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Abstract. Group actions have been used as a foundation in Public-
key Cryptography to provide a framework for hard problems and as-
sumptions. In this work we formalize the Lattice Isomorphism Problem
(LIP) within the context of cryptographic group actions. We show that
a quadratic number of queries to a randomized oracle outputting LIP
instances sharing the same secret is enough for inverting the group ac-
tion in polynomial time. We use this result to uncover a family of weak
isomorphisms and to derive two new hard problems equivalent to LIP
for quadratic forms with trivial automorphism group.
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1 Introduction

Post-Quantum Cryptography is an active research area which aims to design
public-key cryptographic primitives that can resist the threats posed by large
scale quantum computers. Since most of the widely used public-key crypto-
graphic algorithms will be affected by the attacks harnessing the computational
power of quantum computing, the National Institute of Standards and Technol-
ogy (NIST), has already selected a few candidates for standardization [36], and
more candidates are under consideration [35].

The computational hardness of the equivalence problems for algebraic or
geometric structures has emerged as an attractive underlying assumption for
designing post-quantum cryptographic schemes. Perhaps the most notable ex-
ample of this approach is isogeny based cryptography which relies on the hard-
ness of isogenies between supersingular elliptic curves [18,15,7,1,14,19,27,6,3,20].
Cryptographic schemes have also been designed based on problems related to
lattice isomorphism [24,5], code-equivalence [12,8], isomorphism of multivariate
polynomials [37], trilinear forms [40], and tensor isomorphism [31]. These have
shown potential in constructing remarkable primitives, especially in the domains
of proof-of-knowledge and digital signatures [11,32]. Each of these problems is
interesting in its own regard and provides different trade-offs as well as flexi-
bility while designing cryptographic schemes, however these can also be seen as
instances of more general framework. In fact, they can be modelled as problems



related to the computational hardness of inverting a group action. In this work,
we show how to characterize and analyze the lattice isomorphism problem (LIP)
as a group action. We believe that such a characterization helps unifying the
similar computational assumptions under a common framework, which can then
be used to study the similarities between these hard problems.

Informally, the Lattice Isomorphism Problem (LIP) in its search version aims
to find an isomorphism between two given isomorphic lattices. The decision
version of the problem asks whether two given lattices are isomorphic or not.

Lattice isomorphisms were studied and used initially in the cryptanalysis of
early lattice based schemes such as NTRU [29]. Later, Haviv and Regev studied
the complexity of search-LIP [30]. More recently, two independent works by
Bennett et al. [5] and by Ducas and van Woerden [24] proposed to use LIP
for building cryptographic primitives. Subsequently, a digital signature scheme
HAWK based on a module version of LIP has been proposed with impressive
results in terms of efficiency and sizes [23].

Contribution. In this work, we formalize lattice isomorphisms as a group action
and prove that properties such as faithfulness and transitivity hold. For the free
property of group actions, we give a necessary condition for this to hold.

Then, we provide a new result on the sufficient number of LIP samples ob-
tained from the same secret isomorphism represented by n xn unimodular matrix
U, which allow the efficient recovery of the secret isomorphism. More precisely,
we show that an adversary able to make O(n?) queries to an LIP randomized
oracle Oy can invert the group action in polynomial time and space and retrieve
U. This result differs from other models, which are assumed to be secure even
when the adversary can make a polynomial number of queries [1]. We also pro-
vide a sagemath implementation of our algorithm that confirms our result and
successfully recovers the secret isomorphism from a list of LIP samples sharing
the same secret unimodular matrix.

We use this result to uncover a family of weak isomorphisms, namely any com-
muting family of isomorphisms allow an efficient recovery of the secret. Another
consequence of our result is that, when used to build cryptographic primitives,
the secret isomorphism of an LIP instance should not be reused in combination
with different public keys. This would indeed allow to collect additional instances
necessary for a key-recovery attack.

Furthermore, we introduce two new hard problems on quadratic forms: the
Transpose Quadratic Form Problem (TQFP) and the Inverse Quadratic Form
Problem (IQFP). We use the aforementioned result to demonstrate the equiv-
alence of these problems to search-LIP through dimension-preserving polynomial-
time reductions, specifically for quadratic forms with trivial automorphism group.

Organization of the paper. In Section 2 we give the preliminaries on lattices
and group actions. In Section 3 we formalize LIP as a group action and provide
the related results. In Section 4 we introduce two new hard problems together
with their reductions to LIP. Finally, in Section 5 we give our conclusions.
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Fig. 1: Relationships between two new problems related to lattice isomorphism
problem (LIP): TQFP and IQFP. Dashed arrows denote polynomial time reduc-
tions for quadratic forms with trivial automorphism group. Solid arrows denote
polynomial time reductions for all quadratic forms.

2 Preliminaries

2.1 Notation

Let N, Z, Q and R denote the sets of natural, integer, rational, and real numbers,
respectively. We denote vectors in boldface (e.g., x) and treat them as column
vectors by default. We denote matrices by uppercase letters (e.g., M). For a
vector x in R™, the Euclidean norm is denoted as [|x]|.

The set of all n x n invertible matrices with entries in Z is denoted by
GL,(Z) ={M € Z™" : det(M) = +1}. For an invertible matrix X € GL,(Z),
we denote the inverse of the transpose matrix X' as X~ '. Also, by I,, we de-
note n x n identity matrix. The set of all orthonormal matrices with entries
in field F is denoted by O, (F) := {0 € F**": 00" = O'O = I, and ||o;|| =
1, Vi € {1,...,n}}. For a matrix M = {M; ;} € Z"*", denote with M (7) ¢
Z(n=1x(n=1) the minor of M with respect to M; ;, namely, the matrix obtained
by removing the i-th row and j-th column from M. We denote M* the Gram-
Schmidt orthogonalization of M.

A matrix S € R™" is called symmetric positive definite if S = ST and
x"Sx > 0 for all x € R™\ {0}. The set of all n x n symmetric positive definite
matrices over R is denoted by S;°. For Q = {Q;;} € S0 and d := w,
define unroll: S0 — RY as

unroII(Q) = [Ql,l 2@1,2 2Q1m Q2,2 2@2,3 2Q2,n an] .

For simplicity, in the remainder of the paper, we assume both matrix multi-

plication and inversion take O(n?) integer operations !.

! There is a better algorithm for large dimensional matrix multiplications, the

Strassen’s algorithm with a running time of O (n1°g2(7)) operations.



2.2 Lattice Isomorphisms and Quadratic Forms

We refer the reader to [24] for a more detailed introduction on the Lattice Iso-
morphism Problem.

A full-rank n-dimensional lattice £ = £(B) := B - Z" is generated by taking
all the possible integer combinations of the columns of a basis B € R"*". Two
bases B and B’ generate the same lattice if and ounly if 3U € GL,(Z) such
that B’ = BU. Two lattices L, L' are isomorphic if there exists an orthonormal
transformation O € O, (R) such that £' = 0O - L.

Definition 1 (Search Lattice Isomorphism Problem (sLIP)). Given two
isomorphic lattices L, L' C R™ find an orthonormal transform O € O, (R) such
that L =0 - L.

The above problem can be rephrased as follows. Given the bases B, B’ € GL,,(R)
for £ and £’ respectively, find O € O, (R) along with U € GL,(Z) such that
B’ = OBU. In practice, the real-valued entries of basis and orthonormal matrices
can be inconvenient to represent and result in inefficient computations. However,
this can be eased by considering an equivalent problem to LIP by taking the
quadratic form of B, a.k.a Gram matrix Q := B"B. Note that the quadratic
form @ is symmetric by definition. Moreover, since B is a basis (and thus full-
rank), @ is actually symmetric positive definite. For £, L' isomorphic lattices
with respective basis B, B’, we have that B’ = OBU where O € O,(R) is
orthonormal and U € GL,,(Z) is unimodular, then we have,

Q =B"'B =U"B'O'OBU =U"B'BU =U'QU

where, Q := B" B is the quadratic form of B. We call Q, Q' equivalent if such U €
GL,(Z) exists. We also denote the equivalence class by [Q] of all Q' equivalent

to Q.

Definition 2 (sLIPg - Quadratic Form Version). For a quadratic form
Q € S0, the problem sLIPq is, given any quadratic form Q' € [Q], to find a
unimodular U € GL,(Z) such that Q' =UTQU.

The norm of vector x with respect to a quadratic form @ is defined as ||x||2Q =
x"Qx and the inner product as (x, y)g = x' Qy. The i—th minimal distance
Ai(Q) is defined as the smallest 7 > 0 such that {x € Z": ||z||, < r} spans a
space of dimension at least 7. We denote by Bg the Cholesky decomposition of
@, that is, an upper triangular matrix such that Q = BQTBQ.

Definition 3 (Automorphisms). Let Q € S;.° be a quadratic form of dimen-
sionn. The automorphism group of Q is defined as Aut (Q) ={V € GL,(Z): Q =
VTQV}. We say that Q is automorphism-free if it has trivial automorphism group
Aut (Q) = {£1,}.

Remark 1. Let Q' € [Q], and let U € GL,,(Z) be such that Q' = UTQU. The
set of isomorphisms between @ and @’ can be written as {VU: V € Aut(Q)}.



In other words, the automorphism group of () determines the number of isomor-
phisms from @ to Q’. Equivalently, the automorphism group of Q' determines
the number of isomorphisms from Q' to Q). Therefore, when @ and @’ are iso-
morphic, they have the same number of automorphisms. Hence, automorphism-
free quadratic forms are isomorphic only to automorphism-free quadratic forms.
More precisely, we have Aut (Q') = {£I,} for each quadratic form Q' € [Q].

Definition 4 (Integer Matrix Similarity Problem (IMSP)). Given two in-
teger matrices A, B € Z"*", determine whether there exists an invertible matriz
U € GL,(Z) such that B =UAU", and if so, find U.

The Integer Matrix Similarity Problem (also known as the Integral Conju-
gacy Problem) is not computationally hard. There exists indeed a probabilistic
polynomial time algorithm that solves it [34,26,10].

2.3 Sampling Quadratic Forms and Unimodular Matrices

Definition 5 (Discrete Gaussian Distribution w.r.t. Quadratic Forms [24,
Sec. 2.3]). For a quadratic form Q € S;°, the Gaussian function on R™ with
parameter s > 0 and center c is defined by

Vx € R", pg,s,c(x) = exp (—7||x — c||é/52)

The discrete Gaussian distribution Dg s is defined as

PQ,s,c(Z™)

Pr [X= .
0 otherwise

{ £Q,s,c(%) ifxezr
x] = ’
X~DQq,s,c

Brakerski et al. [13, Lemma 2.3] showed how to sample from a discrete Gaus-
sian distribution efficiently. Ducas and van Woerden provide a polynomial time
algorithm Extract that, on input a set of n linearly independent vectors Y and
a quadratic form @, returns a pair (Q’,U) such that Q' = UTQU [24, Lemma
3.1].

Definition 6 (Gaussian form distribution, [24, Def. 3.3]). Given a quadratic
form equivalence class [Q] C S;7°, the Gaussian form distribution D ([Q]) over
[Q] with parameter s > 0 is defined algorithmically as follows:

1. Fiz a representative Q € [Q)].

2. Sample n vectors (yi1,¥2,...¥n) =Y from Dq . Repeat until linearly inde-
pendent.

3. (R,U) « Extract(Q,Y).

4. Return R.

Ducas and van Woerden provide a polynomial time algorithm to sample from
D, ([Q]), for s > max{\,(Q), || Bg|| - v/In(2n + 4)/7}, which returns, together
with a quadratic form @', a unimodular matrix U such that Q' = UTQU, and
show that Q" < D; ([Q)]) is independent from the input class representative Q
[24, Lemma 3.2].



Sampling Unimodular Matrices The algorithm Extract includes a method to
derive a unimodular matrix from a set of independent vectors employing the
Hermite Normal Form reduction that is folklore in the literature [9,33].

Algorithm 1 is a modified version of [9, Algorithm 4] for sampling unimod-
ular matrices in polynomial time having the entries of the first n — 1 columns
uniform over the integer interval [-T,T] C Z, for T > 0. For the context of
this manuscript, it is not relevant for us whether it produces “cryptographically-
strong” random unimodular matrices or not.

Algorithm 1 Sample a unimodular matrix with all columns except the last one
having entries uniformly distributed in an integer interval [T, T] C Z

Input: A positive integer parameter 7' > 0
Output: An n X n unimodular matrix with all columns except the last one
having entries uniformly distributed in the integer interval [-T,T] C Z
Set a matrix M = {M; ;} € Z™*™ to zero
repeat
Sample M; ; <— [T, T] uniformly at random for each i <nand j <n—1
Use the Extended Euclidean Algorithm for computing

d + ged ((—l)nle det (M(l’”)> vy (=1)7" det ( ””))) :

along with the corresponding Bézout coeflicients M ;’s such that
d Z M- (—1)" det (MW)) = det(M)

5 untild =1
6: Choose the sign of det(M) uniformly at random
7: Use least-squares to find the linear combination Z;:ll ¢j[Mi ... M, ;] clos-

est to [My,, ... My ], and let & denote the nearest integer to ¢;
8: Update [Mi,, ... M, ] as

n—1
My Myy] = > &My ... My j]
j=1

9: Return M

2.4 Cryptographic Group Actions

Here, we give a refined version of some definitions on group actions introduced
in [18] and [1].



Definition 7 (One-Way Function). Let P, X and Y be sets indexed by
the parameter \, and let Dp and Dx be distributions on P and X respec-
tively. A (Dp,Dx)—OWF family is a family of efficient computable functions
{fop("): X = Y}ppep such that for all PPT adversaries A we have

Pr{fos(A(pp, fop(7))) = fop(z)] < negl(N),

where pp < Dp and x < Dx. If Dp and Dx are uniform distributions, then we
simply speak of an OWF family.

Definition 8 (Weak Unpredictable Permutation). Let K and X be sets
indexed by A\, Dg and Dx be distributions on K and X respectively, and t =
t(A\) € Nt be a parameter. Let F,f be a randomized oracle that when queried
samples x <+ Dx and outputs (z,F(k,x)). A (Dk,Dx,t)—weak UP (wUP) is
a family of efficiently computable permutations {F(k,-): X — X }rex such that
for all PPT adversaries A able to query F,f at most t times, we have

PrlAT (a%) = F(k,2*)] < negl(\),

where k < Dk and z* < Dx. If D and Dx are uniform distributions, then
we simply speak of a t—wUP family.

Definition 9 (Weak Pseudorandom Permutation). Let K and X be sets
indexed by A\, Dk and Dx be distributions on K and X respectively, and t =
t(\) € Nt be a parameter. Let ™ be a randomized oracle that samples x <+ Dx
and outputs (z,7(x)), where 7 is a random permutation on X. A (Dk, Dx,t)—weak
PRP (wPRP) is a family of efficiently computable permutations {F(k,-): X —
X}kex such that for all PPT adversaries A able to query F,f at most t times,
we have

PrlATE (1Y) = 1] — PrlA™ (1*) = 1]| < negl(\),

where k < Dg. If Dk and Dx are uniform distributions, then we simply speak
of a t—wPRP family.

Definition 8 and Definition 9 give more fine-grained notions in comparison to
their respective in [1, Section 2.1]. In particular, our definitions include a limit
on the number of queries that an adversary can make to the oracle. A similar
setting can be found in [17,39,22].

Definition 10 (Group Action). A group (G,o) is said to act on a set X if
there is a map x: G x X — X that satisfies the following two properties

1. Identity: if e is the identity element of G, then for any x € X, we have
exT =uw.
2. Compatibility: for any g,h € G and any x € X, we have (goh)xx = gx(h*x).

We use the notation (G, X, %) to denote a group action.

If (G, X,«) is a group action, for any g € G the map my:  — g+ defines a
permutation of X.



Definition 11 (Properties of Group Actions).

1. A group action (G, X, *) is said to be transitive if for every x1,z9 € X,
there exists a group element g € G such that xo = gxx1. For such a transitive
group action, the set X is called a homogeneous space for G.

2. A group action (G,X,*) is said to be faithful if for each group element
g € G, either g is the identity element or there exists a set element x € X
such that © # g x x.

3. A group action (G, X, *) is said to be free if for every group element g € G,
g is the identity element if and only if there exists some set element x € X
such that v = g * x.

4. A group action (G, X, *) is said to be regular if it is both free and transitive.
For such a reqular group action, the set X is called a principal homogeneous
space for the group G, or a G—torsor.

Definition 12 (One-Way Group Action). A group action (G, X, *), where G
is a group and X is a set indexed by a parameter A, is (Dg, Dx )—one-way if the
family of efficiently computable functions {fr: G = X}rex s (Dg,Dx)—one-
way, where f,: g+— g*x, and Dx,Dg are distributions on X, G respectively.

Definition 13 (Weak Unpredictable Group Action). A group action (G, X, *)
is (Dx,Dg,t)—weakly unpredictable if the family of efficiently computable per-
mutations {my: X — X}zex is a (Dx,Dg,t)—weak UP, where my is defined as
mg: v = g*x 2 and Dx,Dg are distributions on X, G respectively.

Definition 14 (Weak Pseudorandom Group Action). A group action
(G, X,*) is (Dx,Dg,t)—weakly pseudorandom if the family of efficiently com-
putable permutations {mg: X — X},cx is a (Dx,Dg,t)—weak PRP where 74
is defined as mg: x — gxx and Dx,Dg are distributions on X, G respectively.

3 Lattice Isomorphism as a Group Action

In this section we introduce lattice isomorphisms, in the quadratic form ver-
sion, as a group action, and we provide some results related to it. Consider the
equivalence relation ~4 defined as

A~y B <— A=4B,

and define the quotient set GLE(Z) := GL,(Z)/ ~+. The elements of GLE(Z)
are classes of equivalence, each one of them contain two elements. Namely, for
A € GL,(Z), one has a corresponding class [A]l+ € GLZ(Z), and A, —A belong
to the same class. Define the product between two classes [A]+, [B]+ € GLE(Z)

[A]+ - [B]+ = [BA]x, (1)

where BA is the result of the matrix multiplication between two representatives
B and A of the classes [B]+ and [A]4 respectively.



The set GLZ(Z) together with the product defined in Equation (1) forms a
group whose identity element is [I,]1+, whose inverse for every element [A]+ €
GLE(Z), is [A~Y+ € GLE(Z), and with the associativity property induced by
matrix multiplication associativity

([A]+-[B]+)-[Cl+ = [BA]+-[C]+ = [CBA]x = [A]+-[CBl+ = [Al+-([B]+-[C]+).

In what follows, we drop the notation on the equivalence classes. Namely, we
write A € GLZ(Z) to indicate the class [A]L € GLT(Z). Within the context of
LIP, when we write UTQU, we mean the quadratic form obtained by applying
any of the two representatives of [U]+ € GLZ(Z) (U and —U) to Q € S>°. The
following proposition defines the Lattice Isomorphism Problem in the quadratic
form version as a group action.

Proposition 1. Consider a quadratic form Q € S;7° and let [Q] be the class of
isomorphic quadratic forms to it. Then the map

£ (GL7(Z) < [Q) = (@, *(V.Qo) = Vi Qo =VTQoV,
defines a group action of GLE(Z) on [Q).

Proof. Given Qg € [Q] and V € GL,,(Z), then Q; = VTQ,V is a quadratic form
equivalent to Qo, and therefore Q; € [Q]. The identity element of GLE(Z) fixes,
through +, any element of [Q]. Finally, for U,V € GLE(Z), we have that

(U-V)xQo=(VU) QVU =U (VTQuV)U =U x (VTQoV) = U » (V x Qp),
which proves the compatibility. a

Note that the map * is defined identically for any class of equivalent quadratic
forms [@)]. Differently from most other cryptographic group actions used in the
literature [1,32,12], in our case we have that both the base set and the group are
infinite.

Proposition 2. Let Q € SV be the quadratic form for a basis of a lattice L.
Then, the group action (gﬁf(Z), [Q], %) is transitive and faithful.

Proof. We begin by proving the transitivity. If Qg, Q1 € [@], then Q¢ and Q; are
isomorphic to @, that is, there exist U,V € gﬁf (Z) such that Qo = UTQU and
Q1 = VTQV. Then, one has that Q; = (U~'V) QoU~V and U~V € GL£F(Z)
maps Qo to @1 via the group action x. This proves the transitivity property and,
hence, the equivalence class [Q] is a homogeneous space for GLE (7).

We prove now the group action to be faithful by contradiction. Let U # I,, €
GLE(Z) and assume that fixes every element of [Q]. Then for every Qo € [Q)],
we have that U x Qy = Qo. Let V € GLF(Z) any unimodular different from the
identity and let Q1 = V * Q. Since @ € [Q], we have that



(V-U)xQo=UxQ1=Q1=VxQo=VxQo=Vx{UxQo) = (U-V)*xQo.

In other words, for every Qo € [Q] and every V € GLZ(Z), U and V always
commute in the group operation of Qﬁf(Z). This, however happens only for
U=1,. a

The following proposition sets a condition for the free condition to be satis-
fied.

Proposition 3. Let Q € S>° be a quadratic form. Then, the group action
(GLE(Z),[Q], %) is free if and only if Q is automorphism-free.

Proof. In this proof, in order to avoid confusion, we bring back the equivalence
class notation for the elements of GLE(Z). Assume Q to be automorphism-
free. Then, for Qy € [Q], if VTQoV = Qo, we have that V € GL,(Z) is an
automorphism for Q and therefore V' = +1,,, that is, V € [I,]+ € GLZ(Z). On
the contrary, if for every given quadratic form Qo € [@], [I,]+ is the only element
of GLE(Z) that fixes Qo, then Qo has only trivial automorphisms (I,, and —I,,)
as well as every element of the class [@]. Therefore, @ is automorphism-free. O

Theorem 1 introduces a new result for LIP that gives a sufficient number of
oracle queries for an adversary to invert the group action in polynomial time
and space. Given the generality of the result, we do not limit on any specific
distribution on the group GLZ(Z) for the secret unimodular matrix. On the
contrary, concerning the distribution on the base set [Q)], we need the distribution
to satisfy the following property.

Definition 15. Let Dig) be a distribution over [Q], for Q € S>9 and let d =

n
% and p > d be positive integers. We say that Diq) induces p—linear in-

dependence if, gien Q1,...,Qp < Diq), the p x d matriz Mg whose rows are
unroll(Q;) (see definition in Section 2) is such that

Prirank(Mg) < d] < negl(n).

For simplicity, we write that a distribution Dq) is p—linear when il induces
p—linear independence.

Theorem 1. Let Q € S;° and Dgrt(z) be a distribution over GLE(Z). For

d= %, let Dyq) be a d—linear distribution over [Q]. Then, the group action

(gﬁ,ﬁf(Z), [Q], %) is not a (Diq), Dgrt(z) t)—weak unpredictable group action, for
any t > d.

Proof. We show that the (GL£Z(Z),[Q],*) is not a (Diq): Dg 2 () d)—weak un-
predictable group action by providing a polynomial-time algorithm Recover to
n(n+1)

invert the group action. Let A be an adversary able to make d = ——5— queries

to a randomized oracle Fg that, when queried, samples a @) <— D|q) and outputs

10



(Q,VTQV) € 87° x 870, Then, the adversary A is able to collect a list of d
pairs Q = {(Q;, VTQ;V)}iz1,...a such that the d x d matrix Mg whose rows are
composed by unroll(Q;) is full rank with probability 1 — negl(n).

We describe first a procedure Linearize, sub-routine of the main algorithm
Recover to compute the secret unimodular V. The underlying idea takes inspi-
ration from the work of Rasslan and Youssef [38].

Procedure Linearize. Consider one pair (Q,Q" = VTQV) from the set Q. Denote
with Q; ; (vesp. Q; ;) the (i,7)—th entry of Q (resp. @Q'). Given that @ is sym-
metric, we have that Q; ; = Qj; (vesp. Q},; = Q). Then, we can write the
equation

n n

Q1 - X(i k), () (2)
k=1 1=1

where X(; 1),j,iy = Vix-Vj foreachd, j,k, 1 € {1,...,n}, and V; ; is the (i, j)—th
entry of V. Let us consider as baseline Equation (2) with ¢ = j:

n

Q.= Z Z 2Qk,1 - X(ik), (i) + Z Qi X(i k), (i,k)-

k=11=k+1 k=1

Writing the above equation as a d—dimensional vector-matrix multiplication, we
get Q;; = Q- x; where

Q=[Q112Q12...2Q1n Q222Q23 ...2Q24 ... Qunl, and
.
xi = [ X)) - Xi),6m) X(6,2),02) - X(0.2),66m) -+ (), (im)) -

For i # j, we rewrite Equation (2) as follows:

R k), G T X @, 6.k
Q;j:ZZQQk,p( ( )(J)Q ( ])>+2Qkk Xik),Gky- (3)

k=11=k+1 k=1

Y k),G.0
Let y; ; be the d-dimensional vector with coefficients Y{; 1) ;1) and X; ) ;)
given by
-
Yig = [Xen.6.0 Ye,02 - Yen.om Xa2.62) Yon,6.9 - Xam.am] -
Then we have that Q] ; = Q -y, ; and

d-by-d matrix

Q=Q [X1y12---YinX2Y23--- Y2 - - - Xn (4)
L 1

d-dimensional vectors

where

Q=[Q11 Qo Qo Q3. Qoo @yl

11



Algorithm Recover. The procedure Linearize generates a linear system with d?
variables and d equations. Given that we have d pairs (@Q;, Q}) in Q, we repeat
the above technique to derive d? linearly independent equations and, therefore,
proceed by finding the unique solution to the associated system. We describe
the algorithm to recover V' below and we will refer to it as Recover:

1. For each pair (Q;,Q}) in Q, apply Linearize(Q;, Q!) and get the following
equation

Q=Qi [X1y12---YinX2Y23 - Yo --- Xn] .

2. Solve the linear system

Qi Q:
=1 [Xl Yi,2 .- Yi,n X2 Y2,3-~-}’2,n-~-Xn]-

Q; Qu

to retrieve x1,...x, as follows
71 ’
Q Q)
ZZ[X1Y1,2--~Y1,nX2Y2,3-~-Y2,n---Xn]: : :

Qu Q;

By construction, solution z has rational values concerning the entries Y{; 1), (1)
from y; ;. In other entries different from Y{; 1) (;,1), the values are the integers
determined by X; 1, (j,1)-

3. Derive the entries of the solution matrix U determined by z by computing

Zj

first U1 = /21,1, then U;; = U111 for j < n, and so on for each single entry

in z. More precisely, we have U; ; = [z]lll for each i < n, and U;; = zU’jjl,
where k = ;;i(n —1+1) for each j = 1,...,n. We have the following two

scenarios:

(a) fU; 1 #0fori=1,...,n then U = £V and the algorithm terminates.

(b) If U;;; = 0 for some 1 < 4 < n, then the algorithm cannot recover the full
matrix U as there would be a division by zero. In this case, one samples
a unimodular matrix R using Algorithm 1 for a parameter T = O(n).
So, one computes the set Q" = {(Q, RTQ'R): (Q,Q’) € Q} and repeats
Recover with Q" as input. Note that Mg = Mg, and so rank(Mg:) = d.
If one succeeds at recovering the matrix W = UR (i.e., W has only non-
zero entries in its first column). Then one recovers &V as U = WR™!
and the algorithm terminates. Otherwise, one tries again with a different
unimodular matrix R until it succeeds.

Memory and time complexities. Recover requires one d-dimensional matrix in-

version and one d-dimensional matrix multiplication. The last step of deriving
the entries of V takes O(n?) integer operations. Recall that d = % Then

12
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the time complexity of deriving V' becomes O ( ———~ + n* ) operations. Since

we need to store four d-dimensional matrices, we have a memory complexity
equal to O(4d?) = O(n?(n + 1)?).

We are left to show that the number of tries in Step 3b in Recover is negligible
and does not grow with n. Let Ry 1, ..., Ry 1 denote the entries of the first column
of R which are uniformly distributed in [-T,T] C Z (because of Algorithm 1).
Then we have that VR has one or more zeros in its firs column if and only if
(Ri1,...,Rpn1) is a solution to the Diophantine equation

Viixr + Vjpxa + -+ Vjpon =0, for some 1 < j < n. (5)

Since V is non-singular, at least one entry per row is non-zero. Without lost of
generality, assume Vj,, # 0. Then,

oo Vi o Vie Vim-1
n = 1 2=t T,
Vin Vin Vin
that is, x,, is uniquely determined by z1, ..., z,—1 and, whether or not (z1,...,z,_1)

leads or not to a solution is determined by a congruence condition modulo V.
Thus, for every j, there exists a rational constant 0 < «; < 1 such that the
number of solutions is asymptotic to v,(27 + 1)"~!. Therefore, the proportion
of solutions on all the possible vectors is asymptotic to y; /(27 + 1). Hence, the
probability that [R; 1 ... Ry 1] is not a solution of any of Equation (5) is at least

1 " 1 \" 1\" .,
1l-—) =(1—-——) =(1—— me*”c, for some ¢ > 1.
2T+ 1 O(n) cn

O

Pseudorandomness of a permutation is a stronger property than unpredictabil-
ity, therefore we obtain the following corollary.

Corollary 1. Let Q € S§;° and Dgrt(z) be a distribution over GLE(Z). For

d= %, let Dyg) be a d—linear distribution over [Q]. Then, the group action
(QL’%(Z), [Q],*) is not a (D[Q],Dgﬁf(z),t)—weak pseudorandom group action,
for any t > d.

Theorem 1 and Corollary 1 can be easily generalized to the case of a D
being p—linear, for p > d, when the adversary is able to make p or more queries
to the random oracle.

On d-linear Distributions and Experimental Verification. We believe that
the hypothesis on the distribution Dig) to be d—linear is realistic. Essentially,
we require Dig) to output quadratic forms that are linearly independent from
each other via the function unroll(). On the other hand, a distribution that
outputs samples that are somewhat more likely to be linearly dependant would
make them more predictable. Hence, it would likely come with serious security
implications when used to build cryptographic primitives.

13



We cannot prove that D; ([Q]) (described in Definition 6, introduced and used
in [24]) is d-linear theoretically. However, we heuristically verified that D; ([Q])
behaves as a d-linear distribution. Therefore, we make the following assumption
which will be used to prove the results in Section 4.

Assumption 1 For a quadratic form Q € S

>0 the Gaussian Form Distribution

Dy ([Q]), for s > max{\,(Q), B5| -y/In(2n +4)/7}, s w—lmear.
Using D; ([Q]) as distribution for the base set [Q] and several different distri-
butions on gﬁf (Z), we verified the correctness of Recover presented in the proof

of Theorem 1 via a sagemath implementation available as an attachment to this
manuscript.

3.1 Weak subgroups of GL(Z)

Theorem 1 shows that it is enough to obtain w “independent” LIP instances

sharing the same secret unimodular V for its efficient recovery. In this section, we
use this fact to uncover a new family of weak LIP instances. Namely, if the secret
unimodular matrix belongs to a commutative subgroup of GL(Z) (eg. circulant
matrices, powers of a matrix, ...), then it can be recovered in polynomial time.
Let G. C GL(Z) be a commutative group, and let V € G.. Given an LIP
instance (Q, Q' = VTQV), one is able to construct more LIP instances sharing
the same secret unimodular matrix V' (and simulate the calls to the oracle in
Theorem 1) as follows. Sample a unimodular matrix U € G. and compute

(Q=U"QU, Q' =U"'QU =U0"VTQVU =V'UTQUV =VTQV).

Hence, from one single call to the oracle, one can efficiently generate a long
enough list of LIP instances sharing the same secret unimodular V and use
Recover described in the proof of Theorem 1 to retrieve it.

4 New Hard Problems on Quadratic Forms

Another implication of Theorem 1 is the fact that it implicitly introduces two new
LIP-equivalent computational hard problems on quadratic forms. This section
introduces those hinted two new problems and provides their polynomial-time
reductions to sLIPg, when @ is automorphism-free.

Definition 16 (Transpose Quadratic Form Problem (TQFP)). Let £L(B)
be a full-rank n-dimensional lattice and Q € S0 be the quadratic form Q =
B'B. Given Q' € [Q], the Transpose Quadratic Form Problem is to compute
@ € [Q] such that @ =UQUT, where U € GL,(Z) satisfies Q' = UTQU.

Definition 17 (Inverse Quadratic Form Problem (IQFP)). Let £(B) be
a full-rank n-dimensional lattice and Q € S0 be the quadratic form Q = BT B.
Given Q' € [Q)], the Inverse Quadratic Form Problem is to compute @ € Q]
such that @ =U"TQU™', where U € GL,,(Z) satisfies Q' = UTQU.
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TQFP and IQFP accept as many solutions as the number of isomorphisms
between @ and @', up to the sign. For example, for the case of TQFP, the solution
set is defined as Sg = {Qv = (VU)'Q(VU): V € Aut (Q)}. For the specific
case of automorphism-free quadratic forms, the solution is unique (|Sg/| = 1).
Taking Assumption 1 for true, we give in Lemma 1 and Lemma 2 polynomial-
time reductions from sLIPg to TQFP and IQFP respectively. We implemented
and successfully tested these reductions in a sagemath script available as an
attachment to this manuscript.

Lemma 1 (From sLIPg to TQFP). Let Q € S.° be an automorphism-free
quadratic form. Given an oracle Otqep that solves TQFP in time Ty, there is
an algorithm that solves sLIPg in expected time O (nQ(TO + 1) —|—n6), where
T, is the time complezity of one call to D, ([Q]), for s > max{\,(Q), } B5|

VIn(2n +4)/7}.

Proof. Let us fix the same setup as Definition 16, then we have Q and Q' =
VTQV, where Q' € [Q]. For simplicity, we assume that Otqrp always solves

TQFP for isomorphic input @, Q’. We give an algorithm which solves sLIPg with
n(n+1)
—.

a polynomial number of calls to Otqrp as follows. Let us set d =

1. Forward (@', Q) to Otqrp and receive the response @ =VQVT.
2. (a) Sample a quadratic form Q = WTQW along with W € GL£,,(Z) from
D, Q). A
(b) Compute Q" = WQWT = WVQVTWT and send (Q”,Q) to Otqrp.
Record its response as Q = VIWTQWV = VIQV.
(c) Compute Q" = WQ'WT = WVTQVWT and send (Q"”,Q) to Otqrp.
Record its response as @ =VWTQWVT =vQVT.
3. Repeat Step 2 a necessary number of times, for different unimodular W, to
derive a set Q = {( éi)7 gl)) ,i=1,..., d} such that the d x d matrix Mg

whose rows are unroll (Q(()i)> is full rank.

4. Retrieve V <+ Recover(Q) as described in Theorem 1.

Running time. Let us assume both matrix multiplication and inversion take

O(n?) integer operations. Step 1 costs one call to the oracle Otqrp. Step 2

samples one random unimodular matrix, makes four matrix multiplications, and
(n+1)

two queries to Otqrp. Now, Step 2 must be repeated O (TLT) times to derive

enough linear equations (Step 3). Then Steps 1 to 3 has a complexity equals to

n(n+1)

0 (To + (2T + T1 + 4n3)> =0 (n*(To +T1) +n°).

Step 4 requires O (n6) operations to retrieve V', which gives a total asymp-
totic time complexity of O (n?(Ty + T1) + n®).
O
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Remark 2. Regarding Lemma 1, in practice one can reduce the number of calls
to Otqep by a factor of n by exploiting the following. Let Q,Q’,Q € S.7° be
equivalent quadratic forms with Q' = VTQV and @ = VQVT, for some unimod-
ular matrix V' € GL,(Z). Then, one can compute the quadratic forms

Q1 =Q'QY =VTQVQV'QV, Qo = QQQ,
and have that (Qg, Q1) is such that Q; = VT QoV. Iteratively, one can define

= Q" = Q(QQ),

with ng) = VTQE;)V, for i > 0. The Cayley-Hamilton theorem ensures that, for
any square matrix M with n rows over a commutative ring, we have that

M™ € Span{[l,, M, M? ... ,M"'} [2, §7.11]. Therefore, with the above ap-
proach, we can get a set Q = {(Qi,Q’i = VTQiV)}?:l of size p < n from the
knowledge of Q' = VTQV and @ = VQVT. Using this trick in Step 2 of the
proof of Lemma 1, and assuming that p reaches n with high probability, one can
reduce the number of calls to Otqrp by a factor of n. In this case, taking also
into consideration the number of matrix multiplications, the total cost of the
reduction in Lemma 1 would be O(n(Ty + T1) + n°%).? In our sagemath imple-
mentation, we implemented and tested the variant of the reduction in Lemma 1
that uses such optimization in Step 2.

Lemma 2 (From sLIPg to IQFP). Let Q € S;° be an automorphism-free
quadratic form. Given an oracle Oiqrp that solves IQFP in time Ty, there exists
an algorithm that solves sLIPg in expected time O (nQ(To +T1) —|—n6), where
Ty is the time complexity of one all to Ds ([Q]), for s > max{\.(Q), || B
VIn(2n +4)/7}.

Proof. Let us fix the same setup as Definition 17, then we have Q and Q' =
VTQV, where Q' € [Q]. For simplicity, we assume that Ojqrp always solves

IQFP, for a isomorphic input @, Q’. We give an algorithm which solves sLIPg
n(n+1)
—.

with a polynomial number of calls to Ojqrp as follows. Let us set d =

1. Forward (Q’, Q) to Oiqrp and receive the response @ =V-TQVv-L
2. (a) Sample a quadratic form Q = WTQW along with W € GL,(Z) from

D, ([Q))-
(b) Calculate Z = W1

(c) Compute Q" = ~ZT@Z = Z"WQV'Z and send (Q", Q) to Oiqrp. Record
its response as Q = VIWTQWV =VTQV.

3. Repeat Step 2 a necessary number of times, for different unimodular W, to

derive a set Q = {( éz), gl)) ,i1=1,..., d} such that the d x d matrix Mg

whose rows are unroll (Q(()i)) is full rank.
4. Retrieve V' < Recover(Q) as described in Theorem 1.

2 We have O(-) instead of O(-) because of the increase of the integer coefficients size
when applying this optimization trick.
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Running time. The cost analysis is analogous to Lemma 1, with the addition of
a matrix inversion in Step 2. However, this is negligible on the total cost of the
reduction, that is O (n?(Tpy + T1) + n®).

O

To illustrate the above reductions from Lemma 1 and Lemma 2, we simulate
the algorithms concerning TQFP and IQFP using a sagemath library [41]; we
provide our code as supplementary material.

Remark 3. An adversary having access to both Otqrp and Oiqrp can solve sLIPg
with only one query to each of the two oracles in polynomial time. Indeed, let
Q' = UTQU. Query Otqrp and Ojqrp to obtain

Q1 =UQU" and Q,=UTQU .
The product of these gives

Q1Q2=UQ*U™".

Now, the key observation here is that U can be retrieved by solving an IMSP
instance (see Definition 4) with A = Q2 and B = Q1Q> as input for which there
exists a probabilistic polynomial time [10,28]. Since we assume @ has trivial
automorphism, the algorithm is expected to output £U.

Remark 4. Lemma 1 and Lemma 2 can be generalized to the case of quadratic
forms with a non-trivial automorphism group. However, in this case, the solutions
to TQFP and IQFP are not unique, but there are as many solutions as the number
of automorphisms divided by 2. Consider the case of a TQFP oracle Orqrp that
returns one of the possible solutions uniformly at random. Then, the algorithm
in Lemma 1 would allow retrieving the correct solution only when, for every
query to the algorithm, it returns exactly the solution that we are looking for.
Therefore, given that we require n correct solutions from Otqrp, one must repeat
on average the whole algorithm (JAut (Q)|/2)" times.

5 Conclusions and Future Directions

In this work we formalized lattice isomorphism as a group action and proved
some properties of it. We introduced a result that gives the sufficient number of
instances sharing the same secret for the problem to be solvable in polynomial
time. The consequences of our work include a new family of weak isomorphisms
and the fact that secret-keys in this context must not be reused in combinations
with other public keys.

As a future work, it would be interesting to investigate whether an analogous
result can be obtained also for other group actions and equivalence problems (e.g.
code equivalence). More in general, it would be interesting to investigate whether
other group actions also come with a similar limitation on the number of queries
allowed to an adversary.
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We introduced two new hard problems and applied our result to prove them
to be equivalent to sLIP for the case of quadratic forms with trivial automorphism
group. We also leave as a future work to investigate the possible applications of
these in building new cryptographic primitives (for example, a similar problem
to IQFP for code equivalence is used in [16,4]).

Acknowledgments The authors thank Keita Xagawa and Victor Mateu for fruit-
ful discussions on the topic. We also thank Elena Kirshanova and anonymous
reviewers for the useful comments on a earlier version of this manuscript.

References

1. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) ASTACRYPT 2020, Part II.
LNCS, vol. 12492, pp. 411-439. Springer, Heidelberg (Dec 2020). https://doi.org/
10.1007/978-3-030-64834-3_14

2. Apostol, T.M.: Calculus, Vol. II, Multi-Variable Calculus and Linear Algebra.
Blaisdell, Waltham, MA (1969)

3. Banegas, G., Bernstein, D.J., Campos, F., Chou, T., Lange, T., Meyer, M.,
Smith, B., Sotdkova, J.: CTIDH: faster constant-time CSIDH. IACR TCHES
2021(4), 351-387 (2021). https://doi.org/10.46586/tches.v2021.i4.351-387, https:
//tches.iacr.org/index.php/TCHES /article/view /9069

4. Barenghi, A., Biasse, J.F., Ngo, T., Persichetti, E., Santini, P.: Advanced sig-
nature functionalities from the code equivalence problem. International Journal of
Computer Mathematics: Computer Systems Theory 7(2), 112-128 (2022). https://
doi.org/10.1080,/23799927.2022.2048206, https://doi.org/10.1080,/23799927.2022.
2048206

5. Bennett, H., Ganju, A., Peetathawatchai, P., Stephens-Davidowitz, N.: Just how
hard are rotations of zn? algorithms and cryptography with the simplest lattice.
In: Advances in Cryptology — EUROCRYPT 2023: 42nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Lyon,
France, April 23-27, 2023, Proceedings, Part V. p. 252-281. Springer-Verlag, Berlin,
Heidelberg (2023). https://doi.org/10.1007/978-3-031-30589-4_9, https://doi.org/
10.1007/978-3-031-30589-4_9

6. Beullens, W., Disson, L., Pedersen, R., Vercauteren, F.: CSI-RAShi: Distributed
key generation for CSIDH. In: Cheon, J.H., Tillich, J.P. (eds.) Post-Quantum Cryp-
tography - 12th International Workshop, PQCrypto 2021. pp. 257-276. Springer,
Heidelberg (2021). https://doi.org/10.1007/978-3-030-81293-5_14

7. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: Efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.)
ASTACRYPT 2019, Part I. LNCS, vol. 11921, pp. 227-247. Springer, Heidelberg
(Dec 2019). https://doi.org/10.1007/978-3-030-34578-5_9

8. Biasse, J.F., Micheli, G., Persichetti, E., Santini, P.: LESS is more: Code-based
signatures without syndromes. In: Nitaj, A., Youssef, A.M. (eds.) AFRICACRYPT
20. LNCS, vol. 12174, pp. 45-65. Springer, Heidelberg (Jul 2020). https://doi.org/
10.1007/978-3-030-51938-4_3

9. Blanks, T.L., Miller, S.D.: Generating cryptographically-strong random lattice
bases and recognizing rotations of Z". In: Cheon, J.H., Tillich, J.P. (eds.) Post-
Quantum Cryptography. pp. 319-338. Springer International Publishing, Cham
(2021)

18


https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.46586/tches.v2021.i4.351-387
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://doi.org/10.1080/23799927.2022.2048206
https://doi.org/10.1080/23799927.2022.2048206
https://doi.org/10.1080/23799927.2022.2048206
https://doi.org/10.1080/23799927.2022.2048206
https://doi.org/10.1080/23799927.2022.2048206
https://doi.org/10.1080/23799927.2022.2048206
https://doi.org/10.1007/978-3-031-30589-4_9
https://doi.org/10.1007/978-3-031-30589-4_9
https://doi.org/10.1007/978-3-031-30589-4_9
https://doi.org/10.1007/978-3-031-30589-4_9
https://doi.org/10.1007/978-3-030-81293-5_14
https://doi.org/10.1007/978-3-030-81293-5_14
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Bley, W., Hofmann, T., Johnston, H.: Computation of lattice isomorphisms and
the integral matrix similarity problem. Forum of Mathematics, Sigma 10, e87 1-36
(2022). https://doi.org/10.1017 /fms.2022.74, https://doi.org/10.1017/fms.2022.74
Blaser, M., Chen, Z., Duong, D.H., Joux, A., Nguyen, N.T., Plantard, T., Qiao,
Y., Susilo, W., Tang, G.: On digital signatures based on isomorphism problems:
Qrom security, ring signatures, and applications. Cryptology ePrint Archive, Pa-
per 2022/1184 (2022), https://eprint.iacr.org/2022/1184, https://eprint.iacr.org/
2022/1184

Borin, G., Persichetti, E., Santini, P.: Zero-knowledge proofs from the action sub-
graph. Cryptology ePrint Archive, Paper 2023/718 (2023), https://eprint.iacr.org/
2023/718, https://eprint.iacr.org/2023/718

Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.)
45th ACM STOC. pp. 575-584. ACM Press (Jun 2013). https://doi.org/10.1145/
2488608.2488680

Castryck, W., Decru, T.: CSIDH on the surface. In: Ding and Tillich [21], pp.
111-129. https://doi.org/10.1007/978-3-030-44223-1_7

Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An effi-
cient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.)
ASTACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395—427. Springer, Heidelberg
(Dec 2018). https://doi.org/10.1007/978-3-030-03332-3_15

Chou, T., Niederhagen, R., Persichetti, E., Randrianarisoa, T.H., Reijnders, K.,
Samardjiska, S., Trimoska, M.: Take your meds: Digital signatures from matrix
code equivalence. In: El Mrabet, N., De Feo, L., Duquesne, S. (eds.) Progress
in Cryptology - AFRICACRYPT 2023. pp. 28-52. Springer Nature Switzerland,
Cham (2023)

Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430—-448. Springer, Heidelberg (Aug 2005). https://doi.org/10.1007/11535218_
26

Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Paper
2006/291 (2006), https://eprint.iacr.org/2006/291, https://eprint.iacr.org/2006/
291

Cozzo, D., Smart, N.P.: Sashimi: Cutting up CSI-FiSh secret keys to produce an
actively secure distributed signing protocol. In: Ding and Tillich [21], pp. 169-186.
https://doi.org/10.1007/978-3-030-44223-1_10

De Feo, L., Fouotsa, T.B., Kutas, P., Leroux, A., Merz, S.P., Panny, L., Wesolowski,
B.: SCALLOP: Scaling the CSI-FiSh. In: Boldyreva, A., Kolesnikov, V. (eds.)
PKC 2023, Part I. LNCS, vol. 13940, pp. 345-375. Springer, Heidelberg (May
2023). https://doi.org/10.1007/978-3-031-31368-4_13

Ding, J., Tillich, J.P. (eds.): Post-Quantum Cryptography - 11th International
Conference, PQCrypto 2020. Springer, Heidelberg (2020)

Dodis, Y., Puniya, P.: Feistel networks made public, and applications. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 534-554. Springer, Heidelberg
(May 2007). https://doi.org/10.1007/978-3-540-72540-4_31

Ducas, L., Postlethwaite, E.W., Pulles, L.N., van Woerden, W.P.J.: Hawk: Module
LIP makes lattice signatures fast, compact and simple. In: Agrawal, S., Lin, D.
(eds.) ASTACRYPT 2022, Part IV. LNCS, vol. 13794, pp. 65-94. Springer, Heidel-
berg (Dec 2022). https://doi.org/10.1007/978-3-031-22972-5_3

19


https://doi.org/10.1017/fms.2022.74
https://doi.org/10.1017/fms.2022.74
https://doi.org/10.1017/fms.2022.74
https://eprint.iacr.org/2022/1184
https://eprint.iacr.org/2022/1184
https://eprint.iacr.org/2022/1184
https://eprint.iacr.org/2023/718
https://eprint.iacr.org/2023/718
https://eprint.iacr.org/2023/718
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1007/978-3-030-44223-1_7
https://doi.org/10.1007/978-3-030-44223-1_7
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/11535218_26
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-44223-1_10
https://doi.org/10.1007/978-3-030-44223-1_10
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-540-72540-4_31
https://doi.org/10.1007/978-3-540-72540-4_31
https://doi.org/10.1007/978-3-031-22972-5_3
https://doi.org/10.1007/978-3-031-22972-5_3

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Ducas, L., van Woerden, W.P.J.: On the lattice isomorphism problem, quadratic
forms, remarkable lattices, and cryptography. In: Dunkelman and Dziembowski
[25], pp. 643-673. https://doi.org/10.1007/978-3-031-07082-2_23

Dunkelman, O., Dziembowski, S. (eds.): EUROCRYPT 2022, Part III, LNCS, vol.
13277. Springer, Heidelberg (May / Jun 2022)

Eick, B., Hofmann, T., O’'Brien, E.A.: The conjugacy problem in GL(n,Z). J. Lond.
Math. Soc. 100(3), 731-756 (2019). https://doi.org/10.1112/jlms.12246, https://
doi.org/10.1112/jlms.12246

El Kaafarani, A., Katsumata, S., Pintore, F.: Lossy CSI-FiSh: Efficient signature
scheme with tight reduction to decisional CSIDH-512. In: Kiayias, A., Kohlweiss,
M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 157-186.
Springer, Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45388-6_6
Fieker, C., Hart, W., Hofmann, T., Johansson, F.: Nemo/Hecke: Computer Alge-
bra and Number Theory Packages for the Julia Programming Language. In: Pro-
ceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic
Computation. pp. 157-164. ISSAC ’17, ACM, New York, NY, USA (2017). https://
doi.org/10.1145/3087604.3087611, https://doi.acm.org/10.1145/3087604.3087611
Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299-320. Springer,
Heidelberg (Apr / May 2002). https://doi.org/10.1007/3-540-46035-7_20

Haviv, 1., Regev, O.: On the lattice isomorphism problem. In: Chekuri, C. (ed.)
25th SODA. pp. 391-404. ACM-SIAM (Jan 2014). https://doi.org/10.1137/1.
9781611973402.29

Ji, Z., Qiao, Y., Song, F., Yun, A.: General linear group action on tensors: A
candidate for post-quantum cryptography. In: Hofheinz, D., Rosen, A. (eds.)
TCC 2019, Part I. LNCS, vol. 11891, pp. 251-281. Springer, Heidelberg (Dec 2019).
https://doi.org/10.1007/978-3-030-36030-6_11

Joux, A.: Mpc in the head for isomorphisms and group actions. Cryptology ePrint
Archive, Paper 2023/664 (2023), https://eprint.iacr.org/2023/664, https://eprint.
iacr.org/2023/664

Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic
Perspective, vol. 671 (01 2002). https://doi.org/10.1007/978-1-4615-0897-7
Myasnikov, A.D., Ushakov, A.: Cryptanalysis of matrix conjugation schemes.
J. Math. Cryptol. 8(2), 95-114 (2014). https://doi.org/10.1515/jme-2012-0033,
https://doi.org/10.1515/jmc-2012-0033

NIST: Post-quantum cryptography: Digital signature schemes. https://csrc.nist.
gov/projects/pqc-dig-sig

NIST: Post-quantum cryptography standardization. https://csrc.nist.gov/
Projects/post-quantum-cryptography /selected-algorithms-2022

Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials
(IP): Two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EU-
ROCRYPT’96. LNCS, vol. 1070, pp. 33-48. Springer, Heidelberg (May 1996).
https://doi.org/10.1007/3-540-68339-9_4

Rasslan, M.M.N., Youssef, A.M.: Cryptanalysis of a Public Key Encryption
Scheme Using Ergodic Matrices. IEICE Trans. Fundam. Electron. Commun. Com-
put. Sci. 94-A(2), 853-854 (2011). https://doi.org/10.1587 /transfun.E94.A.853,
https://doi.org/10.1587 /transfun.E94.A.853

Sjodin, J.: Weak Pseudorandomness and Unpredictability. Ph.D. thesis, ETH
Zurich (2007), eTH Series in Information Security and Cryptography, vol. 8,
Hartung-Gorre Verlag, ISBN 3-86628-088-2

20


https://doi.org/10.1007/978-3-031-07082-2_23
https://doi.org/10.1007/978-3-031-07082-2_23
https://doi.org/10.1112/jlms.12246
https://doi.org/10.1112/jlms.12246
https://doi.org/10.1112/jlms.12246
https://doi.org/10.1112/jlms.12246
https://doi.org/10.1007/978-3-030-45388-6_6
https://doi.org/10.1007/978-3-030-45388-6_6
https://doi.org/10.1145/3087604.3087611
https://doi.org/10.1145/3087604.3087611
https://doi.org/10.1145/3087604.3087611
https://doi.org/10.1145/3087604.3087611
https://doi.acm.org/10.1145/3087604.3087611
https://doi.org/10.1007/3-540-46035-7_20
https://doi.org/10.1007/3-540-46035-7_20
https://doi.org/10.1137/1.9781611973402.29
https://doi.org/10.1137/1.9781611973402.29
https://doi.org/10.1137/1.9781611973402.29
https://doi.org/10.1137/1.9781611973402.29
https://doi.org/10.1007/978-3-030-36030-6_11
https://doi.org/10.1007/978-3-030-36030-6_11
https://eprint.iacr.org/2023/664
https://eprint.iacr.org/2023/664
https://eprint.iacr.org/2023/664
https://doi.org/10.1007/978-1-4615-0897-7
https://doi.org/10.1007/978-1-4615-0897-7
https://doi.org/10.1515/jmc-2012-0033
https://doi.org/10.1515/jmc-2012-0033
https://doi.org/10.1515/jmc-2012-0033
https://csrc.nist.gov/projects/pqc-dig-sig
https://csrc.nist.gov/projects/pqc-dig-sig
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1587/transfun.E94.A.853
https://doi.org/10.1587/transfun.E94.A.853
https://doi.org/10.1587/transfun.E94.A.853

40.

41.

Tang, G., Duong, D.H., Joux, A., Plantard, T., Qiao, Y., Susilo, W.: Practical
post-quantum signature schemes from isomorphism problems of trilinear forms.
In: Dunkelman and Dziembowski [25], pp. 582—612. https://doi.org/10.1007/978-
3-031-07082-2_21

The Sage Developers: SageMath, the Sage Mathematics Software System (Version
10.0) (2023), https://www.sagemath.org

21


https://doi.org/10.1007/978-3-031-07082-2_21
https://doi.org/10.1007/978-3-031-07082-2_21
https://doi.org/10.1007/978-3-031-07082-2_21
https://doi.org/10.1007/978-3-031-07082-2_21

	Lattice Isomorphism as a Group Action and Hard Problems on Quadratic Forms




README.md

# Lattice Isomorphism as a Group Action and Hard Problems on Quadratic Forms

Proof-of-concept implementation using **sagemath**.

## Requirements:

1. Ensure you have the following files:

   1. `algorithms.py`;
   2. `TestTheorem1.py`;
   3. `TestLemma1.py`;
   3. `TestRemark2.py`; and
   4. `TestLemma2.py`.

2. **Sagemath** installed


## Description

The script requires as argument inputs:

- the matrix dimension `n`,
- a verbose flag (optional). A single example is excutated in verbose mode.


### Example of run concerning Theorem 1

This example makes one oracle call.

```bash
% sage -python TestTheorem1.py -h
usage: TestTheorem1.py [-h] -n DIMENSION [-v]

Parses command.

options:
  -h, --help            show this help message and exit
  -n DIMENSION, --dimension DIMENSION
                        Matrix dimension: n-by-n matrices
  -v, --verbose         verbose help



% sage -python TestTheorem1.py -n 4 --verbose

# n:      4
# Oracle: Randomized oracle as in Theorem 1
# Verbose:  True

# Random lattices constructed with non-trivial automorphism:  0

########################### Public parameters

q :
[41 22 33 40]
[22 58 34 59]
[33 34 46 36]
[40 59 36 77]

q_ :
[  7041   7882  -7794  -2799]
[  7882  26941 -22501  -5397]
[ -7794 -22501  19255   4746]
[ -2799  -5397   4746   1431]

########################### Secret unimodular matrix

u :
[  9  -2  -3  -1]
[ -8   5  -5   3]
[  5  14 -12  -3]
[  4   7  -2  -4]

########################### Recovered unimodular matrix

recovered_u :
[  9  -2  -3  -1]
[ -8   5  -5   3]
[  5  14 -12  -3]
[  4   7  -2  -4]

########################### Complexity

# 0 group action calls
# 9 oracle calls concerning U (9 calls to Dₛ([Q]))
# 1 calls to Recover()
# 0 calls to SampleUₜ()

########################### It took 1.393379654000455 seconds
```

### Example of run concerning Lemma 1

This example makes **O(n²)** oracle calls.

```bash
% sage -python TestLemma1.py -n 4 --verbose 

# n:      4
# Oracle: TQFP oracle as in Lemma 1
# Verbose:  True

# Random lattices constructed with non-trivial automorphism:  0

########################### Public parameters

q :
[50 45 45 25]
[45 75 61 61]
[45 61 65 57]
[25 61 57 67]

q_ :
[ 10317  -1693 -13723  -2602]
[ -1693    565   2051    208]
[-13723   2051  18492   3601]
[ -2602    208   3601    825]

########################### Secret unimodular matrix

u :
[ -8   2  -1   3]
[  7  -6   1   1]
[  7   1   1  -5]
[  3   2 -18  -1]

########################### Recovered unimodular matrix

recovered_u :
[ 8 -2  1 -3]
[-7  6 -1 -1]
[-7 -1 -1  5]
[-3 -2 18  1]

########################### Complexity

# 10 group action calls (10 of them concern with input Vᵀ
# 10 oracle calls concerning U
# 10 calls to Dₛ([Q])
# 1 calls to Recover()
# 0 calls to SampleUₜ()

########################### It took 1.9337206179989153 seconds
```

### Example of run concerning Remark 2

This example makes **O(n)** oracle calls.

```bash
% sage -python TestRemark2.py -h           
usage: TestRemark2.py [-h] -n DIMENSION [-v]

Parses command.

options:
  -h, --help            show this help message and exit
  -n DIMENSION, --dimension DIMENSION
                        Matrix dimension: n-by-n matrices
  -v, --verbose         verbose help
chi-dominguez@JesusJaviersMBP LIP-GA % sage -python TestRemark2.py -n 4 --verbose

# n:      4
# Oracle: TQFP oracle as in Lemma 1 (optimized according to Remark 2)
# Verbose:  True

# Random lattices constructed with non-trivial automorphism:  0

########################### Public parameters

q :
[50 37 45 40]
[37 42 44 41]
[45 44 61 46]
[40 41 46 50]

q_ :
[ 8183  1072 -3994  -289]
[ 1072   371 -1161    -1]
[-3994 -1161  4425   -94]
[ -289    -1   -94    41]

########################### Secret unimodular matrix

u :
[ 10  -1   3  -1]
[ -4  -4   4   1]
[  1   1   3  -1]
[-17   1   0   1]

########################### Recovered unimodular matrix

recovered_u :
[ 10  -1   3  -1]
[ -4  -4   4   1]
[  1   1   3  -1]
[-17   1   0   1]

########################### Complexity

# 3 group action calls (3 of them concern with input Vᵀ)
# 3 oracle calls concerning U
# 3 oracle calls concerning Uᵀ
# 3 calls to Dₛ([Q])
# 1 calls to Recover()
# 0 calls to SampleUₜ()

########################### It took 1.1489530990002095 seconds
```

### Example of run concerning Lemma 2

This example makes **O(n²)** oracle calls.

```bash
% sage -python TestLemma2.py -h             
usage: TestLemma2.py [-h] -n DIMENSION [-v]

Parses command.

options:
  -h, --help            show this help message and exit
  -n DIMENSION, --dimension DIMENSION
                        Matrix dimension: n-by-n matrices
  -v, --verbose         verbose help
chi-dominguez@JesusJaviersMBP LIP-GA % sage -python TestLemma2.py -n 4 --verbose

# n:      4
# Oracle: TQFP oracle as in Lemma 1
# Verbose:  True

# Random lattices constructed with non-trivial automorphism:  0

########################### Public parameters

q :
[27 18 33 27]
[18 23 40 29]
[33 40 77 37]
[27 29 37 66]

q_ :
[ 5556  1581 -5078 -4709]
[ 1581  1809 -2462 -2393]
[-5078 -2462  5404  5092]
[-4709 -2393  5092  4807]

########################### Secret unimodular matrix

u :
[ 9  3 -9 -8]
[-6  1  3  3]
[ 3 -5  2  2]
[ 5  5 -7 -7]

########################### Recovered unimodular matrix

recovered_u :
[ 9  3 -9 -8]
[-6  1  3  3]
[ 3 -5  2  2]
[ 5  5 -7 -7]

########################### Complexity

# 10 group action calls (10 of them concern with input Vᵀ
# 10 oracle calls concerning U
# 10 calls to Dₛ([Q])
# 1 calls to Recover()
# 0 calls to SampleUₜ()

########################### It took 1.1566796070001146 seconds
```

### Testing 25 random instances

Just run (for example):

```bash
% sage -python TestTheorem1.py -n 4
% sage -python TestLemma1.py -n 4
% sage -python TestRemark2.py -n 4
% sage -python TestLemma2.py -n 4
```

### Large instances can take considerable time

Running for a large lattice could take a while.
For example, see below for random 16-dimensional.

1. `% sage -python TestTheorem1.py -n 16 --verbose` takes about **13** seconds;
2. `% sage -python TestLemma1.py -n 16 --verbose` takes about **15** seconds;
3. `% sage -python TestRemark2.py -n 16 --verbose` takes about **163** seconds; and
4. `% sage -python TestLemma2.py -n 16 --verboseP` takes about **55** seconds.
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Lattice Isomorphism as a Group Action and Hard Problems on Quadratic Forms

Proof-of-concept implementation using sagemath.

Requirements:
1. Ensure you have the following files:

1. algorithms.py;
TestTheoreml.py;
TestLemmal.py;
TestRemark2.py; and
TestLemma?2.py.

G

2. Sagemath installed

Description
The script requires as argument inputs:
e the matrix dimension n,
 a verbose flag (optional). A single example is excutated in verbose mode.
Example of run concerning Theorem 1
This example makes one oracle call.
% sage -python TestTheoreml.py -h
usage: TestTheoreml.py [-h] -n DIMENSION [-v]

Parses command.

options:
-h, --help show this help message and exit
-n DIMENSION, --dimension DIMENSION
Matrix dimension: n-by-n matrices
-v, —-verbose verbose help

% sage -python TestTheoreml.py -n 4 --verbose

# n: 4
# Oracle: Randomized oracle as in Theorem 1
# Verbose: True

# Random lattices constructed with non-trivial automorphism:
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Example of run concerning Lemma 1

This example makes O(n?) oracle calls.

% sage -python TestLemmal.py -n 4 --verbose
# n: 4

# Oracle: TQHFP oracle as in Lemma 1
# Verbose: True

# Random lattices constructed with non-trivial automorphism: O
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[ 10317 -1693 -13723 -2602]
[ -1693 565 2051 208]
[-13723 2051 18492 3601]
[ -2602 208 3601 825]
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recovered_u

[ 8 -2 1 -3]
[-7 6 -1 -1]
= =18 =G|
[-3 -2 18 1]
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u

[ -8 2 -1 3]
[ 7 -6 1 1]
[ 7 1 1 -5]
[ 3 2 -18 -1]

10 group action calls (10 of them concern with input®™V
10 oracle calls concerning U

10 calls to D([Q])
1 calls to Recover()
0 calls to,SampleU()
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Example of run concerning Remark 2
This example makes O(n) oracle calls.

% sage -python TestRemark2.py -h
-n DIMENSION [-v]
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usage: TestRemark2.py [-h]

Parses command.

options:
-h, --help
-n DIMENSION,

-v, —-verbose

# n: 4
# Oracle:
# Verbose:

# Random lattices constructed with non-trivial automorphism:

HARBBHRAARBARRRRRHRRAARAA#AR Public parameters

q :

[60 37 45 40]
[37 42 44 41]
[45 44 61 46]

show this help message and exit
--dimension DIMENSION
Matrix dimension:
verbose help
chi-dominguez@JesusJaviersMBP LIP-GA % sage -python TestRemark2.py -n 4 --verbose

TQFP oracle as in Lemma 1 (optimized according to Remark 2)
True

n-by-n matrices
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[40 41 46 50]

q_ :

[ 8183 1072 -3994 -289]
[ 1072 371 -1161 -1]
[-3994 -1161 4425 -94]
[ -289 -1 -94 41]
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u
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-4 -4 4 1]
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[-17 1 0 1]
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Example of run concerning Lemma 2
This example makes O(n?) oracle calls.

% sage -python TestlLemma2.py -h
usage: TestLemma2.py [-h] -n DIMENSION [-v]

Parses command.

options:
-h, --help show this help message and exit
-n DIMENSION, --dimension DIMENSION
Matrix dimension: n-by-n matrices
-v, —-verbose verbose help

chi-dominguez@JesusJaviersMBP LIP-GA 7 sage -python TestLemma2.py -n 4 --verbose

# n: 4

# Oracle: TQRFP oracle as in Lemma 1

# Verbose: True

# Random lattices constructed with non-trivial automorphism: O
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0 calls to.SampleU()

HARBURAAARRARARRHHRAAARAA#H IT took 1.1566796070001146 seconds

Testing 25 random instances

Just run (for example):

% sage
% sage
% sage
% sage

-python
-python
-python
-python

TestTheoreml.py -n 4
TestLemmal.py -n 4
TestRemark2.py -n 4
TestLemma2.py -n 4

Large instances can take considerable time

Running for a large lattice could take a while. For example, see below for random 16-dimensional.

1%
2. %
3. %
4. %

sage
sage
sage
sage

-python
-python
-python
-python

TestTheoreml.py -n 16 --verbose takes about 13 seconds;
TestLemmal.py -n 16 --verbose takes about 15 seconds;
TestRemark2.py -n 16 --verbose takes about 163 seconds; and
TestLemma2.py -n 16 --verboseP takes about 55 seconds.
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TestLemma1.py

#!/usr/bin/sage -python
# -*- coding: utf8 -*-

import sys
from timeit import timeit

from algorithms import (
    algorithm,
    arguments,
    counter,
    group_action,
    print_matrix,
    matrix,
    recover,
    reduce,
    sampling_quadratic_form,
    sampling_from_dsq,
    sampling_unimodular_matrix
)

from sage.all import (
    ZZ,
    e,
    log,
    pi,
    sqrt,
    identity_matrix
)

@counter
def main():
    # Setup
    n = arguments(sys.argv[1:]).dimension
    verbose = arguments(sys.argv[1:]).verbose

    if main.count == 1:
        print(f'\n# n:     \t{n}')
        print(f'# Oracle:\tTQFP oracle as in Lemma 1')
        print(f'# Verbose:\t{verbose}')

    # Instance
    q, random_automorphism = sampling_quadratic_form(n, verbose=verbose)
    b, _ = q.cholesky().gram_schmidt()
    s = b.norm() * sqrt(log(2 * n + 4, e) / pi)
    assert (q.is_symmetric())
    assert (q == q.transpose())

    u, q_ = sampling_from_dsq(q, n, s)
    assert q_ == group_action(u, q)

    # Set to zero counters
    group_action.count = 0
    sampling_from_dsq.count = 0
    recover.count = 0
    sampling_unimodular_matrix.count = 0

    if verbose:
        print(f'{"#" * 27} Public parameters')
        print_matrix(q, 'q')
        print_matrix(q_, 'q_')
        print(f'\n{"#" * 27} Secret unimodular matrix')
        print_matrix(u, 'u')

    # Main calculations
    @counter
    def function(v: matrix, p: matrix):  # It computes: V×Q×Vᵀ
        return group_action(v.transpose(), p)

    # Decorate oracle_call() with the counter() decorator
    @counter
    def oracle_call(v: matrix):
        # It simulates: given (Vᵀ×U)×Q×(Uᵀ×V), returns Uᵀ×(V×Q×Vᵀ)×U
        w = random_automorphism().transpose()
        assert w.transpose() * q * w == q
        # We did not use group_action(w * u, function(v, q)) to isolate the oracle cost
        _q = v * q * v.transpose()
        return (w * u).transpose() * _q * (w * u)

    recovered_u = algorithm(q, n, s, function, (oracle_call,))

    # Validate solution
    assert recovered_u.det() ** 2 == 1
    assert recovered_u == u or recovered_u == -u
    assert recovered_u.transpose() * q * recovered_u == q_

    # Print info
    if not verbose:
        print(f'\n{"#" * 27} iteration {main.count}')
    else:
        print(f'\n{"#" * 27} Recovered unimodular matrix')
        print_matrix(recovered_u, "recovered_u")
        print(f'\n{"#" * 27} Complexity\n')


    print(f'# {group_action.count} group action calls ({function.count} of them concern with input Vᵀ')
    print(f'# {oracle_call.count} oracle calls concerning U')
    print(f'# {sampling_from_dsq.count} calls to Dₛ([Q])')
    print(f'# {recover.count} calls to Recover()')
    print(f'# {sampling_unimodular_matrix.count} calls to SampleUₜ()')


if __name__ == '__main__':
    # main()
    tries = {True: 1, False: 25}[arguments(sys.argv[1:]).verbose]
    print(f'\n{"#" * 27} It took {timeit(lambda: main(), number=tries)} seconds\n')






TestLemma2.py

#!/usr/bin/sage -python
# -*- coding: utf8 -*-

import sys
from timeit import timeit

from algorithms import (
    algorithm,
    arguments,
    counter,
    group_action,
    print_matrix,
    matrix,
    recover,
    reduce,
    sampling_quadratic_form,
    sampling_from_dsq,
    sampling_unimodular_matrix
)

from sage.all import (
    ZZ,
    e,
    log,
    pi,
    sqrt,
    identity_matrix
)

@counter
def main():
    # Setup
    n = arguments(sys.argv[1:]).dimension
    verbose = arguments(sys.argv[1:]).verbose

    if main.count == 1:
        print(f'\n# n:     \t{n}')
        print(f'# Oracle:\tTQFP oracle as in Lemma 1')
        print(f'# Verbose:\t{verbose}')

    # Instance
    q, random_automorphism = sampling_quadratic_form(n, verbose=verbose)
    b, _ = q.cholesky().gram_schmidt()
    s = b.norm() * sqrt(log(2 * n + 4, e) / pi)
    assert (q.is_symmetric())
    assert (q == q.transpose())

    u, q_ = sampling_from_dsq(q, n, s)
    assert q_ == group_action(u, q)

    # Set to zero counters
    group_action.count = 0
    sampling_from_dsq.count = 0
    recover.count = 0
    sampling_unimodular_matrix.count = 0

    if verbose:
        print(f'{"#" * 27} Public parameters')
        print_matrix(q, 'q')
        print_matrix(q_, 'q_')
        print(f'\n{"#" * 27} Secret unimodular matrix')
        print_matrix(u, 'u')

    # Main calculations
    # Decorate function() with the counter() decorator
    @counter
    def function(v, p):  # It computes: (V⁻¹)ᵀ×Q×(V⁻¹)
        return group_action(v.inverse(), p)

    # Decorate oracle_call() with the counter() decorator
    @counter
    def oracle_call(v: matrix):
        # It simulates: given [Vᵀ×(U⁻¹)ᵀ]×Q×[(U⁻¹)×V], returns Uᵀ×((V⁻¹)ᵀ×Q×(V⁻¹))×U
        w = random_automorphism().transpose()
        assert w.transpose() * q * w == q
        # We did not use group_action(w * u, function(v, q)) to isolate the oracle cost
        v_ = v.inverse()
        _q = v_.transpose() * q * v_
        return (w * u).transpose() * _q * (w * u)

    recovered_u = algorithm(q, n, s, function, (oracle_call,))

    # Validate solution
    assert recovered_u.det() ** 2 == 1
    assert recovered_u == u or recovered_u == -u
    assert recovered_u.transpose() * q * recovered_u == q_

    # Print info
    if not verbose:
        print(f'\n{"#" * 27} iteration {main.count}')
    else:
        print(f'\n{"#" * 27} Recovered unimodular matrix')
        print_matrix(recovered_u, "recovered_u")
        print(f'\n{"#" * 27} Complexity\n')

    print(f'# {group_action.count} group action calls ({function.count} of them concern with input Vᵀ')
    print(f'# {oracle_call.count} oracle calls concerning U')
    print(f'# {sampling_from_dsq.count} calls to Dₛ([Q])')
    print(f'# {recover.count} calls to Recover()')
    print(f'# {sampling_unimodular_matrix.count} calls to SampleUₜ()')


if __name__ == '__main__':
    # main()
    tries = {True: 1, False: 25}[arguments(sys.argv[1:]).verbose]
    print(f'\n{"#" * 27} It took {timeit(lambda: main(), number=tries)} seconds\n')






TestRemark2.py

#!/usr/bin/sage -python
# -*- coding: utf8 -*-

import sys
from timeit import timeit

from algorithms import (
    algorithm,
    arguments,
    counter,
    group_action,
    print_matrix,
    matrix,
    recover,
    reduce,
    sampling_quadratic_form,
    sampling_from_dsq,
    sampling_unimodular_matrix
)

from sage.all import (
    ZZ,
    e,
    log,
    pi,
    sqrt,
    identity_matrix
)

@counter
def main():
    # Setup
    n = arguments(sys.argv[1:]).dimension
    verbose = arguments(sys.argv[1:]).verbose

    if main.count == 1:
        print(f'\n# n:     \t{n}')
        print(f'# Oracle:\tTQFP oracle as in Lemma 1 (optimized according to Remark 2)')
        print(f'# Verbose:\t{verbose}')

    # Instance
    q, random_automorphism = sampling_quadratic_form(n, verbose=verbose)
    b, _ = q.cholesky().gram_schmidt()
    s = b.norm() * sqrt(log(2 * n + 4, e) / pi)
    assert (q.is_symmetric())
    assert (q == q.transpose())

    u, q_ = sampling_from_dsq(q, n, s)
    assert q_ == group_action(u, q)

    # Set to zero counters
    group_action.count = 0
    sampling_from_dsq.count = 0
    recover.count = 0
    sampling_unimodular_matrix.count = 0

    if verbose:
        print(f'{"#" * 27} Public parameters')
        print_matrix(q, 'q')
        print_matrix(q_, 'q_')
        print(f'\n{"#" * 27} Secret unimodular matrix')
        print_matrix(u, 'u')

    # Main calculations
    @counter
    def function(v: matrix, p: matrix):  # It computes: V×Q×Vᵀ
        return group_action(v.transpose(), p)

    # Decorate oracle_call() with the counter() decorator
    @counter
    def oracle_call(v: matrix):
        # It simulates: given (Vᵀ×U)×Q×(Uᵀ×V), returns Uᵀ×(V×Q×Vᵀ)×U
        w = random_automorphism().transpose()
        assert w.transpose() * q * w == q
        # We did not use group_action(w * u, function(v, q)) to isolate the oracle cost
        _q = v * q * v.transpose()
        return (w * u).transpose() * _q * (w * u)

    # Decorate second_oracle_call() with the counter() decorator
    @counter
    def second_oracle_call(v):
        # It simulates: given (Vᵀ×Uᵀ)×Q×(U×V), returns U×(V×Q×Vᵀ)×Uᵀ
        w = random_automorphism().transpose()
        assert w.transpose() * q * w == q
        # We did not use group_action(w * u.transpose(), function(v, q)) to isolate the oracle cost
        _q = v * q * v.transpose()
        return (w * u.transpose()).transpose() * _q * (w * u.transpose())

    recovered_u = algorithm(q, n, s, function, (oracle_call, second_oracle_call), optimized=True)

    # Validate solution
    assert recovered_u.det() ** 2 == 1
    assert recovered_u == u or recovered_u == -u
    assert recovered_u.transpose() * q * recovered_u == q_

    # Print info
    if not verbose:
        print(f'\n{"#" * 27} iteration {main.count}')
    else:
        print(f'\n{"#" * 27} Recovered unimodular matrix')
        print_matrix(recovered_u, "recovered_u")
        print(f'\n{"#" * 27} Complexity\n')


    print(f'# {group_action.count} group action calls ({function.count} of them concern with input Vᵀ)')
    print(f'# {oracle_call.count} oracle calls concerning U')
    print(f'# {second_oracle_call.count} oracle calls concerning Uᵀ')
    print(f'# {sampling_from_dsq.count} calls to Dₛ([Q])')
    print(f'# {recover.count} calls to Recover()')
    print(f'# {sampling_unimodular_matrix.count} calls to SampleUₜ()')


if __name__ == '__main__':
    # main()
    tries = {True: 1, False: 25}[arguments(sys.argv[1:]).verbose]
    print(f'\n{"#" * 27} It took {timeit(lambda: main(), number=tries)} seconds\n')






TestTheorem1.py

#!/usr/bin/sage -python
# -*- coding: utf8 -*-

import sys
from timeit import timeit

from algorithms import (
	arguments,
	counter,
    group_action,
    print_matrix,
    recover,
    reduce,
	sampling_quadratic_form,
	sampling_from_dsq,
    sampling_unimodular_matrix
)

from sage.all import (
    ZZ,
	e,
	log,
	pi,
	sqrt,
    identity_matrix
)

@counter
def main():
    # Setup
    n = arguments(sys.argv[1:]).dimension
    verbose = arguments(sys.argv[1:]).verbose

    if main.count == 1:
        print(f'\n# n:     \t{n}')
        print(f'# Oracle:\tRandomized oracle as in Theorem 1')
        print(f'# Verbose:\t{verbose}')

    # Instance
    q, random_automorphism = sampling_quadratic_form(n, verbose=verbose)
    b, _ = q.cholesky().gram_schmidt()
    s = b.norm() * sqrt(log(2 * n + 4, e) / pi)
    assert (q.is_symmetric())
    assert (q == q.transpose())

    u, q_ = sampling_from_dsq(q, n, s)
    assert q_ == group_action(u, q)

    # Set to zero counters
    group_action.count = 0
    sampling_from_dsq.count = 0
    recover.count = 0
    sampling_unimodular_matrix.count = 0

    if verbose:
        print(f'{"#" * 27} Public parameters')
        print_matrix(q, 'q')
        print_matrix(q_, 'q_')
        print(f'\n{"#" * 27} Secret unimodular matrix')
        print_matrix(u, 'u')

    # Main calculations
    @counter
    def randomized_oracle():
        # We did not use group_action(w * u, function(v, q)) to isolate the oracle cost
        _, _q = sampling_from_dsq(q, n, s)
        return _q, u.transpose() * _q * u

    m = n * (n + 1) // 2
    v = identity_matrix(ZZ, n)
    recovered_u = None
    full_rank = False
    while not full_rank:
        q0 = []
        q0.append(q)
        q1 = []
        q1.append(q_)
        for i in range(0, m - 1, 1):
            q0_i, q1_i = randomized_oracle()
            q0.append(q0_i)
            q1.append(q1_i)
        full_rank, recovered_u = recover(q0, q1, n)

    assert full_rank

    # To recover UR
    r = identity_matrix(ZZ, n)
    while recovered_u is None:
        r = sampling_unimodular_matrix(n)
        assert(r.det() ** 2 == 1)
        q1_ = [ group_action(r, q1_k) for q1_k in q1 ]
        full_rank, recovered_u = recover(q0, q1_, n)
        assert full_rank

    recovered_u = recovered_u * r.inverse()

    # Validate solution
    assert recovered_u.det() ** 2 == 1
    assert recovered_u == u or recovered_u == -u
    assert recovered_u.transpose() * q * recovered_u == q_

    # Print info
    if not verbose:
        print(f'\n{"#" * 27} iteration {main.count}')
    else:
        print(f'\n{"#" * 27} Recovered unimodular matrix')
        print_matrix(recovered_u, "recovered_u")
        print(f'\n{"#" * 27} Complexity\n')


    print(f'# {group_action.count} group action calls')
    print(f'# {randomized_oracle.count} oracle calls concerning U ({sampling_from_dsq.count} calls to Dₛ([Q]))')
    print(f'# {recover.count} calls to Recover()')
    print(f'# {sampling_unimodular_matrix.count} calls to SampleUₜ()')


if __name__ == '__main__':
    # main()
    tries = {True: 1, False: 25}[arguments(sys.argv[1:]).verbose]
    print(f'\n{"#" * 27} It took {timeit(lambda: main(), number=tries)} seconds\n')






algorithms.py

#!/usr/bin/sage -python
# -*- coding: utf8 -*-

import sys
import argparse

# SageMath imports
from sage.all import (
    deepcopy,
    e,
    floor,
    log,
    pi,
    sqrt,
    ceil,
    randrange,
    choice,
    xgcd,
    reduce,
    ZZ,
    QQ,
    is_square,
    vector,
    matrix,
    identity_matrix,
    random_matrix,
    zero_matrix,
    IntegralLattice,
)

from sage.stats.distributions.discrete_gaussian_lattice import DiscreteGaussianDistributionLatticeSampler
from sage.matrix.matrix_integer_dense_hnf import hnf_with_transformation

f = 7  # Matrix challenges are randomly sampled with coefficients in [0, f-1].
c = 1 - ((1 + e ** (-pi)) ** (-1))

# ----------------
def counter(func):
    def wrapper(*args, **kwargs):
        wrapper.count += 1
        # Call the function being decorated and return the result
        return func(*args, **kwargs)
    wrapper.count = 0
    # Return the new decorated function
    return wrapper

# -------------------------------
def arguments(args=sys.argv[1:]):
    parser = argparse.ArgumentParser(description="Parses command.")
    parser.add_argument("-n", "--dimension", type=int, help="Matrix dimension: n-by-n matrices", required=True)
    parser.add_argument('-v', '--verbose', action='store_true', help='verbose help')

    if len(sys.argv) == 1:
        parser.print_help(sys.stderr)
        sys.exit(1)

    options = parser.parse_args(args)
    return options

# --------------------------------------
def print_matrix(m: matrix, label: str):
    """

    :param m: matrix with integer coefficients
    :param label: name of the matrix variable
    """
    print(f'\n{label} :\n{m}')


# ----------------------------------------------------
# Decorate group_action() with the counter() decorator
@counter
def group_action(u: matrix, q: matrix):
    """
    Inner product concerning the matrix Q
    :param u: unimodular matrix U over ZZ
    :param q: Gram matrix, which gives a quadratic form
    :return: Uᵀ×Q×U
    """
    return u.transpose() * q * u


# ----------------------------------
def sampling_quadratic_form(n: int, verbose=True):
    """
    Sampling a random positive definite matrix Q with integer coefficients in [-5n, 5n]
    :param n: matrix dimension
    :param verbose:
    :return: Positive definite matrix Q
    """

    bad = 0
    print('')
    while True:
        b = random_matrix(ZZ, n, n, x=0, y=f)
        while b.det() == 0:
            b = random_matrix(ZZ, n, n, x=0, y=f)
        q = b.transpose() * b
        if verbose:
            print(f'\r# Random lattices constructed with non-trivial automorphism:\t{bad}', end='')
            sys.stdout.flush()
            bad += 1
            aut = IntegralLattice(q)
            aut = aut.automorphisms()
            if len(aut.list()) == 2:
                break
        else:
            # Computing the automorphism group of a lattice is expensive (exponential concerning n).
            # We assume random lattices has trivial automorphism with high probability (when benchmarking)
            break

    assert (q.is_positive_definite())
    assert q.is_symmetric()
    assert (q.det() != 0)
    if verbose:
        print('\n')
        assert len(aut.list()) == 2
        return q, lambda: matrix(ZZ, aut.random_element())
    else:
        # Computing the automorphism group of a lattice is expensive.
        # We assume random lattices has trivial automorphism with high probability (when benchmarking)
        return q, lambda: choice([identity_matrix(ZZ, n), -identity_matrix(ZZ, n)])


# ---------------------------------------------------------
# Decorate sampling_from_dsq() with the counter() decorator
@counter
def sampling_from_dsq(q: matrix, n: int, s: float):
    """
    Sampling from Dₛ([Q])
    :param q: a quadratic form Q
    :param n: matrix dimension
    :param s: parameter required on the Discrete Gaussian Distribution
    :return: unimodular matrix U, and the quadratic form Uᵀ×Q×U
    """
    m = int(ceil(2 * n / c))
    d = DiscreteGaussianDistributionLatticeSampler(IntegralLattice(q), sigma=s)
    while True:
        y = matrix(ZZ, [d() for _ in range(0, m, 1)]).transpose()
        if y.rank() >= n:
            break

    assert (y.rank() == n)
    t, u = hnf_with_transformation(y)
    assert t == (u * y)
    u = u.inverse()
    det_u = u.det()
    assert det_u == 1 or det_u == -1
    r = u.transpose() * q * u
    return u, r

# ------------------------------------------------------------------
# Decorate sampling_unimodular_matrix() with the counter() decorator
@counter
def sampling_unimodular_matrix(n: int, t=None):
    """

    :param n: matrix dimension
    :param t: integer bound, each entry will be sample from [-t,t]. By default (t is None) we set t=n
    :return: an unimodular matrix with entries uniformly sampled from [-t,t]
    """
    if t is None:
        t = n
    assert(type(t) == int)

    def minors_determinant(v):
        minors_det = []
        for k in range(0, n, 1):
            rows = list(range(0, k, 1)) + list(range(k + 1, n, 1))
            vk = v[rows,:n - 1]
            minors_det.append(vk.det() * (-1)**(n + 1 + k))
        return minors_det

    def euclidean_algorithm(v):
        if 0 in v:
            return 0, []

        (div, u, w) = xgcd(v[0], v[1])
        x = [u, w]
        for k in range(2, n, 1):
            (div, u, w) = xgcd(v[k], div)
            x = [xj * w for xj in x]
            x += [u]

        assert(sum([x[k] * v[k] for k in range(0, n, 1)]) == div)
        assert(reduce(lambda z,z_: z and z_, [vk % div == 0 for vk in v]))
        return div, x

    def least_squares(data: list):
        x = matrix([vector([point[0], 1]) for point in data])
        y = matrix([point[1] for point in data]).transpose()
        return (x.transpose() * x).solve_right(x.transpose()*y)

    m = zero_matrix(ZZ, n, n)
    d = 0
    while d != 1:
        for i in range(0, n, 1):
            for j in range(0, n - 1, 1):
                m[i,j] = randrange(-t, t + 1)
        d, x = euclidean_algorithm(minors_determinant(m))

    assert(d == 1)
    m[:, n - 1] += (matrix(x).transpose() * (-1) ** randrange(0, 2))

    # Least-square step
    c_tilde = []
    for k in range(0, n - 1, 1):
        tmp = m[:, k]
        (dk, ck) = least_squares( [ (tmp[j, 0], x[j]) for j in range(0, n, 1) ] ).transpose().list()
        c_tilde.append(floor(ck / (n - 1.0) + 0.5))

    for k in range(0, n - 1, 1):
        m[:, n - 1] -= (c_tilde[k] * m[:, k])

    assert(m.det()**2 == 1)
    return m


# -----------------------------------------------
# Decorate recover() with the counter() decorator
@counter
def recover(q0: list, q1: list, n: int):
    """
    Recovery of the unimodular matrix
    :param q0: list of quadratic forms Q
    :param q1: list of quadratic forms Q' = Vᵀ×Q×V
    :param n: matrix dimension
    :return: the secret unimodular matrix V
    """
    m = n * (n + 1) // 2
    assert len(q0) >= m
    assert len(q1) >= m
    q0_copy = deepcopy(q0)
    q = []
    q_ = []
    ii = 0
    for i in range(0, m, 1):
        for j in range(0, n - 1, 1):
            q0_copy[i].rescale_row(j, 2, j + 1)
        q_tmp = deepcopy(q)
        for j in range(n):
            q_tmp += q0_copy[i][j][j:].list()
        if matrix(ZZ, ii + 1, m, q_tmp).rank() == (ii + 1):  # only linearly independent rows are added
            ii += 1
            for j in range(0, n, 1):
                q += q0_copy[i][j][j:].list()
                q_ += q1[i][j][j:].list()

    if len(q) != (m ** 2) or len(q_) != (m ** 2):
        # Handle case when we did not reach m linear independent equations (it only occurs for n = 2... to small case)
        return False, None

    assert len(q) == m ** 2
    assert len(q_) == m ** 2
    q = matrix(QQ, m, m, q)
    q_ = matrix(QQ, m, m, q_)
    solution = q.inverse() * q_
    temporal = solution[:n, :n]

    if 0 in temporal[:n, 0]:
        # Handle if there is a zero in the first column.
        return True, None

    assert not (0 in temporal[:n, 0])
    assert is_square(solution[0, 0])
    v_pivot = ZZ(sqrt(solution[0, 0]))
    temporal = temporal / v_pivot
    candidate_v = [[0] * n] * n
    z = 0
    for i in range(0, n, 1):
        tmp = solution[z, :n] / temporal[i, 0]
        candidate_v[i] = tmp.list()
        z += n - i

    candidate_v = matrix(ZZ, n, n, candidate_v)

    return True, candidate_v


# --------------------------------------------------------------------
def get_n_quadratic_forms(q0: matrix, p1: matrix, p2: matrix, n: int):
    """
    Get quadratic forms of the form: P1×(Q×P1)^k = Vᵀ×(Q×[P2×Q]^k)×V
    :param q0: a quadratic form Q
    :param p1: the quadratic form Vᵀ×Q×V
    :param p2: the quadratic form V×Q×Vᵀ
    :param n: matrix dimension
    :return: the set of n linearly independent quadratic forms
    """
    q_p1 = q0 * p1
    p2_q = p2 * q0
    output = [p1]
    inside = [q0]
    for k in range(0, n - 1, 1):
        output.append(output[k] * q_p1)
        inside.append(inside[k] * p2_q)

    return output, inside


# ----------------------------------------------------------------------------------
def algorithm(q: matrix, n: int, s: float, function, oracle_calls, optimized=False):
    """
    Algorithm simulation
    :param q: a quadratic form Q
    :param n: matrix dimension
    :param s: parameter required on the Discrete Gaussian Distribution
    :param function: determines the function concerning TQFP or IQFP computation
    :param oracle_calls: simulation of the oracle call concerning TQFP or IQFP
    :param optimized: optimization flag
    :return: the secret unimodular matrix V
    """

    if not optimized:
        (oracle_call,) = oracle_calls
    else:
        (oracle_call, second_oracle_call) = oracle_calls
        steps = (n + 1)
        steps += (steps % 2)

    m = n * (n + 1) // 2
    v = identity_matrix(ZZ, n)  # First equation comes from the public key Q' = Uᵀ×Q×U (i.e., V = Identity)
    candidate_v = None
    full_rank = False
    while not full_rank:
        q0 = []
        q1 = []
        if not optimized:
            for i in range(0, m, 1):
                q0.append(function(v, q))
                q1.append(oracle_call(v))
                v, _ = sampling_from_dsq(q, n, s)
        else:
            # Trick as in Remark 2
            for i in range(0, steps // 2, 1):
                p0 = function(v, q)
                p1 = oracle_call(v)
                p2 = second_oracle_call(v)
                q1_list, q0_list = get_n_quadratic_forms(p0, p1, p2, n)
                for j in range(0, n, 1):
                    q0.append(q0_list[j])
                    q1.append(q1_list[j])
                v, _ = sampling_from_dsq(q, n, s)

        full_rank, candidate_v = recover(q0, q1, n)

    assert full_rank

    # To recover UR
    r = identity_matrix(ZZ, n)
    while candidate_v is None:
        r = sampling_unimodular_matrix(n)
        assert(r.det() ** 2 == 1)
        q1_ = [ group_action(r, q1_k) for q1_k in q1 ]
        full_rank, candidate_v = recover(q0, q1_, n)
        assert full_rank

    candidate_v = candidate_v * r.inverse()

    assert candidate_v.det() ** 2 == 1
    return candidate_v




