Practical Large-Scale Proof-of-Stake Asynchronous Total-Order

Broadcast
Orestis Alpos Christian Cachin
University of Bern University of Bern
orestis.alpos@unibe.ch christian.cachin@unibe.ch
Simon Holmgaard Kamp Jesper Buus Nielsen
Aarhus University Aarhus University
kamp@cs.au.dk jbn@cs.au.dk
Abstract

We present simple and practical protocols for generating randomness as used by asynchronous
total-order broadcast. The protocols are secure in a proof-of-stake setting with dynamically
changing stake. They can be plugged into existing protocols for asynchronous total-order
broadcast and will turn these into asynchronous total-order broadcast with dynamic stake. Our
contribution relies on two important techniques. The paper “Random Oracles in Constantino-
ple: Practical Asynchronous Byzantine Agreement using Cryptography” [Cachin, Kursawe, and
Shoup, PODC 2000] has influenced the design of practical total-order broadcast through its use
of threshold cryptography. However, it needs a setup protocol to be efficient. In a proof-of-stake
setting with dynamic stake this setup would have to be continually recomputed, making the
protocol impractical. The work “Asynchronous Byzantine Agreement with Subquadratic Com-
munication” [Blum, Katz, Liu-Zhang, and Loss, TCC 2020] showed how to use an initial setup
for broadcast to asymptotically efficiently generate sub-sequent setups. The protocol, however,
resorted to fully homomorphic encryption and was therefore not practically efficient. We adopt
their approach to the proof-of-stake setting with dynamic stake, apply it to the Constantino-
ple paper, and remove the need for fully homomorphic encryption. This results in simple and
practical proof-of-stake protocols. We discuss how to use the new coin-flip protocols together
with DAG rider [Keidar et al., PODC 2021] and create a variant which works for dynamic proof
of stake. Our method can be employed together with many further asynchronous total-order
broadcast protocols.

1 Introduction

State of the art. It is well known that Asynchronous Total-Order Broadcast (ATOB) cannot be
deterministic [25]. The necessary randomness is usually modelled as a common coin scheme [34],
informally defined as a source random values observable by all participants but unpredictable for
the adversary [9]. Common coins are most practically implemented using threshold cryptogra-
phy [10, 23] 33, @]. This approach has many benefits. It is conceptually simple and efficient, it
achieves optimal resilience ¢ < n/3, where n the number of parties running the protocol, and it
results in a perfect coin, meaning that it is uniformly distributed and agreed-upon with probabil-
ity 1. The drawback, however, is that it requires a trusted setup or an Asynchronous Distributed

orestis.alpos@unibe.ch
christian.cachin@unibe.ch
kamp@cs.au.dk
jbn@cs.au.dk

Key Generation (ADKG) protocol. Current state of the art ADKG protocols [20), 1, 2] have com-
munication cost of O(An3), where X is the security parameter.

Given that state-of-the-art ATOB protocols have communication complexity O(An?), or even
amortized O(An), it is evident that the communication cost of ADKG becomes the bottleneck.
In a permissioned setting with a static set of parties, it is common to proactively refresh the
threshold setup [8]. In a Proof-of-Stake (PoS) setting, particularly, where the stake is constantly
evolving and parties may dynamically join or leave the protocol, the ADKG protocol must be run
periodically. Recent literature on asynchronous consensus uses committees, which contain only a
subset of the parties, reducing the communication complexity of BA even further to O(Anlogn) at
the cost of tolerating only ¢ < (1 — €)n/3 corruptions for any € > 0 [4, [17]. As the protocol run by
the committee assumes an honest supermajority, this paradigm comes with one of two significant
drawbacks. Either the sampled committee has to be very large, so that its maximal corruption
remains below n/3 with overwhelming probability [22]. Otherwise, in order to keep the committee
size small, the corruption level in the ground population must be assumed lower than n/3 by a
considerable margin. Directly porting this idea to ADKG results in the same drawbacks. Finally,
existing DKG protocols support only flat structures, where every party has the same weight and
in total t < n/3 parties are corrupted. They do not readily work for a setting where every party
holds a different share of the stake.

Seeds in PoS protocols. PoS-based ATOB protocols and blockchains require, apart from com-
mon coins, a second type of randomness, usually referred to as a seed. In PoS blockchains there
is the notion of accounts with stake on them, of roles, such as “produce the 42-nd block”, and of
a lottery, through which accounts win the right to execute roles. This is typically [21], 26] imple-
mented using a Verifiable Pseudo-Random Function (VRF) [31]: each account has a private key
for a VRF and applies it to the role, producing a pseudorandom value. If this value is above a
threshold then the account wins the right to execute the role. However, for this approach to work
the lottery needs as input not only a role but also a seed. Without the seed, a party can operate
with several accounts and move all its stake to the luckiest account. By including a seed in the
lottery and using the stake distribution from a point in time before the seed was unpredictable one
can mitigate this attack [21].

In practice one can use a common-coin protocol to produce the seeds. We remark, however, that
the two randomness-generation protocols have different requirements. A common-coin scheme does
not have to be always unpredictable and agreed-upon, but only with some constant probability [32,
11]. It should, however, be efficient, as it is used in every agreement instance within the broadcast
protocol. On the other hand, the seed-generation protocol must always be unpredictable and agreed
upon, but it can be slow, as it is only run periodically (e.g., once per epoch).

Related work. Multiple common-coin constructions without a trusted dealer have been proposed
in the literature. Ben-Or [3] presents a simple protocol, where every party flips a local coin. As
a result, parties agree on the value of the coin only with probability ©(27"), A common-coin
scheme from verifiable secret sharing has been shown by Canetti and Rabin [11], but their resulting
Byzantine agreement protocol has communication complexity O(n!!). Patra, Choudhury, and
Rangan [32] bring this down to O(n?).

A different approach constructs common coins from publicly verifiable secret sharing. The result-
ing protocols, such as SCRAPE [12], ALBATROSS [13], Spurt [19], HydRand [37], and RandHound-

RandHerd [40], are efficient, yet they all make synchrony assumptions. RandShare [40] has been
formalized in the asynchronous communication setting, but it is, according to its authors, less
efficient.

Another line of work is based on time-based cryptography. Protocols in this category, such as
Unicorn [30] and Bicorn [I5], employ verifiable delay functions [6] and rely on the assumption that
certain functions (such as exponentiation in groups of unknown order [36]) can only be computed
serially. None of the aforementioned works explicitly mentions the network assumptions. Overviews
of random beacon protocols are given by Raikwar and Gligoroski [35], and by Choi, Manoj, and
Bonneau [16].

Multiple works that circumvent ADKG exist in the literature, but they either make more as-
sumptions, have non-optimal resilience, or result in inefficient protocols. Existing PoS blockchains
rely on the timely delivery of honestly generated blocks, hence make timing assumptions. Ouroboros
Praos [21] implements a randomness beacon protocol, used as seed in their leader-election algo-
rithm, by hashing a large number of VRF outputs. Partial-synchrony assumptions assure that
the honestly generated VRF outputs cannot be delayed arbitrarily by the adversary. King and
Saia [28), [29] propose a synchronous common-coin protocol that makes uses of pseudorandomly
selected committees, but achieves non-optimal resilience. This is improved in the protocol of Al-
gorand [26], [14], where each committee member applies a VRF on the seed of previous block, and
then the smallest valid VRF value sent by some committee member is kept. The protocol is first
described in the synchronous model [26] and later extended to the partially synchronous [14]. Co-
hen, Keidar, and Spiegelman [17] extend this idea to the asynchronous model, but their protocol
achieves an n = 4.5¢ resilience. In all these protocols the coins are not reusable and the whole
coin-generation algorithm has to be run repeatedly.

Blum et al. [4] also generate randomness without ADKG. Their ATOB protocol works in the
following way. Assume first that a trusted dealer publishes on a ledger all the setup material
required for one instance of Byzantine agreement and one instance of a Multiparty Computation
(MPC) protocol. Then, on every invocation of the agreement protocol, parties use the Byzantine-
agreement setup in the agreement protocol and the MPC setup in a tailor-made MPC protocol that
refreshes the whole setup. Finally, they replace the trusted dealer with a standard MPC protocol,
executed once in a distributed setup phase. This blueprint solves the problem of dynamic stake
elegantly, but, the proposed MPC protocol for refreshing the setup, which has to be executed for
every Byzantine agreement instance, is not efficient: it employs Threshold Fully Homomorphic
Encryption (TFHE), digital signatures, and zero-knowledge proofs.

Contributions. In this paper we address all the aforementioned limitations of randomness gen-
eration for the first time. We present asynchronous seed-generation and common-coin protocols
that

e require no trusted setup,

e support optimal resilience t < n/3,

e employ small committees and are concretely efficient,

e directly support the PoS setting and dynamic participation,

e are modular and can be generically used in any ATOB broadcast.

Our methods. We are motivated by the question whether one can use the simple, practical,
and efficient approach of getting common coins from threshold setup without running inefficient
and complicated protocols whenever the stake has shifted. Building on the idea of Blum et al. [4],
we rely on the fact that there already exists a functional ATOB: we generate the setup assuming
that we already have the ATOB, and then use the generated setup to keep the ATOB running.
To maintain practical efficiency the crucial step is to avoid FHE. We achieve this by generating
weaker setups than Blum et al. [4], nonetheless still strong enough for the continued execution of
the ATOB.

A crucial observation is that coins consumed by Byzantine agreement do not need to be perfect,
i.e., always unpredictable and agreed upon [I1, 32]. Hence, instead of generating a single, perfect
threshold setup, we generate several candidate setups, such that some constant fraction of them
are good. Many DKG protocols can be seen as doing this as their first step, but their next step is
to combine them into a single perfect setup. In order to be combinable, the setups must be of a
particular form, and the committee that holds the setup must be good (that is, contain less than a
threshold corruptions) except with negligible probability. As our setups are not combined and our
committees only need to be good with a constant probability, our protocols are simpler and more
efficient, and use smaller committees.

Both seed, our seed-generation protocol, and wMDCF, our common-coin protocol, follow the
approach depicted in Figure They elect a proposers committee, each member of which is ex-
pected to create a setup (a VSS setup or a coin setup, for seed and wMDCF, respectively). Each
elected proposer is assigned a holding committee, for which it creates the threshold setup. For this,
the proposer acts as a dealer, encrypts the private setup material under the keys of the holding
committee, and broadcasts these encryptions and the required verifications keys with a single mes-
sage on the ATOB. We use a VRF-based lottery to determine both the proposers and the holding
committees, where each party is elected with probability proportional to its stake. To open a seed
value in the seed protocol, each of the holding committees reveals its shares and these are all added
together. To flip a coin cid in the wMDCF protocol, we first hash cid with a seed to obtain a pointer
to one of the published setups and then use that setup to obtain the value of cid. Which setup will
be used for each cid is thus unpredictable until the seed is known.

Organization. The rest of this paper is organized as follows. Section [2.1] presents the formal
model used in the schemes and Section presents the primitives used in our schemes. Then,
each of the seed-generation and common-coin protocols are presented in modular way, in two steps.
Section [3] presents wVSS, a weak verifiable secret sharing scheme, which is then used in Section []
to build the seed-generation protocol. Section [5| presents wHDCF, a weak honest-dealer coin-flip
protocol, which is then used in Section [6] to build the wWMDCF common-coin protocol. All of these
schemes are parameterized over committee sizes and thresholds, and secure bounds for these are
computed in Section [7} In Section [0 we show how to instantiate a concrete ATOB with our coins.
In Section [§] we analyze the concrete communication cost of our protocols.

ground

X 2/3 honest
population
ﬁmple committee
proposers
committee holding committee
good setup
1) : , \
: : hiding) | live
Q) N | | J
1 f T T)
213 —8 : : live
Qe L . .)
7
1/3 p | . N
I I
L 1 ~
w 1 T n—T n

Figure 1: The high level idea of our protocols. A proposers committee is elected, and we wait
until w proposers broadcast a setup. Assuming 2/3 honesty in the ground population, a proposer
is honest with probability 2/3. Each proposer is assigned a holding committee of size n and creates
an (n,7) threshold setup for it. A committee is hiding if it contains at most 7 corrupted parties,
and live if it contains at most n — 7 — 1 corrupted parties. A setup is good if its proposer in honest
and its holding committee is hiding and live. We set w so as to have enough honest proposers, and
n and 7 so that each holding committee is hiding with constant probability 5 and live with all but
negligible probability. As a result, we get good setups with a constant probability ~.

2 Preliminaries

2.1 Model

We assume a model with asynchronous authenticated point-to-point channels. In addition we
assume an asynchronous persistent total-order broadcast channel. We denote by Ledger the totally-
ordered sequence of messages that have been delivered on the channel. We point out that if a
blockchain has a distinction between final and non-final messages, then Ledger denotes the final
messages. We assume that when a protocol is started all the parties taking part in the protocol
agree on a session identifier sid and an existing point on the ledger, p < |Ledger|. We think of p as
the starting point of the protocol, which gives consensus on the context of the protocol like stake
distribution and lottery as discussed below. Protocols can have public output which might not be
explicitly posted on the ledger, but will have a well-defined value and virtual point p at which they
happened.

Definition 1 (Public output) We say that PubOutF is a public output function if it computes a
public output from a ledger Ledger and a session identifier sid, where either PubOutF(Ledger, sid) =
y € {0,1}* or PubOutF(Ledger,sid) = L. We require that if PubOutF(Ledger,sid) # L then
PubOutF(Ledger||m, sid) = PubOutF(Ledger, sid) for all m. We say that sid gave public output y at
position p if |Ledger| > p and PubOutF(Ledger[1,p— 1],sid) = L and PubOutF(Ledger[1, p],sid) = y.
Unless multiple sid’s are in scope we will omit the sid parameter. Finally we will informally say

that some protocol gives public output PubOutF when additionally the ledger is implicit or when
it is an eventual property of the ledger. O

Dynamic Stake. We consider proof-of-stake defined via the ledger. For each Ledger there is a
stake distribution Y(Ledger) : P — Ry which may change as the ledger grows, can be computed in
poly-time, and which gives for each party P its stake ¥(Ledger)(P). For each point p there is also
a stake distribution X, which is the stake distribution used by protocols with p as starting point.
It may be different from Y (Ledger[1, p]), as discussed below.

Lotteries. In PoS based protocol it is common that parties are selected at random for carrying
out a role in the protocol, like serving on a committee or producing the next block in a blockchain.
To keep the model simple we assume that this is done via a random oracle. To keep the model
simple we assume that for each point p on the ledger there is a random oracle I', : {0,1}* — {0, 1}
We assume that I', is sampled and made available to the parties at some point after ¥, can be
computed from Ledger. This ensure that I, is independent of 3. If I'), was made available before
¥, was fixed then corrupted parties could update ¥, based on I', and for instance give more
stake to parties “lucky” in I'y. One way to implement this is to iteratively generate random and
unpredictable seeds seed appearing as public outputs. Then for a given point p let seed, be the
latest seed on Ledger[1,p], let T'p(z) = R(seed,, x) for a random oracle R, let p’ < p be the latest
point where seed was unpredictable, and let ¥, = ¥(Ledger[1, p']).

Our protocols include steps where a party samples a committee cid of size n. We model this
as a function SampleCommittee,(cid,n) — (Hi)ie[n} that uses I', to sample n parties from P with
probability proportional to the stake X,. As the input is public, the output can be verified by
a function VerifyCommittee,(cid, (Hi)ie[n}) that reruns SampleCommittee, (cid,n) and verifies that
it matches (Hi)z’e[n
Using our lottery abstraction this could be implemented by calling I'y(cid, 7), for some committee cid
and for i € [n], to obtain a number r; € {0,2* — 1}, and then deterministically mapping r; to a

party P; € P based on X,. Observe that a party with relatively large stake can appear multiple
times in the committee.

ik We assume SampleCommittee,(cid, n) is locally computable by every party.

2.2 Primitives

Our schemes make use of the following primitives.

2.2.1 Public-Key Encryption with Full Decryption

There are keys (dk;, ek;), for all P; € P, for an IND-CPA encryption scheme with full decryption,
PKE. Encrypting a message m € PKE.M using randomness » € PKE.R results in a ciphertext
¢ = Ence;(m;r) € PKE.C. Given a ciphertext ¢ € PKE.C the decryption algorithm Decqy,(c)
returns both m € PKE.M and r € PKE./R. The triple (m,r,c) can then be verified by anyone
holding ek; by checking if Encek,(m;7) = ¢. Given an invalid ciphertext a zero knowledge proof
that the ciphertext is invalid can be obtained using the secret key.

Construction using El Gamal. We first show that we can obtain the properties above in the
random oracle model, as long as only encryptions of random messages are needed. This can then

be lifted to a complete encryption scheme by symmetrically encrypting the message under a freshly
sampled random key.

To encrypt a random value r, use El Gamal with H(r) as randomness. le. if dk = z and
ek = h = g%, then you encrypt r as ¢ = (A, B) = (¢""),r . (")), To decrypt you first compute
r = B/(A"), then check if re-encrypting using H(r) as randomness gives back c. If verification
checks out you can simply send r as proof. If the re-encryption does not match, you provide
a proof that r was obtained by decrypting c. Note that (A, B) decrypts to r (under (g,h)) iff
DLy(h) = DLA(B/r), so this proof can be constructed using the Fiat-Shamir transform of the
Y-protocol for equality of discrete logarithms.

In the full scheme, in order to encrypt m using randomness r, you encrypt r as above and
additionally include a symmetric encryption of m using r as key. To decrypt you first use regular
El Gamal decryption to obtain r and verify it by re-encrypting. If it was encrypted correctly you
use it to decrypt m and return (m,r), otherwise return (L, 7).

2.2.2 Weak Threshold Coin Flip

We use a (n,t)-threshold coin-flip (CF) scheme, where n is the total number of parties, ¢ is the
corruption threshold, and the reconstruction threshold is ¢ + 1. The scheme has the following
interface.

e Setup(n,t) — (vk,skq,...,sky,): The dealer generates a verification key vk and secret key
shares sk; of P;. The secret keys can be used to create coin shares of multiple coins.

o VerifyKeyShare(vk,i,sk;) — b € {0,1}: Given the verification keys vk, it verifies sk;.

e Flip(sk;, coin) — (s;,w;): Given a coin identifier coin and secret key sk;, it returns a coin share
s; for coin and potentially a correctness proof w;, i.e., a proof that the coin share has been
computed correctly using sk;.

e VerifyCoinShare(vk, coin,s;,w;) — b € {0,1}: It verifies coin share s; for coin identifier coin
using the correctness proof w; and verification key vk.

e Combine(coin, {s;, }jeft+1]) — s € {0,1}*: Given ¢ + 1 valid coin shares s;,, for j € [t + 1], it
returns the value s of the coin identifier coin.

e VerifyCoin(vk, coin,s) — b € {0,1}: It verifies s as the value of coin identifier coin using the
verification key vk.

Security properties. Assuming an honest dealer, i.e., that Setup() is correctly executed, and
that there are no more than ¢ corrupted parties, the scheme satisfies the following properties.

Completeness If the dealer is honest then all key shares generated with Flip(sk;, coin) will verify
with VerifyCoinShare.

Agreement For any ¢ + 1 valid key shares the value Combine(coin, {s;, }c[q) is the same, which
define the value scoin.

Unpredictability The value sc.j, is unpredictable without honest shares, i.e., for a set C' =
{Ps,} jelt+1) of corrupted parties, if a poly-time adversary has been given vk and sk; for P; € C
for a random setup and has not been given Flip(sk;, coin) for P; ¢ C, then it cannot guess
Scoin better than at random. This holds even if it has access to an oracle giving Flip(sk;, coin’)
for all honest P; for all coin’ # coin.

Instantiation. Scheme CF can be instantiated with any non-interactive unique threshold signa-
ture scheme, such as BLS threshold signatures [7, [5]. The dealer picks a random secret key sk and

t
shares it among all n parties using a polynomial ¢(X) = > ¢, X", such that ¢ = sk. The only
k=0

difference from threshold BLS is in Setup(): it runs the key generation algorithm of the threshold
signature scheme, but it does not return the verification keys in the form ggki € G, where i € [n]
and go is the generator of Gg, as in the original scheme. Instead, it returns a vector (Vp, ..., V}),
where Vi, = g% € Gy, for k € {0,...,t}, i.e., it returns Feldman commitments [24] to the coeffi-
cients of ¢. This allows us to implement VerifyKeyShare(), so P; can verify that its key share sk; is
indeed a point on polynomial ¢ by checking whether

t

A | A (1)

k=0

Observe that the original verification keys can still be obtained using with input vk and ¢, hence
VerifyCoinShare() and VerifyCoin() need no modification. Algorithm Flip() returns a signature share
s; on message coin using the key share sk; of party P;. Algorithm Combine() creates the threshold
signature s from t + 1 valid signature shares, which can then be hashed to get a value in {0, 1}.
Algorithms VerifyCoinShare() and VerifyCoin() invoke the signature verification algorithm, which,
in the case of BLS, only takes as input the message coin and a signatures share s; or signature s,
i.e., w; = L, and uses a pairing function. Alternatively, one can use the common-coin scheme of
Cachin, Kursawe, and Shoup [9], but VerifyCoin() would additionally need as input the ¢ + 1 valid
coin shares and proofs {s;;, wi; }je[t+1]-

2.2.3 Secret sharing

Our construction requires a secret sharing scheme TSS with threshold ¢ with the following interface.

1. Share(s;r) — (s1,...,5,): It shares a secret s using randomness r to n secret shares
(81, ey Sn).

2. Reconstruct({s;;}%_;) — s"+ Given t shares it reconstructs some secret s'.

The hiding property says that the joint distribution of ¢ shares s; is independent of s. We can
instantiate TSS with Shamir’s secret sharing scheme [3§].
2.2.4 Digital Signature

Finally, there are keys (skp,vkp), for all P € P, for a digital signature scheme DS with unique
signatures.

3 Weak Verifiable Secret Sharing

In this section we define a weak VSS protocol. It is weak in the sense that it is sometimes not
hiding. But it is always binding and live (allows reconstruction). There is a designated dealer
D, which is one of the participating parties. We assume D is given as part of session identifier,
sid = (D, sid’), and hence is known by all parties when the instance is created.

Syntax. The syntax of wVSS is as follows.

Commit On input (COMMIT,sid,m) to D it starts running the commitment protocol and may
as a result help produce a public output (see Definition PubOutVSSCommit. On input
(comMIT, sid) to a participating party P # D it starts running the commitment protocol and
may as a result help produce a public output PubOutVSSCommit.

Open On input (OPEN,sid) after PubOutVSSCommit(sid,Ledgerp) # L, a party P starts run-
ning the open protocol and may as a result output (DONE-OPEN,sid, mp,), where m is
a proof that mp is the output. The proof can be checked by any party P’ for which

PubOutVSSCommit(sid, Ledgerp/) # L using wVSSVerify(m, m).

Security. The security properties of wVSS are as follows.

Termination (1) If D is honest and gets input (COMMIT, sid, m), and all other honest parties get
input (COMMIT, sid) then eventually there is a public output PubOutVSSCommit.

(2) If PubOutVSSCommit occurred and all honest parties get input (OPEN, sid) then eventually
all honest parties give an output (DONE-OPEN, sid, -).

(3) If any honest party gives an output (DONE-OPEN, sid, -) then eventually all honest parties
give output (DONE-OPEN, sid, -).

Validity If D is honest and had input (commiIT,sid,m) and some honest P gave output
(DONE-OPEN, sid, mp, 7), then mp = m and Vm' : wWSSVerify(m,m') = T < m/ = m.

Binding If D is corrupted, then the following holds. When the first honest party observes public
output PubOutVSSCommit then one can in poly-time compute from the view of the ad-
versary up to this point, a message m such that if later an honest party P gives output
(DONE-OPEN, sid, mp,) then mp = m and Vm' : wWSSVerify(mr,m') = T < m/ =m.

[5-Weak Hiding If D is honest then for each session sid it holds with probability 5 > 0 at a point
in time ¢ before any honest party got input (OPEN,sid) that m is hidden in the view of the
adversary at time t, i.e., if m = my for (mg, m1) picked by the adversary and a uniformly
random bit b, then the adversary cannot guess b better than at random. A precise definition
and security game is given with the analysis in Definition

Construction. The central idea of our wVSS construction is to have a dealer choose a secret
seed o and secret share it unto a random holding committee and put on the ledger an encryption
of each of the shares under the public key of the holder, this vector of encryptions is called the
setup. If this was done correctly any ¢ + 1 honest parties can decrypt their shares and use them to
reconstruct o. All randomness for the secret sharing and the encryption will be generated from o

using a PRG. This allows the committee to rerun the setup procedure and check consistency with
the published setup after reconstruction. This ensures that if anyone ¢ 4 1 parties can reconstruct
to some value o, then all shares are correct, and therefore all subsets of ¢ + 1 shares reconstruct to
the same 0. We also use randomness derived from o to encrypt m and include the encryption in the
setup. We cannot let the dealer pick the holding committee as we need enough honest parties on it
to avoid deadlock of reconstruction. Therefore the holding committee is sampled pseudorandomly
from the session identifier sid.

We use nygs and 7ygg to define the size of the holding committee sampled by the dealer, and
the reconstruction threshold in the holding committee, respectively. To ensure weak hiding these
parameters should be chosen such that the sampled committee has at most 7ygg corruptions with
constant probability at least 5, and to ensure liveness less than nygs — Tyss should be corrupted
except with negligible probability. The scheme makes use of a signature scheme DS (Section ,
an encryption scheme PKE with full decryption (Section , a threshold secret-sharing scheme
TSS (Section , a pseudorandom generator PRG, and a hash function H modelled as a random

oracle.

Algorithm 1 Scheme wVSS, algorithm Commit, where an instance sid of wVSS is created at point
p on Ledger. Code for process P;.

function commit_value(o)
p = PRG(H (o))
Mmask <$_P {07 1}/\

1:
2
3
4: (815 Snyee) & TSS.Share(o)
5 for j € [nyss] do

6

7

r £ 40,1 e; « PKE.Ence, (s;.7)

return ((e1,...,en..)s Mmask)
8: upon input (COMMIT, sid, 7, m) where sid = (D,sid") and P, = D do // only dealer D
9: (H1,...,Hn,) < SampleCommittee,, (sid, nyss)
10: o « DS.Sign, (sid)
11: (€1, -+, €ny)s Mmask) <— commit_value(o)
12: broadcast (sid, 7, (e1,H1) ..., (€nye, Hnye)s M @ Minask) on Ledger

We implement Commit in Algorithm [I] In order to commit to a chosen value m, D first pseudo-
randomly samples a holding committee of size nyss (line[d). We say that the committee is “assigned”
to D, as D cannot influence it without getting rejected as public output. The dealer then com-
putes a signature o on sid, obtaining a unique and unpredictable value. Then D commits to ¢ by
secret-sharing it to the committee. This logic is extracted in an auxiliary function commit_value. It
computes a random tape p = PRG(H(c)). This random tape is used in all subsequent steps that
require randomness. Specifically, in line [3]a random message 45k is sampled, in line 4] the value o
is secret-shared to the members of the holding committee using an (nyss, Tvss)-TSS, and in lines@
the shares of o are encrypted to the committee members. Each of these values are sampled pairwise
independently from p. Finally, D broadcasts its V.SS setup on Ledger (line. This VSS setup serves
as a public output signalling that the message is committed and can at this point only be opened to
some unique value-which could be L. We define the function PubOutVSSCommit(Ledger, (D, sid))
as the earliest (in Ledger) message ((D,sid’),, (e1,H1) ..., (€ny, Hny),m) which is signed by

10

D, where VerifyCommittee((D,sid’),H1,...,H,,.) = 1. If no such message exists in Ledger, then
PubOutVSSCommit(Ledger, sid) =

Algorithm 2 Scheme wVSS, algorithm Open, where an instance sid of wVSS is created at point p
on Ledger. Code only for process P; is in the committee of instance sid, i.e., P; is one of the H; in
the VSS-setup (sid, (e1,H1) ..., (€nysr Hnuss)s Mimasked) published on Ledger.

State:
13: validShares|sid] < []

14: upon input (OPEN, sid) such that PubOutVSSCommit(Ledgerp, ,sid) # L do

15: let ((e1,H1) ..., (€ns Hne)s Mmaskea) = PubOutVSSCommit(Ledgerp,, sid)
16: let C = {Hy,...,Hy .}

17: (sz,rz) + Decq, (e;)

18: e} < Encek, (s}, 75)

19: if ¢} = e; then

20: send (SHARE, s, 7}) to parties in C

21: else

22: create zk-proof W, that e; decrypts to (s}, 7})

23: send (COMPLAINTENCRYPTION, sid, W;, s/, /) to parties in C

24: upon deliver (SHARE, s;,7;) from P; do

25: if e; = Ence, (s5,75) then

26: append s; to validShares|sid]

27: upon |validShares[sid]| = 7yss + 1 do

28: let (sj,,...,8;,..,) = validShares]sid]

29: o’ = TSS.Reconstruct({s;, } jefr+1])

30: if DS.Very, (0’,sid) = 0 then

31: output (DONE-OPEN, sid, L, validShares][sid])
32: (€1, €h,.)s Mmask) < commit_value(o”)

33: if (el,..., en) 7 (e1,...,en,,) then

34: output (DONE-OPEN, sid, L, validShares[sid])
35: else

36: output (DONE-OPEN, sid, Mpask B Mmaskeds O)

37: upon deliver ¢ = (COMPLAINTENCRYPTION, sid, W, s;, ;) do

38: e); + PKE.Ence; ((s5,75))
39: if ¢/ # e; and W; is valid then
40: output (DONE-OPEN,sid, L, ¢)

We implement Open in Algorithm[2l On input OPEN, and after PubOutVSSCommit(Ledger, sid) #
1, a party in the holding committee of the sid instance parses the output as a VSS setup. Party
P; then decrypts e; to get its share and the randomness used for encryption, (s;,7;) (line |17] D It
then re-encrypts (s;,7;) (line to verify that the encryption was done correctly (hne [19). If the
encryption is valid they send (s;, ;) to the other parties, otherwise it sends a verifiable complaint
(lines [22] z—. The complaint includes a zero-knowledge proof that e; decrypts to (s}, 7).

Upon receiving a share from P; (line , party P; verifies that the share sent by P; indeed
corresponds to the value e; published on Ledger. If this is the case, the share is considered valid.

11

Observe that the share the dealer created for P; might be wrong in the first place. This is detected
upon reconstruction. Specifically, once 7yss + 1 valid shares are received (line , P; runs the
reconstruction of TSS to get back some o', which should be a signature on sid computed by D.
Party P; first verifies the signature and, if valid, it repeats the steps performed by D to secret-share
o' (line . Observe that, given o', all steps in commit_value() are deterministic. Hence, if the
reconstructed ¢’ is the same as the o computed by the dealer, then commit_value(¢’) will return the
same values as the ones posted on Ledger by D or we detect that the dealer cheated and output L.
This is checked in line Finally, upon delivering a complaint, sent by some party P;, party P;
verifies the complaint and, if valid, outputs 1. Note that no party can produce a valid complaint if
the check in line [33] goes through. The wVSSVerify check can simply be implemented by a function
that when given an encryption complaint checks if it is valid as in line and when given a set of
shares checks that they are all valid and treats them as input to the activation rule in line 27| to see
that the same output is obtained. When the output of wVSS needs to be distributed to the full set
of parties, each party on the committee simply forwards their (DONE-OPEN, sid, mp, 7) message to
the remaining parties. Note that even though the proof of the outputs can differ, an outside party
only needs to receive one. Hence, in gossiping networks the output messages can be deduplicated
by only forwarding the first valid one to lower communication complexity.

4 Generating an Unpredictable Seed

In this section we define a seed-generation protocol seed. A seed can be thought of as a perfect coin
flip: there is agreement on the output and its value is unpredictable before the protocol starts.

Syntax. The syntax of seed is as follows:

Commit On input (SEED,sid) in a session with session identifier sid a party starts running the
commit protocol and may as a result public output PubOutSeedCommit.

Open On input (SEED-OPEN, sid), which must be given after public output PubOutSeedCommit, in
a session with id sid a party starts running the opening protocol and may as a result output
(DONE-SEED, sid, ¢), for ¢ € {0,1}*.

Security. The security properties of seed are as follows:

Termination If all honest parties get inputs (SEED,sid) then eventually all honest parties get
public output PubOutSeedCommit.
If all honest parties get correct inputs (SEED-OPEN, sid) then eventually all honest parties give
an output (DONE-SEED, sid, -).

Agreement If two honest parties have outputs (DONE-SEED, sid, cp) and (DONE-SEED, sid, ¢q) then
cp = cq. Call the common value cgq.

Unpredictability For each session sid it holds that cgq is unpredictable before the first honest
party gets input (SEED-OPEN, sid).

12

Algorithm 3 Scheme seed, algorithm Commit, where an instance sid of seed is created at some
point p on Ledger. Code for process P;.

41: upon input (SEED,sid) do

42: C < SampleCommittee(sid, mgggp)

43: for j € [msgep] such that C[j] = P; do
44: r & {0, 1)

45: wVSS(commrt, ((P;, 5),sid), r)

Algorithm 4 Scheme seed, algorithm Open, where an instance sid of seed is created at some point
p on Ledger. Code for process P;.

46: State:
47: openings|sid] < []

48: upon input (SEED-OPEN, sid) such that PubOutSeedCommit(sid, Ledger) # L do

49: setups < PubOutSeedCommit(sid, Ledger)
50: for j € [wsprp] do

51: sid; < setups|[j]

52: wVSS(OPEN, sid;)

53: upon deliver (DONE-OPEN,sid;,r, 7) do

54: if j € [wspep] A WVSSVerify(r, r) then
55: append m to openings]sid]

56: upon |openings| = Wsgrp

57: output (DONE-SEED, sid, €D, ¢ openings[sid])

13

Construction. The protocol uses parameters mgpgp and wgggp. The idea is to sample Mmgggp
parties in P to contribute a wVSS setup, asynchronously wait for the first wggrp setups and use the
XOR of them as a seed. We discuss in Section [how to set these parameters, such that at least one
good setup (that is, from an honest proposer and with a committee with at most 7ygs corrupted
members) appears on the ledger, except with negligible probability.

The protocol is started at some starting point p of Ledger, with associated stake X, and com-
mittee sampling mechanism SampleCommittee, (). We implement Commit in Algorihm 3| and Open
in Algorihm A party that is elected to contribute a wVSS setup (line picks a random 7
and starts an instance of wVSS to share r (lines . Once wggrp WVSS protocols with session
identifiers sid; = (P;, k,sid), where C[k] = P;, have given public output PubOutVSSCommit on
Ledger, then we define PubOutSeedCommit to be the ordered tuple of the session identifiers of the
first wggrp such outputs. After this point, the value of the nonce is implicitly defined by the state
of the ledger, and on input (SEED-OPEN,sid), parties start running the Open algorithm on these
Wggep instances of wVSS (lines . By design, the holding committee of each of these instances
has enough honest members for wVSS to terminate. The final seed value is defined as the XOR, of
the values output by each Open (line .

5 Weak Honest-Dealer Coin-Flip

In this section we define the weak honest-dealer coin-flip (WHDCF) protocol. In wHDCF there is
a designated dealer D, which is one of the participating parties. We assume D is given as part of
session identifier, sid = (D,sid’), and hence is known by all parties when the instance is created.
The scheme is weak in the sense that parties may output L as the value of the coin, but if two
honest parties output a value in {0, 1}, then it will be the same. It is honest-dealer as the coin
value becomes predictable for a corrupted D. The scheme makes use of a committee verification
mechanism SampleCommittee,, () proportional to stake at point p (Section, an encryption scheme
with full decryption PKE (Section , and an (neom, Tcomw)-threshold weak coin flip scheme CF
(Section . Here ngow and 7¢ow are protocol parameters, for which we choose specific values
in Section [

Syntax. The syntax of weak honest-dealer coin-flip is as follows:

Deal On input (DEAL,sid) a participating party starts running the dealing protocol of CF and may
as a result produce a public output PubOutSingleDeal.

Flip On input (FLIP,sid,cid), for coin identifier cid, after PubOutSingleDeal(sid, Ledger) # L, a
party starts running the flip protocol of CF and outputs (DONE-FLIP,sid,cid, s,), where
s € {L}U{0,1}* and 7 is a proof that s is the output of the coinflipping protocol. The
proof can be checked by any party P’ for which PubOutSingleDeal(sid, Ledgerp/) # L using
wHDCF Verify(m, m).

Security. The security properties of WHDCF are as follows.

Termination (1) If D is honest and all honest parties get input (DEAL,sid), then eventually
PubOutSingleDeal(sid, Ledger) # L.

14

(2) If, after PubOutSingleDeal(sid, Ledger) # L, all honest parties get input (FLIP,sid, cid),
then eventually all honest parties give output (DONE-FLIP, sid, cid, -), except with negligible
probability.

Weak Agreement If two honest parties output (DONE-FLIP, sid, cid, cp, 7) and (DONE-FLIP, sid, cid, c¢q,),
such that cp # 1 and cq # L, then cp = cq, except with negligible probability. The same
holds if cq # L and wHDCFVerify(m,cq) # L. Moreover, if D is honest, then no honesty
party P outputs cp = L.

Honest-Dealer g-Unpredictability If dealer D of session sid is honest, then each coin flip cid is
independently unpredictable with some constant probability 8 > 0, where § is defined when
PubOutSingleDeal(sid, Ledger) # L and is independent of cid.

A more formal version of Honest-Dealer 3-Unpredictability is given in Definition [5] and the proofs
in Appendix [C]

Construction. In a high level, the scheme works as follows. Dealer D is assigned a coin-holding
committee of size neow and creates a coin setup for an (ncow, Teomw)-threshold coin scheme CF
for this committee. Termination is achieved by appropriately setting the parameters and from the
pseudorandom nature of the committee: if the dealer completes the setup, there are at least 7oo+1
honest parties in the committee, except with negligible probability. The weak agreement property
is achieved by verifiable complaints against a corrupted dealer. Upon receiving a complaint valid
complaint, a party terminates the Flip protocol outputting L. If, additionally, D is honest, then
our protocol guarantees unpredictability with constant probability 5, defined as the probability of
having at most 7¢on corruptions in the committee, and depending only on n¢on and Teoi-

Algorithm 5 Scheme wHDCF, algorithm Deal, where an instance sid of wHDCF is created at point
p on Ledger. Code for process P;.

58: upon input (DEAL,sid) where sid = (D, sid’) and P; = D do // only dealer D
59: (Hi,. .., Hp) < SampleCommittee,, (sid, ncon),

60: (vk,ski, ..., Skns) < CF.Setup(ncomw, Tcon)

61: for j € [noon] do

62: r; & {0,1}; ¢; = PKE.Enca, ((sk;, 7))

63: broadcast (sid, vk, (H1,e1), ..., (Hpns €ne)) o0 Ledger

In Algorithm [5{we implement Deal. The dealer first (line samples the coin-holding committee
of size neow and then (line uses CF to create a coin setup for it. The coin setup includes secret
keys ski, . .., sk and verification key vk. Each secret key sk; is encrypted to party’s P; long term
private key ek; using a fresh randomness r; (lines [61H62). The coin setup is broadcast on Ledger.
When a coin-setup is included in Ledger we define the public output PubOutSingleDeal(sid, Ledger) as
(vk, (H1,€1)s -+« s (Hppons €ncon) if the included committee verifies using VerifyCommittee. Otherwise
the output is L.

In Algorithm [] we implement Flip. Only parties in the coin-holding committee run it. When P;
gets input (FLIP, sid, cid) and PubOutSingleDeal(sid, Ledgerp,) # L, it first reads the coin setup and
tries to decrypt e; to obtain its key share (line . Scheme PKE returns sk} and the randomness
r} that D is supposed to have used at encryption time. Party P; checks whether D has indeed

15

Algorithm 6 Scheme wHDCF, algorithm Flip (cid), where an instance sid of wHDCF is cre-
ated at point p on Ledger. Code for process P;, P; is one of the H; in the coin-setup
(sid, vk, (H1,e1), ..., (Hneons €ncon) Published on Ledger.

State:
64: validShares]sid][cid] < [], for each sid and cid
65: justifiedComplaint[sid][cid] <— L, for each sid and cid
66: terminated[sid][cid] <— 0, for each sid and cid

67: upon input (FLIP,sid, cid) such that PubOutSingleDeal(sid, Ledger) # L do

68: (vk, (H1,€1), -+ s (Hpuons €ncon)) < PubOutSingleDeal(sid, Ledger)

69: let C = {Hi, ..., Hn..

70: (sk},7!) = PKE.Decqy, (€;)

71 if e; # PKE.Encey, ((sk, %)) then

72: create zk-proof W; that e; decrypts to (sk;,7})

73: send (COMPLAINTENCRYPTION, sid, cid, W;, sk},) to parties in C; return
74: if CF.VerifyKeyShare(vk,i,sk;) = 0 then

75: send (COMPLAINTKEYSHARE, sid, cid, sk},) to parties in C; return

76: s; = CF.CreateShare(sk;, cid)

77 send (COINSHARE, sid, cid,s;) to parties in C

78: upon deliver (COINSHARE,sid, cid, s;) from P; do
79: if CF.VerifyCoinShare(vk, cid, s;) = 1 then
80: append s; to validShares]sid]|cid]

81: upon deliver ¢ = (COMPLAINTENCRYPTION, sid, cid, W, sk;,7;) do

82: e); + PKE.Ence; ((sk;, 7))
83: if e # e; and W; is valid then
84: justifiedComplaint[sid][cid] < ¢

85: upon deliver ¢ = (COMPLAINTKEYSHARE, sid, cid, sk;,7;) do

86: e’; < PKE.Ence; ((skj, 7))
87: if ¢, = e; and CF.VerifyKeyShare(vk, i,sk;) = 0 then
88: justifiedComplaint[sid][cid] < ¢

89: upon |validShares|[sid][cid]| = 7o + 1 and terminated|sid][cid] = 0 do

90: let (sj,,-.,8;,,.+,) = validShares[sid]cid]

91: s <= CF.Combine(cid, {5, } e roomn+1])

92: terminated|[sid][cid] « 1

93: output (DONE-FLIP, sid, cid, s, validShares[sid][cid])

94: upon justifiedComplaint[sid][cid] # L and terminated[sid][cid] = 0 do
95: terminated|sid][cid] < 1
96: output (DONE-FLIP, sid, cid, L, justifiedComplaint[sid][cid])

16

done so by re-encrypting (sk;,7;) and checking the result against e;. If it is different, P; sends a

COMPLAINTENCRYPTION message that includes a zero-knowledge proof that e; decrypts to (skj, r})
(lines and stops handling the Flip event. Otherwise, P; can prove correct decryption of
e; in a complaint message by sending (skj,r;). Party P; then verifies its key share against the
verification vector vk published in the coin setup, and, if it is invalid, sends a COMPLAINTKEYSHARE
message to C (lines and returns. If the check passes, it creates a coin share using the
threshold-coin scheme CF (line and sends to the committee C. All complaints are verifiable:
COMPLAINTENCRYPTION is valid if the zk-proof W;, proving that the published e; decrypts to
(skj,75)), is valid, and the re-encryption of (skj, r;) gives something different from e; (lines [81}H34)).
COMPLAINTSHARE is valid if the re-encryption of (sk;,r;) gives the published e; and the key share
sk; is deemed invalid by the CF scheme. (lines . Party P; outputs in two cases, whichever
comes first. First, upon collecting 7¢o + 1 valid coin shares (line , in which case the value of the
coin is reconstructed using the underlying CF scheme. Second, upon receiving a valid complaint
(line , in which case a L value is output. The wHDCFVerify check can be implemented by a
function that when given a complaint checks if it is valid according to the activation rules in line
or line and when given a set of shares checks that they are valid and reruns the activation

rule in line

Remark 1 (Weak agreement vs. honest-dealer aggreement) One can also aim for an
honest-dealer agreement property, where, if D is honest, then honest parties output the same coin
value. Our weak agreement property is stronger: if D misbehaves, then some parties may output
L, but honest parties will never output different coin values. It reduces to honest-dealer agreement
by having parties flip a local coin whenever L is output. O

6 Weak Multiple-Dealer Coin-Flip

In this section we define the weak multiple-dealer coin-flip (WMDCF) protocol. It is weak as it
inherits the agreement property from wHDCF: parties may output L, but if two honest parties
output a value in {0,1}, then it will be the same. It is called multiple-dealer as there are mul-
tiple dealers, forming a proposers committee, selected pseudorandomly using SampIeCommitteep().
The protocol uses parameters mympcr and wwmpcr. Parameter mympcr refers to the size of the
proposers committee, i.e., the number of parties that are selected to act as a dealer in an instance
of wMDCF. Parameter wympcr refers to the number of parties in the proposers committee we
asynchronously wait for. In Section [7| we show how to set these parameters, such that at least one
good setup appears on the ledger, except with negligible probability, and a constant rate v of the
setups are good.

Syntax. The syntax of weak Multiple-Dealer Coin-Flip (wMDCF) is as follows:

Deal On input (DEAL,sid) a participating party starts running the dealing protocol and may as a
result help produce a public output PubOutMultiDeal.

Flip On input (FLIP,sid,cid) for a coin identifier cid, after PubOutMultiDeal(sid, Ledger) # L, a
party starts running the coin-flip protocol and outputs (DONE-FLIP,sid,cid, s), where s €
{Lyu{o, 1}

17

Security. The security properties of honest-dealer coin-flip are as follows. For the agreement
and unpredictability properties we use a probability v > 0, called the good-setup probability, which
depends on the parameter wympcr and on the hiding probability 8 of wHDCF, and is constant and
independent of sid and cid.

Termination (1)If all honest parties get input (DEAL, sid) then eventually there is public output
PubOutMultiDeal(sid, Ledger) # L, except with negligible probability.

(2) If all honest parties get input (FLIP,sid,cid) then eventually all honest parties give an
output (DONE-FLIP, sid, cid, -), except with negligible probability.

v-Agreement For each session sid and coin identifier cid it holds that, if two honest parties output
(DONE-FLIP, sid, cid, cp) and (DONE-FLIP, sid, cid, cq), such that cp # L and cq # L, then
cp = cq, except with negligible probability. Moreover, with probability « it holds that no
honest party outputs L as the value of the coin. All together, this means that, if two honest
parties have outputs (DONE-FLIP, sid, cid, cp) and (DONE-FLIP,sid, cid, cq), then cp = cq # L
with probability ~.

v-Unpredictability For each session sid and coin identifier cid it holds that the value of coin cid
is unpredictable with probability ~.

In Appendix [D] we formalize the agreement and unpredictability properties, and show the proofs.

Algorithm 7 Scheme wMDCF, algorithm Deal, where an instance sid of wWMDCF is created at some
point p on Ledger. Code for process P;.

State:
97: setups[wwmpcr] < []

98: upon input (DEAL,sid) do

99: C < SampleCommittee(sid, mwmpCF)

100: for j € [mwmpce] such that C[j] = P; do

101: wHDCF(Deal, ((P;, 5),sid))

102:upon wympcr setups PubOutMultiDeal(((P;, k), sid), Ledger) # L where C[k] = P;

103: Let setups contain the identifiers which gave public output sorted deterministically
104: seed(SEED, sid)

Construction. On Algorithm [7| we implement Deal. On input (DEAL,sid), a protocol instance
is created with some starting point p. For each time P; is sampled to be a dealer in a wHDCF
instance (line , it creates a new instance of wHDCF and runs the Deal algorithm. Every party
waits for wympcr instances of the wHDCF protocol (started by the dealers sampled in line to
give public output on the Ledger. When this happens, parties run an instance of the seed protocol
(line . This seed will be later used in the Flip algorithm of wMDCF to pseudorandomly choose
one of the wympcr setups. We define PubOutMultiDeal = PubOutSeedOpen, so the output of the
seed protocol signals the end of the dealing phase.

In Algorithm |8 we implement Flip. On input (FLIP,sid, cid) and after observing public output
PubOutMultiDeal every party P; uses a cryptographic hash function H, to hash (sid, cid, seed) into

18

Algorithm 8 Scheme wMDCF, algorithm Flip (cid), where an instance sid of wMDCF is created at
some point p on Ledger. Code for process P;.

105:upon input (FLIP,sid, cid) such that PubOutMultiDeal(sid, Ledger) # L do

106: J < H(sid, cid, PubOutMultiDeal(sid, Ledger))

107: wHDCF(FLIP, setups|j], cid)

108:upon deliver (DONE-FLIP, sid, cid, s,)
109: if wHDCFVerify(m, s) then
110: output (DONE-FLIP, sid, cid, s)

Jj € {1,...,wwmpcr} (line [106). Then, the algorithm Flip of the wHDCF; instance is used to
compute the value of coin cid. We assume that each party on the committee of the selected wHDCF
instance disseminate the output to the ground population.

7 Setting the Parameters

Definition 2 (Binomial distribution) Let X a random variable counting the number of suc-
cesses out of n trials, where success happens with probability p. Then X follows the binomial
distribution, i.e., X ~ B(n,p) and the probability that exactly k successes happen is

PALX = K] = PrlB(n.p) = K = ()1 - p)" 0. 2

7.1 Sampling a holding committee for wVSS and wHDCF

Let n denote the size of a holding committee and 7 < n/2 denote a number, such that the holding
committee has at most 7 corruptions with a constant probability 8, and more than n—7 corruptions
only with a negligible probability ¢ = 27*, where) is the security parameter. The idea is the
following. If we use a (n,T)-secet-sharing or common-coin scheme in the committee, then the
committee is hiding with probability S and live with probability 1—e. These capture the parameters
of both the wVSS and the wHDCF schemes. In wVSS we have n £ nygs and 7 £ 7ygs, and in wHDCF
we have n £ neon and 7 2 Toom.

As discussed earlier, we model a committee-election mechanism as a black-box function
SampleCommittee(), which samples parties with probability proportional to their stake at some
well-defined point on the ledger. In practice, this can be achieved by replacing each party with
a (usually very large) number of smaller, atomic sub-parties, proportional to each party’s stake,
and use a VRF to pseudorandomly choose a sub-party [26]. In this section we assume that the
ground population (the number of sub-parties) is very large, so that the probability of choosing a
corrupted party does not change after choosing a party. Hence, SampleCommittee() does sampling
with replacement, which can be modelled with a binomial distribution.

T n
Using we have that § = > Pr[B(n,1 —p) =kl ande= > Pr[B(n,1—p) = k], for
k=0 k=n—T1+1
p = 2/3. In Table |1 we show various combinations for n and 7, such that € < 27 for A = 60, and
the resulting hiding probability 5.

19

7.2 Sampling a proposer committee for seed and wMDCF

In protocols seed and wMDCF parties have a chance to participate in the proposers committee,
i.e., to win the right to become a dealer in a wVSS or wHDCF instance, respectively. Parties are
again sampled using SampleCommittee (Section [7.1]), which returns a committee of size m, but the
protocols only wait for the first w setups to appear on Ledger and only use those. In seed, we have
m = Mepep and w = Wegep, and in wWMDCF we have m = mympce and w = wwMDCE-

Necessary conditions. As before, we need to make sure that, except with negligible probability
€ = 27, there are at least w honest parties on the committee to ensure termination. This is
bounded as € in Section but with n and 7 replaced by m and w — 1 respectively. But now we
additionally need to make sure that, except with negligible probability at least one of the w setups
that appear on Ledger is a good setup, that is, from an honest party who sampled a committee with
less than 7 corruptions. This condition corresponds exactly to the setup in Section [7.1] being hiding,
but with the probability p changed to account for the fact that we are interested in the probability
of not just an honest party but an honest party who provided a good setup making it into any subset
of size w. Since an honest dealer has a 8 (which depends on the parameters of the subprotocol)

w—1
probability of providing a bad setup, we set p = 3-2/3 and require . Pr[B(m,1—p) = k] > 1-27*.
k=0

Good-setup probability. Finally, specifically for wMDCF, we calculate the probability -, de-
fined in Section [0 that a setup published on Ledger is good, i.e., the probability of getting an
unpredictable and agreed upon value in each coin flip. We derive this from the expected number of
bad setups, which (by linearity of expectation) is m-(1—/- %), and from the fact that the adversary
can schedule the order of messages, causing all bad setups and, hence, only w—m-(1— - %)) good
setups, to appear on Ledger. This gives us the fraction of good setups that in expectation appear
on the ledger as

w—(m-(1—3-2
_wem(1-p-3) 5

w

Putting it all together. We show the resulting parameters with A = 60 bits of security in
Table [Il As an example, for a holding committee with size n = 259 and reconstruction threshold
7 = 103, we get hiding probability 8 = 98.7%. Then we can sample a proposers committee of size
m = 653 and wait for w = 327. This results in 84,693 encrypted shares being posted on the Ledger
, and for wMDCF it gives a good-setup probability v = 31.8%.

8 Analysis of Communication Complexity

To demonstrate the power of being able to sample concretely small committees, we analyze the
concrete complexity of our protocols. Note that a purely asymptotic analysis would not show any
gains over simply using a state of the art ADKG protocol with subset sampling and near optimal
resilience. We give all sizes in bits, but for simplicity we treat group and field elements as A bits.
For instance, we use 3\ as the size of an encrypted share, which (using section consists of 2
group elements and a symmetrically encrypted share of a secret of size A. This would not be precise
for concrete instantiations, but it would only change our estimates by a small constant factor which
depends, for example, on the concrete curves being employed.

20

n T 15} m | w y n-w
653 | 320 | >1—2% | 653 | 321 | 32.2% | 209.6K
300 | 125 | 99.9% | 653 | 322 | 32.3% | 96.6K
280 | 114 | 99.6% | 653 | 323 | 32.1% | 904K
275 | 111 | 99.4% | 653 | 324 | 32.0% | 89.1K
271 | 109 | 99.3% | 653 | 325 | 32.0% | 88.1K
265 | 106 | 99.0% | 653 | 326 | 31.9% | 86.4K
261 | 104 | 98.8% | 653 | 327 | 31.9% | 85.3K
259 | 103 | 98.7% | 653 | 327 | 31.8% | 84.7TK
257 | 102 | 98.6% | 659 | 330 | 31.6% | 84.8K
256 | 101 | 98.3% | 672 | 337 | 31.3% | 86.3K
254 | 100 | 98.1% | 682 | 342 | 31.1% | 86.9K
252 | 99 98.0% | 692 | 347 | 30.8% | 87.4K

Table 1: This table shows possible values (subject to conditions in Section for the holding
committee parameters, n and 7, and the resulting hiding probability 5. For each obtainable 3, it
shows possible values (subject to conditions in Section for the proposers committee parameters,
m and w, and the resulting good-setup probability . In both seed and wMDCF schemes, each of
the w dealers encrypts keys for a committee of size n, which gives a total of m * w encryptions.

We define ATOB complexity as the cost of including a message of a given size in Ledger. In
the following “broadcast” refers to broadcasting through the ATOB and “multicast” refers to a
party sending a message to all parties in the ground population. As the communication cost of a
broadcast and multicast depends on the concrete implementation we keep these costs opaque and
report the results as a number of broadcasts and multicasts of various sizes. For intercommittee
communication we assume point to channels are used and give the results in total number of bits
sent though the channels.

The wVSS protocol has an ATOB complexity of 1 message of size nygg-3A+ A from the encrypted
shares and masked message in the setup. To distribute the output then either the secret of size
A is multicast, or a complaint of size at most (7yss + 1) - 2A (in case of validly encrypted shares
reconstructing an inconsistent setup) is multicast and the dealer can be proven malicious. A priori
every member of the committee needs to multicast the output, giving a multicast complexity of nygg
messages of size \ (or of size at most (7yss + 1) - 2\, in which case the dealer can be slashed). The
remaining interaction constists of nygs committee members sending one message with a decrypted
share or complaint and proof of total size at most 4\ to the rest of the committee, resulting in a
total message complexity of at most nyss? - 4.

The seed protocol does not add any interaction besides running mgggp, instances of wVSS. Only
the first wegpp of those to make it onto the ledger will result in interaction between committe
members, so the communication complexity is at most mggrp “Nyss® - 4X. The ATOB complexity of
the deal phase of seed is mggrp messages of size nygs - 3A+ A. To disseminate the outputs there is an
additional (wsggp — S) - Nyss multicasts of size A and s - nygs multicasts of size at most (7ygs + 1) - 2,
where s is the number of parties that can be slashed.

The wHDCF protocol has an ATOB complexity of 1 message of size ncow - 3A + A and no
additional communication in the intial setup phase. The message complexity of each flip is at most
Neon - 4\ from reconstructing the coin (or L) in the committee, and then to dessiminate the value

21

to the ground population each committee member multicasts the reconstructed coin or a complaint
of size at most 4, resulting in at most Neom> - 4\ bits communicated in addition to neon multicasts
of size 4.

The deal phase of the wMDCF protocol has the same complexity as mwwmpcr deal phases of
wHDCF and a single run of the seed protocol. I.e. an ATOB complexity of mympcr messages of
size Neow * 3A + A and mggep messages of size nygg - 3A + A, a multicast complexity of wsgep * Mvss
multicasts of size at most (Tyss+1)-2), in addition to a communication complexity of mggep TNyss 24N
bits. Whenever a coin needs to be flipped using wMDCF, the message complexity is that of running
the selected wHDCF protcol.

To refresh the setup after the stake distribution has changed, one would need to first run an
instance of the seed protocol and then the deal phase of the wMDCF protocol. Using the best
parameters in Table [1] the concrete cost of refreshing the setup is 1959 messages of size 778\, and
169386 multicasts of size at most 208\. The communication complexity of flipping a coin and
disseminating it to all parties is 2592 - 4\ in addition to 259 multicasts of 4\ bits. Employing
the optimizations in Remark [2| reduces the multicast complexity of refreshing the setup to 654
messages of size at most (7yss + 1) - 2A. Similarly the cost of distributing a coin becomes the same
as 1 multicast of size 4\.

If we were to assume t < 0.3n in the paradigm of “subset sampling with almost optimal
resilience” [, and need a committee with honest supermajority with probability 1 — 276, then
one would need to sample a committee with 16037 parties [22]. If we then instantiate a state of
the art ADKG protocol with O(n3)\) communication using the committee and for the sake of an
example assume the concrete cost is n3\, then we get a complexity of > 4 - 10'2\. It is then clear
that our approach is far cheaper for all but extremely large values of n.

Remark 2 (Deduplicating multicasts) Notice that each party only needs to receive a single
proof of output for each of the wggrp, WVSS setups. Since large scale P2P networks usually employ
gossiping with deduplication of previously forwarded messages, each node can consider different
output justifications from the same wVSS “identical” for the purpose of decuplication. We conjec-
ture that in most gossip based P2P networks this results in a communication cost which is less than
that of a single multicast, as it can be seen as a multicast from a single source which has gotten a
headstart by being predistributed to O(\) nodes. With this instantiation the cost of disseminating
the wVSS outputs from the seed protocol becomes the same as multicasting wgggp messages of size
at most (7yss + 1) - 2\ over the gossip network. The same deuplication trick can be employed when
disseminating the coin flips, reducing the cost of distributing the coin to the same as 1 multicast
of size 4. o

9 Asynchronous Total-Order Broadcast with Weak Coins

It is known that coins consumed by Byzantine agreement protocols do not need to be perfect, i.e.,
unpredictable and agreed upon with all but negligible probability [11} 32]. However, many many
existing ATOB protocols [27), 18] [39] base their correctness on a global perfect coin. While one can
add machinery on top of our weak coin wMDCF to instantiate a perfect coin, in this section we show
how to modify a concrete protocol, namely DAG-rider [27], to use our weak coin functionality. We
use f to denote the number of corrupt nodes to stay consistent with their notation. The modification
simply adds an extra round at the end of each wave in which each party adds its observed coin

22

output their vertex and changes the consensus logic to depend on these reported coins instead of a
common coin.

To keep the presentation concise, we present the changes relative to the algorithms and line
numbers from the original paper [27]. Specifically, we modify Algorithms 1, 2, and 3 [27]. For
Algorithm 3 [27], which contains the core consensus logic, we also present its modified version in
Algorithm [9

First, we need the output of the common-coin protocol in the vertices in the last round of each
wave, so we add the field coin to the vertex structure, as shown in Algorithm 1 of DAG-Rider [27].
The field contains a leader or a proof that wMDCF has output L. In rounds that are not congruent
to4 mod 5 the field is left empty. We use these coin values to commit the leader of the wave, which
now consists of five rounds, hence we change the “4” in lines 11 and 12 of Algorithm 2 [27] to “5”.
Additionally, we add the coin value to the new vertices after line 20 by checking if “r mod 5 = 4”
and then setting “v.coin <— chooselLeader(r/5)”, and we strengthen the condition in line 25 to also
verify that vertices in the last round of each wave include a valid coin or a justified output of L.

Finally, we modify the consensus logic in Algorithm 3 [27], so that get wave_ vertex_leader uses
the coins included in the DAG to potentially pick a leader, and the wave_ready activation rule
commits a leader when more than f nodes in a wave report the coin output (in addition to the
existing condition for picking a leader from a common core of 2f + 1 vertices). Similarly, the check
in line 41 of Algorithm 3 [27] is strengthened, requiring additionally that the coin that picks the
leader is included in the DAG of the newly committed leader through a strong path. These changes
are described in detail in Algorithm [9}

Algorithm 9 DAG-rider with weak coins.
111:upon wave_ready(w) do

112: v — get_wave_vertex_leader(w)

113: if v =1V |[{v' € DAG;[round(w,5)] : v'.coin = v.source}| < f+1
114: V[{v" € DAG;[round(w,4)] : strong_path(v’,v)}| < 2f + 1 then
115: return

116: leadersStack.push(v)

117: for wave w’ from w — 1 down to decidedWave + 1 do

118: v’ < get_wave_vertex_leader(w’)

119: if v' # L Astrong_path(v,v") A Fv” € DAG;[round(w’, 5)] :
120: v".coin = v.source A strong_path(v,v”) then

121: leadersStack.push(v’)

122: v

123: decidedWave < w

124: order_vertices(leadersStack)

125:procedure get_wave_vertex_leader(w)

126: if Jv € DAG;[round(w, 1)],v" € DAG;[round(w, 5)] : v.source = v’.coin then
127: return v
128: return |

Consistency. If a wave leader is committed in some view of the DAG in wave w, then at least
f+1 of the vertices in round 5 of w reported a coin output. Assume in some in wave w’ > w a wave
vertex leader is committed in some other view of the DAG. If w = w’ then leaders and vertices are

23

consistent by the agreement property of the coin and vertices being sent through reliable broadcast.
If w < w’ then the leader in wave w’ is connected to n — f vertices in round 5 of w through a strong
path. Since the vertices are reliably broadcast, at least one of these overlap with the at least f + 1
vertices reporting a coin output, which allowed committing a leader in W. Hence, the leader of
round w will be pushed to leadersStack in line [12I] ensuring consistency.

Liveness. Everything is as before, but there are now more ways in which get wave vertex leader
could fail to return a vertex. Before it could only happen when the leader is not in the common
core, which has size 2n/3 and was committed before the coin value was known. Thus, the wave
vertex leader has output with prob. 2/3. In our version there is some constant probability that the
coin is bad (meaning that there could be disagreement or the coin could have been predicted). The
adversary can schedule the waves in which the coin is bad such that no leader can be committed.
If the coin is good, then all vertices in round 5 will report the output, the vertices in the common
core are independent of the coin value. So the probability of committing a wave is Pr[good] - %

10 Conclusion

In this work we have presented protocols for generating randomness in an asynchronous PoS setting
with dynamic participation. The protocols are practical and concretely efficient, they employ no
trusted setup, and they make use of small committees. We have computed concrete numbers for
the committee size. Specifically, we can have a committee of m = 653 proposers, each generating
a setup for n = 359 holders, resulting in approx. 85K encrypted values posted on Ledger. For
k = 60 bit of security and assuming optimal corruption 1/3 in the ground population, this gives
randomness-generation protocols that are live with all but negligible probability. Our common-coin
protocol is unpredictable and agreed-upon with probability approx. 31.8%, and, as it is based on
threshold cryptography, the setup can be used for a flipping a polynomial number of coins. These
committee sizes result from the fact that we require not all but only a constant factor of our setups
to be good.

It is instructive to compare these results against previous literature, particularly against the
approach that runs the randomness-generation protocols in committees with honest supermajority.
Algorand [26, Figure 3] requires a committee of size approx. 2000, assuming corruption 0.2 in the
ground population, and larger than 4000, assuming corruption 0.24, to get good committees with
probability 5-1077, or approx. 28 bits of security. Extending this approach to a ground population
with corruption 0.3, which is still sub-optimal, and 60 bits of security, the authors of GearBox [22]
show that committees of size 16037 are needed. We remark that asynchronous distributed key
generation protocols, the state-of-the-art approach for threshold-setup generation, require honest
supermajority, hence one would require a committee of similar sizes and sub-optimal resilience in
the ground population.

Acknowledgments

This work has received funding from the Swiss National Science Foundation (SNSF) under grant
agreement Nr. 200021_188443 (Advanced Comnsensus Protocols). Simon Holmgaard Kamp and
Jesper Buus Nielsen are partially funded by The Concordium Foundation.

24

References

1]

I. Abraham, P. Jovanovic, M. Maller, S. Meiklejohn, and G. Stern. Bingo: Adaptively secure
packed asynchronous verifiable secret sharing and asynchronous distributed key generation.
IACR Cryptol. ePrint Arch., page 1759, 2022.

I. Abraham, P. Jovanovic, M. Maller, S. Meiklejohn, G. Stern, and A. Tomescu. Reaching
consensus for asynchronous distributed key generation. In PODC, pages 363-373. ACM, 2021.

M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols
(extended abstract). In PODC, pages 27-30. ACM, 1983.

E. Blum, J. Katz, C. Liu-Zhang, and J. Loss. Asynchronous byzantine agreement with sub-
quadratic communication. In TCC (1), volume 12550 of Lecture Notes in Computer Science,
pages 353-380. Springer, 2020.

A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-
diffie-hellman-group signature scheme. In Public Key Cryptography, volume 2567 of Lecture
Notes in Computer Science, pages 31-46. Springer, 2003.

D. Boneh, J. Bonneau, B. Biinz, and B. Fisch. Verifiable delay functions. In CRYPTO (1),
volume 10991 of Lecture Notes in Computer Science, pages 757—788. Springer, 2018.

D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. J. Cryptol.,
17(4):297-319, 2004.

C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient asynchronous broadcast
protocols. In CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 524-541.
Springer, 2001.

C. Cachin, K. Kursawe, and V. Shoup. Random oracles in constantinople: Practical asyn-
chronous byzantine agreement using cryptography. J. Cryptol., 18(3):219-246, 2005.

J. Camenisch, M. Drijvers, T. Hanke, Y. Pignolet, V. Shoup, and D. Williams. Internet
computer consensus. In PODC, pages 81-91. ACM, 2022.

R. Canetti and T. Rabin. Fast asynchronous byzantine agreement with optimal resilience. In
STOC, pages 42-51. ACM, 1993.

I. Cascudo and B. David. SCRAPE: scalable randomness attested by public entities. In ACNS,
volume 10355 of Lecture Notes in Computer Science, pages 537-556. Springer, 2017.

I. Cascudo and B. David. ALBATROSS: publicly attestable batched randomness based on
secret sharing. In ASIACRYPT (3), volume 12493 of Lecture Notes in Computer Science,
pages 311-341. Springer, 2020.

J. Chen, S. Gorbunov, S. Micali, and G. Vlachos. ALGORAND AGREEMENT: super fast
and partition resilient byzantine agreement. TACR Cryptol. ePrint Arch., page 377, 2018.

K. Choi, A. Arun, N. Tyagi, and J. Bonneau. Bicorn: An optimistically efficient distributed
randomness beacon. TACR Cryptol. ePrint Arch., page 221, 2023.

25

[16]

[17]

[18]

[19]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

K. Choi, A. Manoj, and J. Bonneau. Sok: Distributed randomness beacons. TACR Cryptol.
ePrint Arch., page 728, 2023.

S. Cohen, I. Keidar, and A. Spiegelman. Not a coincidence: Sub-quadratic asynchronous
byzantine agreement WHP. In DISC, volume 179 of LIPIcs, pages 25:1-25:17. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 2020.

G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman. Narwhal and tusk: a dag-based
mempool and efficient BF'T consensus. In FuroSys, pages 34-50. ACM, 2022.

S. Das, V. Krishnan, I. M. Isaac, and L. Ren. Spurt: Scalable distributed randomness beacon
with transparent setup. In IEEE Symposium on Security and Privacy, pages 2502-2517. IEEE,
2022.

S. Das, T. Yurek, Z. Xiang, A. Miller, L. Kokoris-Kogias, and L. Ren. Practical asynchronous
distributed key generation. In IEFEE Symposium on Security and Privacy, pages 2518-2534.
IEEE, 2022.

B. David, P. Gazi, A. Kiayias, and A. Russell. Ouroboros praos: An adaptively-secure, semi-
synchronous proof-of-stake blockchain. In EUROCRYPT (2), volume 10821 of Lecture Notes
in Computer Science, pages 66-98. Springer, 2018.

B. David, B. Magri, C. Matt, J. B. Nielsen, and D. Tschudi. Gearbox: Optimal-size shard
committees by leveraging the safety-liveness dichotomy. In CCS, pages 683-696. ACM, 2022.

Drand. A distributed randomness beacon daemon, 2022. https://drand.love.

P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In FOCS, pages
427-437. IEEE Computer Society, 1987.

M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility of distributed consensus with one
faulty process. In PODS, pages 1-7. ACM, 1983.

Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling byzantine
agreements for cryptocurrencies. In SOSP, pages 51-68. ACM, 2017.

I. Keidar, E. Kokoris-Kogias, O. Naor, and A. Spiegelman. All you need is DAG. In PODC,
pages 165-175. ACM, 2021.

V. King and J. Saia. Byzantine agreement in expected polynomial time. J. ACM, 63(2):13:1-
13:21, 2016.

V. King and J. Saia. Correction to byzantine agreement in expected polynomial time, JACM
2016. CoRR, abs/1812.10169, 2018.

A. K. Lenstra and B. Wesolowski. A random zoo: sloth, unicorn, and trx. IACR Cryptol.
ePrint Arch., page 366, 2015.

S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions. In FOCS, pages
120-130. IEEE Computer Society, 1999.

26

https://drand.love

[32] A. Patra, A. Choudhury, and C. P. Rangan. Asynchronous byzantine agreement with optimal
resilience. Distributed Comput., 27(2):111-146, 2014.

[33] Protocol Labs. Filecoin: A decentralized storage network. https://filecoin.io/filecoin.
pdf}, 2017.

[34] M. O. Rabin. Randomized byzantine generals. In FOCS, pages 403-409. IEEE Computer
Society, 1983.

[35] M. Raikwar and D. Gligoroski. Sok: Decentralized randomness beacon protocols. In ACISP,
volume 13494 of Lecture Notes in Computer Science, pages 420-446. Springer, 2022.

[36] D. A. W. Ronald L. Rivest, Adi Shamir. Time-lock puzzles and timed-release crypto. Technical
report, 1996.

[37] P. Schindler, A. Judmayer, N. Stifter, and E. R. Weippl. Hydrand: Efficient continuous
distributed randomness. In IEEE Symposium on Security and Privacy, pages 73-89. IEEE,
2020.

[38] A. Shamir. How to share a secret. Commun. ACM, 22(11):612-613, 1979.

[39] A. Spiegelman, N. Giridharan, A. Sonnino, and L. Kokoris-Kogias. Bullshark: DAG BFT
protocols made practical. In CCS, pages 2705-2718. ACM, 2022.

[40] E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J. Fischer, and
B. Ford. Scalable bias-resistant distributed randomness. In IEEE Symposium on Security and
Privacy, pages 444-460. IEEE Computer Society, 2017.

A Proofs for wVSS

In this section we prove the following.

Theorem 1 The scheme wVSS given in algorihm [1] and algorihm[g is a Weak VSS as defined in
section [3 o

We first formalize the notion of weak hiding.
Definition 3 (3-Weak Hiding) The following two properties should hold:

B-Sometimes Good: For all sid there should exist an event Badgy which can be computed
in PPT from the view of the adversary once the first honest party gave public output
PubOutVSSCommit for sid, i.e., the adversary knows if the event happened. It should hold
that if D is honest in sid then Badgq happens with probability at most 1 — 5, independently
for each sid.

Hiding when Good: Furthermore, the adversary can win the following game with probability
at most negligibly better than 1/2. The adversary may initiate as many sessions sid as it
wants. At any point it may specify a challenge (COMMIT, sid, mg, m;) for a sid for which no
commitment was made yet. Then the game flips a uniformly random bit bgyq and gives input
(commIT, sid, my,_,) to the dealer D specified by sid. The adversary may challenge several

27

https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf

sessions. The adversary wins the game if at some point it outputs (sid,g) where sid is a
session with an honest dealer, where a challenge was made, where an honest party has public
output PubOutVSSCommit, where Badgy did not happen, where the first honest party still
did not get input OPEN, and g = bgq. O

PROOF theorem [I] We will assume that the committee selection for wVSS is done such that with
constant probability at least 8 there are at most 7ygs corrupted parties and such that except with
negligible probability there are less than nygs — Tygg corruption except with negligible probability.
We have to prove Termination (1)—(3), Binding, Validity, S-Sometimes Good, and Hiding
when Good.

Termination (1). Assume that D is honest and gets input (coMmIT, m), and all other hon-
est parties get input (COMMIT,sid). D can perform all the operations locally and broadcast
(sid, 7, (e1,H1) . .., (€nyess Hnuss), Marasken), which by definition of PubOutVSSCommit leads to the
require public output.

Termination (2). Assume PubOutVSSCommit occurred and all honest parties get input
(OPEN, sid). We have to show that eventually all honest parties give output DONE-OPEN. Since
for all PinHonest ((e1,H1) ..., (€nyss Hnvss)s Mimasked) = PubOutVSSCommit(Ledgerp,sid). At this
point either all honest ciphertexts e; are valid or some honest ciphertext is invalid. We do a
proof by case. Let us first assume that some honest ciphertext is invalid. In that case some
honest party will eventually send a COMPLAINTENCRYPTION-message which will eventually arrive
at all other honest parties and make them output (DONE-OPEN,sid, L) if they did not already
give a DONE-OPEN-output. Assume then that all honest ciphertexts are valid. In that case all
honest parties will send (SHARE, s¢,7.). There is less than nygs — Tygs corruptions except with
negligible, so there is at least 7ygs honest parties. Therefore all honest parties will eventually have
|validShares|[sid]| = Tyss + 1 and reconstruct some o’. At this point they will output (DONE-OPEN, -).

Termination (3). Assume some honest party P gives an output (DONE-OPEN,-). It is easy to
verify that for each condition that could make this happen, the information that triggered the event
at P; will eventually propagate to all honest parties and also have them output (DONE-OPEN, -) (if
they did not already do so).

Binding. For a given session identifier sid assume that PubOutVSSCommit(sid) occurred and
therefore (sid, 7, (e1,H1) ..., (€nyes Hnus)s Muasken) appeared on the ledger. We show that there
exist a unique m that sid can open to. We first make some helper definitions.

We say that a set of shares validShares[sid] opens sid to m if |validShares[sid]| = 7yss + 1 and
ej = Encek, (s7,7;) for all (SHARE, s;,7;) € validSharessid], and ¢’ = TSS.Reconstruct({s;};c[r+1])
verifies under vkp, and ((e1,. .., €n.y), Muask) = commit_value(o’), where (e, ..., ey,) is the values
from (sid, 7, (e1, H1) . . ., (€nyess Hnve)s Matasken) on Ledger, and m = myaskep @ Myask-

We say that sid is weakly openable if there exists at least one set validShares][sid] which opens sid
to some m. We say that sid is strongly openable if there exists m such that for all validShares]sid],
where |validShares|[sid]| = 7yss + 1 and e; = Encex (s5,7;) for all (SHARE, sj,7;) € validShares|sid], it
holds that validShares]sid] opens sid to m.

28

Lemma 1 sid is weakly openable iff strongly openable. O

PRrOOF Obviously if sid is strongly openable it is clearly weakly openable, so it is sufficient to prove
that weakly openable implies strongly openable. Assume that sid is weakly openable. Thus there
exists o’ = TSS.Reconstruct({s;}jc[r+1)) Which verifies under vkp, and ((e1, ..., €ny), Manask) =
commit_value(o”’), where (eq, ..., ep,.,) is the values from (sid, 7, (e1,H1) . .., (€nyes Hnyss)y Matasken)s
and m = Myaskep D Muask. Since signatures are unique it follows that o/ = SignskD (sid). So, if we
define o = Signg,_ (sid), then the value (sid, 7, (e1,H1) ..., (€ny, Hnyg)s Muasken) on the ledger was
constructed using ((e1, ..., €nys); Muask) = commit_value(o). This implies, by construction, that
for any set validShares[sid], where |validSharessid]| = 7vss + 1 and e; = Encek;(s;,7;) the shares
sj will reconstruct to o. Since mysx is deterministically derived from o and myaskep is fixed on
Ledger it follows that myaskep ® Muask does not depend on which validShares[sid] is used and hence
sid is strongly openable. n

Now assume that (sid, 7, (e1,H1) ..., (€nye, Hnyss)s Muasken) appeared on Ledger. We define the
unique m for which an honest party can output (DONE-OPEN,sid, m, 7). Since there is less than
Nyss — Tvss corruptions there are at least 7yss + 1 honest parties. If the encryption of any of these
parties is incorrect then let m = 1. Otherwise from the shares of these honest parties we get a set of
shares |validShares[sid]| = 7yss + 1 and e; = Encek; (s;,7;) for all (SHARE, s;,7;) € validShares|[sid]. If
validShares|[sid] opens to m’ then let m = m/, otherwise let m = L. We argue that this m will do the
job using a case proof. Assume that sid is openable. In that case it is strongly openable to some m
and hence validShares[sid] opens to m’ = m. In addition (sid, 7, (e1,H1) ..., (€nyes Hnyse)s Maiasken)
is correctly generated from o = Signg(sid) and therefore no honest party can be made to output
(DONE-OPEN, sid, L). Assume then that sid is not openable. There is at least 7ygs+ 1 honest parties,
each P; will eventually collect validShares|sid] such that |validShares]sid]| = Tyss + 1. Since sid is not
openable this set validShares[sid] will lead P; to output (DONE-OPEN, sid, 1), and in this case m = L

Validity. Validity follows as a special case of binding. When D is honest then clearly sid is
openable to mp and therefore uniquely live to mp.

B-Sometimes Good. We define the event Badggq to be that more than 7ygs parties are corrupted.
Then by the assumption the event happens with probability at most 1 — 5. Less than 7ygs corrupted
parties with probability 7ygg.

Hiding when Good. Assume then that Badgy does not happen, i.e., there are at most 7ygg
corrupted parties. We argue that no PPT adversary A can make a guess g such that g = b with
probability p where the advantage a = p — 1/2 is non-negligible. For the sake of contradiction
assume we have A contradicting this. From A we can construct A’ that can make a guess g such
that g = b with probability p’ where the advantage a’ = p’ — 1/2 is non-negligible, and which before
the attack outputs an index I and then attacks the sid of the I’the instance that it creates, i.e., it
tells us ahead of time which session it will attack.

We can construct A" as follows. Let m be a polynomial upper bound on how many instances
A created. Let I be a uniformly random number between 1 and m and output I. Then run A. If
A happens to attack instance I, then run the attack of A and output the same g. Otherwise, if
A starts an attack on I’ < I or did not do an attack by instance I, then stop running A, attack
instance I with (mg = 0,m; = 1) and do a uniformly random guess g. Let A" be a random variable

29

denoting the output g of A’, let A denote the output g of A, let A be the index of the session that
A actually attacks, and let I be the guess of A’. Note that Pr[] = A]
By the law of total probability we have that

-1
=

Pr[A" = b = Pr[A' =bA A= 1]+ Pr[A =bJA # I|Pr[A # I]
:Pr[A:b/\A:I]—i——T.

Using again the law of total probability we get that

PrlA=bAA=1]=) PrlA=bAA=1I|I=J]Pr[l=J]|
J=1
= 1
= PrlA=bAA=J]—
m
J=1
1 m
=— % PrlA=bANA=J]
m
J=1
1 p
m m
1
5 11
r 35 0
m m 2m
1
-5 11 11
_ P 2, -2 _ 2 2
m 2m m m
It follows that
1 Im-1 1
,:P ,: —7:P g A:I _ =
a r[A" = b] 5 r[A=0bA]—1-2 - 5
_a 11 imo1 1
T m 2m 2 m 2
_ e
=

Since m is polynomial and a is non-negligible, it follows that a’ is non-negligible.

Consider then A’ attacking sid where we that know sid will be attacked. We will prove using a
hybrids argument that ¢ = b with probability % + negl, reaching a contradiction. We can assume
by the rules of the game that D is honest. Since Badgq did not happen we know that at most 7ygs
parties of the holding committee are corrupted. Note that we will never have to run the opening
phase of sid as A’ attacks sid and therefore must make its guess g before the opening phase of sid.
We now do the hybrid argument, appealing to the security of one primitive in each step, using some
of them twice.

Programming the random oracle. We first show how to construct the view of the commitment
phase of sid in a way computationally indistinguishable to A’ and without using o, and then we
show how to use this in the proof. We simulate the oracle H as part of the proof, defining it lazily
as it is being queried. We pick a uniformly random 7 in the co-domain of H, and then we simply
pretend that 7 = H (o), which we can do without knowing o. If H is ever queried by the adversary

30

on input o such that Very,(c) = T, then we simply return H (o) = 7. This will look perfectly like
the real random oracle to any adversary. In both cases H(o) outputs a uniformly random 7. In
one case we simply sampled it before H was queried on o.

Using a dummy signature in secret sharing. We then replace the use of o in TSS.Share(o) and
instead share a dummy ¢’ = 0. This might change the distribution of the guess g of A’ such that
the advantage is no longer a’. Let a” = Pr[g = b] — % be the advantage after the change. To show
that o’ is negligible it is sufficient to show that a” is negligible and that a” and a’ are negligibly
close. We first show that a” is negligible.

Using the unforgeability of Sign. Now that we program H and use a dummy ¢’ we no longer use o
in the session sid. Now note that if A" queries H on o = Signg (sid), then it broke the signature
scheme as it computed Signg, (sid) without having been given this signature: we ran the simulation
without o up until A’ gave it to us. So, we can assume that A’ does not query H on o until it
makes its guess g. If H is queried on o we will stop the attack: we stop running A’ and make a
uniform guess. This will only change the advantage negligibly. We will keep calling the advantage
a”. We ought to rename the new advantage a” and keep track that a” and a” are negligibly close,
but to avoid too many variables we will use a” to denote the advantage after a changes when the
change makes a negligible difference in the advantage.

Using the pseudorandomness of PRG. We can now assume that H is not queried on o when we
run A’. This means that until the opening phase 7 will be uniformly random in the view of the
adversary. We can therefore, by security of PRG, pick p as a uniformly random string as opposed
to p = PRG(7). If this changes the probability that g = b noticable, then we can use this to
break pseudorandomness of PRG. So we can assume that after this change the advantage a” is
still non-negligible. Now that p is uniform the schemes Enc and TSS are computed with uniformly
random randomness, so we can appeal to their security. We can in particular use that mysx now
is uniformly random (sampled from the uniform p) and independent of the view of the adversary.
1

Therefore Pr[g = b] = 5 and we have that a” = 0. We then proceed to show that a” is close to the

advantage o’ of A’ in the real game.

Using the IND-CPA of Enc. Now that p is uniform we can encrypt a dummy share s, = 0 in e;
for an honest P; instead of the real share s;. By IND-CPA security of Enc, this will not change
the advantage a” noticably as e; is not opened until the opening phase and therefore A’ makes its
guess before we have to open e;. We can therefore get e; from the IND-CPA game and embed it in
the execution of sid. We can of course not finish the execution of the opening phase this way, but
this does not matter. Once A’ realizes that we cannot open ¢; it already gave us g. Using another
hybrid argument we can do this for all honest e;.

Using hiding of TSS. We now use that Badgy did not happen. Notice that the analysis of the
probability that Badgq is negligible does not dependent on the protocol wVSS, it it an independent
combinatorial analysis. Therefore the probability that Badgyq is still negligible after the changes in
the above hybrids. This ensures that there are at most 7ygg corrupted parties. So the 7ygg shares in
the corrupted e; have a distribution independent of the secret ¢’. We can therefore instead secret
share 0. Note that before this change the probability ¢ that A’ queried H on o was negligible,

31

so if after the change the probability ¢’ that A’ queries H on o is non-negligible we broke hiding
of TSS: we can use the event whether H was queried on o to guess whether o or ¢’ were secret
shared. Note that we secret share o but still pick p uniformly at random, so we can indeed appeal
to hiding of TSS at this point.

Reversing. We can then reverse the changes. First we encrypt the real shares s; instead of dummy
shares s;. The advantage a” changes at most negligibly, or we could contradict IND-CPA. The
same holds for the probability ¢ that H is queried on o. Then we replace the uniform p with
p = PRG(7). The advantage a” changes at most negligibly, or we could break pseudorandomness.
The same holds for the probability ¢ that H is queried on o. This step is subtle as we use the
seed 7 in programming H (o) = 7 and when we do a reduction to pseudorandomness of PRG we do
not get 7. Note, however, that when p is uniform then ¢ is negligible. So, if after the change H is
queried on o with non-negligibly probability then we can in the reduction make the guess that p is
pseudorandom when H queried on ¢ and that it is uniform when H is not queried on ¢. This guess
can be made before we need 7 for programming. In the final hybrid we then stop programming the
random oracle, but instead let 7 = H (o). This is perfectly indistinguishable, so the advantage a”
does not change. Now we are back at the real execution, where everything is computed as in the
protocol, and therefore a” = a’. This concludes the proof. -

B Proofs for seed

In this section we prove the following.

Theorem 2 The scheme seed given in algorihm [3 and algorihm[4) is an unpredictable seed gener-
ation protocol as defined in section [} 0

We first formalize unpredictability as a challenge game played against a PPT adversary.

Definition 4 (unpredictability) The adversary can win the following game with probability at
most negligibly more than 27*. The adversary may initiate as many sessions sid as it wants. At
some point it specifies (sid, g), where sid is a session where no honest party got input (SEED, sid). The
adversary wins if it can execute to the point where some honest party outputs (DONE-SEED, sid, ¢)
with ¢ = g. o

Termination. The only place where the protocol might deadlock is in line[56|if there are not wgppp
roles won by honest parties. This happens with at most negligible probability when committees are
sampled as in Section [7] Namely, if a role is won by an honest party then eventually wVSS is run
and will eventually give public output PubOutVSSCommit. Note that the opening phase cannot
deadlock by termination 2 of wVSS.

Agreement. Agreement follows from agreement on {sidy, ..., sidy,, } which is defined from pub-

lic outputs on Ledger and agreement on rgq for sid € {sidy, ..., sidy,.,, } which follows from Validity
and Binding of wVSS.

32

Unpredictability. By choosing the parameters as in Section[7]we guarantee that there are a least
Mgprp — Wseep 1 1 good dealers (honest parties who sampled a hiding committee) on the committee,
meaning at least one among the first wsgsp sessions to give public output PubOutVSSCommit.
We will call this session sid*. Since no honest party opens any commitment until the first wsggp
contributions outputted PubOutVSSCommit it follows from Hiding when good of wVSS that rg -
was unpredictable. For all honest sessions sid’ # sid* we can imagine giving the rgy of these
to the adversary. This only makes its job easier. For all corrupted sid’ we have from Binding of
wVSS that the adversary can compute rgy before any honest commitment is opened. Now guessing
seed = P, sia before any honest commitment is opened it PPT equivalent to guessing rgq«. So
Hiding follows from Unpredictable of wVSS.

C Proofs for wHDCF

Definition 5 (Honest-Dealer 3-Unpredictability for wHDCF) We formalize honest-dealer
unpredictability as a challenge game played against the PPT adversary A. The definition implicitly
assumes the termination property, as it does not make sense to define unpredictability of a value
which is not defined, and the agreement property, as it is trivial to guess one of the outcomes if
two honest parties have different coins. The following definition demands that the dealing phase
results in a “good” setup with a constant probability, and, if D is honest, such a good setup always
leads to unpredictable coin flips.

Sometimes Good: For all sid there exists an event Badgy, which can be defined in PPT from
the view of the adversary once the first honest party gives output (DONE-DEAL, sid), i.e., the
adversary knows if the event happened. It should hold that Badsy happens with probability
at most 1 — 3, independently for each sid and independently from D being honest.

Unpredictable when Good: Furthermore, the adversary can win the following game with prob-
ability at most negligibly better than 27*. The adversary may initiate as many sessions sid
and coin-flips cid as it wants. At some point it specifies (sid, cid, g), where sid is a session with
an honest dealer, where Badgq did not happen, where no honest party got input (FLIP,cid)
yet, and where g € {0,1}*. The adversary wins if it can execute to the point where some
honest party outputs (DONE-FLIP, cid, ¢) with ¢ = g. o

We now prove the properties of the scheme. In the following, let f denote the actual number
of corrupted parties in the coin-holding committee. Then, denote by GOOD-SETUP, NO-UNPRED,
NO-LIVE the events that f € [0, Tcon], f € (Tcom, Neom —Teon)s and f € [neom — Teomw, Moo, respec-
tively. As the names suggest, all protocol properties will be satisfied in the first case, while unpre-
dictability may be violated in the second, and additionally liveness may be violated in the third. In
Sectionwe choose concrete parameters for the committee election, such that Pr[GoOOD-SETUP| = 3,
for 8 a constant, and Pr[NO-LIVE] is negligible. Observe that SampleCommittee,, () is verifiable and
unpredictable (see Section , hence D cannot affect the probability of these events.

PROOF (TERMINATION) (1) For the first part, assume D is honest. Since D does not wait for any
parties in any step, it successfully broadcasts the coin setup, and, from the liveness property of
Ledger, it will eventually be delivered on Ledger.

(2) Assume (DONE-DEAL,sid) has been observed by all honest parties. Hence, honest parties
can read the coin setup from Ledger and verify it using VerifyCommittee(). By nature of committee

33

election and by the choice of ngow and 7o there are at least 7¢on + 1 honest coin holders. We
distinguish two cases. Either the dealer has created valid key shares and encryptions for all honest
coin holders, or there is at least one honest coin holder, for whom the dealer has created an invalid
key share. Observe that the two cases cover all possible executions. If we are in the first case,
then every honest coin holder P; will successfully decrypt e; to get a valid sk;. From termination
property of CF, and since there are at least 7¢oy + 1 honest coin holders, it follows that the coin
shares of these parties are sufficient to reconstruct the coin value, hence eventually every honest
party in the committee will output (FLIP,sid,cid,). If we are in the second case, the honest party
can always compute a valid complaint against the dealer. If e; is incorrect, P; can prove this by
broadcasting a complaint COMPLAINTENCRYPTION, which contains a zk-proof W; that e; decrypts
to (ski,r!). A verifier can always verify the zk-proof and check that re-encrypting (sk},r}) does not
give e;. If, on the other hand, e; is a correct encryption of an invalid key share sk], P; can also prove
this broadcasting sk, and r} in a COMPLAINTSHARE message. A verifier can now verify that (skj, r})
indeed re-encrypts to e;, but CF.VerifyKeyShare(vk, 4, sk}) returns 0. Honest parties will eventually
deliver the complaint and output (FLIP,sid, cid, L). n

PROOF (WEAK AGREEMENT) Let P and Q be parties that output cp # L and cq # L as the value
of the coin using sets of ¢ 4+ 1 valid coin shares Sp and Sq in CF.Combine(), respectively. Then,
since the shares in Sp and Sq are valid, they all lie on the same polynomial, hence they define the
same secret, and cp = cq. Additionally, if D is correct, then no valid complaint can be computed,
except with negligible probability, hence honest parties P and Q output cp # L and cq # L, and,
from the agreement property of CF, we get cp = cq. n

PrROOF (HONEST-DEALER [-UNPREDICTABILITY) Define § = Pr[GOOD-SETUP| and Badgy =
—GOOD-SETUP, i.e., Badsq is the event that the committee assigned to D contains more
than 7¢oy corrupted parties. Given sid and a point p on Ledger, the committee returned by
SampleCommittee, () is deterministic, hence Badsq happens with probability 1 — 3, which is
constant and independent of sid, and can be defined from the view of the adversary once the coin
setup appears on Ledger. The exact value of 5 depends on the choice of n¢onn and 7eow. The
Sometimes Good property is satisfied. Now about the Unpredictable when Good property. When
Badgiq does not happen, the number of actual corrupted coin holders is not more than 7oow. The
Unpredictability property of the CF scheme holds in this case, and the Unpredictable when Good
property of wHDCF can be reduced to the Unpredictability of CF. n

D Proofs for wMDCF

Definition 6 (The sometimes good property) For all sid and cid there exists an event
Badsid cid, which is defined in PPT from the view of the adversary once the first honest party gives
output (DONE-DEAL,sid), i.e., the adversary knows if the event happened. Moreover, there exists
a probability v > 0, called the good-setup probability, which depends on the parameters mympcr
and wywmpcr and on the hiding probability 8 of wHDCF, is constant and independent of sid and
cid, and Badsiq ci¢ happens with probability 1 — . O

We formalize agreement as a challenge game played against the PPT adversary A. It assumes
the termination property, so that the value of coin-flips actually become known.

34

Definition 7 (v-Agreement) We require that the sometimes good property holds for Badsig cid-
Moreover, The adversary can win the following game with at most negligibly probability. The
adversary may initiate as many sessions sid and coin flips cid as it wants. At some point it specifies
(sid,cid, P, Q), where P has output (DONE-FLIP,sid, cid, cp), Q has output (DONE-FLIP, sid, cid, cq),
and sid and cid are such that Badgg ciq did not happen. The adversary wins if cp # cq. o

We formalize unpredictability as a challenge game played against the PPT adversary A. As
with wHDCF, the definition assumes the termination and agreement properties.

Definition 8 (y-Unpredictability) We require that the sometimes good property holds for
Badsig cia- Moreover, the adversary can win the following game with probability at most negligibly
better than 1/2. The adversary may initiate as many sessions sid and coin-flips cid as it wants.
At some point it specifies (sid, cid, g), where (sid, cid) is such that Badsiq ciq did not happen, where
no honest party got input (FLIP,sid,cid) yet, and where g € {0,1}. The adversary wins if it can
execute to the point where some honest party outputs (DONE-FLIP, sid, cid, ¢) with ¢ = g. o

PROOF (TERMINATION) (1) The dealing protocol waits in two places, first for wympcF instances
of wHDCF, and then for an instance of SEED. For the first one, the choice of parameters guarantees
that, except with negligible probability, at least wwwmpcr instances of wHDCF will have an honest
dealer, and each of these instances will terminate, according to the termination property of wHDCF.
For the second, termination follows directly from the SEED protocol.

(2) As the Flip algorithm of wMDCF calls one of the wHDCF instances, the Flip termination of
wMDCF directly follows from the Flip termination property of wHDCF. n

PROOF (SOMETIMES GOOD) Let Badig ciq be the event that Hash(sid, cid, seed) points to a bad coin
setup, i.e., to a wHDCF instance sid; whose dealer is corrupted or whose coin-holding committee
has more than 7¢oy corruptions (which happens with probability 5). The value of seed, which is
included as a parameter when hashing to obtain sid;, is unpredictable by the adversary, by the
unpredictability property of seed, and becomes known after the wywmpcr coin setups have appeared
on Ledger. Hence, the probability of Badsiq cid happening is independent of cid, and only depends
on the probability 5 of Hash(sid, cid, seed) hitting a bad committee. Hence, this event happens with
probability 1 — -y, which is constant and independent of sid, cid. n

PROOF (7-AGREEMENT) Let (sid, cid) such that Badsig ciq did not happen, and hence the dealer of
the sid; CF instance, for j = Hash(sid, cid, seed), is honest. The property then follows from the weak
agreement property of wHDCF. m

PROOF (7y-UNPREDICTABILITY) Let (sid, cid) such that Badsig cig did not happen. This means that
the dealer of the sid; CF instance, for j = Hash(sid, cid, seed), is honest. It also implies that the
event Badgq, defined in the proof honest dealer B-unpredictability property of wHDCF as the event
that the committee of the sid; instance contains more than 7con corruptions, did not happen.
Hence, the property reduces to Honest-dealer 3-Unpredictability of wHDCF. n

35

	Introduction
	Preliminaries
	Model
	Primitives
	Public-Key Encryption with Full Decryption
	Weak Threshold Coin Flip
	Secret sharing
	Digital Signature

	Weak Verifiable Secret Sharing
	Generating an Unpredictable Seed
	Weak Honest-Dealer Coin-Flip
	Weak Multiple-Dealer Coin-Flip
	Setting the Parameters
	Sampling a holding committee for wVSS and wHDCF
	Sampling a proposer committee for seed and wMDCF

	Analysis of Communication Complexity
	Asynchronous Total-Order Broadcast with Weak Coins
	Conclusion
	Proofs for wVSS
	Proofs for seed
	Proofs for wHDCF
	Proofs for wMDCF

