
Shift-invariance Robustness of Convolutional
Neural Networks in Side-channel Analysis

Marina Krček1, Lichao Wu2, Guilherme Perin3, and Stjepan Picek1,2

1 Delft University of Technology, The Netherlands
2 Radboud University, The Netherlands
3 Leiden University, The Netherlands

Abstract. Convolutional neural networks (CNNs) offer unrivaled per-
formance in profiling side-channel analysis. This claim is corroborated
by numerous results where CNNs break targets protected with masking
and hiding countermeasures. One hiding countermeasure is commonly
investigated in related works - desynchronization (misalignment). The
conclusions usually state that CNNs can break desynchronization as they
are shift-invariant. This paper investigates that claim in more detail and
reveals that the situation is more complex. While CNNs have certain
shift-invariance, it is insufficient for commonly encountered scenarios in
deep learning-based side-channel analysis. We propose to use data aug-
mentation to improve the shift-invariance and, in a more powerful ver-
sion, ensembles of data augmentation. Our results show the proposed
techniques work very well and improve the attack significantly, even for
an order of magnitude.

Keywords: Side-channel Analysis · Deep learning · Misalignment · Coun-
termeasures · Shift-invariance

1 Introduction

Convolutional neural networks are successfully applied in diverse domains, like
image [10] and audio [13] processing. Moreover, CNNs have been successfully
applied to profiling side-channel analysis (SCA). From the first paper on CNNs
in SCA appearing in 2016, there have been more than 250 papers exploring
the topic of deep learning-based side-channel analysis (DLSCA).4 The primary
motivation for using CNNs in DLSCA is their ability to 1) work with raw fea-
tures, making feature engineering non-mandatory, and 2) deliver excellent attack
performance even when the target is protected with countermeasures. While im-
plicitly assumed by the SCA community, both points deserve more discussion.

While CNNs dramatically reduce the requirement of feature engineering,
most works in the DLSCA domain consider traces with a pre-selected window of
samples. More recently, results demonstrate that such selection is unnecessary:

4 In [22], the authors reported 183 papers up to 2021. Searching papers published in
2022 and 2023 shows more than 100 additional papers.



2 Marina Krček, Lichao Wu, Guilherme Perin, and Stjepan Picek

CNNs can directly retrieve leakages from raw measurements and reach state-of-
the-art performance [17,21]. Excellent attack performance, even in the presence
of countermeasures, is commonly assumed but also confirmed by numerous em-
pirical analyses. However, the rationale for how CNNs bypass these countermea-
sures must be clarified. Specifically, desynchronization is a commonly investi-
gated hiding countermeasure. There, for “reasonable” desynchronization values,
it is assumed that CNNs inherently handle it due to their shift-invariance prop-
erty. Understanding where the shift-invariance comes from and how to improve
it is a challenging problem. Although multiple works try to explain it from a the-
oretical perspective or improve shift-invariance by modifying CNN architecture
or the dataset used for training, the mechanism is not fully understood. Since
multilayer perceptron (MLP) architectures are not shift-invariant [3], we focus
our attention on CNNs in this work.

While the core motivation for this work (data augmentation being the key to
the shift-invariance of CNNs for DLSCA) may sound intuitive and well-known in
the SCA domain, we argue this is not the case. We conducted a literature survey
for DLSCA and examined around 230 related works.5 Out of those 230 works,
70 use datasets with desynchronization. Surprisingly, only 17 out of those 70
works use data augmentation. Thus, with 24% papers using data augmentation,
we cannot claim it is a well-known or accepted technique to fight desynchro-
nization. Furthermore, we analyzed the 230 papers to see if they mention the
shift-invariance property of CNNs and what is the cause of it. We found nine
papers discussing how the convolutional layer is the key to shift-invariance; four
papers claim it is due to the pooling layer. From a more general perspective, 18
papers claim it is due to CNNs, without going into specifics. Unfortunately, no
papers in DLSCA directly connect data augmentation and shift-invariance.

To conclude, despite the numerous related works, the shift-invariance of
CNNs in DLSCA remains an open question. More precisely, it needs to be clar-
ified if CNNs have sufficient shift-invariance and, if not, how to extend it. Our
main contributions are:
1. We show that commonly used CNNs in DLSCA have a limited shift-invariance

and should be carefully used when attacking desynchronized datasets. Addi-
tionally, our experiments show that the pooling layer has a negligible effect
on the shift-invariance of CNNs. Still, this might need a separate, more thor-
ough investigation.

2. We show how data augmentation can successfully improve the shift-invariance
of CNNs in DLSCA.

3. We show how to use ensembles of data augmentation settings to provide
superior attack performance using CNNs when dealing with highly desyn-
chronized datasets.
We emphasize that understanding what part of CNN gives shift-invariance

and how to design a shift-invariant CNN are problems that have been open for
several years. This work does not aim to solve those problems by providing a

5 We do not claim this is an exhaustive search, but we are confident it is representative,
as it contains more works than a recent systematization of knowledge work [22].



CNN Shift-invariance in DLSCA 3

universal solution regardless of the evaluated dataset. Instead, we propose an ef-
ficient data augmentation approach to improve the shift-invariance of an existing
model. Although one could potentially reduce the effects of desynchronization
by using deeper architectures or custom architecture elements, we decided not
to follow those directions as they will 1) make the hyperparameter tuning more
challenging and 2) increase the chances for overfitting. On the other hand, using
data augmentation and ensembles is a simpler yet very successful approach.

2 Deep Learning-based Side-channel Analysis

As commonly done in profiling attacks, we consider a setup with two phases: pro-
filing and attack. The profiling phase corresponds to training a machine learning-
based classifier, and the attack phase to test its classification performance. Let
us assume a side-channel dataset X that consists of 𝑁 measurements. X can
be considered as a 2D array with 𝑁 rows and 𝐽 columns. Each point in the
array X is an element 𝑡𝑖, 𝑗 , where 𝑖 indicates the side-channel trace index and
𝑗 indicates the index of a sample (feature) inside a side-channel trace x𝑖. The
profiling phase aims to find the parameters 𝜽 of a function 𝑓 that minimize the
empirical risk (the expected value of the loss function). In the test phase, the
goal is to predict labels 𝒀 based on the traces from the attacked device and the
trained model 𝑓𝜽 . More precisely, the result of predicting with a model 𝑓𝜽 on
the test set is a two-dimensional matrix 𝑃 with dimensions 𝑄 × 𝐶, where 𝑄 is
the number of attack traces and 𝐶 is the number of labels. Each value in the
matrix 𝑃 denotes the probability that for a specific key k and input a, we obtain
the label y. Finally, the cumulative sum 𝑆(k) for any key byte candidate k is
a side-channel distinguisher with a common maximum log-likelihood principle:
𝑆(k) =

∑𝑄

𝑖=1 log(p𝑖,y). The cumulative sums for each possible key value form a
key guessing vector ordered per the probability of the key being correct (the first
position in the vector is the most likely key, and the last position is the least
likely key). The position of the correct key is called the key rank, and it denotes
the effort the attacker requires to break the target. To reduce the effects of a
random choice of test measurements, it is common to assess the average behavior
over many randomly selected traces, called guessing entropy (GE) (i.e., average
key rank) [23]. We consider DLSCA already well-known in the SCA community,
so we only briefly overviewed it. For more details, we refer readers to, e.g., [22].

Data Normalization. The application of data normalization is crucial to
obtain better deep learning performance. The most common form of data nor-
malization adopted in previous papers is standardization (see Section 3 in [25]
and Section 4-B in [22] for a discussion about data preprocessing). Profiling,
validation, and attack sets must be aligned for consistent data normalization.
Otherwise, features in validation and attack sets are distorted when normalized
with `𝑝 and 𝜎𝑝 (standardization). In our case, as we aim to investigate the
shift-invariance robustness of trained deep neural networks, the profiling and
attack sets might contain different desynchronization levels. Therefore, we use



4 Marina Krček, Lichao Wu, Guilherme Perin, and Stjepan Picek

the Horizontal MinMax Scaler [25] for data normalization in the range [−1, 1].
The scaler is trained on and also fits the transposed trace sets individually.

Data Augmentation. Data augmentation refers to increasing the training
set’s size by artificially generating additional training data with dynamic changes
during a model’s training. These changes must preserve the class properties of
the training set. The training set represents an approximate distribution, given
by a finite set T , from a true and unknown distribution R. By augmenting the
training set T , one expects that the T becomes a better representation of R. The
main idea is to improve class representation inside a dataset, so it is essential to
understand what kind of effect the augmentation needs to develop. Inappropriate
data augmentation settings can lead to no or even detrimental effect [6].

Metrics. As the goal of this work is to improve the attack efficiency of SCA,
the shift-invariance robustness is quantified with the guessing entropy metric
and the corresponding number of attack traces to reach a GE equal to 1 (𝑁ge=1),
which means successful key recovery. In all our experiments, we provide GE and
corresponding 𝑁ge=1 results for a single attacked key byte from a 128-bit AES
key.

3 Related Works

Cagli et al. used data augmentation to defeat datasets protected with software-
based countermeasure (Random Delay Interrupt) and hardware-based counter-
measure (jitter) [4]. The authors broke the targets and suggested using data
augmentation to reduce overfitting. Interestingly, they did not mention data
augmentation as the technique to help defeat desynchronization. B. Timon pro-
posed a non-profiled deep learning-based SCA approach and used data augmen-
tation to improve the learning phase [24]. Perin et al. used data augmentation
to improve the performance of the deep learning-based attack on a protected
ECC implementation [19]. The authors stated that data augmentation defeats
overfitting, and the investigated datasets do not have desynchronization. Lu et
al. used data augmentation to expand the profiling set and improve the attack
performance [17]. The authors mentioned convolutional layers as relevant for
shift-invariance. Perin et al. discussed various feature selection scenarios and
broke several datasets [21]. The authors used data augmentation for desynchro-
nized datasets and reported significantly fewer attack traces needed if using data
augmentation in the training process. The authors did not discuss the connection
between shift-invariance and data augmentation.

Since the publicly-available ASCAD datasets provide 50 and 100 samples
window desynchronization [2], most papers either use synchronized datasets or
desynchronizations up to 100 samples.6 Cagli et al. used desynchronization levels
up to 200 samples [4], which they managed to circumvent by using deep neural
network architectures and data augmentation. Lu et al. investigated the perfor-
mance of CNNs against the ASCAD dataset with desynchronization of up to
6 Naturally, the desynchronization window should be considered relative to the length

of the trace.



CNN Shift-invariance in DLSCA 5

200 samples [17]. Zotkin et al. used data augmentation and attacked datasets
with desynchronization of up to 150 samples [29]. Aligned with several DLSCA
works, the authors attributed a shift-invariance property to CNNs. Hajra et al.
considered scenarios where the datasets had a significant level of desynchroniza-
tion, up to 400 samples and used transformer networks to handle it [9]. The
authors tested scenarios where a neural network is trained on synchronized and
attacked desynchronized datasets. The good performance is attributed to the
shift-invariance property of CNNs.

Finally, we note that ensembles were used in various contexts in DLSCA,
improving attack performance. For instance, Perin et al. used ensembles to com-
bine predictions from multiple neural networks [20], while Zaid et al. proposed
a loss function called Ensembling Loss [27].

4 CNNs and Invariance

In the context of CNNs, three general types of invariance are commonly dis-
cussed: translation (shift), rotation, and scale invariance. Of those three, shift-
invariance is discussed in the context of DLSCA as it becomes relevant to defeat
various desynchronization countermeasures. It is a relatively common (and long-
lasting) claim that CNNs are invariant due to the convolution layer, e.g., [14,7].
More recently, it was recognized that convolutional layers could have the prop-
erty of shift-equivariance and not shift-invariance [3,12]. Convolution is equiv-
ariant to a function 𝑔 that translates the input, i.e., a shift of the input to a
convolutional layer produces a shift in the output feature maps by the same
amount [3]. The convolutional layers can lose the perfect equivariance due to
downsampling [1]. In CNNs, downsampling happens when the pooling or convo-
lutional stride is greater than one, as the intermediate representation skips sam-
ples in the input. It is a pooling layer that provides approximate shift-invariance
to small translations of the input [8]. Shift-invariance means that translating
the input by a small amount will not cause the values of most of the pooled
outputs to change. Intuitively, pooling achieves local translation invariance [18].
Invariance is a particular case of equivariance when the transformation has no
effect [15]. Combining the shift-equivariance property of convolutional layers
and stability to deform pooling layers, one could expect CNNs to become shift-
invariant [5]. Unfortunately, recent results showed this is not the case since small
input shifts can cause drastic changes in the output [1,28]. The reason is the
downsampling nature of modern convolutional and pooling layers. Some works
also showed that CNNs could encode absolute spatial location in images, re-
sulting from a lack of shift-invariance [12]. Additionally, one cannot definitively
answer what part of CNNs brings the most invariance. For instance, it has been
shown that the network depth and not the type of the layer contribute more to
the shift-invariance [11]. This is relevant for the DLSCA perspective, as most of
the results (including state-of-the-art) commonly use relatively shallow neural
network architectures, e.g., [21]. Finally, larger convolution filter sizes allow for
more shift-invariance [11].



6 Marina Krček, Lichao Wu, Guilherme Perin, and Stjepan Picek

5 The Shift-invariance Robustness of Deep Learning
Models in SCA

In this section, we deploy several experiments to empirically verify the shift-
invariance robustness of various deep neural networks in SCA. Moreover, we
evaluate how data augmentation improves shift-invariance robustness and how
this robustness is directly related to data augmentation settings and the shift
distribution in side-channel measurements. We define four main scenarios:
1. Neural networks are trained with a synchronized profiling set.
2. Neural networks are trained with a desynchronized profiling set.
3. Neural networks are trained with synchronized profiling set and data aug-

mentation.
4. Neural networks are trained with a desynchronized profiling set and data

augmentation.
The trained networks are tested on an attack set with different levels of desyn-
chronization to showcase the performance.

Datasets. We consider the ASCAD datasets7, which are protected with first-
order Boolean masking. In total, we consider four different datasets:
1. ASCADf: this dataset contains side-channel measurements consisting of 700

features representing side-channel leakages from processing the third S-Box
output byte in the first AES encryption round. We split this dataset into
profiling, validation, and attack sets with 45 000, 5 000, and 5 000 traces,
respectively. All sets have the same fixed key.

2. ASCADr: this dataset contains side-channel measurements where each trace
consists of 1 400 features. Similar to ASCADf, this measurement interval also
represents side-channel leakages from processing the third S-Box output byte
in the first AES encryption round. We split this dataset into profiling, val-
idation, and attack sets with 200 000, 5 000, and 5 000 traces, respectively.
The profiling set has random keys, while the validation and attack sets have
the fixed key.

3. ASCADf_desync100: desynchronized version of ASCADf, and each trace is
randomly shifted inside the interval [0, 100]. Shifts are drawn from a uniform
distribution.

4. ASCADr_desync100: desynchronized version of ASCADr, and each trace is ran-
domly shifted (also from a uniform distribution) inside the interval [0, 100].

Datasets are always labeled according to the identity leakage model for the third
S-Box output byte in the first AES encryption round.

Deep neural network architectures. The neural network architectures considered
in the experiments of this section are described below. The CNN architectures
always contain convolution blocks consisting of a convolution layer followed by
a batch normalization layer connected to a pooling layer. Both average and max

7 https://github.com/ANSSI-FR/ASCAD

https://github.com/ANSSI-FR/ASCAD


CNN Shift-invariance in DLSCA 7

pooling layers are tested. All hyperparameters were obtained with a random hy-
perparameter search, with the best-found architectures reported in Table 1. The
architectures are denoted as cnn_pooling_2, cnn_pooling_4, cnn_pooling_6,
and cnn_ascadr_desync100. We always train the models for 100 epochs. The
batch size of each case will be reported in the corresponding section.

Table 1: Hyperparameter values for cnn_pooling_2, cnn_pooling_4,
cnn_pooling_6, cnn_ascadr_desync100.

Hyperparameters cnn_pooling_2 cnn_pooling_4 cnn_pooling_6 cnn_ascadr_desync100

Conv. blocks 2 5
Filters (ordered) 8, 16 12, 24, 36, 48, 60
Kernel size 30 40
Strides 2 15
Pool size 2 4 6 6
Pool strides 2 4 6 6
FC layers 1 2
FC Nb. neurons 40 50
Weight init glorot_normal glorot_uniform
Activation elu elu
Learning rate 0.001 0.00025
Optimizer RMSprop Adam
Epochs 100

We analyze cnn_pooling_2, cnn_pooling_4, and cnn_pooling_6 that con-
tain different pooling sizes to understand if small changes in the pooling size have
any effect on shift-invariance. Moreover, all models listed above contain large
convolution kernel sizes (e.g., 40). Still, in this work, we skip a more detailed
evaluation of the effect of filter kernel size (and its strides) on shift-invariance
robustness. We evaluate architectures that provided the best results (i.e., mini-
mum 𝑁ge=1) from our random hyperparameter search and also architectures with
good performances from some related works on the evaluated datasets. Specif-
ically, we test CNN architectures from [26] and [25] designed for the ASCADf
and ASCADf_desync100 datasets. Hyperparameter values are kept the same as
in those papers. We denote the architectures:
– zaid_ascad_desync_0 for architecture from [26] for ASCADf.
– noConv1_ascad_desync_0 for architecture from [25]. The network is a re-

duced version of zaid_ascad_desync_0, where the convolution and batch
normalization layers are removed, and the input layer is the pooling layer.

– zaid_ascad_desync_100 for architecture from [26] for ASCADf_desync100.
– noConv1_ascad_desync_100 for design from [25]. This architecture is a re-

duced version of zaid_ascad_desync_100 in the same manner as noConv1_ascad_desync_0.
For all architectures, the loss function is always categorical cross-entropy.

Reading the graphs. The x-axis in all figures (except those illustrating the shift
distributions) indicates the maximum number of shifts 𝛿 drawn from a uniform
distribution and applied to the set of attack traces. For instance, when the x-axis
indicates the value of 100, the set of attack traces is randomly shifted by values



8 Marina Krček, Lichao Wu, Guilherme Perin, and Stjepan Picek

inside the interval [0, 100]. For negative x-axis values −𝛿, the interval is [−𝛿, 0].
To treat the trace samples at the trace boundaries, we first apply random shifts
to the attack set, and after, we trim it. The shaded area around lines in the plots
indicates the minimum and maximum values obtained from 10-fold experiments,
while the main line is the average value. The gray region in the plots indicates
the target shift-invariance region.

5.1 Shift-invariance Robustness of CNNs Trained with
Synchronized Datasets

First, we analyze the shift-invariance robustness of cnn_pooling_2, cnn_pooling_4,
and cnn_pooling_6 architectures with the ASCADr and ASCADf datasets. Fig-
ure 1a shows the shift-invariance robustness of these three models. As we can see,
the shift-invariant robustness of these networks, when trained on the synchro-
nized datasets, is very limited in the side-channel context. Note how randomly
shifting a few trace samples to the right (positive) or the left (negative) already
significantly affects the model performance. With more than five sample shifts,
the GE of attacked key byte substantially increases. The results show no sig-
nificant difference in the shift-invariance robustness between the tested pooling
size. Different pooling types (i.e., average or max pooling) show no important
effects on shift-invariance for these three CNN architectures.

In the second group, we consider the CNN architectures zaid_ascad_desync0 [26]
and noConv1_ascad_desync0 [25] that are designed for the synchronized ASCADf
dataset. These architectures and the architectures from our first group were not
designed to defeat desynchronized datasets. As shown in Figure 1b, zaid_ascad_desync0
and noConv1_ascad_desync0 provide a more limited shift-invariance robustness
compared to CNNs from Figure 1a. The performance of zaid_ascad_desync0
and noConv1_ascad_desync0 models is significantly inferior compared to origi-
nal results from [26,25]. The main reason comes from data normalization: in orig-
inal papers, the authors considered (feature) standardization, while here, we ap-
ply horizontal MinMax normalization for the reasons mentioned in Section 2. We
also show results for zaid_ascad_desync100 and noConv1_ascad_desync100
that were designed to break the ASCADf_desync100 dataset. In particular, the
zaid_ascad_desync100 model provides much better shift-invariance, as ran-
domly shifting the attack set inside the interval [−60, 40] delivers successful
key recovery when the attack set contains 4 000 traces. In contrast, the im-
proved version, noConv1_ascad_desync100 proposed in [25] provides signifi-
cantly less shift-invariance robustness. Furthermore, noConv1_ascad_desync100
cannot provide successful key recovery with the ASCADr dataset. This might be
because the first convolution layer is absent in this architecture. The second
convolution block in zaid_ascad_desync_100 and noConv1_ascad_desync_100
contains a pooling layer with a size and stride of 50, which is significantly higher
than the pooling sizes from other CNN architectures analyzed here. As large
(e.g., 50) and small (e.g., 6) pooling sizes provide similar results for synchro-
nized datasets, we conclude that large pooling sizes in one of the hidden layers
might not be the main reason for better shift-invariance robustness. Still, more



CNN Shift-invariance in DLSCA 9

research should be done to investigate the influence of pooling hyperparameters
for the shift-invariance robustness and some other hyperparameters like kernel
size, which are also not addressed in this work.

(a) Shift-invariance robustness of cnn_pooling_2, cnn_pooling_4 and
cnn_pooling_6 architectures. Training batch size is set to 400.

(b) Shift-invariance robustness of zaid_ascad_desync_0,
noConv1_ascad_desync_0, zaid_ascad_desync_100 and
noConv1_ascad_desync_100 architectures. Training batch size is set to
50 for zaid_ascad_desync_0, noConv1_ascad_desync_0 and 400 for
zaid_ascad_desync_100 and noConv1_ascad_desync_100.

Fig. 1: Shift-invariance robustness of profiling models trained with synchronized
profiling sets.



10 Marina Krček, Lichao Wu, Guilherme Perin, and Stjepan Picek

5.2 Shift-invariance Robustness of CNNs Trained with
Desynchronized Datasets

An alternative way to improve the shift-invariance robustness of CNN mod-
els is by conducting the training with desynchronized profiling traces. Figure 2
shows results for different CNN models trained with the desynchronized ASCADr
and ASCADf datasets. Here, we skip results for cnn_pooling_2, cnn_pooling_4,
cnn_pooling_6, zaid_ascad_desync_0, and noConv1_ascad_desync_0 archi-
tectures as with these models, we were unable to successfully recover the key
when trained and predicted with desynchronized datasets. Thus, we consider
cnn_ascadr_desync100 architecture that was found in a random hyperparam-
eter search when ASCADr_desync100 was used as training set and its shift-
invariance robustness is provided in the top part of Figure 2. Since this model
is trained with a dataset containing uniformly distributed random shifts in-
side the interval [0, 100], its shift-invariance robustness is more salient within
the same shift-interval [0, 100]. This is expected, as the profiling set contains
traces that are shifted inside this interval. The model shows poor generalization
capacity outside the interval of [0, 100]. For the zaid_ascad_desync_100 and
noConv1_ascad_desync_100 architectures, we found similar shift-invariance ro-
bustness results. Both models were designed to break ASCADf_desync100 dataset
with traces containing uniform random shifts inside the interval [0, 100]. As
shown in Figure 2, both CNN models provide satisfactory shift-invariance inside
this shift interval. Outside this interval, the performance quickly deteriorates,
indicating that shift-invariance is directly related to the shift distribution in the
desynchronized profiling set.

Fig. 2: The shift-invariance robustness of different neural network mod-
els trained with desynchronized datasets. For the zaid_ascad_desync_100
and noConv1_ascad_desync_100, batch size is set to 200 while for
cnn_ascadr_desync100 the batch size is set to 400.



CNN Shift-invariance in DLSCA 11

5.3 The Effect of Data Augmentation on Shift-invariance
Robustness of CNNs Trained with Synchronized Datasets

When CNN models are trained with a synchronized trace set, one expects this
model to generalize poorly to desynchronized attack sets, as shown by most of
the results in Figure 1. One alternative to improve the model’s generalization is
to train with data augmentation. In this section, we only select cnn_pooling_2
instead of also analyzing cnn_pooling_4 and cnn_pooling_6, as they showed
similar results in the previous section. Also, cnn_pooling_2 provided slightly
less shift-invariance compared to cnn_pooling_4 and cnn_pooling_6, and we
want to verify if adding data augmentation improves shift-invariance in the
most critical case. The cnn_pooling_2 architecture is configured with aver-
age pooling layers. We skip results for max pooling layers, as our preliminary
analysis found no particular benefit of max pooling in shift-invariance robust-
ness. This model is trained with the ASCADr and ASCADf datasets. In contrast,
zaid_ascad_desync_0 and noConv1_ascad_desync_0 models are trained for
the ASCADf dataset only (results for the ASCADr dataset for these two models
provided no successful key recovery, so we omit these results). In terms of data
augmentation, CNN models are trained with the full profiling set plus double the
number of profiling traces as augmented traces (i.e., for ASCADr, we have 200 000
profiling traces plus 400 000 augmented traces. In comparison, for ASCADf we
have 45 000 profiling traces plus 90 000 augmented traces). We define the num-
ber of augmented traces arbitrarily, and the analysis of the optimal number of
augmented profiling traces is out-of-scope for this paper.

Figure 3 shows results for three different CNN architectures: cnn_pooling_2
(with average pooling layer), zaid_ascad_desync_0, and noConv1_ascad_desync_0.
We train these models with synchronized datasets and with data augmentation
that shifts the traces for specific ranges, i.e., [−100, 0], [0, 100], and [−100, 100].
The main idea is to verify if all models can become shift-invariant inside spe-
cific shift intervals that could be present in a desynchronized attack set. Due
to data augmentation, the shift-invariance robustness of all trained CNN mod-
els significantly improves compared to a scenario without data augmentation
shown in Figure 1. Moreover, the shift-invariance robustness often occurs out-
side of the augmented shift interval. When data augmentation is implemented
for random shifts inside the interval [0, 100] (or [−100, 0]), the CNN model
tends to become shift-invariant for intervals [0, 200] (or [−200, 0]) as is visible
for cnn_pooling_2 models. This was the case also for results on ASCADf dataset
with cnn_pooling_2, but we omit the figure with results due to page limit. In
the case of the models designed for a specific synchronized dataset, data augmen-
tation helped reach good attack results, at least within the data augmentation
interval. Thus, training a CNN model with a synchronized dataset and data
augmentation may ensure satisfactory shift-invariance robustness. This could
prevent the model from presenting poor generalization for cases when the attack
set is not perfectly aligned with the profiling set in the time domain.

Another finding in this analysis comes from applying data augmentation for
a larger interval, which is the case for the random shifts drawn from the in-



12 Marina Krček, Lichao Wu, Guilherme Perin, and Stjepan Picek

terval [−100, 100]. The shift-invariance robustness of the model improves. How-
ever, it is not as good for some cases, like with separated intervals [0, 100] and
[−100, 0], when looking into GE for these intervals. This is more evident for
the zaid_ascad_desync_0 model: splitting the data augmentation interval from
[−100, 100] into two model training for intervals [0, 100] and [−100, 0] provides
better convergence of GE inside each smaller shift interval. For cnn_pooling_2,
the results for the interval [0, 100] are superior if the model is trained with data
augmentation providing random shifts inside [0, 100] instead of the entire inter-
val [−100, 100]. In Section 6, we propose an ensemble-based strategy to make
CNN models highly shift-invariant for larger desynchronization intervals. More
precisely, we propose to combine multiple data augmentation intervals into a
model with better shift-invariant robustness.

Fig. 3: The shift-invariance robustness of different neural network models trained
with synchronized datasets. Expect for noConv1_ascad_desync_0, which has a
batch size of 50. All models are trained with a batch size of 400.

5.4 The Effect of Data Augmentation on Shift-invariance
Robustness of CNNs Trained with Desynchronized Datasets

A CNN architecture designed to provide an excellent generalization to desynchro-
nized trace sets already shows improved shift-invariance robustness, as shown in
Figure 2. However, shift-invariance robustness is still related to the desynchro-
nization in the profiling set. We explore the model’s generalization when the at-
tack set contains desynchronization levels that differ from the profiling set. Data
augmentation is a solution to improve the shift-invariance robustness of CNN



CNN Shift-invariance in DLSCA 13

models trained with desynchronized datasets. Our primary goal in this section
is to make CNN models from Section 5.2 shift-invariant inside the trace shift
interval [−100, 200] when the profiling set is given by a desynchronized dataset
with shifts inside the interval [0, 100]. This means that our trained CNN models
become shift-invariant outside the shifts contained in the profiling set. Figure 4
shows the shift distribution of original desynchronized profiling traces and the
shift distribution of augmented sets. Note that the shifts are applied to already
desynchronized profiling traces, so it does not follow a uniform distribution. Still,
we ensure the occurrence of shifts from the interval [−100, 200].

Fig. 4: Shift distribution of original (left) and augmented profiling sets (right).

Results from Figure 5 show the shift-invariance robustness of the cnn_ascadr_desync100
and zaid_ascad_desync_100, while results with noConv1_ascad_desync_100
are omitted as they are similar to zaid_ascad_desync_100. Models were used
for predictions on desynchronized attack sets. Although these three models were
designed to be shift-invariant to desynchronization of [0, 100], when data aug-
mentation is set to randomly shift the profiling set inside the shift interval
[−100, 100], all models become shift-invariant inside interval [−100, 200]. We
can also see that, in some cases, the robustness goes outside of that interval.

6 Ensembles to Defeat Larger Desynchronization Levels

We evaluated the shift-invariance robustness in the previous section when trace
sets are desynchronized inside the interval [0, 100]. This section shows that a dif-
ferent strategy is required for trace sets containing larger desynchronization lev-
els to improve the shift-invariance robustness of a profiling CNN model. Specifi-
cally, we propose a solution to improve the shift-invariance robustness of a CNN
model by ensembling multiple CNN models, each trained on a shorter desynchro-
nization interval with data augmentation. We build an ensemble by averaging the
output class probabilities from multiple models. The levels of desynchronization
that we test are [0, 200], [0, 400], and [0, 1 000]. To the best of our knowledge,
the largest desynchronization level tested in DLSCA-related works is 400 [9].

Datasets. The experiments are conducted with the ASCADr and DPAv4.2 datasets8.
Since we want to analyze larger desynchronization levels, we select larger inter-
8 https://www.dpacontest.org/v4/42_traces.php

https://www.dpacontest.org/v4/42_traces.php


14 Marina Krček, Lichao Wu, Guilherme Perin, and Stjepan Picek

Fig. 5: The shift-invariance robustness of different neural network models trained
with desynchronized datasets. All models are trained with a batch size of 400.

vals from the raw ASCADr and DPAv4.2 measurements. For ASCADr, we select
the trace interval consisting of 5 000 features, ranging from sample index 79 145
to 84 145 (the raw traces have 250 000 features). This trimmed interval includes
processing the third S-Box byte in the first AES encryption round. This dataset
is referred to as ASCADr_5000. For the DPAv4.2 dataset, we select the trace in-
terval from sample index 200 000 to 220 000, which contains the processing of the
twelfth S-Box byte in the first AES encryption round. The resulting 20 000 inter-
val is further resampled into 4 000 samples. This resampling process reduces the
complexity of CNN models. This dataset is referred to as DPAv4.2_4000. To work
with desynchronized datasets, before trimming each dataset into 5 000 and 4 000
samples for ASCADr and DPAv4.2, we apply random shifts from a uniform distri-
bution and then trim the datasets. Both datasets are labeled with the identity
leakage model. For ASCADr_5000, using data augmentation, the model process
200 000 profiling traces plus 400 000 augmented traces. For the DPAv4.2_4000,
we process 70 000 profiling traces plus 140 000 augmented traces.

Deep neural networks. CNN architectures evaluated in the previous section
cannot deliver successful key recovery results for the experiments with larger
desynchronization intervals. Therefore, we deploy a new random hyperparam-
eter search to find the best possible CNN models for the ASCADr_5000 and
DPAv4.2_4000. The search considers datasets with desynchronization inside the
interval [0, 100]. As a result, we found CNN models reported in Table 2. The
models are referred to as cnn_large_desync_ascadr and cnn_large_desync_dpa_v42.
In cnn_large_desync_dpa_v42, the fully-connected layer is regularized with l1
regularization using 𝑙 = 0.00001.



CNN Shift-invariance in DLSCA 15

Table 2: Hyperparameter values for cnn_large_desync_ascadr and
cnn_large_desync_dpa_v42.

Hyperparameters cnn_large_desync_ascadr400 cnn_large_desync_dpa_v42

Conv. blocks 3 4
Filters (ordered) 8, 16, 24 16, 32, 48, 64
Kernel size 40 30
Strides 2 1
Pool size 2 4
Pool strides 2 4
FC layers 1 1
FC Nb. neurons 300 50
Weight init random_normal
Activation selu
Learning rate 0.00025 0.001
Optimizer Adam
Batch size 400
Epochs 100

Our goal is not to promote the best CNN architectures for large desyn-
chronization cases but to propose a robust ensemble-based data augmentation
approach that is expected to be equally efficient with architectures from related
works, such as [16] and [9] that evaluated desynchronization of 200 and 400
samples, respectively.

We aim to make described architectures cnn_large_desync_ascadr and
cnn_large_desync_dpa_v42 shift-invariant inside the shift intervals [0, 200],
[0, 400], and [0, 1 000]. For that, we train each model with profiling sets hav-
ing desynchronized traces with a normal shift distribution inside these intervals,
and we add data augmentation to the training process. To keep the model shift-
invariant inside, e.g., the interval [0, 200], data augmentation is optimized to
preserve the shifts from the original profiling set inside this [0, 200] interval.
This means that when we add data augmentation to the profiling set, we shift
already desynchronized traces. We carefully choose the minimum and maximum
shift ranges for data augmentation. Figure 6 shows (on the left side) the shift
distribution of the original profiling set when it is desynchronized inside the
interval [0, 200] and also (in the middle) the resulting shift distribution of the
augmented traces. Note how our data augmentation process mainly preserves the
shift distribution inside the interval [0, 200], with some traces also being shifted
outside these boundaries. We do the similar when desynchronization is [0, 400]
and [0, 1 000]. Due to the page limit, we omit the figures for those intervals.

For each large desynchronization case and each dataset, we train multiple
CNN models to combine them into an ensemble. We divide the data augmen-
tation range [−𝛿, 𝛿] into smaller ranges. For instance, when desynchronization
in the original profiling set is [0, 200], we divide the data augmentation into
the following eight separate ranges: [−100,−75], [−75,−50], [−50,−25], [−25, 0],
[0, 25], [25, 50], [50, 75], and [75, 100]. It means we have a data augmentation of
step 25 because we implement multiple trainings with data augmentation shift-



16 Marina Krček, Lichao Wu, Guilherme Perin, and Stjepan Picek

Fig. 6: Shift distributions in the original and augmented trace sets when profiling
set has desynchronization in [0, 200].

ing the traces with an interval of 25. We train the CNN model for each range
with the original desynchronized traces and the data augmentation with the
small range. Thus, we train eight separate CNN models and a CNN model with
data augmentation with a [−100, 100] shift range. Finally, we build an ensem-
ble from these nine CNN models by averaging their output class probabilities.
Similarly, we will test data augmentation with step 50 and 100 for dataset with
desynchronization [0, 200], step 50, 100 and 200 for [0, 400] and step 100, 250
and 500 for [0, 1000].

Figure 7 shows results for the ensembles obtained for large desynchroniza-
tion cases in the ASCADr_5000 dataset. Training a single CNN model with data
augmentation inside the shift range [−𝛿, 𝛿] shows inferior results compared to
ensembling multiple CNN models with specific data augmentation steps. In the
top part of Figure 7, we show results for the desynchronization case of [0, 200].
Building an ensemble (with all tested step sizes) allows us to recover the key
with approximately 10 attack traces while using data augmentation with [−𝛿, 𝛿]
needs 100 attack traces. This is ten times fewer traces which indicates better
performance. A similar improvement is visible in the case of desynchronization
[0, 400]. When desynchronization is much larger, in the case of [0, 1 000], the only
scenario where we can improve shift-invariance is by using an ensemble with a
data augmentation step of 100. This means that the shift-invariance robustness
of this CNN model is significantly improved with the usage of ensembles.

The results for the shift-invariance robustness analysis of the cnn_large_desync_dpa_v42
model and DPAv4.2 dataset are shown in Figure 8. When desynchronization in
the profiling set is within the range [0, 200], the model becomes shift-invariant
for all cases, but ensembles need less traces. When the profiling set has desyn-
chronization of [0, 400], we find better results when a single model is trained with
data augmentation inside the shift range [−200, 200] and an ensemble of data
augmentation with a step of 200. Results for the large desynchronization scenario
of [0, 1 000] show that we are only able to make the cnn_large_desync_dpa_v42
model shift-invariant inside the interval of [0, 1 000] when we build ensembles of
multiple data augmentation steps. The best results are found with the data aug-
mentation step of 100. Additionally, the ensembles provide good results outside
the targeted shift intervals. Finally, in Figures 7 and 8, if data augmentation is
not considered, none of the models can provide successful key recovery results.



CNN Shift-invariance in DLSCA 17

Fig. 7: The shift-invariance robustness of the cnn_large_desync_ascadr model
trained with large desynchronization levels and the ASCADr_5000 dataset.

Fig. 8: The shift-invariance robustness of the cnn_large_desync_dpa_v42 model
trained with large desynchronization levels and the DPAv4.2_4000 dataset.



18 Marina Krček, Lichao Wu, Guilherme Perin, and Stjepan Picek

7 Conclusions and Future Work

This paper investigates the shift-invariance of CNNs in DLSCA. First, we show
that desynchronized datasets can easily disrupt the shift-invariance of CNNs,
leading to unsuccessful attacks. Then, we discuss how shift-invariance can be
improved by using data augmentation. Finally, if the desynchronization levels
are large, we propose a novel method based on the ensembles of data augmenta-
tion. Our results show superior performance with data augmentation, especially
with ensembles of data augmentation. Interestingly, architectural changes (e.g.,
modifications in the convolutional or pooling layer) provide minor improvements
in shift-invariance and represent a more difficult path toward reaching it. This
is especially true for more shallow neural network architectures used in DLSCA.

There are multiple future research directions. First, this paper considers the
desynchronization countermeasure. It would be interesting to evaluate different
types of misalignment, like jitter and random delays. Next, here, we arbitrarily
set the number of augmented traces. Evaluating the optimal number of aug-
mented traces to be used would be very relevant, especially if some guidelines
based on the dataset’s properties can be given.

References

1. Azulay, A., Weiss, Y.: Why do deep convolutional networks generalize so poorly
to small image transformations? CoRR abs/1805.12177 (2018), http://arxiv.
org/abs/1805.12177

2. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for side-
channel analysis and introduction to ASCAD database. J. Cryptographic Engi-
neering 10(2), 163–188 (2020). https://doi.org/10.1007/s13389-019-00220-8,
https://doi.org/10.1007/s13389-019-00220-8

3. Bronstein, M.M., Bruna, J., Cohen, T., Velickovic, P.: Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. CoRR abs/2104.13478 (2021),
https://arxiv.org/abs/2104.13478

4. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N.
(eds.) Cryptographic Hardware and Embedded Systems – CHES 2017. pp. 45–68.
Springer International Publishing, Cham (2017)

5. Chaman, A., Dokmanic, I.: Truly shift-invariant convolutional neural networks.
In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). pp. 3772–3782. IEEE Computer Society, Los Alamitos, CA,
USA (jun 2021). https://doi.org/10.1109/CVPR46437.2021.00377, https://
doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00377

6. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: Learning
augmentation strategies from data. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 113–123 (2019)

7. Gens, R., Domingos, P.M.: Deep symmetry networks. In: Ghahramani,
Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Ad-
vances in Neural Information Processing Systems. vol. 27. Curran Asso-
ciates, Inc. (2014), https://proceedings.neurips.cc/paper/2014/file/
f9be311e65d81a9ad8150a60844bb94c-Paper.pdf

http://arxiv.org/abs/1805.12177
http://arxiv.org/abs/1805.12177
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://arxiv.org/abs/2104.13478
https://doi.org/10.1109/CVPR46437.2021.00377
https://doi.org/10.1109/CVPR46437.2021.00377
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00377
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00377
https://proceedings.neurips.cc/paper/2014/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf


CNN Shift-invariance in DLSCA 19

8. Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge,
MA, USA (2016), http://www.deeplearningbook.org

9. Hajra, S., Saha, S., Alam, M., Mukhopadhyay, D.: Transnet: Shift invari-
ant transformer network for side channel analysis. In: Progress in Cryptol-
ogy - AFRICACRYPT 2022: 13th International Conference on Cryptology in
Africa, AFRICACRYPT 2022, Fes, Morocco, July 18–20, 2022, Proceedings. p.
371–396. Springer-Verlag, Berlin, Heidelberg (2022). https://doi.org/10.1007/
978-3-031-17433-9_16, https://doi.org/10.1007/978-3-031-17433-9_16

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

11. Kauderer-Abrams, E.: Quantifying translation-invariance in convolutional neural
networks. CoRR abs/1801.01450 (2018), http://arxiv.org/abs/1801.01450

12. Kayhan, O.S., van Gemert, J.C.: On translation invariance in cnns: Convolu-
tional layers can exploit absolute spatial location. In: 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). pp. 14262–14273.
IEEE Computer Society, Los Alamitos, CA, USA (jun 2020). https://doi.
org/10.1109/CVPR42600.2020.01428, https://doi.ieeecomputersociety.org/
10.1109/CVPR42600.2020.01428

13. Kim, T., Lee, J., Nam, J.: Comparison and analysis of samplecnn architectures for
audio classification. IEEE Journal of Selected Topics in Signal Processing 13(2),
285–297 (2019). https://doi.org/10.1109/JSTSP.2019.2909479

14. LeCun, Y.: Generalization and network design strategies. In: Pfeifer, R., Schreter,
Z., Fogelman, F., Steels, L. (eds.) Connectionism in Perspective. Elsevier, Zurich,
Switzerland (1989), an extended version was published as a technical report of the
University of Toronto

15. Lenc, K., Vedaldi, A.: Understanding image representations by measuring their
equivariance and equivalence. International Journal of Computer Vision 127(5),
456–476 (May 2018). https://doi.org/10.1007/s11263-018-1098-y, https://
doi.org/10.1007/s11263-018-1098-y

16. Lu, X., Zhang, C., Cao, P., Gu, D., Lu, H.: Pay attention to raw traces:
A deep learning architecture for end-to-end profiling attacks. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2021(3), 235–274 (Jul
2021). https://doi.org/10.46586/tches.v2021.i3.235-274, https://tches.
iacr.org/index.php/TCHES/article/view/8974

17. Lu, X., Zhang, C., Cao, P., Gu, D., Lu, H.: Pay attention to the raw traces: A
deep learning architecture for end-to-end profiling attacks. IACR Transactions on
Cryptographic Hardware and Embedded Systems (2021)

18. Marcos, D., Volpi, M., Tuia, D.: Learning rotation invariant convolutional filters
for texture classification. CoRR abs/1604.06720 (2016), http://arxiv.org/abs/
1604.06720

19. Perin, G., Chmielewski, L., Batina, L., Picek, S.: Keep it unsupervised: Hori-
zontal attacks meet deep learning. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems 2021(1), 343–372 (Dec 2020). https://doi.
org/10.46586/tches.v2021.i1.343-372, https://tches.iacr.org/index.php/
TCHES/article/view/8737

20. Perin, G., Chmielewski, L., Picek, S.: Strength in numbers: Improving generaliza-
tion with ensembles in machine learning-based profiled side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2020(4), 337–
364 (Aug 2020). https://doi.org/10.13154/tches.v2020.i4.337-364, https:
//tches.iacr.org/index.php/TCHES/article/view/8686

http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-031-17433-9_16
https://doi.org/10.1007/978-3-031-17433-9_16
https://doi.org/10.1007/978-3-031-17433-9_16
https://doi.org/10.1007/978-3-031-17433-9_16
https://doi.org/10.1007/978-3-031-17433-9_16
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1801.01450
https://doi.org/10.1109/CVPR42600.2020.01428
https://doi.org/10.1109/CVPR42600.2020.01428
https://doi.org/10.1109/CVPR42600.2020.01428
https://doi.org/10.1109/CVPR42600.2020.01428
https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.01428
https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.01428
https://doi.org/10.1109/JSTSP.2019.2909479
https://doi.org/10.1109/JSTSP.2019.2909479
https://doi.org/10.1007/s11263-018-1098-y
https://doi.org/10.1007/s11263-018-1098-y
https://doi.org/10.1007/s11263-018-1098-y
https://doi.org/10.1007/s11263-018-1098-y
https://doi.org/10.46586/tches.v2021.i3.235-274
https://doi.org/10.46586/tches.v2021.i3.235-274
https://tches.iacr.org/index.php/TCHES/article/view/8974
https://tches.iacr.org/index.php/TCHES/article/view/8974
http://arxiv.org/abs/1604.06720
http://arxiv.org/abs/1604.06720
https://doi.org/10.46586/tches.v2021.i1.343-372
https://doi.org/10.46586/tches.v2021.i1.343-372
https://doi.org/10.46586/tches.v2021.i1.343-372
https://doi.org/10.46586/tches.v2021.i1.343-372
https://tches.iacr.org/index.php/TCHES/article/view/8737
https://tches.iacr.org/index.php/TCHES/article/view/8737
https://doi.org/10.13154/tches.v2020.i4.337-364
https://doi.org/10.13154/tches.v2020.i4.337-364
https://tches.iacr.org/index.php/TCHES/article/view/8686
https://tches.iacr.org/index.php/TCHES/article/view/8686


20 Marina Krček, Lichao Wu, Guilherme Perin, and Stjepan Picek

21. Perin, G., Wu, L., Picek, S.: Exploring feature selection scenarios for deep
learning-based side-channel analysis. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems 2022(4), 828–861 (Aug 2022). https://doi.
org/10.46586/tches.v2022.i4.828-861, https://tches.iacr.org/index.php/
TCHES/article/view/9842

22. Picek, S., Perin, G., Mariot, L., Wu, L., Batina, L.: Sok: Deep learning-based
physical side-channel analysis. ACM Comput. Surv. (oct 2022). https://doi.org/
10.1145/3569577, https://doi.org/10.1145/3569577, just Accepted

23. Standaert, F.X., Malkin, T.G., Yung, M.: A unified framework for the analysis
of side-channel key recovery attacks. In: Joux, A. (ed.) Advances in Cryptology -
EUROCRYPT 2009. pp. 443–461. Springer Berlin Heidelberg, Berlin, Heidelberg
(2009)

24. Timon, B.: Non-profiled deep learning-based side-channel attacks. Cryptology
ePrint Archive, Paper 2018/196 (2018), https://eprint.iacr.org/2018/196,
https://eprint.iacr.org/2018/196

25. Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a methodology for ef-
ficient cnn architectures in profiling attacks. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2020(3), 147–168 (Jun 2020). https://doi.
org/10.13154/tches.v2020.i3.147-168, https://tches.iacr.org/index.php/
TCHES/article/view/8586

26. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for effi-
cient cnn architectures in profiling attacks. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2020(1), 1–36 (Nov 2019).
https://doi.org/10.13154/tches.v2020.i1.1-36, https://tches.iacr.org/
index.php/TCHES/article/view/8391

27. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Efficiency through diversity in en-
semble models applied to side-channel attacks: – a case study on public-key algo-
rithms –. IACR Transactions on Cryptographic Hardware and Embedded Systems
2021(3), 60–96 (Jul 2021). https://doi.org/10.46586/tches.v2021.i3.60-96,
https://tches.iacr.org/index.php/TCHES/article/view/8968

28. Zhang, R.: Making convolutional networks shift-invariant again. In: Chaudhuri,
K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on
Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 7324–
7334. PMLR (09–15 Jun 2019), https://proceedings.mlr.press/v97/zhang19a.
html

29. Zotkin, Y., Olivier, F., Bourbao, E.: Deep learning vs template attacks in front
of fundamental targets: experimental study. IACR Cryptol. ePrint Arch. p. 1213
(2018), https://eprint.iacr.org/2018/1213

https://doi.org/10.46586/tches.v2022.i4.828-861
https://doi.org/10.46586/tches.v2022.i4.828-861
https://doi.org/10.46586/tches.v2022.i4.828-861
https://doi.org/10.46586/tches.v2022.i4.828-861
https://tches.iacr.org/index.php/TCHES/article/view/9842
https://tches.iacr.org/index.php/TCHES/article/view/9842
https://doi.org/10.1145/3569577
https://doi.org/10.1145/3569577
https://doi.org/10.1145/3569577
https://doi.org/10.1145/3569577
https://doi.org/10.1145/3569577
https://eprint.iacr.org/2018/196
https://eprint.iacr.org/2018/196
https://doi.org/10.13154/tches.v2020.i3.147-168
https://doi.org/10.13154/tches.v2020.i3.147-168
https://doi.org/10.13154/tches.v2020.i3.147-168
https://doi.org/10.13154/tches.v2020.i3.147-168
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://doi.org/10.13154/tches.v2020.i1.1-36
https://doi.org/10.13154/tches.v2020.i1.1-36
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://doi.org/10.46586/tches.v2021.i3.60-96
https://doi.org/10.46586/tches.v2021.i3.60-96
https://tches.iacr.org/index.php/TCHES/article/view/8968
https://proceedings.mlr.press/v97/zhang19a.html
https://proceedings.mlr.press/v97/zhang19a.html
https://eprint.iacr.org/2018/1213

	Shift-invariance Robustness of Convolutional Neural Networks in Side-channel Analysis

