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In 2018, Eric Bond Hutton posed a challenge online involving a classical cipher of his creation 
[1]. It was broken nearly two years later by brute-forcing the keywords [2], and a new challenge that 
involves a modified cipher was posted [3]. This is an explanation of how we broke the second 
challenge.

Before we begin, we need to see how the ciphers work, and what is the main weakness of each. 
Both can be considered “classical” ciphers, not because they were used before the invention of 
computers, but because they can easily be performed with pen and paper, or Scrabble® tiles. They act 
on a symbol set comprised of the letters of the alphabet, rather than bits 0 and 1. Whether they are 
easily broken with computers like their predecessors remains to be seen. We can say that because the 
results of encryption or decryption change drastically when the key is only changed slightly, hill-
climbing attacks do not work. However, each version of the cipher has a weakness related to the 
encryption of a letter as itself, but how each weakness helps us is different for the two versions.

Hutton cipher 1

The Hutton cipher was invented by Eric Bond Hutton as an amusement and later as a means to 
challenge strangers on the internet [4][5][6]. It uses a pair of keywords to encrypt or decrypt a text. One
keyword is used to set a 26-letter register that holds a permutation of the alphabet. The initial state of 
this register is determined in a way familiar to connoisseurs of classical ciphers. The alphabet is 
appended to the keyword, and then all repeated letters other than the first occurrence of each are 
deleted. For example, a keyword SECRETKEY would give us this register:

SECRE/TKE/YABC/DE/FGHIJK/LMNOPQRST///UVWXY/Z

SECRTKYABDFGHIJLMNOPQUVWXZ

The other keyword serves to define a cyclically used set of shifts, much like that used in the Vigenère 
cipher [7]. The letters of the shift key are assigned numerical values A=1, B=2, ..., Z=26. When each 
letter of a text is encrypted, the ciphertext letter is found by looking for the letter that appears in the 
register to the right of it by the number of steps given by the shift, with roll-over. After each letter is 
encrypted, the plaintext letter and ciphertext letter swap positions in the register.

Let’s work through a quick example. Take the text

WE LAND AT MIDNIGHT

and the shift key ALIENS and alphabet keyword FLYINGSAUCER. The initial state of the register is

FLYINGSAUCERBDHJKMOPQTVWXZ



The shifts will be applied cyclically and are 1, 12, 9, 5, 14, 19, 1, 12, 9, 5, 14, 19, ...
The first plaintext letter is W, and the first shift is A=1, so the first ciphertext letter is X:

FLYINGSAUCERBDHJKMOPQTVWXZ

                                                                                                           1→

Then the two letters are swapped in the register:

FLYINGSAUCERBDHJKMOPQTVXWZ

The next plaintext letter is E, and the next shift is L=12, so the second ciphertext letter is V:

FLYINGSAUCERBDHJKMOPQTVXWZ
                                                                           12→

We swap the two letters:

FLYINGSAUCVRBDHJKMOPQTEXWZ

This continues until we have the full ciphertext:

XV VBOS SB FUQRCFXS

Before moving on, we would like to mention that the swapping of letters in the register is the 
innovative feature that distinguishes H1 from the Quagmire 3 cipher (Q3) [8][9]. Without it, the two 
ciphers are identical, except for one detail. Because Hutton assigned 26 (= 0) to Z, rather than A, each 
letter of the shift key must be adjusted one place to the right in the alphabet (and Z goes to A) when 
going from H1 to Q3.

Weakness in Hutton cipher 1

The H1 cipher has a striking weakness: if the letter Z appears in the shift key, then its shift is 26,
which is the same as 0 when roll-over is taken into account (mathematicians should be thinking of 
numbers modulo 26). Whenever the shift is 0, a plaintext letter is encrypted as itself. This leaks too 
much information to an attacker. To deal with this weakness, a cryptographer can decide never to use 
the letter Z in the shift key. However, this does not remove the weakness: if no plaintext letter can be 
encrypted as itself, some information is still leaked to the attacker. This weakness is shared by the 
Enigma machine used by Germans in WWII [10]. It allows an attacker to match a ciphertext (or part of 
a ciphertext) to a plaintext taken from a pool of texts.

This weakness is important to us because a variation of it will arise again in the Hutton 2 cipher.



The Hutton 1 challenge

The first Hutton challenge [1] is short enough to fit on a page. Here is the ciphertext:

WQQOZAYKTCUJACPCSZZJGRMFJRAALRVMYJACGYOZUDXYUPNIKVIVBMZKFHBCVOKD
CGBCXJJAVVQYUQTWMRYJECPFWTFLQDNTSKJKCKEQMYGLKWLCCUCGLFWDLKOATUNQ
GDGGYLUPZRWBSUTMTOUIISWYXHYWEJJIWCXZGWAKXOFFRQSGUFDVBBJHLRNEIEJD
EBFXNJWRNSRZRPBDXVWNPMMIHEFAXGCZVJYPRXRKZHJIXJOWKCWHUWQDTQMZVTSC
UUABXBIFUEDEBNXGBHHHUXCDBJUZNVRCAASWFFESDZYORKHUWUNVBKXVUJMDMXMY
CCMAZTOMPMINSORYYODDGOOYYYXNBJWJVFGYKXKYEMRCLXLZZRZUNIBKJTOCSNEA
GBVTXJHQGXDLWQBTEJTGKBKOD

The ciphertext was broken [2] by using brute force to find the shift key MINOX and alphabet 
keyword QUARK. The plaintext is from The Napoleon of Notting Hill by Gilbert Keith Chesterton:

FORHUMANBEINGSBEINGCHILDRENHAVETHECHILDISHWILFULNESSANDTHECHILDI
SHSECRECYANDTHEYNEVERHAVEFROMTHEBEGINNINGOFTHEWORLDDONEWHATTHEWI
SEMENHAVESEENTOBEINEVITABLETHEYSTONEDTHEFALSEPROPHETSITISSAIDBUT
THEYCOULDHAVESTONEDTRUEPROPHETSWITHAGREATERANDJUSTERENJOYMENTIND
IVIDUALLYMENMAYPRESENTAMOREORLESSRATIONALAPPEARANCEEATINGSLEEPIN
GANDSCHEMINGBUTHUMANITYASAWHOLEISCHANGEFULMYSTICALFICKLEDELIGHTF
ULMENAREMENBUTMANISAWOMAN

In a brute-force attack, every possible key is tried, the text is decrypted, and the resulting plaintext is 
scored on how well it appears to be English text. If the score is high enough, we believe we have found 
the correct key and stop searching. One way to score a plaintext is to find the frequencies of all three-
letter sequences (trigrams) in typical English texts; for each trigram in the plaintext, its English 
frequency is added to the score.

Because we will use an analogous process for H2, we now describe a different way to break the 
first challenge which exploits the weakness in the cipher. Since an H1 cipher without a Z in the shift 
key never encrypts a letter as itself, we can determine that a plaintext matches if no letter in it is the 
same as the ciphertext letter at the same position. If we search all English texts on Project Gutenberg, 
we find a match at position 3238 (counting from 0) to ebook #20058 [11]. Due to the length of the 
ciphertext, the probability of a false positive result is very small.

Recovering the keywords from the correctly matched plaintext and ciphertext is another task 
altogether, and requires some knowledge of permutations. We go through the plaintext and ciphertext 
and every time letters in the register are swapped we keep track of them in a substitution table. In this 
way, whenever we see a plaintext-ciphertext letter pair, we can undo the substitution and see what the 
letters would have been when the register was in its initial state. We organize the unsubstituted pairs 
into bins, according to the length of the shift key and the position in the text. So, for example, for the 
challenge text above, with key length 5, the first bin contains

FW MA IZ CS QJ SC ZI DT LU KO EV RN
BP PB WF VE HY AM NR UL XG JQ TD GX

In order for consistency, no two distinct pairs in a bin can share the same first letter. Nor can they share 
the same second letter. This feature allows us to eliminate incorrect key lengths and to find the correct 



one. For the challenge text, consistency is obtained for key lengths of 5, 10, 15, ..., so we can take the 
correct value to be 5 with high confidence.

Once we have the correct shift key length and have populated our bins with letter pairs, we put 
them together into cycles. A cycle is a permutation that goes around in a loop. This will become clearer 
as we forge onward. Note that the rest of this section uses the same method that Gaines uses to find the 
keywords of a Q3 cipher [8]. In the first bin for key length 5, we listed the pairs above. Notice that 
F→W and W→F are both in the list, so we have a 2-cycle F→W→F, which we denote as (FW). On closer 
inspection, we see that the first bin is nothing but the product of thirteen 2-cycles:

(AM)(BP)(CS)(DT)(EV)(FW)(GX)(HY)(IZ)(JQ)(KO)(LU)(NR)

Two pairs are missing, but we don’t worry about that, because from our experience with Quagmire 
ciphers [12], we know that Q3 permutations can only contain thirteen 2-cycles, two 13-cycles, one 26-
cycle, or twenty-six 1-cycles, and earlier we noted the connection between H1 and Q3. By 
unsubstituting the letters, we have removed the effect of the swapping, which was the fundamental 
difference between H1 and Q3. A 2-cycle corresponds to a shift of 13, so we now know the first letter 
of the shift key: M. Let us now look at the second bin:

OQ MY KJ ZE EO UG BL AH HT JW CM FP GS
YD PU DN SA NZ LX WB QF XC TR RI VK   

Here we can see the chain V→K→J→W→B→L→X→C→M→Y→D→N→Z→E→O→Q→F→P→U→G→S→A→H→T→R→I, which we denote

(AHTRIVKJWBLXCMYDNZEOQFPUGS)

The pair I→V is missing in the bin, but we are not concerned, since we are sure that this is a 26-cycle. 
A 26-cycle can only correspond to an odd shift that is not 13. So the second shift in the key is one of 1, 
3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25, or letter A, C, E, G, I, K, O, Q, S, U, W, Y. In the third bin we have

RO NK GY JU LA UM FX ZJ KP CT QL TE YI
OB XH IQ VF EW PC SD DV WG HZ BS AN   

which can be collected into a product of two 13-cycles:

(ANKPCTEWGYIQL)(BSDVFXHZJUMRO)

A product of two 13-cycles indicates an even non-zero shift, so it is one of 2, 4, 6, 8, 10, 12, 14, 16, 18, 
20, 22, 24, and its letter is one of B, D, F, H, J, L, N, P, R, T, V, X. The fourth bin contains the pairs

HQ BT SE YJ DW JA WH UN NB MK ZL TF FY
VG GZ XI KS LR IU CV AO OC RP QM PD   

which form one 26-cycle:

(AOCVGZLRPDWHQMKSEXIUNBTFYJ)



So the fourth key letter is again one of A, C, E, G, I, K, O, Q, S, U, W, Y. The fifth bin contains

UZ EC TP CK VS KA QY AQ BR ZX GE XV PN
LI SO IG OM MJ YW DB WT NL FD HF JH   

They form two 13-cycles:

(AQYWTPNLIGECK)(BRUZXVSOMJHFD)

Here we get lucky and see YW and ZXV; since we might expect VWXYZ to appear at the end of the 
initial register, the fifth shift appears to be 24, so the last letter of the key is X. What we do next is take 
one of the 26-cycles, perhaps the one from the second bin, and take every nth letter, where n is an odd 
number not equal to 13 (for the mathematicians, n must be invertible modulo 26), with roll-over back 
to the beginning whenever we reach the end:

                                                  n                                                                                
  1 AHTRIVKJWBLXCMYDNZEOQFPUGS
  3 ARKBCDEFGHIJLMNOPSTVWXYZQU
  5 AVLDQSIBYOGRWMEUTJCZPHKXNF
  7 AJYFTBNUIXESKMQHWDPRLZGVCO
  9 ABEHLOTXQRCFIMPVYUKDGJNSWZ
11 AXPJERYSLFKZTMGBQVNHCUWOID
15 ADIOWUCHNVQBGMTZKFLSYREJPX
17 AZWSNJGDKUYVPMIFCRQXTOLHEB
19 AOCVGZLRPDWHQMKSEXIUNBTFYJ
21 AFNXKHPZCJTUEMWRGOYBISQDLV
23 AUQZYXWVTSPONMLJIHGFEDCBKR
25 ASGUPFQOEZNDYMCXLBWJKVIRTH

The most orderly choice is when n=3, where we see most of the letters in alphabetical order. Rotating it
so that Z is at the end, we find the initial register state to be

QUARKBCDEFGHIJLMNOPSTVWXYZ

and the alphabet keyword is QUARK. We can now find the remaining letters of the shift key by grabbing
one pair from each bin and finding the corresponding shift relative to this register state.

       key position    pair      shift    letter  
0 AM 13 M
1 OQ   9 I
2 RO 14 N
3 HQ 15 O
4 UZ 24 X

We now have the shift key: MINOX.



If we ever find ourselves in a position without a 26-cycle, we can make one from a collection of
2-cycles and 13-cycles. For example, from the first and third bins above, we had

FW MA IZ CS QJ SC ZI DT LU KO EV RN
BP PB WF VE HY AM NR UL XG JQ TD GX

and

RO NK GY JU LA UM FX ZJ KP CT QL TE YI
OB XH IQ VF EW PC SD DV WG HZ BS AN   

We can combine F→W from the first set with W→G from the other set to get F→G. Doing this for all of 
the pairs gives us

(ARKBCDEFGHIJLMNOPSTVWXYZQU)

How lucky was that? Had we obtained nonsense, we would try taking every nth letter, as we did earlier. 
If we only have 13-cycles to work with, things are a little harder. We need to interleave and take every 
nth letter at the same time, while looking for a well-ordered list of letters. From the third bin we had

(ANKPCTEWGYIQL)(BSDVFXHZJUMRO)

One good interleaving is

AFNXKHPZCJTUEMWRGOYBISQDLV

Taking every fifteenth letter then gives a familiar result:

ARKBCDEFGHIJLMNOPSTVWXYZQU

Hutton cipher 2

The second Hutton cipher (H2) [13] is identical to the first, with one change introduced by 
Girkov Arpa: the shift is calculated as the sum of the numerical value of the appropriate letter in the 
shift key plus the numerical value of the first letter in the register. If the sum is more than 25, we can 
subtract 26 if we wish, to make the encryption process easier (for the mathematicians, we are working 
modulo 26). The purpose of this change is to allow a plaintext letter to be encrypted as itself, when the 
sum of the two values is 26 (the same as 0).

We won’t work through an example, but if you would like to check that you are using the H2 
cipher correctly, here is a test vector:

plaintext: WE LAND AT MIDNIGHT
shift key: ALIENS
alphabet key: FLYINGSAUCER
ciphertext: NY KOMB ZB DHNVBVZX



The Hutton 2 challenge

Soon after the first challenge, the second Hutton challenge was posted online [3]. It has a 
ciphertext with 169,081 letters. We are not going to make you read 150 pages of it, but only give you 
the first few hundred letters and some of the last letters:

NJLNRNDKRFYAKISUNNBSMMDXCXBRDYFOSPCMSSVUGWFJPRENGHAQBETECKM
NTOWGRQPFYBKDVNHYBRGNLFAASMOJONVMMAIFQYHQLGMBDUHOJXBYHVLDFB
ETSMKZCWAMIJDZDUEWOUQQHQYOECPGACVXXSBJOUOAMAXSPHVDJNPTBMDCA
ZYRGCPXTQSNEZBPKBBNYJFBLNVYQORDKSKWDLKKGBULFYZZXPMNRPTRDZIF
XAHZTOHBEHJTEQWLTTGOSPQXPSIFNJOAVDUPVACBFLUIKUBYKQTTDTQXDJU
DUUWGBEQFUYEMSJTJODCCVZOSLYFJZCRTPHGTFMMOWUPUYJPPXTQUKKNGRL
EOHEHKEVTBKTURPWEFDMHRMNBRDAELMUXMYBCYMCXKVQBWBJUDOPLDBIBPS
MFECIDNWLYVYSLMBLBOPEVEWZATXOCRYSCOTHALHFLGWKVPWMUNCHBDWZXN
MQBSLVPCXYMXFNRTOCJOOZZSLMTO...RBEIVKDTOVGZCMLYDPNKXQDBIDHU
LDYFGMJMXKYHGILQPYUWSTUDCKCVDHHWLLYNWAMFNTYO

This will be enough so that you can verify for yourself that the keywords we find do indeed decrypt the
text. Now let’s see if we can get a handle on it.

Weakness in the Hutton 2 cipher

In this cipher, a letter is encrypted as itself when the numerical values of the shift-key letter and 
the first letter of the register add to 26 (=0). Since the first letter of the register has a naively calculated 
1/13 chance of changing with each position of the text, it is often the case that it remains in place for a 
full period of the shift key, which we can call L, the length of the shift key. Then another plaintext letter
will be encrypted as itself, and the two will be L steps apart in the text. Occasionally we will even see 
long chains of plaintext letters peeking through at regular intervals. When the values of two letters add 
to 26, we will call them “complements.”

As an example, we can compare the first chapter (about 10,000 letters) of The War of the 
Worlds [14] with its encryption using the shift key ALIENS. Good examples of this phenomenon can 
be seen in positions 1850-1950 (counting from 0):

position: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
88888888888888888888888888888888888888888888888888999999999999999999999999999999999999999999999999999
55555555556666666666777777777788888888889999999999000000000011111111112222222222333333333344444444445

01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

shift key: 23450123450123450123450123450123450123450123450123450123450123450123450123450123450123450123450123450

plaintext: OTERFROMTHESUNITNECESSARILYFOLLOWSTHATITISNOTONLYMOREDISTANTFROMTIMESBEGINNINGBUTNEARERITSENDTHESECUL

ciphertext: NCCHRZWVXFLBYZDKSEXFZKPRFAUUWLKBZPQHPHGHOSORSFSIIIKOZPYPCPWOAYMLGQXWXBUBSJVOJIYAQEESDDKBTAKMBYWMHFSGG

With a magnifying glass we can see a chain of peek-throughs for the second letter of the shift key 
(denoted 1 because we count from 0), and later a single peek-through for the last letter of the key, and 
then a pair of peek-throughs for the first letter. If we scan the entire chapter, we accumulate this data:



There is a clear peak for a separation of 6. The small bits for other values of the separation are noise 
from the occasional change of the register’s first letter from one that complements one letter of the shift
key to one that complements another. If we encrypt with a shift key that has a repeating letter, like 
MARTIAN, we see secondary peaks:

These secondary peaks are due to a heartbeat pattern that occurs when the complement of the shift 
key’s repeated letter occupies the first position of the register. Here we see an example of that pattern 
with repeating separations 4, 3, 4, 3, ...

position: 3333333333333333333333333333333333333333444444444444444444444
6666666666777777777788888888889999999999000000000011111111112
0123456789012345678901234567890123456789012345678901234567890

shift key: 3456012345601234560123456012345601234560123456012345601234560

plaintext: OMPLACENCYMENWENTTOANDFROOVERTHISGLOBEABOUTTHEIRLITTLEAFFAIRS

ciphertext: DQNFMRNGTXZBNGAWTWWASKERTXVOLOHDCGMHOEPZOTALHNMRIJHTWYPXYOQYN



We still haven’t explained why this feature of the cipher is a weakness. Like the fact that the H1
never encrypts a letter as itself, the patterns of peek-throughs for the H2 will allow us to match a 
plaintext to a ciphertext with high confidence. We will also see later that examining the letters near a 
peek-through can allow us to reconstruct the shift key, and that having the shift key and plaintext 
allows us to determine the contents of the cipher’s register. In the next section we will even try to find 
the key length without knowing the plaintext.

An interesting thing happens when a lazy cryptographer uses the H2 cipher with a shift key of 
only one letter. Eventually its complement comes into the first position of the register, and from that 
point forward every letter is encrypted as itself. The first letter of the register never changes because at 
every subsequent position in the text a letter in the register is swapped with itself, i.e., not swapped at 
all. For example, when we encrypt the first chapter of The War of the Worlds with shift key X and 
alphabet key FLYINGSAUCER, eventually B moves into the first position of the register, and from that 
point onward the plaintext shows through:

UVFTWEDSIYRSJSCAYHRZXCNIJIJSJMYTPBZCBJYJZUDCRXMXBLYSVASBXII
PVYCOYRLEDWRLQUWDMTHBVNHCVVNAYKKEETEHTPRDNPWOVLLATNDRPLROQQ
CYPLJQNCOTVYWVJBIJXWXMSJGBEWKMQDDYLFFGLNWIDKTFZOYFPCMZDZVDM
CJVITFODMAOWMEPNNWFMIIVAJOZMBEYWERESCRUTINISEDANDSTUDIEDPER
HAPSALMOSTASNARROWLYASAMANWITHAMICROSCOPE...

Finding the key length, part 2 (the previous section is part 1)

It is clear from the above discussion that when we have both the ciphertext and the plaintext we 
can find the length of the shift key. But what about the case when we only have the ciphertext? In this 
case, we do not know if a letter has been encrypted as itself or not. Or, at least we do not know with 
certainty. If we can guess correctly more often than random guessing, then we may be able to find it. A 
feature of natural language is that the frequency distribution of the letters is far from flat. If we focus on
the more frequent letters in English, we can accomplish our goal of guessing better than random. We 
start by finding the frequencies of the twenty-six letters in a collection of British novels. For your 
consideration, here is what we find:

We can also improve our results by looking for chains of suspected peek-throughs, rather than singles.



When we scan the ciphertext for letters whose frequency in English is higher than 0.5, and we 
insist on the next six letters at a given separation form a chain of high-frequency letters, we obtain 
these results:

If we lower the frequency threshold to 0.3, this is what we get:

We can see that there is a definite peak above the noise at period 10, and possibly a secondary peak at 
5. In retrospect we know that there are no repeating letters in the shift key, and we cannot explain the 
apparent secondary peak. Other choices of threshold and chain length give similar or noisier results. 
Nevertheless, we can conclude with caution that the length of the shift key is 10.



Finding a matching plaintext, first method

Unfortunately, a tentative value for the length of the shift key is all we are able to obtain from 
the ciphertext alone. Although it is quite long by most standards, it is too short for us to get any 
meaningful results for the values of the shifts, and without those, we are unable to make any progress 
on finding the contents of the register. So we have to take another approach. Earlier we mentioned that 
the periodic peek-throughs of plaintext letters constitutes a weakness that we could exploit to match the
ciphertext with a plaintext. To accomplish this we downloaded all English books from Project 
Gutenberg and scanned them for a match. This took several days, and the result was a match at position
359470 (counting from 0) in Shorter Novels, Eighteenth Century [15]. The scanner reported that the 
best period (length of shift key) to be 10, and that there were 642 probable peek-throughs with that 
period. When we open that text to that position, we see

...o Bath where he created a miniature Fonthill. He died there on
2 May, 1844, his face showing scarcely a trace of age.

Bibliography: _Memoirs of Extraordinary Painters_, 1780. _Dreams, Waking
Thoughts, and Incidents, in a series of letters from various parts of
Europe_, 1783. _Vathek_ (Henley’s translation), 1784. _Vathek_ (in
Beckford’s French), 1787. _Letters from Italy, with Sketches of Spain
and Portugal_, 1835. See also memoirs by Cyrus Redding and Lockhart’s
review of Beckford’s letters in Vol. II of the _Quarterly Review_.

VATHEK

Vathek, ninth caliph of the race of the Abassides, was the son of
Motassem, and the grandson of Haroun al Raschid. From an early accession
to the throne, and the talents he possessed to adorn it, his subjects
were induced to expect that his reign would be long and happy. His
figure was pleasing and majestic: but when he was angry, one of his eyes
became so terrible, that no person could bear to behold it; and the
wretch upon whom it was fixed instantly fell backward, and sometimes
expired. For fear, however, of depopulating his dominions and making his
palace desolate, he but rarely gave way to his anger...

That position is not at an obvious break in the text, nor even is it at a word boundary; however, there is 
a major break shortly thereafter at the start of Beckford’s novel Vathek. This is our first clue that 
something else is going on, especially at the beginning of the text. Another clue comes when we look at
the identical letters in this text with the challenge ciphertext as a function of separation:



We have a good strong signal-to-noise ratio, but significantly more noise than we saw earlier when we 
were working with examples for which the plaintext was known exactly. We do, however, have 
confirmation that the period is 10. The noise in this graph indicates that there may be some letters 
missing or added in going from the true plaintext to the candidate text that introduces a misalignment, 
as well as the discrepancy that we are sure to find at the beginning.

With these problems in mind, we look for a segment of the text that is well aligned to the 
ciphertext. For positions 2000 to 9000 we appear to have good alignment, as seen from the graph 
below, which was generated on only that region. Our analysis will continue in this region.



Finding a matching plaintext, second method

Alternatively, we could use the fact that the underlying cipher is a Quagmire 3 to match a 
plaintext to the ciphertext. For this we require about one hundred letters of each. There are twenty-six 
possibilities for the first letter of the register, and for each of them we can unswap the letters of both 
texts by keeping track with a substitution table. With the resulting texts we can extract some knowledge
of the Q3 keys. Naively, we would think that we need 26∙L letters (where L is the length of the shift 
key), since for each shift-key letter and each initial letter of the register there is a permutation of the 
alphabet in the tableau of the Q3. However, once we can establish a relative shift between two 
permutations corresponding to different shift-key letters, the other twenty-five pairs can also be 
equated. With a few letters in each of the permutations, techniques involving symmetry [15] or group 
theory [12] can fill in much of the missing letters. If there is a conflict of any kind, such as a 
permutation with two of the same letter, or an attempt to fill one space with two different letters, then 
we know that the texts do not match. We have decided not to go into further detail, since the previous 
method involves less computation and is faster.

Recovering the shift key, first method

We have two methods for recovering the shift key and register when the plaintext is know. In 
this section we describe a method using the letters near a plaintext peek-through; in the next section we 
recover the register. First, we look for a section containing a chain of peek-throughs. Consider this 
piece that starts at position 1520:

position: 1111111111111111111111111111111111111111111111111111111
5555555555555555555555555555555555555555555555555555555
2222222222333333333344444444445555555555666666666677777
0123456789012345678901234567890123456789012345678901234

shift key: 0123456789012345678901234567890123456789012345678901234

plaintext: SWHICHWERESUPPLIEDBOTHBYNIGHTANDBYDAYACCORDINGTOTHEIRCO
ciphertext: YFIFGRXBYYLDRYLUQMNPMOJHNWHIRHXIFODXZOSAXHKZOZWADBCLGFP

For shift-key letter 4 (the fifth one, since we count from 0) we have a short chain of three peek-
throughs. We know that the letter complementary to shift-key letter 4 was in the first place in the 
register when those three plaintext letters were encrypted. Because the ciphertext and plaintext letters 
do not match at position 1524, but do match at 1534, we know that the complementary letter was 
moved into first place during one of the ten steps leading up to the chain, and it therefore must appear 
in one of the two texts in one of those ten steps. So the complementary letter must be in the set

A  =  {B, C, D, E, G, H, L, P, R, S, U, W, X, Y}

In the lead-out from the end of the chain the first letter of the register must be swapped out before 
encryption reaches position 1564, so the relevant letter is also in the set

B  =  {A, C, D, H, I, K, N, O, R, S, T, X, Y, Z}



Now, between two peek-throughs in the chain, the relevant letter cannot appear exactly once, for 
otherwise it could have been moved out of the register’s first place. So the relevant letter is not in the 
set

C  =  {A, B, D, E, F, G, I, J, N, O, P, Q, R, T, U, W, X, Y}

The resulting possibilities are

(A ∩ B) \ C  =  {C, H, S}

Now let’s look at this block starting at position 5053:

position: 55555555555555555555555555555555555555555555555555555555555555555555555555555
00000000000000000000000000000000000000000000000111111111111111111111111111111
55555556666666666777777777788888888889999999999000000000011111111112222222222
34567890123456789012345678901234567890123456789012345678901234567890123456789

shift key: 34567890123456789012345678901234567890123456789012345678901234567890123456789

plaintext: UNWELCOMEPERCEPTIONOFHISLITTLENESSWITHTHETHOUGHTOFBEINGGREATINTHEEYESOFOTHERS

ciphertext: RIYKCQLKRIRRKRITNWCIXDWJHIPYEPPAVJXIIYSDYZUHBGFYWSOADSNGWUFHAIPJMEUSCFBYKFHIY

We have a single peek-through for shift-key letter 4 and a chain of them for letter 8. The complement to
letter 4 must be in

D  =  {C, E, I, K, L, M, N, O, P, Q, R, W, Y}

It must move out of the first place in the register before position 5068 where the other chain begins. So 
it must also be in

E  =  {C, E, I, K, P, R}

So the complementary letter is

(A ∩ B ∩ D ∩ E) \ C  =  {C}

and the fifth letter of the shift key is

26 − C  =  26 − 3  =  23  =  W

While we are here, we can find the ninth letter of the shift key from the chain. From the transition from 
position 5064 to 5068, its complementary letter must be in the set E above. From the lead-out in 
positions 5119-5127, we know that the complementary letter must be in the set

F  =  {B, C, E, F, H, K, O, S, T, U, Y}

Within the chain we see that it cannot be a member of this set:

G  =  {A, B, C, D, E, F, G, H, I, J, L, M, N, O, P, R, S, T, U, V, W, X, Y, Z}



What we have left is

(E ∩ F) \ G  =  {K}

so that the ninth shift-key letter is

26 − K  =  26 − 11  =  15  =  O

Finding chains for the complementary letters to the other shift-key letters allows us to reconstruct the 
shift key completely, and usually works if we have more than 5,000 letters in each of the two texts. The
final result is

KUDYWSMHOC

Recovering the register at position 2000, first method

Now that we have the shift key, we need to recover the contents of the register at a point in the 
safe region where we have confidence in the plaintext. We are going to find the contents just before the 
letter at position 2000 is encrypted. For this it turns out that we only need to look at the first 136 
positions in the texts:

position: 222222222222222222222222222222222222222222222222222222222222222222222
000000000000000000000000000000000000000000000000000000000000000000000
000000000011111111112222222222333333333344444444445555555555666666666
012345678901234567890123456789012345678901234567890123456789012345678

shift key: 012345678901234567890123456789012345678901234567890123456789012345678

plaintext: EDINTHEMOSTDELIGHTFULSUCCESSIONTHEPALACENAMEDTHEDELIGHTOFTHEEYESORTHE

ciphertext: IESUTDKJTEYKIHICSFZTHHZRHEHVNAKIPQNAKVASKKNOITVPIRRTWUASNUYEJQNTYDOMO

position: 2222222222222222222222222222222222222222222222222222222222222222222
0000000000000000000000000000000111111111111111111111111111111111111
6777777777788888888889999999999000000000011111111112222222222333333
9012345678901234567890123456789012345678901234567890123456789012345

shift key: 9012345678901234567890123456789012345678901234567890123456789012345

plaintext: SUPPORTOFMEMORYWASONEENTIREENCHANTMENTRARITIESCOLLECTEDFROMEVERYCOR

ciphertext: SIFUTNMXCEEBGEOLVWXGAPLWWESTVWMLSTIKDMNJPXMIOIWUWRXWYEEMWZUNBTPBURT

As we work, we need to keep track of the swapping of letters in the register; for this purpose we will 
maintain a translation table. Just before position 2000 in the text, it has this state:

original: ABCDEFGHIJKLMNOPQRSTUVWXYZ
current: ABCDEFGHIJKLMNOPQRSTUVWXYZ

The first step is to find the first position at which the plaintext and ciphertext letters are the 
same; this occurs at position 2004. There, the fifth shift-key letter is in effect, but the total shift is 26=0,
so the first letter in the register between positions 2003 and 2004 is the complement of the shift-key 



letter W, which is C. We see that C never is swapped in positions 2000-2004, so we know that it 
occupies the first place in the register just before 2000. We mark it in the translation table with an 
underline.

At position 2000 we can calculate the shift. It is the sum of the values of the first shift-key letter
and the first letter in the register:

K + C  =  11 + 3  =  14

The two letters that exchange places in the register at position 2000 are E and I. So we have a fragment
of the register’s contents in which E and I are 14 steps apart:

E_____________I___________

We swap E and I in our translation table:

original: ABCDEFGHIJKLMNOPQRSTUVWXYZ
current: ABCDIFGHEJKLMNOPQRSTUVWXYZ

At position 2001 the shift is the sum of the second key letter and C:

U + C  =  21 + 3  =  24

The letters that swap at that position are D and E, but from the translation table we see that E used to be
an I. So we have a fragment in which D and I are 24 steps apart:

D_______________________I_

Swap D and E in the translation table:

original: ABCDEFGHIJKLMNOPQRSTUVWXYZ
current: ABCEIFGHDJKLMNOPQRSTUVWXYZ

We can combine the two fragments that we have into a single fragment:

D_________E_____________I_

The letter C leaves the first place in the register at position 2015. After that point, our translation table 
is in this state:

original: ABCDEFGHIJKLMNOPQRSTUVWXYZ
current: ABGDIFCKLMSHJUYPQREONVWXTZ

and we have collected these fragments:

D_H_______E_____KS____L_I_
N_U_______________________



J______________M__________
O_____________Y___T_______
C___G_____________________

At the next step, we calculate the shift with the new first letter in the register (G) and the seventh letter 
of the key:

G + M  =  7 + 13  =  20

The letters H and S swap positions in the register, but these correspond to L and K in the register from 
before position 2000, as seen in the translation table. So we have this fragment:

L___________________K_____

The information in this fragment is already contained in an earlier one; we just wanted to be sure that 
the method is understood.

Eventually (136 steps), we have enough to fill in the register completely before position 2000. 
Remembering that C must take first place, we write

CPEOGAFBKSRWMZLQIYDXHTNJUV

To verify the result, we can decrypt the ciphertext starting from position 2000 with the shift key and 
using CPEOGAFBKSRWMZLQIYDXHTNJUV as the alphabet keyword.

Recovering the shift key and register at position 2000, second method

Earlier we saw that the keys of a Hutton 1 cipher can be found from the cipher- and plaintext by
reducing the problem to a familiar one concerning the Quagmire 3. The Q3 problem can then be solved
with symmetry or group theory [8] [12] [15]. If we know the first letter of the register at some starting 
position, we can reduce the problem in H2 to an equivalent problem in H1, and then to a problem in 
Q3. We do not know the first letter in the register, but by trying all twenty-six letters and insisting on 
consistency between the cipher- and plaintext, we can narrow the choices down to one. We then find a 
26-cycle, as we did earlier, and look at twelve ways of taking every nth of its letters. For each, a shift 
key can be found from the first ten letters of the text (we already know the shift-key length to be ten; if 
we did not, then we would soon find out that ten is the smallest that gives consistent results). We must 
decrypt the text with each of the twelve pairs of keys to find the one that gives the correct plaintext 
from position 2000 onward.

Look again at the text after position 2000:

position: 222222222222222222222222222222222222222222222222222222222222222222222
000000000000000000000000000000000000000000000000000000000000000000000
000000000011111111112222222222333333333344444444445555555555666666666
012345678901234567890123456789012345678901234567890123456789012345678

shift key: 012345678901234567890123456789012345678901234567890123456789012345678

plaintext: EDINTHEMOSTDELIGHTFULSUCCESSIONTHEPALACENAMEDTHEDELIGHTOFTHEEYESORTHE

ciphertext: IESUTDKJTEYKIHICSFZTHHZRHEHVNAKIPQNAKVASKKNOITVPIRRTWUASNUYEJQNTYDOMO



Earlier, when we looked at the H1 cipher, we kept track of the swaps of letters with a substitution table.
We do that here as well. But whereas earlier we kept pairs of cipher- and plaintext letters in separate 
bins for each letter of the shift key, here we have the complication of adding the first letter of the 
register to each shift, and we do not know the shifts yet, so we need to keep twenty-six bins for each 
key letter. Suppose we begin by assuming that A is the first letter in the register. It will remain there 
until position 2029 of the text. If we look at the bin for shift letter 6, the first pair we have is from 
position 2006, where we see E and K. But E must be replaced by D because of the swap at 2001. So the 
pair is DK. The second pair for this bin is at 2016, where we see H and S. But H must be replaced with L
because of the swap at 2013, and S must be replaced by K because of the swaps at 2006 and 2009. So 
this pair is LK. This is inconsistent with DK, since two letters cannot be encrypted to the same letter 
when the shift is the same. Therefore we reject A as the first letter in the register. An inconsistency 
occurs within the first 150 positions for every choice except C; we therefore conclude that the first 
letter of the register at 2000 is C.

Suppose we traverse one thousand positions in the text and bin the pairs. At the end of that time,
the largest number in any one bin is eleven. But we know from studying Quagmires that there are only 
twenty-six alphabetic permutations for any one key. So we must merge bins together when possible and
use other techniques when not. There are 260 bins. We can immediately discard any empty bins. That 
eliminates 0/K, 1/K, 2/K, 2/U, 3/B, 3/K, 3/O, 3/U, 4/B, 4/K, 4/O, 4/U, 5/B, 5/K, 5/O, 5/U, 6/B, 6/K, 6/U, 7/
B, 7/K, 7/U, 8/B, 8/K, 8/U, 9/B, 9/K, and 9/U. Bins 0/O, 1/E, 2/V, 3/A, 4/C, 5/G, 6/M, 7/R, and 9/W all 
involve a shift of zero:

       key letter #     register letter pairs
                                                                                                                                    

0 O MM LL
1 E QQ TT CC NN
2 V HH QQ KK LL
3 A EE NN BB LL ZZ VV OO YY
4 C TT EE AA XX WW LL GG
5 G SS TT UU VV YY RR
6 M YY MM NN WW DD TT AA CC PP HH
7 R ZZ
9 W GG TT ZZ

We can merge them all into one bin and fill in the missing pairs, if we wish. From these nine bins we 
know nine of the shift-key letters: the register letter is the complement of the shift-key letter. So key 
letter 0 is

29 − ‘O’  =  26 − 15  =  11  =  K

The other letters that we can find in this way give us

KUDYWSMH_C

We can merge bins if they share at least one pair. For example, 0/A and 3/M can be merged:



       key letter #     register letter pairs
                                                                                                                                    

0 A WJ GI LC YO PZ KH
3 M BX AY OQ DG NK FD MU WJ YO

One of them can be deleted, and the other will contain the thirteen unique pairs above. Another way to 
combine bins is to notice that one may contain pairs that are inverses of the other’s. For example, the 
new contents of 0/A finds a reciprocal in 6/A:

       key letter #     register letter pairs
                                                                                                                                    

0 A WJ GI LC YO PZ KH BX AY OQ
DG NK FD MU

6 A TS JW GD PQ EI ZP

In such a case, we can add the inverses of each pair from one bin to the other bin:

       key letter #     register letter pairs
                                                                                                                                    

0 A WJ GI LC YO PZ KH BX AY OQ
DG NK FD MU ST QP IE

6 A TS JW GD PQ EI ZP IG CL OY
HK XB YA QO KN DF UM

A third way to combine bins is to form one new one from two old ones. In 0/A we have WJ, and in 2/G 
we have JK. So the composition of them is WK. Here is something that may be surprising: In forming 
the new bin, we can go in both directions, so CW in 2/G and WJ in 0/A gives us CJ (mathematicians: the
Quagmire 3 cipher uses a set of permutations that is isomorphic to ℤ26, so everything commutes).

       key letter #     register letter pairs
                                                                                                                                    

0 A WJ GI LC YO PZ KH BX AY OQ
2 G FY IP JK CW AI VR SH NB
- - WK LW FO IZ JH CJ NX

We have described all of the possible operations on bins that we can perform, with the except of a 
house-cleaning operation that allows us to add the missing pair to a bin that has twenty-five pairs. We 
look for the letter that does not appear as the first letter of any of the pairs, and pair it with the letter 
that does not appear as the second letter in any of the pairs.

We combine bins and generate new bins to combine with old bins, until we reach the point that 
we have one bin with twenty-six pairs in it. For the one thousand positions in the text that we used, 
there are four such bins. One of them contains these pairs:

AH BN CQ DB EY FT GX HS IA JM KJ LO MP
NW OD PI QG RV SU TR UZ VL WC XK YF ZE

From them we can build a 26-cycle (remember that C belongs in first place):



(CQGXKJMPIAHSUZEYFTRVLODBNW)

This is not necessarily the contents of the register. It is one of twelve options, each of which is found by
taking every nth letter of this cycle, where n is 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, or 25 (for the 
mathematicians: these correspond to the automorphisms of  ℤ26). For each resulting candidate, we can 
find a shift key by calculating the shifts needed to encrypt the first ten letters (starting at position 2000).
With the candidate register and its corresponding shift key, we decrypt part of the text starting at that 
position, and compare it to the known plaintext. The one candidate that gives a true decryption is the 
correct register.

 n            candidate register                shift key            decryption
                                                                                                                                                                     

  1 CQGXKJMPIAHSUZEYFTRVLODBNW QITKWUEVSM EDINTHEMOSTDELIGRZZYDJYNCAYHNOR...
  3 CXMAUYRONQKPHZFVDWGJISETLB UAVSWEQNMK EDINTHEMOSTDELIGKMFFIMDRKQSLSPH...
  5 CJHYLWKAEVNXIZRBGPUTDQMSFO AOLEWGIBQU EDINTHEMOSTDELIGCBFMJGQTZSLARTN...
  7 CPEOGAFBKSRWMZLQIYDXHTNJUV KUDYWSMHOC EDINTHEMOSTDELIGHTFULSUCCESSION...
  9 CARQHVGSLXUOKZDJEBMYNPFWIT EGNMWQUTKS EDINTHEMOSTDELIGNPFTPPGMYIEEATO...
11 CSDPRXEWHOMTGZNALJFQUBIVKY MQRCWKSDYO EDINTHEMOSTDELIGSWFPLSKNRYHCRQF...
15 CYKVIBUQFJLANZGTMOHWEXRPDS GCBQWIAPUE EDINTHEMOSTDELIGIAFORUIHNMDDAHL...
17 CTIWFPNYMBEJDZKOUXLSGVHQRA OMFGWCYZIA EDINTHEMOSTDELIGJQFAKLIZZBKJGHJ...
19 CVUJNTHXDYIQLZMWRSKBFAGOEP IYPUWAGLEQ EDINTHEMOSTDELIGUVFQCRSVCQIMCYN...
21 COFSMQDTUPGBRZIXNVEAKWLYHJ SEHOWMKRCY EDINTHEMOSTDELIGFWEVHCLUDAZKVOK...
23 CBLTESIJGWDVFZHPKQNORYUAMX YSXAWOCFGI EDINTHEMOSTDELIGLXFENHRQUQCJKMU...
25 CWNBDOLVRTFYEZUSHAIPMJKXGQ CKZIWYOXAG EDINTHEMOSTDELIGGPFTPPSQOKJJFPI...

 
We find that the register contents are

CPEOGAFBKSRWMZLQIYDXHTNJUV

and that the shift key is

KUDYWSMHOC

which is consistent with the nine letters that we found from the bins with zero shift.

Working back to the beginning

Running the cipher backwards is easy so long as the plaintext is true. All we must do is swap 
the letters in the register at each step. But when the putative plaintext that we have from Gutenberg no 
longer matches the original, still hidden, plaintext, there are problems. The first issue we encounter is at
position 1041.

position: 1111111111111111111111111111111111111111
0000000000000000000000000000000000000000
3333333333444444444455555555556666666666
0123456789012345678901234567890123456789

shift key: 0123456789012345678901234567890123456789

ciphertext: HAVKTENWIYONIGBSWSLSMKKDYQLDUZBCDTFGETYD
gutenberg: HISINDULGENCESUNRESTRAINEDFORHEDIDNOTTHI
plaintext: ????????????ESUNRESTRAINEDFORHEDIDNOTTHI



The state of the register between positions 1041 and 1042 is

BURIHONPQJWXKLDTMVCSGFAEYZ

The shift at position 1041 is

U + B  =  21 + 2  =  23

The letter 23 steps after the ciphertext letter N in the register is I (trust us, we have everything in the 
right direction). So the plaintext letter there should be an I. Once that letter is inserted into the 
Gutenberg text, things run smoothly again until position 390, which is the beginning of Vathek.

From the beginning of the novel to the beginning of the plaintext, we proceeded much as we did
above at position 1041. However, there were stumbling blocks. At each position there are three 
possibilities, and there is no a priori way to know which is correct:

1. The first letter of the register does not change, and we can use the same technique as at position 
1041.

2. The plaintext letter is swapped into the first place in the register; in this case it is simple to take 
the first letter of the register and tentatively use it as the plaintext letter at that position. If we 
continue and see nonsense in the decryption, then we know that we have made the wrong 
choice.

3. The ciphertext letter is swapped with the first letter of the register; in this case we are reduced to
trial and error in finding the plaintext letter.

There were times when we had to make educated guesses at the next letter, or try random letters, and 
check to see that the decryption was consistent. In the end, or rather at the beginning, we have the 
correct first two thousand letters of the plaintext and the initial contents of the register, which are

NCVPEBGKLZADFHIJMOQRSTUWXY

so that the alphabet keyword is

NCVPEBGKLZ

And here is the (partial) decryption of the ciphertext, including Eric Bond Hutton’s introduction and the
last few words:

CONGRATULATIONSYOUHAVESUCCESSFULLYDECRYPTEDACIPHERTEXTOFONE
HUNDREDANDSIXTYNINETHOUSANDANDEIGHTYONELETTERSENCRYPTEDWITH
THEMODIFIEDVERSIONOFHUTTONCIPHERAPRIZEOFTENTHOUSANDPOUNDSST
ERLINGAWAITSTHEFIRSTPERSONPOSTINGACORRECTDECRYPTIONOFTHISCI
PHERTEXTTOREDDITSCODESBOARDORALINKONTHATBOARDTOSUCHADECRYPT
IONWHATFOLLOWSISTHETEXTOFVATHEKBYWILLIAMBECKFORDTHANKYOUFOR
YOURINTERESTINMYCIPHERERICBONDHUTTONVATHEKNINTHCALIPHOFTHER
ACEOFTHEABASSIDESWASTHESONOFMOTASSEMANDTHEGRANDSONOFHAROUNA
LRASCHIDFROMANEARLYACCESSION...PASSEDWHOLEAGESINUNDISTURBED
TRANQUILLITYANDINTHEPUREHAPPINESSOFCHILDHOOD



Concluding remarks

We would like to thank Eric Bond Hutton for an interesting challenge. We also thank him for 
reading an early draft of this paper and giving his feedback.

It may be possible to refine the statistical analysis that earlier gave us the length of the shift key.
It may further be possible to use it to find letters of that key by looking at probable chains of leaked 
plaintext letters, which we choose as high-frequency occurring at regular intervals in the ciphertext. 
Whether any definite result could come of this method for the challenge ciphertext is work in progress. 
As a means of demonstration of what we hope to accomplish, we made a ciphertext of ten million 
letters encrypted with the challenge keys. Requiring chains of length at least ten of letters whose 
English frequency is above 0.05 gave us this graph for the key length:

For the same ciphertext, we were able to recover eight of the ten letters of the shift key, from 
examining only the lead-outs from chains of high-frequency letters. The ten relevant graphs follow.
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