
Security-Performance Tradeoff
in DAG-based Proof-of-Work Blockchain Protocols

Shichen Wu
Shandong University

shichenw@mail.sdu.edu.cn

Puwen Wei
Shandong University

pwei@sdu.edu.cn

Ren Zhang
Cryptape Co. Ltd. and Nervos

ren@nervos.org

Bowen Jiang
Shandong University

bowen.jiang@mail.sdu.edu.cn

Abstract—Proof-of-work (PoW) blockchain protocols based
on directed acyclic graphs (DAGs) have demonstrated superior
transaction confirmation performance compared to their chain-
based predecessors. However, it is uncertain whether their se-
curity deteriorates in high-throughput settings similar to their
predecessors, because their acceptance of simultaneous blocks
and complex block dependencies presents challenges for rigorous
security analysis.

We address these challenges by analyzing DAG-based proto-
cols via a congestible blockchain model (CBM), a general model
that allows case-by-case upper bounds on the block propagation
delay, rather than a uniform upper bound as in most previous
analyses. CBM allows us to capture two key phenomena of high-
throughput settings: (1) simultaneous blocks increase each other’s
propagation delay, and (2) a block can be processed only after
receiving all the blocks it refers to. We further devise a reasonable
adversarial block propagation strategy in CBM, called the late-
predecessor attack, which exploits block dependencies to delay
the processing of honest blocks. We then evaluate the security and
performance of Prism and OHIE, two DAG-based protocols that
aim to break the security-performance tradeoff, in the presence
of an attacker capable of launching the late predecessor attack.
Our results show that these protocols suffer from reduced security
and extended latency in high-throughput settings similar to their
chain-based predecessors.

I. INTRODUCTION

Nakamoto consensus (NC), implemented in Bitcoin [27]
and hundreds of subsequent digital currencies [25], is the first
protocol to maintain an inalterable ledger without relying on
any prior knowledge of the participants’ identities. In NC, the
ledger is organized as a chain of blocks, each containing a set
of confirmed transactions. To extend this blockchain, NC’s par-
ticipants, known as miners, compete to solve a cryptographic
puzzle generated from a group of new transactions and the
latest block. Finding a solution to this puzzle allows its miner
to broadcast a block packing these transactions. This process
is called proof-of-work (PoW). Miners who accept the block
update their ledgers and start working on the next puzzle.

Although NC is widely recognized as a technical break-
through, its poor performance—low throughput and high trans-
action confirmation latency—prevents it from processing trans-
actions on a global level. These limitations are rooted in NC’s
security demands, which require that most blocks be mined
after the majority of miners have received the blocks’ predeces-
sors [12], [29], [36]. This requirement can only be guaranteed
by upper-bounding the block size and lower-bounding the
block interval. These bounds prevent NC from reaching the
networks’ physical limits of throughput and latency [3], which

are the throughput reaching the network’s capacity and the
latency proportional to the transaction propagation delay.

A popular approach to breaking the security-performance
tradeoff and reaching the physical limits is the DAG-based pro-
tocols. These protocols allow a block to refer to multiple pre-
decessor blocks, thus replacing the single-chain-based ledger
structure with a directed acyclic graph (DAG). As simultaneous
blocks can all contribute to transaction confirmation, these
protocols [3], [4], [20], [21], [34], [35], [41] loosen the limit on
the block interval and thus outperform NC in their throughput.
However, it is uncertain whether most of them can maintain the
same—if not stronger—level of security as NC, because they
only offer weak security guarantees or even flawed security
analyses (Sect. II). This situation renders it difficult to evaluate
how security and performance interact with each other. The
only two exceptions are Prism [3] and OHIE [41], who, in
addition to their outstanding performance, prove their security
following NC’s properties. Concretely, both designs prove that
they can tolerate an adversarial mining power share of close
to 50%—same as NC, and this threshold—unlike NC’s—is
(almost) independent of the throughput. These encouraging
results make us wonder: are Prism and OHIE completely
exempt from the security-performance tradeoff, even when
executing at the physical limits?

In this paper, we show that this is not the case. We observe
that both designs implicitly rely on the following key assump-
tion in their proofs to decouple security and performance:

Assumption of Decoupling. If some types of blocks are small
enough and enjoy a priority propagation policy, i.e., they are
propagated before all other blocks in network congestion, then
(1) they can be propagated within a fixed and short network
propagation delay D, and (2) all miners can accept these
blocks, i.e., include them in their working puzzle, immediately
after receiving them.

These special blocks, which we call priority blocks, are
then used at the core of their security proofs to bypass the
influence of network congestion thanks to their short and
constant delay. However, we argue that when executing at the
physical limits, two inevitable phenomena would invalidate this
assumption:

Phenomenon 1 (Block Jam). If in a given time interval t,
the total size of the newly mined priority blocks exceeds C · t,
where C is the network’s processing capacity, then not all of
these blocks can be propagated at D, violating outcome (1) in
the assumption.

A blockchain may suffer from block jams even if it does
not operate at its physical limits. For example, the bandwidth
may be temporarily occupied by other applications.

Phenomenon 2 (Late Predecessor). When a priority block
finishes propagation within D, if one of its predecessors (not
necessarily a priority block) has not finished propagation,
miners who have not received this predecessor cannot accept
and work on the priority block, violating outcome (2).

By violating the Assumption of Decoupling, these phe-
nomena reveal that DAG-based protocols are not immune
to the security-performance tradeoff. These phenomena thus
uncover a gap between these protocols’ actual performance
limits/potential and their theoretical analyses. Unfortunately,
there is no easy solution to this issue, whether in practice
by modifying designs or in theory by patching analyses. In
practice, these phenomena of “overlapping block propagation”
cannot be eliminated from DAG-based protocols as their
performance gain over NC depends on these simultaneous
blocks. In theory, we cannot “sweep the problem under the
rug” by using a larger D to bound the extended propagation
delay, because this quick hack would not only disregard
the intricacies of network-layer attacks [26], [39] and the
protocols’ priority propagation policies, but also, as we will
demonstrate, worsen the protocols’ security and performance
claims to those of NC. This situation thus calls for a new
block propagation model for DAG-based protocols that can
quantify their performance gain over NC without overlooking
the security-performance tradeoff.

This paper answers this call by proposing a congestible
blockchain model (CBM), which captures both phenomena
by allowing case-by-case upper bounds on the propagation
delay. CBM is a general yet simple model that encapsulates
the key parameters affecting the block propagation process,
including the block size, the block generation frequency, the
blockchain topology, the priority propagation policies, and the
network’s physical limits. We then explore how an attacker
can tamper with the blocks’ propagation and acceptance in
CBM, leading to a reasonable attack strategy called the late-
predecessor attack (LP attack). By focusing on the network
layer and remaining agnostic about the consensus rules, this
attack is applicable to all DAG-based protocols. Lastly, we
update both the security analyses and the simulations of Prism
and OHIE against an attacker who can launch this attack, thus
quantifying how they are affected by the security-performance
tradeoff. Our main challenges and contributions include:

Modeling Block Propagation and Acceptance in DAG-
based Protocols. Existing formal analyses of NC [9], [12]–
[15], [19], [29], [33], [36], [39], [43] adopt a similar block
propagation and acceptance model, which we call the uniform-
delay blockchain model (UDBM). In UDBM, (1) the upper
bound of the block propagation delay is fixed and uniform;
(2) as long as this upper bound is reached, a valid block,
along with all its ancestors, is accepted by all receivers; (3) all
but one block that overlap with each other’s propagation are
invalid. None of these arguments hold in DAG-based protocols,
indicating that the latter demands more delicate modeling.

CBM addresses these challenges by making two changes
to UDBM. First, we abandon the uniform delay and instead
allow the environment to determine a block’s maximum delay

when it is generated, which generalizes (1) and thus covers
block jams. Note that the maximum delay must be chosen
from a finite set to ensure that CBM is synchronous. Second,
in CBM, a miner receiving a block does not imply that
all its predecessors have been received and accepted by the
miner, which corrects (2) and relaxes (3), and thus covers late
predecessors. Consequently, CBM incorporates the delicacies
of DAG-based protocols’ block propagation and acceptance.

Designing the Late-Predecessor Attack. As the core in-
strument to quantify the security-performance tradeoff, we
want the LP attack to (1) capture the effects of the two
phenomena, yet still (2) stay close to realistic attacks to
maximize its practicality, and (3) be applicable to all DAG-
based PoW protocols. Inspired by several reasonable heuristics,
we focus on the network layer and consider a new attacker
goal: maximizing the (priority) blocks’ average actual delay,
i.e., the interval between a block’s generation and the arrival
of all its predecessors for some node. In other words, the
attacker tampers with all messages’ propagation within CBM’s
constraints to maximize the quantity and the extent of late
predecessors. Locating such a strategy is challenging, as the
attacker must balance the proportions of mining power that (1)
he hopes to mine a late predecessor and a successor block that
refers to it, and (2) he hopes to be affected by the reversed
arrival sequence, without knowing a priori when or by whom
these blocks are mined. The resulting strategy establishes a
concrete relation between a protocol’s key parameters and the
block propagation process, which can be employed to analyze
the security properties of blockchain under CBM.

Analyzing the Security-Performance Tradeoff of Prism
and OHIE. We then analyze the security and performance
of Prism and OHIE, in the presence of an attacker capable of
launching the LP attack. Specifically, we choose their priority
blocks as the attack targets, and other blocks as potential late
predecessors. This differentiation allows us to extend their
proofs by replacing the short and uniform propagation delay—
due to their Assumption of Decoupling—with the detailed
block propagation and acceptance process under attack. These
techniques of incorporating the network propagation process
into proving blockchain security properties are of independent
interest. The results in Fig. 5 and Fig. 6 show that although
both protocols outperform NC, they are not exempt from the
security-performance tradeoff.

Our Prism analysis reveals that non-priority blocks (late
predecessors) can delay the acceptance of priority blocks,
thereby, as shown in Fig. 4, decreasing the security threshold—
the minimum fraction of adversarial mining power needed
to compromise its liveness—and increasing the transaction
confirmation latency even with low bandwidth utilization. A
loss of liveness would allow an attacker to arbitrarily confirm
or censor transactions. This finding contradicts the authors’
claim that the threshold remains constant until the network
reaches 90% of capacity.

Our OHIE analysis demonstrates that when the protocol
suffers from both block jams and late predecessors, the at-
tacker can undermine not only its liveness, as in our Prism
analysis, but also its consistency by reordering confirmed
transactions. Compromised consistency would also downgrade
the protocol’s fairness as the attacker can manipulate both
transaction [7] and block order [24] for profit, regardless of

2

how the transaction fees and block rewards are distributed [42].
We validate our analysis with simulations.

II. DAG-BASED POW PROTOCOLS

Despite being listed among the strongest candidates to
break NC’s security-performance tradeoff, early DAG-based
protocols [4], [20], [21], [34], [35] shy away from the problem
as their theoretical analyses are partial and not as rigorous
as NC’s. Prism [3] and OHIE [41] are the first to explicitly
tackle this tradeoff. Their results are encouraging, as they
not only analyze their security and performance by extending
the mature techniques established for NC, but also, to some
extent, decouple security and performance in their analyses.
However, these analyses implicitly rely on the Assumption
of Decoupling, which may not hold when the underlying
protocols operate with high transaction throughput.

A. Proof-of-Work Blockchain Protocols

PoW protocols have been the backbone of most cryp-
tocurrencies [25], and are battle-tested over the past decade,
demonstrating their reliability. Alternative protocols, despite
their better energy efficiency, all introduce stronger security
assumptions, yet none achieves the same level of security [5],
[30], [42]. Consequently, a considerable number of recent in-
fluential projects are still built on PoW. For example, Grin [16]
and Nervos CKB [11] are two chain-based systems launched
in 2019; Conflux [31] and Kaspa [32] are two DAG-based
systems launched in 2020 and 2021, respectively.

We now describe a PoW blockchain system informally,
which suffices to describe our main observation. The formal
definitions are delayed to the next section. In a PoW system,
each participant maintains its local ledger by executing the
blockchain protocol; they interact with each other through the
P2P network. Miners compete for the rights to extend the
ledger by searching for the block candidate whose hash result
is below a threshold d. The block candidate consists of (1)
some recent transactions, (2) the hash pointers identifying the
predecessors, i.e., some latest valid blocks, and (3) an arbitrary
number called nonce, which the miner enumerates to change
the hash result. Once a solution is found, the block is broadcast
immediately to the network. Upon receiving a block, the miner
performs several checks before accepting it and mining on top
of it, including (1) whether its hash result is below d, (2)
whether all the newly packed transactions are valid, and (3)
whether the predecessors are already received and accepted
as part of the local ledger. As a block is only valid if all its
predecessors are valid, the protocols prescribe miners not to
accept blocks with missing predecessors, but to query for them
or simply ignore the newly received block.

B. Chain-based and Early DAG-based Protocols

NC is the simplest PoW protocol, where each block points
to only one predecessor, and the authentic ledger is the main
chain, i.e., the most computationally challenging chain to pro-
duce. The latter rule is commonly, albeit inaccurately, referred
to as the longest-chain rule. Due to this rule, all but one block
choosing the same predecessor are invalid. To ensure security,
NC blockchains must reduce these invalid blocks, because they
do not contribute to the total computational “work” of the

main chain. This total work measures the adversarial mining
power threshold to secretly generate a longer chain, hence the
system’s security. This security requirement translates directly
to long block intervals and small block sizes, preventing these
systems from reaching the network’s physical limits. This
tradeoff is analyzed thoroughly in previous works [9], [12]–
[15], [19], [29], [33], [36], all of which assume a uniform
upper bound of block propagation delay.

Although two chain-based protocols Bitcoin-NG [10] and
NC-Max [43] can already process transactions at the network’s
capacity, their latency still has room for improvement. Bitcoin-
NG’s latency is identical to that of NC’s; Prism outperforms
NC-Max in latency when the workload is low [43].

To break the tradeoff, DAG-based protocols allow one
block to have multiple predecessors, all of which contribute
to transaction confirmation. Thanks to these simultaneous
blocks, these protocols naturally achieve higher throughput
than NC. However, early DAG-based protocols’ weak security
guarantees or lack of formal analyses renders it difficult to
evaluate whether they have broken the tradeoff. We list these
protocols and their limitations in Appendix A.

C. Prism

Prism [3] and OHIE [41] are the only two exceptions with
rigorous proofs related to their security and performance. Their
proofs adopt the established proving techniques for NC, thanks
to the fact that they also involve chains as their core data
structures. As a result, some studies exclude them from DAG-
based protocols, contrary to the authors’ claims that Prism is
“a structured DAG” (p. 3 in [3]) and OHIE’s chains form a
DAG (p. 14 in [41]). Agreeing with the authors, we consider
them DAG-based because the validity of a block in such a
chain often depends on multiple previous blocks, rendering it
unprocessable before all of them are received. We overview
their designs here before highlighting how their respective
analyses rely on the Assumption of Decoupling.

The Protocol. There are three types of blocks in Prism:
transaction blocks, proposer blocks, and voter blocks. A miner
mines one transaction block, one proposer block, and m voter
blocks—with respective tree index numbers from 1 to m—
simultaneously by solving the same puzzle. Once a solution
is found, a cryptographic sortition function deterministically
computes its block type. The block is then released along with
the content of its type.

The block content differs based on its type. In a transaction
block, the miner packs transactions that have not been packed
by other transaction blocks. In a proposer block, the miner
packs hash pointers to all transaction blocks and proposer
blocks that have not been packed by other proposer blocks. All
proposer blocks thus form a proposer blocktree, similar to the
Inclusive protocol [20]. Each proposer block has a level, which
is calculated as its longest distance to the earliest proposer
block in the proposer blocktree. In a voter block, the miner
packs hash pointers to exactly one parent voter block of the
same tree index and some proposer blocks. All voter blocks
of the same tree index thus form a tree, and each voter block
chooses its parent via the longest-chain rule. We say a voter
block votes for a proposer block if the former includes the hash

3

pointer of the latter. Each voter-block chain votes for exactly
one proposer block at each proposer block level.

Prism establishes a canonical order of transaction blocks
as follows. As each of the m longest voter chains votes for a
proposer block at each level, each proposer block level collects
m votes eventually. The proposer block with the most votes
on each level is called leader block. The leader blocks are then
ordered by their level numbers. The sequence of leader blocks
for each level is called leader sequence. Transaction blocks are
ordered by their earliest appearances in the leader sequence.
Hence, the leader sequence, which points to transaction blocks
using a DAG structure, plays a crucial role in the security of
Prism. It is equivalent to the main chain in NC and inherits
NC’s security properties and analysis.

The Authors’ and Later Analyses. Prism’s authors claimed
that its performance gain comes from “decoupling functional-
ities”. Transaction synchronization is assigned to transaction
blocks, which are relatively large and slow, consuming most
of the network’s capacity. The ordering and confirmation of
transaction blocks are assigned to the proposer and voter
blocks, respectively, which are small and enjoy priority in
propagation. Specifically, in Eqn (9), Sect. 4.2 of [3], the
authors computed the propagation delays of proposer and
voter blocks, denoted ∆p and ∆v, as ∆p = Bp/C + D and
∆v = Bv/C + D, respectively, where Bp and Bv are the
block sizes, C is the network’s capacity, and D is the actual
(minimum) network delay. Afterward, they further simplified
these delays as D since Bp and Bv are small, and then
applied this delay throughout their analysis and simulations.
As ∆p and ∆v are independent of the transaction processing
workload, the proposer and voter chains can always grow at
the fastest possible rate, enabling Prism to achieve the optimal
security threshold of close to 50% and performance close to
the physical limits at the same time—the authors used 90% of
the network’s bandwidth in their examples and simulations.

Li and Guo provided security proofs for Prism under
the lockstep [22] and non-lockstep [23] synchronous model
without the finite horizon assumption. Yang et al. proposed
Prism++, which improves Prism’s confirmation rules and the
way nodes process parallel messages [40]. These studies also
assume independence between the proposer and the voter
blocks’ acceptance and the transaction blocks’ propagation.

We argue that such decoupling does not hold in reality. A
proposer/voter block cannot be processed until all the blocks it
referred to are received and verified. As the protocol prescribes
in Sect. 3.1 [3], “if the miner lacks some referred blocks,
it requests them from the network”. However, the protocol
makes no guarantee that the referred blocks are received before
the priority blocks. We will show how this late-predecessor
phenomenon influences the leader sequence and hence breaks
the independence between Prism’s security and performance.

D. OHIE

The Protocol. OHIE only has one type of block, but the
protocol maintains m parallel NC instances, all of which
follow the longest-chain rule. Similar to Prism, miners in OHIE
work on all m chains simultaneously by solving the same
puzzle. Once a block is found, the last several bits of its hash
determine the chain index.

Compared to NC’s blocks, an OHIE block has two addi-
tional fields (rank, next rank), which are used for ordering
blocks across chains. The rank of a block is the next rank of
its same-chain parent block. The next rank is the larger one
between (1) rank+ 1 and (2) the next rank of the block(s)
with the largest rank the miner is aware of. In the case of (2),
an additional hash pointer would be included, which points to
the “largest rank” block with the smallest chain index, denoted
the trailing block. Blocks are ordered first by their rank, then
by their chain index. So OHIE adopts a structured DAG, which
runs m parallel NC chains using rank for ordering transactions
in different chains.

The Authors’ Analysis. The authors explained OHIE’s per-
formance gain with the following key insight: with a small
block size limit—20 KB in the authors’ example—and a large
number of parallel NC chains, the block propagation delay is
short and stable. Such a delay allows the authors to prove that
OHIE achieves the optimal security threshold of close to 50%
while the throughput increases linearly with m, “until we start
to saturate the network bandwidth”. The authors verified their
claims with simulations.

OHIE’s decoupling of security and performance relies on
the short and stable block propagation delay, which demands
that the network is not saturated. The authors acknowledged
this and experimentally showed a “non-trivial increase” in this
delay when utilizing more than 50% of the network capacity
(Fig. 4 in [41]), confirming the block-jam phenomenon. Nev-
ertheless, their theoretical analysis cannot answer how would
this increased delay affect OHIE’s security and performance.

III. CONGESTIBLE BLOCKCHAIN MODEL

A. Why a New Model?

UDBM Cannot Model DAG-based Protocols. Most analyses
on NC assume a uniform upper bound ∆ on the block
propagation delay, and the adversary can manipulate the delay
arbitrarily within this bound. Consequently, the adversaries, in
their optimal strategies, often delay the blocks’ propagation
to all receivers exactly to this upper bound. We define this
uniform delay blockchain model as ∆-UDBM:

Definition 1 (UDBM). Under ∆-UDBM, when a node Pi

sends a message to the environment Z in round r, all nodes
will receive the message no later than round r +∆.

The rationale behind UDBM is three-fold.

• The homogeneity of blocks: NC has only one type of
block; all blocks abide by the same block size limit.

• The independence of block propagation: when the phys-
ical limits are not reached, simultaneous blocks do not
affect each other’s propagation delay.

• Overestimating the adversary’s ability: when designing a
simplified model in security analyses, we always prefer
an adversary stronger than reality to a weaker one.

The last aspect is already discussed in [26], [39] to account
for the fact that the adversary has restricted corruption speed
and may not always succeed.

4

20 40 60 80 100

Bandwidth utilization (%)

500

1000

1500

2000

2500

D
e

la
y

 (
m

s
)

propagation delay

average actual delay

maximum actual delay

Fig. 1: In Prism, the actual delays of proposer blocks are longer
than their own propagation delays, due to the large size of the
transaction blocks they refer to.

We argue that in a DAG-based system, the first two aspects
do not hold either. Specifically, a homogeneous-block setting
would disregard the protocol designers’ efforts in designing
multiple types of blocks with different size limits and prior-
ity propagation policies, thus underestimating the protocols’
security and performance.

Assuming total independence in block propagation is more
problematic. As DAG-based systems shorten the block interval,
overlaps in block propagation happen frequently and by design,
leading to several phenomena that do not align with UDBM:

• Consecutive blocks mining the same chain: if the miners
of two consecutive blocks are geographically close, or
even the same person, both blocks could be valid even if
their interval is shorter than D.

• Block jams: due to block jams, it is hard to prescribe a
universal upper bound on the block propagation delay.

• Late predecessors: late predecessors delay a block’s ac-
ceptance regardless of whether the network is saturated.

We cannot assign a larger ∆ in UDBM to cover the worst-
case propagation delay because, as we will prove in Lemma 2,
such a worse case is not reachable. As we will show in
our simulations, such pessimistic modeling would lead to the
incorrect conclusion that the performance of DAG is no better
than that of NC.

Experimentally Confirming the Block Propagation Depen-
dency. To show the impact of block dependency in their
processing delays, we implement Prism with SimBlock [1], a
Bitcoin network simulator, and simulate its operation across
200 nodes distributed on five continents, with an average
bandwidth of 5 MBps. Each node randomly selects 5 to 11
adjacent nodes; each connection’s propagation delay comes
from SimBlock’s built-in dataset, which is collected from
the Bitcoin network. The proposer and transaction blocks
are generated at expected intervals of 10 and 5 seconds,
respectively. The small proposer blocks point to the latest
transaction blocks, which are large and utilize 20% to 100%
of the network’s capacity in different settings. We record each
proposer block’s propagation delay and average actual delay,
i.e., the interval between the block’s generation and the arrival
of its latest predecessor at a certain node. The results in Fig. 1
show that the transaction blocks significantly slow down the
processing of proposer blocks.

Other Block Propagation Models. UDBM is generalized via
two approaches. The first approach [26], [39] regards each
block’s propagation as an independent event, overlooking the
overlap of these events and the complex block dependencies.
The second approach is concurrent with our work and can
cover block jams. Proposed by Neu et al. [28] and followed
by Kiffer et al. [18], this approach assumes that the block
headers are propagated with a known upper bound, and each
node can download a fixed number of block contents per
time slot. CBM is more general than their model in two
aspects. First, our approach—block-specific upper bound—
can incorporate the protocols’ heterogeneous block types and
priority block propagation policies, thus can analyze how these
design choices contribute to the protocols’ security. Second,
CBM has a stronger adversary that can manipulate block
propagation within constraints.

B. Our Model

CBM differs from UDBM in two aspects. First, upon
each block’s generation, the environment outputs the upper
bound of its propagation delay in a case-by-case manner.
Such flexibility enables the inclusion of many realistic factors
including the block size, the network’s saturation condition,
and the protocols’ priority propagation policies. Second, a
miner cannot mine on a block until it has received the
block’s predecessors and earlier priority blocks that jammed
the network. This requirement explicitly addresses the complex
block-generation events and the block-referring relations in
DAG-based protocols.

Timing Assumption. We consider a round-based model com-
monly used in previous works [3], [19], [29], rather than a
continuous-time one as in [15], [33]. This choice does not
sacrifice generality, because as argued in [14], [33], these two
models are equivalent when the round can be arbitrarily short.

We do not specify how to compute the delay upper bound
for each block, but leave it as an external function of the net-
work layer, instantiated by the practitioners. For example, [18],
[28] provides one method to set these bounds, abiding by the
bandwidth constraint. As a permissionless consensus has no
safety guarantee in an asynchronous or partially synchronous
environment [29], the upper bound must be chosen from a
predefined set of values so that CBM is synchronous.

Mining. There are n participating nodes throughout the ex-
ecution, and each of them has identical mining power. It is
possible to model a varying number of participants [13], but
we consider it unnecessary as the flat model already reveals
many insights. Let κ denote the security parameter. Mining is
modeled as querying a random oracle H : {0, 1}∗ → {0, 1}κ,
to which all nodes have access. In each round, each node can
query H(x) at most once, and verify whether H(x) = y
arbitrary times. The input x is a valid block if and only if
H(x) < 2κ ·p, where p is the probability that a query produces
a new block. Let f denote the probability that all nodes mine
at least one block in a round, then we have f = 1− (1− p)n.
When np ≪ 1, we have f ≈ np, which is also the expected
number of blocks mined by all nodes in a round.

Environment. An environment Z(1κ) captures all aspects in
the system external to the protocol Π and the adversary A. Z
keeps the entire mining history and the joint view of all nodes,

5

including their current DAG and all the blocks’ processing
states, in a variable called the global state st.

Z is also in charge of collecting and sending messages. At
the beginning of a round, Z sends all messages—transactions
and blocks—scheduled to deliver to a node in this round to
the node, which updates its local state before mining. At the
end of a round, all nodes send their newly-mined blocks to Z .
The propagation delay is computed collectively by Z and A,
which is detailed next.

Message Propagation Delay. Upon receiving a new block B
in a round r, Z first gives the upper bound of its propagation
delay, which is applicable to all nodes, via an abstract function
δmax(st, r, B). We use δBmax to denote the result. Afterward,
Z sends to the adversary A a tuple (st, r, B, δBmax), who
feeds it to a strategy function S(·) and decides each node’s
delay (δB1 , δB2 , . . . , δBn) for all i ∈ [n], where [n] denotes
{1, 2, . . . , n}. A may also update previous blocks’ delivery
schedule based on the new mining event. Node i either receives
B from A with delay δBi when δBi < δBmax, or receives it
from Z with delay δBmax. This separation of duty—Z decides
the upper bound, and A manipulates arbitrarily within this
bound—not only maximizes the adversary’s operating space
but also enables incorporation of many real-world factors.

Adversary. In any given round, A controls at most β fraction
of the nodes. Nodes not corrupted are honest, whose total
fraction is α, such that α+β = 1. A can corrupt and uncorrupt
arbitrarily nodes, but its adaptive corruption has a one-round
delay so that he cannot prevent an honest node from sending a
newly-mined block to Z . Honest nodes follow the protocol Π;
corrupted nodes can mine on anything. A can delay messages
of corrupted nodes arbitrarily, but can only delay and reorder
messages from honest nodes up to δmax(·). Honest messages
cannot be tampered with.

Block Processing. It is necessary to distinguish the follow-
ing states after a node receives a block: received, accepted,
confirmed, and orphaned. Received means Z has delivered the
block to the node. Accepted indicates that the block has passed
the validity check: all the predecessors are accepted, and the
block itself is valid. An honest node can only mine after a
block after it is accepted. In line with previous works, we omit
the time spent in transaction and block validation, as the former
is usually executed in parallel with other tasks, and the latter
is negligible compared with the network delay. Therefore the
only contributor delaying a block’s acceptance after receiving
is the late predecessors. We use υB

i to denote this processing
delay, then the actual delay between a block B’s generation
and its acceptance at node i is ∆B

i = δBi + υB
i . A block is

confirmed if it is deemed part of the final ledger; otherwise,
the block is orphaned.

C. Security Properties

The security of blockchains is defined as liveness and
consistency. In most NC analyses [12], [13], [29], liveness
measures how long it takes for a transaction to be confirmed,
which is further derived from chain growth and chain quality
properties; consistency measures the difficulty for the adver-
sary to modify the ledger, which is further derived from
common prefix property. We adopt a similar approach with
slightly modified definitions of chain growth.

Let Cri denote chain C in the view of node i in the beginning
of round r, |Cri | denote the length of Cri , and ∆(C) denote the
maximum actual delay of blocks on chain C.

Definition 2 (Chain Growth). We say a chain C in protocol
Π has g-chain growth if there exists some constant c and a
negligible function negl(·) such that for every κ ∈ N+, any
T > c · log(κ) and r > ∆(C), the following holds:

Pr[min
i
|Cr+T

i | −min
j
|Crj | ≥ g · T] ≥ 1− negl(T).

Unlike previous works [29], [39] where chain growth is
the worst-case growth rate mini,j

(
|Cr+T

i | − |Crj |
)
, our chain

growth measures the growth rate of the shortest chain(s).

Definition 3 (Chain Quality). We say a chain C in protocol
Π has µ-chain quality if there exists some constant c and a
negligible function negl(·) such that, for every κ ∈ N+, any
T > c · log(κ), r > ∆(C) and i ∈ [n], the following holds: In
any T consecutive blocks of chain Cri , there are at least µT
honest blocks with a probability of 1− negl(T).

Definition 4 (Common Prefix). We say a chain C in protocol
Π has common prefix if there exists some constant c and a
negligible function negl(·) such that, for every κ ∈ N+, any
T > c · log(κ), r2 ≥ r1 > ∆(C) and i, j ∈ [n], the following
holds: for any two honest chain Cr1i , Cr2j , it holds that Cr1i with
the last T blocks removed is a prefix of Cr2j with a probability
of 1− negl(T).

IV. APPLYING CBM TO DAG-BASED PROTOCOLS

To demonstrate the value of CBM, we prove some general
results applicable to all DAG-based PoW protocols, which
also pave the way for our subsequent analysis. We start by
formally defining the late predecessors. Afterward, we prove an
impossibility result that justifies the non-triviality of CBM—
it cannot be reduced to UDBM. At last, we show how to
maximize the processing delay of a single block, which would
inspire the LP attack. In this section, the adversary may tamper
with block propagation but has no mining power.

A. Notations

We list our notation naming rules before diving into the
proofs. There are two constants: f is the block generation
rate, and n is the total number of nodes. The i-th node
is denoted as Pi. There are three kinds of delays: δBi is
the propagation delay, i.e., the interval between a block B’s
generation and its arrival at Pi; υB

i is the processing delay,
i.e., the interval between B’s arrival at Pi and the arrival of
its latest predecessors; ∆B

i is the actual delay, which satisfies
∆B

i = δBi + υB
i . The subscripts of these delays, apart from

denoting the receiver node number, can also be “max” to
denote their upper bounds applicable to all receivers.

We define two new superscripts to denote blocks with
different propagation characteristics: “∗” indicates potential
late predecessor blocks, which usually have large δmax and
may arrive later than their successors at some nodes; “+”
indicates potentially affected blocks, which may experience
positive processing delays due to their late predecessors. These
superscripts can be applied to B, the round number r, and
the delays. We number the superscripts such as B∗1, B∗2 to
distinguish multiple blocks of the same type.

6

B. Defining Late Predecessors

Definition 5 (Late Predecessor and Lag Time). Consider a
block B∗ which is received by a node Pi at round R∗. We
say B∗ is late for node Pi if there exists a block B+, which is
received by Pi at round R+ such that (1) B∗ ← B+, i.e., B∗ is
a predecessor of B+, and (2) R∗ > R+. The lag time between
B∗ and B+ at node Pi is defined as lt(B∗, B+, Pi) = R∗−R+

if B∗ is late for node Pi; otherwise, lt(B∗, B+, Pi) = 0.

A late predecessor occurs if three events happen in the
following order: (1) B+ is generated with B∗ as a predecessor;
(2) B+ reaches Pi; (3) B∗ reaches Pi. The interval between
(2) and (3) is defined as the lag time. There are many possible
reasons for this reversed arrival order, including: (1) B+ is
smaller than B∗, (2) B+ is a priority block but B∗ is not, (3)
Pi is geographically close to B+’s miner, and (4) the network
is under attack.

The processing delay of B+ for Pi, denoted υ+
i , is then

the maximum lag time between B+ and all its predecessors:

υ+
i = maxj∈[l]{lt(B∗j , B+, Pi)}, (1)

where l is the number of B+’s predecessors. Theoretically,
it is possible that after receiving all B+’s predecessors, Pi

discovers that it does not have a predecessor to one of them,
thus it has to keep waiting before it can process B+. We omit
this “late predecessor’s late predecessor” scenario in this study
as it happens rarely and complicates our analysis. In other
words, Pi starts mining on B+ after the processing delay.

C. Bounding the Actual Delay

The maximum actual delay of B+, denoted ∆+
max, is the

interval between its generation and acceptance at all the nodes:

∆+
max = maxi∈[n]{∆+

i }, (2)

where ∆+
i is the actual delay of B+ at Pi. As we already have

∆+
i = δ+i + υ+

i , where δ+i is the propagation delay of B+ at
Pi, we can combine Eqn. (1), (2), and Definition 5 to get the
following lemma:

Lemma 1. When δ+max < maxj∈[l]{δB
∗j

max}, it holds that
∆+

max ≤ maxj∈[l]{δB
∗j

max}.

Intuitively, Lemma 1 states that the maximum actual delay
of a block is bounded by the larger value between its own
propagation delay and its predecessors’ propagation delay.

Analyses adopting UDBM assume that ∆+
max = δ+max so

that they do not need to dissect the late-predecessor phe-
nomenon. As our goal is to model this phenomenon, we are
interested in the alternative case. When ∆+

max > δ+max, the
first question we try to answer is whether ∆+

max is globally
achievable, i.e., ∆+

1 = ∆+
2 = · · · = ∆+

n = ∆+
max. This ques-

tion has a crucial implication for our analysis: if the adversary
can cause all the nodes to accept and start mining on B+ at
the same time, we can consider all honest mining power as a
unified group, which simplifies our analysis. (Un)fortunately,
that is not possible:

Lemma 2. When ∆+
max > δ+max and Pi mined B+, the event

that for all j that j ∈ [n] and j ̸= i, ∆+
j = ∆+

max happens
with a probability of 1/n.

Proof: Suppose that ∆+
max > δ+max and the event in the

lemma happens. Then, for any Pj that j ̸= i, there must be a
predecessor block of B+ that Pj has not received before round
r++∆+

max, where r+ is the round when B+ is mined. So B+

can only be mined by Pi. According to the mining model, the
probability of the event is 1/n.

We gain two sights from Lemma 2.

Insight 1. Since a globally-uniform actual delay is almost
impossible for a block with late predecessors, we cannot
simply generalize the analyses in UDBM studies to cover
the late-predecessor phenomenon. This is because, in these
analyses, the worst attack usually delivers all honest blocks to
all receivers simultaneously after the maximum delay.

Insight 2. It is non-trivial to maximize the “damage” of
a late predecessor. For each potential late predecessor B∗,
the attacker must carefully differentiate its arrival times at
the nodes, so that some nodes receiving B∗ early can act
as potential miners of B+, while others act as B+’s early
receivers and can be affected by B∗’s late arrival. As we shall
see in Sect. V-B, there is a tradeoff here: increasing the first
group reduces the “victim set”; if the second group grows, B+

may not be mined or mined late, lowering the damage as well.

D. Propagating One Potential Late Predecessor

Now we study how an adversary can maximize the “dam-
age” of just one potential late predecessor B∗ in CBM.
Specifically, we explore how should B∗ be propagated, given
the proportions of early and late receivers. We leave deciding
such proportions and analyzing all potential late predecessors
to the next section.

The first step is to define and quantify the “damage”, i.e.,
the adversary’s utility. To maximize both the number and the
lag time of the affected nodes, we measure the adversary’s
utility corresponding to one potential late predecessor as its
average lag time for all nodes. Formally, given two blocks B∗

and B+, between which B∗ is mined earlier, the average lag
time for (B∗, B+) is

ltS(B
∗, B+) =

1

n

∑n

i=1
lt(B∗, B+, Pi), (3)

where S denotes the adversary’s block propagation strategy.

Note that ltS(B
∗, B+) could be zero even when some

nodes receive B+ first. Recall that the block miners and mining
time are chosen by Z and the propagation strategy S is chosen
by A. As A cannot predict B+’s miner and mining time r+,
he may miss the opportunity such that under S, B∗ does not
reach B+’s miner at r+, then B∗ is not a predecessor of B+.
Consequently, lt(B∗, B+, Pi) = 0 for all i ∈ [n] by definition.
We denote the probability that “B∗ has reached B+’s miner
at r+, thus B∗ is a predecessor of B+” as Pr{B∗ ← B+}.

Our main result regarding ltS(B
∗, B+) is the next lemma,

which is essential to developing the attack strategy in Sect. V.

Lemma 3. Let R∗ = r∗ + δ∗ and R+ = r+ + δ+ denote the
rounds that all nodes have received B∗ and B+, respectively.
Assuming that there are (1−ρ)n nodes that have received B∗

at round r+, we have:

7

1) Pr{B∗ ← B+} = 1 − ρ regardless of how B∗

propagates before round r+;
2) ltS(B

∗, B+) ≤ ρ · (R∗ −R+).

Proof: We define F ∗(r) as the fraction of nodes who
have received B∗ in round r, so we have F ∗(r+) = 1 − ρ.
The event that B∗ ← B+ only depends on whether the miner
of B+ has received B∗ at r+. Since the probability of winning
in a round is equal for all the nodes, we can get Pr{B∗ ←
B+} = F ∗(r+) = 1− ρ, proving (1).

Assuming that B∗ ← B+, we use F ∗(·) to calculate ltS(·):

ltS(B
∗, B+) =

∑R∗

r=R++1
[F ∗(r)− F ∗(r − 1)] · (r −R+)

≤ ρ · (R∗ −R+)

where the inequality follows from F ∗(R+) ≥ F ∗(r+) = 1−ρ
and F ∗(R∗) = 1. In fact, there are ρn nodes that have not
received B∗ at round r+. If the adversary forces them to all
wait until round R∗ to receive B∗, their processing delay of
B+ will be R∗ −R+. So the maximum is achievable.

Intuitively, Lemma 3 states that, given that B+ is mined at
r+ when (1 − ρ)n nodes have received B∗, for any strategy
S, there is always a corresponding strategy S′ that achieves
at least the same, if not better, ltS . The variant S′ modifies S
by sending B∗ right after r∗ to all nodes that have received it
before r+, and to all other nodes at R∗, hoping that the former
modification raises Pr{B∗ ← B+} and the latter modification
extends the lag time for some nodes.

Insight 3. The maximum average lag time concerning one
potential late predecessor is achievable by sending it to some
nodes as early as possible and to the others as late as possible.

V. LATE-PREDECESSOR ATTACK AND THE UPDATED
SECURITY PROPERTIES

Given that CBM is an abstract model, we introduce an
LP attack that outputs the detailed block propagation process
for a given protocol and a set of network parameters. Recall
that CBM models block jams with block-by-block propagation
delay upper bounds determined by the environment rather than
the adversary. Therefore, the attack focuses on maximizing the
effect of late predecessors. We start by defining the attacker’s
utility, followed by a description of the attack strategy and its
rationale, and quantify the strategy’s utility. At last, we show
how to update the security properties of a DAG-based protocol
in the presence of an LP attacker.

A. Defining the Attacker’s Utility

To define a quantifiable utility so that we can gain more
insights, in this section, we enforce the same propagation delay
upper bound among blocks of the same function/type; blocks
with different functions or types can still have different upper-
bound delays. Note that our general results regarding CBM in
Sect. III do not rely on such homogeneity—all the blocks could
have different propagation delays, yet the lemmas still hold.
There are two groups of blocks we are interested in: potential
late predecessors, which may act as late predecessors when
they are pointed by an affected block—the second group. The
set of potential late predecessors is denoted B∗. Although these

two groups are mutually exclusive, they may belong to the
same type in the protocol’s design, as in our OHIE analysis. In
line with Sect. IV-A, the superscripts “∗” and “+” correspond
to the first and second groups, respectively. When the context is
clear, we use B∗ and B+ to denote a member of its group. Let
f∗ denote the probability that at least one B∗ is generated in a
round. All blocks in B∗ abide by the same propagation delay
upper bound δ∗max; δ+max is defined likewise, with δ+max ≤ δ∗max.

We explain how we choose the utility with three steps of
reasoning. Recall that the average lag time defined in Eqn. (3)
considers only one B∗, which may not be the latest. Naturally,
our first step is to generalize it to the average actual delay of
a B+, which considers all its predecessors:

∆
+
=

1

n

∑n

i=1
(δ+i + υ+

i), (4)

where the processing delay υ+
i is the interval between B+’s

and its latest predecessor’s arrivals at Pi. Our second step is,
A cannot compute ∆

+
directly as it has no knowledge of

when or where B+ will be mined, therefore a strategy output
by A can only maximize the expectation of ∆

+
. Our third

step is to generalize one B+ to all of them. As a general
attack that is agnostic to the specific protocol, there is no
knowledge for A to choose which B+ should have longer
E[∆+

]. Therefore, we want a uniform E[∆+
] throughout the

execution. Such equality permits us to choose a homogeneous,
i.e., somewhat symmetric, propagation strategy with respect
to all blocks in B∗, which also makes E[∆+

] computable.
Therefore, we choose E[∆+

] as A’s utility. Next, we describe
such a strategy.

B. The Attack Strategy

Fundamentally, the late predecessor attack generalizes the
dominant strategy described in Insight 3 (see Sect. IV-D) to all
blocks in B∗, and locates the most effective ρ which balances
the tradeoff described in Insight 2 (see Sect. IV-C). We first
describe the propagation strategy for one B∗, and then discuss
how to generalize it to B∗.

For each B∗, according to Lemma 3, to maximize its
average lag time, thus its contribution to E[∆+

], A can select
a subset of (1− ρ)n nodes, which we call B∗’s local set, and
send B∗ to them at the beginning of round r∗+1 while setting
the propagation delay of other nodes as δ∗max.

Now we consider a sequence of blocks in B∗. If A can
predict when and where the next B+ is mined, he would place
the miner of the latest block in B∗, which is mined right before
B+, in the same local set of B+’s miner, to maximize the
chance that this “latest B∗” becomes a late predecessor of
B+ for everyone outside this local set. However, as A has
no knowledge of the next B+, the best he can do is to split
the blocks in B∗ into disjoint local sets, hoping that no matter
where B+ is mined, there is a B∗ in this local set to act as its
late predecessor. Therefore, A divides all nodes into s disjoint
subsets, termed G1, G2, ..., Gs, where |G1| = |G2| = · · · =
|Gs|, and each subset is the local set of its nodes, so that for
each B∗, ρ = 1−1/s. The complete strategy is in Fig. 2, with
an illustration in Fig. 3.

8

1) When a potential late predecessor B∗ is mined in Gj ,
the adversary executes the following steps:
• deliver B∗ to other nodes in Gj immediately;
• deliver B∗ to the other sets after δ∗max rounds.

2) When a B+ is mined, deliver it after δ+max rounds for
all the nodes.

Fig. 2: Late-predecessor attack.

Practicality and Optimality. In practice, the most challenging
step for the adversary is to split the network into a small
number of disjoint local sets, to manipulate the inter-set
latency. This can be achieved via AS-level attacks, such as [2],
[38]. Our attack is easier to pull off than [2], [38] as the local
sets here do not need to be fully disconnected from each other.

Our strategy seems suboptimal at first glance, as we allow
two consecutive blocks in B∗ to be mined in the same subset.
A better strategy is to relocate the second block’s miner to
another subset, to maximize the chance that one of them
“meets” the next B+. However, as indicated by Matt et
al. [26], such right-after-mining node relocation is impractical
in practice; network-layer attacks usually take hours, if not
weeks, to launch [2], [38]. Therefore, by prescribing stable
local sets, the LP attack balances its practicality and optimality.

C. Computing the Attacker’s Utility

Now we analyze A’s utility and explore how to choose the
parameter s that maximizes it.

Theorem 1. For any s ∈ N+, the LP attack in Fig. 2 can make
1−1/s fraction of the nodes accept B+ after ∆+ rounds such
that E[∆+] = δ+max + (k − s(1 − ω))/f∗, where ω = (1 −
f∗/s)δ

∗
max−δ+max and k = f∗ · (δ∗max − δ+max). The expectation

of the average actual delay is

E[∆+
] = δ+max + (1− 1/s)(k − s(1− ω))f∗.

Theorem 1 gives the maximum average delay caused by
our attack. In the next two sections, we will prove that the
security threshold is negatively related to the average delay.
To prove this theorem, we need Lemma 4, 5 and 6.

Lemma 4. When a B+ is mined, the expected number of
blocks in B∗ that have not finished their propagation is k =
f∗ · (δ∗max − δ+max).

Lemma 5. When B+ is mined in Gj for some j ∈ [s], it holds
that

E[υ+
i] =

{
0 Pi ∈ Gj

δ∗max − δ+max − (s/f∗)(1− ω) Pi /∈ Gj
,

where E[υ+
i] is the expected processing delay for all possible

B+ and ω = (1− f∗/s)δ
∗
max−δ+max .

Lemma 6. Let Aj denote the event that B+ is mined in Gj ,
for j ∈ [s]. We have

Pr[A1] = Pr[A2] = · · · = Pr[As] = 1/s.

The proofs of Lemma 4, 5 and 6 are based on the strategy in
Fig. 2 and the properties of the mining process, which follows

max+

max∗

Fig. 3: An example of the attack when s = 3. A new B∗

reaches its local set G2 immediately, but to all other nodes as
late as possible, hoping that a B+ will be mined in G2, whose
acceptance will be delayed for nodes in G1 and G3.

TABLE I: The optimal s that maximizes E[∆+], where k is the
expected number of in-propagation blocks in B∗ in a round.

k (0.5,2.53) [2.54,9.81) [9.82,18.64) [18.65,20]
s 2 3 4 5

the Poisson distribution. By the three lemmas, we can calculate
the sum of the product of the probability of B+ being mined
by different groups and the corresponding actual delay. Their
formal proofs are in Appendix E.

Theorem 1 shows that E[∆+
] increases along with δ∗max

and f∗, i.e., longer propagation delay and more late prede-
cessors lead to longer actual delays of the affected blocks,
meeting our intuition. Table 1 displays the optimal s values
that maximizes E[∆+]. When 0 < k ≤ 20, the optimal s
are all near

√
k. When k > 20, (1 − f∗/s)k/f

∗
< e−k/s is

negligible. That means, E[∆+
] ≈ δ+max+(1−1/s)(k−s)/f∗.

Due to AM-GM inequality, the maximum is achieved when
s =
√
k. Therefore, for any k, the optimal s is ⌊

√
k⌋ or ⌈

√
k⌉.

D. Security Properties in the Presence of an LP Attacker

Now we incorporate the LP attack in a full security analysis
by analyzing how late predecessors downgrade the security
properties of a single chain of affected blocks; these results
pave the way for our Prism and OHIE analyses. This step is
non-trivial as we cannot replace the delay in existing UDBM
analyses with the maximum or average actual delay in an LP
attack, as nodes in our model have different delays for the
same late predecessor.

Chain Growth. When an affected block is mined, if the miner
has accepted one of the highest affected blocks, the chain
of affected blocks—affected chain for short, grows by one;
otherwise—sometimes the highest affected blocks are delayed
by the late predecessors, and the affected chain does not grow.

Theorem 2 (Chain Growth). Under the LP attack, for any
σ > 0, the affected chain C+ has g-chain growth, where g =

(1− σ)γf+ and γ = α/(1 + αf+E[∆+
]).

Proof (sketch): Consider the block time intervals of the
affected blocks. After the generation of each affected block, the
honest nodes’ computing power is “wasted” until they accept
that block. As the honest affected block mining rate is αf+,
by Theorem 1, it is expected that αf+E[∆+

] blocks are mined

9

during the delay and only one out of 1 + αf+E[∆+
] blocks

extends the affected chain. Thus the affected chain growth is
at least (1−σ)αf+/(1+αf+E[∆+

]), where σ is the deviation
parameter of Chernoff Bound.

Incorporating the network propagation process into the
proof involves dissecting block mining events into several
cases, whose details are in the full proof in Appendix B.

Chain Quality. Chain quality measures the percentage of
honest blocks in the affected chain. Intuitively, when β > γ,
i.e., when the honest affected chain growth rate is slower than
the attacker’s mining rate, the attacker can generate a secret
chain to invalidate the honest affected chain. Therefore, the
affected chain has a positive chain quality only when β < γ:

Theorem 3 (Chain Quality). If β < γ, the affected chain C+
has µ-chain quality with µ > 0.

Proof (sketch): When β < γ, the generation rate of the
adversary’s affected blocks is slower than the growth rate of
the affected leader sequence. Therefore, there exists at least
one affected block not mined by the adversary during a long-
enough period, safeguarding the chain quality.

See Appendix C for the full proof.

Common Prefix. We investigate the common prefix property
of affected blocks by analyzing the probability of the adversary
splitting honest nodes to work on two distinct chains of the
same length. An opportunity to end the forked situation arises
when (a) an honest affected block extends the longest affected
chain. Hopefully, after (a), the honest nodes then converge
to the same chain after all of them have received this block
and all its late predecessors. Therefore, intuitively, it is always
rational for the attacker to delay the acceptance of the honest
affected block to everyone outside its local set for as long as
possible. When the delay ends, only two events can prevent
this convergence: (b) an honest node mines a new affected
block of the same height on another chain before the delay
ends; (c) the adversary possesses a private chain longer than
the previous forked chain. The common prefix cannot hold if
the union frequency of events (b) and (c) exceeds the frequency
of (a). The following lemma formalizes the above intuition and
gives the probability that neither (b) nor (c) happens.

Lemma 7. If γ > β, when the longest affected chain increases
by 1, then all honest nodes would converge to the same chain
with a probability of at least (1− e−Ω(γ/β)) · e−Ω(αδ∗f+/f∗).

We get the common prefix by computing the probability
that the attacker fails to maintain a fork of length T .

Theorem 4. For any T > c · log(κ), r2 ≥ r1 > ∆(C)
and i, j ∈ [n], the affected chain Cr1i with the last T blocks
removed is a prefix of Cr2j with a probability of at least
1 − e−T ·Ω(αδ∗f+f∗/β), which proves that the affected chain
satisfies common prefix.

Lemma 7 and Theorem 4 are proved in Appendix D.

VI. PRISM’S SECURITY-PERFORMANCE TRADEOFF

As discussed in Sect. II-C, Prism decouples its security and
performance via separation of duty: the proposer and voter

blocks ensure security with short and constant propagation
delays, while transaction blocks boost performance with large
size and parallel processing. We show that increasing the
number and size of transaction blocks compromises Prism’s
security by (1) lowering the growth rate of the proposer
blocktree, which further (2) allows an attacker to dominate
the proposer leader sequence by invalidating honest blocks.
In the extreme case, when the attacker produces proposer
blocks faster than the lowered growth rate of the honest
proposer blocktree, he can seize the entire proposer leader
sequence and censor transactions at will, violating Prism’s
liveness. Therefore, by neglecting late predecessors, Prism’s
authors overestimated its security threshold, i.e., the minimum
adversarial mining power to break its liveness.

The block propagation process of (1) is given by the LP
attack, in which the transaction blocks and honest proposer
blocks serve as the potential late predecessors and the affected
blocks, respectively. We exclude the attacker blocks from the
affected blocks, as the attacker can delay them at his discretion;
there is no need to distinguish between honest and attacker
transaction blocks because they both can be used for the attack.
For (2), our analysis of chain quality follows that of Sect. V-D.

A. Applying the Security Analysis

Let δt and δp denote the maximum propagation delays of
transaction and honest proposer blocks, respectively, where
δt > δp. The generation rate of transaction and proposer
blocks are denoted as ft and fp, respectively. Therefore, the
generation rate of honest proposer blocks is αfp. We apply
the strategy in Fig. 2 and the security analysis to Prism and
instantiate Theorem 1, 2 and 3 to the following corollaries.

Corollary 1. Under the LP attack, the honest proposer block
can be delayed ∆p rounds for 1 − 1/s of the honest nodes,
and be delayed δp rounds for the rest 1/s, where

E[∆p] = δt − s · (1− (1− ft/s)
δt−δp)/ft.

Therefore, E[∆p] = δp/s+ (1− 1/s) · E[∆p].

Corollary 2 (Leader Sequence Growth). For any σ > 0, the
proposer leader sequence Cp has g-chain growth, where g =
(1− σ)γfp and γ = α/(1 + αfpE[∆p]).

Corollary 3 (Leader Sequence Quality). If β < γ, the
proposer leader sequence Cp has µ-chain quality with µ > 0.

These corollaries update the security threshold of the
proposer blocktree, hence the leader sequence, proving that the
threshold is not independent of δt, even if we assume δp = 0.

Leader sequence quality determines the liveness of Prism,
which is the security property that guarantees any honest
transaction must enter the ledger eventually. The adversary
controls the full ledger and can launch censorship attacks once
the system cannot guarantee µ > 0.

B. Quantifying the Security-Performance Tradeoff

To ensure Prism’s liveness, i.e., an honest transaction will
eventually be recorded in the ledger, we combine α + β = 1
and Theorem 3 to get the following threshold for β:

10

0 1 2 3 4

0.2

0.3

0.4

0.5
S

e
c
u

ri
ty

 T
h

re
s
h

o
ld

1

2

3

4

E
x
p

e
c
te

d
 L

a
te

n
c
y
 (

c
*D

)

Latency-[2]

Security-[2]

Latency-CBM

Security-CBM

Fig. 4: Fixed confirmation reliability 1 − ϵ. Prism’s security
threshold decreases and transaction confirmation latency in-
creases with increasing damage of the LP attack. E[∆p] is in
units of the reciprocal of fp and the unit of expected latency
is c ∗D.

β < γ =
1

2
−

√
(fpE[∆p])2 + 4− 2

2fpE[∆p]
. (5)

The “Security-CBM” in Figure 4 shows how γ decreases
with the increase of fpE[∆p], which reflects the wasted
computing power due to the LP attack. By Corollary 1,
fpE[∆p] is positively correlated with ft and δt, where the latter
depends on the transaction block size |Bt|. This counters the
authors’ claim (“Security-[2]” in Fig.4) that Prism’s security
is independent of its throughput, computed as (1− β)ft · |Bt|
by the authors, and transaction blocks’ propagation delay. Such
independence does not hold even when the bandwidth is not
exhausted: it is difficult to identify a clear turning point before
which γ is stable.

The transaction confirmation latency is not constant, either.
This latency is defined by the authors as the time for a
transaction to be confirmed with probability of 1 − ϵ, where
ϵ is the security parameter. Its expectation is determined by
c and ∆p, where c is a constant depending on β. The author
used ∆p ≈ D to prove that the latency only depends on D,
which is the “Latency-[2]” in Fig.4. But our result (“Latency-
CBM”) shows that there is also a tradeoff between throughput
and latency, similar to that of security.

Now we compare Prism’s original analysis and our results
with a set of parameters given by its authors. According to
[3], when a block’s propagation delay grows linearly with its
size, Prism can achieve a throughput of λ = 0.9(1 − β)C,
where C is the network’s capacity; its transaction ledger
achieves consistency and liveness as long as fp = fv <
log((1 − β)/β)/(1 − β). Specifically, when fp = ft = 0.1
block/sec, Bt = 9C, D = 1 sec, δt = |Bt|/C +D = 10 sec,
and δp ≈ D = 1 sec, Prism is safe when β = 0.48 and the
optimal throughput λ is achievable.

Our analysis shows that Prism loses liveness with these
parameters. When each round is 0.001 sec and s = 2, we have
E[∆p] ≈ 2376 according to Corollary 1, i.e., the proposer
blocks’ average actual delay is about 2.376 sec, rather than 1
sec claimed by the authors. Consequently, the threshold γ from
Eqn. (5) is 0.47, indicating Prism has no resistance against an
attacker with β = 0.48.

VII. OHIE’S SECURITY-PERFORMANCE TRADEOFF

We are interested in the case when the block propagation
delay is no longer constant, i.e., when the bandwidth utilization
exceeds 50% based on the authors’ simulations. In this case,
OHIE suffers from both block jams and late predecessors. We
model block jams with a linear relation and late predecessors
with techniques similar to our Prism analysis. The results
show that these phenomena aggravate each other’s effects and
threaten both OHIE’s liveness and consistency.

A. Modeling the Two Phenomena

Block Jams. Block jams affect the security-performance trade-
off by extending the block propagation delay, which grows
superlinearly according to Fig. 4 in [41] when the bandwidth
utilization exceeds 50%. Therefore, we use a linear function,
which is in favor of honest miners, to demonstrate how OHIE’s
security deteriorates under high performance.

As the bandwidth utilization grows with the number of
parallel chains m, we model the block propagation delay upper
bound δ as

δ = cbj ·max{m−mnc, 0}+D , (6)

where D is the network propagation delay, cbj is a constant
coefficient related to block jams, and mnc is a threshold,
representing the maximum number of chains that will not
cause a block jam.

Late Predecessors. To apply the attack to OHIE, the first
task is to choose the potential late predecessors. We cannot
choose a type of block directly as in our Prism analysis,
because OHIE has only one block type. Ideally, we want a
small number of late predecessors to affect as many blocks
as possible. Therefore, we make our choice based on the
following observation. Between the two predecessors of a
typical OHIE block, the parent block is often referred to only
once, while the trailing block, i.e., the largest rank block with
the smallest chain index the miner is aware of, is often referred
to by multiple blocks. As a result, delaying a potential trailing
block, i.e., the earliest block with a new rank, has a larger
chance to affect multiple blocks. Consequently, we choose
these blocks as the potential late predecessors. Formally, we
use Br to denote a block that is mined earlier than all other
blocks of its rank, and Br to denote the whole set of Brs. As
in our Prism analysis, we assume the propagation delay of all
other blocks to be zero.

Next, we define the affected blocks. Let fr denote the
generation rate of Br for the whole system, which increases
along with m. Recall that the adversary partitions all nodes
into s equal-sized sets G1, · · · , Gs, thus the generation rate of
Br in each set is fr/s. A Br mined in Gj will be referred to by
all subsequent honest blocks mined in Gj , at least before the
next block in Br is mined. Therefore, we define these honest
blocks as Br’s affected blocks. We use Bs to denote one of
these successors.

B. Applying the Attacks and the Security Analysis

We denote the mining rate for each chain as f . We only
consider the case when the bandwidth utilization exceeds 50%,
so Eqn. (6) becomes δ = cbj · (m − mnc) + D. We give the

11

following lemma to calculate fr and leave its mathematical
derivation in Appendix F.

Lemma 8. For f > 0 and m > 0,

fr =
1∫ +∞

0
mf2x2(1 + fx)m−1e−mfxdx

which increases as m does.

Due to the LP attack, any new block cannot be accepted by
most nodes until the end of the delay for their trailing blocks.
By Theorem 1, we have

Corollary 4. The honest blocks can be delayed ∆ rounds for
1− 1/s fraction of all honest nodes, with

E[∆] = δ − s/fr + s(1− fr/s)
δ/fr.

Therefore, E[∆] = (1− 1/s)E[∆].

Departing from Theorem 2, we update OHIE’s chain
growth:

Corollary 5. Under the LP attack, the chain growth rate for
each chain in OHIE is αf/(1 + αfE[∆]).

Unlike Prism, OHIE requires the honest nodes to defeat
the attacker in the chain growth rate of every chain, to
guarantee the chain quality and common prefix properties.
This is because the attacker can change the total order of
transactions as long as he invalidates some confirmed blocks
in any one of the m chains. In other words, as long as the
discounted honest chain growth rate α/(1+αfE[∆]) becomes
smaller than β, both OHIE’s liveness and its consistency are
broken. Let T be the number of blocks that OHIE removes
from the end of the chain to obtain the confirmed blocks. We
apply Theorem 3 and 4 to each chain of OHIE and calculate
the union probability that every parallel chain satisfies security
properties. Following the authors’ notations (Theorem 1 of
[41]), we have the following corollary.

Corollary 6. Under the LP attack, if β < α/(1 + αfE[∆]),
OHIE protocol satisfies Consistency and Quality-Growth with
probability at least 1−m · e−Ω(κ) −m · e−Ω(T).

C. Tradeoff

According to the authors, OHIE achieves better perfor-
mance by increasing the value of m. However, our analysis
reveals that increasing m decreases OHIE’s security threshold
via three mechanisms. First, it raises the block propagation
delay δ (Eqn. (6)), which increases E[∆] (Corollary 4), thus
lowering the threshold of each chain (Theorem 5). Second,
by increasing the number of chains, the total number of
affected blocks grows, thereby increasing the likelihood that
the attacker controls a chain. Third, it increases fr, leav-
ing a higher number of attack targets (Lemma 8). This is
counterintuitive as increasing m does not change the growth
rate of any single chain. Here is the reason behind this
counterintuitive phenomenon. At any given moment, consider
the block with the highest rank, which is mined in Gj .
The highest next rank advances as long as one node in
its receiver set mines a block, be it Gj or all the nodes.
This receiver set mines m chains simultaneously, and for

each of these m chains, the expected interval follows an
exponential distribution. Therefore, the minimum interval of
these m exponential distributions decreases with an increasing
m. Due to space constraints, we omit the theoretical analysis
but instead present the results along with the simulations.

VIII. SIMULATIONS

A. Setup

We modify SimBlock by adding 1000 LoC to evaluate
Prism’s and OHIE’s concrete security-performance tradeoff.
For comparison, we also simulate NC and include our theo-
retical analyses under both CBM and UDBM.

We setup a P2P network of n = 200 nodes, each connect-
ing to d = 8 randomly selected peers. This network thus forms
a random graph, allowing us to estimate the average number of
hops between two nodes as log n/ log d ≈ 2.5. We cap the per-
node bandwidth by C = 8 Mbps and set the latency between
any two connected nodes as 0.4 sec. Therefore the average
delay between two random nodes is D = 0.4 × 2.5 = 1 sec,
in line with Prism’s setup.

Prism. According to the authors, “choosing large Bt and small
ft is preferable” [3]. Therefore, our simulation has mining rate
fp = ft = 0.1 block/sec. We set |Bt| = 2, 4, 6, 8 and 10 MB,
to get 20% to 100% bandwidth utilization. The propagation
delays of the transaction and the proposer blocks are δt =
|Bt| · 2.5/C +D and δp ≈ 1 sec, respectively.

OHIE. We choose the same set of parameters as in [41]. The
block interval on each chain is 10 sec, and the block size is 20
KB. We set the number of parallel chains m from 1 to 500.
When m < 250, the propagation delay is about 1 sec. Other-
wise, due to block jam, we apply Eqn. (6) with mnc = 250
(corresponding to 50% bandwidth) and cbj = 0.08 to get the
propagation delay. The latter is learned via maximum likeli-
hood estimation from OHIE’s simulations [41]. The bandwidth
utilization of OHIE is thus m× block size/block interval/C.

NC. The block interval is 10 sec, and the block size |B| is 2 to
10 MB, corresponding to 20% to 100% bandwidth utilization.
The propagation delay for NC is also δ = |B|/C · 2.5 +D.

Theoretical Results. We also calculated some theoretical
security thresholds with the above sets of parameters. First,
we calculated these thresholds based on our analyses to test
their reasonableness. Specifically, the theoretical versions of
Prism and OHIE are denoted “Prism-CBM” and “OHIE-
CBM”, whose results are calculated from Theorem 2 and
5, respectively. Second, we computed their UDBM variants,
denoted “Prism-UDBM” and “OHIE-UDBM”, by simply re-
placing the actual delays in these theorems with their upper
bounds, i.e., δt and Eqn. (6) for Prism and OHIE, respectively.
At last, we calculated the threshold based on Prism’s original
analysis, which is a constant 0.487 regardless of the bandwidth
utilization; the corresponding curve is denoted “Prism- [3]”.

B. Results

The security-performance tradeoff is visualized as the rela-
tionship between bandwidth utilization and security thresholds.
We display the results of Prism and OHIE in Fig. 5 and Fig. 6,
respectively.

12

0 20 40 60 80 100

Bandwidth Utilization (%)

0.25

0.3

0.35

0.4

0.45

0.5

S
e

c
u

ri
ty

 T
h

re
s
h

o
ld

Prism-Sim

Prism-CBM

Prism-[2]

Prism-UDBM

NC-Sim

Fig. 5: Prism: Security threshold vs. bandwidth utilization. Due
to the late predecessors, Prism’s security is not independent of
its performance as the authors hoped. Also, UDBM signifi-
cantly underestimates Prism’s security.

We gain three insights from Prism’s results. First, our theo-
retical analysis meets well with our simulation, demonstrating
the model’s reasonableness. Second, Prism is not exempt from
the security-performance tradeoff. Even if the proposer block
is small enough so that its average propagation delay is only 1
sec, the security threshold is not constant as the authors’ hoped.
The security threshold is 0.39 and 0.38 when the bandwidth
utilization reaches 90% and 100%, respectively. The 90%
result is different from our estimation in Sect. VI-B merely due
to a difference in the inputs. Specifically, in Sect. VI-B, we
use δt = |Bt|/C+D as in the authors’ analysis, because they
assume the network is a complete graph, and thus every node
is reachable within one hop. In contrast, we assume a random
graph, thus δt = |Bt|/C·2.5+D in Prism-CBM. Third, UDBM
downgrades Prism’s security to that of NC’s. In UDBM, the
proposer blocks propagate as slowly as transaction blocks,
underestimating the protocol’s security and performance. The
gap between the models demonstrates that our model is more
accurate and reasonable than UDBM in evaluating the DAG-
based protocols’ security and performance.

Our OHIE results reveal two additional insights. First, we
confirm the authors’ claim that smaller and more frequent
blocks indeed decouple OHIE’s security and performance.
When the throughput is below 50% bandwidth, late predeces-
sors do not downgrade the security threshold, which remains
stable at 0.47. Second, once the throughput exceeds 50%
bandwidth, the block jams undermine the protocol’s security
to a level similar to that of Prism. Specifically, the threshold
is about 0.37 at 100% bandwidth.

IX. DISCUSSION

Generalizability of the Tradeoff. The blocks’ propagation
overlaps with each other in all DAG-based protocols, including
PoS protocols, such as LMD-GHOST of Ethereum 2.0 [6],
and BFT protocols, such as DAG-Rider [17], Tusk [8], and
Bullshark [37]. Consequently, as long as the Assumption of
Decoupling does not hold, which usually happens in high-
throughput settings, the blocks’ processing delay is extended,
downgrading the system’s security properties. CBM and the
LP attack can thus be generalized to quantify this tradeoff in
these protocols. Specifically, PoS and partially synchronous
BFT protocols may be analyzed in a similar manner, except

0 20 40 60 80 100

Bandwidth Utilization (%)

0.25

0.3

0.35

0.4

0.45

0.5

S
e

c
u

ri
ty

 T
h

re
s
h

o
ld

OHIE-Sim

OHIE-CBM

OHIE-UDBM

NC-Sim

Fig. 6: OHIE: Security threshold vs. bandwidth utilization.

that the block intervals no longer follow exponential distribu-
tions. Asynchronous protocols present more challenges as their
normal-case delays are usually not analyzed.

Optimality of Our Attack. Our goal is to reveal the security-
performance tradeoff that was overlooked in DAG-based pro-
tocols. The LP attack favors simplicity and compatibility over
optimality. Hence, we do not assert that it is the optimal attack
against Prism and OHIE. We leave protocol-specific optimal
attacks to future work.

Improving DAG-based Protocols. Our results do not preclude
the possibility of future DAG-based protocols that overcome
this tradeoff. We encourage protocol designers to pay at-
tention to the network layer and to explicitly address the
two aforementioned phenomena, either by introducing extra
mechanisms to avoid them or by removing the reliance on the
Assumption of Decoupling. For example, we can enforce an
interval between transaction synchronization and confirmation
through careful engineering as in NC-Max [43], a chain-
based protocol. Prior to that, practitioners should only execute
the protocols within a safe range of parameters, rather than
pushing the network’s capacity and sacrificing security.

X. CONCLUSION

DAG-based PoW protocols are among the most promising
candidates for reaching the network’s physical limits. How-
ever, their security guarantees are unclear, as most existing
protocols lack rigorous analysis. Here we presented CBM,
which captures the key factors affecting block propagation
and acceptance in DAG-based protocols. We further proposed
an LP attack in CBM that exploits these factors to delay the
blocks’ acceptance in DAG-based protocols. We applied this
attack to Prism and OHIE, two representative protocols that
claim to break the security-performance tradeoff, and update
their security proofs and simulations under CBM. Our results
show that these protocols are not immune to the tradeoff:
their security and performance degrade when operating at high
throughput.

REFERENCES

[1] Y. Aoki, K. Otsuki, T. Kaneko, R. Banno, and K. Shudo,
“Simblock: A blockchain network simulator,” in IEEE INFOCOM
2019 - IEEE Conference on Computer Communications Workshops,
INFOCOM Workshops 2019, Paris, France, April 29 - May
2, 2019. IEEE, 2019, pp. 325–329. [Online]. Available: https:
//doi.org/10.1109/INFCOMW.2019.8845253

13

[2] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking bitcoin: Routing
attacks on cryptocurrencies,” in 2017 IEEE Symposium on Security
and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017.
IEEE Computer Society, 2017, pp. 375–392. [Online]. Available:
https://doi.org/10.1109/SP.2017.29

[3] V. K. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath,
“Prism: Deconstructing the blockchain to approach physical limits,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, London, UK, November
11-15, 2019, L. Cavallaro, J. Kinder, X. Wang, and J. Katz, Eds.
ACM, 2019, pp. 585–602. [Online]. Available: https://doi.org/10.1145/
3319535.3363213

[4] I. Bentov, P. Hubácek, T. Moran, and A. Nadler, “Tortoise and Hares
consensus: the Meshcash framework for incentive-compatible, scalable
cryptocurrencies,” IACR Cryptology ePrint Archive, 2017, https://eprint.
iacr.org/2017/300.pdf.

[5] J. Brown-Cohen, A. Narayanan, A. Psomas, and S. M. Weinberg,
“Formal barriers to longest-chain proof-of-stake protocols,” in
Proceedings of the 2019 ACM Conference on Economics and
Computation, ser. EC ’19. ACM, 2019, pp. 459–473. [Online].
Available: http://doi.acm.org/10.1145/3328526.3329567

[6] V. Buterin, D. Hernandez, T. Kamphefner, K. Pham, Z. Qiao,
D. Ryan, J. Sin, Y. Wang, and Y. X. Zhang, “Combining GHOST
and casper,” CoRR, vol. abs/2003.03052, 2020. [Online]. Available:
https://arxiv.org/abs/2003.03052

[7] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Brei-
denbach, and A. Juels, “Flash boys 2.0: Frontrunning in decentralized
exchanges, miner extractable value, and consensus instability,” in 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 2020, pp. 910–
927.

[8] G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman,
“Narwhal and tusk: A dag-based mempool and efficient bft consensus,”
in Proceedings of the Seventeenth European Conference on Computer
Systems, ser. EuroSys ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 34–50. [Online]. Available:
https://doi.org/10.1145/3492321.3519594

[9] A. Dembo, S. Kannan, E. N. Tas, D. Tse, P. Viswanath, X. Wang, and
O. Zeitouni, “Everything is a race and nakamoto always wins,” in CCS
’20: 2020 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2020, pp. 859–878.

[10] I. Eyal, A. E. Gencer, E. G. Sirer, and R. V. Renesse,
“Bitcoin-NG: A scalable blockchain protocol,” in 13th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 16). Santa Clara, CA: USENIX Association, 2016, pp.
45–59. [Online]. Available: https://www.usenix.org/conference/nsdi16/
technical-sessions/presentation/eyal

[11] N. Foundation, “Nervos network,” 2019, https://www.nervos.org/.
[12] J. A. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone

protocol: Analysis and applications,” in Advances in Cryptology
- EUROCRYPT 2015 - 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part II, ser. Lecture
Notes in Computer Science, E. Oswald and M. Fischlin, Eds.,
vol. 9057. Springer, 2015, pp. 281–310. [Online]. Available:
https://doi.org/10.1007/978-3-662-46803-6\ 10

[13] ——, “The bitcoin backbone protocol with chains of variable difficulty,”
in Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017,
Proceedings, Part I, ser. Lecture Notes in Computer Science, J. Katz
and H. Shacham, Eds., vol. 10401. Springer, 2017, pp. 291–323.
[Online]. Available: https://doi.org/10.1007/978-3-319-63688-7\ 10

[14] P. Gaži, A. Kiayias, and A. Russell, “Tight consistency bounds for
bitcoin,” in Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’20. ACM, 2020,
p. 819–838.

[15] D. Guo and L. Ren, “Bitcoin’s latency-security analysis made simple,”
AFT, 2022.

[16] T. E. Jedusor and A. Poelstra, “Grin,” 2019, https://grin.mw/.
[17] I. Keidar, E. Kokoris-Kogias, O. Naor, and A. Spiegelman, “All

you need is dag,” in Proceedings of the 2021 ACM Symposium
on Principles of Distributed Computing, ser. PODC’21. New York,

NY, USA: Association for Computing Machinery, 2021, p. 165–175.
[Online]. Available: https://doi.org/10.1145/3465084.3467905

[18] L. Kiffer, J. Neu, S. Sridhar, A. Zohar, and D. Tse, “Security of
blockchains at capacity,” 2023.

[19] L. Kiffer, R. Rajaraman, and A. Shelat, “A better method to analyze
blockchain consistency,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018, D. Lie, M. Mannan,
M. Backes, and X. Wang, Eds. ACM, 2018, pp. 729–744. [Online].
Available: https://doi.org/10.1145/3243734.3243814

[20] Y. Lewenberg, Y. Sompolinsky, and A. Zohar, “Inclusive block
chain protocols,” in Financial Cryptography and Data Security
- 19th International Conference, FC 2015, San Juan, Puerto
Rico, January 26-30, 2015, Revised Selected Papers, ser. Lecture
Notes in Computer Science, R. Böhme and T. Okamoto, Eds.,
vol. 8975. Springer, 2015, pp. 528–547. [Online]. Available:
https://doi.org/10.1007/978-3-662-47854-7\ 33

[21] C. Li, P. Li, D. Zhou, Z. Yang, M. Wu, G. Yang, W. Xu, F. Long,
and A. C. Yao, “A decentralized blockchain with high throughput
and fast confirmation,” in 2020 USENIX Annual Technical Conference,
USENIX ATC 2020, July 15-17, 2020, A. Gavrilovska and E. Zadok,
Eds. USENIX Association, 2020, pp. 515–528. [Online]. Available:
https://www.usenix.org/conference/atc20/presentation/li-chenxing

[22] J. Li and D. Guo, “On analysis of the Bitcoin and Prism
backbone protocols in synchronous networks,” in 57th Annual Allerton
Conference on Communication, Control, and Computing, Allerton 2019,
Monticello, IL, USA, September 24-27, 2019. IEEE, 2019, pp. 17–24.
[Online]. Available: https://doi.org/10.1109/ALLERTON.2019.8919692

[23] ——, “Liveness and consistency of Bitcoin and Prism blockchains:
The non-lockstep synchronous case,” in IEEE International Conference
on Blockchain and Cryptocurrency, ICBC 2020, Toronto, ON,
Canada, May 2-6, 2020. IEEE, 2020, pp. 1–9. [Online]. Available:
https://doi.org/10.1109/ICBC48266.2020.9169464

[24] D. Malkhi and P. Szalachowski, “Maximal extractable value (mev)
protection on a dag,” 2022.

[25] mapofcoins, “Map of coins: BTC map,” 2018, http://mapofcoins.com/
bitcoin.

[26] C. Matt, J. B. Nielsen, and S. E. Thomsen, “Formalizing delayed adap-
tive corruptions and the security of flooding networks,” in Advances in
Cryptology – CRYPTO 2022, Y. Dodis and T. Shrimpton, Eds. Springer
Nature Switzerland, 2022, pp. 400–430.

[27] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008,
http://www.bitcoin.org/bitcoin.pdf.

[28] J. Neu, S. Sridhar, L. Yang, D. Tse, and M. Alizadeh, “Longest chain
consensus under bandwidth constraint,” 2022.

[29] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain
protocol in asynchronous networks,” in Advances in Cryptology
- EUROCRYPT 2017 - 36th Annual International Conference
on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part II,
ser. Lecture Notes in Computer Science, J. Coron and J. B.
Nielsen, Eds., vol. 10211, 2017, pp. 643–673. [Online]. Available:
https://doi.org/10.1007/978-3-319-56614-6\ 22

[30] A. Poelstra et al., “Distributed consensus from proof of stake is
impossible,” Self-published Paper, 2014.

[31] C. Project, “Conflux network,” 2020, https://confluxnetwork.org/.
[32] K. Project, “Kaspa,” 2021, https://kaspa.org/.
[33] L. Ren, “Analysis of Nakamoto consensus.” IACR Cryptol. ePrint Arch.,

vol. 2019, p. 943, 2019.
[34] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “Spectre: A fast and

scalable cryptocurrency protocol,” Cryptology ePrint Archive, Report
2016/1159, 2016, https://ia.cr/2016/1159.

[35] Y. Sompolinsky, S. Wyborski, and A. Zohar, “PHANTOM
GHOSTDAG: a scalable generalization of nakamoto consensus:
September 2, 2021,” in AFT ’21: 3rd ACM Conference on Advances
in Financial Technologies, Arlington, Virginia, USA, September 26 -
28, 2021, F. Baldimtsi and T. Roughgarden, Eds. ACM, 2021, pp.
57–70. [Online]. Available: https://doi.org/10.1145/3479722.3480990

[36] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing
in bitcoin,” in Financial Cryptography and Data Security -

14

19th International Conference, FC 2015, San Juan, Puerto Rico,
January 26-30, 2015, Revised Selected Papers, ser. Lecture Notes
in Computer Science, R. Böhme and T. Okamoto, Eds., vol.
8975. Springer, 2015, pp. 507–527. [Online]. Available: https:
//doi.org/10.1007/978-3-662-47854-7\ 32

[37] A. Spiegelman, N. Giridharan, A. Sonnino, and L. Kokoris-Kogias,
“Bullshark: Dag bft protocols made practical,” in Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 2705–2718. [Online]. Available:
https://doi.org/10.1145/3548606.3559361

[38] M. Tran, I. Choi, G. J. Moon, A. V. Vu, and M. S. Kang, “A stealthier
partitioning attack against bitcoin peer-to-peer network,” in 2020
IEEE Symposium on Security and Privacy, SP 2020, San Francisco,
CA, USA, May 18-21, 2020. IEEE, 2020, pp. 894–909. [Online].
Available: https://doi.org/10.1109/SP40000.2020.00027

[39] P. Wei, Q. Yuan, and Y. Zheng, “Security of the blockchain against
long delay attack,” in Advances in Cryptology - ASIACRYPT 2018, ser.
Lecture Notes in Computer Science, T. Peyrin and S. D. Galbraith,
Eds., vol. 11274. Springer, 2018, pp. 250–275. [Online]. Available:
https://doi.org/10.1007/978-3-030-03332-3\ 10

[40] L. Yang, X. Wang, V. Bagaria, G. Wang, M. Alizadeh, D. Tse, G. Fanti,
and P. Viswanath, “Practical low latency proof of work consensus,”
2023.

[41] H. Yu, I. Nikolic, R. Hou, and P. Saxena, “OHIE: blockchain scaling
made simple,” in 2020 IEEE Symposium on Security and Privacy, SP
2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 2020, pp. 90–
105. [Online]. Available: https://doi.org/10.1109/SP40000.2020.00008

[42] R. Zhang and B. Preneel, “Lay down the common metrics: Evaluating
proof-of-work consensus protocols’ security,” in 40th IEEE Symposium
on Security and Privacy (S&P). IEEE, May 2019, pp. 1190–1207.

[43] R. Zhang, D. Zhang, Q. Wang, S. Wu, J. Xie, and B. Preneel, “NC-Max:
Breaking the security-performance tradeoff in Nakamoto consensus,”
The Network and Distributed System Security (NDSS) Symposium, 2022.

APPENDIX A
EARLY DAG-BASED PROTOCOLS AND THEIR SECURITY

ANALYSES

Weak Security Guarantees. The Inclusive protocol [20]
adopts the same longest-chain rule with NC, thus inheriting the
same tradeoff. Meshcash [4] packs simultaneous blocks into
the same layer; these blocks are no longer required to refer
to each other. The authors only proved Meshcash’s security
against an attacker controlling 1/15 of the total mining power.

Partial Security Analyses. SPECTRE [34] forgoes the total
order of the blocks and only defines a relative order between
any two blocks. Consequently, its security properties are in-
compatible with those of NC’s. PHANTOM [35] improves
SPECTRE’s design by prescribing a total order. However, its
security analysis is against a specific attack strategy, rather than
a general attacker. Conflux [21] is a variant of the Inclusive
protocol that provides only informal arguments and simulations
on its security. Yu et al. [41] demonstrated that the security of
Conflux deteriorates quickly as the throughput increases.

APPENDIX B
PROOF OF THEOREM 2

Proof: Assume that there exists an honest affected block
B0 mined at round r0, and its actual delay is ∆0. Let d0 =
height(B0). We have d0 ≥ mini∈[n] |Cr0i |. Suppose that B1,
which is mined at round r1, is the first honest affected block
satisfying height(B1) = d0 + 1. Let θ1 = r1 − r0. Next,
we show that E[θ1] ≤ 1/αf+ + (1 − 1/s)∆0. Consider the

following three cases for B0, where θ1 in case a is denoted as
θ1,a for a ∈ {1, 2, 3}.

• Case 1: B0 is the first and only honest affected block
with height d0. In this case, once accepting B0, all
honest nodes will mine after B0. But (1− 1

s)n honest
nodes will accept B0 after r0+∆0 round under the LP
attack. Denote the set of these delayed honest nodes
as GB0 , and the rest honest nodes as G′

B0
. There are

two cases for B1: (a) B1 is mined by G′
B0

between
round r0+1 and round r0+∆0; (b) B1 is mined after
round r0+∆0 by GB0 or G′

B0
. Denote the probability

that G′
B0

mines a affected block in a round as p′. We
have p′ = αf+/s and

Pr[θ1,1 = x]

=

{
p′(1− p′)x−1, x ≤ ∆0

(1− p′)∆0(1− p′s)x−∆0−1p′s, x > ∆0

So we get

E[θ1,1]

=

∆0∑
x=1

x · Pr[θ1,1 = x] +

+∞∑
x=∆0+1

x · Pr[θ1,1 = x]

=
1

p′
+ (1− p′)∆0(

1

p′s
− 1

p′
)

≤ 1

p′
· [1 + (1−∆0p

′)(
1

s
− 1)]

≤ 1

αf+
+ (1− 1

s
)∆0,

(7)
where the second equality follows from the geometric
series formula and the expectation of geometric distri-
bution, and the first inequality follows from Bernoulli
inequality.

• Case 2: B0 is the first honest affected block with
height d0 but there will be other competing honest
affected blocks, say B01, B02, . . . , B0j . Let Gr

0 denote
the set of all honest nodes that accept at least one
of honest affected blocks with height d0 at round r,
i.e., Gr

0 = GB0 ∪ (∪ji=1GB0i), where j + 1 is the
number of existing honest affected blocks with height
d0 in round r. We have |Gr

0| ≥ |GB0 | = n/s for
any r > r0. Similar to the analysis of case 1, we get
E[θ1,2] ≤ E[θ1,1] ≤ 1/(αf+) + (1− 1/s)∆0.

• Case 3: If B0 is not the first honest affected block with
height d0, there exists an honest affected block B′

0,
which is the first honest affected block with height d0.
Suppose that B′

0 is mined at round r′0, where r′0 ≤ r0.
According to the above analysis, we get E[r1− r′0] ≤
1/(αf+)+(1−1/s)∆0. So we have E[θ1,3] = E[r1−
r0] ≤ E[r1 − r′0] ≤ 1/(αf+) + (1− 1/s)∆0.

To sum up, we have θ1 ≤ 1/(αf+)+(1−1/s)∆0. Similarly, let
Bi be the first honest affected block satisfying height(Bi) =
d0+i for i = 1, 2, . . . , t. Suppose that ri is the round when Bi

is mined, and their actual delay is ∆i. Let θi = ri − ri−1 and
θ∗ =

∑t
i=1 θi. Using the Chernoff bound, we have Pr[θ∗ <

(1+σ′) ·E[θ∗]] > 1−e−Ω(σ′2t). Since E[θ∗] ≤ t · (1/(αf+)+

15

(1− 1/s)E[∆+]) = t · (1/(αf+) + E[∆+
]), we have

Pr[θ∗ < (1+σ′) ·t ·(1/(αf+)+E[∆+
])] > 1−e−Ω(σ′2t) (8)

which shows that the length of affected leader sequence
increases by at least t between round r0 and round rt. Notice
that all honest nodes can accept B0 at round r0+∆(C+), and
all honest nodes can accept Bt at round rt +∆(C+). Hence,
we have mini |Crt+∆(C+)

i | −minj |Cr0+∆(C+)
j | ≥ t.

Due to (8) and rt−r0 = θ∗ = T , we can get the following
inequality by choosing appropriate σ.

Pr[
(1− σ) · T

1/αf+ + E[∆+
]
< min

i
|Crt+∆(C+)

i | −min
j
|Cr0+∆(C+)

j |]

> 1− negl(T),

where negl(T) = e−Ω(σ2gT) ≥ e−Ω(σ2t). So we have

g =
(1− σ)αf+

1 + αf+E[∆+
]
= (1− σ)γf+

with the probability of 1− negl(T), where γ = α

1+αf+E[∆+
]
.

APPENDIX C
PROOF OF THEOREM 3

Proof: Suppose that the length of affected chain increases
by t from round r to round r + T . By Chernoff bound and
Theorem 2, we have

Pr[T < (1 + σ1)
t

γf+
] > 1− e−Ω(σ2

1T)

for σ1 > 0. Suppose that the adversary mines ta blocks
during the T rounds. Note that ta follows Bernoulli distribution
B(T, βf+) with E[ta] = βf+T . According to Chernoff bound,
we have

Pr[ta < (1 + σ2)βf
+T] > 1− e−Ω(σ2

2T)

for σ2 > 0. Combining the two inequalities, we have

Pr[ta < (1 + σ2)(1 + σ1)
βt

γ
] > 1− e−Ω(σ2

1T) − e−Ω(σ2
2T).

When β < γ, we can choose appropriate small σ1, σ2 such
that

(1 + σ1)(1 + σ2)
β

γ
< 1− µ.

Then we have

Pr[ta < (1− µ)t] > 1− negl(T).

Since the adversary cannot modify the contents of messages
sent by honest nodes, there are at least t−ta > 0 blocks mined
by honest miners, which completes the proof.

APPENDIX D
PROOF OF LEMMA 7 AND THEOREM 4

Define the chain whose last block is mined by an honest
node as an honest chain, and the length of the longest honest
chain as global height. If a chain’s last blocks are all mined by
the adversary, the end of the chain that is entirely composed of
adversary blocks is defined as an adversary fork. The existence
of such forks is unknown to honest nodes and they can be
published at any time by the adversary. For any honest chain,
a chain with the same length but different blocks in the last
T blocks is referred to as its T -balanced chain. Such a T -
balanced chain may either be an honest chain or a published
adversary fork.

Proof of Lemma 7. When an honest node belonging to group
Gj mines a new affected block B+ at round r and the block
increases global height from H to H+1, we define the inverse
events of events (b) and (c): (b) no honest nodes that do not
belong to Gj have mine an affected block in the following ∆+

rounds; (c) any adversary fork’s length is smaller than H in
round r +∆+.

It is obvious that if the event (b) and (c) happen simultane-
ously, there cannot be a balanced chain of length H+1 in round
r + ∆+. So all honest nodes would converge to the longest
chain of length H + 1. By the mining model and Theorem 1,
the probability of events (b) is

Pr[(b)] = (1− (1− 1/s)αf+)∆
+

≈ e−(1−1/s)αf+(δ∗−s/f∗))

By theorem 3, we know that within t rounds, if the global
length has grown by T , then the adversary has mined less than
T blocks with a probability of 1− e−Ω(Tγ/β) > 1− e−Ω(γ/β).
This means that the adversary cannot mine an adversary fork
by itself to maintain the balance. So the adversary may start
mining its adversary fork on a longer chain and wait for
another shorter honest chain to catch up with the length, which
can give the adversary a starting advantage. However, the
probability of obtaining this advantage is not high since the
adversary cannot predict which chain the next honest block
will appear on. It happens if and only if the adversary mine
on a higher chain and the other chain can catch up within ∆+

rounds. The probability is at most 1− (1− (1− 1/s)αf+)∆
+

.
Finally, the probability that the adversary doesn’t mine a block
from round r to round r + ∆+ is (1 − βf+)∆

+

So we have
that the probability of the event (c) is

Pr[(c)] ≥ (1− e−Ω(γ/β)) · (1− (1− 1/s)αf+)∆
+

· (1− βf+)∆
+

≈ (1− e−Ω(γ/β)) · e−(1−α/s)f+(δ∗−s/f∗)

Since the event (b) and (c) are independent, let s =√
(1 + α)2αδ∗f∗/2, we have that all honest nodes would

converge to the same chain with a probability of at least
(1− e−Ω(γ/β)) · e−Ω(αδ∗f+f∗).

Proof of Theorem 4 Denote the height of the chain in an
honest node Pi’s view at round r1 as d = height(Cr1i). We
assume that d > k since the theorem holds obviously if h ≤ k.
If all honest nodes converged to the same chain between height
d− k and height d in round r0 < r1, then we have that Cr0i =
Cr0j . By Lemma 7, there is no convergence during the process
of global length increasing by at least T with a probability of

16

at most [1− (1− e−Ω(γ/β)) · e−Ω(αδ∗f+f∗)]T . If the adversary
cannot mine more blocks than the honest chain growth at round
r2, all honest will have the same prefix Cr0i in the future. This
event happens with a probability of e−Ω(Tγ/β) by Theorem 3.
So the probability that Cr1i with the last T blocks removed is
a prefix of Cr2j is approximately 1 − e−T ·Ω(αδ∗f+f∗/β). The
theorem holds.

APPENDIX E
PROOF OF LEMMA 4, 5 AND 6

Proof of Lemma 4. If a block B∗ is mined before round
r+ − (δ∗max − δ+max), we have lt(B∗, B+, Pi) = 0 for any
Pi ∈ {1, ..., n}, which means B∗ cannot be late. So only
blocks generated between round r+ − (δ∗max − δ+max) and r+

can become late predecessors. Hence, the expected number of
these blocks is f∗ · (δ∗max−δ+max), where f∗ is the mining rate
of potential blocks.

Proof of Lemma 5. Notice that the nodes in Gj have received
the same blocks. When B+ is mined by some node of Gj , there
are no fresh blocks with B+ for nodes in Gj . So υ+

i = 0 for
Pi ∈ Gj .

The processing delay of B+ for other sets is determined
by the round when Gj mines its last potential block B∗j,last,
which is denoted as r∗j,last. The other sets except Gj will
receive B∗j,last at round r∗j,last + δ∗max, and receive B+

at round r+ + δ+max. So these sets will accept B+ at round
max{r∗j,last + δ∗max, r

+ + δ+max}. Let Xj = r+− r∗j,last and
δgap = δ∗max − δ+max. By definition 5, we have

υ+
i = ft(B∗j,last, B+, i) =

{
δgap −Xj δgap > Xj

0 δgap ≤ Xj .

Since δgap is a constant, the probability of δgap − Xj is
determined by Xj . Then we have

E[υ+
i] =

δgap∑
x=1

Pr[Xj = x] · (δgap − x). (9)

In our attack, we say Gj gets a potential block iff the
potential block is a) mined by Gj or b) mined by G0 and the
adversary randomly selects j. Let f∗

j denote the probability
that Gj gets at least one potential block in a round. So we
have

f∗
j = f∗ · (1− z

s
+ z · 1

s
) =

f∗

s
.

Note that Xj = x implies that Gj gets a potential block
in round r+ − x, and has no block from round r+ − x + 1
to r+ − 1. Since Xj follows the geometric distribution with
parameter f∗

j , we have Pr[Xj = x] = f∗
j (1− f∗

j)
x−1. Due to

(9), we have

E[υ+
i] =

δgap∑
x=1

Pr[Xj = x](δgap − x)

=

+∞∑
x=1

Pr[Xj = x](δgap − x)−
+∞∑

x=δgap+1

Pr[Xj = x](δgap − x)

= δgap −
+∞∑
x=1

f∗
j (1− f∗

j)
x−1x+

+∞∑
d=1

f∗
j (1− f∗

j)
δgap+d−1d

= δgap −
1

f∗
j

+ (1− f∗
j)

δgap

+∞∑
d=1

f∗
j (1− f∗

j)
d−1d

= δgap −
1

f∗
j

+ (1− f∗
j)

δgap
1

f∗
j

= δ∗max − δ+max − (1− ω)
s

f∗ ,

where ω = (1− f∗

s)δgap and d = x− δgap. The fifth equality
holds since d follows the geometric distribution.

Proof of Lemma 6. Since there are n/s nodes in any Gj , every
Gj has 1/s fraction of total computational power. According
to the mining model, we have that B+ is mined by Gj with
the probability 1/s for j ∈ {1, . . . , s}.

Proof of Theorem 1. Without loss of generality, we assume
B+ is mined in Gj , i.e., Aj happens. When Aj happens, the
number of nodes which are not in Gj is n−|Gj | = n(1−1/s).
By Lemma 5, we can get the first part of Theorem 1. According
to (4), Lemma 4 and Lemma 6, we have

E[∆+
] =

∑s

m=1
Pr[Am] · [(n/s) · δ+max

+ n(1− s) · (δ+max + E[υ+
i])]/n

= δ+max + (1− 1/s)[δ∗max − δ+max − s(1− ω)/f∗]

= δ+max + (1− 1/s)[k − (1− ω)s]/f∗

(10)
which completes the proof.

APPENDIX F
PROOF OF LEMMA 8

Proof: The mining procedure of each chain in OHIE
is the same as that of Nakamoto consensus. So the block
interval in each chain follows the exponential distribution with
parameter f . Consider the scenario that, after a new trailing
block appears, two new blocks are generated in one of the
m chains. According to the definition of trailing block, the
first new block will catch up with the new trailing block,
and the second block will become the next trailing block. So
the shortest time to mine two consecutive blocks in each of
the m chains is the generation interval of Br. On the other
hand, the time to mine two consecutive blocks follows the
sum of two exponentially distributed random variables with
parameter f . That is, it follows a Gamma distribution with
shape parameter 2 and rate parameter f . By Minimal Order
Statistics, the probability density function of the generation
interval tr of Br is

p(tr) = m·[1−F (x, f, 2)]m−1p(x, f, 2) = mf2x(1+fx)m−1e−mfx,

17

where F (x, f, 2) and p(x, f, 2) are the cumulative distribution
function and probability density function of Gamma distribu-
tion with shape parameter 2 and rate parameter f , respectively.
So we can get the mathematical expectation of the generation
interval of Br as below.

E[tr] =
∫ +∞

0

mf2xx(1 + fx)m−1e−mfxdx.

For any m ≥ 1, we have

dE[tr]
dm

=

∫ +∞

0

f2x2[(1+fx)m−1e−fx(1+m(ln(1+fx)−fx))]dx < 0,

(11)
where the inequality follows ln(1 + x) < x for any x > 0.
That means, E[tr] decreases as m increases. Therefore, we get
fr = 1/E[tr] increases as m does.

18

