorruption interface are not required in
our scenario as we consider a static adversary in contrast to the mobile ad-
versary in [CGG+20]. Should we add the following: Fourth, we allow only one
signature per ssid to prevent attacks due to same randomness used in multiple
signatures. Fifth, at the end of the signing phase, honest parties might output
abort instead of a valid signature. This modification is due to our protocol not
providing robustness or identifiable abort. The later is achieved by the protocol
of [CGG+20].

The full formal description is presented in Appendix D.

4.2 Ideal Preprocessing Functionality

The preprocessing functionality consists of two phases. First, the Initialization
phase samples a private/public key pair. Second, the Tuple phase provides corre-
lated tuples upon request. In this phase, the output values of the honest parties
are reverse sampled, given the corrupted parties’ outputs. To explicitly model
the Tuple phase as non-interactive, we require the simulator to specify a func-
tion Tuple during the Initialization. This function defines the corrupted parties’
output values in the Tuple phase and is computed first to reverse sample the
honest parties’ outputs.

Functionality FPrep

The functionality FPrep interacts with parties P1, . . . , Pn and ideal-world ad-
versary S. The functionality is parameterized by a threshold parameter t.
During the initialization, S provides a tuple function Tuple(·, ·, ·)→ Z5

p.
Initialization. Upon receiving (init, sid) from all parties,

16

– sample the secret key sk
$← Zp

– send pk = (gsk2) to S. Upon receiving (ok,Tuple(·, ·, ·)) from S, send pk to
every honest party.

Tuple. On input (tuple, sid, ssid, T) from party Pl where l ∈ T , T ⊆ [n] of
size t do:

– If (ssid, T , {(ai, ei, si, δi, αi)}i∈T) is stored, send (al, el, sl, δl, αl) to Pl.
– Else, compute (aj , ej , sj , δj , αj) ← Tuple(ssid, T , j) for every corrupted

party Pj where j ∈ C ∩ T . Next, sample a, e, s
$← Zp and tuples

(aj , ej , sj , δj , αj) over Zp for j ∈ H ∩ T such that∑
i∈T

ai = a
∑
i∈T

ei = e
∑
i∈T

si = s∑
ℓ∈T

δi = a(sk+ e)
∑
i∈T

αi = as
(4)

Store (sid, ssid, T , {(ai, ei, si, δi, αi)}i∈T) and send (sid, ssid, al, el, sl, δl, αl)
to honest party Pl.

Abort. On input (abort, sid) from S, send abort to all honest parties and
halt.

4.3 Online Signing Protocol

We formally state our threshold BBS+ protocol next and show its security af-
terward.

Construction 1: πTBBS+

We describe the protocol from the perspective of an honest party Pi.
Public Parameters. Number of parties n, size of message arrays k, security thresh-
old t, a bilinear mapping tuple (G1,G2,GT , p, g1, g2, e) and randomly sampled G1

elements {hℓ}ℓ∈[0..k]. Let Verifypk(·, ·) be the BBS+ verification algorithm as defined
above.
KeyGen.

– Upon receiving (keygen, sid) from Z, send (init, sid) to FPrep and receive pk in
return.

– Upon receiving (pubkey, sid) from Z output (pubkey, sid,Verifypk(·, ·)).

Sign. Upon receiving (sign, sid, ssid, T ,m = {mℓ}ℓ∈[k]) from Z with Pi ∈ T and no
tuple (sid, ssid) is stored, perform the following steps:

1. Send (tuple, sid, ssid, T) to FPrep and receive tuple (ai, ei, si, δi, αi).
2. Store (sid, ssid) and send (sid, ssid, T ,m, Ai := (g1 ·

∏
ℓ∈[k] h

mℓ
ℓ)ai · hαi

0 , δi, ei, si)
to each party Pj ∈ T .

3. Once (sid, ssid, T ,m, Aj , δj , ej , sj) is received from every party Pj ∈ T \ {Pi},

17

(a) compute e =
∑

ℓ∈T eℓ, s =
∑

ℓ∈T sℓ, ϵ =
(∑

ℓ∈T δℓ
)−1

, and A = (Πℓ∈T Aℓ)
ϵ.

(b) If Verifypk(m, (A, e, s)) = 1, set out = σ = (A, e, s). Otherwise, set out =
abort. Then, output (sig, sid, ssid, T ,m, out).

Verify. Upon receiving (verify, sid,m = {mℓ}ℓ∈[k], σ,Verifypk′(·, ·)) from Z output
(verified, sid,m, σ,Verifypk′(m, σ)).

Theorem 1. Assuming the strong unforgeability of BBS+, it holds that protocol
πTBBS+ UC-realizes Ftsig in the FPrep-hybrid model in the presence of malicious
adversaries controlling up to t− 1 parties.

The proof is given in Appendix E.

4.4 Anonymous Credentials and Blind Signing

BBS+ signatures can be used to design anonymous credential schemes as follows.
To receive a credential, a client sends a signing request to the servers containing
its public and private credential information as a message array. Public parts of
the credentials are sent in clear, while private information is blinded. The client
can add zero-knowledge proofs that blinded messages satisfy some predicate.
These proofs enable the issuing servers to enforce a signing policy even though
they blindly sign parts of the messages. Once holding credentials, clients can
prove in zero knowledge that their credential fulfills certain predicates without
leaking their signature.

Our scheme must be extended by a blind-signing property to realize the
described blueprint. Precisely, we require a property called partially blind signa-
tures [AO00]. This property prevents the issuer from learning more details about
the message to be signed besides some explicitly declared public information.

To transform our scheme into a partially blind one, we follow the approach
of [ASM06]. Let {mℓ}ℓ∈[k] be the set of messages representing the client’s cre-
dential information. Without loss of generality, we assume that mk is the public
part. In order to blind its messages, the client computes a Pedersen Commit-
ment [Ped91] on the private messages: C = gs

′

1 ·
∏

ℓ∈[k−1] h
mℓ

ℓ for a random s′

and a zero-knowledge proof π that C is well-formed, i.e., that the client knows
(s′, {mℓ}ℓ∈[k−1]). The client sends (T , C, π,mk) and potential zero-knowledge
proofs for signing policy enforcement to the servers. Each server Pi for i ∈ T
replies with (Ai = (g1 · C · hmk

k)ai · hαi
0 , δi, ei, si). The client computes e, s, and

A as before but outputs signature (A, e, s∗ = s′ + s) which constitutes a valid
signature.

As the blinding mechanism and the resulting signatures are equivalent in
the non-threshold BBS+ setting, we can use existing zero-knowledge proofs for
policy enforcement and credential usage from the non-threshold setting.

5 Threshold Preprocessing Protocol

We state our threshold BBS+ signing protocol in Section 4 in a FPrep-hybrid
model. Now, we present an instantiation of the FPrep functionality using pseu-

18

dorandom correlation functions (PCFs). In particular, our πPrep protocol builds
on PCFs for VOLE and OLE correlations. The resulting protocol consists of an
interactive Initialization and a non-interactive Tuple phase, consisting only of
the local PCF evaluations and additional local computation. We now give an
intuition of our preprocessing protocol and present formal definitions in Sec-
tion 5.1-5.3. In Section 5.4 we briefly give an intuition about instantiating our
precomputation pseudorandom correlation generators (PCGs) instead of PCFs.

Our preprocessing protocol consists of three steps: the first two are part of
the Initialization phase, and the third one builds the Tuple phase. First, the
parties set up a secret and corresponding public key. For the BBS+ signature
scheme, the public key is pk = hx

0 , while the secret key is sk = x, which is
secret-shared using Shamir’s secret sharing, i.e., party Pi knows ski = F (i) for
a random polynomial P with P (0) = sk. This procedure constitutes a standard
distributed key generation protocol for a DLOG-based cryptosystem. Therefore,
we abstract from the concrete instantiation of this protocol and model the key
generation as a hybrid functionality FKG.

Second, the parties set up the keys for the PCF instances. The protocol uses
two-party PCFs, meaning each pair of parties sets up required instances. At the
time of writing, no PCF construction with a tailored MPC protocol for setting
up the keys exists. Therefore, we model the PCF key generation as a hybrid
functionality FSetup.

Third, every party in the signer set of a signing request executes the Tuple
phase. In this phase party Pi generates (ai, ei, si, δi, αi), where the values fulfill
correlation (4). To this end, each party samples ai, ei, si such that the ai values
constitute an additive secret sharing of a. The same holds for e and s. Then,∑

ℓ∈T αℓ = as can be rewritten as as =
∑

ℓ∈T aℓ
∑

ℓ∈T sℓ =
∑

ℓ∈T
∑

k∈T aℓsk.
Each multiplication aℓsk is turned into additive shares using an OLE correlation,
i.e., c1−c0 = as. The parties use PCF instances to compute this OLE correlation.
Finally, party Pi locally adds aisi and the outputs of its PCF evaluations to get
an additive sharing of as. The same idea works for computing δi such that∑

ℓ∈T δℓ = a(sk + e) = ask + ae. Note that while the values a, e, s are fresh
random values for each signing request, sk is fixed. Therefore, the parties use
VOLE correlations to compute ask instead of OLE correlations.

Note that party Pi uses PCF instances for computing additive shares of aisj
and aisk for two different parties Pj and Pk. Since ai must be the same for both
products, we use reusable PCFs so parties can fix ai over multiple PCF instances.
In addition, parties evaluate the PCFs on ssid as input. As ssid is provided by
the environment, we require strong PCFs. Based on these two requirements, our
protocol relies on strong reusable PCFs defined in Section 3.

Next, we present the hybrid key generation functionality in Section 5.1 and
the hybrid setup functionality in Section 5.2. Then, we formally state and prove
our PCF-based preprocessing protocol in the (FKG,FSetup)-hybrid model in Sec-
tion 5.3.

19

5.1 Key Generation Functionality

We abstract from the concrete instantiation of the key generation. Therefore,
we state a very simple key generation functionality for discrete logarithm-based
cryptosystems similar to the functionality of [Wik04]. The functionality describes
a standard distributed key generation for discrete logarithm-based cryptosys-
tems and can be realized by [GJKR99, Wik04] or the key generation phase of
[CGG+20].

Functionality FKG

The functionality is parameterized by the order of the group from which the
secret key is sampled p, a generator for the group of the public key h, and a
threshold parameter t. The key generation functionality interacts with parties
P1, . . . , Pn and ideal-world adversary S.
Key Generation:
Upon receiving (keygen, sid) from every party Pi and
(corruptedShares, sid, {skj}j∈C) from S:

– Sample random polynomial F ∈ Zp[X] of degree t− 1 such that F (j) = skj
for every j ∈ C.

– Set sk = F (0), pk = hsk, skℓ = F (ℓ) and pkℓ = hskℓ for ℓ ∈ [n].
– Send (sid, skℓ, pk, {pkk}k∈[n]) to every party Pℓ.

5.2 Setup Functionality

The setup functionality gets random values, secret key shares, and partial public
keys as input from every party. Then, it first checks if the secret key shares and
the partial public key match and next generates the PCF keys using the random
values. Finally, it returns the generated PCF keys to the parties.

At the time of writing, no PCF construction with a tailored key generation
protocol exists. Therefore, we abstract from a concrete instantiation by speci-
fying this functionality. Nevertheless, FSetup can be instantiated using general-
purpose MPC.

Functionality FSetup

Let (PCFVOLE.Gen,PCFVOLE.Eval) be a srPCF for VOLE correlations and let
(PCFOLE.Gen,PCFOLE.Eval) be a srPCF for OLE correlations. The setup func-
tionality interacts with parties P1, . . . , Pn.
Setup:

Upon receiving (setup, sid, ρ
(i)
a , ρ

(i)
s , ρ

(i)
e , ski, {pk(i)k }k∈[n]) from every party Pi:

– Check if hskℓ = pk
(k)
ℓ for every ℓ, k ∈ [n]. If the check fails, send abort to

all parties.
– Else, compute for every pair of parties (Pi, Pj):

• (kVOLE
i,j,0 , kVOLE

i,j,1)← PCFVOLE.Gen(1
λ, ρ

(i)
a , skj),

20

• (k
(OLE,1)
i,j,0 , k

(OLE,1)
i,j,1)← PCFOLE.Gen(1

λ, ρ
(i)
a , ρ

(j)
s), and

• (k
(OLE,2)
i,j,0 , k

(OLE,2)
i,j,1)← PCFOLE.Gen(1

λ, ρ
(i)
a , ρ

(j)
e).

– Send keys (sid, kVOLE
i,j,0 , kVOLE

j,i,1 , k
(OLE,1)
i,j,0 , k

(OLE,1)
j,i,1 , k

(OLE,2)
i,j,0 ,

k
(OLE,2)
j,i,1)j ̸=i to every party Pi.

5.3 PCF-based Preprocessing Protocol

In this section, we formally present our PCF-based preprocessing protocol in the
(FKG,FSetup)-hybrid model.

Construction 2: πPrep

Let (PCFVOLE.Gen,PCFVOLE.Eval) be a srPCF for VOLE correlations and let
(PCFOLE.Gen,PCFOLE.Eval) be a srPCF for OLE correlations.
We describe the protocol from the perspective of Pi.
Initialization. Upon receiving input (init, sid), do:

1. Send (keygen, sid) to FKG.

2. Upon receiving (sid, ski, pk, {pk(i)k }k∈[n]) from FKG, sample ρ
(i)
a , ρ

(i)
s , ρ

(i)
e ∈ {0, 1}λ

and send (setup, sid, ρ
(i)
a , ρ

(i)
s , ρ

(i)
e , ski, {pk(i)k }k∈[n]) to FSetup.

3. Upon receiving (sid, kVOLE
i,j,0 , k

VOLE
j,i,1 , k

(OLE,1)
i,j,0 , k

(OLE,1)
j,i,1 , k

(OLE,2)
i,j,0 ,

k
(OLE,2)
j,i,1)j ̸=i from FSetup, output pk.

Tuple. Upon receiving input (tuple, sid, ssid, T), compute:

4. for j ∈ T \ {i}:
– (ai, c

VOLE
i,j,0) = PCFVOLE.Eval(0, k

VOLE
i,j,0 , ssid),

– (ski, c
VOLE
j,i,1) = PCFVOLE.Eval(1, k

VOLE
j,i,0 , ssid),

– (ai, c
(OLE,1)
i,j,0) = PCFOLE.Eval(0, k

(OLE,1)
i,j,0 , ssid),

– (si, c
(OLE,1)
j,i,1) = PCFOLE.Eval(1, k

(OLE,1)
j,i,1 , ssid),

– (ai, c
(OLE,2)
i,j,0) = PCFOLE.Eval(0, k

(OLE,2)
i,j,0 , ssid), and

– (ei, c
(OLE,2)
j,i,1) = PCFOLE.Eval(1, k

(OLE,2)
j,i,1 , ssid).

5. δi = ai(ei + Li,T ski) +
∑

j∈T \{i}

(
Li,T cVOLE

j,i,1 − Lj,T cVOLE
i,j,0 + c

(OLE,2)
j,i,1 − c

(OLE,2)
i,j,0

)
6. αi = aisi +

∑
j∈T \{i}

(
c
(OLE,1)
j,i,1 − c

(OLE,1)
i,j,0

)
Finally, output (sid, ssid, ai, ei, si, δi, αi).

Theorem 2. Let PCFVOLE be a srPCF for VOLE correlations and let PCFOLEbe
a srPCF for OLE correlations. Then, protocol πPrep UC-realizes FPrep in the
(FKG,FSetup)-hybrid model in the presence of malicious adversaries controlling
up to t− 1 parties.

We state our simulator in Appendix F, provide a sketch in Appendix G, and
the full indistinguishability proof in Appendix H.

21

5.4 PCG-based Preprocessing

Instead of using PCFs, we can also use PCGs to instantiate our preprocessing
phase. On a high level, our protocol presented in Section 5.3 uses VOLE and
OLE PCFs. For VOLE and OLE correlations, PCG constructions were proposed
in [BCGI18, BCG+19b, BCG+19a, SGRR19, BCG+20b, YWL+20, CRR21].
It remains to show that these constructions fulfill a notion similar to strong
reusability defined in Section 3.

In a practical setting, a PCG-based precomputation requires the parties to
perform the PCG expansion directly after the seed generation. Then, the parties
store the expanded correlation outputs and use one for each signing request.

6 Evaluation

For the evaluation, we split our protocol into two phases: online and offline. Given
a signing request determined by the message and the signer set, the online phase
captures the signing request-dependent parts. In contrast, the offline phase covers
the signing request-independent preprocessing. This separation does not fully
reflect the protocol specification’s separation in in Key Generation and Signing.
In the protocol specificaiton, servers evaluate the PCFs on the fly as part of the
Signing protocol. However, the PCF evaluation is signing request-independent,
and hence, can be precomputed in the offline phase. Servers precompute the PCF
for upcoming requests and store the results to respond to signing requests even
faster. In the case of PCG-based preprocessing, servers evaluate the PCG directly
after seed generation. Upon receiving a signing request, the servers aggregate the
preprocessed PCF/PCG outputs to a valid signer set-dependent presignature
and use this presignature to perform the actual signing. More precisely, servers
compute Step 4 of protocol πPrep as part of the offline phase3, and start the
online phase with Step 5 and Step 6. Steps 5 and 6 cannot be executed earlier
as they depend on the signer set.

For the online, signing request-dependent phase, we implement the proto-
col and run benchmarks to test its practicality, reporting both the runtime and
the communication complexity. For comparison, we also implement and bench-
mark the non-threshold BBS+ signing algorithm. We open-source our prototype
implementation to foster future research in this area4.

For the offline, signing request-independent phase, we compute the commu-
nication, storage, and computation complexity. Due to the lack of efficient in-
stantiations of PCFs for the required correlations, we focus the evaluation on a
PCG-based precomputation.

In the following, we denote the security parameter by λ, the number of servers
by n, the security threshold by t, the size of the signed message arrays by k, the
number of generated precomputation tuples byN , the order of the elliptic curve’s
groups G1 and G2 by p and assume PCGs based on the Ring LPN problem with

3 Now, they evaluate this step for all j ∈ [n] \ {i} instead of all j ∈ T \ {j}.
4 https://github.com/AppliedCryptoGroup/NI-Threshold-BBS-Plus-Code

22

https://github.com/AppliedCryptoGroup/NI-Threshold-BBS-Plus-Code

static leakage and security parameters c and τ , i.e., the Rc − LPNp,τ assump-
tion5. This assumption is common to state-of-the-art PCG instantiations for
OLE correlations [BCG+20b].

As [TZ23] published an optimization of the BBS+ signature scheme con-
currently to our work, we repeat our evaluation, including implementation and
benchmarks, for an optimized version of our protocol and present the results in
Appendix J

6.1 Online, Signing Request-Dependent Phase

Our implementation and benchmarks of the online phase are written in Rust
and based on the BLS12 381 curve6. Our code, including the benchmarks and
rudimentary tests, comprises 1.400 lines. We compiled our code using rustc 1.68.2
(9eb3afe9e).
Setup. For our benchmarks, we split the protocol in four phases: Adapt (Steps 5
and 6 of protocol πPrep), Sign (Step 2 of πTBBS+), Reconstruct (Step 3a of πTBBS+)
and Verify (Step 3b of πTBBS+). Adapt and Sign are executed by the servers.
Reconstruct and Verify are executed by the client. Together, these phases cover
the whole online signing protocol. The runtime of our protocol is influenced by
the security threshold t and the message array size k. We perform benchmarks
for 2 ≤ t ≤ 30 and 1 ≤ k ≤ 50. The influence of the total number of servers n is
insignificant to non-existent. Our benchmarks do not account for network latency
which heavily depends on the location of clients and servers. Network latency,
in our protocol, incurs the same overhead as in the non-threshold setting. It can
be incorporated by adding the Round-Trip-Time of messages up to 2kB over the
client’s (slowest) server connection to the total runtime. As the online phase of
our protocol is non-interactive, we benchmark servers and clients individually.
More precisely, we execute all benchmarks on a single machine which has a
14-core Intel Xeon Gold 5120 CPU @ 2.20GHz processor and 64GB of RAM.
To account for statistical deviations, we repeat each benchmark 100 times and
report the average. For comparability, we report the runtime of basic arithmetic
operations on our machine in Table 1 in Appendix I.

Results. We report the results of our benchmarks in Figure 4. These results
reflect our expectations as outlined in the following. The Adapt phase trans-
forming PCF/PCG outputs to signing request-dependent presignatures involves
only field operations and is much faster than the other phases for small t. The
runtime increase for larger t stems from the number of field operations scaling
quadratically with the number of signers. Signers have to compute a LaGrange
coefficient for each other signer. The computation of the LaGrange coefficient
scales with t as well. The Sign phase requires the servers to compute k+2 scalar
multiplications in G1, each taking 100 times more time than the slowest field

5 For 128-bit security, [BCG+20b] reports (c, t) = (2, 76), (c, t) = (4, 16), and (c, t) =
(8, 5) for N = 220.

6 We have used Algorand’s pairing-plus library [Alg23] for all curve operations.

23

operation (cf. Appendix I). The Reconstruct phase involves a single G1 scalar
multiplication, field operations, and G1 additions, depending on the threshold
t. The scalar multiplication, being responsible for more than 90% of the phase’s
runtime for t ≤ 30, dominates the cost of this phase. The Verify phase requires
the client to compute the pairing operation, a single scalar multiplication in G2,
k+1 scalar multiplications G1, and multiple additions in G1 and G2. The pairing
operation and the scalar multiplication in G2 are responsible for the constant
costs visible in the graph. The scalar multiplications in G1 cause the linear in-
crease. The influence of G1 and G2 additions is insignificant because they take
at most 1.4% of scalar multiplication in G1. The Total runtime mainly depends
on the size of the signed message array due to the scalar multiplications in the
signing and verification step. The number of signers, t, has only a minor influence
on the online runtime; increasing the number of signers from 2 to 30 increases
the runtime by 1.14% − 5.52%. Following, the online protocol can essentially
tolerate any amount of servers as long as the preprocessing, which is expected
to scale worse, can be instantiated efficiently for the number of servers and the
storage complexity of the generated preprocessing material does not exceed the
servers’ capacities (cf. Section 6.2).

To measure the overhead of thresholdization, we compare the runtime of our
online protocol to the runtime of signature creation (and verification) in the non-
threshold setting in Figure 5. When considering clients that verify signatures,
even if created by a single server, the overhead of our protocol consists only
of a single scalar multiplication in G1 and is essentially free. This observation
reflects our protocol pushing all the overhead of the thresholdization, except one
signature verification, to the offline phase.

Communication-wise, the client has to send one signing request of size (k ·
⌈log p⌉)+(t · ⌈log n⌉) bits to each of the t selected servers. By deriving the signer
set via a random oracle, we can reduce the size of the request to (k ·⌈log p⌉). Each
of the selected servers has to send a partial signature of size (3⌈log p⌉ + |G1|).
While our protocol requires the partial signatures to be send to all other servers
in the signer set due to some subtle details in the UC modeling, we expect it
to be sufficient for real-world applications to send the partial signature to the
client only. We emphasize that this request-response behavior is the minimum
interaction for MPC protocols. As there is no interaction between the servers,
this setting is referred to as non-interactive in the literature [CGG+20, ANO+22].
In case of the BLS12 381 curve, ⌈log p⌉ equals 255 bits whereas |G1| equals 768
bits. Parties can also encode G1 elements with 384 bits by only sending the x-
coordinate of the curve point. In this case, it is necessary that the client computes
the y-coordinate of the received G1 elements itself.

6.2 Offline, Signing Request-Independent Phase

For the evaluation of the offline, signing request-independent phase, we focus
on a PCG-based preprocessing, analyzing the communication complexity of the
distributed PCG seed generation, the storage complexity of the PCG seeds and
the generated tuples, and the computation complexity of the seed expansions.

24

10 20 30
0

200

400

t

[µs]

(a) Adapt (Server).

10 30 50
0

5

10

15

k

[ms]

(b) Sign (Server).

10 20 30
0

100

200

300

t

[µs]

(c) Reconstruct (Client).

10 30 50
0

10

20

k

[ms]

(d) Verify (Client).

10 20 30
0

5

10

15

t

[ms]

k = 1 k = 2

k = 5 k = 10

(e) Total.

Fig. 4: The runtime of individual protocol phases (a)-(d) and the total online
protocol (e). The Adapt phase, describing Steps 5 and 6 of protocol πPrep, and the
Reconstruct phase, describing Step 3a of πTBBS+, depend on security threshold
t. The Sign phase, describing Step 2 of πTBBS+, and the signature verification,
describing Step 3b of πTBBS+, depend on the message array size k.

10 20 30 40 50
0

20

40

k

[ms] Threshold (t = 10)

Plain incl. verification

Plain excl. verification

Fig. 5: The total runtime of our online protocol compared to plain, non-threshold
signing with and without signature verification in dependence of k. The number
of signers t is insignificant (cf. Figure 4e).

25

Existing fully distributed PCG constructions for OLE-correlations [BCG+20b,
ANO+22] do not separate between the PCG seed generation and the PCG eval-
uation phase. Instead, they merge both phases into one distributed protocol.
These distributed protocols make use of secret sharing-based general-purpose
MPC protocols optimized for different kinds of operations (binary [NNOB12],
field [DPSZ12, DKL+13], or elliptic curve [DKO+20]) as well as a special-purpose
protocol for the computation of a two-party distributed point function (DPF)
presented in [BCG+20b]. As the PCG-generated preprocessing material utilized
in [ANO+22] shows similarities to the material required by our online signing
protocol, we derive a distributed PCG protocol for our setting from theirs and
analyze the communication complexity accordingly. This yields that the com-
munication complexity of a PCG-based preprocessing instantiating our offline,
signing request-independent protocol, is dominated by

26(ncτ)2 · (logN + log p) + 8n(cτ)2 · λ · logN.

bits of communication per party.
Instead of merging the PCG setup with the PCG evaluation in one setup

protocol, it is also possible generate the PCG seeds first, either via a trusted
party or another dedicated protocol, and execute the expansion at a later point
in time, e.g., when the next batch of presignatures is required. In this scenario,
each server stores seeds with a size of at most

log p+ 3cτ · (⌈log p⌉+ ⌈logN⌉)
+2 · (n− 1) · cτ · (⌈logN⌉ · (λ+ 2) + λ+ ⌈log p⌉)
+4(n− 1) · (cτ)2 · (⌈log 2N⌉ · (λ+ 2) + λ+ ⌈log p⌉)

bits if the PCGs are instantiated with the constructions of [BCG+20b].
When instantiating the precomputation with PCGs, servers have to evaluate

all of the PCGs’ outputs at once and keep the resulting precomputation material
in storage which occupies

log p · (1 +N · (3 + 6 · (n− 1)))

bits of storage. In [ANO+22], the authors report N = 94 019 as a reasonable pa-
rameter for a PCG-based setup protocol. In [BCG+20b], the authors base their
analysis on N = 220 = 1048 576. To efficiently apply Fast Fourier Transforma-
tion algorithms during the seed expansion, it is necessary to choose N such that
it divides p− 1. Figure 6 reports the storage complexity depending on the num-
ber of servers n for different N that are close or equal to the ones used by prior
work and which divide the group order of the BLS12 381 curve used by our im-
plementation. Note that the dependency on the number of servers n stems from
the fact that we support any threshold t ≤ n. In a n-out-of-n settings, servers
can execute Steps 5 and 6 of protocol πPrep during the preprocessing, and hence,
only store log p · (1 + 5N) bits of preprocessing material.

The computation cost of the seed expansion is dominated by the ones of
the PCGs for OLE correlations. In [BCG+20b], the authors report the com-
putation complexity of expanding a seed of an OLE PCG to involve at most

26

0 10 20 30
0

2

4

6

n

[GB] N = 1048 576

N = 98 304

Fig. 6: Storage complexity of the precomputation material required for N ∈
{98 304, 1 048 576} signatures depending on the number of servers n.

N(ct)2(4+2⌊log(p/λ)⌋) PRG operations and O(c2N logN) operations in Zp. In
our protocol, each server Pi has to evaluate 4 OLE-generating PCGs for each
other server Pj ; one for each cross term (ai · ej), (aj · ei), (ai · sj), and (aj · si).
It follows that the seed expansion in our protocol is dominated by

4 · (n− 1) · (4 + 2⌊log(p/λ)⌋) ·N · (cτ)2

PRG evaluations and O(nc2N logN) operations in Zp.

6.3 Comparison to [DKL+23]

10 20 30
0

10

20

t

[ms] Us

[DKL+23]

(a) LAN.

10 20 30
0

200

400

t

[ms] Us

[DKL+23]

(b) WAN.

Fig. 7: Runtime of the signing protocol of [DKL+23] compared to the network
adjusted runtime of our signing protocol in the LAN and WAN setting.

Concurrently to our work, [DKL+23] presented the first t-out-of-n thresh-
old BBS+ protocol. While we achieve a non-interactive online signing phase at
the cost of a computationally intensive offline phase, their protocol incorporates
a lightweight setup independent from the number of generated signatures but
requires an interactive signing protocol. [DKL+23] provide an experimental eval-
uation of the interactive signing protocol, which we will compare to our online
signing in the following. We thank the authors of [DKL+23] for sharing concrete
numbers of their evaluation.

27

Equivalent to our implementation, their implementation is in Rust and based
on the BLS12 381 curve. When comparing the benchmarking machines, G1 and
G2 scalar multiplications are 20 − 30% faster on our machine, while signature
verifications are 20% faster on their machine. Although not explicitly stated, the
numbers strongly indicate the choice k = 1 in [DKL+23]; the reported runtime
of non-threshold BBS+ signing is slightly larger than three G1 scalar multipli-
cations. Due to the interactivity of their protocol, their benchmarks incorporate
network delays for different settings (LAN, WAN). We add network delays to
our results to compare our benchmarks to theirs. All machines used in their
evaluation are Google Cloud c2d-standard-4 instances. In the LAN setting, all
instances are located at the us-east1-c zone. [DP20] reports a LAN latency of
0.146 ms for this zone. We add a delay of 0.3 ms to our results. In the WAN
setting, the first 12 instances in their benchmarks are located in the US, while
other machines are in Europe or the US. According to [Kum22], we add 100 ms
to our results for t < 13 and 150 ms for t ≤ 13.

In Figure 7, we compare the runtime, including latency, of our online signing
protocol to the runtimes reported in [DKL+23] for the LAN and the WAN
setting. The graphs show that our protocol outperforms the one of [DKL+23]
in both settings for every number of servers. The only exception is the runtime
for t = 2 in the WAN setting. This exception seems caused by an unusually low
connection latency between the first two servers and the client in [DKL+23].
The overhead of [DKL+23] is mainly caused by the two additional rounds of
cross-server interaction. This overhead rises with the number of servers as each
server has to communicate with each other servers and is especially severe in the
WAN setting.

We conclude that, due to the high efficiency and non-interactivity of our
online phase, our protocol is more suited for settings where servers have a suf-
ficiently long setup interval and storage capacities to deal with the complexity
of the preprocessing phase. On the other hand, the protocol of [DKL+23] is
more suited for use cases with more lightweight servers, especially in a LAN
environment where the network delay of the additional communication is less
significant.

References

AHS20. Jean-Philippe Aumasson, Adrian Hamelink, and Omer Shlomovits. A sur-
vey of ECDSA threshold signing. IACR Cryptol. ePrint Arch., 2020.

Alg23. Algorand. BLS12-381 Rust crate. https://github.com/algorand/

pairing-plus, 04 2023. (Accessed on 04/18/2023).
ANO+22. Damiano Abram, Ariel Nof, Claudio Orlandi, Peter Scholl, and Omer Shlo-

movits. Low-bandwidth threshold ECDSA via pseudorandom correlation
generators. In IEEE SP, 2022.

AO00. Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind
signatures. In CRYPTO, 2000.

ASM06. Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k -TAA. In
SCN, 2006.

28

https://github.com/algorand/pairing-plus
https://github.com/algorand/pairing-plus

BB89. Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant com-
puting in constant number of rounds of interaction. In PODC, 1989.

BBDE19. Johannes Blömer, Jan Bobolz, Denis Diemert, and Fabian Eidens. Updat-
able anonymous credentials and applications to incentive systems. In CCS,
2019.

BBS04. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures.
In CRYPTO, 2004.

BCG+19a. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter
Rindal, and Peter Scholl. Efficient two-round OT extension and silent
non-interactive secure computation. In CCS, 2019.

BCG+19b. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators: Silent OT
extension and more. In CRYPTO, 2019.

BCG+20a. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Correlated pseudorandom functions from variable-density
LPN. In FOCS, 2020.

BCG+20b. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators from ring-lpn.
In CRYPTO, 2020.

BCG+22. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nico-
las Resch, and Peter Scholl. Correlated pseudorandomness from expand-
accumulate codes. In CRYPTO, 2022.

BCGI18. Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing
vector OLE. In CCS, 2018.

Bea91. Donald Beaver. Efficient multiparty protocols using circuit randomization.
In CRYPTO, 1991.

BF01. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the
weil pairing. In CRYPTO, 2001.

BL10. Ernie Brickell and Jiangtao Li. A pairing-based DAA scheme further re-
ducing TPM resources. In TRUST, 2010.

BL11. Ernie Brickell and Jiangtao Li. Enhanced privacy ID from bilinear pair-
ing for hardware authentication and attestation. Int. J. Inf. Priv. Secur.
Integr., 2011.

BS23. Alexandre Bouez and Kalpana Singh. One round threshold ECDSA with-
out roll call. In CT-RSA, 2023.

Cam06. Jan Camenisch. Anonymous credentials: Opportunities and challenges. In
SEC, 2006.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In FOCS, 2001.

CCL+20. Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico
Savasta, and Ida Tucker. Bandwidth-efficient threshold EC-DSA. In PKC,
2020.

CDHK15. Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf
Kohlweiss. Composable and modular anonymous credentials: Definitions
and practical constructions. In ASIACRYPT, 2015.

CDL16. Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous attes-
tation using the strong diffie hellman assumption revisited. In TRUST,
2016.

CGG+20. Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis,
and Udi Peled. UC non-interactive, proactive, threshold ECDSA with
identifiable aborts. In CCS, 2020.

29

Cha85. David Chaum. Security without identification: Transaction systems to
make big brother obsolete. Commun. ACM, 1985.

Che95. Lidong Chen. Access with pseudonyms. In Cryptography: Policy and Al-
gorithms, 1995.

Che09. Liqun Chen. A DAA scheme requiring less TPM resources. In Information
Security and Cryptology, 2009.

CKL+15. Jan Camenisch, Stephan Krenn, Anja Lehmann, Gert Læssøe Mikkelsen,
Gregory Neven, and Michael Østergaard Pedersen. Formal treatment of
privacy-enhancing credential systems. In SAC, 2015.

CL01. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation.
In EUROCRYPT, 2001.

CL04. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous
credentials from bilinear maps. In CRYPTO, 2004.

CRR21. Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver: Silent
VOLE and oblivious transfer from hardness of decoding structured LDPC
codes. In CRYPTO, 2021.

DILO22. Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Authenti-
cated garbling from simple correlations. In CRYPTO, 2022.

DKL+13. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter
Scholl, and Nigel P. Smart. Practical covertly secure MPC for dishonest
majority - or: Breaking the SPDZ limits. In ESORICS, 2013.

DKL+23. Jack Doerner, Yash Kondi, Eysa Lee, abhi shelat, and LakYah Tyner.
Threshold bbs+ signatures for distributed anonymous credential issuance.
In IEEE SP, 2023.

DKLS19. Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold
ECDSA from ECDSA assumptions: The multiparty case. In SP, 2019.

DKO+20. Anders Dalskov, Marcel Keller, Claudio Orlandi, Kris Shrishak, and Haya
Shulman. Securing dnssec keys via threshold ecdsa from generic mpc, 2020.

DP20. Rick Jones Derek Phanekham. How much is google cloud latency
(gcp) between regions? https://cloud.google.com/blog/products/

networking/using-netperf-and-ping-to-measure-network-latency,
June 2020. (Accessed on 05/04/2023).

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In CRYPTO,
2012.

EGM96. Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital
signatures. J. Cryptol., 1996.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In CRYPTO, 2018.

GG18. Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA
with fast trustless setup. In CCS, 2018.

GGI19. Rosario Gennaro, Steven Goldfeder, and Bertrand Ithurburn. Fully dis-
tributed group signatures, 2019.

GJKR99. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Se-
cure distributed key generation for discrete-log based cryptosystems. In
EUROCRYPT, 1999.

GPS06. S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptogra-
phers, 2006.

30

https://cloud.google.com/blog/products/networking/using-netperf-and-ping-to-measure-network-latency
https://cloud.google.com/blog/products/networking/using-netperf-and-ping-to-measure-network-latency

KMOS21. Yashvanth Kondi, Bernardo Magri, Claudio Orlandi, and Omer Shlo-
movits. Refresh when you wake up: Proactive threshold wallets with offline
devices. In SP, 2021.

KOR23. Yashvanth Kondi, Claudio Orlandi, and Lawrence Roy. Two-round state-
less deterministic two-party schnorr signatures from pseudorandom corre-
lation functions. IACR Cryptol. ePrint Arch., 2023.

Kum22. Chandan Kumar. How much is google cloud latency (gcp) between re-
gions? https://geekflare.com/google-cloud-latency/, March 2022.
(Accessed on 05/04/2023).

Lin17. Yehuda Lindell. Fast secure two-party ECDSA signing. In CRYPTO, 2017.
LKWL23. Tobias Looker, Vasilis Kalos, Andrew Whitehead, and Mike Lodder. The

BBS Signature Scheme. Internet-Draft draft-irtf-cfrg-bbs-signatures-02,
Internet Engineering Task Force, March 2023. (Work in Progress).

LN18. Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practi-
cal distributed key generation and applications to cryptocurrency custody.
In CCS, 2018.

LRSW99. Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf.
Pseudonym systems. In SAC, 1999.

LS23. Tobias Looker and Orie Steele. Bbs cryptosuite v2023. https://w3c.

github.io/vc-di-bbs/, May 2023. (Accessed on 05/04/2023).
MAT23. MATTR. mattrglobal/bbs-signatures: An implementation of bbs+ sig-

natures for node and browser environments. https://github.com/

mattrglobal/bbs-signatures, 04 2023. (Accessed on 04/18/2023).
Mic23. Microsoft. microsoft/bbs-node-reference: Typescript/node reference

implementation of bbs signature. https://github.com/microsoft/

bbs-node-reference, 04 2023. (Accessed on 04/18/2023).
NNOB12. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and

Sai Sheshank Burra. A new approach to practical active-secure two-party
computation. In CRYPTO, 2012.

OSY21. Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of paillier:
Homomorphic secret sharing and public-key silent OT. In EUROCRYPT,
2021.

Ped91. Torben P. Pedersen. Non-interactive and information-theoretic secure ver-
ifiable secret sharing. In CRYPTO, 1991.

RP22. Alfredo Rial and Ania M. Piotrowska. Security analysis of coconut, an
attribute-based credential scheme with threshold issuance. IACR Cryptol.
ePrint Arch., 2022.

SA19. Nigel P. Smart and Younes Talibi Alaoui. Distributing any elliptic curve
based protocol. In IMA, 2019.

SAB+19. Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, Sarah Meiklejohn, and
George Danezis. Coconut: Threshold issuance selective disclosure creden-
tials with applications to distributed ledgers. In NDSS, 2019.

SGRR19. Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana
Raykova. Distributed vector-ole: Improved constructions and implementa-
tion. In CCS, 2019.

Sha79. Adi Shamir. How to share a secret. Commun. ACM, 1979.
Tri23. Trinsic. Credential api - documentation. https://docs.trinsic.

id/reference/services/credential-service/, 04 2023. (Accessed on
04/18/2023).

TZ23. Stefano Tessaro and Chenzhi Zhu. Revisiting BBS signatures. In EURO-
CRYPT, 2023.

31

https://geekflare.com/google-cloud-latency/
https://w3c.github.io/vc-di-bbs/
https://w3c.github.io/vc-di-bbs/
https://github.com/mattrglobal/bbs-signatures
https://github.com/mattrglobal/bbs-signatures
https://github.com/microsoft/bbs-node-reference
https://github.com/microsoft/bbs-node-reference
https://docs.trinsic.id/reference/services/credential-service/
https://docs.trinsic.id/reference/services/credential-service/

Wik04. Douglas Wikström. Universally composable DKG with linear number of
exponentiations. In SCN, 2004.

WMYC23. Harry W. H. Wong, Jack P. K. Ma, Hoover H. F. Yin, and Sherman S. M.
Chow. Real threshold ECDSA. In NDSS, 2023.

WRK17a. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated gar-
bling and efficient maliciously secure two-party computation. In CCS,
2017.

WRK17b. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure
multiparty computation. In CCS, 2017.

YAY19. Zuoxia Yu, Man Ho Au, and Rupeng Yang. Accountable anonymous cre-
dentials. In Advances in Cyber Security: Principles, Techniques, and Ap-
plications. 2019.

YWL+20. Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and XiaoWang. Ferret:
Fast extension for correlated OT with small communication. In CCS, 2020.

A Universal Composability Framework ([Can01])

We formally model and prove the security of our protocols in the Universal
Composability framework (UC). The framework was introduced by Canetti in
2001 [Can01] to analyze the security of protocols formally. The universal com-
posability property guarantees the security of a protocol holds even under se-
quential and parallel composition. We give a brief intuition and defer the reader
to [Can01] for all details.

Like simulation-based proofs, the framework differentiates between real-world
and ideal-world execution. The real-world execution consists of n parties P1, . . . , Pn

executing protocol π, an adversary A, and an environment Z. All parties are ini-
tialized with security parameter λ and a random tape, and Z runs on some advice
string z. In this work, we consider only static corruption, where the adversary
corrupts parties at the onset of the execution. After corruption, the adversary
may instruct the corrupted parties to deviate arbitrarily from the protocol spec-
ification. The environment provides inputs to the parties, instructs them to con-
tinue the execution of π, and receives outputs from the parties. Additionally, Z
can interact with the adversary.

The real-world execution finishes when Z stops activating parties and outputs
a decision bit. We denote the output of the real-world execution by REALπ,A,Z(λ, z).

The ideal-world execution consists of n dummy parties, an ideal functionality
F , an ideal adversary S, and an environment Z. The dummy parties forward
messages between Z and F , and S may corrupt dummy parties and act on their
behalf in the following execution. S can also interact with F directly according
to the specification of F . Additionally, Z and S may interact. The goal of S is
to simulate a real-world execution such that the environment cannot tell apart if
it is running in the real or ideal world. Therefore, S is also called the simulator.

Again, the ideal-world execution ends when Z outputs a decision bit. We
denote the output of the ideal-world execution by IDEALF,S,Z(λ, z).

Intuitively, a protocol is secure in the UC framework if the environment can-
not distinguish between real-world and ideal-world execution. Formally, protocol

32

π UC-realizes F if for every probabilistic polynomial-time (PPT) adversary A
there exists a PPT simulator S such that for every PPT environment Z

{REALπ,A,Z(1
λ, z)}λ∈N,z∈{0,1}∗ = {IDEALF,S,Z(1

λ, z)}λ∈N,z∈{0,1}∗ .

B PCF Definition of [BCG+20a]

Definition 3 (Pseudorandom correlation function (PCF)). Let (Setup,Y)
be a reverse-sampleable correlation with setup which has output length func-
tions ℓ0(λ), ℓ1(λ), and let λ ≤ n(λ) ≤ poly(λ) be an input length function. Let
(PCF.Gen,PCF.Eval) be a pair of algorithms with the following syntax:

– PCF.Gen(1λ) is a probabilistic polynomial-time algorithm that on input 1λ

outputs a pair of keys (k0, k1).
– PCF.Eval(σ, kσ, x) is a deterministic polynomial-time algorithm that on input

σ ∈ {0, 1}, key kσ and input value x ∈ {0, 1}n(λ) outputs a value cσ ∈
{0, 1}ℓσ(λ).

We say (PCF.Gen,PCF.Eval) is a (weak) (N,B, ϵ)-secure pseudorandom correla-
tion function (PCF) for Y, if the following conditions hold:

– Pseudorandom Y-correlated outputs. For every non-uniform adversary
A of size B(λ), it holds∣∣∣Pr[ExpprA,N,0(λ) = 1]− Pr[ExpprA,N,1(λ) = 1]

∣∣∣ ≤ ϵ(λ)

for all sufficiently large λ, where ExpprA,N,b(λ) for b ∈ {0, 1} is as defined in
Figure 8. In particular, the adversary is given access to N(λ) samples.

– Security. For each σ ∈ {0, 1} and non-uniform adversary A of size B(λ),
it holds ∣∣Pr[ExpsecA,N,σ,0(λ) = 1]− Pr[ExpsecA,N,σ,1(λ) = 1]

∣∣ ≤ ϵ(λ)

for all sufficiently large λ, where ExpsecA,N,σ,b(λ) for b ∈ {0, 1} is as defined in
Figure 9 (again, with N(λ) samples).

We say that (PCF.Gen,PCF.Eval) is a PCF for Y if it is a (p, 1/p, p)-secure PCF
for Y for every polynomial p. If B = N , we write (B, ϵ)-secure PCF for short.

C Reusable PCF Constructions

This sections presents construction of reusable PCFs for VOLE and OLE cor-
relations as defined in Section 3.2. We first present the reusable PCF for VOLE
and then for OLE.

33

ExpprA,N,0(λ) :

mk← Setup(1λ)

for i = 1 toN(λ)

x(i) $← {0, 1}n(λ)

(y
(i)
0 , y

(i)
1)← Y(1λ,mk)

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

ExpprA,N,1(λ) :

(k0, k1)← PCF.Gen(1λ)

for i = 1 toN(λ)

x(i) $← {0, 1}n(λ)

for σ ∈ {0, 1} : y(i)
σ ← PCF.Eval(σ, kσ, x

(i))

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

Fig. 8: Pseudorandom Y-correlated outputs of a PCF.

ExpsecA,N,σ,0(λ) :

(k0, k1)← PCF.Gen(1λ)

for i = 1 toN(λ)

x(i) $← {0, 1}n(λ)

y
(i)
1−σ ← PCF.Eval(1− σ, k1−σ, x

(i))

b← A(1λ, σ, kσ, (x(i), y
(i)
1−σ)i∈[N(λ)])

return b

ExpsecA,N,σ,1(λ) :

(k0, k1)← PCF.Gen(1λ)

mk
$← Setup(1λ)

for i = 1 toN(λ)

x(i) $← {0, 1}n(λ)

y(i)
σ ← PCF.Eval(σ, kσ, x

(i))

y
(i)
1−σ ← RSample(1λ,mk, σ, y(i)

σ)

b← A(1λ, σ, kσ, (x(i), y
(i)
1−σ)i∈[N(λ)])

return b

Fig. 9: Security of a PCF.

34

The VOLE construction heavily builds on the constructions of [BCG+20a],
which provides only weak PCF. However, Boyle et al. presented a generic trans-
formation from weak to strong PCF using a programmable random oracle. This
transformation is also straightforwardly applicable to reusable PCFs. Therefore,
we state a weak reusable PCF in the following and emphasize that this construc-
tion can be extended to a strong reusable PCF in the programmable random
oracle model.

The following construction is taken from [BCG+20a, Fig. 22]. It builds on a
weak PRF F and a function secret sharing for the multiplication of F with a
scalar.

Construction 3: Reusable PCF for YVOLE

Let F = {Fk : {0, 1}n → R}k∈{0,1}λ be a weak PRF and FFS = (FFS.Gen,FFS.Eval)
an FSS scheme for {c·Fk}c∈R,k∈{0,1}λ with weak pseudorandom outputs. Let further

ρ0 ∈ {0, 1}λ, ρ1 ∈ R.
PCF.Genp(1

λ, ρ0, ρ1):

1. Set the weak PRF key k ← ρ0 and b← ρ1.
2. Sample a pair of FSS keys (KFFS

0 ,KFFS
1)← FFS.Gen(1λ, b · Fk).

3. Output the keys k0 = (KFFS
0 , k) and k1 = (KFFS

1 , b).

PCF.Eval(σ, kσ, x): On input a random x:

– If σ = 0:
1. Let c0 = −FFS.Eval(0,KFFS

0 , x).
2. Let a = Fk(x).
3. Output (a, c0).

– If σ = 1:
1. Let c1 = FFS.Eval(1,KFFS

1 , x).
2. Output (b, c1).

Theorem 3. Let R = R(λ) be a finite commutative ring. Suppose there exists
an FSS scheme for scalar multiples of a family of weak pseudorandom functions
F = {Fk : {0, 1}n → R}k∈{0,1}λ . Then, there is a reusable PCF for the VOLE
correlation over R, given by Construction 3.

Proof. Boyle et al. showed in their proof of [BCG+20a, Theorem 5.3] that Con-
struction 3 satisfies pseudorandom YVOLE-correlated outputs and security. Al-
though we slightly adapted our definition to consider reusable inputs, their ar-
gument still holds. Further, it is easy to see that programmability holds for
functions f0(ρ0, x) = Fρ0

(x) and f1(ρ1, x) = ρ1. Finally, key indistinguishabil-
ity follows from the secrecy property of the FSS scheme. The secrecy property
states that for every function f of the function family, there exists a simulator
S(1λ) such that the output of S is indistinguishable from the FSS keys generated
correctly using the FFS.Gen-algorithm.

To briefly sketch the proof of key indistinguishability, we define a hybrid
experiment, where inside the PCF key generation, we use S to simulate FSS keys.
These simulated FSS keys are used inside the PCF key, which is given to A1.

35

We can show via a reduction to the FSS secrecy that the original Expkey-ind game
is indistinguishable from the hybrid experiment. For the hybrid experiment, it
is easy to see that the adversary can only guess bit b′ since the simulated PCF

key is independent of ρ
(0)
1−σ, ρ

(1)
1−σ and hence also independent of b. It follows that

Pr[Expkey-indA,σ (λ) = 1] ≤ 1
2 + negl(λ).

The construction of the reusable PCF for OLE correlations follows the same
blueprint as our PCF construction for VOLE.

The following construction is generically based on a weak PRF and function
secret sharing (FSS) for products of two weak PRFs.

Construction 4: Reusable PCF for YOLE

Let F = {Fk : {0, 1}n → R}k∈{0,1}λ be a weak PRF and FFS = (FFS.Gen,FFS.Eval)
an FSS scheme for {Fk0 · Fk1}k0,k1∈{0,1}λ with weak pseudorandom outputs. Let

further ρ0, ρ1 ∈ {0, 1}λ.
PCF.Genp(1

λ, ρ0, ρ1):

1. Set the weak PRF keys k ← ρ0 and k′ ← ρ1.
2. Sample a pair of FSS keys (KFFS

0 ,KFFS
1)← FFS.Gen(1λ, FkFk′).

3. Output the keys k0 = (KFFS
0 , k) and k1 = (KFFS

1 , k′).

PCF.Eval(σ, kσ, x): On input a random x:

– If σ = 0:
1. Let c0 = −FFS.Eval(0,KFFS

0 , x).
2. Let a = Fk(x).
3. Output (a, c0).

– If σ = 1:
1. Let c1 = FFS.Eval(1,KFFS

1 , x).
2. Let b = Fk′(x).
3. Output (b, c1).

Theorem 4. Let R = R(λ) be a finite commutative ring. Suppose there exists
an FSS scheme for multiplications of two elements of a family of weak pseudo-
random functions F = {Fk : {0, 1}n → R}k∈{0,1}λ . Then, there is a reusable
PCF for the OLE correlation over R, given by Construction 4.

We omit the proof as it follows the same arguments as the proof of Theorem 3.

D Ideal Threshold Signature Functionality

Next, we state our ideal threshold functionality Ftsig, which is a modification of
the functionality proposed by Canetti et al. [CGG+20]. We explain our modifi-
cations in Section 4.1.

36

Functionality Ftsig

The functionality is parameterized by a threshold parameter t. We denote a
set of t parties by T . For a specific session id sid, the sub-procedures Signing
and Verification can only be executed once a tuple (sid,V) is recorded.
Key-generation:

1. Upon receiving (keygen, sid) from some party Pi, interpret sid = (. . . ,P),
where P = (P1, . . . , Pn).
– If Pi ∈ P, send to S and record (keygen, sid, i).
– Otherwise ignore the message.

2. Once (keygen, sid, i) is recorded for all Pi ∈ P, send (pubkey, sid) to the
adversary S and do:
(a) Upon receiving (pubkey, sid,V) from S, record (sid,V).
(b) Upon receiving (pubkey, sid) from Pi ∈ P, output (pubkey, sid,V) if it

is recorded. Else ignore the message.

Signing:

1. Upon receiving (sign, sid, ssid, T ,m = (m1, . . . ,mk)) with T ⊆ P, from
Pi ∈ T and no tuple (sign, sid, ssid, ·, ·, i) is stored, send to S and record
(sign, sid, ssid, T ,m, i).

2. Upon receiving (sign, sid, ssid, T ,m = (m1, . . . ,mk), i) from S, record
(sign, sid, ssid, T ,m, i) if Pi ∈ C. Else ignore the message.

3. Once (sign, sid, ssid, T ,m, i) is recorded for all Pi ∈ T , send
(sign, sid, ssid, T ,m) to the adversary S.

4. Upon receiving (sig, sid, ssid, T ,m, σ, I) from S, where I ⊆ T \ C, do:
– If there exists a record (sid,m, σ, 0), output an error.
– Else, record (sid,m, σ,V(m, σ)), send (sig, sid, ssid, T ,m, σ) to all

Pi ∈ T \ (C ∪I) and send (sig, sid, ssid, T ,m, abort) to all Pi ∈ T ∩I.

Verification:

Upon receiving (verify, sid,m = (m1, . . . ,mk), σ,V ′) from a party Q,
send the tuple (verify, sid,m, σ,V ′) to S and do:
– If V ′ = V and a tuple (sid,m, σ, β′) is recorded, then set β = β′.
– Else, if V ′ = V and less than t parties in P are corrupted, set β = 0

and record (sid,m, σ, 0).
– Else, set β = V ′(m, σ).

Output (verified, sid,m, σ, β) to Q.

E Proof of Theoreom 1

This section presents the proof of our online protocol, i.e., Theorem 1.

37

Proof. We construct a simulator S that interacts with the environment and the
ideal functionality Ftsig. Since the security statement for UC requires that for
every real-world adversary A, there is a simulator S, we allow S to execute A in-
ternally. In the internal execution of A, S acts as the environment and the honest
parties. In particular, S forwards all messages between its environment and A.
The adversary A creates messages for the corrupted parties. These messages are
sent to S in the internal execution. Note that this scenario also covers dummy
adversaries, which just forward messages received from the environment. An
output of S indistinguishable from the output of A in the real-world execution
is created by simulating a protocol transcript towards A that is indistinguish-
able from the real-world execution and outputting whatever A outputs in the
simulated execution. Since the protocol πTBBS+ is executed in the FPrep-hybrid
model, S impersonates the hybrid functionality FPrep in the internal execution.

We start with presenting our simulator S.

Simulator S

KeyGen.

1. Upon receiving (init, sid) from corrupted party Pj , send (keygen, sid) on
behalf of Pj to Ftsig.

2. Upon receiving (pubkey, sid) from Ftsig simulate the initialization phase

of FPrep to get pk. In particular, sample sk
$← Zp and send pk = gsk2 to A.

3. Upon receiving (ok,Tuple(·, ·, ·)) from A, send (pubkey, sid,Verifypk(·, ·))
to Ftsig.

Sign.

1. Upon receiving (sign, sid, ssid, T ,m = {mℓ}ℓ∈[k], i) from Ftsig for honest
party Pi, simulate the tuple phase of FPrep to get (ai, ei, si, δi, αi) for Pi.
Then, compute (Ai := (g1 ·

∏
ℓ∈[k] h

mℓ

ℓ)ai ·hαi
0 , δi, ei, si) and send it to the

corrupted parties in T in the internal execution.
2. Upon receiving (sign, sid, ssid, T ,m) from Z to corrupted party Pj , send

message to Pj in the internal execution an do:
(a) Upon receiving (tuple, sid, ssid, T) on behalf of FPrep from corrupted

party Pj with j ∈ T return (aj , ej , sj , δj , αj)← Tuple(ssid, T , j) to Pj .

(b) Forward (sign, sid, ssid, T ,m, j) to Ftsig and define an empty set Îj =
∅ of honest parties that received signature shares from corrupted party
Pj .

(c) Upon receiving (sid, ssid, T ,m, A′
j,i, δ

′
j,i, e

′
j,i, s

′
j,i) from Pj to honest

party Pi in the internal execution, add Pi to Îj .
3. Upon receiving (sign, sid, ssid, T ,m) from Ftsig, do:

– Use tuple (aj , ej , sj , δj , αj) to compute honestly generated
(Aj , δj , ej , sj) for Pj ∈ T ∩ C. Compute honestly generated sig-
nature σ = (A, e, s) as honest parties do using (Aℓ, δℓ, eℓ, sℓ) for
Pℓ ∈ T .

38

– For each honest party Pi recompute signature σi obtained by Pi as
honest parties do by using A′

j,i, δ
′
j,i, e

′
j,i, s

′
j,i for Pj ∈ T ∩ C.

– We define set I of honest parties that obtained no or an invalid signa-
ture. First set, I = (T \ C) \ (

⋂
j∈T ∩C Îj), i.e., add all honest parties

to I that did not receive signature shares from all corrupted par-
ties in T . Next, compute I = I ∪ {i : σi ̸= σ}, i.e., add all honest
parties that obtained a signature different to the honestly generated
signature. If there exists σi ̸= σ such that Verifypk(m, σi) = 1 and
(sig, sid, ssid, ·,m, σi, ·) was not sent to Ftsig before, output fail and
stop the execution.

– Finally, send (sig, sid, ssid, T ,m, σ, I) to Ftsig.

Verify. Upon receiving (verify, sid,m, σ,Verifypk′(·, ·)) from Ftsig check if

– Verifypk′(·, ·) = Verifypk(·, ·) ,
– (sig, sid, ssid, ·,m, σ, ·) was not sent to Ftsig before
– Verifypk(m, σ) = 1.

If the checks hold, output fail and stop the execution.

Lemma 1. If simulator S does not outputs fail, protocol πTBBS+ UC-realizes
Ftsig in the FPrep-hybrid model in the presence of malicious adversaries control-
ling up to t− 1 parties.

Proof. If the simulator S does not outputs fail, it behaves precisely as the
honest parties in real-world execution. Therefore, the simulation is perfect, and
no environment can distinguish between the real and ideal worlds.

Lemma 2. Assuming the strong unforgeability of BBS+, the probability that S
outputs fail is negligible.

Proof. We show Lemma 2 via contradiction. Given a real-world adversaryA such
that simulator S outputs fail with non-negligible probability, we construct an
attacker B against the strong unforgeability (SUF) of BBS+ with non-negligible
success probability. B simulates the protocol execution towards A like S except
the following aspects:

1. During the simulation of the initialization phase of FPrep, instead of sampling

sk
$← Zp and computing pk = gsk2 , B returns pk∗ obtained from the SUF-

challenger. Since the SUF-challenger samples the key exactly as the simulator
S, this step of the simulations is indistinguishable towards A.

2. During the Sign phase, upon receiving (sign, sid, ssid, T ,m, i) from Ftsig for
honest party Pi, the computation of signature shares of the honest parties
is modified as follows:
– Request the signing oracle of the SUF-game on message m to obtain

signature σ = (A, e, s). This signature is forwarded to Ftsig on receiving
(sign, sid, ssid, T ,m) from Ftsig.

39

– Compute (aj , ej , sj , δj , αj)← Tuple(ssid, T , j) and (Aj , ej , sj) according
to the protocol specification for every corrupted party Pj ∈ T ∩ C.

– Sample random index k
$← T \ C.

– For all honest parties except Pk sample random signature share, i.e.,

∀Pi ∈ (T \ C) \ {Pk} : (Ai, δi, ei, si)
$← (G1,Zp,Zp,Zp).

– For Pk sample random δk
$← Zp and compute ek = e −

∑
ℓ∈T \{k} eℓ,

sk = s−
∑

ℓ∈T \{k} sℓ, and

Ak =
A

∑
ℓ∈T δℓ∏

ℓ∈T \{k} Aℓ
.

It is easy to see that ei and si are sampled at random by both, S and B.
Moreover, δi is a share of a(sk + e) in the simulation by S and since the
random value a works as a random mask, it has the same distribution as
in the simulation by B. Finally, the Ai values yield a valid signature in B.
Therefore, the simulation of the Sign phase of B and S are indistinguishable
to A.

Finally, B needs to provide a strong forgery to the SUF-challenger. Here, we
use the fact that S outputs fail with non-negligible probability either in the
Sign or the Verify phase. As the interaction of B with A is indistinguishable,
B outputs fail with non-negligible probability as well. Whenever B outputs
fail, it forwards the pair (m∗, σ∗) obtained in the Sign or Verify phase to the
SUF-challenger.

It remains to show that B successfully wins the SUF-game. In order to be
a valid forgery, it must hold that (1) Verifypk∗(m

∗, σ∗) = 1 and (2) (m∗, σ∗)
was not returned by the signing oracle before. (1) is trivially true, since B only
outputs fail if this condition holds. For (2), we note that A has never seen
σ∗ as output from Ftsig, since B checks that (sig, sid, ssid, ·,m∗, σ∗, ·) was not
sent to Ftsig before. However, it might happen that B obtained σ∗ as response
to a signing request for message m∗ without forwarding it the to Ftsig (this
happens if the environment does not instruct all parties in T to sign). Since the
signing oracle samples e and s at random from Zp, the probability that σ∗ was
returned by the signing oracle is ≤ q

p , where q is the number of oracle requests
and p is the size of the field. While q is a polynomial, p is exponential in the
security parameter. Thus, the probability that σ∗ hits an unseen response from
the signing oracle is negligible in the security parameter. It follows that (m∗, σ∗)
is a valid forgery and B wins the SUF-game.

Since this contradicts the strong unforgeability of BBS+, it follows that the
probability that S outputs fail is negligible.

F Simulator for PCF-based Precprocessing

Here, we state our simulator for proving security of our PCF-based preprocessing.
Formally, the security is stated in Theorem 2. We provide a proof sketch of

40

our indistinguishability argument in Appendix G and state the full proof in
Appendix H

Simulator for Preprocessing S

Without loss of generality, we assume the adversary corrupts parties
P1, . . . , Pt−1 and parties Pt, . . . , Pn are honest. S internally uses adversary
A.
Initialization:

1: • Upon receiving (keygen, sid) on behalf of FKG from corrupted party
Pj , send (init, sid) on behalf of corrupted Pj to FPrep. Then, wait to
receive (corruptedShares, sid, {skj}j∈C) from A.

2: • Upon receiving pk from F , set pkj = h
skj
0 for j ∈ C and compute

pki =
(
pk/(pk

L1,T
1 · . . . · pkL1,T

t−1)
)1/Li,T

, where T := C ∪ {i}, for every

honest party Pi. Then, send (sid, skj , pk, {pkk}k∈[n]) to every corrupted
party Pj .

• Upon receiving (setup, sid, ρ
(j)
a , ρ

(j)
s , ρ

(j)
e , sk′j ,

{pk(j)k }k∈[n]) on behalf of FSetup from every corrupted party Pj ,

check that pk
(j)
k = pkk and hsk′j = pkj for j ∈ C and k ∈ [n]. If any

check fails, send (abort, sid) to FPrep.

Otherwise sample ρ
(i)
a , ρ

(i)
s , ρ

(i)
e and a dummy secret key share ŝki for

every honest party Pi and simulate the computation of FSetup (i.e.,
compute all the PCF keys using the values received from the corrupted
parties and the values sampled for the honest parties).

3: • Send keys (sid, kVOLE
j,ℓ,0 , kVOLE

ℓ,j,1 , k
(OLE,1)
j,ℓ,0 , k

(OLE,1)
ℓ,j,1 , k

(OLE,2)
j,ℓ,0 ,

k
(OLE,2)
ℓ,j,1)ℓ ̸=j to every corrupted party Pj .

• Send (ok,Tuple(·, ·, ·)) to F , where Tuple(ssid, T , j) computes
(aj , ej , sj , δj , αj) as follows:
First sample for every ℓ ∈ T \ {j}

((aj , c
VOLE
j,ℓ,0), ·) $← YVOLE(1

λ, (ρ(j)a , skℓ), ssid) ,

(·, (skj , cVOLE
ℓ,j,1))

$← YVOLE(1
λ, (ρ(ℓ)a , skj), ssid) ,

((aj , c
(OLE,1)
j,ℓ,0), ·) $← YOLE(1

λ, (ρ(j)a , ρ(ℓ)s), ssid) ,

(·, (sj , c(OLE,1)
ℓ,j,1))

$← YOLE(1
λ, (ρ(ℓ)a , ρ(j)s), ssid) ,

((aj , c
(OLE,2)
j,ℓ,0), ·) $← YOLE(1

λ, (ρ(j)a , ρ(ℓ)e), ssid) ,

(·, (ej , c(OLE,2)
ℓ,j,1))

$← YOLE(1
λ, (ρ(ℓ)a , ρ(j)e), ssid) .

41

Take aj , ej , sj from the samples and compute

αj = ajsj +
∑

ℓ∈T \{j}

c
(OLE,1)
ℓ,j,1 − c

(OLE,1)
j,ℓ,0 ,

δj = aj(Lj,T skj + ej)

+
∑

ℓ∈T \{j}

(
Lj,T c

VOLE
ℓ,j,1 − Lℓ,T c

VOLE
j,ℓ,0 + c

(OLE,2)
ℓ,j,1 − c

(OLE,2)
j,ℓ,0

)
.

Tuple:
Upon receiving (tuple, sid, ssid, T) from Z on behalf of corrupted party Pj ,
forward message (tuple, sid, ssid, T) to A and output whatever A outputs.

G Indistinguishability Proof Sketch of Theorem 2

We prove indistinguishability between the ideal-world execution and the real-
world execution via a sequence of hybrid experiments. We start with Hybrid0
which is the ideal-world execution and end up in Hybrid7 being identical to the
real-world execution. By showing indistinguishability between each subsequent
pair of hybrids, it follows that the ideal and real-world execution are indistin-
guishable. In particular, we show indistinguishability between the joint distribu-
tion of the adversary’s view and the outputs of the honest parties in Hybridi and
Hybridi+1 for i = 0, . . . , 6. In the following we sketch the proof outline and defer
the full proof to Appendix H.

Hybrid1: In this hybrid experiment, we inline the description of the simulator S,
the ideal functionality FPrep and the outputs of the honest parties. Since this is
only a syntactical change, the distribution is identical to the one of Hybrid0.

Hybrid2: In the second experiment, we modify the computation inside the tuple
function Tuple. Instead of using outputs of the YVOLE and YOLE correlations,
we run the PCFVOLE and PCFOLE evaluations. For running the PCF evaluations,
we use the keys sent to the corrupted parties in step 3.

This change aligns the output of the Tuple function with the tuple values of
corrupted parties if they follow the protocol specification. Note that although
the PCF keys are generated using dummy key shares for the honest parties,
the final tuple values of honest parties are reverse sampled to match the tuple
correlation using the correct secret key.

Indistinguishability between Hybrid1 and Hybrid2 can be shown via reductions
to the strong pseudorandom YVOLE-correlated output property of the PCFVOLE

primitive and to the strong pseudorandom YOLE-correlated output property of
the PCFOLE primitive, respectively. More precisely, a series of intermediate hy-
brids can be introduce, where in each hop only a single correlation output is
replaced by the output of PCF evaluations.

42

Hybrid3: Instead of sampling the secret key sk at random from Zp, we sample a
random polynomial F (x) ∈ Zp[X] of degree t− 1 such that F (j) = skj for every
j ∈ C. The secret key is then defined as sk = F (0).

Note that the adversary knows only t−1 shares of the polynomial which give
no information about sk. This is due to the information-theoretically secrecy of
Shamir’s secret sharing. It follows that Hybrid2 and Hybrid3 are indistinguishable.
Hybrid4: In this hybrid, we change the way honest parties’ secret key shares are
defined. Instead of sampling random dummy key shares, we derive the key shares
from the polynomial introduced in the last hybrid. In more detail, the key share
of honest party Pi is computed as ski = F (i). This change effects the PCF key
generation as the dummy key share is replaced by a ski.

To show indistinguishability between Hybrid3 and Hybrid4, we reduce to the
key indistinguishability property of the PCFVOLE primitive. More specifically, we
again introduce a sequence of intermediate hybrids where we only change the
secret key of a single honest party.
Hybrid5: In this hybrid, we change the computation of the honest party Pi’s

public key share pki. Instead of interpolating pki it is defined as pki = hski
0 . As

both ways are equivalent, Hybrid5 is indistinguishable from Hybrid4.
Hybrid6: Next, we get rid of the reverse-sampling of the honest parties tuple
values. Instead, we compute these values using outputs of the YVOLE and YOLE

correlations. For instance, for computing αi for an honest party Pi, we sample

((ai, c
(OLE,1)
i,ℓ,0), ·) ∈ YOLE(1

λ, (ρ(i)a , ρ(ℓ)s), x) , (5)

(·, (si, c(OLE,1)
ℓ,i,1)) ∈ YOLE(1

λ, (ρ(ℓ)a , ρ(i)s), x) , (6)

for every ℓ ∈ T and compute

αi = aisi +
∑

ℓ∈T \{i}

c
(OLE,1)
ℓ,i,1 − c

(OLE,1)
i,ℓ,0 . (7)

Similar process is done for the computation of δi and ei. A straightforward
calculation shows that resulting tuple values satisfy correlation (4). Thus, the
view of the environment is indistinguishable in Hybrid5 and Hybrid6.
Hybrid7: Now, we replace the sampling of correlation outputs for calculating
honest parties’ tuples with the evaluations of PCFs. This change is the same as
applied in Hybrid2 but now for the calculation of the honest parties’ tuples.

Indistinguishability follows the same argument as sketched in Hybrid2.
Hybrid7 is the real-world execution, which concludes the proof.

H Full Indistinguishability Proof of Theorem 2

In this section, we provide the full indistinguishability proof of Theorem 2. The
simulator is given in Appendix F.
Hybrid0: The initial experiment Hybrid0 denotes the ideal-world execution where
simulator S is interacting with the corrupted parties, ideal functionality FPrep

and internally runs real-world adversary A.

43

Hybrid1: In this hybrid, we inline the description of the simulator S, the ideal
functionality FPrep and the outputs of the honest parties. Since this is only a
syntactical change, the joint distribution of the adversary’s view and the output
of the honest parties is identical to the one of Hybrid0. We state Hybrid1 as the
starting point, and emphasize only on the changes in the following hybrids.

Hybrid1

Without loss of generality, we assume the adversary corrupts parties
P1, . . . , Pt−1 and parties Pt, . . . , Pn are honest. S internally uses adversary
A.
Initialization:

1: • Upon receiving (keygen, sid) on behalf of FKG from cor-
rupted party Pj , store (init, sid, Pj). Then, wait to receive
(corruptedShares, sid, {skj}j∈C) from A.

• Upon receiving (init, sid) from every honest party, sample the secret

key sk
$← Zp and set pk = hsk

0 . Further, set pkj = h
skj
0 for j ∈ C and

compute pki =
(
pk/(pk

L1,T
1 · . . . · pkL1,T

t−1)
)1/Li,T

, where T := C ∪ {i},
for every honest party Pi.

2: • Send (sid, skj , pk, {pkk}k∈[n]) to every corrupted party Pj .

• Upon receiving (setup, sid, ρ
(j)
a , ρ

(j)
s , ρ

(j)
e , sk′j ,

{pk(j)k }k∈[n]) on behalf of FSetup from every corrupted party Pj ,

check that pk
(j)
k = pkk and hsk′j = pkj for j ∈ C and k ∈ [n]. If any

check fails, honest parties output abort.

Otherwise sample ρ
(i)
a , ρ

(i)
s , ρ

(i)
e and a dummy secret key share ŝki for

every honest party Pi and simulate the computation of FSetup (i.e.,
compute all the PCF keys using the values received from the corrupted
parties and the values sampled for the honest parties).

3: • Send keys (sid, kVOLE
j,ℓ,0 , kVOLE

ℓ,j,1 , k
(OLE,1)
j,ℓ,0 ,

k
(OLE,1)
ℓ,j,1 , k

(OLE,2)
j,ℓ,0 , k

(OLE,2)
ℓ,j,1)ℓ ̸=j to every corrupted party Pj .

• Store (ok,Tuple(·, ·, ·)), where Tuple(ssid, T , j) computes
(aj , ej , sj , δj , αj) as follows:
First sample for every ℓ ∈ T \ {j}

((aj , c
VOLE
j,ℓ,0), ·) $← YVOLE(1

λ, (ρ(j)a , skℓ), ssid) , (8)

(·, (skj , cVOLE
ℓ,j,1))

$← YVOLE(1
λ, (ρ(ℓ)a , skj), ssid) , (9)

((aj , c
(OLE,1)
j,ℓ,0), ·) $← YOLE(1

λ, (ρ(j)a , ρ(ℓ)s), ssid) , (10)

(·, (sj , c(OLE,1)
ℓ,j,1))

$← YOLE(1
λ, (ρ(ℓ)a , ρ(j)s), ssid) , (11)

((aj , c
(OLE,2)
j,ℓ,0), ·) $← YOLE(1

λ, (ρ(j)a , ρ(ℓ)e), ssid) , (12)

(·, (ej , c(OLE,2)
ℓ,j,1))

$← YOLE(1
λ, (ρ(ℓ)a , ρ(j)e), ssid) . (13)

44

Then, take aj , ej , sj from the samples and compute

αj = ajsj +
∑

ℓ∈T \{j}

c
(OLE,1)
ℓ,j,1 − c

(OLE,1)
j,ℓ,0 , (14)

δj = aj(Lj,T skj + ej)

+
∑

ℓ∈T \{j}

(
Lj,T c

VOLE
ℓ,j,1 − Lℓ,T c

VOLE
j,ℓ,0 + c

(OLE,2)
ℓ,j,1 − c

(OLE,2)
j,ℓ,0

)
. (15)

• The honest parties Pt, . . . , Pn output pk.

Tuple:

– Upon receiving (tuple, sid, ssid, T) from Z on behalf of corrupted party Pj ,
forward message (tuple, sid, ssid, T) to A and output whatever A outputs.

– Upon receiving (tuple, sid, ssid, T) from Z on behalf of hon-
est party Pi, if (sid, ssid, T , {(aℓ, eℓ, sℓ, δℓ, αℓ)}ℓ∈T) is stored, out-
put (sid, ssid, ai, ei, si, δi, αi). Otherwise, compute (aj , ej , sj , δj , αj) ←
Tuple(ssid, T , j) for every corrupted party Pj where j ∈ C ∩T and sample

a, e, s
$← Zp and tuples (ai, ei, si, δi, αi) over Zp for i ∈ H ∩ T such that∑

ℓ∈T

aℓ = a
∑
ℓ∈T

eℓ = e
∑
ℓ∈T

sℓ = s∑
ℓ∈T

δℓ = a(sk+ e)
∑
ℓ∈T

αℓ = as

Store (sid, ssid, T , {(aℓ, eℓ, sℓ, δℓ, αℓ)}ℓ∈T) and honest party Pi outputs
(sid, ssid, ai, ei, si, δi, αi).

Hybrid2: As a next step, we align the computation of Tuple to the behavior
of corrupted parties that behave honestly in the real-world execution. More
precisely, we replace the sampling of correlation tuples from YVOLE and YOLE with
the evaluation of the PCFVOLE and PCFOLE primitives. The strong pseudorandom
YVOLE-correlated respectively YOLE-correlated outputs property of the srPCF
primitives yield indistinguishability between Hybrid1 and Hybrid2.

To formally show this, we introduce a sequence of intermediate hybrids
Hybrid1,a to Hybrid1,f . In Hybrid1,a, we change Hybrid1 only in the generation

of the first VOLE correlation outputs, i.e., the tuple (aj , c
VOLE
j,ℓ,0) in Equation (8) is

computed as
PCFVOLE.Eval(0, k

VOLE
j,ℓ,0 , ssid). Next, in Hybrid1,b we build on

Hybrid1,a and replace the computation of the second VOLE correlation output,
i.e., Equation (9). We continue this procedure until all outputs of Equations (8) -
(13) are computed using PCF evaluations in Hybrid1,f which is equal to Hybrid2.

45

Since every equation from (8)-(13) is computed for ever ℓ ∈ T \ {j}, we
introduce additional intermediate hybrids denoted by additional subscript k ∈
{0, . . . , t − 1}. Hybrid1,a,k means that correlation sampling is replaced by PCF
evaluations for the first k parties in T \{j}. Note that Hybrid1,a,0 = Hybrid1 and
Hybrid1,f,t−1 = Hybrid2.

For the same of presentation, we show that for every k ∈ {0, . . . , t−2}, indis-
tinguishability between Hybrid1,a,k and Hybrid1,a,k+1 can be derived from strong
pseudorandom YVOLE-correlated outputs property of PCFVOLE. The argumenta-
tion for Hybrid1,b to Hybrid1,f is analogously.

We construct an adversary As−pr against the strong pseudorandom YVOLE-
correlated outputs property from a distinguisher D between Hybrid1,a,k and
Hybrid1,a,k+1. First, note that the only difference between these hybrids is the

computation of (aj , c
VOLE
j,ℓ,0). While the tuple is sampled from YVOLE(1

λ, (ρ
(j)
a , skk+1), ssid)

in Hybrid1,a,k, it is computed from PCFVOLE.Eval(0, k
VOLE
j,k+1,0, ssid) in Hybrid1,a,k+1.

As−pr simulates the hybrid experiment and sends (ρ
(j)
a , skk+1) to the secu-

rity game. Then, whenever a tuple (aj , c
VOLE
j,ℓ,0) is required, As−pr asks its oracle

Ob(ssid). Note that if b = 0, then the oracle samples the tuple from the corre-
lation and if b = 1, then the PCF is evaluation. Thus, if b = 0, the simulated
hybrid is identical to Hybrid1,a,k and otherwise it is Hybrid1,a,k+1. It is easy to
see that As−pr has the same advantage in winning the security game as D in
distingushing between Hybrid1,a,k and Hybrid1,a,k+1. Given that PCFVOLE is a
srPCF, the two hybrids are indistinguishable.
Hybrid3: In this hybrid, we change the sampling of the secret key sk. Instead
of sampling sk in step 1 from Zp, we sample a random polynomial F ∈ Zp[X]
of degree t − 1 such that F (j) = skj for every j ∈ C. Further, we define sk =
F (0). Since the polynomial is of degree t − 1, t evaluation points are required
to fully determine F (x). As the adversary knows only t − 1 shares, it cannot
learn anything about sk. In detail, for every sk′ ∈ Zp there exists a t-th share
that defined the polynomial F (x) such that F (x) = sk′. It follows that the views
of the adversary are distributed identically and hence Hybrid2 and Hybrid3 are
indistinguishable.
Hybrid4: Next, we use the polynomial F (x) sampled in step 1 to determine the
honest parties’ secret key shares. In particular, for every honest party Pi the
experiment samples ski = F (i). The secret key shares {ski}i∈H are then used
for the simulation of FSetup instead of the dummy key shares. In particular,
the correctly sampled key shares of the honest parties are used as input to
PCFVOLE.Gen whenever a secret key share of the honest party is used. Since the
experiment does not use the dummy key shares at all after these changes, we
remove them completely. Note that the sampling of the honest parties’ key shares
and the generation of the PCF keys are exactly as in the real-world execution.

Indistinguishability between Hybrid3 and Hybrid4 can be shown via a series
of reductions to the key indistinguishability of the reusability property of the
VOLE PCF. We briefly sketch the proof outline in the following. We define
intermediate hybrids Hybrid3,ℓ,k for ℓ ∈ {0, . . . , n − (t − 1)} and k ∈ [n], which
only differ in the honest parties’ key shares that are used in the generation of

46

the VOLE PCF keys. Recall that for every party Pℓ we generate a VOLE PCF
for every other party Pk, where Pℓ uses its secret key shares as input. We define
Hybrid3,ℓ,k such that the key shares derived from polynomial F (x) are used for
the first ℓ honest parties in all VOLE PCF instances and for the (ℓ+1)-th honest
party in the VOLE PCF instances with the first k other parties. For all other
VOLE PCF instances, the dummy key shares are used for the honest parties’
key shares.

Note that Hybrid3,0,0 = Hybrid3 and Hybrid3,n−(t−1),n = Hybrid4. To show in-
distinguishability between Hybrid3,ℓ,k and Hybrid3,ℓ,k+1 for every ℓ ∈ {0, . . . , n−
(t − 1)}, we make a reduction to the key indistinguishability of the reusability
property of the VOLE PCF. In particular, we construct an adversary Akey−ind

from a distinguisherDℓ which distinguishes between Hybrid2,ℓ,k and Hybrid2,ℓ,k+1.
Upon receiving the shares of the corrupted parties in the hybrid execution,
Akey−ind forwards the key share of the k + 1-th corrupted party to the secu-
rity game. Then, the security game samples two possible key shares for the

ℓ-th honest party ρ
(0)
1 , ρ

(1)
1 , uses one of them in the VOLE PCF key generation

and sends the key k1 for the corrupted party and the two possible key shares
back to Akey−ind. Next, Akey−ind continues the simulation of hybrid Hybrid3,ℓ,k or
Hybrid3,ℓ,k+1 by sampling the polynomial F (x) using the corrupted key shares

and ρ
(0)
1 . Since ρ

(0)
1 is a random value in Zp, F (x) is also a random polynomial.

Finally, Akey−ind uses k1 as the output of the simulation of FSetup.

If k1 was sampled using ρ
(0)
1 , then the simulated experiment is identical to

Hybrid3,ℓ,k+1 and otherwise it is identical to Hybrid3,ℓ,k. It is easy to see that a
successful distinguisher between these two hybrids allows to easily win the key
indistinguishability game. Since we assume the VOLE PCF to support reusabil-
ity, this leads to a contradiction. Thus, the two hybrids are indistinguishable.

Hybrid5: In this hybrid, we derive the honest parties public key shares pki from
the secret key shares ski instead of interpolating them from pk and the corrupted
shares. More precisely, in Hybrid4 the public key share of honest party Pi was
computed as

pki =
(
pk/(pk

L1,T
1 · . . . · pkL1,T

t−1)
)1/Li,T

,

where T := C ∪ {i}. In Hybrid5 the public key share is instead computed as
pki = hski

0 . We show that both definitions are equivalent.

47

To this end, note that sk =
∑

ℓ∈T Lℓ,T skℓ for every set T of size t, pk = hsk
0

and pkj = h
skj
0 for j ∈ C. Using this equation we get for T = C ∪ {i}

pki =

(
pk

pk
L1,T
1 · . . . · pkL1,T

t−1

)1/Li,T

⇔ pki =

(
hsk
0

h
L1,T sk1
0 · . . . · hL1,T skt−1

0

)1/Li,T

⇔ pki =

(
h
∑

ℓ∈T Lℓ,T skℓ
0

h
L1,T sk1
0 · . . . · hL1,T skt−1

0

)1/Li,T

⇔ pki =
(
h
Li,T ski
0

)1/Li,T

⇔ pki = hski
0

As public key shares are equivalent in both hybrids, the view of the adversary
is identical distributed. Hence, Hybrid4 and Hybrid5 are indistinguishable.

Hybrid6: In this hybrid, instead of reverse-sampling the tuple values of the honest
parties, we compute them in the same way using Equations (8)-(15).

We show that the resulting tuple outputs satisfy the same correlation as
before. In particular, we show

∑
ℓ∈T αℓ = as and

∑
ℓ∈T δℓ = a(sk+e), where a =∑

ℓ∈T aℓ =
∑

ℓ∈T F
ρ
(ℓ)
a
(x), e =

∑
ℓ∈T eℓ =

∑
ℓ∈T F

ρ
(ℓ)
e
(x) and s =

∑
ℓ∈T sℓ =∑

ℓ∈T F
ρ
(ℓ)
s
(x). First, we show

∑
ℓ∈T αℓ = as:

∑
ℓ∈T

αℓ =
∑
ℓ∈T

aℓsℓ +
∑

k∈T \{ℓ}

(c
(OLE,1)
k,ℓ,1 − c

(OLE,1)
ℓ,k,0)

=
∑
ℓ∈T

aℓsℓ +
∑
ℓ∈T

∑
k∈T \{ℓ}

(
c
(OLE,1)
k,ℓ,1 − c

(OLE,1)
k,ℓ,0

)
=
∑
ℓ∈T

aℓsℓ +
∑
ℓ∈T

∑
k∈T \{ℓ}

(
F
ρ
(k)
a

(x) · F
ρ
(ℓ)
s
(x)
)

=
∑
ℓ∈T

aℓsℓ +
∑
ℓ∈T

∑
k∈T \{ℓ}

aksℓ

=
∑
ℓ∈T

∑
k∈T

aksℓ

=
∑
ℓ∈T

ak
∑
k∈T

sℓ

= as

48

Next, we show
∑

ℓ∈T δℓ = a(sk+ e):

∑
ℓ∈T

δℓ =
∑
ℓ∈T

aℓ(Lℓ,T skℓ + eℓ) +
∑

k∈T \{ℓ}

Lℓ,T c
VOLE
k,ℓ,1 − Lk,T c

VOLE
ℓ,k,0

+ c
(OLE,2)
k,ℓ,1 − c

(OLE,2)
ℓ,k,0

)
=
∑
ℓ∈T

aℓ(Lℓ,T skℓ + eℓ) +
∑
ℓ∈T

∑
k∈T \{ℓ}

Lℓ,T c
VOLE
k,ℓ,1 − Lℓ,T c

VOLE
k,ℓ,0

+ c
(OLE,2)
k,ℓ,1 − c

(OLE,2)
k,ℓ,0

=
∑
ℓ∈T

aℓ(Lℓ,T skℓ + eℓ) +
∑
ℓ∈T

∑
k∈T \{ℓ}

Lℓ,T akskℓ + akeℓ

=
∑
ℓ∈T

aℓ(Lℓ,T skℓ + eℓ) +
∑
ℓ∈T

∑
k∈T \{ℓ}

ak(Lℓ,T skℓ + eℓ)

=
∑
ℓ∈T

∑
k∈T

ak(Lℓ,T skℓ + eℓ)

=
∑
k∈T

∑
ℓ∈T

ak(Lℓ,T skℓ + eℓ)

=
∑
k∈T

ak
∑
ℓ∈T

(Lℓ,T skℓ + eℓ)

=
∑
k∈T

ak

(∑
ℓ∈T

Lℓ,T skℓ +
∑
ℓ∈T

eℓ

)
= a(sk+ e)

As the tuple values of the honest parties still satisfy the same correlation as
in Hybrid5, Hybrid5 and Hybrid6 are indistinguishable.

Hybrid7: In this hybrid, instead of sampling values from the VOLE and OLE
correlations for computing the parties’ tuple values we compute them using
the PCF instances. For instance, instead of sampling ((aj , c

VOLE
j,ℓ,0), (skℓ, c

VOLE
j,ℓ,1)) ∈

YVOLE(1
λ, (ρ

(j)
a , skℓ), x), we compute (aj , c

VOLE
j,ℓ,0)← PCFVOLE.Eval(0, k

VOLE
j,ℓ,0 , x) and

(skℓ, c
VOLE
j,ℓ,1) ← PCFVOLE.Eval(1, k

VOLE
j,ℓ,1 , x). The same modification is applied for

both OLE correlations.

Indistinguishability between Hybrid6 and Hybrid7 can be shown via a series
of reductions to the strong pseudorandom Y-correlated outputs property of the
VOLE and OLE PCF instances. The proof is analogous to the indistinguisha-
bility proof between Hybrid1 and Hybrid2. Therefore, we omit the details here.

We end up in Hybrid7 where all correlation outputs are replaced by PCF
evaluations. This holds for the calculation of honest parties outputs as well as for
the computation inside Tuple. As this hybrid does not use any reverse-sampling
anymore, we get rid of the tuple function Tuple.

Hybrid7 is identical to the real-world execution which concludes the proof.

49

I Benchmarks of Basic Arithmetic Performance

We report the runtime of basic arithmetic operations in Table 1. The presented
numbers might help the reader to assess the performance of system used for
benchmarking and provides details for comparisons.

Table 1: Runtime of basic arithmetic operations in the BLS12 381 curve on our
evaluation machine. The bit-size of the curve’s group order p is 255. The error
terms report standard deviation.

Operation Time

Zp addition 5.092 ns ±1.049 ns
Zp multiplication 32.045 ns ±1.556 ns
Zp inverse 2.713 µs ±101.973 ns
G1 addition 1.102 µs ±48.571 ns
G2 addition 3.668 µs ±96.867 ns
G1 scalar multiplication 279.146 µs ±14.763 µs
G2 scalar multiplication 0.952 ms ±0.04 µs
Pairing 2.403 ms ±56.976 µs

J Evaluation Considering [TZ23]

Concurrently to our work, Tessaro and Zhu [TZ23] proposed and proved security
of a more compact BBS+ signature scheme removing the nonce s, and hence,
reducing the signature size by one element in Zp. The proposed extension trans-
lates to our protocol in a straight-forward way as follows. We do no longer need
public parameter h0. The preprocessing protocol does not generate the shares si
or αi. When answering a signing request, the servers compute Ai differently, i.e.,
Ai := (g1 ·

∏
ℓ∈[k] h

mℓ

ℓ)ai , and do not send si. The reconstruction of a signature

ignores s and outputs the tuple (A, e). When verifying a signature, parties now
check if e(A, y · ge2) = e(g1 ·

∏
ℓ∈[k] h

mℓ

ℓ , g2). In the following we call the described
protocol as the lean version of our protocol.

For us, their optimization has the advantage of removing the necessity of the
α values computed during the preprocessing and the computation of the gsi and
gs term in the signing and verification process. In order to quantify the benefits
of this optimization, we have repeated the evaluation presented in Section 6,
including implementation and benchmarks, for the lean version of our protocol
and report the changes here. The scope of the implementation and the setup of
our benchmarks remains unchanged.

Online, Signing Request-Dependent Phase. The results of our benchmarks of the
lean version of our protocol are reported in Figure 10. The comparison to the non-
threshold protocol, also optimized according to [TZ23] is displayed in Figure 11.

50

The size of signing requests does not change in the lean version of our protocol.
The size of partial signatures sent by the servers reduces to (2⌈log p⌉+ |G1|).

10 20 30
0

200

400

t

[µs]

(a) Adapt (Server).

10 30 50
0

5

10

15

k

[ms]

(b) Sign (Server).

10 20 30
0

100

200

300

t

[µs]

(c) Reconstruct (Client).

10 30 50
0

10

20

k

[ms]

(d) Verify (Client).

10 20 30
0

5

10

15

t

[ms]

k = 1 k = 2

k = 5 k = 10

(e) Total.

Fig. 10: The runtime of individual phases (a)-(d) and the total online protocol
(e) in the protocol version optimized according to [TZ23]. The Adapt phase,
describing Steps 5 and 6 of protocol πPrep, and the Reconstruct phase, describing
Step 3a of πTBBS+, depend on security threshold t. The Sign phase, describing
Step 2 of πTBBS+, and the signature verification, describing Step 3b depend on
the message array size k.

Offline, Signing Request-Independent Phase. The communication complexity of
a distributed PCG-based preprocessing protocol instantiating the offline, signing
request-independent phase of the lean version of our protocol is dominated by a
factor of

13(ncτ)2 · (logN + log p) + 4n(cτ)2 · λ · logN.

51

10 20 30 40 50
0

20

40

k

[ms] Threshold (t = 10)

Plain incl. verification

Plain excl. verification

Fig. 11: The total runtime of the lean version of our online protocol in comparison
to plain, non-threshold signing (also optimied according to [TZ23]) with and
without signature verification in dependence of the size of the message array k.
As depicted in Figure 10e, the influence of the number of signers t is insignificant.
We choose t = 10.

In case, the preprocessing decouples seed generation from seed evaluation,
servers have to store seeds with a size of at most

log p+ 2cτ · (⌈log p⌉+ ⌈logN⌉)
+2 · (n− 1) · cτ · (⌈logN⌉ · (λ+ 2) + λ+ ⌈log p⌉)
+2(n− 1) · (cτ)2 · (⌈log 2N⌉ · (λ+ 2) + λ+ ⌈log p⌉)

bits. The expanded precomputation material occupies

log p · (1 +N · (2 + 4 · (n− 1)))

bits of storage. In Figure 12, we report the concrete storage complexity of the
preprocessing material of the lean version of our protocol when instantiating the
with N ∈ {98 304, 1 048 576} and p = 255 according to the BLS12 381 curve
used by our implementation.

The computation cost of the seed expansion is still dominated by the ones
of the PCGs for OLE correlations. However, we do no longer need the OLE-
generating PCGs for the cross terms ai · sj , and aj · si. It follows that the
computation complexity of the seed expansion in the lean version of our protocol
is dominated by

2 · (n− 1) · (4 + 2⌊log(p/λ)⌋) ·N · (ct)2

PRG evaluations and O(nc2N logN) operations in Zp.

52

0 10 20 30
0

2

4

Number of parties n

[GB] N = 1048 576

N = 98 304

Fig. 12: Storage complexity of the preprocessing material in the lean version of
our protocol required for N ∈ {98 304, 1 048 576} signatures depending on the
number of servers n.

53

	Threshold BBS+ From Pseudorandom Correlations

