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Abstract

The random oracle model (ROM), introduced by Bellare and Rogaway (CCS 1993), enables a formal security
proof for many (efficient) cryptographic primitives and protocols, and has been quite impactful in practice. However,
the security model also relies on some very strong and non-standard assumptions on how an adversary interacts with
a cryptographic hash function, which might be unrealistic in a real world setting and thus could lead one to question
the validity of the security analysis. For example, the ROM allows adaptively programming the hash function or
observing the hash evaluations that an adversary makes.

We introduce a substantially weaker variant of the random oracle model in the post-quantum setting, which we
call non-observable quantum random oracle model (NO QROM). Our model uses weaker heuristics than the quantum
random oracle model by Boneh, Dagdelen, Fischlin, Lehmann, Schaffner, and Zhandry (ASIACRYPT 2011), or the
non-observable random oracle model proposed by Ananth and Bhaskar (ProvSec 2013). At the same time, we show
that our model is a viable option for establishing the post-quantum security of many cryptographic schemes by
proving the security of important primitives such as extractable non-malleable commitments, digital signatures, and
chosen-ciphertext secure public-key encryption in the NO QROM.

1 Introduction
The random oracle model (ROM), introduced by Bellare and Rogaway [BR93], is an influential tool to argue the
heuristic security of advanced cryptographic primitives such as existentially-unforgeable (EUF-CMA secure) digital
signature schemes and chosen-ciphertext secure (CCA-secure) public-key encryption (PKE). In the ROM, a hash
function is modeled as a random function, i.e. with a random truth table. This paradigm has turned out to be very useful
in constructing very efficient and practically relevant cryptographic schemes [FS87, PS00, FO99]. Constructions that
establish similar results without using ROs are typically very inefficient and thus seem to have less practical relevance
[CCH+19, PS19].

Nevertheless, the model has a negative side in that there are signature and PKE schemes that are secure in the
ROM but become insecure when the random oracle is replaced with any concrete hash function [CGH98]. Therefore,
we need to treat security arguments in the ROM with caution. Despite this weakness of the ROM, many results also
require strong properties of the ROM: for example, the model allows security arguments to program the random oracle
or to observe the queries made to the oracle by an adversary. These seem to be rather strong assumptions, or in other
words, seem to significantly limit the class of adversaries against which security holds. Therefore, there have been
proposals to weaken the ROM to non-programmability [FLR+10] or non-observability [AB13]. In this paper, we will
be focusing on the latter aspect.

The non-observable ROM (NO ROM) [AB13] has received less attention (compared to its non-programmable
counterpart [FLR+10]) and there are almost no non-trivial positive results known in the model. For example, Ananth
and Bhaskar [AB13] have proposed a secure extractable commitment scheme in the NO ROM but it is much less
efficient compared to standard commitment schemes in the plain ROM. Hence, this raises the following question:

Does security of cryptographic primitives, such as extractable commitment schemes, in the NO ROM necessarily
come with a significant loss in efficiency?

*VISA Research.
†ETH Zürich.
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A different line of research arose with the rising threat of quantum computers, which extended the ROM to the
quantum ROM (QROM) [BDF+11]. In the QROM, an adversary is allowed to make superposition queries to a
quantum random oracle (QRO). This models the ability of a quantum algorithm to evaluate a hash function over an
input in superposition. It was also shown that the QROM is a strictly weaker model than the ROM [YZ21], in the sense
that we make strictly weaker assumptions with respect to an adversary in the former. At the same time, many security
proofs in the ROM have been adapted to hold in the QROM with respect to important cryptographic primitives such
as digital signatures [LZ19, DFMS19, DFMS22b] and CCA-secure PKE schemes [TU16, JZC+18, Zha19, HHM22].
However, similar to our discussion of the ROM above, most of these security proofs in the QROM crucially rely on a
strong property of the model: namely, that one can observe – or more precisely, measure – the quantum queries made
by an adversary to the random oracle. This raises another natural question:

Can we prove security of cryptographic primitives, such as digital signatures and CCA-secure PKE schemes, in the
QROM without relying on measuring/observing queries?

1.1 Our Contributions
In this paper, we make significant progress towards answering the questions above by obtaining the following results.

New Model: “NO QROM”. We first introduce a new post-quantum security model which we call non-observable
quantum random oracle model (NO QROM). Essentially, the model is a weakened version of the NO ROM of [AB13],
in terms of the heuristics used, which also accounts for quantum adversaries. In the original NO ROM, the random
oracle is modeled with a Turing machine that can have a state which could be, for example, a list of random elements
and the first query would be answered with the first element in the list. However, such a state is inherently incompatible
with queries over superpositions. We therefore adapt the NO ROM to the quantum setting via NO QROM which allows
superposition queries as in the QROM, while at the same time, forbids observing/measuring adversarial queries in the
security proofs as in the NO ROM. The NO QROM therefore relies on weaker assumptions than the NO ROM and the
QROM. In other words, security proofs in the NO QROM also hold in both the NO ROM and the QROM.

Efficient Extractable Commitments. Regarding the first question above on whether security of basic cryptographic
primitives such as extractable commitments in the NO ROM is inherently tied with a loss in efficiency, we answer it
in the negative. In fact, we go one step further and answer the same question in the weaker NO QROM; as mentioned
previously, our results hold in the classical NO ROM as well. Specifically, prior work on extractable commitment
schemes in the NO ROM [AB13] has some significant drawbacks. Namely, to commit to a message of size |m| it
requires a commitment of size 2ω(log κ) · |m| using |m| hash evaluations for security parameter κ. Furthermore, their
security proof does not seem to translate to the quantum setting. That is, in their corresponding reduction, the outcome
of a random oracle query solely depends on how many queries have been made before. But it is unclear how this
strategy could translate to queries in quantum superposition, where multiple queries could be made in parallel.

In our work, by leveraging well-known techniques from the QROM setting [Ben81, Zha12b, Zha12a], we show
that the standard “textbook” commitment scheme H(r,m) is in fact extractable in the NO QROM and significantly
more efficient. It is computationally binding for a length |m|+2ω(log κ) with perfect extraction. We achieve a length
of |m| + ω(log κ) for a computationally binding, extractable commitment scheme1 with the following drawback that
the extractor has either at most an inverse polynomial (in κ) success probability or runs in superpolynomial time.

Additionally, as mentioned in [BGR+15], H(r,m) is also a non-malleable commitment [DDN91] in the ROM. We
show that H(r,m) is also non-malleable in the NO QROM whenever H(r,m) is statistically binding as required by
the notion of non-malleability with respect to commitments [DDN91, PR05]. However, intuitively H(r,m) also seems
non-malleable in the computationally binding setting. Hence, we make this intuition concrete by first weakening the
definition of [DDN91, PR05] by a slight adaptation and then showing that H(r,m) is non-malleable with respect to
our slightly weaker definition whenever the commitment is computationally binding. Furthermore, we give bounds
on the commitment length for the commitment being statistically binding and show how this could be significantly
improved using a NO QRO that is a permutation.

1|m|+ω(log κ) is optimal for a statistically binding commitment since for every message, there needs to be at least 2ω(log κ) many commitments
to not violate hiding and each of these commitments is a commitment to a unique message.
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EUF-CMA secure Signatures. We now consider our second question on the NO QROM security of commonly
used cryptographic primitives such as digital signatures and CCA-secure PKE schemes. Focusing on the former
cryptographic primitive, in the classical setting, a well-known class of ROM digital signatures called full-domain hash
(FDH) signature schemes [BR93] is known to be secure in the NO ROM [AB13]. However, in the quantum setting,
their security proof breaks down if the adversary is also allowed to query the random oracle in a quantum superposition.
One of the reasons is the inherent incompatibility of maintaining a state with respect to a random oracle in a quantum
setting. Another reason is that, at a high level, the prior proof strategy [AB13] crucially relies on working with a
polynomial number of inputs/outputs of the random oracle. But in the quantum setting, an adversary’s random oracle
query can be a superposition over exponentially many inputs.

Fortunately, Zhandry [Zha12b] overcame the above barrier using a novel technique related to indistinguishability
of quantum random oracles, and subsequently proved the security of FDH signatures in the QROM. In this work,
we adapt Zhandry’s proof in the context of “non-observability” to show that the FDH signatures are also secure in
the weaker NO QROM. In other words, our result shows that we don’t need the full “machinery” of QROM, namely
observability, to prove the post-quantum security of FDH signatures, and that relying on weaker heuristics is sufficient.

Boneh et al. [BDF+11] identified a relatively broad class of ROM signature schemes whose security can be shown
in the QROM setting. To be specific, such a class of signatures have their classical ROM security proofs following a
general structure known as history-free reductions [BDF+11]; roughly speaking, such reductions answer adversarial
random oracle queries independently of the history of previous queries. It was shown in [BDF+11] that history-free
reductions lift ROM security of the corresponding signatures to QROM security. More importantly, the above class of
“history-free signatures” include schemes with concrete post-quantum instantiations (in contrast to FDH signatures),
e.g., lattice-based GPV-style signatures [GPV08]. We extend the lifting theorem of [BDF+11] to show that such
history-free signatures are secure in the NO QROM, i.e., we explicitly establish that weaker heuristics are sufficient to
prove post-quantum security of the above broad class of signatures with history-free reductions.

Hinting Pseudorandom Generators and CCA-secure Encryption. We show that any CPA-secure PKE can be
transformed into a CCA-secure PKE in the NO QROM. More specifically, we provide a simple construction of a
special cryptographic primitive in the NO QROM called hinting pseudorandom generator (hinting PRG), which was
introduced by Koppula and Waters [KW19] to boost CPA-to-CCA security for PKE and related primitives. Therefore,
we obtain CCA-secure encryption PKE in the NO QROM.

By proving the security of commonly used primitives in NO QROM, we establish the NO QROM paradigm as
a viable option for analyzing the post-quantum security of cryptographic schemes with the advantage that it uses a
weaker heuristic than the ROM, QROM, and NO ROM. Nevertheless, we emphasize that the NO QROM does not
resolve the uninstantiability of the ROM [CGH98] since in their result, they do not rely on observing oracle queries.

1.2 Related Works
Regarding post-quantum security of extractable commitment schemes, Don et al. [DFMS22a] made significant progress
with respect to online-extractability in the QROM ; however, their techniques rely on measuring the adversarial random
oracle queries. In another recent work, Bitansky, Lin, and Shmueli [BLS22] proposed a log∗(κ)-round non-malleable
commitment based on post-quantum one-way functions. Their construction is the first non-malleable commitment
scheme (with security against quantum attacks) in the standard model.

Lombardi et al. [LMS22] observed that in many natural applications of extractable commitments in the context
of post-quantum secure zero-knowledge protocols, we require an additional property of the extractable commitments
wherein the extractor E (Definition 4.4) must also simulate the adversary A’s view, in addition to extracting the
message m from A’s commitment c; the authors use the term “state-preserving” extractable commitments for such
enhanced commitments, and proceed to give constructions in the standard model. We note that our analysis of the
standard hash-based commitment H(r,m) in the NO QROM (Theorems 4.5 and 4.7) also imply the “state-preserving”
extractability notion since there is no rewinding of the adversary A in the online setting that we consider in this work.

In this paper, we consider both statistical and computational binding properties for commitments. Regarding the
latter, Unruh [Unr16] argues that the “classical” definition of computational binding of commitments (Definition 2.8)
in the post-quantum setting is inadequate in the context of constructing post-quantum zero-knowledge protocols. He
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then provides a more satisfactory definition for computationally binding commitments in the quantum setting called
collapse-binding, and shows simple constructions in the plain QROM. Specifically, he shows a black-box construction
of collapse-binding commitments from collapsing hash-functions, and later shows that quantum random oracles are
indeed collapsing. Unruh essentially bases his latter result on a related result of Zhandry [Zha15] which shows that
quantum random oracles are collision-resistant. Given that Zhandry’s analysis [Zha15] does not use the observability
nor the adaptive-programmability features of the QROM, we expect one can extend Unruh’s results to construct
collapse-binding commitments in the weaker NO QROM heuristic, especially given their importance in post-quantum
zero-knowledge applications.

Recently, Zhandry [Zha22] argued that there is little theoretical justification for preferring the NO ROM of Ananth
and Bhaskar [AB13] over the standard ROM, because certain “ROM failures” also apply to the NO ROM. Specifically,
for any concrete hash function H , there exists a cryptographic scheme with a (NO) ROM security proof such that
instantiating the random oracle with H will make the scheme insecure (called “Type 2 failures” [Zha22]). It’s not
hard to see that the example scheme used by Zhandry to exhibit the above failure – namely, the Encrypt-with-Hash
transform of [BBO07] – can also be used to exhibit a similar failure in our NO QROM.

However, when it comes to the specific cryptographic schemes that we consider in this paper: namely, hash-based
extractable commitments, full domain hash signatures, hinting pseudorandom generators and CCA-secure encryption
schemes, it is not so clear if these schemes fall under the above failure with respect to the NO QROM. Yet our security
analysis of these schemes is still going to be heuristic at the end of the day. Nevertheless, the main goal of this paper,
as already outlined previously, is to weaken such heuristics – while not completely eliminating them. Unfortunately
at the current state of art, we still need heuristics to have efficient constructions and a formal (even though heuristic)
security analysis of widely adopted cryptographic primitives.

2 Preliminaries
We denote the security parameter by κ. For a positive integer k, we write [k] = {1, . . . , k}. For n ∈ N, we use 0n to
denote the zero string of length n. For finite set X, we write x ← X to denote that x is uniformly at random sampled
from X; also |X| denotes the cardinality of X. For a set element x ∈ X and an operation + that might not be defined
over X, we define x + 0∗ as x. For an algorithm A and oracle O, we use AO to denote A with oracle access to O.
PPT stands for probabilistic polynomial time. We refer the reader to [NC00] for the basics of quantum computation
and information.

2.1 Quantum Random Oracle Model (QROM)
In the QROM, we model hash functions as ideal functionalities called random oracles, which can be quantumly
accessible. Namely, an adversary is allowed to query a random oracle H : {0, 1}n → {0, 1}ℓ on an arbitrary quantum
superposition of inputs, where we use the mapping |x⟩ |y⟩ 7→ |x⟩ |y ⊕H(x)⟩ with input register x ∈ {0, 1}n and
output register y ∈ {0, 1}ℓ. We refer to [BDF+11] for a more detailed description of the model. The following lemma
describes the collision-resistance of such quantum random oracles.

Lemma 2.1 ([Zha15, Theorem 3.1]). There is a universal constant C such that the following holds. Let H : {0, 1}n →
{0, 1}ℓ be a random oracle. If an unbounded algorithm A makes a query to H at most q times, then

Pr[H(x) = H(x′)] ≤ C(q + 1)3/2ℓ,

where (x, x′)← AH and x, x′ ∈ {0, 1}n with x ̸= x′. Here the oracle access of A to H can be quantum.

The next three lemmas describe techniques to simulate quantum random oracles, which come in handy in security
proofs. The first lemma uses 2q-wise independent functions, the second uses small-range distributions as defined
in [Zha12a], and the third uses semi-constant distributions [Zha12b].

Lemma 2.2 ([Zha12b, Theorem 6.1]). Interpreting the set {0, 1}ℓ as the finite field F2ℓ , let f : {0, 1}ℓ → {0, 1}ℓ
be an oracle drawn uniformly at random from the set of (2q − 1)-degree polynomials over F2ℓ . Then the advantage
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any quantum algorithm making at most q quantum queries to f has in distinguishing f from a truly random oracle
H : {0, 1}ℓ → {0, 1}ℓ is zero.

In general, if f̂ : {0, 1}n → {0, 1}ℓ is an oracle implementing a 2q-wise independent function, then it is perfectly
indistinguishable from a uniformly random oracle H : {0, 1}n → {0, 1}ℓ with respect to a quantum algorithm making
at most q quantum oracle queries.

Definition 2.3 (Small-Range Distributions). An oracle with an η-range distribution (η ≪ 2ℓ) SRη : {0, 1}n → {0, 1}ℓ
is defined with the following output distribution on image {0, 1}ℓ:

• For each i ∈ [η], choose a uniformly random value yi ∈ {0, 1}ℓ.

• For each x ∈ {0, 1}n, pick a uniformly random i ∈ [η] and set SRη(x) := yi.

We also define the range Iη associated to SRη as follows: Iη = {yi | i ∈ [η]}.

Lemma 2.4 ([Zha12a, Corollary 7.5]). The statistical distance of output distributions of a quantum algorithm making
q quantum queries either to SRη : {0, 1}n → {0, 1}ℓ or a random oracle H : {0, 1}n → {0, 1}ℓ is bounded by
f(q)/η, where f(q) = π2(2q)3/6 < 14q3.

Definition 2.5 (Semi-Constant Distributions). An oracle with a λ-constant distribution SCλ : {0, 1}n → {0, 1}ℓ is
defined with the following output distribution:

• First, fix a uniformly random value y ∈ {0, 1}ℓ.

• For each x ∈ {0, 1}n, do:

Set SCλ(x) := y with probability λ.

Otherwise (with probability 1− λ), set SCλ(x) to be a uniformly random element in {0, 1}ℓ.

Note that SC0 : {0, 1}n → {0, 1}ℓ is just a uniformly random oracle.

Lemma 2.6 ([Zha12b, Corollary 4.3]). The statistical distance of output distributions of a quantum algorithm making
q quantum queries either to SCλ : {0, 1}n → {0, 1}ℓ or a random oracle (SC0 =)H : {0, 1}n → {0, 1}ℓ is bounded
by 8

3q
4λ2.

The following lemma provides a generic reduction from a hiding property (indistinguishability) to a one-wayness
property (unpredictability) in the (NO) QROM.

Lemma 2.7 ([AHU19, Theorem 1, adapted]). Let H : {0, 1}n → {0, 1}ℓ be a random oracle, x̂ ← {0, 1}n be a
uniformly random value and y be a random bitstring which is independent of x̂. Then, for any function G : {0, 1}n →
{0, 1}ℓ satisfying ∀x ∈ {0, 1}n \ {x̂}, G(x) = H(x) that might depend on (x̂, y), and any algorithm A making at
most q queries,

|Pr[AH(y) = 1]− Pr[AG(y) = 1]| ≤ 4

√
q(q + 1)

2n
.

2.2 Commitments
We recap the syntax and basic properties of commitments such as hiding, binding, and non-malleability.

Definition 2.8. A commitment scheme is a tuple of PPT algoritms (Com,Open) and a message space M with the
following syntax.

Com: Takes as input 1κ, m ∈ M and outputs a commitment c and an opening o.

Open: Takes as input a commitment c and an opening o and outputs m ∈ M or⊥, such that Open(Com(1κ,m)) = m.

Additionally, it suffices two properties, hiding and binding.
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Hiding: For any PPT adversary A and any m0,m1 ∈ M,

|Pr[A(1κ, c0) = 1]− Pr[A(1κ, c1) = 1]| ≤ negl.

where (c0, o0)← Com(1κ,m0) and (c1, o1)← Com(1κ,m1).

Binding: For any PPT adversary A,

Pr[Open(c, o0) = m0 ∧ Open(c, o1) = m1] ≤ negl,

where (c, o0, o1)← A(1κ) and m0,m1 ∈ M with m0 ̸= m1.

We call it statistically hiding (binding) if hiding (binding) holds even for any unbounded algorithm A and unbounded
oracle algorithm AO that is allowed to make an unbounded amount of queries to the oracle O.

Concurrent Non-Malleability. We follow the definition of non-malleable commitments of Pass and Rosen [PR05]
with the slight change that we include the view of the man-in-the-middle adversary as input for the distinguisher similar
to the definition of [LPV08]. Notice that an adversary can include its view in the input through committed messages.
For the sake of simplicity, we use the weaker definition in which an adversary only receives a single commitment.
As shown by [PR05], this implies the stronger version in which it receives many commitments. We recap the formal
definition below.

Definition 2.9 (Concurrent Non-Malleability). Let the random variables mim and sim be defined as follows.

mimAcom(z,m) : The man-in-the-middle adversary A receives a commitment c to a message m and auxiliary input z.
A then generates m commitments c1, . . . , cm. For every i ∈ [m], mi is defined as the unique committed message
in ci or ⊥ if no such message exists. Since we consider statistically binding commitments, there will be only one
message except with negligible probability. When there are more than one message or when ci = c, we define
mi :=⊥. The random variable entails the view of A and messages m1, . . . ,mm.

simS
com(z) : The simulator S receives an auxiliary input z and generates m commitments c1, . . . , cm. As previously,

for all i ∈ [m], we define mi as the unique committed message in ci except if it is not unique or no such message
exists. In that case, it is defined as mi :=⊥. In addition, S can also set any mi :=⊥.

We call a commitment scheme ε-concurrent non-malleable with respect to commitments if for any PPT adversary A
there exists a PPT simulator S such that for any PPT distinguisher D, message m ∈ M, polynomial m ∈ N and any
polynomial size auxiliary input z,

|Pr[D(mimAcom(z,m)) = 1]− Pr[D(simS
com(z) = 1)]| ≤ ε.

A commitment scheme that is non-malleable is also computationally hiding, since otherwise an adversary could
extract some information about m and a simulator which is independent of m could not simulate the view of such an
adversary, which would break non-malleability.

We extend Definition 2.9 to commitments that are not statistically binding. This allows to formalize that H(r,m)
is still non-malleable in the sense that it should be hard to change a commitment H(r,m) to a commitment H(r,m′)
for a related message m′.

Definition 2.10 (weak Concurrent Non-Malleability). Define the random variables wmimAcom(z,m) and wsimS
com(z)

as mimAcom(z,m) and simS
com(z) with the difference that they include all messages mi,j for which there exists an

opening oi,j such that ci opens to mi,j .
We call a commitment scheme ε-weak-concurrent non-malleable with respect to commitments if for any PPT

adversary A there exists a PPT simulator S such that for any PPT distinguisher D, message m ∈ M, polynomial
m ∈ N and any polynomial size auxiliary input z,

|Pr[D(wmimAcom(z,m)) = 1]− Pr[D(wsimS
com(z) = 1)]| ≤ ε.
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Definition 2.10 is weaker than Definition 2.9 because it does not cover that an adversary can generate a commitment
to a related message by simply copying the commitment. More specifically, a commitment c could be a commitment
for m and m′. Clearly, these two messages are related messages in the sense that given c = c(m′) = c(m), m
cannot take every value in M unless the commitment is statistically hiding. Thus, unless it is hiding, a simulator that
has no access to m could not simulate such a commitment. Definition 2.10 ignores this issue since the distinguisher
receives⊥ instead of the committed messages in c and therefore does not offer security for this case. Nevertheless, just
copying the commitment does not seem to be a significant attack against the intuitive notion of malleability, and by the
computationally binding property of the commitment, an adversary would not be able to open the commitment to any
other message m′. Due to this fact, we can use the same reasoning that non-malleability with respect to commitments
implies non-malleability with respect to openings [DIO98, FF00] to argue that weak non-malleability with respect to
commitments together with computational binding implies non-malleability with respect to openings.

Random-Oracle Based Commitments. For commitment schemes whose security properties rely on modeling their
underlying hash functions as random oracles, the corresponding definitions of hiding, binding and non-malleability
need to be modified accordingly in the QROM, i.e., we additionally need to give the involved parties (i.e., adversaries,
simulators, and distinguishers) quantum access to the random oracle(s) associated with the commitment scheme.

2.3 Other Basic Cryptographic Primitives
Definition 2.11 (Pseudorandom Functions). A pseudorandom function (PRF) is a function family PRF : K × X →
Y with K being the key-space, and X and Y being the domain and range respectively. Additionally, PRF is said
to be post-quantum (respectively, quantum) secure if no quantum polynomial-time adversary A making classical
(respectively, quantum) queries can distinguish between a truly random function and the function PRF(k, ·) for a
random key k. More formally, for every such adversary A, we have∣∣∣ Pr

k←K
[APRF(k,·)() = 1]− Pr

H←YX
[AH() = 1]

∣∣∣ ≤ negl.

Definition 2.12 (Signatures). A signature scheme is a tuple of PPT algorithms (Gen,Sign,Ver) with the following
syntax.

Gen: Takes as input 1κ and generates a public/secret key pair (pk, sk).

Sign: Takes as input the secret key sk and a message m and outputs a signature σ on it.

Ver: Takes as input the public key pk, a message m and a signature σ, and outputs acc or rej such that

Ver(pk,m,Sign(sk,m)) = acc.

To define security, we will use the standard chosen-message attack (CMA) game:

• The challenger generates (pk, sk)← Gen(1κ) and sends pk to A.

• A can make signature queries on messages mi to which the challenger responds with Sign(sk,mi).

• A produces a forgery candidate (m, σ).

A is said to win the game if m ̸= mi for any i and Ver(pk,m, σ) = acc. The signature scheme (Gen,Sign,Ver) is
said to be (post-quantum2) existentially unforgeable, aka. (post-quantum) EUF-CMA secure, if for all (respectively,
quantum) PPT adversaries A, the winning probability in the above game is negligible in κ.

2Note the distinction between “post-quantum” secure signatures and “quantum” secure signatures; in the former security notion, the adversary
can only make classical signature queries, whereas in the latter, the adversary can ask for signatures of quantum superpositions of messages. This
distinction also applies to encryption schemes with respect to classical/quantum decryption queries. See [BZ13] for the precise quantum security
definitions for signatures and encryption schemes.
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Definition 2.13 (Trapdoor Permutations). A trapdoor permutation (TDP) is a tuple of PPT algorithms (Gen, f, f−1)
where:

Gen: Takes as input 1κ and generates a public/secret key pair (pk, sk).

f: Takes as input the public key pk and an element x ∈ {0, 1}κ and returns y ∈ {0, 1}κ such that f(pk, ·) is a bijection
over {0, 1}κ.

f−1: Takes as input the secret key sk and an element y ∈ {0, 1}κ and returns x ∈ {0, 1}κ such that f(pk, x) = y.

A TDP (Gen, f, f−1) is said to be (post-quantum) one-way if for any (respectively, quantum) PPT adversary A,

Pr[A(pk, f(pk, x)) = x] ≤ negl,

where (pk, sk)← Gen(1κ) and x← {0, 1}κ.

3 Non-Observable Quantum Random Oracle Model
We follow the outline of the NO ROM of Ananth and Bhaskar [AB13] and make some adaptations to allow for queries
in superpositions. For the sake of simplicity, we ignore that a random oracle could also be adaptively programmed
during a reduction.3 In addition, we simply use a random function or random permutation [IR90] to describe the model
rather than using a stateful Turing machine as [AB13]. We remark that the quantum indistinguishability of random
functions and random permutations has been implicitly shown in [Zha15]. During a security game, the reduction might
replace this random function or random permutation with a different function that is indistinguishable for an adversary
with query access. Such a function might be for example a polynomial, where the degree of the polynomial depends
on the maximum amount of adversarial queries. We allow this by adding a setup phase in which the oracle can be
programmed. In Figure 1, we describe the setup and query phase. During the query phase, an oracle algorithm can
send its queries and receives a response. In our setting with random permutations, the oracle is not answering queries
for the inverse permutation which separates this model from an ideal cipher model.

Reduction Adversary

NO QRO

QRO H

program H

td

Setup Phase:

Reduction Adversary

NO QRO

QRO H

Interaction

query x

H(x)

query y

H(y)

Query Phase:

Figure 1: The figure shows two phases, during the setup phase a reduction can program the quantum random oracle
and might receive a polynomial size trapdoor information td. During the query phase, the reduction and adversary can
query the quantum random oracle. The reduction cannot observe queries made by the adversary or measure them. We
omit the case of adaptive programming, in which the reduction can program H during the query phase.

Following [BDF+11], a query can be a superposition over the domain of the oracle. Upon receiving a query for
quantum state |ϕ⟩ :=

∑
αx,y|x, y⟩ the oracle responds with

∑
αx,y|x, y +H(x)⟩. We remark that an adversary does

not actually need to send his quantum state. It can locally evaluate oracle H as long as it does not violate the only
black-box access requirement of the model. In the following, we will consider non-uniform adversaries. To provide

3To the best of our knowledge it is unclear how useful an adaptive progammability of a ROM is if queries cannot be observed. We are not aware
of any protocol or primitive in which adaptive programming is necessary during the reduction but observing the adversarial random oracle queries
is not.
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security against such adversaries we assume that H is rerandomized using a key or a salt. In addition, when working
with the NO QROM, we can leverage the Lemmas 2.1, 2.2, 2.4, 2.6, and 2.7 since they do not require observing any
query. This is crucial to establish our results.

4 Extractable Non-Malleable Commitments in the NO QROM
We revisit the definition of the standard hash-based commitment scheme.

Definition 4.1 (Standard Hash-based Commitment). Let ℓ ∈ N, and let R/M be the randomness/message space. For
a hash function H : R×M→ {0, 1}ℓ, the standard hash-based commitment scheme is defined as follows.

Com(1κ,m): Sample r ← R. Compute and output c := H(r,m), o := (r,m).

Open(c, o): Parse o = (r,m) and output m if c = H(r,m) and otherwise output ⊥.

We now prove the computational and statistical binding properties with respect to different parameters of the
commitment schemes defined above.

Lemma 4.2 (Binding). The standard hash-based commitment above is computationally (respectively, statistically)
binding for ℓ ≥ ω(log κ) (respectively ℓ ≥ 2 log |M|+ 2 log |R|+ ω(log κ)).

Proof. We start with computationally binding. An unbounded algorithm A making at most q quantum queries to the
random oracle H breaking the binding property would output a commitment c such that there exist two openings o0
and o1 with o0 ̸= o1. This implies that H(o0) = c = H(o1) and thus breaking the collision-resistance of H . However
from Lemma 2.1, the latter probability is bounded by O(q3/2ℓ) which is negligible for ℓ ≥ ω(log κ).

We now consider the statistical binding property. The commitments are determined by the randomness r and
message m. Thus there are at most |M| · |R| many commitments. Therefore, the probability that there exists an r0,
r1, m0 and m1 such that it results in the same commitment is bounded by |R|2 · |M|2 · 2−ℓ which is negligible for
ℓ ≥ 2 log |M|+ 2 log |R|+ ω(log κ).

When we use random permutations instead of random functions, we get better bounds on ℓ for the case of statistical
binding. In addition, since random permutations are indistinguishable from random functions all other properties
such as extractability, hiding, and non-malleability still hold. When replacing the permutation with a degree 2q − 1
polynomial, we might lose statistical binding since there might be up to 2q − 1 preimages per output. Our extractor
does this replacement and therefore unique extractability requires ℓ ≥ ω(log κ) to prevent collisions of the 2q − 1
preimages with overwhelming probability.

Lemma 4.3 (Statistical Binding for Permutations). Let H be the hash function in Definition 4.1 and let H be defined
as H(r,m) = P (r,m)||H ′(r,m) where P is a random permutation and H ′ : R ×M → {0, 1}ℓ′ . Then, the standard
hashed-based commitment is statistically binding.

Proof. The proof is almost identical to the proof of Lemma 4.2. The difference is that we get a much better bound
on preventing a collision than the birthday bound due to the definition of a permutation which does not have such
collisions. Therefore, such a collision can only happen with respect to the oracle H ′. However, the image of P
uniquely defines r,m and therefore we can ignore collisions in the image of H ′.

We now consider extractability of the commitent scheme. We first adapt extractability for a commitment scheme
to the NO QROM described in Section 3. We allow an extractor similar to a reduction to program H during the setup
phase. In this process, the extractor obtains a trapdoor information td which allows it to extract the message from a
commitment.

Definition 4.4 (Extractability in the NO QROM). We call a commitment scheme online-extractable in the NO QROM
if there exists a PPT algorithm E which programs QRO H during the setup phase and might receive a polynomial
length trapdoor information td within the process. During the query phase, E receives commitment c and outputs m,
i.e., m← E(td, c), such that there exists an opening o with Open(c, o) = m. Otherwise, E outputs ⊥.
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We now present two extraction techniques for the standard hash-based commitment scheme in the NO QROM.
Both techniques follow a similar approach, but they allow different parameter, security, and extraction probability
trade-offs. In the first technique, at a high-level, the corresponding extractor simulates the QROs using polynomials
over finite fields with a sufficiently large degree, thanks to Lemma 2.2, and then it utilizes an efficient root-finding
algorithm over related polynomials to compute valid openings for a given commitment – without observing the queries
made to the QROs.

We start with showing perfect online-extractability in the NO QROM based on finding roots of polynomials.

Theorem 4.5 (Extraction via Roots Finding). As per Definition 4.1, let H be modeled as a QRO with the structure
H(r,m) = H ′(r,m)||H ′′(r,m), where H ′ : R × M → R × M, H ′′ : R × M → {0, 1}ℓ′ are QROs such that
ℓ′ = ℓ−log |M|−log |R|. Then the standard hash-based commitment from Definition 4.1 is perfectly online-extractable
in the NO QROM.

Proof. We describe a PPT extractor E with respect to an adversary A which makes at most q queries to the QROs.
In the setup phase, E replaces the true random oracle H ′ with an oracle f evaluating a uniformly random polynomial
of degree 2q − 1 over the finite field F2ν , where {0, 1}ν = R × M. From Lemma 2.2, the oracle f is perfectly
indistinguishable from the QRO H ′ in A’s view. E retains the (polynomial sized) description of f as the trapdoor
information td.

Upon receiving a commitment c = (c1, c2) = (H ′(r,m), H ′′(r,m)) from A in the query phase, E first computes
a set of roots S of the polynomial f(x) − c1. This can be done efficiently using the algorithm in [Ben81]. Since the
polynomial is of degree 2q − 1, there are at most 2q − 1 roots. For each of the roots (r,m), E makes a classical query
to H ′′ and checks whether H ′′(r,m) = c2. If there exists such a root (r,m), E picks one of them and outputs m as the
result of its extraction, i.e., m ← E(td, c). Otherwise, E returns ⊥. It’s not hard to see that when E outputs m ̸= ⊥,
then there exists an opening o such that Open(c, o) = m, namely o = (r,m) ∈ S. On the other hand, when E outputs
⊥, there exists no valid opening for c.

Note that the first approach comes with the disadvantage that extraction is possible if the commitment size at least
matches the message plus randomness size. Our second approach requires much less overhead for the commitment
size. However, it has the shortcoming that extraction needs superpolynomial space for a negligible distinguishability
advantage between the normal and the extraction mode.

In the second approach, the extractor simulates the QROs using small-range distributions (described in Lemma 2.4)
and then (efficiently) iterates over the small output space of the QROs in order to compute valid openings for a given
commitment – again while not observing any queries made to the QROs. For this approach, we first define a “small
range mode” which allows extraction. In the small range mode, we replace oracle access to H with oracle access to
ĤE.η , which is a special oracle since it outputs the message m and masks it with an element from the small range set
SRη . More precisely, we denote the oracle in extraction mode (with parameter η) with ĤE.η : R×M→ {0, 1}ℓ where
ℓ ≥ log |M|+ log η and for any r ∈ R, m ∈ M, we set ĤE,η(r,m) := SRη(r,m) + (m||0ℓ′) where ℓ′ := ℓ− log |M|.

Lemma 4.6. Let ĤE,η be the oracle in extraction mode with parameter η, and let H be the oracle in the standard NO
QROM mode. Then, for any unbounded distinguisher D making at most q queries,

|Pr[DH = 1]− Pr[DĤE,η = 1]| ≤ 14q3

η
.

Proof. Let H̃ : R ×M → {0, 1}ℓ be defined as H̃(r,m) := H(r,m) + (m, 0ℓ
′
) for all r ∈ R, m ∈ M, where H is

the QRO. Due to the uniformity of H(r,m), the oracles H and H̃ are identically distributed. By Lemma 2.4, we can
replace Ĥ with SRη and this can be distinguished at most with probability 14q3/η.

Theorem 4.7 (Extraction via Small Range Distributions). Let H : R × M → {0, 1}ℓ be modeled as a QRO and
ℓ ≥ log |M| + log η. Then the standard hash-based commitment from Definition 4.1 is perfectly online-extractable in
the NO QROM extraction mode and E runs in time polynomial in η.

Proof. Our extractor E is defined as follows. During the setup phase, E sets up the oracle such that it is in extraction
mode, i.e., ĤE,η . E receives set Iη of SRη as trapdoor information which has size at most η.

10



During the query phase, E receives a commitment c = (c1, c2) ∈ M × {0, 1}ℓ′ . For any element (m̃, x) ∈ Iη , E
checks whether x = c2. If this is the case, E outputs m = c1 − m̃. If no such x exists, E outputs ⊥.

Since |{0, 1}ℓ′ | ≥ η = |SRη|, E extracts the correct message and only outputs ⊥ if c is not a valid commitment
and therefore E is a correct extractor.

After establishing the (computational and statistical) binding and (perfect online) extractability properties of the
standard hash-based commitment scheme in the NO QROM, we turn our attention towards proving their respective
computational hiding properties. As discussed in Section 2, it suffices to show their non-malleability in the NO QROM
instead because non-malleable commitments are also computationally hiding. We prove that they are computationally
hiding in the settings when the schemes are statistically (respectively, computationally) binding by showing that they
satisfy concurrent (respectively, weak concurrent) non-malleability in the NO QROM.

Theorem 4.8 (Non-Malleability when Statistically Binding). Let the standard hash-based commitment (Definition 4.1)
be set up such that it is statistically binding. Then, it is ε-concurrent non-malleable with respect to commitments in
the NO QROM for ε ≤ negl as long as log |R| ≥ ω(log κ).

Proof. We can use the approach of puncturing the random oracle and make the commitment to m independent of
H and therefore uniform. Though there is one subtlety in the definition of non-malleable commitments. After the
adversary sends its commitments, there is an exponential time routine that brute forces the commitments to extract
the unique message. After the puncturing, it could happen that a commitment that was previously valid becomes
invalid and instead of outputting the actual message, the brute force routine forwards ⊥ to the distinguisher. Clearly, a
distinguisher could then easily distinguish the punctured setting from the normal setting. Fortunately, for the standard
hash-based commitment, the puncturing only affects a single commitment since we puncture H on point r,m which
uniquely defines c. Moreover, if the adversary copies this commitment, the brute force routine forwards ⊥ by default
to the distinguisher so that it does not help to distinguish the punctured setting from the normal setting during the brute
force routine.

We use a domain separation to define Hm̂ for message m̂ ∈ M such that for all r ∈ R, Hm̂(r) := H(r, m̂). We
sample r̂ ← R, ŷ ← {0, 1}ℓ and define Ĝm̂ as follows. Ĝm̂(r̂) := ŷ. For all other r ∈ R\{r̂}, we set Ĝm̂(r) := Hm̂(r).

To prove non-malleability, we define the following simple simulator. The simulator samples a random string
ŷ ← {0, 1}ℓ and sends ŷ to A as commitment. A then outputs commitments c1, . . . , cm. For any i ∈ [m] for
which ci = ŷ, sim sets mi := ⊥. The random variable simS

com(z) is generated from the view of A and the messages
m1, . . . ,mm, where mi is either ⊥ or the unique message committed in ci.

Afterwards, we use the puncturing technique to argue that the distinguisher cannot distinguish between simS
com(z)

and mimAcom(z, m̂). The reduction uses D to distinguish between H̃m̂ = Hm̂ and H̃m̂ = Ĝm̂. During the setup, the
reduction programs H such that for a query r, m̂ it outputs H̃m̂(r). For all other messages m ∈ M\{m̂}, the reduction
does not change H . In addition, the reduction receives trapdoor information ŷ. During the query phase, the reduction
sends ŷ to A and uses A’s view and commitments to define random variable X. If for a commitment we have ci = ŷ,
it defines mi :=⊥.

When H̃m̂ = Ĝm̂, ŷ is a valid (and the only) commitment for m̂ with randomness r̂. In this case, X = mimAcom(z, m̂).
When H̃m̂ = Hm̂, ŷ is statistically uniform and independent of m̂. Moreover, due to the fact that the input r̂, m̂ to
Ĥ defines a unique commitment, the puncturing of point r̂ for Hm̂ does not affect any commitment with m ̸= m̂ or
r ̸= r̂. Therefore, during the exponential time brute force routine, there is no message mi that gets invalidated (due to
the puncturing) except for messages derived from ŷ which are in any case set to ⊥. Thus, in this case X = simS

com(z).
When D distinguishes mimAcom(z, m̂) from simS

com(z) it implicitly distinguishes Hm̂ from Ĝm̂ which is bounded by
4q
√
2−κ by Lemma 2.7, where q is the number of NO QRO queries of D and A.

Theorem 4.9 (Weak Non-Malleability when Computationally Binding). Let the standard hash-based commitment
from Definition 4.1 be set up such that it is computationally binding. Then it is ε-weak-concurrent non-malleable with
respect to commitments in the NO QROM for ε ≤ negl as long as log |R| ≥ ω(log κ) and |c| ≥ ω(log κ).

Proof. The proof follows essentially from the proof of Theorem 4.8 and we can use exactly the same simulator. We
outline the differences. A string ĉ received by A when generating wmim might be a commitment that has valid
openings for multiple messages m̂1, . . . , m̂j . Due to the definition of the experiment, m̂1, . . . , m̂j are not contained in
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wmim and replaced with⊥. The puncturing of ĉ again only affects H(m̂, r̂) as before. Though there is another subtlety
when considering the unbounded procedure that extracts the messages for the distinguisher. Using a uniformly random
ŷ instead of ĉ could lead to replacing a different set of messages with ⊥ such that wmim and wsim are distinguishable.
However, this is only possible when collisions occur. Due to |c| ≥ ω(log κ) and Lemma 2.1, this happens at most with
probability q32−ω(log κ) which is negligible.

5 Signature Schemes in the NO QROM
In this section, we establish the post-quantum security of certain generic classes of signatures in the NO QROM. First
we consider signature schemes whose proofs of security in the classical ROM involve so-called history-free reductions
as defined in [BDF+11]; examples of such schemes include the lattice-based signature in [GPV08] and Fiat-Shamir
signatures analyzed in [KLS18]. Then we shift our attention to the well-known generic full domain hash (FDH)
signatures of Bellare and Rogaway [BR93] in the NO QROM.

5.1 Signatures with History-Free Reductions
Boneh et al. [BDF+11] showed that if the security proof of a signature scheme in the classical ROM follows a specific
structure known as a history-free reduction, then the scheme is also provably secure in the QROM. At a high-level, in
a history-free reduction, the responses to an adversary’s random oracle queries are determined independently of the
responses to previous queries. A more formal definition of a history-free reduction follows (taken from [BDF+11]):

Definition 5.1 (History-Free Reductions). A random oracle signature scheme SH = (Gen,SignH ,VerH) has a
history-free reduction from a hard problem P if the proof of security uses a classical PPT adversary A against SH to
construct a classical PPT algorithm B to solve problem P such that:

• B contains four classical algorithms: START, RANDHc , SIGNHc and FINISHHc ; the latter three algorithms
have access to a shared classical random oracle Hc. These algorithms are used as follows:

– Given an instance x for problem P , B first runs START(x) to get (pk, st) where pk is a public key of
SH and st is some private state to be used by B. Then B simulates the standard CMA security game
(Definition 2.12) with respect to SH by first forwarding pk to A.

– When A makes a classical RO query H(r), B responds with RANDHc(r, st). Note here that RANDHc is
only given the current query r as input, and in particular, is unaware of previous queries and responses.

– WhenAmakes a signature query SignH(sk,m), where sk is the secret key corresponding to pk, B responds
with SIGNHc(m, st).

– When A outputs a forgery candidate (m, σ), B outputs FINISHHc(m, σ, st).

• There is an efficiently computable function INSTANCE(pk) which generates an instance x for problem P such
that START(x) = (pk, st) for some st. We also need the following distribution of x to be negligibly close
to the original distribution of x considered in problem P : first generate (pk, sk) ← Gen(1κ) and compute
x = INSTANCE(pk).

• Consider the classical oracle O(r) = RANDHc(r, st), for a fixed st. Define the corresponding quantum oracle
Oq which maps |r⟩ |s⟩ 7→ |r⟩ |s⊕O(r)⟩. We require Oq to be (quantum) computationally indistinguishable
from a truly random oracle.

• SIGNHc either generates a valid signature relative to the oracle O(r) = RANDHc(r, st) with a distribution
negligibly close to the correct signing algorithm, or it aborts (hence making B abort as well). The probability
that none of A’s signature queries result in an abort is non-negligible.

• If the output (m, σ) of A is a valid signature forgery with respect to the received public key pk and oracle
O(r) = RANDHc(r, st), then the output FINISHHc(m, σ, st) of B solves the problem P with respect to instance
x with non-negligible probability.
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After defining history-free reductions for signature schemes, Boneh et al. proved a general lifting theorem from
ROM security to QROM security for such reductions [BDF+11, Theorem 1]. In the following, we extend their lifting
theorem to show that signature schemes with history-free reductions are in fact secure in the weaker NO QROM.

Theorem 5.2. Let SH = (Gen,SignH ,VerH) be a random oracle signature scheme with a history-free reduction from
a problem P assumed to be hard for polynomial-time quantum algorithms. Assuming that post-quantum one-way
functions exist, SH is post-quantum EUF-CMA secure when H is modeled in the NO QROM.

The following proof essentially follows a similar strategy as the one by Boneh et al. for “history-free signatures” in
the plain QROM [BDF+11, Theorem 1] (however we provide a sketch for the sake of completeness). In addition, we
adapt their proof in our NO QROM framework when it comes to simulating the responses to an adversary’s quantum
random oracle queries in the reduction.

Proof Sketch. As per Definition 5.1, recall that the history-free reduction for signature SH = (Gen,SignH ,VerH)
above involves the classical algorithms START, RAND, SIGN, FINISH, and INSTANCE. Towards a contradiction,
assume there is a quantum PPT adversaryA that breaks the EUF-CMA security of SH with non-negligible probability
ε. The proof proceeds by a sequence of game-hybrids. Namely, let G0 be the standard CMA game with respect to SH .

Now let the game G1 be the following modification of G0: after the challenger generates (pk, sk) ← Gen(1κ), it
computes x = INSTANCE(pk) and (pk, st)← START(x). Then instead of using a truly random oracle to answerA’s
quantum queries to H , the challenger uses the quantum oracle Oq which maps |r⟩ |s⟩ 7→ |r⟩ |s⊕ RANDHc(r, st)⟩;
here Hc is a truly random quantum oracle which is not directly accessible to A. From Definition 5.1, we have Oq to
be quantum computationally indistinguishable from a truly random oracle. Hence, we have the winning probability of
A in G1 to be negligibly close to that in G0.

Let G2 be the following modification of G1: instead of generating (pk, sk) ← Gen(1κ) and computing x =
INSTANCE(pk), the challenger samples x from the original instance distribution with respect to problem P ; it then
uses the latter x to obtain (pk, st)← START(x) before forwarding pk to A. Furthermore, when A makes a signature
query on m, the challenger responds with SIGNHc(m, st). From the property of INSTANCE in Definition 5.1, we have
the distributions of x in games G1 and G2 to be negligibly close. Also from the property of SIGNHc , we have with
a non-negligible probability that all of A’s signing queries are answered successfully (i.e., without aborting) with the
corresponding signatures having a distribution negligibly close to the actual signatures in G1. Hence as argued in the
proof of [BDF+11, Theorem 1], it’s not hard to see that A’s winning probability in G2 (i.e., probability of outputting
a valid forgery) is non-negligible.

Finally let G3 be the following modification of G2: instead of using a truly random quantum oracle for evaluating
Hc internally, the challenger uses a quantum-secure pseudorandom function PRF (Definition 2.11). Specifically,
the challenger first samples a random PRF key k. Then it replaces Hc with the quantum oracle |PRF(k, ·)⟩ which
maps |r⟩ |s⟩ 7→ |r⟩ |s⊕ PRF(k, r)⟩. Because of the quantum-security of PRF, it’s not hard to see that the winning
probabilities of A in games G2 and G3 are negligibly close. Hence we have the latter probability to be non-negligible
as well. Also note that quantum-secure pseudorandom functions can be constructed (in a black-box manner) from
post-quantum one-way functions, as shown by Zhandry [Zha12a].

After defining games G0−G3 with respect to adversaryA, we now construct a polynomial-time quantum algorithm
B that solves the underlying hard problem P in the NO QROM with non-negligible probability. Upon receiving an
instance x with respect to problem P , B computes (pk, st)← START(x). Then in the “setup phase” of the NO QROM
(Section 3), B samples a random PRF key k and programs the quantum random oracle H as:

H(r) := RAND|PRF(k,·)⟩(r, st),

as in game G3. B also forwards pk to A, and acts as the CMA-challenger in game G3. Specifically in the “query
phase” of the NO QROM:

• When A makes a signature query on message m, B responds with the value SIGN|PRF(k,·)⟩(m, st).

• When A returns a forgery candidate (m, σ), B outputs FINISH|PRF(k,·)⟩(m,σ, st).
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It’s not hard to see that B perfectly simulates the game G3 towards A, while importantly, also executing a valid
reduction in the NO QROM. This is because B never has to observe the quantum queries made by A to the random
oracle H after the setup phase (also the above two steps in query phase can be seen as the “Interaction” in Figure 1).
Now since we have the winning probability of A in G3 to be non-negligible, it follows that the probability of A
returning a valid forgery candidate (m, σ) to B in the above query phase is also non-negligible. So from the property
of the FINISH algorithm in Definition 5.1, we note that the output FINISH|PRF(k,·)⟩(m,σ, st) of B solves the problem
P with respect to given instance x with a non-negligible probability. This contradicts our starting assumption that P is
hard for polynomial-time quantum algorithms, which in turn implies the EUF-CMA security in the NO QROM.

Following the results on history-free reductions [BDF+11], many works started devising “history-free versions” of
classical ROM security proofs of important signature schemes to establish their post-quantum security in the QROM.
Examples of such schemes include the lattice-based signature of [GPV08], as analyzed in [BDF+11], and Fiat-Shamir
signatures as analyzed in [KLS18]. So a consequence of our lifting theorem (i.e., Theorem 5.2) above is that these
classes of signature schemes are also provably secure in the weaker NO QROM, i.e., we explicitly establish that weaker
heuristics – which do not require observing an adversary’s quantum random oracle queries – are sufficient to prove
post-quantum security of the aforementioned signature schemes.

5.2 FDH-based Signature Schemes
We first recall the definition of FDH signatures as follows.

Definition 5.3 (FDH Signatures). Let F = (Gen, f, f−1) be a trapdoor permutation, and let H be a hash function that
maps messages to the co-domain of f. Let SH = (Gen,SignH ,VerH) be a signature scheme where:

• SignH(sk,m) = f−1(sk, H(m))

• VerH(pk,m, σ) =

{
acc if f(pk, σ) = H(m)

rej otherwise

In the classical setting, Bellare and Rogaway [BR93] proved the EUF-CMA security of FDH signatures in the
classical ROM while relying on one-wayness of the underlying TDP. At a high level, in their proof (via a reduction),
the “TDP adversary” B randomly guesses which of the random oracle queries the “signature adversary” A will use to
produce a forgery with respect to the FDH scheme. B then embeds y into the response for this oracle query, and if the
guess is correct and A produces a valid forgery, then B will be able to find a preimage for y.

However, as observed by Zhandry [Zha12b], the approach above will not work in the QROM setting because each
of A’s random oracle queries might be a superposition of exponentially many inputs; this makes it hard for B to
meaningfully embed its challenge y into the oracle responses. Nevertheless, Zhandry [Zha12b] was able to overcome
this barrier by introducing a class of oracle distributions called Semi-Constant Distributions (Definition 2.5) which
allows for a specific random value to be embedded into a small but significant fraction of oracle inputs, while at the
same time, ensuring that it is in some sense hard for a quantum algorithm to distinguish between this semi-constant
oracle and a uniformly random oracle (Lemma 2.6). This allowed Zhandry to translate the above embedding-based
argument of Bellare and Rogaway to the quantum setting in order to show the EUF-CMA security of FDH signatures
in the plain QROM based on the one-wayness of the underlying TDP against quantum adversaries.

However, upon a closer inspection of Zhandry’s proof, note that nowhere in the reduction is the “TDP adversary” B
required to observe the “signature adversary” A’s quantum queries to the random oracle. In other words, by adapting
Zhandry’s proof in [Zha12b], the FDH signature scheme can be shown to be EUF-CMA secure in the weaker heuristic
model of NO QROM – while still relying on the (post-quantum) one-wayness of the underlying TDP – wherein B
would still have to (non-adaptively) program the random oracle by replacing it with a semi-constant oracle in the setup
phase (see Section 3).

Theorem 5.4. Let F = (Gen, f, f−1) be a (post-quantum) one-way TDP. Then the corresponding FDH signature
scheme SH = (Gen,SignH ,VerH) is post-quantum EUF-CMA secure when H is modeled in the NO QROM.
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The proof below mirrors the one given by Zhandry [Zha12b] for FDH signatures in the plain QROM. Here we
adapt his proof to fit within our NO QROM framework, as described in Section 3.

Proof Sketch. Towards a contradiction, assume there is a quantum PPT adversary A that breaks the FDH signature
scheme SH = (Gen,SignH ,VerH) with non-negligible probability ε. The proof proceeds by a sequence of hybrids.
Let G0 be the standard CMA game with respect to SH . Namely, the challenger generates the pair (pk, sk) ← Gen
and sends pk to A. The adversary A can make classical signature queries on messages mi to which the challenger
responds with SignH(sk,mi), and quantum hash queries to the oracle H . A wins if it produces a pair (m, σ) such that
m ̸= mi for all i and VerH(pk,m, σ) = acc. Also suppose A makes qH hash queries and qS signature queries.

Let 0 ≤ λ ≤ 1 be a parameter to be chosen later, and let M be the message space of SH . We now construct a
subset X ⊆ M as follows: for each m ∈ M, put m ∈ X with probability λ. Now let the game G1 be the same as
G0 except that we modify the winning conditions as follows: if A asks for a signature on message mi ∈ X or if A
attempts to forge the signature for a message m /∈ X , we abort G1 and A loses; other than this, the winning condition
in G0 applies to G1 as well. It is not hard to see that G1 does not abort with probability at least λ(1− λqS). Therefore,
A wins G1 with probability at least λ(1− λqS)ε ≥ λε− qSλ

2.
Let G2 be the same as G1 except that we reprogram the random oracle H (only) on inputs in X as follows: fix a

uniformly random value y in the co-domain of f and set H(x) := y for all x ∈ X . We can see that the modified H is
now an oracle with a λ-constant distribution (Definition 2.5). As argued by Zhandry in [Zha12b, Claim 1] (based on
Lemma 2.6) we have that the probability B wins in G2 is at least (λε− p(qH , qS)λ

2) for some polynomial p(·, ·).
After defining the games G0 −G2 with respect to adversary A, we now construct a quantum PPT adversary B that

breaks the underlying TDP F = (Gen, f, f−1) in the NO QROM as follows. B first samples a 2(qH + qS + 1)-wise
independent function O1(·) that maps M to the domain of f. Note that in the games G0 − G2, at most (qH + qS + 1)
queries are made to the quantum oracle H (qH quantum hash queries, qS classical queries via the signature queries
SignH(sk,mi) and one classical query for checking A’s forgery VerH(pk,m, σ)). From Lemma 2.2, we have that
O1(·) is perfectly indistinguishable from a uniformly random oracle mapping M to the domain of f in the view of
A. Similarly, B simulates an oracle O2 : M → {0, 1} such that for each m ∈ M, O2(m) = 1 with probability λ as
follows (taken from [Zha12b, Section 6]): B approximates λ by a rational number a/b, with b being a prime power,
and constructs a 2(qH + qS + 1)-wise independent function Ô2 with range {1, . . . , b}; it then constructs O2(·) as

O2(m) =

{
1 if Ô2(m) ≤ a

0 otherwise.

Finally, B on input (pk, y) – for which it is supposed to find a preimage with respect to F – proceeds in the “setup
phase” of the NO QROM by programming the quantum random oracle H as:

H(m) =

{
y if O2(m) = 1

f(pk, O1(m)) otherwise.

B also sends pk to A, playing the role of challenger in the game G2. In the “query phase”:

• When A makes a signature query on message mi, B computes O2(mi) and aborts if the result is 1. Otherwise,
B returns the response O1(mi).

• When A returns a forgery candidate (m, σ), B checks if O2(m) = 1 and f(pk, σ) = y. If satisfied, B returns the
preimage σ. Otherwise, it aborts.

B perfectly simulating the game G2 towards A, while at the same time, implementing a valid reduction in the NO
QROM; note that B never has to observe the quantum hash queries made by A to oracle H , and the above two steps
in the query phase can be seen as part of the “Interaction” in Figure 1. Hence, by applying a similar analysis as that
in [Zha12b, Theorem 5.1], we have B’s advantage in breaking the underlying TDP F to be at least the non-negligible
quantity ε2

4p(qH ,qS) , when we set λ = ε
2p(qH ,qS) . This shows that SH is indeed quantum EUF-CMA secure in the NO

QROM, given that F is a (post-quantum) one-way TDP.
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6 Hinting PRGs in the NO QROM
In this section, we describe a simple and efficient construction of a cryptographic primitive in the NO QROM called
hinting PRG [KW19]. This primitive is useful towards constructing CCA-secure encryption systems as will be detailed
below. A hinting PRG is essentially a PRG with a stronger security property. It takes an n bit input s ∈ {0, 1}n and
outputs (n + 1) · ℓ bits y0, y1, . . . , yn (where each yi is an ℓ-bit string) such that the following two distributions
(r0, (ri,0, ri,1)i∈[n]) are computationally indistinguishable: in the first distribution, r0 = y0, ri,si = yi and ri,1−si is
chosen uniformly from {0, 1}ℓ (where si is the i-th bit of s) for i ∈ [n]. In the second distribution, r0, ri,0 and ri,1 are
all chosen uniformly at random from {0, 1}ℓ for i ∈ [n]. Note that in the first distribution, the relative “placement” of
pseudorandom values yi (for i ∈ [n]) in the tuple (ri,0, ri,1) depends on the i-th bit of seed s; hence in some sense, the
values (ri,0, ri,1)i∈[n] give away a “hint” about the seed. More formally, hinting PRGs are defined as follows:

Definition 6.1 (Hinting PRGs). A hinting PRG is a deterministic polynomial-time algorithm G with parameters n,
ℓ, such that G takes as input 1κ, an n bit string s, and outputs an (n + 1) · ℓ bit string y. Moreover, it satisfies the
following property for any ppt adversary A:

|Pr[A((y00 , (y0i,0, y0i,1)i∈[n])) = 1]− Pr[A((y10 , (y1i,0, y1i,1)i∈[n])) = 1]| ≤ negl.

where s = (s1, . . . , sn), y10 , (y1i,0, y
1
i,1)i∈[n] and (y0i,1−si)i∈[n] are uniformly distributed whereas (y00 , (y

0
1,s1 , y

0
n,sn)i∈[n])

is the output of G(1κ, s) and s = (s1, . . . , sn)← {0, 1}n.

Let G : {0, 1}n → {0, 1}(n+1)·ℓ be a hash function, or alternatively, an extendable output function. Our main
observation is that by modeling G as a random oracle in the NO QROM, we get the above hinting property from G
“for free.” It’s worth noting that recently, the work of [AP22] realized hinting PRGs using a random oracle albeit in a
the classical setting.

Theorem 6.2. The function G : {0, 1}n → {0, 1}(n+1)·ℓ is a hinting PRG in the NO QROM.

Proof. Consider any PPT adversary A that has quantum access to the random oracle G in the setup phase (Section 3)
and gets as input y0 = (y00 , (y

0
i,0, y

0
i,1)i∈[n]) where for a uniformly random seed s = (s1, . . . , sn) ← {0, 1}n, we

have G(s) = (y00 , y
0
1,s1 , . . . , y

0
n,sn) and y0i,1−si ← {0, 1}

ℓ ∀i ∈ [n]. Now we replace G with another random oracle
H : {0, 1}n → {0, 1}(n+1)·ℓ in the setup phase such that ∀x ∈ {0, 1}n \ {s}, H(x) = G(x) and H(s) = ŷ for a
uniformly random and independent ŷ ← {0, 1}(n+1)·ℓ.

In the context of applying Lemma 2.7, it’s not hard to see that we have Pr[AH(y0) = 1] = Pr[AG(y1) = 1], where
y1 = (y10 , (y

1
i,0, y

1
i,1)i∈[n]) with the uniformly random values y10 ← {0, 1}ℓ and y1i,b ← {0, 1}ℓ ∀i ∈ [n], b ∈ {0, 1};

because in both cases, A’s inputs y0, y1 have the same (uniformly random) distribution and are independent with
respect to the oracle outputs H(s), G(s) respectively. Hence if A makes at most q quantum oracle queries, then from
Lemma 2.7 we have

|Pr[AH(y0) = 1]− Pr[AG(y0) = 1]|

= |Pr[AG(y1) = 1]− Pr[AG(y0) = 1]| ≤ 4

√
q(q + 1)

2n
= negl.

CCA-secure Encryption in the NO QROM. Hinting PRGs allow constructing CCA-secure PKE schemes, and
more advanced primitives such as CCA-secure attribute-based encryption (ABE) or CCA-secure one-sided predicate
encryption schemes, from their CPA-secure counterparts in a black-box manner [KW19].

Hence, by replacing the hinting PRG in the constructions of [KW19] with a standard hash function/extendable
output function – later modeled as a random oracle – we obtain the above CCA-secure encryption systems in the
NO QROM; we can follow the proof strategies used in [KW19] with respect to their black-box constructions, in
conjunction with Lemma 6.2 above, to prove CCA security of corresponding constructions in the NO QROM in a
relatively straightforward fashion. We leave it as an open question to obtain more efficient constructions of the above
CCA-secure primitives in the NO QROM.
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