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ABSTRACT
Bulletproofs are general-purpose Zero Knowledge Proof protocols

that allow a Prover to demonstrate to a Verifier knowledge of a

solution to a set of equations, represented as a Rank 1 Constraint

System.

We present a protocol extending the standard Bulletproof proto-

col, which introduces a second layer of interactivity to the protocol,

by allowing the Verifier to choose the set of equations after the

Prover has already committed to portions of the solution.

We show that such Verifier-chosen (or stochastically-chosen)

equation sets can be used to design smaller equation sets with

less variables that have the same proving-power as their larger,

deterministic counterparts but are, in practice, orders of magnitude

faster both in proof generation and in proof verification, and even

reduce the size of the resulting proofs. We demonstrate this with

an example from a real-world application.

Our method maintains all the classical benefits of the Bulletproof

approach: efficient proof generation, efficient proof checking, ex-

tremely short proofs, and the ability to use Fiat-Shamir challenges

in order to turn an interactive proof into a non-interactive proof.
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1 INTRODUCTION
In his seminal 1979 paper, Yao [28] observed that communication

complexities can be reduced for a proof if the proof only requires

probabilistic verification. A classic example is determining equality

between two strings of bits. If Alice has the string 𝑎1, . . . , 𝑎𝑛 and

Bob has the string 𝑏1, . . . , 𝑏𝑛 , it takes Ω(𝑛) bits of communication

in order to determine deterministically that ∀𝑖, 𝑎𝑖 = 𝑏𝑖 , but reaching

arbitrary levels of confidence for this fact only requires Θ(1) bits
to be communicated, and this through the following algorithm and

repetitions thereof.

Let 𝑟1, . . . , 𝑟𝑛 be a string of random bits jointly known to both

Alice and Bob, then checking if

∑
𝑖 𝑟𝑖𝑎𝑖 =

∑
𝑖 𝑟𝑖𝑏𝑖 , which requires

only 1 bit of communication, provides 1 bit of verification for the

equality.
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This technique does not actually require the variables to be

bits. The values 𝑎𝑖 , 𝑏𝑖 and 𝑟𝑖 can, for example, belong to any finite

field, F , in which case the protocol requires O(log |F |) bits of
communication, and verifies equality with only a

1

| F | probability
of error without any need for repetitions. The method continues

to work, because in essence it merely reduces the checking of 𝑛

equalities to the checking of a single equality by taking a random

linear combination of all 𝑛 original equalities.

This observation by Yao has led to the development of the field

of interactive proof systems [25], probabilistically checkable proofs

[2, 3], and ultimately also zero knowledge proofs (ZKP) [16], proofs

in which a Prover can convince a Verifier of a claim, without con-

tributing anything to the knowledge of the Verifier other than the

veracity of the claim itself. Today, we know [5, 6] that any statement

in NP [12] can be proved in zero knowledge, even if the Verifier

is only allowed to contribute random bits, as in Arthur-Merlin

protocols [4].

One example of such a general-purpose ZKP system is Bullet-

proofs [11]. Bulletproofs have the distinction of allowing the Prover

to convince the Verifier with uncommonly short proofs. The reduc-

tion in the necessary amounts of communication used in Bullet-

proofs is through the application of many sophisticated techniques,

including several different incarnations of the frugal equality check-

ing algorithm described above.

In the literature, this equality checking algorithm often comes in

one of two variations, depending on where the random bits come

from, and Bulletproofs utilise both techniques.

The first possibility is to rely on a third party to generate public
randomness. Let G be an additive group with a prime size |G|, and
let F be the field of integers modulo |G|. Bulletproofs require a
group such as G for which there is a one-way function providing a

homomorphic mapping from F to G, and where given group ele-

ments 𝑔1, . . . , 𝑔𝑚 it is cryptographically difficult to find a nontrivial

linear combination of the elements that sums to zero (the group’s

neutral element).

Given such a group, it is possible for a trusted third party to

generate random group elements 𝑔1, . . . , 𝑔𝑛 ∈ G, at which point

the Prover can simultaneously prove that 𝑛 equations of the form

𝑎𝑖 = 𝑏𝑖 , over 𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑛 ∈ F , all hold, by merely proving

the single equation

∑𝑛
𝑖=1

𝑔𝑖𝑎𝑖 =
∑𝑛
𝑖=1

𝑔𝑖𝑏𝑖 .

The secondmethod, also used extensively in Bulletproofs, is Reed-
Solomon fingerprinting [22]. This requires only a single random

scalar 𝑥 ∈ F \ {0}, which is typically provided by the Verifier,

to compress 𝑛 equalities 𝑎𝑖 = 𝑏𝑖 , over 𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑛 ∈ G
into a single one:

∑𝑛
𝑖=1

𝑥𝑖𝑎𝑖 =
∑𝑛
𝑖=1

𝑥𝑖𝑏𝑖 (noting that, unlike in

1
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the first technique, here the original equations were in G, but the
randomness in F ). Reed-Solomon fingerprinting works because

equality can only occur if 𝑥 is a zero of the polynomial

∑𝑛
𝑖=1

𝑋 𝑖 (𝑎𝑖 −
𝑏𝑖 ). Unless this is the zero polynomial, it can only have at most 𝑛

solutions, so the probability of 𝑥 being one of them is bounded by

𝑛/|G|.
Bulletproofs represent their underlying NP problem by use of a

rank 1 constraint system (R1CS) [27]. The specific flavour of R1CS

used by Bulletproofs includes 𝑚 triplets of variables (𝐿𝑖 , 𝑅𝑖 ,𝑂𝑖 ),
each satisfying

𝐿𝑖 × 𝑅𝑖 = 𝑂𝑖 , (1)

these product operations being the only nonlinear portion of the

equation system. The rest of the constraint system is a set of linear

equations in the variables 𝐿𝑖 , 𝑅𝑖 and 𝑂𝑖 , of which there are 3𝑚 in

total, as well as in an unconstrained number of additional variables,

known as external variables.
Algorithmically, Bulletproofs begin by reducing all equations,

through Reed-Solomon fingerprinting, to a single equation. Al-

though this is an operation whose complexity is as the number of

nonzero coefficients in the linear equation set, it typically takes

only a small portion of the proof’s run-time because Bulletproof

equation sets tend to be sparse. The rest of the Bulletproof algo-

rithm, typically comprising the majority of the proof’s run-time,

has a complexity proportional to the number of variables, 3𝑚, or

O(𝑚). This number can be quite large, leading to slow execution

speeds.

An important observation is that while Bulletproofs utilise a wide

array of techniques that has been developed over the past almost

50 years in probabilistic, interactive proof systems, it ultimately

does so in order to prove knowledge of a solution to a standard,

deterministic equation set. In this paper, we introduce a technique

that allows stochastic equation sets to be represented in the structure
underlying the Bulletproof, this enabling—by reuse of the very

same techniques—the crafting of proofs that run faster, and are

even shorter.

One property of standard Bulletproofs that we will want to retain

in our stochastic model is that the Verifier can only ever contribute

random bits, never anything structured or withholding any private

information. The reason for this is that this proof structure allows

the Verifier challenges to be produced by the Fiat-Shamir heuristic

[15]. This is a key tool in the practical application of Bulletproof

systems, because it allows such proofs to be made non-interactive.

In our case, too, despite the stochastic nature of the proof, it will

be possible to provide the proof in a noninteractive form.

1.1 Motivating example
There is a multitude of ways in which stochasticity in one’s equa-

tion design can be used to make one’s zero-knowledge proofs more

compact. In this section, we outline one such technique in order to

provide a concrete example, but it should be understood that this

is only one method out of many to reap the benefits of stochastic-

ity. The specific technique outlined here was used in a real-world

solution to provide a 4-fold performance improvement to a Bullet-

proof implementation. We provide the full details of the real-world

implementation, its optimisation, and the resulting performance

improvements, in Appendix A. In this section, we describe the

general technique employed, which can easily be adapted to other

scenarios.

Consider that rank 1 constraint systems represent their equation

sets algebraically, using ring operations (addition, subtraction and

multiplication). This is a universal representation because if we

merely store in each variable a value that is either zero or one then

the addition and multiplication gates of the algebraic representation

translate to logical OR and AND gates, and the entire equation

set can be thought of as representing a general Boolean circuit.
1

However, in order to reduce the number of variables used and speed

up the proofs, proof designers often explicitly utilise the algebraic

properties of the equation set to their advantage, storing in each

variable a value that is a large number, representing many bits of

information.

The method to use stochasticity that is outlined in this section

is beneficial to equation-set designers wishing to take the use of

the algebraic properties of the R1CS representation to extremes, by

attempting to reproduce an entire Diophantine equation set as a

Bulletproof R1CS.

The problem with such an approach is that while the Diophan-

tine equation set can be arranged so as to have exactly the same

form as a Bulletproof R1CS, the two are not identical, and can have

vastly different solution sets. The reason for this is that Bulletproofs

do not work over integers but rather over F , the integer residual

group modulo |G|. A modular equation set can have many solu-

tions that are not also solutions to the integer equation set. Such

spurious solutions are problematic, because the Prover may be able

to convince the Verifier that they know a solution to the modular

equation set without knowing a solution to the integer equation

set.

Indeed, even when an integer solution does correspond to a mod-

ular solution, it is not uniquely determined by it, so even knowing

a “valid” modular solution does not suffice to convince a Verifier

that the Prover knows an integer solution.

While it is not possible to address this problem in the fully gen-

eral case, it is possible to do so if the integer solutions can be bound

in some way. If the integers in the solution can be bound to be

of at most 𝑘 bits, for example, one standard way to resolve the

issue is to define 𝑘 additional variables for each 𝑘-bit integer, these

representing the bits of the larger integer variable.

For example, if a value 𝐴 can be represented as 𝐴 =
∑𝑘−1

𝑖=0
2
𝑖𝑎𝑖 ,

then (non-modular) integer equations over 𝐴 can be represented

via (modular) equations over the 𝑎𝑖 .

Beyond simply reverting back to a Boolean circuit, this introduc-

tion of binary variables allows an equation-set designer to ascertain

that integer variables are within a designated range, e.g. for the

purpose of ensuring that certain operations do not result in over-

flows.

For example, if a variable𝐴 can be represented as𝐴 =
∑𝑘−1

𝑖=0
2
𝑖𝑎𝑖 ,

with the individual 𝑎𝑖 all satisfying 𝑎𝑖 (𝑎𝑖 − 1) = 0 so as to ensure

that they are either 0 or 1, then this variable is known to be in

the range 0 ≤ 𝐴 < 2
𝑘
. If 𝑘 is chosen such that 2

2𝑘 < |G|, then
multiplying two such variables by each other is guaranteed not to

wrap around in modulo |G|, so the result is the same as though the

multiplication was in non-modular integer arithmetic. Altogether,

1
Using 1 − 𝑥 for negation, and 𝑥 (1 − 𝑥 ) = 0 to ensure that inputs are all, indeed,

zeros or ones.
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such range bounding allows one to create equation sets that act as

Diophantine, even though they are ultimately tested on modular

integers, with no danger for spurious solutions or for the informa-

tion of the modular solution to not be representative of knowledge

of an integer solution.

This technique is useful in modelling integer arithmetic even

in the common scenario when the integers in question are much

larger than |G|.
It is possible, as an example, to emulate long integer addition

and long integer products by explicitly modelling the entire com-

putation as occurring in some base 2
𝑘
representation. Choosing a

suitably small 𝑘 , the individual base-2𝑘 digits can be represented as

variables, and all long addition and long multiplication operations

can be represented explicitly using all required intermediate vari-

ables (with the size limits for each variable enforced by an additional

bit-representation for each variable).

While this straightforward representation approach works, it

tends to lead to unnecessarily bloated equation sets and to slow

execution. An alternative representation method is to pre-select

a particular set of values {𝑃 𝑗 }𝑟𝑗=1
, and to test the correctness of

the equation modulo each one of the 𝑃 𝑗 . By the Chinese remainder

theorem (CRT) [20], if the equation holds modulo each one of the 𝑃 𝑗 ,

then it is also true modulo 𝐿 = lcm(𝑃1, . . . , 𝑃𝑟 ). If the numbers 𝑁 to

be represented in this way are all in the range 0 ≤ 𝑁 < 𝐿 then this

is enough to prove knowledge of a solution to the corresponding

integer equation set.

The modular representation method requires less extra variables

than the long-integer-arithmetic method, but does still require

constructing modular representations of each of the equation sets’

variables under each of the moduli. For example, if 𝐴 is an integer

value equal to

∑𝑘−1

𝑖=0
𝑎𝑖2

𝑖
, where all 𝑎𝑖 have been constrained to be

either 0 or 1, then

𝐴′ =
𝑘−1∑︁
𝑖=0

𝑎𝑖 (2𝑖 mod 𝑃 𝑗 ) (2)

equals𝐴 in mod 𝑃 𝑗 . (It may not equal “𝐴 mod 𝑃 𝑗 ”, because its value

may still be greater than 𝑃 𝑗 , but it is nevertheless bounded by the

only marginally larger value 𝑘𝑃 𝑗 , and therefore can also be used to

bound result value magnitudes.) Once all such modular variables

are introduced, any equation originally having the integer form

𝑚∑︁
𝑖=1

𝑟𝑖𝐿𝑖 + 𝑠𝑖𝑅𝑖 + 𝑡𝑖𝑂𝑖 +𝑤𝑖 = 0

can be reworked to the modular form

𝑚∑︁
𝑖=1

𝑟𝑖𝐿
′
𝑖 + 𝑠𝑖𝑅

′
𝑖 + 𝑡𝑖𝑂

′
𝑖 +𝑤𝑖 = 𝑑𝑖𝑃 𝑗 ,

where 𝐿′
𝑖
, 𝑅′

𝑖
and 𝑂 ′

𝑖
are computed from 𝐿𝑖 , 𝑅𝑖 and 𝑂𝑖 as described

in (2), to produce results equivalent to the originals modulo 𝑃 𝑗 but

in a much smaller range.

Because the left hand side was not altered modulo 𝑃 𝑗 , the right

hand side must still be divisible by 𝑃 𝑗 , hence why setting it to 𝑑𝑖𝑃 𝑗
works.

Given the smaller range of all variables involved, this new equa-

tion can be guaranteed to be satisfiable without overflows, which

we can ascertain by limiting the size of 𝑑𝑖 . This is done using the

same bit-representation technique that has been used to limit all

other variable sizes.

The remaining problem is that while 𝑑𝑖 can be guaranteed to be

small, it may not be positive. To avoid this, we can set

˜𝑑𝑖 = 𝑑𝑖 − 𝑑min

𝑖

�̃�𝑖 = 𝑤𝑖 − 𝑑min

𝑖 𝑃 𝑗 ,

where 𝑑min

𝑖
(a known negative integer) is the smallest value that

can be taken by 𝑑𝑖 .

Our final equation then becomes

𝑚∑︁
𝑖=1

𝑟𝑖𝐿
′
𝑖 + 𝑠𝑖𝑅

′
𝑖 + 𝑡𝑖𝑂

′
𝑖 + �̃�𝑖 = ˜𝑑𝑖𝑃 𝑗 ,

Where all variables can be bound in size and restricted to be non-

negative, and where this entire equation can by this be guaranteed

to hold modulo |G| without ever incurring any overflows, for any

suitably-small choice of 𝑃 𝑗 .

This technique allows us to represent large integer calculations

with a relatively small number of extra variables per tested modulus.

However, if 𝑁 is large the number of moduli that need to be tested

may also be large, contributing overall to a substantial addition to

the number of variables in the equation set and to the runtime.

The problem is that all such moduli have to be tested. The use

of randomness in generating one’s equation set, which is the tool

we develop in this paper, provides a better alternative. It allows us

to decide on a much smaller set of moduli, taken from some large

pool, and to test only those.

In principle, if the original integer equation is incorrect, it will

remain incorrect when evaluated under almost any choice of modu-

lus. For example, if the left-hand side and the right-hand side differ

by an offset of Δ, only a modulus that is a divisor of Δ will cause

evaluation under this modulus to yield equality.

We would therefore like to be able to test only one modulus (or

at most a handful of them), but to choose these stochastically out

of a very large set, knowing that the probability for the chosen one

to erroneously validate the tested equation is negligible.

This approach trades off the original, bulky equation set, where

every modulus 𝑃 𝑗 is tested, with a much lighter equation set, involv-

ing only a handful of moduli, but one that requires the equations

to be chosen stochastically, at run-time. It is the adding of this

capability to the basic Bulletproof that is the goal of this paper.

For completion of the motivating example, however, it should be

noted that the approach of using randomly chosen moduli requires

a careful strategy for the choice of moduli to be tested. It is not

enough, for example, to pick a random element out of the original

{𝑃 𝑗 }, because it is trivial to choose a value that will be 0 modulo

all elements except one, lowering substantially the strength of the

test.

It is similarly not optimal to choose uniformly a random element

between 2 and the maximum possible modulus. The reason for this

is that with high probability one may end up with, e.g., a smooth

number [18], and it is possible for an adversarial Prover to choose a

nonzero discrepancy Δ for their equation that will be zero modulo

many smooth numbers.

However, it is possible to prove that a proper choice of a rough

modulus [18] can provide adequate strength to the test. Briefly, for

the equation discrepancy, Δ, to be a multiple of a modulus, 𝑃 , it

3
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must divide by each of 𝑃 ’s factors. Because 𝑃 is rough, each such

factor must be greater than some threshold 𝑇 . For Δ to be resilient

against many such 𝑃 , it must have many such factors, but if it has

𝑘 such factors, its value is at least 𝑇𝑘
. We know that Δ < 𝑁 , so

this puts an upper bound for 𝑘 at log𝑇 𝑁 , thus limiting the number

of moduli that may erroneously attest to the correctness of an

incorrect integer equation.

Using this technique, far less variables are needed in the proof,

and its execution is much faster.

To demonstrate this with a concrete example, we have imple-

mented a Bulletproof with a stochastic equation set as an improve-

ment, along the same lines as discussed here, over a previously-

optimised standard Bulletproof.

We developed the original Bulletproof equation set that is used

in this example for INCERT GIE (the Luxembourgian public agency

in charge of, among other things, securing digital signatures in

national identity documents) as part of a proof of concept for a Zero-

Knowledge digital wallet for official government documents. The

equation set in our implementation verifies multiple cryptographic

elements privately, including a 4096-bit RSA signature.

The full details of the original Bulletproof equation set used, as

well as of the stochastic optimisation of it, are provided in Appen-

dix A, together with a full report regarding the improvements in

execution time and other metrics when implementing the stochastic

approach.

In summary, however, the stochastic approach reduced the num-

ber of multiplication gates needed from 65, 536 to 16, 384, a 4-fold

reduction, and this led to a corresponding 4-fold reduction in both

proof generation times and proof checking times, while still main-

taining a false-acceptance probability of under 2
−67

.

The bulk of the multiplication gates that remain after the op-

timisation are simply used to store the 15, 324 bits that form the

different parts of the secret signature that requires verification, so,

counting only the extra multiplication gates that were added for

verification purposes (what, later on in the paper, we refer to as

“proof variables”), the stochastic version reduced the number of

these from 65, 536 − 15, 324 = 50, 212 to 16, 384 − 15, 324 = 1, 060, a

reduction by a factor of over 47.

This demonstrates the practical applicability of the method.

The problem that we address in this paper is how to enable Bul-

letproofs to support this type of optimisation, where the choice

of an equation set depends on earlier random choices, making the

equation set itself stochastic. Clearly, it would have been possible to

simply include the equations relevant to each of the possible moduli

as part of the overall equation set, or, alternatively, to represent the

modulus operations themselves in the language of R1CS. However,

all such approaches would have yielded a massively bloated equa-

tion set, which is precisely what we are trying to avoid. Thus, the

stochastic nature of the equation set is unavoidable, and lies at the

heart of the issue we are trying to solve.

2 PRELIMINARIES
To begin with, let us recap the relevant parts of the inner workings

of a Bulletproof.

As already mentioned, Bulletproofs use 3 vectors of𝑚 variables

each: 𝐿𝑖 , 𝑅𝑖 and 𝑂𝑖 , satisfying (1), with a linear set of equations

connecting these variables, which can be described as

𝑊𝐿𝐿 +𝑊𝑅𝑅 +𝑊𝑂𝑂 =𝑊𝑣𝑣 + ®𝑐.

Here 𝐿, 𝑅 and𝑂 are the vectors of all 𝐿𝑖 , 𝑅𝑖 and𝑂𝑖 variables,𝑊𝐿 ,𝑊𝑅 ,

𝑊𝑂 and𝑊𝑣 are matrices of coefficients, ®𝑐 is the vector of constants
used in the linear equations, and 𝑣 is the vector of external variables.

In Bulletproofs,𝑚 is required to be a power of 2.

A common use for zero knowledge proofs is to ascertain par-

ticular facts regarding the external variables without having to

communicate the actual values of these variables. The way to do

this in Bulletproofs is to begin the proof by cryptographically com-

mitting [10, 16] on the value of each external variable, 𝑣𝑖 , and then to

use the proof itself to ascertain regarding the value of each variable

whatever is needed.

The rest of the variables are known as internal variables.
In standard Bulletproofs, both the Prover and the Verifier use

random elements of the group G that have previously been supplied

by a trusted third party. Let us name these elements 𝐵, �̃�,𝑄 , {𝐺𝑖 }𝑚𝑖=1

and {𝐻𝑖 }𝑚𝑖=1
. The commitments on the external variables, occurring

in the first step of the proof, take the form of Pedersen Commitments

[13, 19]:

𝑉𝑗 = 𝑣 𝑗𝐵 + 𝑣 𝑗 �̃�.

Here, each 𝑣 𝑗 is an independently and uniformly chosen random

blinding factor. For commitment, the value 𝑉𝑗 is communicated to

the Verifier.

The internal variables 𝐿, 𝑅 and 𝑂 are also committed on in the

first step of the proof, but unlike the external variables, they are not

committed on individually. Instead, they are committed on jointly,

using Pedersen vector commitments, as follows.

𝐴𝐼 = ⟨𝐿 ·𝐺⟩ + ⟨𝑅 · 𝐻 ⟩ + 𝑎�̃�,

𝐴𝑂 = ⟨𝑂 ·𝐺⟩ + 𝑜�̃�,

𝑆 = ⟨𝑠𝐿 ·𝐺⟩ + ⟨𝑠𝑅 · 𝐻 ⟩ + 𝑠�̃�.

Here, ⟨·⟩ indicates dot product, 𝑎, 𝑜 , 𝑠 , {𝑠𝐿
𝑖
}𝑚
𝑖=1

and {𝑠𝑅
𝑖
}𝑚
𝑖=1

are all

independent, uniformly-chosen, random blinding variables, and 𝐴𝐼 ,

𝐴𝑂 and 𝑆 are the values communicated to the Verifier to form the

commitment.

Only after these commitments does the Verifier make its first

contribution to the protocol, this being a random choice of 𝑦, 𝑧 ∈ F
values which the Verifier sends to the Prover. These are used for

Reed-Solomon fingerprinting, reducing the entire equation set to a

single equation, which is then proved.

The mechanics of the rest of the Bulletproof are beyond the

scope of this paper. Consider, however, the problems of introducing

a stochastic equation set to this format.

The Verifier can introduce a new random challenge 𝑟 that will

ultimately be used to choose final equations to be verified, but the

question is when can such an 𝑟 be revealed. Because a different

equation set requires a different set of solutions for the values of 𝐿,

𝑅 and𝑂 , it is not possible for the Prover to commit to the solutions,

using {𝑉𝑗 }, 𝐴𝐼 , 𝐴𝑂 and 𝑆 , unless 𝑟 is revealed first. However, if 𝑟 is

revealed prior to {𝑉𝑗 }, 𝐴𝐼 , 𝐴𝑂 and 𝑆 , the Prover may come up with

a set of solutions that only solves for the single equation set tested,

rather than any equation set that could have possibly been chosen.

By this the Prover will be able to claim a falsehood.

4



Bulletproofs With Stochastic Equation Sets YYYY(X)

3 THE SOLUTION IDEA
For our purposes, we will require a different dichotomy of the

variables used, rather than just dividing them to “external” and

“internal”. We divide the Bulletproof variables to target variables
and proof variables. Zero knowledge proofs are proofs that partic-

ular secret values known to the Prover satisfy particular known

equations without the Prover having to divulge the secret values.

The variables holding these values regarding which we are trying

to claim statements we call target variables. All external variables

are target variables, but they do not have to be the only ones. Zero

knowledge proofs can also be used as proofs of knowledge, in which

case the Prover merely attests that they know a solution to an equa-

tion set without having to make an external commitment to that

solution. Variables that represent a solution of this type are also

target variables. Proof variables are all other variables used in the

system. They are there in order to facilitate the mechanism of the

proof itself, rather than be part of the proven statement.

The idea for supporting stochastic equation sets is to first commit

to the target variables, then to receive the value 𝑟 from the Verifier,

and only then to commit to the proof variables. For example, re-

turning to our motivating example, we might want to first commit

to some or all of the variables that do not depend on the choice of

a modulo, 𝑃 𝑗 , and to commit on the rest only after the choice of 𝑃 𝑗
is made.

Importantly, however, for stochasticity to be effective it must be

introduced without this increasing the overall complexity of the

proofs: we do not want, for example, to require additional public

randomness, more variables or more equation coefficients.

To ensure this, our solution does not alter the original structure

of the equation set, and therefore allows the entire rest of the

Bulletproof to continue unchanged and at no additional cost. We

make no change to the external commitments, either, all of which

correspond to target variables, and all of which can be committed

to immediately at the beginning of the protocol, before 𝑟 is known.

Our algorithm is designed to be run immediately after the com-

mitment on external variables. Its key is the introduction of a new

form of internal commitments, which will replace the standard

commitments on 𝐴𝐼 , 𝐴𝑂 and 𝑆 , and allow the rest of the algorithm

to proceed exactly as usual.

What we prove in this paper is that in calculating the new inter-

nal commitments using our technique, the Prover cannot alter their

internal target variable commitments after the value of 𝑟 is known.

4 THE ALGORITHM
The algorithm meeting all requirements discussed is presented in

Algorithm 1.

This algorithm makes several underlying assumptions regarding

the identity of the target variables. The assumptions are:

(1) All target variables are part of either 𝐿 or 𝑅, not 𝑂 .

(2) For all 𝑖 , it is never the case that both 𝐿𝑖 and 𝑅𝑖 are target

variables.

(3) Let𝑊𝑇
𝐿
,𝑊𝑇

𝑅
and𝑊𝑇

𝑂
be the portions of the coefficient ma-

trices 𝑊𝐿 , 𝑊𝑅 and 𝑊𝑂 , respectively, that relate to target

variables (each variable’s coefficients being a column), then

(𝑊𝑇
𝐿
,𝑊𝑇

𝑅
,𝑊𝑇

𝑂
) is a full column-rank matrix.

Because target variables are meant as “information adding”, these

conditions are usually attained without any need to tweak the

original equation set.

In the case of our example of modular computation, for exam-

ple, all target variables are bits (i.e., have values in {0, 1}). In this

common situation, each target variable is an 𝐿𝑖 , and the definition

of 𝐿𝑖 as a bit involves the following equations:

𝐿𝑖 − 𝑅𝑖 = 1, (3)

𝑂𝑖 = 0. (4)

The reason this defines 𝐿𝑖 as a {0, 1}-variable is that coupled

with the standard requirement (1), this equation set indicates that

the value 𝑥 = 𝐿𝑖 satisfies 𝑥 (𝑥 − 1) = 0.

Importantly, however, regardless of how this bit is later used,

it already satisfies all three of our assumptions regarding target

variables:

(1) The target variable is 𝐿𝑖 , not 𝑂𝑖 .

(2) The corresponding 𝑅𝑖 is not a target variable. (Indeed, it adds

no new information to the system, given 𝐿𝑖 .)

(3) Equation (3) contains only the 𝐿𝑖 coefficient as a nonzero

coefficient in (𝑊𝑇
𝐿
,𝑊𝑇

𝑅
,𝑊𝑇

𝑂
), and Equation (4) contains only

the𝑂𝑖 coefficient. As such, neither the 𝐿𝑖 column nor the𝑂𝑖

column can be represented as a linear combination of the

other columns in the matrix.

If any𝑂𝑖 does happen to be a target variable, it is always possible

to represent it as an 𝐿 or 𝑅 variable for our purposes, e.g. by creating

a new 𝐿𝑗 variable and introducing a new equation,

𝐿𝑗 = 𝑂𝑖 ,

and similar means can resolve a situation where both 𝐿𝑖 and 𝑅𝑖 are

required to be target variables. However, we expect the need for

such additional equations to be very rare.

The rest of this paper will prove the correctness of Algorithm 1.

5 PROOFS OF CORRECTNESS
The correctness of Algorithm 1 is described by the following three

theorems.

Theorem 1. If the Prover knows a solution 𝐿′ and 𝑅′ for the target
variables (with the previously-stated external commitments) such that
for any choice of 𝑟 the Prover knows a solution 𝐿′′ and 𝑅′′ for the proof
variables, for which these variables, jointly, form a solution to the
equation set described by (𝑊 ′

𝐿
,𝑊 ′′

𝐿
,𝑊 ′

𝑅
,𝑊 ′′

𝑅
,𝑊 ′

𝑂
,𝑊 ′′

𝑂
,𝑊𝑣, 𝑐) that is

generated by 𝑟 , then the Prover can successfully complete Algorithm 1.

Theorem 2. If the Prover does not know a solution 𝐿′ and 𝑅′

for the target variables (with the previously-stated external commit-
ments) such that for a random choice of 𝑟 the Prover knows, with
non-negligible probability, a solution 𝐿′′ and 𝑅′′ for the proof vari-
ables, such that these variables, jointly, form a solution to the equation
set described by (𝑊 ′

𝐿
,𝑊 ′′

𝐿
,𝑊 ′

𝑅
,𝑊 ′′

𝑅
,𝑊 ′

𝑂
,𝑊 ′′

𝑂
,𝑊𝑣, 𝑐) that is generated

by 𝑟 , then the Prover cannot, other than with negligible probability,
successfully complete Algorithm 1.

Theorem 3. Algorithm 1 is a zero-knowledge algorithm.

The conjunction of Theorem 1 and Theorem 2 ensures that a

Verifier witnessing a Prover successfully complete Algorithm 1 can

confidently view this as a successful proof (e.g., of knowledge) by

5
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Algorithm 1 Computing the internal commitments.

1: Let {𝐿′
𝑖
}𝑚
𝑖=1

be such that 𝐿′
𝑖
= 𝐿𝑖 if 𝐿𝑖 is a target variable and

zero otherwise.

2: Let 𝐿′′ = 𝐿 − 𝐿′.
3: Let 𝑅′ and 𝑅′′ be defined analogously, but for variables in 𝑅.

4: The Prover commits to 𝐴′
𝐼
= ⟨𝐿′ ·𝐺⟩ + ⟨𝑅′ · 𝐻 ⟩ + 𝑎′�̃�.

5: ⊲ 𝑎′ is a random blinding variable.

6: The Prover commits to 𝑆 = ⟨𝑠𝐿 ·𝐺⟩ + ⟨𝑠𝑅 · 𝐻 ⟩ + 𝑠�̃�.
7: ⊲ 𝑠𝐿 , 𝑠𝑅 and 𝑠 are all random blinding variables as in standard

Bulletproofs.

8: The Verifier supplies a random 𝑟 ∈ F .

9: Using 𝑟 , the Prover and Verifier both indepen-

dently compute the randomly-chosen equation set

(𝑊 ′
𝐿
,𝑊 ′′

𝐿
,𝑊 ′

𝑅
,𝑊 ′′

𝑅
,𝑊 ′

𝑂
,𝑊 ′′

𝑂
,𝑊𝑣, 𝑐). Here, 𝑊𝐿 = 𝑊 ′

𝐿
+ 𝑊 ′′

𝐿
,

𝑊𝑅 = 𝑊 ′
𝑅
+𝑊 ′′

𝑅
, and𝑊𝑂 = 𝑊 ′

𝑂
+𝑊 ′′

𝑂
, but𝑊 ′

𝐿
and𝑊 ′

𝑅
are

zeros except at target variables, and𝑊 ′′
𝐿

and𝑊 ′′
𝑅

are zeros

except at proof variables. The matrices𝑊 ′
𝑂
and𝑊 ′′

𝑂
are defined

analogously, where𝑊 ′
𝑂
is zero, except where either 𝐿 or 𝑅 are

target variables.

10: The Prover commits to 𝐴′′
𝐼
= ⟨𝐿′′ ·𝐺⟩ + ⟨𝑅′′ · 𝐻 ⟩ + 𝑎′′�̃�.

11: ⊲ 𝑎′′ is a random blinding variable.

12: The Verifier supplies a random value 𝑞 ∈ F .

13: Let 𝑂 ′ = (𝑞𝐿′ + 𝐿′′) · (𝑞𝑅′ + 𝑅′′).
14: The Prover commits to 𝐴𝑂 = ⟨𝑂 ′ ·𝐺⟩ + 𝑜�̃�.
15: ⊲ 𝑜 is a random blinding variable.

16: The Prover continues with the standard Bulletproof protocol,

but using an equation set with 𝑊𝐿 = 𝑞−1𝑊 ′
𝐿
+𝑊 ′′

𝐿
, 𝑊𝑅 =

𝑞−1𝑊 ′
𝑅
+𝑊 ′′

𝑅
,𝑊𝑂 = 𝑞−1𝑊 ′

𝑂
+𝑊 ′′

𝑂
, and the previously-computed

𝑊𝑣 and 𝑐 .

17: The Verifier continues with the standard Bulletproof protocol,

but using 𝐴𝐼 = 𝑞𝐴′
𝐼
+ 𝐴′′

𝐼
, together with 𝐴𝑂 and 𝑆 , as the

Prover’s internal commitments.

18: ⊲ One known solution to this equation set that

should match the commitments is 𝐿 = 𝑞𝐿′ + 𝐿′′, 𝑅 = 𝑞𝑅′ + 𝑅′′,
𝑂 = 𝑂 ′

. The Prover can use this throughout the remainder of

the proof, with the synthetic blinding factor 𝑎 = 𝑞𝑎′ + ˜𝑎′′.

the Prover, while Theorem 3 ensures that by running the protocol

of Algorithm 1 the Verifier receives no more information than in

standard Bulletproofs. Together, this is what we wanted to ascertain.

We will now prove these theorems in turn.

Proof of Theorem 1. As mentioned in Algorithm 1, the Prover

can continue the Bulletproof as usual, using 𝐿 = 𝑞𝐿′ + 𝐿′′, 𝑅 =

𝑞𝑅′ + 𝑅′′ and 𝑂 = 𝑂 ′
as the (secret) solution to the equation set,

and using 𝑎 = 𝑞𝑎′ + 𝑎′′ as a synthetic blinding variable, in place

of the standard 𝑎 blinding variable used for the commitment 𝐴𝐼 in

normal Bulletproofs.

To see that this works, we need to prove two things:

(1) That this solution does solve the new equation set, and

(2) That this solution matches the commitments 𝐴𝐼 , 𝐴𝑂 and 𝑆 .

The solution described by 𝐿,𝑅 and𝑂 retains the original values of

all proof variables and external variables, but multiplies the values

of the internal target variables in 𝐿 and 𝑅 by the factor 𝑞.

The value of𝑂 is computed at line 13 of Algorithm 1 already after

the value of 𝑞 is known. Note that while 𝐿𝑖 and 𝑅𝑖 are multiplied by

𝑞 if they are internal target variables,𝑂𝑖 = 𝐿𝑖𝑅𝑖 is multiplied by 𝑞 if

either 𝐿𝑖 or 𝑅𝑖 is an internal target variable. (By assumption, they

cannot both be target variables, so no 𝑞2
factor is ever introduced.)

Thus, each𝑂𝑖 is multiplied by the appropriate factor to satisfy every

nonlinear equation in the R1CS equation set.

This leaves only the linear equations. However, because each

element in the solution has been multiplied by a known factor

(either 1 or 𝑞), by simply dividing each coefficient by the same

factor, the total contribution of each variable to each equation

remains the same, and so all equations continue to balance.

This manipulation of the coefficients is exactly what defines the

coefficients (𝑊𝐿,𝑊𝑅,𝑊𝑂 ,𝑊𝑣, 𝑐) of the new equation set, on line 16

of Algorithm 1. Hence, the entire R1CS equation set is satisfied.

As for the commitments: first, the commitment on 𝐴𝑂 occurs

after knowing 𝑞, so can certainly be made to fit, and second, the

commitment on 𝑆 is independent of 𝑞 and 𝑟 , so, again, is not prob-

lematic.

This leaves only the commitment on 𝐴𝐼 , which is synthetic, and

computed as𝐴𝐼 = 𝑞𝐴′
𝐼
+𝐴′′

𝐼
on line 17 of Algorithm 1. However, it is

straightforward to see that this commitment matches the proposed

solution: by construction

𝐴′
𝐼 = ⟨𝐿′ ·𝐺⟩ + ⟨𝑅′ · 𝐻 ⟩ + 𝑎′�̃�,

and

𝐴′′
𝐼 = ⟨𝐿′′ ·𝐺⟩ + ⟨𝑅′′ · 𝐻 ⟩ + 𝑎′′�̃�,

so

𝐴𝐼 = 𝑞𝐴′
𝐼 +𝐴′′

𝐼

= ⟨(𝑞𝐿′ + 𝐿′′) ·𝐺⟩ + ⟨(𝑞𝑅′ + 𝑅′′) · 𝐻 ⟩ + (𝑞𝑎′ + 𝑎′′)�̃�
= ⟨𝐿 ·𝐺⟩ + ⟨𝑅 · 𝐻 ⟩ + 𝑎�̃�,

where 𝑎 is, as described above, a synthetic blinding factor whose

value can easily be determined by the Prover through the computa-

tion 𝑎 = 𝑞𝑎′ + 𝑎′′. □

Proof of Theorem 2. In the standard Bulletproof, the Prover

begins by committing to the external variables, followed by commit-

ments𝐴𝐼 ,𝐴𝑂 and 𝑆 . These are commitments made before any input

by the Verifier, so the Prover has complete freedom in deciding how

to compute them. However, the mechanics of the Bulletproof ensure

that if the Prover successfully completed a Bulletproof then this

proves, except with negligible error probability, that the Prover’s

initial commitments correspond to (𝐿, 𝑅,𝑂) values, known by the

Prover, that satisfy the desired equation set. Thus, the Bulletproof

itself ensures that the Prover knows a solution to the stochastically-

generated equation set.

The only element of Theorem 2 that is not guaranteed by the

Bulletproof itself is that the Prover must use in all such solutions,

regardless of the Verifier’s choice of 𝑟 , the same assignments 𝐿′, 𝑅′

to the target variables (or the proof has only negligible probability

to complete successfully). We will prove that this is guaranteed by

Algorithm 1.

Let us begin by considering the synthetic commitment

𝐴𝐼 = 𝑞𝐴′
𝐼 +𝐴′′

𝐼 .

The Bulletproof assures us that the Prover is able to describe 𝐴𝐼 as

a linear combination of {𝐺𝑖 }𝑚𝑖=1
, {𝐻𝑖 }𝑚𝑖=1

and �̃�. The fact that the

Prover cannot do the same to a random element of G is the core

cryptographic assumption underlying the strength of Bulletproofs.

6
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From this we can conclude that the Prover can also describe 𝐴′
𝐼

and𝐴′′
𝐼
in the same way: if the Prover is able to describe𝐴′

𝐼
as such

a linear combination, then the description of 𝐴′′
𝐼
can be retrieved

simply from 𝐴𝐼 −𝑞𝐴′
𝐼
; if, on the other hand, the Prover is unable to

describe𝐴′
𝐼
in this way, then 𝑞𝐴′

𝐼
(and by extension also 𝑞𝐴′

𝐼
+𝐴′′

𝐼
) is

effectively a random element of G, in which case the Prover would

not have been able to describe 𝐴𝐼 as a linear combination, contrary

to the assumption.

The Prover is therefore guaranteed (except with negligible prob-

ability) to know solutions 𝐿′, 𝐿′′, 𝑅′, 𝑅′′, 𝑎′, 𝑎′′ to

𝐴′
𝐼 = ⟨𝐿′ ·𝐺⟩ + ⟨𝑅′ · 𝐻 ⟩ + 𝑎′�̃�,

𝐴′′
𝐼 = ⟨𝐿′′ ·𝐺⟩ + ⟨𝑅′′ · 𝐻 ⟩ + 𝑎′′�̃�.

What we need to prove is that the coefficients of 𝐿′′ and 𝑅′′ must

necessarily all be zeroes in their respective target variables. When

this is the case, the solutions 𝐿 = 𝑞𝐿′+𝐿′′ and 𝑅 = 𝑞𝑅′+𝑅′′, in their

target variable components, are invariant to 𝐿′′ and 𝑅′′, which is

what we want to prove.

To see that this is the case, consider the equation set ultimately

used in the Bulletproof. This can be described by the parameters

(𝑊𝐿,𝑊𝑅,𝑊𝑂 ,𝑊𝑣, 𝑐), which were computed from their constituents

(𝑊 ′
𝐿
,𝑊 ′′

𝐿
,𝑊 ′

𝑅
,𝑊 ′′

𝑅
,𝑊 ′

𝑂
,𝑊 ′′

𝑂
,𝑊𝑣, 𝑐).

This ultimate equation set takes the form

(𝑞−1𝑊 ′
𝐿 +𝑊 ′′

𝐿 ) (𝑞𝐿′ + 𝐿′′) + (𝑞−1𝑊 ′
𝑅 +𝑊 ′′

𝑅 ) (𝑞𝑅′ + 𝑅′′)
+(𝑞−1𝑊 ′

𝑂 +𝑊 ′′
𝑂 )

(
(𝑞𝐿′ + 𝐿′′) · (𝑞𝑅′ + 𝑅′′)

)
=𝑊𝑣𝑣 + ®𝑐.

Because the right-hand side is independent of 𝑞, we can conclude

that the left-hand side is, too. This allows us to split the resulting left-

hand side equation to multiple terms, each a coefficient multiplying

a different power of 𝑞, and to determine regarding all such terms

that have a dependence on 𝑞 that they must equal zero. Specifically,

if we consider only the terms multiplied by a 𝑞−1
factor, we get

𝑊 ′
𝐿𝐿

′′ +𝑊 ′
𝑅𝑅

′′ +𝑊 ′
𝑂

(
𝐿′′ · 𝑅′′

)
= 0.

This equation describes a linear combination of the columns

of (𝑊 ′
𝐿
,𝑊 ′

𝑅
,𝑊 ′

𝑂
) that equals zero. By construction, the columns

of (𝑊 ′
𝐿
,𝑊 ′

𝑅
,𝑊 ′

𝑂
) are all zeros, except at internal target variables.

Reducing these to only the nonzero columns, we get the matrix

(𝑊𝑇
𝐿
,𝑊𝑇

𝑅
,𝑊𝑇

𝑂
) regarding which we assumed that it has full column

rank. Thus, any linear combination of these columns yielding zero

must be the trivial one, and consequently both 𝐿′′ and 𝑅′′ must be

zero at all positions corresponding to internal target variables.

In other words, the portion of the commitment 𝐴′′
𝐼
that relates

to target variables is all zeroes, and the Prover has not changed

their choice of target variables between committing to them with

𝐴′
𝐼
(before knowing 𝑟 ) and making the final synthetic commitment

𝐴𝐼 (after knowing 𝑟 ). □

Proof of Theorem 3. The information sent by the Prover to the

Verifier when using Algorithm 1 is the same as when using standard

Bulletproofs, with the exception that whereas in Bulletproofs the

Verifier receives the commitment 𝐴𝐼 , in Algorithm 1 the Verifier

receives 𝐴′
𝐼
and 𝐴′′

𝐼
, and computes on their own 𝐴𝐼 = 𝑞𝐴′

𝐼
+𝐴′′

𝐼
as

a synthetic commitment.

Given that there is a known linear equation connecting 𝐴′
𝐼
, 𝐴′′

𝐼
and 𝐴𝐼 , we can say that the information received by the Verifier

(i.e., 𝐴′
𝐼
and 𝐴′′

𝐼
) is informationally-equivalent to receiving 𝐴′

𝐼
and

𝐴𝐼 .

This shows that the information content received by the Verifier

when using Algorithm 1 is exactly the same as when using standard

Bulletproofs, plus the addition of any information contained in 𝐴′
𝐼
.

In fact, a Prover with prior knowledge of 𝑞 and 𝑟 would have

been able to compute 𝐴𝐼 first (as in standard Bulletproofs), and

to derive 𝐴′
𝐼
and 𝐴′′

𝐼
from it, later. Given that the Prover knows a

legitimate (𝐿′, 𝐿′′, 𝑅′, 𝑅′′) solution to the equation set, all that is

needed for this is to choose blinding factors that satisfy the equation

𝑎 = 𝑞𝑎′ + 𝑎′′ .

To satisfy this, however, both 𝑎 and 𝑎′ can be chosen randomly,

uniformly and independently, with 𝑎′′ computed later as 𝑎′′ =

𝑎 − 𝑞𝑎′.
In total, we therefore know the following. First, the information

content delivered to the Verifier is the same as in a standard Bul-

letproof, plus whatever information is contained in 𝐴′
𝐼
. Second, 𝑎′

can be chosen randomly, uniformly and independently of any part

of the standard Bulletproof, and consequently, due to the blinding

factor 𝑎′�̃�, the value of 𝐴′
𝐼
is both uniformly distributed in G and

independent of all other information sent to the Verifier as part of

the Bulletproof.

We conclude that the commitments 𝐴′
𝐼
and 𝐴′′

𝐼
convey no new

information to the Verifier, and the proof remains zero-knowledge.

□

6 CONCLUSIONS
The ability to construct one’s proof of knowledge as a stochastic,

interactive protocol is at the heart of the entire field of interactive

proofs, and zero-knowledge proofs in particular, and has been used

to create short and efficiently-checkable proofs for proving the

knowledge of a solution to large deterministic equation sets.

In this paper, we extend this approach further, by demonstrating

that knowledge can sometimes be encoded more efficiently as a

solution to a stochastically-generated equation set, rather than a

deterministic one.

We introduce a protocol extending the standard Bulletproof pro-

tocol, which allows such stochastic equation sets to be represented,

and knowledge of their solutions proved, while maintaining all the

classical benefits of the Bulletproof approach: efficient proof gen-

eration, efficient proof checking, extremely short proofs, and the

ability to use Fiat-Shamir challenges in order to turn an interactive

proof into a non-interactive proof.

Using stochastic equation sets, we can reduce the number of

variables required for a proof by orders of magnitude, leading to a

corresponding order-of-magnitude saving in both proving times

and proof checking times, as well as shorter proofs.
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A TECHNICAL DETAILS OF THE EXAMPLE
EQUATION SET

The following example is taken from a proof-of-concept for a digital

wallet app that we designed and implemented, and then optimised

using the stochastic equation set approach, for INCERT GIE, the

Luxembourgian public agency in charge of, among other things,

securing digital signatures in national identity documents.

The description omits many aspects of the project that are not

relevant for the present discussion, but describes the underlying

equation set for the Bulletproof used, in both deterministic and

stochastic versions, exactly, without any simplifications.

A.1 The problem scenario
We want to design a digital wallet app, meant for the storage of

official documents. The design of the app should enable wallet

owners to certify facts about themselves from official documents,

including in unofficial scenarios.

For example, a wallet owner may want to use the wallet in order

to certify to a bartender that they are above the legal drinking age.

However, because the bartender is not trusted, the wallet owner

wants to make this certification in zero knowledge. In particular,

no trackable identifier of the wallet owner may be given to the

bartender.

In this scenario, the wallet owner needs to show

(1) That they possess a government certificate stating that Per-

son X is above the legal drinking age, and

(2) That they are Person X,

without divulging any personally identifying information, or any

trackable identifier of any kind.

As part of the problem setup, it is assumed that such verifications

are done “offline”, in the sense that neither party can be assumed

to have a network connection. The entire verification process in-

cludes only the Prover and the Verifier, without any third party

involvement.

The solution we opted for is as follows.

First, we assign to each wallet owner a private identifier and a

corresponding public identifier. The public identifier is only “public”

in the sense that it can be divulged to official entities; it cannot

be divulged to non-trusted entities such as the bartender. For this,

each wallet owner allots two random prime numbers of length 1024

bits, 𝑢𝑝 and 𝑢𝑞 . The numbers 𝑢𝑝 and 𝑢𝑞 serve as the wallet owner’s

private identifier, whereas the product 𝑢𝑛 = 𝑢𝑝𝑢𝑞 is their public

identifier.

Second, any document in the wallet is signed by the issuing

government authority, to certify its veracity. Let 𝑛 be a 4096-bit

RSA public key, publicly known and associated with the issuing

government authority. The issuing authority signs documents,𝑀 ,

by means of the signature 𝑆 = 𝑀𝑑
mod 𝑛, where 𝑑 is chosen such

that𝑀 = 𝑆3
mod 𝑛.

The message 𝑀 is constructed as the concatenation of 𝑢𝑛 (the

public key identifying the wallet owner), 𝐼 (the document infor-

mation, such as an attestation that the wallet owner is above the

legal drinking age), and 𝐴 (additional random padding, completing

to 4096 bits). In our example, we use 132 bytes for 𝐼 , leaving an

additional 992 bits for 𝐴.

In integer arithmetic, the equation that the wallet owner needs

to prove they know a solution for is

𝑆3 = 𝑢𝑝𝑢𝑞 + 𝐼 × 2
2048 +𝐴 × 2

3104 + 𝐷𝑛, (5)

where 𝑆 , 𝑢𝑝 , 𝑢𝑞 , 𝐴 and 𝐷 are all private integer variables, known

only to the wallet owner, whereas 𝐼 is communicated to the Verifier,

and 𝑛 is public knowledge. Regarding the private integers, only
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their bit size is known. In the case of 𝑢𝑝 and 𝑢𝑞 , we can also pre-set

their top and bottom bits to 1.

As long as the user can prove the bit lengths of all private

variables, this equation encapsulates both that the issuing author-

ity signed the document with the appropriate public identifier

𝑢𝑛 = 𝑢𝑝𝑢𝑞 , and that the wallet owner knows the corresponding

private identifier (𝑢𝑝 , 𝑢𝑞), by this proving that the wallet owner

really is the object of the document.

A.2 Standard Bulletproof formulation
To meet the requirements of the problem scenario, we implemented

the Bulletproof (initially in its standard formulation) over the addi-

tive Curve25519 [7] twisted Edwards elliptic curve group [8]. We

used Ristretto [23], an extension of Decaf [17], in order to eliminate

cofactors. Cofactor elimination is necessary in order to reduce the

group to a prime order, as required for Bulletproofs.

To reformulate the integer equation (5) as an equation modulo

the group size, note that the entire equation is of 4096 × 3 = 12288

bits, as determined by its largest element, 𝑆3
. Thus, it is enough

to ascertain that the difference between the left-hand side and the

right-hand side is zero modulo some large value 𝑁 , greater than

2
12288

.

To prove this using the tools of standard Bulletproofs, we add

to the shared public data (e.g., data published by the certificate-

issuing authority) the identity of 174 distinct primes, each 71 bits

in length, 𝑃1 . . . , 𝑃174, such that 𝑁 =
∏

𝑖 𝑃𝑖 is sufficiently large.

The computation of (5) can then be performed modulo each 𝑃𝑖
separately, and if the equation holds under all moduli, then by the

Chinese Remainder Theorem, it must also hold modulo 𝑁 .

Using 71-bit-long primes allows us to compute the modular

equivalent of (5) without overflows.

To ensure that all variables are of the appropriate bit length, we

introduce separate Bulletproof variables for each bit of 𝑆 , 𝑢𝑝 , 𝑢𝑞 , 𝐴

and 𝐷 . For example, let us define 𝐿
𝑗

𝑆
to be the 𝑗 ’th bit of 𝑆 . Then

the following equations

𝑅
𝑗

𝑆
= 𝐿

𝑗

𝑆
− 1,

𝐿
𝑗

𝑆
× 𝑅

𝑗

𝑆
= 0,

ensure that all 𝐿
𝑗

𝑆
are bits. Defining 𝑆 (not a Bulletproof variable) as

𝑆 =

4095∑︁
𝑗=0

𝐿
𝑗

𝑆
2
𝑗

then ensures that it is of the appropriate bit length.

In our case, we modify this paradigm by computing a new Bul-

letproof variable, 𝑆𝑖 , as

𝑆𝑖 =

4095∑︁
𝑗=0

𝐿
𝑗

𝑆
(2𝑗 mod 𝑃𝑖 ), (6)

to act as a convenient stand-in for 𝑆 mod 𝑃𝑖 , and we create in the

same way also modular variants for the equation’s other variables.

This modular representation works because

𝑆𝑖 ≡ 𝑆 (mod 𝑃𝑖 ) .
However, unlike “𝑆 mod 𝑃𝑖”, the value of 𝑆𝑖 is not constrained to

be in [0, 𝑃𝑖 ). Instead, we can only be sure that it does not exceed

4096𝑃𝑖 .

This is enough to ensure that 𝑆3

𝑖
is still within the 252 bit range of

the finite field in which we are computing, allowing us to effectively

compute all of (5) modulo each 𝑃𝑖 , without overflows.

If we refer to the modular version of the left-hand side of (5) as

LHS𝑖 and the right-hand side as RHS𝑖 , then the final R1CS equation

for each 𝑃𝑖 becomes

LHS𝑖 +𝐶𝑖 = RHS𝑖 + div𝑖𝑃𝑖 . (7)

The constants𝐶𝑖 , known to both parties, aremultiples of 𝑃𝑖 designed

to make sure that the div𝑖 values proving the modular equation are

nonnegative.

In total, this approach requires 4096 variables in order to store

the bits of 𝑆 , twice 1022 bits in order to store the bits of 𝑢𝑝 and 𝑢𝑞
(recalling that their most and least significant bits are both known

to be 1), a further 992 variables to store the bits of 𝐴, 8192 variables

to store the bits of 𝐷 , and 178 bits for each of the 174 div𝑖 variables.
Each such bit requires one multiplication gate.

Additionally, for each of the 174 𝑃𝑖 values, 2 multiplication gates

are required to compute 𝑆3

𝑖
and 1 for the modular equivalent of the

multiplication operation 𝑢𝑝 × 𝑢𝑞 .

In total, these are 46, 818 multiplication gates.

Bulletproofs, by their design, require a number of multiplication

gates that is a power of 2, for which reason this number must be

rounded up to 65, 536.

The final 18, 719 = 65, 536 − 46, 818 multiplication gates added

relate to variables that do not participate in any equation. Though

technically, in the terminology introduced in this paper, such vari-

ables are “proof variables”, from a stand-point of performance com-

parison it makes more sense to separate them to their own category.

We refer to them here as dummy variables.

A.3 A stochastic Bulletproof design
The time costs of our standard Bulletproof implementation can

largely be traced back to two sources. First, setting up the Bullet-

proof equations requires much large-integer arithmetic, which we

implemented using the BIGNUM functionality of OpenSSL [26, 29].

The bulk of these computations need to be repeated 174 times, one

for each prime modulus.

Second, the Bulletproof itself requires a one-time amount of

computation related to the total number of nonzero coefficients

in the Bulletproof equations, followed by a sequence of compu-

tations whose complexity is linear in the number of multiplica-

tion gates. These computations are in both Curve25519 Ristretto

and in the modular integer field of the same size, and were im-

plemented using the Ristretto implementation of the libsodium

library [9]. Note, however, that of our Bulletproof variables only

15, 324 = 4096 + 1022 × 2 + 992 + 8192 are target variables. Each

of the 174 moduli tested introduces 181 new multiplication gates,

all composed solely of proof variables. In total, this adds up to

181 × 174 = 31, 494 multiplication gates for the proof variables,

making these the majority of multiplication gates required.

In both cases, our standard implementation is weighted down by

the fact that we need to check all 174 moduli. Using a stochastic Bul-

letproof, we can reduce this number by selecting moduli randomly,

from a larger pool.

To do this, we must first revert to a “less optimised” version of

(5). In (5), we minimised the total number of multiplication gates

9
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used by working in arithmetic modulo 71-bit primes. This allowed

us to compute 𝑆3

𝑖
without overflows.

For the stochastic design, because we need our moduli to be

selected from a larger pool, we require our computation to be

modulo higher numbers, so instead of encapsulating (5) by a single

equation, we break it down to

𝑆 ′ = 𝑆2,

𝑆 ′𝑆 = 𝑢𝑝𝑢𝑞 + 𝐼 × 2
2048 +𝐴 × 2

3104 + 𝐷𝑛,

where these, in turn, translate to the modular equations

𝑆2

𝑖 + offset
1
= 𝑆 ′𝑖 + div′𝑖𝑃𝑖

𝑆 ′𝑖 𝑆𝑖 + offset𝑖
2
= 𝑢𝑖𝑛 +𝐴𝑖 + 𝐷𝑖 +𝑀𝑖𝑃𝑖 ,

𝑢𝑖𝑛 = 𝑢𝑖𝑝𝑢
𝑖
𝑞,

where 𝐴𝑖
and 𝐷𝑖

are the modular representations of 𝐴 × 2
3104

and

𝐷𝑛, respectively, and offset𝑖
2
, beyond being a modular offset, also

encapsulates (𝐼 × 2
2048) mod 𝑃𝑖 . Each of the three equations above

contributes one multiplication gate per modulus.

In the new formulation, we use the 252-bit-sized ring only for

squaring, not for cubing numbers. By setting each 𝑃𝑖 to be at most

111 bits in length, we can ensure that all 𝑆𝑖 and other modular

representations of our various integer variables all stay within 123

bits, making products of two such variables limited to 246 bits. This

affords enough headroom to ensure that all of (5) can be computed

in less than the available 252 bits.

We call this a “less optimised” version of the base equation,

because in the deterministic formulation testing the equation’s

correctness modulo any 𝑃𝑖 required us to introduce only 181 new

multiplication gates, and in this new formulation a full 388 are

required: 111 for the bits of 𝑆 ′
𝑖
, 136 for the bits of div′𝑖 , 138 for the

bits of𝑀𝑖 , and one for each of the 3 modular equations.

Consider, therefore, verifying (5) modulo some randomly-chosen

111-bit number, 𝑄 , not necessarily prime.

We do not wish to choose 𝑄 uniformly in this space, because

if the difference, Δ, between the right-hand side and the left-hand

side of (5) is a highly composite number [1, 21], the number of 𝑄

values dividingΔwill be large, making themodular equation correct

under many potential moduli, even though the integer equation is

incorrect.

Instead, we choose 𝑄 uniformly from those numbers that are

2200-rough [18], defined as those numbers all of whose divisors are

greater than 2200.

If Δ, the discrepancy in the integer equation, is nonzero and at

most 12288 bits long, it can have at most 1106 prime divisors over

2200.

For a 111-bit number to be 2200-rough, on the other hand, it

must be the product of at most 9 primes over 2200. Note that if

some subset of the prime divisors over 2200 of Δ has a product that

is 111 bits in length, no product of any strict subset of this set can

be in the same range (as these products must differ by at least 11

bits of length). Thus, the maximum number of divisors of Δ that

are 2200-rough integers 111 bits in length can be bounded at 𝐶1106

9
,

i.e. the number of ways to choose 9 primes out of 1106. (This can

be attained in the worst case, which is when Δ is both 2200-rough

and square free [24], meaning that it factorises into only unique

primes.)

This number of possibilities is just under 2
72.5

.

The total number of 2200-rough 111-bit numbers is well-approx-

imated as 2
110

∏
𝑖:𝑝𝑖≤2200

𝑝𝑖−1

𝑝𝑖
, where 𝑝𝑖 is the 𝑖’th smallest prime.

This is approximately 0.073 × 2
110

.

In total, the chance for a randomly-chosen rough 𝑄 to divide

a non-zero Δ can be bounded from above by 2
−33.7

. By choosing

2 such 𝑄 candidates at random, we ensure that the probability

for false acceptance is bounded from above by 2
−67.4

, which was

deemed an acceptable rate.

In the stochastic version, only 2 moduli need to be checked,

rather than 174, reducing the bulk of the big-number computations

required for the algorithm.

In total, in addition to the 15, 324 multiplication gates used in

the proof for target variables, our stochastic implementation allows

us to reduce the number of multiplication gates dedicated to proof

variables from 181 × 174 = 31, 494 to 388 × 2 = 776, a reduction by

a factor of 41. This reduces the total number of multiplication gates

to under 2
14
, a saving by a factor of 4 overall.

A.4 Performance comparison
We implemented both algorithms in C, utilisingOpenSSL’s BIGNUM

library and libsodium Ristretto, as described above. For the stochas-

tic version, we used the algorithm described in Appendix B in order

to allot uniform rough moduli.

Table 1 summarises the performance comparison between the

standard Bulletproof implementation and the one using a stochastic

equation set. Timing results in the table are given based on 10

runs. These runs were executed on the following architectures.

Note that while we provide full details for each architecture, our

Bulletproof code was, in fact, single-threaded code. It also did not

take advantage of the GPU that was available in each architecture.

(1) A Lenovo Legion 5 laptop, with an i7-12700H processor (6

P-Cores at 2.30GHz, 8 E-Cores at 1.7GHz), and 32GB of RAM,

(2) A Samsung Galaxy S22+ (Octa-core, with one 2.995GHz

Cortex-X2 processor, three 2.496GHz Cortex-A710, and four

1.78GHZ Cortex-A510, and 8GB of RAM),

(3) A Samsung Galaxy A20 (Octa-core, with two 1.6GHz ARM

Cortex-A73 processors and six 1.35GHz ARM Cortex-A53

ones, and 3GB of RAM).

The latter two are Android devices, for which the Bulletproof was

implemented as part of an Android mobile app.

In the table, “non-target variables” relate to both proof variables

and dummy variables, while “proof variables” excludes dummy

variables.

The table shows that the stochastic equation set approach outper-

forms the standard approach in every metric, usually by substantial

margins, without compromising any of the features that make Bul-

letproofs attractive in the first place.

Even though the Galaxy A20 is a low-end device, running the

Bulletproof at only 10% the speed of the laptop, and the Galaxy

S22+ is a high-end device, reaching 2/3 of the speed of the laptop,

all three architectures show the same consistent improvement of

roughly 4X the speed between the deterministic and stochastic

Bulletproof implementations.
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Table 1: Performance comparison

Deterministic Stochastic Improvement

Multiplication gates 65, 536 16, 384 4X

(of which for non-target variables) 50, 212 1, 060 47.4X

(of which for proof variables) 31, 494 776 40.6X

Linear equations 94, 854 32, 204 2.9X

Proof size (bytes) 1, 440 1, 344 96

Lenovo Legion

Proof generation time [` ± 2𝜎] (s) 45.8 ± 1.2 10.8 ± 0.5 4.2X

Verification time [` ± 2𝜎] (s) 18.2 ± 0.6 4.3 ± 0.2 4.3X

Samsung Galaxy S22+

Proof generation time [` ± 2𝜎] (s) 66.3 ± 1.3 16.6 ± 0.8 4.0X

Verification time [` ± 2𝜎] (s) 25.2 ± 1.1 6.3 ± 0.8 4.0X

Samsung Galaxy A20

Proof generation time [` ± 2𝜎] (s) 440.4 ± 1.6 108.0 ± 1.0 4.1X

Verification time [` ± 2𝜎] (s) 171.0 ± 1.8 40.4 ± 1.3 4.2X

B CHOOSING A ROUGHMODULUS
In this section, we discuss the question of how to efficiently allot a

uniform 2200-rough number that is 111 bits long, recalling that the

procedure to do so must be deterministic from one or more Fiat-

Shamir challenges (so that it can be repeated by both Prover and

Verifier, ascertaining that the number was not chosen adversarially).

The distribution resulting from our algorithmwill not be completely

uniform, but will have high enough entropy for our purposes.

Our method employs two techniques.

First, in order to allot a number that is not divisible by 2, 3, 5, 7

and 11, we prepare in advance a table,𝑇 , of all 480 residues modulo

2310 = 2 × 3 × 5 × 7 × 11 that do not divide by any of these primes.

In our implementation, we used Fiat-Shamir challenges that are

outputs of SHA3-512 [14]. This provides us, for a single challenge,

with 512 pseudorandom bits. Of these, we can use 17 bits in order

to compute the 480 modulus of a uniformly-chosen 17-bit number,

and this already provides us with a close-enough approximation of

a uniform value in the range [0, 479], which we can use as an index

to the look-up table, 𝑇 , of residues modulo 2310, thus uniformly

choosing a residue class for our chosen number,𝑄 , modulo 2, 3, 5, 7

and 11. Let𝑚2310 be the value retrieved from the table of residues.

Next, we choose uniformly a value 𝑑2310 in the range

[⌈2110/2310⌉, ⌊2111/2310⌋).

This provides us with a𝑄 candidate 2310 ×𝑑2310 +𝑚2310 which we

know does not divide by any prime smaller than 13.

The range for 𝑑2310 is just under 99 bits. We allot a 𝑑2310 value

uniformly by choosing 99 bits from the SHA3 output, interpreting

it as a random number, 𝑟 , of up to 99 bits in length, and computing

𝑑2310 as 𝑟 + ⌈2110/2310⌉. We then use rejection sampling to reject

the choice if the value of 𝑑2310 this produces is not smaller than

⌊2111/2310⌋. Such rejection happens with probability around 1/8.

Next, we need to make sure that 𝑄 does not divide by any of the

322 remaining primes below 2200. This we do by checking, i.e. by

more rejection sampling: if our 𝑄 candidate divides by any of the

remaining “small” primes, we eliminate it, and use the next 99 bits

of the SHA3 output in order to allot another 𝑑2310,

The probability that a 𝑄 candidate does not divide any of the

remaining 322 primes is approximately 1/3, and even when account-

ing also for the probability of rejection due to a too-large 𝑑2310, the

probability of success is still above 30%. In expectation, roughly 3

attempts are needed in order to find a successful candidate. Having

started with 512 random bits, we can afford a full 5 attempts before

another Fiat-Shamir challenge needs to be computed, so in high

probability the procedure can be completed using only the first

challenge.

This leaves us with the question of how to efficiently verify that

a candidate value𝑄 does not divide by any of the remaining primes.

To do this, we have partitioned the primes to 49 buckets, such that

the primes in each bucket have a product smaller than 2
64
. This

can be done simply by greedy assignment.

The trick here is that much of the reason for the slow computa-

tion time is the need to handle large numbers (which we do using

OpenSSL’s BIGNUM functionality). Instead, for each 𝑄 candidate

we only compute in this way the 49 residues {𝑄 mod Π𝑖 }49

𝑖=1
, where

Π𝑖 is the product of all primes in the 𝑖’th bucket, which is a value

that we pre-compute. The result of each such modulo operation

can then be stored in a 64-bit unsigned “long” integer, allowing all

remaining checks to be done at much higher speeds.
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