
Leaking Secrets in Homomorphic Encryption with
Side-Channel Attacks

Furkan Aydin and Aydin Aysu

Department of Electrical and Computer Engineering, North Carolina State University,
Raleigh, NC, USA.

Contributing authors: faydn@ncsu.edu; aaysu@ncsu.edu;

Abstract

Homomorphic encryption (HE) allows computing encrypted data in the ciphertext domain without
knowing the encryption key. It is possible, however, to break fully homomorphic encryption (FHE)
algorithms by using side channels. This article demonstrates side-channel leakages of the Microsoft
SEAL HE library. The proposed attack can steal encryption keys during the key generation phase by
abusing the leakage of ternary value assignments that occurs during the number theoretic transform
(NTT) algorithm. We propose two attacks, one for -O0 flag non-optimized code implementation which
targets addition and subtraction operations, and one for -O3flag compiler optimization which targets
guard and mul root operations. In particular, the attacks can steal the secret key coefficients from a single
power/electromagnetic measurement trace of SEAL’s NTT implementation. To achieve high accuracy
with a single-trace, we develop novel machine-learning side-channel profilers. On an ARM Cortex-M4F
processor, our attacks are able to extract secret key coefficients with an accuracy of 98.3% when compiler
optimization is disabled, and 98.6% when compiler optimization is enabled. We finally demonstrate
that our attack can evade an application of the random delay insertion defense.

Keywords: Homomorphic Encryption, SEAL, Number Theoretic Transform, Compiler Optimizations,
Side-Channel Attacks, Machine Learning

1 Introduction
Fully homomorphic encryption (FHE) allows
arbitrary computations on encrypted messages
without the need for decryption [15]. FHE is
useful, e.g., for cloud computing where the
untrusted cloud can compute on encrypted data
and the user, who holds the secret key, can
decrypt the returned result. Therefore, HE pre-
serves the privacy and confidentiality of data
while allowing computations in untrusted envi-
ronments. Although FHE is an evolving approach

with mathematically provable security guaran-
tees, their physical implementations can have
vulnerabilities. For example, the first success-
ful physical side-channel attack on FHE [3]
has recently been demonstrated, revealing the
encrypted message by exploiting the side-channel
leakage of Gaussian sampling operations.

In this work, we reveal new side-channel vul-
nerabilities of Microsoft SEAL—an FHE software
library [30]. SEAL is a high-profile target that
has recently gained significant recognition in the
literature and has been used in many applica-
tions [4, 12, 22]. Our attack focuses on the number

1



theoretic transform (NTT) function of SEAL exe-
cuted during the key generation. We first show
that the NTT processes ternary values (-1, 0, or
+1) that correspond to the secret key coefficients.
Then, we build a side-channel attack that can
extract this information from NTT operations.
The challenge in attacking this stage is being lim-
ited to a single-trace measurement. We address
this challenge by developing a multi-stage neu-
ral network based side-channel classifier. Finally,
we implement a defense based on random delay
insertion for the NTT and assess its effectiveness
against our single-trace attacks.

In this work, we also analyze the effect of
compiler optimizations on the side-channel leak-
age of SEAL’s NTT. In the ARM compiler, there
are different optimization levels for the target
ARM-M4F processor: -O0, -O1, -O2, and -O3. Our
first attack focuses on addition and subtraction
operations of the SEAL’s NTT code with complied
-O0, which corresponds to no optimization at all.
This setting is commonly used when attempting
a constant-time implementation in order to avoid
the compiler optimizing the loops and ruining
the developer’s work [8]. In terms of perfor-
mance, settings from -O1 to -O3 indicate varying
degrees of optimization. The setting -O3 pro-
vides the highest level of optimization. Therefore,
we also analyze SEAL’s NTT implementation
with -O3 optimization level in this work. How-
ever, our previously shown side-channel leakages
do not exist with -O3 flag compiler optimiza-
tion. Despite compiler optimizations eliminating
previous side-channel leakages, we demonstrate
new side-channels that occur during guard and
mul root operations in SEAL’s NTT implementa-
tion.

Our work is different from earlier single-trace
side-channel attacks on the NTT [12, 20, 25, 27].
The timing leakage analysis by Drucker et al.
achieves a low success rate of 9% [12] because the
attack only focuses on branch executions of but-
terfly in NTT. This attack is inapplicable to SEAL
because its butterfly unit is constant-time. Kim et
al. propose an ML-based side-channel attack on
NTT [20]. The attack exploits Montgomery reduc-
tion operation that does not exist in SEAL’s NTT.
Primas et al. abuse timing side-channel leakage
from DIV instruction used to perform modular
reduction—this vulnerability is also absent in

SEAL [27]. Pessl et al. improve the attack of Primas
et al. [25]. This attack may target constant-time
NTT implementations as in SEAL but scale inef-
ficiently for large polynomials used in FHE. Our
proposed attack is simpler and more efficient
compared to this attack because it specifically
targets ternary value assignments.

The proposed attacks in this work are also
different from the earlier single-trace analysis of
FHE [3] because the earlier attack focuses on
Gaussian sampling operations that are replaced
in SEAL v3.6. By contrast, our target is another
operation and it is shown on the latest version
of SEAL to date (v4.1). Moreover, our single-trace
attack is fundamentally different from multi-
trace attacks, which can target FHE’s decryption
operations. We do not address such attacks on
decryption in this study since they are rela-
tively straightforward extensions of the recent
multi-trace analysis of lattice-based cryptography
[29, 31]. Single-trace attacks are known to break
defenses such as masking that are built for such
multi-trace attacks [27].

An earlier version of this article has been pub-
lished in the proceedings of the 2022 Workshop on
Attacks and Solutions in Hardware Security [1].
The major contributions of the conference edition
were:

• We reveal a new single-trace side-channel leak-
age of SEAL. We show the processing in NTT
function leaks information about the ternary
values that can lead to recovering the secret
keys in FHE. This vulnerability exists in the
latest version (v4.1) of SEAL as of date.

• To effectively extract the side-channel infor-
mation from a single-trace measurement, we
propose a two-stage neural network based
side-channel profiler. We use two distinct ML
classifiers and ensemble results by multiply-
ing guessing scores to improve the guessing
success.

• We perform the proposed attack on the
ARM Cortex-M4F running SEAL software. The
results show that our proposed attack extracts
each secret key coefficient with 98.3% accuracy.

• We evaluate random delay insertion counter-
measure. We show that random delay insertion
defense is susceptible to attacks.

2



Fig. 1: Homomorphic encryption functions at the edge device and the cloud. The public key (pk) encrypts
the message (m) to generate the ciphertext (c) and the secret key (sk) decrypts the received homomor-
phically evaluated ciphertext (c’) – both operations execute on the edge device while homomorphic
evaluations execute in the cloud. Our attack executes on the edge devices with obtained physical mea-
surements when the keys are getting generated.

This journal article enhances our prior work
in several aspects as outlined below:

• We demonstrate a novel side-channel leakage
of SEAL when compiler optimization -O3 flag
is enabled. The guard and mul root operations
(at lines 3 and 10 in Fig. 8) read data from mem-
ory via load (ldrd) instructions, which can leak
secret information in NTT function. As of date,
this vulnerability exists in the latest version
(v4.1) of SEAL.

• We evaluate the proposed attack on the
ARM Cortex-M4F running SEAL software.
We compile the implementation using
gcc-arm-none-eabi with optimization flag
-O3. Based on the results, our proposed attack
is more effective in extracting each secret key
coefficient than our previous attack. We can
reveal each secret key coefficient with 98.6%
accuracy.

The remainder of the paper is organized as fol-
lows. Section 2 provides background information
about FHE, NTT, and our threat model. Section
3 then introduces the proposed ML-based side-
channel attack with compiler optimization level
-O0. Section 4 presents the proposed ML-based
side-channel attack with compiler optimization
level -O3. Section 5 evaluates attack results and
countermeasures. Subsequently, Section 6 dis-
cusses drawbacks of our attack. Finally, Section 7
concludes the work.

2 Preliminaries
This section provides background information
about FHE, NTT, ML-based side-channel attacks
and threat model.

2.1 Fully Homomorphic Encryption
(FHE)

FHE schemes are characterized by four primary
functions: key generation, encryption, evaluation,
and decryption. Fig.1 illustrates an example struc-
ture of HE. The key generation generates secret
and public keys.

The encryption uses the public key to
encrypt user’s message. The evaluation takes the
encrypted message and uses the public evalu-
ation key to perform homomorphic operations
over the encrypted message. The encrypted mes-
sages can be processed by others who do not
know the secret key. Decryption takes the secret
key and evaluation output to recover the resulting
plaintext value.

There are various software and hardware
implementations of FHE such as SEAL [30],
SEAL-Embedded [24], HElib [16], HEAAN [7],
and PALISADE [26]. We specifically focus
on SEAL which is compatible with SEAL-
Embedded—the first FHE library targeted for
embedded devices. While SEAL can support

3



BFV [13] and CKKS [7] schemes of FHE, SEAL-
Embedded only supports the CKKS scheme. In
this work, our target scheme is CKKS since it is
supported by both SEAL and SEAL-Embedded
libraries.

CKKS scheme of FHE is constructed based on
the Ring Learning with Errors (RLWE) problem
[7]. An RLWE sample b = as+e is built by sam-
pling a from Rq (which is the residue ring of R
modulo q), noise e sampling over R, and secret
key s is chosen from a key distribution over R.
In SEAL’s CKKS scheme, R3 is used as secret key
distribution. In other words, the secret key is pro-
duced from a ternary distribution sampling over
{−1, 0, 1}n where modulus n is to be the power of
two. This generated secret key is then converted
to the NTT domain before performing decryption
operations.

SEAL and SEAL-Embedded have several
parameter settings [24, 30]. In this paper, we have
targeted 128-bit security level and n = 4096 which
is the default setting of SEAL-Embedded.

2.2 Number Theoretic Transform
(NTT)

NTT is basically a form of Fast Fourier Trans-
form (FFT) over finite field. It is used to improve
the performance of polynomial multiplication. Its
representation is denoted as x̂ = NTT(x) ∈ Zn

q
where x = (x0,...,xn-1) ∈ Rq denotes vectors of poly-
nomials over Rq. Its formulation is x̂i =

∑n−1
j=0 x

ωi j where ω is fixed n’s primitive root of unity.
The powers of ω are called twiddle factors. In
our target library configuration, modulus degree
n is 4096. SEAL has 4 prime modulus using n =
4096 for key generation. Prime modulus (q) is 109
(30 + 30 + 30 + 19) bits and its coefficient values
are 0x3ED00001, 0x3ED30001, 0x3ED60001, and
0x66001.

Although secret key coefficients can be equal
to -1, 0, or 1, these values are converted to {0,
1, q-1} form before NTT operations. SEAL uses
primes at most 30-bits; therefore, NTT inputs can
be equal to 0, 1, or 0x3ED00000.

Fig.2 illustrates the first few stages of NTT.
NTT consists of log2 n stages. In each stage,
there are butterfly operations that consist of mod-
ular multiplication, addition, and subtraction.
SEAL uses the Harvey butterfly structure instead

Fig. 2: The first few stages of the NTT. Each stage
of NTT consists of multiple butterfly operations.
Twiddle factorsω are constant in each stage. NTT
inputs of SEAL CKKS scheme can be 0, 1, or q-1.

of Cooley-Tukey (CT) [9] and Gentleman-Sande
(GS) [14]. NTT has x and y input coefficients.
The x coefficients go to guard function in SEAL
which performs a reduction before addition and
subtraction operations of each butterfly. The y
coefficients go to mul root function which mul-
tiplies y coefficients with twiddle factors before
addition and subtraction operations of each
butterfly.

2.3 Threat Model

This work presents an attack on the NTT opera-
tion of SEAL CKKS scheme’s key generation to
extract secret key coefficients which are invoked
by NTT. Fig.1 illustrates that there are edge
devices that compute encryption and decryption
and a cloud server that computes homomorphic
evaluation. Our threat model assumes the adver-
sary has access to the edge device. Therefore,
the adversary can capture multiple power traces
for building a “profile” of the leakage. We also
assume that the adversary knows the executed
SEAL code’s version and its parameters. There-
fore, the adversary can build ML models offline
by configuring the device with different keys.
During the attack, however, the adversary tries
to extract the secret key using only a single-trace
that is captured from the victim’s device. Since
the key generation will occur only once for each
session, the adversary is limited to a single power
measurement.

4



1 void transform_to_rev
2 (ValueType *values, int log_n,
3 const RootType *roots,
4 const ScalarType *scalar = nullptr) const{
5 size_t n = size_t(1) << log_n;

6 RootType r;

7 ValueType u, v;

8 ValueType *x = nullptr;

9 ValueType *y = nullptr;

10 std::size_t gap = n >> 1;

11 std::size_t m = 1;

12 ...

13 for (std::size_t i = 0; i < m; i++){
14 r = *++roots;

15 x = values + offset;

16 y = x + gap;

17 for (std::size_t j = 0; j < gap; j+=4){
18 u = arithmetic_.guard(*x);

19 v = arithmetic_.mul_root(*y, r);

20 *x++ = arithmetic_.add(u,v);

21 *y++ = arithmetic_.sub(u,v);

22 ...

23 }

24 offset += gap << 1;

25 }

26 ...

27 }

Fig. 3: SEAL’s NTT implementation. The high-
lighted code lines show the lines we target.

3 Proposed Attack with Compiler
Optimization Level -O0

This subsection presents the proposed attack and
related challenges for compiler optimization dis-
abled settings. We discuss target operations and
demonstrate vulnerabilities within the imple-
mentation of the target operations.

3.1 Target Operations and
Vulnerabilities

Our proposed attack focuses on the NTT which
takes SEAL’s secret key as input and converts
them to the NTT domain during the key genera-
tion of FHE. Fig.3 shows the related code scripts
of SEAL’s NTT implementation. x and y pointers
correspond to secret key coefficients and r value
corresponds to the twiddle factors. The inner loop
performs the butterfly operations of NTT. In each
iteration of the inner loop, 4 butterfly operations
are executed. The gap value is initially equal to
2048 for SEAL’s NTT with n = 4096. Therefore,
there are 2048 butterfly operations in each stage
of NTT.

The first arithmetic operation of NTT is mod-
ular reduction operation—guardwhich is shown
in line 18 of Fig.3. x input coefficients first go
through the guard function in line 18 of Fig.3.
It contains a simple conditional statement that
checks whether x input is greater than two times
modulus (2q) or not. If the x coefficient is greater
than 2q, it performs a reduction. However, NTT
inputs are always in {0, 1, q - 1} < 2q in the
first stage of NTT. Therefore, this guard opera-
tion does not change the input values. After the
guard operation, y coefficient and twiddle fac-
tor (r) go through mul root function in line 19 of
Fig.3. The twiddle factors are public values and
pre-calculated before the NTT operations. Also,
they are smaller numbers in the first few stages
of the NTT. Since the twiddle factor is updated
outside of the inner loop, it is constant in the
inner loop. After the multiplication of the twid-
dle factor and y coefficient, the outputs (u and
v) of guard and mul root operations go through
addition and subtraction operations in line 20
and 21 of the Fig.3, respectively.

Our proposed attack targets addition and
subtraction operations which are highlighted in
red color in the Fig.3. Since NTT’s input coeffi-
cients can be 0, 1, or q-1, there are only 9 possible
input pairs (i.e., cases). For both addition and
subtraction operations, their inputs (u and v)
in lines 18 and 19 of the Fig.3 depend on NTT’s
inputs (x and y). Hence, there are 9 distinct inputs
for both addition and subtraction operations.

3.2 Determining Point of Interest
(POI) Regions

A major challenge in performing our proposed
attack is finding the points of interest (POI) region
of addition and subtraction operations of each
butterfly of NTT. To identify POI regions, we use
ML and pre-processing techniques.

Our attack first divides traces into small sam-
pling windows. Each window contains a fixed
portion of trace samples and they are labeled as
0 or 1 depending on whether it includes sam-
ple points corresponding to the power samples
of addition and subtraction operations or not.
Power samples in each window and their corre-
sponding labels are fed to the ML for the training.
During the test, power samples in each win-
dow are fed to our ML classifier in their natural

5



Fig. 4: (a) An example of averaged power trace
corresponds to an addition operation in the but-
terfly operation, (b) principal component analysis
(PCA) scores for power traces with the samples
from 200 to 350 correspond to addition oper-
ations, (c) PCA scores for power traces with
samples from 200 to 350 corresponds to subtrac-
tion operations.

sequence to identify POI regions correspond-
ing to sequential arithmetic operations of NTT.
Then, Pearson correlation coefficient [5] is used to
validate POI regions.

The number of power samples in each win-
dow affects ML results. When the window size is
smaller than the power samples corresponding to
the target arithmetic operations, at least one cor-
rect guess for the guess of target trace samples can
be determined. Therefore, we select the window
size as 1000 for both addition and subtraction
operations.

3.3 Exploiting Side-Channel Leakages
The power consumption of the processed data
depends on the inputs and operations. To per-
form a side-channel attack, the adversary needs
to model the power consumption of the device.
The most well-known power models are Ham-
ming weight, Hamming distance, and identity.
According to the used model type, labels of power
consumption data can be different. Since there are
only 9 possible input pairs of the NTT, we used
the identity model and labeled data from 1 to 9.

Fig.4-(a) shows an example of averaged power
traces for all 9 input cases of the addition oper-
ation. The red dashed rectangle—power samples
from 200 to 350 in the Fig.4-(a) indicates the high-
est leakage points—in other words, the power

Fig. 5: ML pipeline. Two distinct ML classifiers
take the power measurements corresponding to
the addition and subtraction operations in the
NTT. The estimated results are then ensembled to
predict the NTT’s secret key coefficients.

Table 1: An Example of Guessing Scores
case score for addition score for subtraction ensembled result

1 1.3448e−09 1.1463e−06 1.5415e−15

2 0.5236 0.1470 0.0769
3 4.1054e−04 8.3409e−04 3.4242e−07

4 5.1324e−09 4.3093e−07 2.2117e−15

5 0.4755 0.8339 0.3965
6 2.9400e−05 0.0066 1.9546e−07

7 5.7768e−08 3.6251e−06 2.0942e−13

8 4.9694e−04 0.0109 5.4059e−06

9 7.1847e−06 7.7821e−04 5.5912e−09

Correct pair: 5

consumption difference for different cases in this
region is highest. We use PCA [18] to see the
variation of 9 different input pairs. Fig.4-(b) and
(c) show the principal component analysis (PCA)
scores for power traces with samples from 200 to
350 corresponding to addition and subtraction
operations, respectively. Different colors indicate
that data for each pair are grouped in a specific
region which means it is not impossible to identify
all input pairs statistically.

Our ML-based attack takes the whole power
consumption trace corresponding to the target
addition and subtraction operations rather
than a specific portion of trace, automatically ana-
lyzes all samples of traces, and distinguishes the
power traces for all 9 cases.

3.4 Ensembled ML-based
Side-Channel Attack

Our proposed attack uses two distinct ML classi-
fiers to estimate input pairs of NTT separately for
the addition and subtraction operations. Fig.5
shows our ML pipeline. Each ML classifier takes
power traces corresponding to addition and

6



subtraction operations and generates guessing
scores. Table 1 shows an example of guessing
scores. There are 9 possible guess scores for
both addition and subtraction operations. The
sum of the scores is 1 for both addition and
subtraction operations. The correct pair is 5 in
this example. The highlighted line shows that ML
classifiers for addition operations guess case-
2 with 0.5236 accuracy and ML classifiers for
subtraction operations guess case-5 with 0.8339
accuracy. To decide which guessing is correct, our
proposed attack ensembles the results by multi-
plying both guessing scores in each row in Table
1. The highest guessing score in the ensembled
result column shows the correct guess which is
case-5 in Table 1. Section 5.2 will further provide
the hyperparameters of our attack and the attack
results.

4 Proposed Attack with Compiler
Optimization Level -O3

This section presents why previous side-channel
leakages do not exist when compiler optimization
with -O3 flag is enabled. We demonstrate a new
side-channel leakage that exists even when com-
piler optimization is enabled. We also present our
ML-based side-channel attack.

4.1 Why Previous Side-Channel
Leakages Do Not Exist

Compiler optimization (-O3 flag) improves the
performance of the code. It performs several opti-
mizations such as common subexpression elim-
ination, loop invariant motion, constant folding,
tailcall optimization and tail recursion, condi-
tional execution or branch elimination, function
inlining, loop restructuring, instruction schedul-
ing, etc1. Fig.6 shows the assembly code for
addition and subtraction functions in SEAL’s
NTT when compiler optimization is disabled.
Lines 10-13 and 28-31 of Figure 5 show that ldr
and ldrd instructions load inputs from memory
into registers for addition and subtraction. ldr
and ldrd instructions load inputs of the addition
and subtraction functions from memory to reg-
isters. However, when compiler optimization is

1https://developer.arm.com/documentation/102654/0100/Overview-
of-optimizations

1 ...

2 {

3 _Z14arithmetic_addRyS_:

4 push {r4, r5, r7}

5 sub sp, #12

6 add r7, sp, #0

7 str r0, [r7, #4]

8 str r1, [r7, #0]

9 return a + b;

10 ldr r3, [r7, #4]

11 ldrd r0, r1, [r3]

12 ldr r3, [r7, #0]

13 ldrd r2, r3, [r3]

14 adds r4, r0, r2

15 adc.w r5, r1, r3

16 mov r2, r4

17 mov r3, r5

18 }

19 ...

20 {

21 _Z14arithmetic_subRyS_:

22 stmdb sp!, {r4, r5, r7, r8, r9}

23 sub sp, #12

24 add r7, sp, #0

25 str r0, [r7, #4]

26 str r1, [r7, #0]

27 return a+two_times_modulus_ -b;

28 ldr r1, [r7, #4]

29 ldrd r4, r5, [r1]

30 ldr r1, [pc, #44]

31 ldrd r0, r1, [r1]

32 adds r2, r4, r0

33 adc.w r3, r5, r1

34 ldr r1, [r7, #0]

35 ldrd r0, r1, [r1]

36 subs.w r8, r2, r0

37 sbc.w r9, r3, r1

38 mov r2, r8

39 mov r3, r9

40 }

41 ...

Fig. 6: Assembly code for addition and subtrac-
tion operations in SEAL’s NTT implementation
when compiler optimization is disabled.

enabled, function inlining happens. Also, since
the inputs of addition and subtraction func-
tions are already calculated during guard and
mul root operations and result values are stored
to registers, ldr and ldrd instructions do not
exist. In this regard, compiler optimization elim-
inates side-channel leaks caused by loading data
from memory to registers.

4.2 Target Operations and
Vulnerabilities

When compiler optimization is enabled, vulner-
abilities of addition and subtraction functions
in line 20-21 of Fig.3 does not exist. Therefore,

7



1 #define SEAL_COND_SELECT(cond,if_true,

2 if_false) (cond ? if_true:if_false)

3 ...

4 uint64_t guard(const uint64_t &a) const {

5 return SEAL_COND_SELECT(a>=two_times_modulus_ ,

6 a-two_times_modulus_ , a);

7 }

8 ...

9 uint64_t mul_root(const uint64_t &a,

10 const MultiplyUIntModOperand &r) const {

11 return multiply_uint_mod_lazy(a, r, modulus_);

12 }

13 ...

14 uint64_t multiply_uint_mod_lazy(uint64_t x,

15 MultiplyUIntModOperand y,

16 const Modulus &modulus) {

17 unsigned long long tmp1;

18 const uint64_t p = modulus.value();

19 multiply_uint64_hw64(x, y.quotient, &tmp1);

20 return y.operand * x - tmp1 * p;

21 }

22 ...

Fig. 7: The guard and mul root functions in
SEAL’s NTT implementation. Highlighted code
shows secret key coefficients that go to functions
as parameters.

1 ...

2 return SEAL_COND_SELECT(...)

3 ldrd r5, r6, [r3, #-32]

4 cmp r5, r8

5 sbcs.w r1, r6, r9

6 bcc.n 0x8000372 ;jump to line 10

7 subs.w r5, r5, r8

8 sbc.w r6, r6, r9

9 return multiply_uint_mod_lazy(...)

10 ldrd r4, r1, [r2, #-32]

11 ...

Fig. 8: Assembly code for guard and mul root
operations in SEAL’s NTT implementation when
compiler optimization (-O3) is enabled. High-
lighted code shows the instruction that causes
side-channel leakage.

we analyzed the whole code and found new
vulnerabilities in NTT’s implementation. New
vulnerabilities happen due toguard andmul root
functions in lines 18-19 of Fig.3. The guard and
mul root functions take secret key coefficients of
SEAL’s NTT as inputs. The highlighted lines of
Fig.7 and the corresponding compiler-generated
assembly code with -O3 of Fig.8 show target
inputs and instructions that cause side-channel
leakage. The ldrd instructions read data from
memory and load data to registers. Due to the

Fig. 9: (a) An example of averaged power trace
corresponds to a mul root operation, (b) PCA
scores for power traces with the samples that cor-
respond to ldrd instruction in guard operations,
(c) PCA scores for power traces with samples that
correspond to ldrd instruction in mul root oper-
ations.

fact that data in memory are secret coefficients
of SEAL’s NTT, the execution of these ldrd
instructions results in side-channel leakage.

Before performing side-channel attacks, we
need to find the target POI regions of the power
traces as in our earlier attack. Therefore, we fol-
low the same method explained in Section 3.2.
Then, we perform PCA to observe variation of
data for each input. Fig.9-(a) shows an example
of averaged power traces for all 3 secret inputs
of the mul root operation. The red-dashed rect-
angle indicates power samples that correspond
to target ldrd instruction. Fig.9-(b) and (c) show
PCA scores for data that correspond to guard and
mul root operations, respectively. There is not an
insurmountable problem in identifying all secret
input coefficients statistically due to the differ-
ent colors that indicate that the data for each
coefficient are grouped in a specific area.

4.3 ML-based Side-Channel Attacks
We perform two different attacks to extract x and
y input coefficients of SEAL’s NTT. Our ML clas-
sifiers take power traces corresponding to guard
and mul root operations, respectively. Since each
input coefficient can be 0, 1, or q - 1, there are
only 3 possible guesses for each classifier. Since
ML classifiers guess directly x and y secret input
coefficients in SEAL’s NTT instead of input pairs,

8



Table 2: Network Model Structure and Parame-
ters for Addition and SubtractionOperations in
NTT’s Butterfly

Model for addition Model for subtraction
Layer Type Output Shape Params. # Output Shape Params. #

Input (None, 2625, 1) 0 (None, 3230, 1) 0
Conv.1D-1 (None, 1314, 64) 320 (None, 1614, 64) 320

MaxPool.1D-1 (None, 657, 64) 0 (None, 807, 64) 0
Conv.1D-2 (None, 654, 128) 32896 (None, 804, 128) 32896

MaxPool.1D-2 (None, 327, 128) 0 (None, 402, 128) 0
Conv.1D-3 (None, 162, 128) 65664 (None, 399, 128) 65664

MaxPool.1D-3 (None, 162, 128) 0 (None, 199, 128) 0
BatchNorm. (None, 162, 128) 512 (None, 199, 128) 512

Flatten (None, 20736) 0 (None, 25472) 0
Dropout (None, 20736) 0 (None, 25472) 0

Dense (None, 512) 10617344 (None, 512) 13042176
Output (None, 9) 4617 (None, 9) 4617

Total parameters for addition: 10,721,353
Total parameters for subtraction: 13,146,185

there is no need for an ensembled ML-based side-
channel attack as in the previous case. We have
two different ML models for guard and mul root
operations, respectively. Section 5.3 will further
provide the hyperparameters of our attack and
the attack results.

5 Experimental Results

This section describes the measurement setup
for our experiments and evaluates the proposed
attacks with and without compiler enabled set-
tings and a well-known countermeasure for NTT.

5.1 Evaluation Setup

Our evaluation setup uses a development
board which contains a 32-bit ARM Cortex-M4F
STM32F417IG microcontroller operating at 12
MHz. Due to our proposed attack focusing on
the NTT, we only compile the SEAL’s NTT code
rather than the SEAL’s entire code. We com-
pile the code using gcc-arm-none-eabi compiler
with -O0 and -O3flags. The total memory require-
ment of the implemented NTT codes is around
75KB RAM and 315KB flash data storage. Since
our device supports up to 196KB RAM and
1024KB flash memory, we do not use any exter-
nal storage. We collect power measurements with
a LeCroy WaveRunner 8104 model oscilloscope

(with a 1 GS/s sampling rate) using a Riscure
current probe 2.

Our ML setup is a workstation with 64 GB
of random access memory (RAM), an NVIDIA
1080Ti graphics card, and an Intel i7 9700K proces-
sor. We use tensorFlow-gpu 2.8.0 as the backend,
with a keras-gpu 2.8.0 front end to train and
evaluate ML models.

5.2 Evaluation Results with Compiler
Optimization Level -O0

To evaluate our proposed ML-based side-channel
attack, we collect a total of 90000 power traces.
We use 63000, 13500, and 13500 power traces for
training, validation, and testing, respectively.

As ML model, we used a convolutional neu-
ral network (CNN) architecture which is similar
to the work in [19, 21]. Table 2 shows the details
of network structures and parameters. There are
3 convolutional and 3 max-pooling layers in
total, sequentially as a max-pooling layer after
each convolutional layer. After third convolu-
tional and max-pooling layer, there is a batch
normalization layer to prevent overfitting on
the training. Also, there is a dropout layer that
drops connections between neurons with a prob-
ability of 0.5 following the batch normalization.
The model uses a flatten layer to convert data
into a fully layer. There are 2 fully connected
layers, including the output layer which has 9
neurons. Output layer uses Softmax activation
function [6] whereas the remaining layers use
RELU activation functions [23].

In our proposed attack, feeding the power
samples to ML classifiers in the correct order is
crucial. If ML classifiers are fed with random
train and test data sets, the guessing scores of ML
classifiers can correspond to different input pairs
of NTT. To solve this issue, we first randomize
power traces corresponding to bothaddition and
subtraction operations at the same time. Then,
we split traces for training and testing. Finally,
ML classifiers are fed the power traces sequen-
tially. In this way, each guessing score for both
addition and subtraction operations matches
with their corresponding input pair.

2https://www.riscure.com/product/current-probe

9



Fig. 10: (a) Training and (b) validation accuracy
vs number of epochs for ML models of addition
and subtraction operations, respectively.

Fig. 11: Confusion matrix of ensembled ML-based
side-channel attack with 25 epochs.

Fig.10(a) and (b) show the results of the
classification of the models trained with the
power traces corresponding to addition and
subtraction operations. When the number of
epochs increases, training accuracy converges
slowly and reaches around 93% and 95% for ML
models of addition and subtraction operations,
respectively.

Fig.11 shows the confusion matrix of our pro-
posed ensembled ML-based side-channel attack
with 25 epochs and 63000, 13500, and 13500
power traces, respectively, for training, valida-
tion, and testing. When we individually perform
ML-based side-channel attacks for addition and
subtraction operations, the correct guess ratios
are 92% and 94%, respectively. With our ensem-
bled ML-based side-channel attack, the total
correct guess ratio increases to 98.3%.

5.3 Evaluation Results with Compiler
Optimization Level -03

Since we have only three possible guesses (three
labels), we use a total of 30000 power traces to

Fig. 12: (a) Training and (b) validation accuracy
vs number of epochs for ML models of guard and
mul root operations, respectively.

Fig. 13: Confusion matrix of ML-based side-
channel attack with 25 epochs for a) guard and b)
mul root operations.

evaluate our proposed ML-based side-channel
attack on guard and mul root operations, respec-
tively. We use 21000, 4500, and 4500 power traces
for training, validation, and testing, respectively.

Our ML models are based on the CNN archi-
tecture, as presented in Section 5.2. The network
structure is similar to the network structure that
is shown in Table 2. The main difference is that
the output layer contains only three nodes in
our new attack network because ML classifiers
predict directly secret input coefficients of NTT
which can be 0, 1, or q - 1.

Fig.12(a) and (b) show the results of the
classification of the models trained with the
power traces corresponding to addition and
subtraction operations. When the number of
epochs increases, training accuracy converges
and reaches 100% for both ML models of guard
and mul root operations.

Fig.13(a) and (b) show the confusion matrix of
our ML-based side-channel attack with 25 epochs
for guard and mul root operations, respectively.
When we individually perform ML-based side-
channel attacks for guard and mul root opera-
tions, the correct guess ratios are 98.8% and 99.8%,
respectively. Since we target directlyx andy secret
input coefficients in SEAL’s NTT, there is no need
for an ensembled ML-based side-channel attack.

10



1 for(std::size_t j = 0; j < gap; j+=4) {
2 delay_function();

3 u = arithmetic_guard(*x);

4 delay_function();

5 v = arithmetic.mul_root(*y, r);

6 delay_function();

7 *x++ = arithmetic_.add(u, v);

8 delay_function();

9 *y++ = arithmetic_.sub(u, v);

10 ...

11 }

Fig. 14: Random delay insertion between arith-
metic operations in NTT.

We consider the worst-case scenario to state our
attack success rate for NTT’s each secret coeffi-
cient. To calculate the worst-case guess rate, we
sum up the wrong guess rates (1.2% and 0.2%),
which equals 1.4%. As a result, the total attack
success rate for NTT’s each secret coefficient is
98.6%.

5.4 Random Delay Insertion
Countermeasure

Random delay insertion method which gen-
erates random delays in embedded software
increases the attacker’s uncertainty about the
location of the target operation [10, 11]. To imple-
ment this countermeasure into NTT, we write
a delay function that selects a random number
between 0 and pre-selected threshold value and
generates a delay depending on the selected ran-
dom number. During the delay duration, NOP
executes in the processor. We add the delay func-
tion between each arithmetic operation of NTT
shown in Fig.14.

To evaluate the random delay insertion coun-
termeasure, we find the position of target opera-
tions with ML and then perform the side-channel
attack to extract the NTT’s secret key. Our attack
first divides the power traces into equal trace
windows, and then labels the power traces in
binary format like in Section 3.2. For exam-
ple, power trace windows corresponding to the
addition operation are labeled as 1 and the
remaining trace windows are labeled as 0. ML
takes power traces and labels to build ML mod-
els. Since ML can estimate wrong results and
false positives, the selection of window size by
dividing power traces is very crucial. We select
the size of window as 1000 that is smaller than

the size of power traces corresponding to the
target operations. Since the sample size is 2625
for addition and 3230 for subtraction opera-
tion, there are 3-4 and 4-5 sequential windows
labeled as 1 for each addition and subtraction
operation, respectively. ML estimates at least one
correct guess for each target point. Then, tar-
get POI regions are identified using these ML
guess results. Therefore, this countermeasure is
not resistant to side-channel attacks.

6 Discussions
In this work, we set the operating frequency of
the device to 12 MHz. If we increase the operating
frequency, the noise of the platform will increase.
Hence, attacking may require a great number of
traces to build ML models. There are multiple
prior works [2, 17] which demonstrate single-
trace side-channel attacks with lower frequencies,
including 8 MHZ to attack on NTT [25].

SEAL supports different configurations with
different parameters. Our attack focuses on its
128-bit security level with n = 4096. However,
depending on the selected configuration setting,
there will be a different number of NTT opera-
tions and prime modulus. Therefore, we have to
build new ML models to perform the attack.

Since the goal of our work is to expose side-
channel vulnerabilities of the SEAL and perform a
single-trace attack on it, we did not concentrate on
implementing a resistant countermeasure to our
attack. Shuffling countermeasures can be consid-
ered a secure defense mechanism to protect the
NTT [28]. We intend to implement it in the future.

7 Conclusions
In this work, we propose new single-trace side-
channel attacks on an FHE library, SEAL, with real
power measurements. Our first proposed attack
exploits leakage of addition and subtraction
operations of SEAL’s NTT with compiler opti-
mization -O0 level—non-optimized code imple-
mentation used, e.g., for constant-time enforce-
ment in cryptography. Specifically, we demon-
strate a vulnerability in the NTT a side-channel
leakage coming from the NTT’s addition and
subtraction operations and perform an ensem-
bled ML-based side-channel attack on it. We show

11



that we are able to extract SEAL’s secret key coef-
ficients with ensembled ML-based side-channel
attack with 98.3% accuracy. The second attack
targets guard and mul root operations with com-
piler optimization -O3 level. We show that the
side-channel leakage coming from the NTT’s
addition and subtraction operations do not
exist when compiler -O3 optimization is enabled.
We demonstrate our second attack can extract
SEAL’s secret key coefficients with a 98.6% accu-
racy by targeting guard and mul root operations
in SEAL’s NTT. Furthermore, we evaluate ran-
dom delay insertion countermeasure and show
that the random delay insertion countermeasure
is not a suitable countermeasure to protect the
NTT against our ML-based attacks.

8 Ethical Disclosures
We contacted the Cryptography and Privacy
Research Group at Microsoft Research to report
our preliminary findings and disclosed this paper
before publication.

9 Acknowledgments
This research is based upon work supported
by the National Science Foundation under
the Grants No. CNS 16-2137283 – Center for
Advanced Electronics through Machine Learning
(CAEML) and its industry members.

References
[1] Aydin F, Aysu A (2022) Exposing side-channel leakage of seal

homomorphic encryption library. In: Proceedings of the 2022
Workshop on Attacks and Solutions in Hardware Security
(ASHES), pp 95–100

[2] Aydin F, Aysu A, Tiwari M, et al (2021) Horizontal side-channel
vulnerabilities of post-quantum key exchange and encapsulation
protocols. ACM Transactions on Embedded Computing Systems
20(6):1–22. https://doi.org/https://doi.org/10.1145/3476799

[3] Aydin F, Karabulut E, Potluri S, et al (2022) RevEAL: Single-
trace side-channel leakage of the SEAL homomorphic encryption
library. In: 2022 Design, Automation and Test in Europe Confer-
ence & Exhibition (DATE), pp 99–117, https://doi.org/10.23919/
DATE54114.2022.9774724

[4] Boemer F, Lao Y, Cammarota R, et al (2019) nGraph-HE: a graph
compiler for deep learning on homomorphically encrypted data.
In: Proceedings of the 16th ACM International Conference on
Computing Frontiers, pp 3–13

[5] Brier E, Clavier C, Olivier F (2004) Correlation power analysis
with a leakage model. In: International Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES), pp 16–29

[6] Campbell D, Dunne R, Campbell NA (1997) On The Pairing Of
The Softmax Activation And Cross–Entropy Penalty Functions
And The Derivation Of The Softmax Activation Function. In:
Australian Conference on Neural Networks, pp 181–185

[7] Cheon J, Kim A, Kim M, et al (2017) Homomorphic encryption for
arithmetic of approximate numbers. In: International Conference
on the Theory and Application of Cryptology and Information
Security (ASIACRYPT), pp 409–437

[8] Colombier B, Grosso V, Cayrel PL, et al (2023) Horizontal Cor-
relation Attack on Classic McEliece. IACR Cryptol. ePrint Arch.,
Report 2023/546

[9] Cooley J, Tukey JW (1965) An algorithm for the machine calcu-
lation of complex Fourier series. Mathematics of Computation
19(90)

[10] Coron JS, Kizhvatov I (2009) An efficient method for random delay
generation in embedded software. In: International Workshop on
Cryptographic Hardware and Embedded Systems (CHES), pp
156–170

[11] Coron JS, Kizhvatov I (2010) Analysis and improvement of the
random delay countermeasure of CHES 2009. In: International
Workshop on Cryptographic Hardware and Embedded Systems
(CHES), pp 95–109

[12] Drucker N, Pelleg T (2022) Timing leakage analysis of non-
constant-time NTT implementations with Harvey butterflies. In:
International Symposium on Cyber Security, Cryptology, and
Machine Learning (CSCML), pp 99–117

[13] Fan J, Vercauteren F (2012) Somewhat practical fully homo-
morphic encryption. IACR Cryptology ePrint Archive, Report
2012/144

[14] Gentleman W, Sande G, Rohatgi P (1966) Fast fourier transforms:
for fun and profit. In: In Fall Joint Computer Conference (AFIPS),
pp 563–578

[15] Gentry C (2009) Fully homomorphic encryption using ideal lat-
tices. In: Proceedings of the Forty-First Annual ACM Symposium
on Theory of Computing, p 169–178

[16] Halevi S, Shoup S (2014) Algorithms in HElib. In: Advances in
Cryptology - CRYPTO 2014 - 34th Annual Cryptology Confer-
ence, pp 554–571

[17] Huang WL, Chen JP, Yang BY (2019) Power analysis on NTRU
Prime. IACR Transactions on Cryptographic Hardware and
Embedded Systems (TCHES) 2019(1):123–151. URL https://doi.
org/10.13154/tches.v2020.i1.123-151

[18] Jolliffe IT (2002) Principal Component Analysis, Springer New
York, NY, pp 1–488

[19] Kashyap P, Aydin F, Potluri S, et al (2020) 2Deep: Enhancing
side-channel attacks on lattice-based key-exchange. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD) 40(6):1217–1229. https://doi.org/10.1109/TCAD.
2020.3038701

[20] Kim I, Lee T, Han J, et al (2020) Novel single-trace ML profil-
ing attacks on NIST 3 round candidate Dilithium. IACR Cryptol.
ePrint Arch., Report 2020/1383

[21] Kim J, Picek S, Henuser A, et al (2019) Make some noise.
unleashing the power of convolutional neural networks for pro-
filed side-channel analysis. IACR Transactions on Cryptographic
Hardware and Embedded Systems (TCHES) 2019(3):148–178.
URL https://doi.org/10.13154/tches.v2019.i3.148-179

12

https://doi.org/https://doi.org/10.1145/3476799
https://doi.org/10.23919/DATE54114.2022.9774724
https://doi.org/10.23919/DATE54114.2022.9774724
https://doi.org/10.13154/tches.v2020.i1.123-151
https://doi.org/10.13154/tches.v2020.i1.123-151
https://doi.org/10.1109/TCAD.2020.3038701
https://doi.org/10.1109/TCAD.2020.3038701
https://doi.org/10.13154/tches.v2019.i3.148-179


[22] Li Q, Huang Z, Lu W, et al (2020) HomoPAI: A secure collaborative
machine learning platform based on homomorphic encryption.
In: 2020 IEEE 36th International Conference on Data Engineering,
pp 1713–1713

[23] Nair V, Hinton G (2010) Rectified linear units improve restricted
Boltzmann machines. In: International Conference on Machine
Learning (ICML), pp 807–814

[24] Natarajan D, Dai W (2021) SEAL-embedded: A homomorphic
encryption library for the internet of things. IACR Transactions on
Cryptographic Hardware and Embedded Systems 2021(3):756–
779

[25] Pessl P, Primas R (2019) More practical single-trace attacks
on the number theoretic transform. In: International Confer-
ence on Cryptology and Information Security in Latin America
(LATINCRYPT), pp 130–149

[26] Polyakov Y, Rohloff K, Ryan GW, et al (2022) PALASIDE lattice
crypto library. https://gitlab.com/palisade/palisade-release/blob/
master/doc/palisade manual.pdf

[27] Primas R, Pessl P, Mangard S (2017) Single-trace side-channel
attacks on masked lattice-based encryption. In: International
Workshop on Cryptographic Hardware and Embedded Systems
(CHES), pp 513–533

[28] Ravi P, Poussier R, Bhasin S, et al (2020) On configurable SCA
countermeasures against single trace attacks for the NTT. pp 123–
146

[29] Ravi P, Roy S, Chattopadhyay A, et al (2020) Generic side-
channel attacks on CCA-secure lattice-based PKE and KEMs.
IACR Transactions on Cryptographic Hardware and Embedded
Systems (TCHES) 2020(3):307–335. URL https://doi.org/10.13154/
tches.v2020.i3.307-335

[30] SEAL (2022) Microsoft SEAL (release 4.1). https://github.com/
Microsoft/SEAL, Microsoft Research, Redmond, WA.

[31] X. Zheng WWA. Wang (2013) First-order collision attack on pro-
tected NTRU cryptosystem. Microprocessors & Microsystems
37(6-7):601–609

13

https://gitlab.com/palisade/palisade-release/blob/master/doc/palisade_manual.pdf
https://gitlab.com/palisade/palisade-release/blob/master/doc/palisade_manual.pdf
https://doi.org/10.13154/tches.v2020.i3.307-335
https://doi.org/10.13154/tches.v2020.i3.307-335
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

	Introduction
	Preliminaries
	Fully Homomorphic Encryption (FHE)
	Number Theoretic Transform (NTT)
	Threat Model

	Proposed Attack with Compiler Optimization Level -O0 
	Target Operations and Vulnerabilities
	Determining Point of Interest (POI) Regions
	Exploiting Side-Channel Leakages
	Ensembled ML-based Side-Channel Attack

	Proposed Attack with Compiler Optimization Level -O3
	Why Previous Side-Channel Leakages Do Not Exist
	Target Operations and Vulnerabilities
	ML-based Side-Channel Attacks

	Experimental Results
	Evaluation Setup
	Evaluation Results with Compiler Optimization Level -O0
	Evaluation Results with Compiler Optimization Level -03
	Random Delay Insertion Countermeasure 

	Discussions
	Conclusions
	Ethical Disclosures
	Acknowledgments

