
Mask Compression: High-Order Masking on
Memory-Constrained Devices

Markku-Juhani O. Saarinen1 and Mélissa Rossi2

1 PQShield Ltd., Oxford, UK, mjos@pqshield.com
2 ANSSI, France, melissa.rossi@ssi.gouv.fr

Abstract. Masking is a well-studied method for achieving provable se-
curity against side-channel attacks. In masking, each sensitive variable
is split into d randomized shares, and computations are performed with
those shares. In addition to the computational overhead of masked arith-
metic, masking also has a storage cost, increasing the requirements for
working memory and secret key storage proportionally with d.

In this work, we introduce mask compression. This conceptually simple
technique is based on standard, non-masked symmetric cryptography.
Mask compression allows an implementation to dynamically replace in-
dividual shares of large arithmetic objects (such as polynomial rings)
with κ-bit cryptographic seeds (or temporary keys) when they are not in
computational use. Since κ does not need to be larger than the security
parameter (e.g., κ = 256 bits) and each polynomial share may be several
kilobytes in size, this radically reduces the memory requirement of high-
order masking. Overall provable security properties can be maintained
by using appropriate gadgets to manage the compressed shares. We de-
scribe gadgets with Non-Inteference (NI) and composable Strong-Non
Interference (SNI) security arguments.

Mask compression can be applied in various settings, including sym-
metric cryptography, code-based cryptography, and lattice-based cryp-
tography. It is especially useful for cryptographic primitives that allow
quasilinear-complexity masking and hence are practically capable of very
high masking orders. We illustrate this with a d = 32 (Order-31) im-
plementation of the recently introduced lattice-based signature scheme
Raccoon on an FPGA platform with limited memory resources.

Keywords: Side-Channel Security · Mask Compression · Raccoon Sig-
nature Scheme · Post-Quantum Cryptography

1 Introduction

Physical side-channel attacks exploit sensitive information leaked by a cryptog-
raphy system via externally observable characteristics such as Timing [20], Power
consumption (SPA/DPA) [21,22], and Electromagnetic emissions [30].

Currently, NIST and the cryptographic community are engaged in a wide-
reaching transition effort to use Post-Quantum Cryptography (PQC) algorithms

2 Markku-Juhani O. Saarinen and Mélissa Rossi

such as Kyber [2] (a lattice-based key establishment scheme) and Dilithium [4]
(a lattice-based signature scheme) to replace older quantum-vulnerable RSA
and Elliptic Curve based cryptography [1,26]. In many prominent use cases,
this transition requires physical side-channel security from PQC implementa-
tions: Authentication tokens, Mobile / IoT device platform security (secure boot,
firmware update, attestation), smart cards, and other secure elements.

Masking. Masking is a general technique to attain side-channel security by split-
ting sensitive variables into d randomized shares, where t = d− 1 is the masking
order. Each share individually appears uniformly random, and all d shares are
required to determine their sum, which is the actual masked quantity. We write
JxK to denote a masked representation of x. The relationship may be either an
exclusive-or operation (“Boolean masking”) or modular (“Arithmetic masking”):

Boolean masking: JxK = x0 ⊕ x1 ⊕ . . .⊕ xt (1)

Arithmetic masking: JxK = x0 + x1 + . . .+ xd−1 (mod q). (2)

PQC algorithm side-channel countermeasures are primarily based on mask-
ing. For example, see [6,14] for details about masking Kyber, and [24,3] for
Dilithium. High-order computation on the shares is relatively complex in the
case of these two algorithms, requiring both Boolean and Arithmetic masking.

Complexity of Attack and Defence. In addition to practicality, one main ad-
vantage of masking over more ad-hoc approaches is that it allows one to prove
side-channel security properties of implementations. In pioneering work, Chari et
al. [7] showed that in the presence of Gaussian noise, the number of side-channel
observations required to determine x from individual bits grows exponentially
with the number of shares d. The understanding of this exponential relationship
has since been made more precise both theoretically and in practice [13,23,18].

In [15], Ishai et al. introduced the probing model: the notion of t-probing
security states that the joint distribution of any set of at most t internal inter-
mediate values should be independent of any of the secrets. Thus, a circuit is
t-probing secure iff it is secure against observations of t = d−1 wires. Reductions
from the probing model to the noisy leakage model [29,12] exist and allow to
link t-probing security with realistic leakage models.

In addition, [15] showed that any circuit can be transformed into a t-probing
secure circuit of size O(nt2). It has since been demonstrated that quasilinear
O(t log t) masking complexity can be achieved for some primitives, including the
Lattice-based signature scheme Raccoon [27,28].

Structure of this Paper and Our Contributions. The mask compression technique
is introduced in Section 2, which also discusses how it can be applied in prac-
tice. Further security discussion is given in Section 3, including requirements for
composability (strong non-interference). Section 4 gives a practical example of
a very high-order PQC scheme (Raccoon [28] with d = 32 shares) implemented
with Mask Compression on FPGA with 128kB of physical SRAM, instead of
several megabytes that would be required without it.

2. MASK COMPRESSION 3

2 Mask Compression

Mask compression in a group G (Eqs. 1 or 2) requires a symmetric cryptography
primitive SampleG(z) that maps short binary keys z to elements in G. The
function is used to manipulate sensitive variables, but thanks to the way it
is used, SampleG(z) itself does not need to be masked. Its input and output
variables are generally ephemeral (single-use) individual shares.

Definition 1. (Informal.) The function x ← SampleG(z) uses the input seed
z ∈ {0, 1}κ to deterministically sample a pseudorandom element x ∈ G. We
assume that SampleG is cryptographically secure under a suitable definition.

For a technical discussion of pseudorandomness, see [19, Section 3] (the defini-
tions offered for binary strings can be easily extended to other uniform distribu-
tions.) Intuitively, we assume that the task of distinguishing x from a uniformly
random element in set G is computationally hard. Typically key size κ is selected
to match the overall security level of the system. In this case, distinguishing x
should not be substantially easier than an exhaustive search for z.

Practical instantiation. We can implement SampleG(z) with an extendable out-
put function (XOF) such as SHAKE[25]3 The function can also be instantiated
with a stream cipher or a block cipher (in counter mode). If a mapping from
XOF output to non-binary uniform distributions is required, one may use rejec-
tion sampling since each XOF(z) defines an arbitrarily long bit sequence.

Examples of sampled |G| ≫ 2κ include large-degree polynomials that are
ring elements Zq[x]/(x

n + 1) in Kyber [2] and Dilithium [4]. Note that imple-
mentations Kyber and Dilithium already have subroutines that generate uniform
polynomial coefficients in Z/qZ from XOF output via rejection sampling. In com-
mon lattice algorithms, an efficient (unmasked) method for this task is required
to create polynomials for A generator matrix on the fly. This is the reason why
a PQC hardware implementation (such as the one discussed in Section 4) will
often have an efficient instance of SampleG(z) available.

Definition 2 (Compressed Mask Set). A compressed mask set consists of a
tuple JxKz = (x0, z1, · · · , zt) satisfying x ≡ x0 +

∑t
i=1 SampleG(zi) with x0 ∈ G

and zi ∈ {0, 1}κ for i ∈ [1, t].

Theorem 1. It is computationally infeasible to determine information about x
from any subset of t = d− 1 elements in compressed masking d-tuple JxKz.

Proof. If x0 is not known, x can be any value. If one of zi is unavailable, the
indistinguishability property of SampleG(zi) makes x similarly indistinguishable.

3 FIPS 202 presents a SHAKE specifically as an extensible output function (XOF),
which is defined as a hash function with arbitrary-length input and output.

4 Markku-Juhani O. Saarinen and Mélissa Rossi

Compress (x0, x1) as (x′
0, z

′
1). Extract (x0, x1), refresh (x′

0, z
′
1).

Random Z256
2

Sample Zn
qx0x1

Have: (x0, x1)

− (x′
1)

+

x′
0 z′1

Store: (x′
0, z

′
1)

Random Z256
2

Sample Zn
qx0z1

Load: (x0, z1)

−Sample Zn
q (x′

1)

+

x′
0 z′1x1

Updated: (x′
0, z

′
1)(x0, x1)

Fig. 1. Illustrating first-order (t = 1,d = 2) mask compression. Let JxK = (x0, x1)
consist of a pair of degree-n polynomials (n = 256 for Kyber, Dilithium) with integer
coefficients ∈ Zq. Function SampleZn

q
(z) takes a 256-bit key z and uniformly samples a

polynomial from it (similarly to ExpandA(z) in Dilithium and Parse(XOF(z)) in Kyber.)
On the left-hand side, a “compression” algorithm (analogous to Algorithm 1) creates a
256-bit random z′1 and samples a random polynomial x′

1 using it. It then subtracts x′
1

from x0 and then adds x1 to the result, producing x′
0. This construction is exactly like

a trivial first-order refresh algorithm, except that instead of (x′
0, x

′
1), we store (x′

0, z
′
1),

which has a significantly smaller since z′1 is only 256 bits. While x′
1 ← SampleZn

q
(z′1)

would suffice for decompression (once), on the right-hand side, we present a simulta-
neous refresh mechanism (analogous to Algorithm 2) that allows repeated extractions.

Encoding Size. From Theorem 1, we observe that the compressed masking inher-
its the basic security properties of regular masked encoding. However, the size
of the representation is only log2 |G|+dκ bits, while a regular representation re-
quires (d+1) log2 |G| bits. In the case of Kyber, polynomials are typically packed
in 12 ∗ 256 = 3072 bits, while Dilithium ring elements require 23 ∗ 256 = 5888
bits. In compressed masking, this is the size of the xz

0 element only, while zi
variables are κ = 256 bits.

Conversions. We obtain a trivial mapping from compressed encoding JxKz to
the general masked encoding JxK by setting x0 = xz

0 and xi = SampleG(zi) for
i ∈ [1, d]. Security follows from the observation that this conversion is “linear”
in the sense that there is no interaction between shares.

Mapping from regular to compressed format requires interaction between the
shares since SampleG is not invertible. Algorithm 1 MaskCompress presents one

2. MASK COMPRESSION 5

Algorithm 1: JxKz = MaskCompress(JxK) (Proved t-NI in Th. 2)

Input: Masking JxK = (x0, x1, · · · , xt).
Output: Compressed masking JxKz with xz

0 +
∑t

i=1 SampleG(zi) =
∑t

i=0 xi.
1: xz

0 = x0

2: for i = 1, 2, · · · , t do
3: zi ← Random(κ) ▷ Random Bit Generator, κ bits.
4: xz

0 ← xz
0 − SampleG(zi)

5: xz
0 ← xz

0 + xi

6: return JxKz = (xz
0, z1, z2, · · · , zt)

way of performing this conversion. We note its resemblance to the RefreshMasks
algorithm of Rivain and Prouff ([31, Algorithm 4]); its NI security follows sim-
ilarly (see Section 3 for more details). While it is secure if used appropriately,
combining it with other algorithms may expose leakage, as demonstrated in [9].
Depending on requirements, it can be combined with additional refresh steps to
build an SNI [5] algorithm (also see Section 3 for more details).

Algorithm 2: xi = LoadShare(JxKz, i)
Input: Compressed masking JxKz satisfying x = xz

0 +
∑t

i=1 SampleG(zi)
Input: Index i for the share to be accessed.
Output: If read in order, i = 0, 1, · · · t, the returned {xi} is a fresh masking JxK.
1: if i = 0 then
2: xout

i ← xz
0 ▷ Should be accessed first, the rest i > 0 only once.

3: else
4: xout

i ← SampleG(zi) ▷ Expand the current zi.
5: zi ← Random(κ) ▷ Update zi with a Random Bit Generator.
6: xz

0 ← xz
0 − SampleG(zi)

7: xz
0 ← xz

0 + xout
i ▷ Update xz

0 accordingly.

8: return xout
i

Algorithm 3: JxK = FullLoadShare(JxKz) (Proved t-NI Th. 3)

Input: Compressed masking JxKz satisfying x = xz
0 +

∑t
i=1 SampleG(zi)

Input: Index i for the share to be accessed.
Output: If read in order, i = 0, 1, · · · t, the returned {xi} is a fresh masking JxK.
1: for i = 0, 1, · · · , t do
2: xi ← LoadShare(JxKz, i)
3: return (x0, x1, · · · , xt)

6 Markku-Juhani O. Saarinen and Mélissa Rossi

Computing with Compressed Masking A key observation for memory conser-
vation is that one does not need to uncompress all of the shares to perform
computations with the compressed masked representation. One can decompress
a single share, perform a transformation on it, compress it, and proceed to the
next one. Masked lattice cryptography implementations generally operate se-
quentially on each share, performing complex linear operations such as Number
Theoretic Transforms (NTT) on individual shares without interaction with oth-
ers. Furthermore, they require individual masked secret key shares only once (or
a limited number of times) during a private key operation.

Algorithm 2, LoadShare(JxKz, i) decodes a share xi ∈ G from a compressed
masking JxKz. If the shares are accessed in the sequence i = 0, 1, 2, · · · , t, like pre-
sented in Algorithm 3, it is easy to show that their sum will satisfy x =

∑t
i=0 xi.

The compressed masking is refreshed simultaneously (albeit not necessarily in
an SNI-composable manner). Subsequent accesses to the same indices will return
a different encoding JxK′.

3 Security arguments

Let us introduce some standard, intermediate security properties used in security
proofs [31,9,5].

Definition 3 (t-Non Interference [5]). An algorithm is said to be t-non-
interfering (written t-NI for short) iff any set of at most t observed internal
intermediate variables can be perfectly simulated from at most t shares of each
input.

One can see that t-non interference implies t-probing security. Such a precise
definition allows simulation proofs for sequential compositions of non-interferent
parts. Note that stronger security notions have been introduced in [5] like the
t-strong non-interference to handle more than sequential compositions.

Definition 4 (t-Strong Non Interference [5]). An algorithm is said t-strongly-
non-interfering (written t-SNI for short) if and only if any set of at most t =
tint + tout observed variables where tint are made on internal data and tout are
made on the outputs can be perfectly simulated from at most tint shares of each
input.

We observe that t-strong non-interference implies t-non interference. Any
non-interferent algorithm can achieve strong non-interference with an extra mask
refreshing of its output [5].

ConsideringMaskCompress (Algorithm 1) , we propose the following Theorem
and prove it below.

Theorem 2. Algorithm 1 is d-Non Interferent under the Pseudorandom Func-
tion hypothesis on the SampleG function (Definition 1). Hence, it is also t-probing
secure.

3. SECURITY ARGUMENTS 7

Let us first assume that there exists an index i∗ ∈ {1, ..., d} such that both
the seed zi∗ and the input xi∗ are left unobserved by the probing attacker. With
a hybrid argument, under the pseudorandomness hypothesis on the SampleG(zi∗)
function, SampleG(zi∗) may be replaced by a uniform random value inG, denoted
y∗. Hence, all the intermediate values that intervene in the i∗-th iteration can be
simulated with uniform random. Therefore, the distribution of the observations
can be simulated with at most t shares of the input (xi for i ̸= i∗) under the
computational assumption.

Now assume that it is not possible to find such an index i∗ ∈ {1, ..., d}. In that
case, all the t observations are made on a combination of xi for i ∈ {1, t} and zi
for i ∈ {1, t}. Let us note that in that case, the input x0 is always left unobserved.
The distribution of xz

0 over all iterations is then statistically indistinguishable
from uniform random in G. Hence, the distribution of the observations can be
simulated with at most t shares of the input (xi for i ∈ {1, t}).

Algorithm 4: JxKz = SNIMaskCompress(JxK) (Proved t-SNI in Th. 4)

Input: Masking JxK = (x0, x1, · · · , xt).
Output: Compressed masking JxKz with xz

0 +
∑t

i=1 SampleG(zi) =
∑t

i=0 xi.
1: xz

0 = x0

2: for i = 1, 2, · · · , t do
3: zi ← Random(κ)
4: xz

0 ← xz
0 − SampleG(zi)

5: xz
0 ← xz

0 + xi ▷ Compared to Alg .6, xi is directly accessed

6: for j = 1, 2, · · · , t do
7: for i = 1, 2, · · · , t do
8: xi ← SampleG(zi)
9: zi ← Random(κ)
10: xz

0 ← xz
0 − SampleG(zi)

11: xz
0 ← xz

0 + xi

12: return JxKz = (xz
0, z1, z2, · · · , zt)

Let us now consider the LoadShare algorithm. As noted above, the full version
of Algorithm 2, presented in Algorithm 3, is very similar to the Non-Interferent
RefreshMasks algorithm introduced in [31]. Hence, we introduce the following
Theorem.

Theorem 3. Algorithm 3 is d-Non Interferent and thus t-probing secure under
the pseudorandomness hypothesis on the SampleG function (Definition 1).

Since there are t+1 iterations and at most t observations, there exists an in-
dex i∗ ∈ {0, ..., t} designating an iteration that is left unobserved by the probing
attacker. Hence both the input seed zi∗ and the value xz

0 (of the i∗-th itera-
tion) are left unobserved. In that case, all the subsequent updates of xz

0 can

8 Markku-Juhani O. Saarinen and Mélissa Rossi

be replaced with uniform random under the same pseudorandomness hypothe-
sis of SampleG. Finally, all the attacker’s observations may be simulated with
(x0, (zi)i ̸=i∗) if i

∗ ̸= 0 and all the (zi) otherwise. There are no more than t shares
of the input, which concludes the proof.

Algorithm 5: xi = SNILoadShare(JxKz, i)
Input: Compressed masking JxKz satisfying x = xz

0 +
∑t

i=1 SampleG(zi)
Input: Index i for the share to be accessed.
Output: If read in order, i = 0, 1, · · · t, the returned {xi} is a fresh masking JxK.
1: if i = 0 then
2: xout

i ← xz
0 ▷ Should be accessed first, the rest i > 0 only once.

3: else
4: xout

i ← SampleG(zi) ▷ Expand the current zi.

5: for j = 1, 2, · · · , t do
6: xj ← SampleG(zj)
7: zj ← Random(κ) ▷ Update zi with a Random Bit Generator.
8: xz

0 ← xz
0 − SampleG(zj)

9: xz
0 ← xz

0 + xj ▷ Update xz
0 accordingly.

10: return xout
i

Strong non interference Our mask compression design does not immediately
reach the strong non-interference security notion; thus, it cannot be directly
composed in complex designs. As outlined above, for safe composition proper-
ties, applying a Strong Non-Interferent mask refreshing like introduced in [8] is
important. We present in Algorithm 6 an SNI refresh procedure on compressed
masks. Applying Algorithm 6 at the beginning of FullLoadShare and at the end
MaskCompress allows one to easily reach the strong Non-Interference property.

However, it is also possible to slightly save some randomness and directly
transform both our algorithms such that they reach the SNI property. We intro-
duce them in Algorithms 4, 5 and 7.

Please note that these three SNI gadgets will not be used in Section 4 for
Raccoon but they are provided here for potential other applications.

Theorem 4. Algorithms 4, 6 and 7 are d-Strongly Non-Interferent under the
Pseudorandomness hypothesis of SampleG function (Definition Definition 1).
They may be safely composed in complex designs.

In Algorithms 4 and 6, since there are t+1 = d iterations (with one outside of
the loop with index j for Algorithm 4) and t observations, at least one iteration is
left unobserved. All the observations (including the observations on the output)
performed after the unobserved iteration can be simulated with uniform random
(under the same pseudorandomness hypothesis). All the observations performed

4. EXPERIMENT: ORDER-31 LATTICE SIGNATURES 9

Algorithm 6: JxKz = SNIRefresh(JxK) (Proved t-SNI in Th. 4)

Input: Compressed masking JxKz

Output: Compressed masking JxKz with fresh shares.
1: for j = 0, 1, · · · , t do
2: for i = 1, 2, · · · , t do
3: xi ← SampleG(zi)
4: zi ← Random(κ)
5: xz

0 ← xz
0 − SampleG(zi)

6: xz
0 ← xz

0 + xi

7: return JxKz = (xz
0, z1, z2, · · · , zt)

Algorithm 7: JxK = FullLoadShare(JxKz) (Proved t-SNI Th. 4)

Input: Compressed masking JxKz satisfying x = xz
0 +

∑t
i=1 SampleG(zi)

Input: Index i for the share to be accessed.
Output: If read in order, i = 0, 1, · · · t, the returned {xi} is a fresh masking JxK.
1: for i = 0 · · · , t do
2: xi ← SNILoadShare(JxKz, i)
3: return (x0, x1, · · · , xt)

before the unobserved iteration can be simulated with at most t shares of the
input (inherited from the NI property of Algorithm 1). For Algorithm 7, one can
switch the loops for i and j and apply the same reasoning.

4 Experiment: Order-31 Lattice Signatures

We illustrate Mask Compressions with Raccoon4 at very high masking order 31
(number of shares d = t + 1 = 32) [28]. The unit performs all of the masked
arithmetic in KeyGen(), and Sign(), and also implements Verif(). We will focus
on the masked signing process, reproduced in Algorithm 8.

Overview of the hardware. The FPGA implementation contains an RV32C con-
troller, a 24-cycle Keccak accelerator, and a lattice unit with direct memory
access via a 64-bit interface. The lattice unit has hard-coded support for Rac-
coon’s mod q arithmetic. It can perform arbitrary-length vector arithmetic op-
erations such as polynomial addition, coefficient multiplication, NTT butterfly
operations, and shifts on 64-bit words. The FPGA implementation has a 5-cycle
modular multiplier with a 64-to-49 bit fixed-modulus reduction circuit. All vari-
ants of Raccoon utilize the same modulus q, allowing “hard-coded” reduction
circuitry to be used to implement them all.

Since the implementation is designed for masking, the circuitry also has a fast
“random fill” function that generates non-deterministic masking random rapidly.

4 The discussion applies to the version of Raccoon published at IEEE S&P 2023 [28].
There are differences to the Raccoon version submitted to the NIST PQC Call [27].

10 Markku-Juhani O. Saarinen and Mélissa Rossi

In a production implementation, this function would require special attention
to guarantee that the randomness used in each share is genuinely independent,
but trivial entropy sources with simple ASCON [11] -based mixing function was
used in the prototype.

4.1 SampleG(z) in Hardware

Crucially, the hardware can directly perform mod q rejection sampling from
streaming SHAKE output to memory. Since a full Keccak round is implemented
in hardware, it produces output at a very high rate, theoretically a full block
(136 bytes for SHAKE-256) every 24 cycles. This function works in parallel with
other operations. We found that bus access and arithmetic steps tend to be the
performance bottlenecks rather than the rejection sampling component.

In addition to implementing SampleG(z), the rejection sampler eliminates
perhaps the most significant performance bottleneck in microcontroller lattice-
based PQC implementations: It was initially intended to generate the k × ℓ
polynomial matrix A on the fly (Lines 2 and 12 in Algorithm 8, similar require-
ment in key generation and verification functions.) Such on-the-fly generation of
A is also required in Kyber and Dilithium implementations. Hence a rejection
sampler of this type can be expected to be available in dedicated PQC hardware.

Share Access Gadgets For this implementation, we used gadgets based on
Algorithms 1 and 2, implemented as a library call with an “API” for loading and
storing mask sets consistently (so that leakage characteristics would be uniform).
Note that while the introduced SNI gadgets are not used in Raccoon – this would
violate the quasilinear complexity requirement – the NI gadgets in Algorithms 1
and 2 suffice to ensure the probing security of Raccoon. One polynomial (x0 in
Definition 2) was held as full 64-bit integers to facilitate fast hardware arithmetic,
while the rest (t = 31 shares) were stored as κ = 256 bit seeds. Note that each
arithmetic step utilized the shares one at a time (thanks to the requirements
of the quasilinear lattice cryptography) i = 0, 1, · · · , t. When a share i was
required for arithmetic, an implementation of Algorithm 2 gadget was called. For
storing i = 0, 1, · · · , t, the share i = 0 was stored in full, while the rest utilized
Lines 3-6 of Algorithm 1 to update it. The implementation of Decode function
does not require simultaneous refresh, so it is sufficient to simply compute x0 +∑t

i=1 SampleG(zi).

Memory Footprint Algorithm 8 has been annotated with the share-access
gadgets used in each stage, which allow the implementation to use mask com-
pression on each sensitive variable. All of these are vectors of polynomial rings
Rq, with dimension depending on the security level λtarget ∈ {128, 192, 256} [28,
Table 3]. Focusing on the “Category 1” Raccoon-128 parameter sets the vector
length is either ℓ = 3 (for JrK, JsK, and JzK) or k = 8 (for JuK and JwK.) For
the masked variables, only the secret key JsK needs to be retained for repeated
use. Not all internal variables are used concurrently, and hence e.g., JuK and JwK

4. EXPERIMENT: ORDER-31 LATTICE SIGNATURES 11

can occupy the same memory as JrK and JzK. Hence this Raccoon implementa-
tion requires ℓ = 3 masked polynomials for persistent storage (secret key), and
additional ℓ+ k = 11 for working memory.

To estimate the minimum memory requirement at t = 31 without mask com-
pression, we assume that each polynomial coefficient is bit-packed into ⌈log2 q⌉ =
49 bits; hence a masked polynomial requires d×n×49 = 802, 816 bits. For both
secret key and working memory, this comes to roughly 1.4 megabytes (close to
2 MB if coefficients are stored in an access-friendly manner as 64-bit integers.)

With mask compression, the size of each masked polynomial drops to n ×
49 + t × κ = 33, 024 bits, or 4.1% of the uncompressed mask size. This is only
a 31.6% increase over completely unmasked implementation, even for the very
high masking order of 31; one can well say that the storage cost of masking
becomes negligible with mask compression.

The physical FPGA implementation operated well with 128 kB of SRAM,
while at least 2000 kB would have been required without compression. The
secret key JsK size also shrunk from 294 kB to 12.1 kB, which is important as
non-volatile storage can be more scarce than working memory.

Algorithm 8: Sign(JskK, vk,msg): “IEEE SP ’23” Raccoon signing [28,
Algorithm 7] with applicable mask compression gadgets annotated in
the comments. (Note: There are differences to the “NIST” version [27].)

Input: A masked signing key JskK, a message msg
Output: A signature sig of msg under sk
1: JrK← (Rℓ

q)
d ▷ In the implementation: A random mask set!

2: JuK := A · JrK ▷ Access: NI Alg. 1,2 or SNI Alg. 4,5.
3: JuK← Refresh(JuK) ▷ Implicit with NI or SNI with Alg. 6.
4: JwK := ApproxShiftq→qw(JuK) ▷ Access: NI Alg. 1,2 or SNI Alg. 4,5.
5: w := Decode(JwK) ▷ Commitment. NI: Alg. 3 or SNI Alg. 7.
6: chash := H(w,msg) ▷ Challenge hash. (Not masked.)
7: cpoly := ChalPoly(chash) ▷ Challenge polynomial. (Not masked.)
8: JsK← Refresh(JsK) ▷ Implicit with NI or SNI with Alg. 6.
9: JrK← Refresh(JrK) ▷ Implicit with NI or SNI with Alg. 6.

10: JzK := cpoly · JsK + JrK ▷ Access: NI Alg. 1,2 or SNI Alg. 4,5.
11: z := Decode(JzK) ▷ Response. NI: Alg. 3 or SNI Alg. 7.
12: y := A · z− pt · cpoly · t ▷ (The rest is not masked.)
13: ytop := ⌊y⌋q→qw
14: h := w − ytop ▷ Hint.
15: if (∥h∥2 > B2) or (∥h∥∞ > B∞) then
16: goto Line 1 ▷ Check the hint’s norms.

17: return sig := (chash, z,h)

4.2 Implementation Details and Basic Leakage Assessment

On an XC7A100T (Xilinx Artix 7) FPGA target, this size-optimized design (in-
cluding a control Core, Keccak unit, lattice coprocessor, masking random num-

12 Markku-Juhani O. Saarinen and Mélissa Rossi

ber generator, and communication peripherals) was 10,638 Slice LUTs (16.78%),
4,140 Slice registers / Flip Flops, (3.26%) and only 3 DSPs (as logic was used for
multipliers – the design is ASIC-oriented). The design was rated for 78.3 MHz.
Table 1 summarizes its performance at various masking levels.

Table 1. FPGA cycle counts at various side-channel security levels.

Algorithm Shares Keygen() Sign() Verif()

Raccoon-128 d = 2 1,366,000 2,402,000 1,438,000
Raccoon-128 d = 4 2,945,000 3,714,230 1,433,034
Raccoon-128 d = 8 6,100,000 6,345,000 1,389,000
Raccoon-128 d = 16 12,413,000 11,605,000 1,389,000
Raccoon-128 d = 32 25,073,000 22,160,000 1,393,000

Leakage Assessments. We ran a TVLA/17825:2022(E) [17] type leakage assess-
ment on all orders from d = 2 up to d = 32, with N = 200, 000 traces at
d = 2 showing no leakage. Such detection mechanisms are generally limited to
first-order leakage, so testing a high-order implementation can be seen as un-
necessary. However, in this particular case, there is an additional risk that the
mask compression gadgets themselves would be leaking.

Fixed vs. Random test. A non-specific t-test [32] was conducted on the signing
function to assess leakage of secret key JsK. The fixed set of traces consisted of
signing operations using synthetic keypairs where the secret JsK component was
fixed (but refreshed for every operation), and the public A was randomized. For
the signing operation, a synthetic t is derived with the fixed JsK and randomized
A. The second random set of traces used completely random keypairs. The
message to be signed was constant in both tests.

Critical Value. At order d = 32, the leakage assessment was carried out with
N = 20, 000 full traces and passed well under a threshold value matching α =
10−5. As noted by several authors, for example, Ding et al. [10] and Oswald
et al. [33], the common “TVLA” threshold value 4.5 needs to be adjusted for
long traces (the overall false positive rate with millions of points would be close
to 1.) The threshold value corresponding to significance level α = 10−5 with
l = 2.59× 106 time points is C = 6.94, using the methodology of [10].

Signal acquisition and post-processing. Power signal was acquired from the FPGA
chip on the CW305 board [16, Sect. C.3] with a PicoScope 2208B oscilloscope.
The test was run with a 24ns (41.7 MHz) clock cycle. Power samples were gath-
ered at the same rate. Each trace of the signature operation contained more
than 22 million samples at d = 32. The DUT generated a cycle-precise trigger.
Random delays and other non-masking countermeasures were disabled.

5. CONCLUSIONS AND OPEN PROBLEMS 13

We applied post-processing steps to improve detection. The waveforms were
computationally normalized so that each 1 ms sliding window had µ = 0 and
σ2 = 1 (effectively, a 1 kHz high-pass filter and dynamic amplitude control).
This allowed the traces to match more closely on the vertical axis. The traces
were also aligned horizontally using the start and end triggers.

Results. At N=20,000 traces, the maximum t-value was 5.55 (Fig. 2), well under
the threshold and corresponding to P-value 0.47. At N=10,000 traces, the test
result was t = 5.43. We also verified that leakage detection is functional by
disabling countermeasures in various ways; spikes rapidly appear in those cases.

Fig. 2. On top, t-trace of Raccoon-128 (d = 32) signature function from N = 20, 000
waveforms, each with 22.16×106 measurements (time on the horizontal axis). No leak-
age spikes were detected; the t-statistic values are within the critical value boundaries
(thin red lines). This test only detects first-order leakage, so it is merely offered as
additional evidence related to the implementation of the mask compression gadgets.
The bottom figure has N = 500 traces of the same implementation with mask random-
ization disabled; this simply demonstrates that leakage detection was operational.

5 Conclusions and Open Problems

We have introduced Mask Compression, a method to reduce the memory cost of
high-order masking side-channel countermeasures using non-masked symmetric

14 Markku-Juhani O. Saarinen and Mélissa Rossi

cryptography. This simple technique allows a set of t-order mask shares to have
a storage requirement equivalent to a single share and t symmetric keys. Its
benefits are most significant in higher-order masking, but it also nearly halves
the memory requirement for first-order Kyber and Dilithium. We present security
arguments in the well-known NI and SNI frameworks.

To illustrate the technique’s utility, we describe an Order-31 implementation
of the Raccoon signature scheme [28] where the size of the secret keys is re-
duced from 294kB to 12kB. The overall memory requirement is reduced from
two megabytes to 128 kB, allowing the scheme to be implemented on a resource-
constrained FPGA target while maintaining a quasilinear masking complexity
and a high level of non-invasive side-channel security, but with NI gadgets only.
As an open problem, we are working on closing SNI composability gaps for some
of the components and providing SNI gadgets with quasilinear complexity.

References

1. Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J., Lichtinger, J.,
Liu, Y.K., Miller, C., Moody, D., Peralta, R., Perlner, R., Robinson, A., Smith-
Tone, D.: Status report on the third round of the NIST post-quantum cryp-
tography standardization process. Interagency or Internal Report NISTIR 8413-
upd1, National Institute of Standards and Technology (September 2022). https://
doi.org/10.6028/NIST.IR.8413-upd1, https://csrc.nist.gov/publications/

detail/nistir/8413/final
2. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,

J.M., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-Kyber: Algorithm specifi-
cations and supporting documentation (version 3.02). NIST PQC Project, 3rd
Round Submission Update (August 2021), https://pq-crystals.org/kyber/

data/kyber-specification-round3-20210804.pdf
3. Azouaoui, M., Bronchain, O., Cassiers, G., Hoffmann, C., Kuzovkova, Y., Renes,

J., Schönauer, M., Schneider, T., Standaert, F.X., van Vredendaal, C.: Leveling
Dilithium against leakage: Revisited sensitivity analysis and improved implemen-
tations. IACR ePrint 2022/1406 (2022), https://eprint.iacr.org/2022/1406,
fourth PQC Standardization Conference, NIST (Virtual) 29 Nov – 1 Dec 2022

4. Bai, S., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P.,
Seiler, G., Stehlé, D.: CRYSTALS-Dilithium: Algorithm specifications and sup-
porting documentation (version 3.1). NIST PQC Project, 3rd Round Sub-
mission Update (February 2021), https://pq-crystals.org/dilithium/data/

dilithium-specification-round3-20210208.pdf
5. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P., Grégoire, B., Strub, P., Zuc-

chini, R.: Strong non-interference and type-directed higher-order masking. In:
Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.)
CCS ’16: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016. pp. 116–129.
ACM (2016). https://doi.org/10.1145/2976749.2978427, http://dl.acm.org/
citation.cfm?id=2976749

6. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking ky-
ber: First- and higher-order implementations. IACR Trans. Cryptogr. Hardw. Em-
bed. Syst. 2021(4), 173–214 (2021). https://doi.org/10.46586/tches.v2021.
i4.173-214

https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/NIST.IR.8413-upd1
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://eprint.iacr.org/2022/1406
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
http://dl.acm.org/citation.cfm?id=2976749
http://dl.acm.org/citation.cfm?id=2976749
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.46586/tches.v2021.i4.173-214

5. CONCLUSIONS AND OPEN PROBLEMS 15

7. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener [34], pp. 398–412. https://doi.org/10.
1007/3-540-48405-1_26

8. Coron, J.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald,
E. (eds.) Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings. Lecture Notes in Com-
puter Science, vol. 8441, pp. 441–458. Springer (2014). https://doi.org/10.1007/
978-3-642-55220-5_25

9. Coron, J., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security and
mask refreshing. In: Moriai, S. (ed.) Fast Software Encryption - 20th International
Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Selected Papers.
Lecture Notes in Computer Science, vol. 8424, pp. 410–424. Springer (2013). https:
//doi.org/10.1007/978-3-662-43933-3_21

10. Ding, A.A., Zhang, L., Durvaux, F., Standaert, F., Fei, Y.: Towards sound and opti-
mal leakage detection procedure. In: Eisenbarth, T., Teglia, Y. (eds.) Smart Card
Research and Advanced Applications - 16th International Conference, CARDIS
2017, Lugano, Switzerland, November 13-15, 2017, Revised Selected Papers. Lec-
ture Notes in Computer Science, vol. 10728, pp. 105–122. Springer (2017). https:
//doi.org/10.1007/978-3-319-75208-2_7

11. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2.
Submission to NIST (Lightweight Cryptography Project) (May 2021),
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/

documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf

12. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: From probing attacks
to noisy leakage. J. Cryptol. 32(1), 151–177 (2019). https://doi.org/10.1007/
s00145-018-9284-1

13. Duc, A., Faust, S., Standaert, F.: Making masking security proofs concrete -
or how to evaluate the security of any leaking device. In: Oswald, E., Fischlin,
M. (eds.) Advances in Cryptology - EUROCRYPT 2015 - 34th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I. Lecture Notes in Com-
puter Science, vol. 9056, pp. 401–429. Springer (2015). https://doi.org/10.1007/
978-3-662-46800-5_16, https://eprint.iacr.org/2015/119, extended version
is available as IACR ePrint Report 2015/015

14. Heinz, D., Kannwischer, M.J., Land, G., Pöppelmann, T., Schwabe, P., Sprenkels,
D.: First-order masked Kyber on ARM Cortex-M4. IACR ePrint 2022/058 (2022),
https://eprint.iacr.org/2022/058

15. Ishai, Y., Sahai, A., Wagner, D.A.: Private circuits: Securing hardware against
probing attacks. In: Boneh, D. (ed.) Advances in Cryptology - CRYPTO 2003, 23rd
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 17-21, 2003, Proceedings. Lecture Notes in Computer Science, vol. 2729, pp.
463–481. Springer (2003). https://doi.org/10.1007/978-3-540-45146-4_27

16. ISO: IT security techniques – test tool requirements and test tool calibration
methods for use in testing non-invasive attack mitigation techniques in crypto-
graphic modules – part 2: Test calibration methods and apparatus. Standard
ISO/IEC 20085-2:2020(E), International Organization for Standardization (2020),
https://www.iso.org/standard/70082.html

17. ISO: Information technology – security techniques – testing methods for the mit-
igation of non-invasive attack classes against cryptographic modules. Draft In-

https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-642-55220-5_25
https://doi.org/10.1007/978-3-642-55220-5_25
https://doi.org/10.1007/978-3-642-55220-5_25
https://doi.org/10.1007/978-3-642-55220-5_25
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-319-75208-2_7
https://doi.org/10.1007/978-3-319-75208-2_7
https://doi.org/10.1007/978-3-319-75208-2_7
https://doi.org/10.1007/978-3-319-75208-2_7
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://doi.org/10.1007/s00145-018-9284-1
https://doi.org/10.1007/s00145-018-9284-1
https://doi.org/10.1007/s00145-018-9284-1
https://doi.org/10.1007/s00145-018-9284-1
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/978-3-662-46800-5_16
https://eprint.iacr.org/2015/119
https://eprint.iacr.org/2022/058
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://www.iso.org/standard/70082.html

16 Markku-Juhani O. Saarinen and Mélissa Rossi

ternational Standard ISO/IEC DIS 17825:2022(E), International Organization for
Standardization (2023)

18. Ito, A., Ueno, R., Homma, N.: On the success rate of side-channel attacks on
masked implementations: Information-theoretical bounds and their practical usage.
In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2022, Los
Angeles, CA, USA, November 7-11, 2022. pp. 1521–1535. ACM (2022). https:
//doi.org/10.1145/3548606.3560579, https://eprint.iacr.org/2022/576

19. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Third Edition. CRC
Press (2021). https://doi.org/10.1201/9781351133036

20. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 18-22, 1996, Proceedings. Lecture Notes in Computer
Science, vol. 1109, pp. 104–113. Springer (1996). https://doi.org/10.1007/

3-540-68697-5_9

21. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener [34], pp.
388–397. https://doi.org/10.1007/3-540-48405-1_25

22. Kocher, P.C., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power
analysis. Journal of Cryptographic Engineering 1(1), 5–27 (2011). https://doi.
org/10.1007/s13389-011-0006-y

23. Masure, L., Rioul, O., Standaert, F.: A nearly tight proof of duc et al.’s con-
jectured security bound for masked implementations. In: Buhan, I., Schnei-
der, T. (eds.) Smart Card Research and Advanced Applications - 21st Interna-
tional Conference, CARDIS 2022, Birmingham, UK, November 7-9, 2022, Re-
vised Selected Papers. Lecture Notes in Computer Science, vol. 13820, pp. 69–
81. Springer (2022). https://doi.org/10.1007/978-3-031-25319-5_4, https:

//eprint.iacr.org/2022/600

24. Migliore, V., Gérard, B., Tibouchi, M., Fouque, P.: Masking Dilithium - efficient
implementation and side-channel evaluation. In: Deng, R.H., Gauthier-Umaña, V.,
Ochoa, M., Yung, M. (eds.) Applied Cryptography and Network Security - 17th
International Conference, ACNS 2019, Bogota, Colombia, June 5-7, 2019, Proceed-
ings. Lecture Notes in Computer Science, vol. 11464, pp. 344–362. Springer (2019).
https://doi.org/10.1007/978-3-030-21568-2_17

25. NIST: SHA-3 standard: Permutation-based hash and extendable-output functions.
Federal Information Processing Standards Publication FIPS 202 (August 2015).
https://doi.org/10.6028/NIST.FIPS.202

26. NSA: Announcing the commercial national security algorithm suite 2.0.
National Security Agency, Cybersecurity Advisory (September 2022),
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_

2.0_ALGORITHMS_.PDF

27. del Pino, R., Espitau, T., Katsumata, S., Maller, M., Mouhartem, F., Prest, T.,
Rossi, M., Saarinen, M.J.O.: Raccoon: A side-channel secure signature scheme.
Submission to NIST Standardization Call for Additional PQC Signature Schemes
(June 2023), https://github.com/masksign/raccoon/blob/main/doc/raccoon.
pdf

28. del Pino, R., Prest, T., Rossi, M., Saarinen, M.J.O.: High-order masking of lattice
signatures in quasilinear time. In: 44th IEEE Symposium on Security and Privacy,
SP 2023, San Francisco, CA, USA, 22-25 May 2023. pp. 1168–1185. IEEE (2023).
https://doi.org/10.1109/SP46215.2023.00160

https://doi.org/10.1145/3548606.3560579
https://doi.org/10.1145/3548606.3560579
https://doi.org/10.1145/3548606.3560579
https://doi.org/10.1145/3548606.3560579
https://eprint.iacr.org/2022/576
https://doi.org/10.1201/9781351133036
https://doi.org/10.1201/9781351133036
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1007/978-3-031-25319-5_4
https://doi.org/10.1007/978-3-031-25319-5_4
https://eprint.iacr.org/2022/600
https://eprint.iacr.org/2022/600
https://doi.org/10.1007/978-3-030-21568-2_17
https://doi.org/10.1007/978-3-030-21568-2_17
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://github.com/masksign/raccoon/blob/main/doc/raccoon.pdf
https://github.com/masksign/raccoon/blob/main/doc/raccoon.pdf
https://doi.org/10.1109/SP46215.2023.00160
https://doi.org/10.1109/SP46215.2023.00160

5. CONCLUSIONS AND OPEN PROBLEMS 17

29. Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology - EURO-
CRYPT 2013, 32nd Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceed-
ings. Lecture Notes in Computer Science, vol. 7881, pp. 142–159. Springer (2013).
https://doi.org/10.1007/978-3-642-38348-9_9

30. Quisquater, J., Samyde, D.: Electromagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T.P. (eds.) Smart Card
Programming and Security, International Conference on Research in Smart Cards,
E-smart 2001, Cannes, France, September 19-21, 2001, Proceedings. Lecture Notes
in Computer Science, vol. 2140, pp. 200–210. Springer (2001). https://doi.org/
10.1007/3-540-45418-7_17

31. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F. (eds.) Cryptographic Hardware and Embedded Systems, CHES
2010, 12th International Workshop, Santa Barbara, CA, USA, August 17-20, 2010.
Proceedings. Lecture Notes in Computer Science, vol. 6225, pp. 413–427. Springer
(2010). https://doi.org/10.1007/978-3-642-15031-9_28

32. Schneider, T., Moradi, A.: Leakage assessment methodology - A clear roadmap
for side-channel evaluations. In: Güneysu, T., Handschuh, H. (eds.) Cryptographic
Hardware and Embedded Systems - CHES 2015 - 17th International Workshop,
Saint-Malo, France, September 13-16, 2015, Proceedings. Lecture Notes in Com-
puter Science, vol. 9293, pp. 495–513. Springer (2015). https://doi.org/10.1007/
978-3-662-48324-4_25

33. Whitnall, C., Oswald, E.: A critical analysis of ISO 17825 (’testing methods for
the mitigation of non-invasive attack classes against cryptographic modules’). In:
Galbraith, S.D., Moriai, S. (eds.) Advances in Cryptology - ASIACRYPT 2019
- 25th International Conference on the Theory and Application of Cryptology
and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part
III. Lecture Notes in Computer Science, vol. 11923, pp. 256–284. Springer (2019).
https://doi.org/10.1007/978-3-030-34618-8_9

34. Wiener, M.J. (ed.): Advances in Cryptology - CRYPTO ’99, 19th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings, Lecture Notes in Computer Science, vol. 1666. Springer (1999).
https://doi.org/10.1007/3-540-48405-1

https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-030-34618-8_9
https://doi.org/10.1007/978-3-030-34618-8_9
https://doi.org/10.1007/3-540-48405-1
https://doi.org/10.1007/3-540-48405-1

	Mask Compression: High-Order Masking on Memory-Constrained Devices

