
Perfectly Secure Asynchronous Agreement on a
Core Set in Constant Expected Time

Ittai Abraham1, Gilad Ashsarov2, Arpita Patra3, and Gilad Stern4

1 Intel Labs
2 Bar Ilan University

3 Indian Institute of Science
4 The Hebrew University of Jerusalem

Abstract. A major challenge of any asynchronous MPC protocol is the
need to reach agreement on the set of private inputs to be used as input
for the MPC functionality. Ben-Or, Canetti and Goldreich [STOC 93]
call this problem Agreement on a Core Set (ACS) and solve it by run-
ning n parallel instances of asynchronous binary Byzantine agreements.
To the best of our knowledge, all results in the perfect and statistical
security setting used this same paradigm for solving ACS. This leads to
a fundamental barrier of expected Ω(logn) rounds for any asynchronous
MPC protocol (even for constant depth circuits).
We provide a new solution for Agreement on a Core Set that runs in
expected O(1) rounds, is perfectly secure, and resilient to t < n

4
corrup-

tions. Our solution is based on a new notion of Asynchronously Validated
Asynchronous Byzantine Agreement (AVABA) and new information the-
oretic analogs to techniques used in the authenticated model. We show
a similar result with statistical security for t < n

3
.

1 Introduction

One of the core challenges for MPC protocols in the asynchronous setting is that
they must reach agreement on which private inputs to use as input for the circuit.
Ben-Or, Canetti and Goldreich [8] call this problem Agreement on a Core Set
(ACS). In this paper we consider the most demanding setting: perfect security
with optimal-resilience in the asynchronous model. From the lower bound of
[2,8,10], perfect security for MPC implies that the number of corruptions in this
setting is at most t < n

4 , so optimal resilience is when n = 4t + 1 (this is in
contrast to n = 3t+1 optimality in the synchronous setting). The seminal result
of [8,13] is the first work to obtain perfect security with optimal-resilience in the
asynchronous model.

In terms of round complexity, the best one can hope for is reaching agreement
in constant expectation [19]. However, to the best of our knowledge, all results in
the asynchronous information-theoretic setting run O(n) parallel asynchronous
binary Byzantine agreements instances in order to reach an agreement on a
core set. For perfect security, each asynchronous binary Byzantine agreement
runs some variant of the seminal agreement protocol of Feldman and Micali

[18]. Composing n parallel agreement protocols, where each protocol runs in
constant expect time means that the expectation of the maximum is Ω(log n).
So for over 30 years, the best expected round complexity for asynchronous MPC
has Ω(log n) overhead (even for constant depth circuits). A natural question
remained open:

Is there an asynchronous MPC with constant expected running time
overhead? Or is there an inherent Ω(log n) lower bound for ACS due to
asynchrony?

Constant expected round complexity. Our main contribution is an agreement on
a core set in constant expected time via a new multi-valued agreement protocol
with an asynchronous validity predicate. Our Agreement protocol is perfectly-
secure and resilient to t < n

4 corruptions. For inputs of size O(n) words, it runs
in O(1) expected time and requires O(n5) expected communication complexity.
Parties are guaranteed to reach agreement on an input of one of the parties and
the value is guaranteed to pass an asynchronous validity predicate. In the MPC
setting this predicate checks that the input contains n− t parties who verifiably
completed the input sharing phase. To the best of our knowledge, the most
efficient agreement protocols [7,18] with constant expected rounds and t < n

4
currently require O(n6) words to be sent in expectation. Furthermore, these
protocols are binary agreement protocols. Our protocol improves the efficiency
of those protocols, and allows for multi-valued agreement.

Theorem 1 (Asynchronously Validated Asynchronous Byzantine
Agreement (informal)). There exists a perfectly-secure protocol for asyn-
chronous Byzantine agreement with an asynchronous validity predicate that is
resilient to t < n

4 Byzantine corruptions. Each party has a valid input of size
O(n) words. The protocol runs in constant expected time and O(n5) expected
communication complexity.

Using this AVABA protocol and an asynchronous validity predicate for check-
ing which parties completed sharing their inputs, we implement a perfectly-
secure, t < n

4 resilient constant expected time protocol for Agreement on a Core
Set (ACS) with an expected O(n5) communication complexity.

More generally our AVABA protocol requires O(n) secrets to be shared per
party per round and can be generalized to a protocol resilient to t < n

3 cor-
ruptions. Our protocol uses packed AVSS to generate randomness. As proven
in [2,10], when n < 4t, any AVSS protocol must have some non-zero probability
of non-termination. The work of [14] constructs such a AVSS protocol with an
adjustable security parameter ε, allowing the protocol to fail or not terminate
with ε probability. It is possible to use such an AVSS protocol in our construction,
resulting in an AVABA protocol with a similar probability of non-termination,
as described in the following:

Theorem 2 (General Asynchronously Validated Asynchronous Byzan-
tine Agreement (informal)). Let c ∈ [3, 4]. Given a n > ct resilient protocol

2

for asynchronous verifiable secret sharing that runs in S(n, ε) communication
complexity and has error ε ≥ 0 and probability of termination of 1−ε. There exists
an agreement protocol that is resilient to t corruptions as long as n > ct. More-
over, the protocol is Õ(ε) secure (and in particular for ε = 0 is perfectly-secure).
With probability 1− Õ(ε) (and in particular for ε = 0 is almost-surely terminat-
ing), the protocol runs in constant expected time and has O(n3 log n + S(n, ε))
communication complexity.

To avoid the use of n different instances of binary agreement, we adopt the ap-
proach of external validity to the information theoretic setting. External validity
[12] is a very successful framework in the authenticated setting for multi-valued
agreement. To adopt to the information theoretic setting we define the notion
of an asynchronous validity predicate, which is an information-theoretic asyn-
chronous alternative to external validity functions. Such predicates act “like func-
tions”, but the results are delivered asynchronously. That is, if a value is valid,
all parties will eventually see that it is, but otherwise they might not receive
any output from the predicate. We then construct an agreement with an asyn-
chronous validity predicate. To adopt this approach of using an asynchronous
validity predicate we first extend the use of information theoretic protocols [5]
from partial synchrony to asynchrony. This requires using asynchronous verifi-
able secret sharing to randomly choose leaders. Since we do not have a perfect
leader election mechanism, we use the techniques of [3] that build a weaker no-
tion of proposer election and adopt them to the information theoretic setting.
Among other things, this requires re-formulating the gather primitive to support
non-cryptographic primitives and changing the HotStuff variant to support an
non-cryptographic asynchronous view change protocol.

1.1 Agreement on a Core Set Via n Parallel Binary Agreements

In the asynchronous setting an MPC protocol cannot wait for input from all
parties. One important task of any MPC protocol in the asynchronous setting
is to reach agreement on the set of parties whose private input is used as the
input for the MPC circuit. To solve this, [8] suggest a protocol called Agreement
on a Core Set (ACS). To the best of our knowledge, all previous asynchronous
MPC protocols (in the perfect and statistical security setting) use the same ACS
protocol suggested by [8]. This ACS is based on running n parallel binary agree-
ments. Roughly speaking, parties enter binary agreement i with the value 1 when
they see that party i has completed secret sharing its input and enter with the
value 0 to all remaining instances once they see at least n− t agreements termi-
nate with a decision of 1. On the positive side, this elegant solution requires just
simple binary agreement as a building block. On the negative side, each binary
agreement instance has an independent constant probability of terminating each
constant number of rounds, so in isolation, each instance has a constant expecta-
tion. However, the expectation of the maximum of n such independent instances
is Ω(log n). Therefore this approach of running separate binary instances seems
to have a natural barrier for obtaining O(1) expected round complexity. Lastly,

3

the best known binary agreement protocols [7,18] in this setting require O(n6)
words to be sent in expectation, meaning that the expected total is O(n7) for
the ACS.

On Ben-Or and El-Yaniv’s work A work by Ben-Or and El-Yaniv [9] deals
with executing n concurrent instances of Byzantine Agreement. The first part
of [9] is for the synchronous model and we believe can we used to agree on a
common subset in synchrony. The second part claims that these techniques can
be extended to solve some variant of multi-sender agreement in constant expected
number of rounds. We note that [9] explicitly do not mention that they can solve
ACS in the asynchronous model. Indeed, we believe that [9] and the techniques
of [9] do not provide a way to solve ACS (as needed for asynchronous MPC) in
constant expected rounds.

In [10]’s ACS protocol, parties first invoke the BA instances with input 1 for
parties who are deemed valid according to a validity condition (in the case of
MPC, leaders whose VSS instances have been completed). Only after seeing n−t
instances with output 1, parties input 0 to the remaining instances. Trying to
naively apply the techniques of [9] does not work because they require starting
all BA instances at the same time and synchronizing them using Select (the
Select protocol in round r waits for all n log(n) BA instances to reach round
r+1) . It is possible that a less naive approach can work, synchronizing some of
the BA instances using Select, and then initiating the rest. This seems to require
a much more subtle approach since parties are required to wait for the agreed
upon value for each party to be 1 before proceeding (while dealing with log(n)
BA instances per party), and possibly having several synchronization steps using
Select.

A possible alternative approach is having each party set all inputs to the BA
instances at once, after seeing that at least n− t of those inputs are 1. Using this
approach, it is possible that no party has the unanimous support of all nonfaulty
parties, meaning that each party has at least one nonfaulty party input 0 to its
BA instance. In this case, parties can output 0 in all instances and thus output
an empty set as the agreed core. Even protocols which strengthen the validity
conditions are likely to fail, because it is possible that most BA instances have
many 0 and 1 inputs, resulting in small cores (for example, of size t+1 as opposed
to n− t). We believe that obtaining a less naive protocol could potentially be an
interesting follow up work.

1.2 Our Agreement on a Core Set

We take a conceptually new approach for solving ACS in constant expected
round complexity which takes advantage of recent advances in agreement proto-
cols in the authenticated setting (assuming a PKI setup). Roughly speaking, we
provide a new protocol that can be viewed as an information theoretic analogue
of these advances.

Instead of separating ACS into n instances, we run a single multi-valued
instance, where the input of each party is a set of parties that completed their

4

input sharing. The main challenge is that corrupt parties can suggest incorrect
inputs. In the authenticated case (computational settings), this is overcome using
a Validated Asynchronous Byzantine Agreement which uses an authenticated
external validity function. Here we use a new information theoretic asynchronous
validity predicate (AVP) and provide a new type of multi-valued agreement in
the perfect security setting which we call asynchronously validated asynchronous
Byzantine agreement (AVABA). The validity property of an AVABA protocol
is that the output is an (asynchronously validated) input of one of the parties.
The asynchronous validation guarantees that even if agreement is reached on
the input of a corrupted party, this output (agreement value) is sufficient for
agreeing on a core set of parties that completed their input sharing.

Implementing an AVABA protocol. The construction of an AVABA protocol
follows the ideas and construction of the No Waitin’ HotStuff (NWH) protocol
of [3]. Seeing as the NWH protocol is designed in the authenticated setting and
uses a signature scheme, this work adapts these ideas to the information theoretic
setting, removing the need for cryptography. An important consideration when
adapting these protocols, is that parties need to wait in order for their outputs to
be dynamically validated before outputting them. This is done so that they can
to check for validity without waiting for an asynchronous event that may never
happen after outputting a value. Roughly speaking, our AVABA protocol has
two parts, each with its separate challenges. The first part is a weak validated
leader election protocol. This protocol is inspired by the synchronous leader
election protocol of [21], its efficiency improvements [1], and the asynchronous
authenticated proposal election protocol of [3]. As in [1,3], in order to efficiently
generate randomness we used packed secret sharing. Here we use the packed
secret sharing of [16]. As in [3] we use a gather based protocol to make sure a
large core of potential leaders is common to all parties. Unlike [3], which relies on
signatures and authentication, we implement an information theoretic version of
gather whose inputs comply with an asynchronous validity predicate and whose
output can be verified in a verification protocol. Morover, our gather protocol is
unique in that it outputs a set of parties, while their values are inferred via an
asynchronous validity predicate.

The second part is the asynchronous agreement protocol given a weak leader
election. Here the main challenge is working with asynchronously validated in-
puts and maintaining both safety and liveness over the views. For safety, we use
a common approach in authenticated protocols [15,22] of using lock certificates
and adapt them to the information theoretic setting inspired by the approach of
[5]. The protocol of [5] modifies the cryptographic protocol of [22] to the informa-
tion theoretic setting in partial synchrony. Here we show how to obtain liveness
under fully asynchronous network conditions. For liveness in asynchrony, there
are two major challenges. The first is to guarantee that if a unique honest leader
is elected, then all honest parties will reach agreement on its proposal. For this,
we use the key certificate approach of [4,22] and adapt it to the information the-
oretic setting. The second, more challenging problem is guaranteeing that honest
parties eventually proceed to a new view if the current view does not lead to

5

agreement. As in [3] we observe that there are two triggers: the first is when
two different parties have different leaders (equivocation event) and the second
is when the leader sends a proposal whose key is lower than a lock held by some
party (blame event). In [3] these two events can simply be verified via an external
validity function, so any honest party that observes this event simply forwards
it to all parties. In our setting we adapt these two events into asynchronously
validated predicates. Roughly speaking, when an equivocation or blame message
is sent, parties record it and wait for it to be asynchronously validated.

2 Definitions and Assumptions

2.1 Network and Threat Model

This work deals with protocols for n parties with point-to-point communication
channels. The network is assumed to be asynchronous, which means that there
is no bound on message delay, but all messages must arrive in finite time. The
protocols below are designed to be secure against a computationally unbounded
Byzantine adversary controlling up to t < n

3 parties, and can thus be used when
t < n

4 as well. Furthermore, the adversary is adaptive in the sense that it can
choose to corrupt a party at any time given that it hasn’t already corrupted
t parties. In the discussion of the efficiency of protocols we use the notion of
“words”, that can contain field elements, indices and counters.

2.2 Asynchronous Validity Predicate

We generalize the notion of dynamic predicates of [10] to a new notion of asyn-
chronous validity predicates (or validity predicates for short). This type of pred-
icate behaves like the asynchronous counterpart to the notion of an external va-
lidity function [12]. An external validity function, receives an input and returns
1 or 0, corresponding to a Boolean true or false. Similarly, in an asynchronous
validity predicate, party i holds a predicate validatei, and the value of validatei(v)
can depend on i’s internal state. Unlike an external validity function, validatei
could potentially not terminate. Hence a validity predicate is an asynchronous
version of an external validity function checking the party’s internal state, and
only returning a value when specific conditions hold. Similar notions of stateful
predicates have also been discussed in other works requiring a dynamic property
to be checked before outputting a value, such as the ones in [10,17,20].

For such a predicate to be useful, we want two properties to hold. First, that
parties do not to change their minds about the validity of a given value. This al-
lows parties to confidently output a value without the possibility of it becoming
invalid later (or thinking that a value is invalid and then changing their mind
later). Secondly, that honest parties’ opinions will eventually be consistent: if
some honest party outputs some opinion on the validity of a given value, eventu-
ally every honest party will have the same opinion. This means that eventually
opinions about validity will be universal, and thus can be used by all parties in
the system.

6

Formally, these properties are captured in the following definition:

Definition 1 (Asynchronous Validity Predicate). Let V be a set of possible
inputs and let every party i have a predicate validatei : V → {0, 1}. We say that
validate is a validity predicate if the following properties hold:

– Finality. If validatei(v) terminates with the output b ∈ {0, 1} for some
honest i, then any call to validatei(v) terminates with the output b.

– Consistency. Let i be an honest party and v be some value such that
validatei(v) terminates with the output b ∈ {0, 1}. Eventually for every honest
j, validatej(v) terminates as well with the output b.

For brevity, when we say that some property holds for the predicate validate,
we mean that it holds for every validatei. For example, if for every i ∈ [n],
validatei is a predicate from the domain X to the range Y , then we simply say
that validate : X → Y . As a shorthand we say that validatei(v) = b at a given
time for an honest i if validatei(v) had already terminated at that time and
output b or if it would immediately terminate with the output b upon being
called at that time.

In the above definition, note the similarity of these properties to those of a
reliable broadcast protocol (described below), which guarantees that if an honest
party outputs a value, every honest party outputs the same value. The properties
of this predicate can be generalized to stateful functions that can output one of
many values, as opposed to just 0 or 1.

2.3 Verifiable Party Gather

Verifiable Party Gather is a variation of the Verifiable Gather protocol of [3]. The
first difference is that we only output a set of parties (no values) and the second
difference is that the cryptographic external validity function is replaced by an
information theoretic asynchronous validity predicate, as defined in Section 2.2
that takes as input a party index. Intuitively, the goal of a party gather protocol
is to have some common core of parties such that each honest party outputs a
set of parties that is a super-set of this core. Intuitively, the goal of a verifiable
party gather protocol is to make sure that the set of parties that are output by
an honest party can be verified to be correct outputs of the protocol. Observe
that different parties may output different super-sets of the core and there is no
agreement on who is in the core.

Formally, a verifiable party gather protocol consists of a pair of protocols
(Gather,Verify) and takes as input a validity predicate validate : [n] → {0, 1}. For
Gather, each party i has a set of parties Si ⊆ [n] as input such that validatei(x) =
1 for every x ∈ Si at the time i calls the protocol. Each party may decide to
output a set Xi. After outputting sets Xi, parties must continue to update their
local state according to the Gather protocol in order for the verification protocol
to continue working.

The properties of Gather:

7

– Binding Core. Once the first honest party outputs a value from the Gather
protocol there exists a core set X∗ such that |X∗| ≥ n− t and if an honest
party i outputs the set Xi, then X∗ ⊆ Xi.

– Termination of Output. All honest parties eventually output a set of
indices.

The Verify protocol receives a set X ⊆ [n] and can either terminate with the
output 1 signifying that X was verified, terminate with the output 0 signifying
that X wasn’t verified or not terminate at all. The verification protocol only
allows the adversary to report sets of parties that contain the binding core X∗,
or not pass verification. A party i can check any set X, which we denote by
executing Verifyi(X). If the execution of Verifyi(X) terminates and outputs 1,
we say that i has verified the set X.

The termination properties of Verify:

– Completeness. For any two honest parties i, j, if j outputs Xj from Gather,
then Verifyi(Xj) eventually terminates with the output 1.

– Agreement on Verification. For any two honest i, j, and any set X, if
Verifyi(X) terminates with the output b ∈ {0, 1}, then Verifyj(X) eventually
terminates with the same output.

The correctness properties of the Verify protocol:

– Includes Core. If Verifyi(X) terminates with the output 1 for some honest
i, then X∗ ⊆ X (for the core X∗ defined in the Binding Core property of
Gather).

– Validity. If Verifyi(X) terminates with the output 1 for some honest i, then
for each x ∈ X, validatei(x) = 1 at the time i output X.

Combining the Includes Core and Completeness properties we can see that
all honest parties output sets that contain X∗.

2.4 Verifiable Leader Election

A perfect leader election would allow each have all parties output one common
randomly elected party. Verifiable Leader Election (VLE) is an asynchronous pro-
tocol that tries to capture this spirit but obtains weaker properties. Intuitively,
there is only a constant probability that the output of VLE is one common
randomly elected proposal coming from an honest proposer. As in the Verifiable
Party Gather protocol, we also add a verification protocol. Crucially, in the good
event mentioned above, the only value that passes verification is this commonly
elected leader. In the remaining cases, the adversary can control the output and
even cause different parties to have different outputs. However, even in these
cases we force the adversary to allow all parties to eventually output some ver-
ifying value. This VLE is weak enough to be efficiently implementable, even in
an information theoretic setting and we will later show that it is strong enough
to enable an efficient constant expected round VABA protocol.

8

We assume a validity predicate validate : [n] → {0, 1} that given any index
k ∈ [n] can check the validity of k. A Verifiable Leader Election protocol consists
of a pair of protocols (VLE,Verify). When an honest i calls the VLE protocol,
validatei(i) = 1 already holds. The output of the VLE protocol is a pair (`, π)
where ` ∈ [n] and π is a proof used in the Verify protocol. We model these
protocols as having some ideal write-once state `∗. We assume ⊥ is not valid
and let `∗ ∈ [n] ∪ {⊥}. Intuitively, if `∗ 6= ⊥ then the output of all parties will
be `∗, but when `∗ = ⊥ then the adversary can cause different parties to output
different verifying values.

– α-Binding. For any adversary strategy, with probability α, `∗ is set to be
the index of a party that behaved in an honest manner when it started the
VLE protocol.

In addition, the VLE protocol has a natural termination property (assuming all
honest start):

– Termination of Output. All honest parties eventually output a pair (`, π).

A party i can check any pair of index and proof, (`, π), which we denote by
executing Verifyi(`, π). If Verifyi(`, π) terminates with the output 1, we say that
i has verified `. If the binding value `∗ is not ⊥, then the only value for which
the verify protocol can terminate and output 1 is `∗. This limits the adversary to
essentially either reporting `∗, or remaining silent. The termination properties
of Verify (given that all honest parties start VLE):

– Completeness. For any two honest parties i, j, the output (`, π) of party
j from VLE will eventually be verified by party i, i.e. Verifyi(`, π) eventually
terminates with the output 1.

– Agreement on Verification. For any two honest parties i, j, and any
index ` and proof π, if Verifyi(`, π) terminates with the output b ∈ {0, 1}
Verifyj(`, π) eventually terminates with the same output.

Finally, the correctness properties of Verify:

– Binding Verification. If `∗ 6=⊥ then for every honest party i, and every
(`, π), if Verifyi(`, π) terminates with the output 1, then ` = `∗.

– Validity. If Verifyi(`, π) terminates with the output 1 for some honest i,
then validatei(`) = 1 at the time Verifyi(`, π) terminated.

2.5 Asynchronously Validated Asynchronous Byzantine Agreement

In an Asynchronously Validated Asynchronous Byzantine Agreement protocol,
there is some asynchronously validity predicate validate that every party has
access to. In addition, there exists some success parameter α ∈ (0, 1) for the
protocol. Each honest party i starts with an input xi such that validatei(xi) = 1
at the time i calls the protocol. Every honest party outputs a value when com-
pleting the protocol. A Validated Asynchronous Byzantine Agreement protocol
has the following properties:

9

– Agreement. All honest parties that complete the protocol output the same
value.

– Validity. If an honest party i outputs a value yi then validatei(yi) = 1 at
that time.

– α-Quality. With probability α, all parties output the input xi of a party i
that was honest when starting the protocol.

– Termination. All honest parties almost-surely terminate, i.e. with proba-
bility 1.

2.6 Agreement on a Core Set

An Agreement on a Core Set protocol is a protocol in which parties have no input,
but they have access to an asynchronous validity predicate validate : [n] → {0, 1}.
Furthermore, it is guaranteed that for each honest party i, there is a set Si such
that |Si| ≥ n− t and eventually ∀k ∈ Si, validatei(k) terminates with the output
1. Each party outputs a set S ⊆ [n] from the protocol. An Agreement on a Core
Set protocol has the following properties:

– Agreement. All honest parties that complete the protocol output the same
set S from the protocol.

– Validity. If an honest party i outputs S from the protocol then S ⊆ [n],
|S| ≥ n− t and for k ∈ S, validatei(k) = 1 at that time.

– Termination. All parties almost-surely terminate.

In this work, we assume the existence of protocols for Reliable Broadcast
protocol and a Packed Asynchronous Verifiable Secret Sharing (packed AVSS).
We use the protocols of [6,16]. For formal definitions of those protocols, see Ap-
pendix A.

3 Verifiable Party Gather

As part of our proposal election protocol we require a “reliable party gather”.
Throughout the protocol, parties broadcast values, which are later used to choose
a winning proposal from among them. Ideally, we would like the parties to agree
on an exact set of parties that broadcasted in order to make sure that they all
elect a value from the same set. However, exactly agreeing on the set is non-
trivial and potentially expensive. Therefore we slightly relax our requirements:
there exists some core C of size n − t or greater such that the output of every
honest party contains C. Furthermore, we would like parties to be able to prove
that they “acted correctly” and included C in their output.

Throughout the protocol, parties broadcast messages. The protocol takes
place in two rounds. In the beginning, all parties broadcast their inputs Si ⊆ [n],
which are sets of parties. We also assume that all parties have access to an asyn-
chronous validity predicate validate, and that for every honest i, validatei(x) = 1
for every x ∈ Si at the time it calls the Gather protocol. After an honest i receives
such a set Sj from party j, it waits to see that validatei(x) = 1 for every x ∈ Sj .

10

When this condition holds, i records j as a party from whom it received a set
and stores j in Ti. In addition, it adds all indices in Si to its eventual output
value, Ri. In the second round, i sends its set Ti after its size is at least n − t.
When receiving a set Tj from party j, i waits until it sees that Tj ⊆ Ti. After
seeing that this is the case for n− t parties, i terminates and outputs Ri.

In order to be able to verify reported values, when i accepts a set Tj from j,
it also stores all parties which j should have seen in S sets before sending Tj . In
other words, it also stores (j,∪k∈Tj

Sk) in a set Ui used for verification. In the
discussion below, we show that there exists some index i∗ that is included in at
least t+1 of the T sets broadcasted by parties. Since every party waits to receive
T sets from at least n− t parties before terminating, it will see at least one with
that index, and thus include Si∗ in its output. This is true for any honest party,
so Si∗ can serve as a common-core in the output of all honest parties. Similarly,
when verifying a set X, i makes sure that it contains the values referenced by
the T sets received from at least n− t parties, and thus also includes Si∗ in it.

Algorithm 1 Gatheri(Si)

1: Ri ← ∅, Ti ← ∅, Ui ← ∅
2: broadcast 〈1, Si〉
3: upon receiving 〈1, Sj〉 from j such that |Sj | ≥ n− t, do
4: upon validatei(x) terminating with output 1 for every x ∈ Sj , do
5: Ri ← Ri ∪ Sj

6: Ti ← Ti ∪ {j}
7: if |Ti| = n− t then
8: broadcast 〈2, Ti〉 . T sets reference S sets
9: upon receiving 〈2, Tj〉 from j such that |Tj | ≥ n− t, do

10: upon Tj ⊆ Ti, do . relevant S sets and values are received
11: Ui ← Ui ∪ {(j,

⋃
k∈Tj

Sk)} . save all parties in the S sets referenced by Tj

12: if |Ui| = n− t then
13: output Ri, but continue updating internal sets and sending messages

Algorithm 2 GatherVerifyi(X)

1: upon |{j|∃(j, Vj) ∈ Ui, Vj ⊆ X}| ≥ n − t and validatei(x) terminating with the
output 1 for every x ∈ X, do

2: output 1 and terminate

3.1 Security Analysis

We start by proving that many parties send T sets with an index i∗, which
will later be used for defining the common core of the protocol. We then show

11

that parties eventually have consistent views, and conclude with proving that
(Gather,GatherVerify) is a Verifiable Party Gather protocol in Theorem 3. The
proofs of the following lemmas are provided in Appendix B.

Lemma 1. Assume some honest party completed the protocol. There exists some
i∗ such that at least t+ 1 parties sent broadcasts of the form 〈2, T 〉 with i∗ ∈ T .

Lemma 2. Let i, j be two honest parties. Observe the sets Ti, Ui at any time
throughout the protocol. Eventually Ti ⊆ Tj and Ui ⊆ Uj.

Theorem 3. The pair (Gather,GatherVerify) is a verifiable reliable gather pro-
tocol resilient to t < n

3 Byzantine parties.

Proof. Each property is proven separately.
Termination of Output. Assume that for every honest i and for every

x ∈ Si validatei(x) = 1 at the time i calls Gather. Every honest party i starts the
Gather protocol by broadcasting 〈1, Si〉. Every honest j receives that message and
from the Consistency property of the asynchronous validity predicate eventually
sees that validatej(x) = 1 as well for every x ∈ Si. At that point j adds i to
Tj . After adding such an index for every honest party, j sees that |Tj | = n − t
and broadcasts 〈2, Tj〉. Similarly, every honest party k eventually receives that
broadcast and sees that |Tj | ≥ n − t. From Lemma 2, eventually Tk ⊆ Tj , at
which point k adds a tuple (j, Vj) to Uk. After adding such a tuple for every
honest j, every honest k sees that |Uk| ≥ n− t, outputs Rk and terminates.

Completeness. Assume some honest party i completes the Gather protocol
and outputs Ri. At the time i output Ri, it found that |Ui| = n − t. We will
start by showing that at that time ∪(j,Vj)∈Ui

Vj ⊆ Ri. Before adding (j, Vj) to
Ui, i received a 〈2, Tj〉 broadcast from j and saw that Tj ⊆ Ti. It then added
(j,∪k∈TjSk) to Ui. Similarly, before adding k ∈ Tj to Ti, i received a 〈1, Sk〉
broadcast from k and updated Ri to Ri ∪ Sk. In other words, for every k ∈ Tj ,
Sk ⊆ Ri and since Vj = ∪k∈Tj

Sk, also Vj ⊆ Ri. Let j be some honest party that
called GatherVerifyj(Ri). From Lemma 2, eventually Ui ⊆ Uj . At that time, for
every (k, Vk) ∈ Ui ⊆ Uj , Vk ⊆ Ri. When i completes the Gather protocol, |Ui| =
n− t and thus j will eventually see that |{k|∃(k, Vk) ∈ Uj , Vk ⊆ Ri}| ≥ n− t. In
addition, i only adds elements to Ri by updating Ri to Ri ∪Sk after seeing that
validatei(x) = 1 for every x ∈ Sk. From the Consistency property of validate,
for every x ∈ Sk eventually validatej(x) = 1 as well. Therefore, j will eventually
see that all of the conditions of the GatherVerify protocol hold, output 1 and
terminate.

Agreement on Verification. Assume that some honest i completes the
GatherVerifyi(X) protocol on some set X and outputs b ∈ {0, 1}. Honest parties
never output 0 from the GatherVerify protocol, and thus i output 1. This means
that it saw that |{k|∃(k, Vk) ∈ Ui, Vk ⊆ X}| ≥ n − t and that for every x ∈ Sk,
validatei(x) = 1. Let j be some honest party that called GatherVerifyj(X). From
Lemma 2, eventually Uj ⊆ Ui and thus eventually |{k|∃(k, Vk) ∈ Uj , Vk ⊆ X}| ≥
n−t. In addition, from the Consistency property of validate, j will also eventually

12

see that validatej(x) = 1 for every x ∈ X. After both of those conditions hold, j
outputs 1 from the GatherVerify protocol and terminates.

Binding Core. Assume the first honest party that completes the Gather
protocol is j, and observe the index i∗ as defined in Lemma 1. Party j only
adds a tuple (k, Vk) to Uj after receiving a 〈2, Tk〉 message from party k. Before
completing the protocol, j received n−t such broadcasts and found that Tk ⊆ Tj .
From Lemma 1, t + 1 of the parties broadcast some message 〈2, Tk〉 such that
i∗ ∈ Tk. Therefore, for at least one party k, i∗ ∈ Tk ⊆ Tj . Before adding i∗ to Tj ,
pj received a 〈1, Si∗〉 broadcast from party i∗ such that Si∗ ⊆ Sj and |Si∗ | ≥ n−t.
Let the binding-core X∗ be Si∗ . Clearly |X∗| ≥ n− t because |Si∗ | ≥ n− t. The
fact that X∗ is a subset of every honest party’s output from the protocol is a
direct corollary of the Completeness and Includes Core properties of the Gather
protocol.

Include Core. Let i be some honest party and X be some set such that
GatherVerifyi(X) terminates with the output 1. Party i found that |{k|∃(k, Vk) ∈
Uj , Vk ⊆ X}| ≥ n − t. As discussed above, party i only adds (j, Vj) to Ui after
receiving a 〈2, Tj〉 message from j. Let i∗ be defined as it is in Lemma 1 and
in the Binding Core property. Seeing as there are at least t + 1 parties that
sent broadcasts of the form 〈2, T 〉 with i∗ ∈ T and n − t parties j such that
(j, Vj) ∈ Ui and Vj ⊆ X, for at least one of those parties i∗ ∈ Tj . By definition,
Vj =

⋃
k∈Tj

Sk, and thus Si∗ ⊆ Vj ⊆ X, as required.
Validity. Assume that for some honest i, GatherVerifyi(X) terminates with

the output 1. Before doing so, i checks that validatei(x) = 1 for every x ∈ X.

3.2 Efficiency

In the following discussion, we assume the existence of a broadcast protocol that
terminates in O(1) rounds with O(b(m)) words sent when broadcasting inputs
of size O(m) words. Concretely, we use the broadcast protocol of [6] in which
parties send O(n2 log n+n·m) words when broadcasting a message of size O(m).
In addition, we assume that if validatei(x) = 1 for some honest i at some time,
validatej(x) will terminate a constant number of rounds after that time for every
honest j.

When using inputs of size O(n) and setting b(n) = n2 log n, as achieved by
the above protocol, we see in the following theorem that the Gather protocol
requires O(n3 log n) words and O(1) rounds.

Theorem 4. The total number of words sent in the Gather protocol is O(nb(n))
and all parties terminate after O(1) rounds.

Proof. In the protocol, every party sends a constant number of broadcasts,
totalling in O(n · b(n)) words sent. In addition, every honest i will receive
a broadcast 〈1, Sj〉 from every honest j after O(1) rounds. By assumption,
∀x ∈ Sj validatej(x) = 1 at the time j calls the protocol, and thus validatei(x) = 1
will hold O(1) rounds after that. Following that, every honest party will send a
second broadcast up to O(1) rounds later, and terminate after receiving those
broadcasts O(1) rounds after that.

13

4 Verifiable Leader Election

This section describes the construction of a verifiable leader election, which is
related to the idea of a weak common coin and proposal election. With constant
probability all honest parties output an honest leader from VLE, but in other
cases parties might disagree on the leader. In both cases, every party’s output
must be an asynchronously validated leader according to an asynchronous va-
lidity predicate validate. Every honest party starts the protocol believing that it
is a valid leader, i.e. with validatei(i) = 1. Since the predicate is consistent, hon-
est parties will eventually agree that other honest parties are also valid leaders.
In addition, parties can verify each other’s output with a verification protocol,
VLEVerify. In the constant probability event described above, in which a single
honest leader is elected, this is the only leader that will pass verification in the
VLEVerify protocol. Our construction uses techniques inspired by synchronous
weak leader election [21] and cryptographic proposal election [3].

The protocol proceeds in 5 rounds described below:
Round 1: In the first round, every party shares n random values using a packed
AVSS protocol, one for each party. Parties then participate in the packed AVSS
instances with every party as dealer.
Round 2: In the second round, after completing the Share protocol for t + 1
dealers, party i broadcasts an “attach” message with the set dealersi for which it
completed the share protocol. After receiving such a message from party j with
a set dealersj , i checks that it also completed the Share protocol for the dealers
in dealersj and waits until it considers j to be valid according to validatei. That
is, it checks that j is a valid leader that has committed to a random value, which
is the sum of the j’th secrets shared by the dealers in dealersj .
Round 3: In the third round, i waits to see that n − t parties committed to
their random values and then inputs the set of those parties, attachedi, to the
Gather protocol. It does so with an asynchronous validity predicate checking that
each party in attachedi is a valid candidate that actually committed to a random
secret and.
Round 4: After completing the Gather protocol, i outputs a set of parties that
it considers to be viable candidates who can be chosen as leaders and output
from the VLE protocol. In order to be able to choose a single leader, i broadcasts
a “candidates” message with that set of candidates, asking for parties to help
reconstruct their attached random value.
Round 5: After receiving a “candidates” message from party j with a set
candidatesj , i checks that candidatesj is a valid output from the Gather protocol
by calling the GatherVerify protocol. After the GatherVerify protocol returns 1 on
the set candidatesj , i starts reconstructing the sum of the k’th secrets shared by
dealers in dealersk for every k ∈ candidatesj . In other words, it helps reconstruct
the random value for each candidate. Note that parties only start reconstructing
the secrets associated with a party k after seeing that k broadcasted its set of
dealers. Since the set of dealers must be at least of size t+1, one of those secrets
was shared by an honest dealer. This guarantees that the sum will be completely
random and unknown to k, who hasn’t seen any k’th secret reconstructed yet.

14

Output: Finally, after reconstructing the random values associated with each
of its own candidates, i outputs the candidate with the highest random value.
As proof, it also outputs the set of candidates candidatesi.

Intuitively, every party outputs a set of candidates from the Gather proto-
col who have already committed to their random value. If the party with the
maximal random value happens to be an honest party `∗ in the binding core of
the Gather protocol, then all honest parties will see that random value and pick
`∗ as their output. Since the values are sampled uniformly in an unbiased man-
ner, this means that every party has the same probability of having the maximal
evaluation being associated with it. When counting the number of honest parties
in the common core, we find that the probability of the aforementioned event is
at least 1

3 . This mechanism also allows to check whether a given proposal could
have been the correct output from the VLE protocol. In order to convince an
honest party that a value is a correct output from the VLE protocol, parties can
provide their output from the Gather protocol. Parties will then be able to check
if that set of parties is a possible output from Gather (i.e. if it contains the core),
and if the correct leader was elected based on that set. If the maximal random
value is associated with a party in the core, then only sets containing that party
will verify, which means that only the honest leader `∗ will verify.

4.1 Security Analysis

We start by proving that parties’ views are eventually consistent and that
checkValidity, which is used an asynchronous validity predicate for the Gather
protocol is indeed one. Following that, we prove that the (VLE,VLEVerify) are
indeed a Verifiable Leader Election protocol in Theorem 5. The proofs of the
following lemmas are provided in Appendix C

Lemma 3. Let i and j be honest parties. Observe the sets dealersi,attachedi,
and ranksi at any time throughout the protocol. Eventually dealersi ⊆ dealersj,
attachedi ⊆ attachedj and ranksi ⊆ ranksj.

Lemma 4. checkValidity is an asynchronous validity predicate.

In the following theorem, the threshold t < n
4 stems from using AVSS pro-

tocols, for which this threshold is necessary in order to guarantee their termina-
tion [10,2]. Similar results can be achieved by using AVSS protocols with an ε
probability of failure or non-termination, yielding results with only probabilistic
guarantees.

Theorem 5. The pair (VLE,VLEVerify) is a Verifiable Leader Election protocol
resilient to t < n

4 parties with α = 1
3 .

Proof. Each property is proven separately.
Termination of Output. If all honest parties participate in the VLE pro-

tocol, then they all sample n values and share them using packed AVSS. From

15

Algorithm 3 VLEi()

1: dealersi ← ∅, attachedi ← ∅, candidatesi ← ∅, ranksi ← ∅
2: s1, . . . , sn

$←− F
3: share s1, . . . , sn using a packed AVSS protocol and participate in the PAVSS in-

stances with every party as dealer
4: upon completing all Share calls with j as dealer, do
5: dealersi ← dealersi ∪ {j}
6: if |dealersi| = t+ 1 then
7: broadcast 〈“attach”, dealersi〉
8: upon receiving an 〈“attach”, dealersj〉 broadcast from j, do
9: upon dealersj ⊆ dealersi, |dealersj | ≥ t + 1 and validatei(j) terminating with

the output 1, do
10: attachedi ← attachedi ∪ {(j, dealersj)}
11: if |attachedi| = n− t then
12: call Gatheri({k|∃(k, dealersk) ∈ attachedi}) with the validity predicate

checkValidityi
13: upon Gatheri outputting the set Xi, do . continue updating state according to

Gather
14: candidatesi ← Xi

15: broadcast 〈“candidates”, candidatesi〉
16: upon receiving a 〈“candidates”, candidatesj〉 broadcast from j, do
17: upon GatherVerifyi(candidatesj) terminating with the output 1 and Gatheri

terminating, do
18: for all k ∈ candidatesj do
19: call Sum− Reconstruct(k, dealersk) for (k, dealersk) ∈ attachedi

20: upon Sum− Reconstruct(j, dealersj) terminating with the output rj , do
21: ranksi ← ranksi ∪ {(j, rj)}
22: upon candidatesi 6= ⊥ and ∀j ∈ candidatesi ∃(j, rj) ∈ ranksi, do
23: `← argmax{rj |j ∈ candidatesi, (j, rj) ∈ ranksi} . ` is the party with the

highest rank r`
24: πi ← candidatesi
25: output (`, πi), but continue updating internal sets and sending messages

Algorithm 4 checkValidityi(k)

1: upon there being a tuple of the form (k, dealersk) in attachedi, do
2: output 1 and terminate

Algorithm 5 VLEVerifyi(k, π)

1: upon ∀j ∈ π ∃(j, rj) ∈ ranksi, do
2: upon GatherVerifyi(π) terminating with the output 1 and Gatheri terminating,

do
3: `← argmax{rj |j ∈ π, (j, rj) ∈ ranksi}
4: if k = ` then
5: output 1 and terminate

16

the Termination property of AVSS, every honest party i will complete those
calls, add every honest j to dealersi and broadcast 〈“attach”, dealersi〉 when
it |dealersi| = t + 1. After an honest i receives an “attach” message from an
honest j, it sees that |dealersj | ≥ t + 1. In addition, from Lemma 3, eventu-
ally dealersj ⊆ dealersi. By assumption, validatej(j) = 1 for every honest j
at the time it starts the VLE protocol, so from the Consistency property of
the predicate validatei(j), will eventually output 1 for every honest i. When
these conditions hold, i adds (j, dealersj) to attachedi. After adding such a tu-
ple for every honest j, i sees that |attachedi| = n − t and it calls Gatheri with
the input Si = k|∃(k, dealersk) ∈ attachedi. Clearly, for every k ∈ Si there is
a tuple of the form (k, dealersk) in attachedi, so checkValidityi(k) = 1. From
Lemma 4, checkValidity is an asynchronous validity predicate and all honest par-
ties eventually call the Gather protocol, so from the Termination protocol of
Gather they all eventually complete the protocol. When an honest i completes
the Gather protocol with an output Xi, it updates its candidatesi set to Xi and
broadcasts 〈“candidates”, candidatesi〉. Every honest j receives that broadcast
and from the Completeness property, Gatherj(candidatesi) eventually terminates
with the output 1. At that point, j calls Sum− Reconstruct(k, dealersk) for ev-
ery k ∈ candidatesi with (k, dealersk) ∈ attachedj . Note that honest parties add
those tuples after receiving the same 〈“attach”, dealersk〉 broadcast, so they all
call Sum− Reconstruct with the same set of dealers. From the Termination prop-
erty of the AVSS protocol, i completes the Sum− Reconstructi(k, dealersk) call
for every k ∈ candidatesi and adds a tuple (k, rk) to ranksi. Finally, after having
candidates 6= ⊥ and there being a tuple (k, rk) ∈ ranksi for every k ∈ candidatesi,
i performs local computations, outputs some value and terminates.

Completeness. Assume some honest party i outputs the index ` and proof
π from VLE. Party i chooses ` to be the index ` such that ` = argmax{rj |j ∈
candidatesi, (j, rj) ∈ ranksi} and sets π to candidatesi, which was i’s output from
the Gatheri protocol. Observe some honest party j that calls VLEVerifyj(`, π).
Note that i only completes the VLE protocol after seeing that for every k ∈
candidatesi there exists a tuple (k, rk) ∈ ranksi. From Lemma 3, eventually
ranksj ⊆ ranksi and thus ∀k ∈ π ∃(k, rk) ∈ ranksj . In addition, from the
Completeness property of GatherVerify, GatherVerifyj(π) eventually terminates
with the output 1. As shown above, j eventually completes Gatherj and pro-
ceeds to compute `. Both i and j compute ` to be argmax{rk|k ∈ candidatesi},
with rk being the output from Sum− Reconstruct(k, dealersk). From the Cor-
rectness property of AVSS, both i and j receive the same output rk for every
k, and thus they compute the same ` as the index with maximal rk. Therefore,
VLEVerifyj(`, π) outputs 1 and terminates.

α-Binding. From the Includes Core property of the Gather protocol, at the
time the first honest party completes the Gather protocol, there exists a binding
core X∗ of at least n− t indices in [n] such that if GatherVerifyi(X) terminates
with the output 1 for an honest party i, then X∗ ⊆ X. Note that at least n−2t ≥
t+1 > n

3 of those indices are honest parties’ indices. Let I be the set of all parties
k for which at least one honest party j called Sum− Reconstructj(k, dealersk).

17

Before calling the protocol, j completes Gatherj , calls GatherVerifyj(candidates)
and sees that it terminates with the output 1 for some set candidates which
includes k. From the Validity property of the Gather protocol, there already
existed a tuple (k, dealersk) ∈ attachedi at that time and from the Binding Core
property of the Gather protocol X∗ is already defined at that time. Note that
from the Correctness property of Sum− Reconstruct, rk is the sum of the k’th
secrets shared by the dealers in dealersk. For each (k, dealersk) ∈ attachedj ,
dealersk has at least t + 1 indices, and thus at least one of the dealers was
honest. That honest dealer shared a uniformly sampled value, and no honest
party started reconstructing rk or the uniformly sampled secret shared by the
honest dealer before receiving an “attach” broadcast from k. Therefore, from the
Secrecy property of the AVSS protocol, the value shared by the honest dealer is
sampled uniformly and independently of the adversary’s view at that time. This
means that for every k ∈ I, rk is sampled uniformly and independently from all
other values and from the set X∗. Therefore, the probability of a given party
k ∈ I having the maximal rank rk is 1

|I| ≥
1
n

5. This means that the probability
that there exists a nonfaulty party `∗ such that `∗ ∈ X∗ and r`∗ is the maximal
rank among all rk such that k ∈ I is at least n

3 · 1
n = 1

3 . If that is the case, define
`∗ to be that party’s index, otherwise define it to be ⊥.

Binding Verification. If `∗ as defined in the α-Binding property equals
⊥, the property trivially holds. Assume that `∗ 6=⊥ and that VLEVerifyi(`, π)
terminates with the output 1 for some honest i. Before VLEVerify terminates,
i checks that for every k ∈ π there exists a tuple (k, rk) ∈ ranksi. After-
wards, i calls GatherVerifyi(π), which eventually terminates with the output 1.
From the Includes Core property of the Gather protocol, X∗ ⊆ X and thus
`∗ ∈ X. Now, note that i only adds a tuple (k, rk) to ranksi if it completes
Sum− Reconstruct(k, dealersk) with the output k. By definition, `∗ has the max-
imal rank r`∗ and thus `∗ = argmax{rk|k ∈ π, (k, rk) ∈ ranksi}. Party i eventu-
ally terminated, and thus it found that ` = `∗, as required.

Agreement on Verification Let i, j be two honest parties and `, π be two
values such that VLEVerifyi(`, π) terminates with the output b. Honest parties
only output 1 from the VLEVerify protocol so b = 1. Party i starts VLEVerify
by waiting until ∀k ∈ π, there exists a tuple (k, rk) ∈ ranksi. From Lemma 3,
eventually ranksi ⊆ ranksj , so j will see that this condition holds. Following
that, i sees that GatherVerifyi(π) terminates with the output 1 and that Gatheri
terminates. From the Agreement on Verification and Termination properties of
the Gather protocol, j sees that these conditions hold as well. At that time,
checkValidityi(k) = 1 was true for every k ∈ π and thus there was a tuple of the
form (k, dealersk) ∈ attachedi. The same holds for j, which received the same
broadcast and added the same tuples to attachedj . In addition, both i and j
add the tuples (k, rk) to their respective ranks sets after reconstructing rk in
the call to Sum− Reconstruct(k, dealersk). From the Correctness property of the
protocol, they both reconstruct the same value, so they have the same tuples

5 We ignore a negligible probability of two parties having the same rank. This can be
accounted for by sampling from a large enough F and noting that t+ 1 ≥ n

3
+ 1

n

18

for every k ∈ π. They then compute ` in the same way with regard to the same
tuples (k, rk). For that index, i saw that k = `, and thus j will see that the same
condition holds, output 1 and terminate.

Validity. Observe some honest party i, and `, π such that VLEVerifyi(`, π)
terminates with the output 1. This means that i saw that GatherVerifyi(π) ter-
minated with the output 1 and that ` = argmax{rj |j ∈ π, (j, rj) ∈ ranksi}. In
other words ` ∈ π so from the Validity property of the GatherVerify protocol,
checkValidityi(`) = 1. This means that there exists a tuple of the form (`, dealers)
in attachedi. Nonfaulty parties only add such a tuple after seeing that validatei(`)
terminated with the output 1, completing the proof.

4.2 Efficiency

As above, we assume the existence of a broadcast protocol that terminates in
O(1) rounds with O(b(n)) words sent when broadcasting inputs of size O(n)
words. We use the same broadcast protocol with b(n) = n2 log n. In addition, we
assume that if validatei(x) = 1 for some honest i at some time, validatej(`) will
terminate a constant number of rounds after that time for every honest j.

We also assume a packed AVSS protocol with a constant number of rounds
in both share and reconstruct protocols which requires O(s(n)) words to be sent
when a dealer shares O(n) values and O(r(n)) words for reconstructing the sum
of O(n) secrets. When assuming a resilience threshold of t < n

4 , we can use
the packed AVSS protocol described in [16]. This protocol requires O(n4) words
while sharing O(n) values by calling the protocol a constant number of times,
each time sharing a constant fraction of the n secrets. We sum-reconstruct secrets
by simply reconstructing each secret individually and summing the results. This
results in O(n3) words sent while reconstructing each sum.

Using the values b(n) = n2 log n, s(n) = n4 and r(n) = n3, the theorem
below results in a complexity of O(n5).

Theorem 6. The total number of words sent in the VLE protocol is O(n ·(b(n)+
s(n) + r(n))) and all parties terminate after O(1) rounds.

Proof. Each party starts by sharing n values, requiring O(ns(n)) sent words.
Each party broadcasts a constant number of messages of size O(n) resulting in
O(nb(n)) sent words. The parties then run the Gather protocol in which O(nb(n))
more words are sent. Following that, parties reconstruct O(n) sums of secrets,
requiring a final O(nr(n)) words. In total, parties send O(n(b(n)+ s(n)+ r(n)))
words. Each call to the broadcast, share, reconstruct or gather protocols termi-
nates after O(1) rounds, requiring a constant number of rounds overall.

5 Asynchronously Validated Asynchronous Byzantine
Agreement

This section deals with constructing our AVABA protocol which is built upon
ideas in [3] and [5] and adapts them to the asynchronous information theoretic

19

setting. The protocol of [3] heavily relies on cryptographic primitives (signatures)
to obtain externally valid outputs. Here we use the framework of asynchronous
validity predicates to replace external validity with an information theoretic
counterpart. This requires redefining and adopting new information theoretic
variants of verifiable gather (party gather) and verifiable leader election. The
protocol of [5] modifies the cryptographic protocol of [22] to the information
theoretic setting in partial synchrony. Here we show how to extend this to full
asynchronous network conditions, which in turn requires a new information the-
oretic view change protocol and consistency checks for sent values. In the AVABA
protocol, parties proceed in “views”. In each view, parties propose values to agree
upon and then try to choose an honest leader using the VLE protocol. Our VLE
protocol has α-Quality for α = 1

3 , so this event should take place with proba-
bility 1

3 or greater. Once this happens, the AVABA protocol guarantees that all
parties will terminate with the proposal suggested by that honest party.

AVABA uses the “Key-Lock-Commit” paradigm used in previous HotStuff
protocols (VABA, IT-HS and NWH) in order maintain safety and liveness. As
explained in [3]:

Key: Parties set a local key field that indicates that no other value was
committed to in previous rounds. The keys help maintain liveness: if at any
point some party sets a lock (to be explained later) in a view where no
commitment takes place, then they will eventually see a key from that view
(or a later view), that will convince them to participate in the current view.
A key consists of two values: key, which is a view number and key_val which
is the suggested value.
Lock: Before committing to a value in a given view, parties will wait to
hear that enough other parties have set a lock on the same value in that
view. Before parties set a lock in a given view, they make sure that enough
other parties have set a local key field that indicates that no other value
was committed to in previous rounds. Parties that are locked on a value
won’t be willing to participate in a later view in which another value was
suggested, unless key from a later view is provided. This mechanism helps
in guaranteeing the safety of decision values. If a commitment took place,
then there will be a large number of honest parties that are locked on that
value. Those parties won’t be willing to participate in views with different
values, which will prevent any party from setting a key in a later view with
a different value. This in turn will guarantee that no party will be able to
provide erroneous proof that the locks can be opened.
A lock consists of two values: lock, which is a view number, and lock_val
which is the value seen when setting the lock.
Commit: If an honest party commits to a value no other honest party ever
commits to another value, using the locking mechanism. Before terminat-
ing, parties make sure that every party will hear a large number of commit
messages, which will make sure they can also commit and terminate.

The parties proceed in 5 rounds in each view. The general idea is that parties
will first confirm that they all agree on the leader elected in the VLE protocol, set

20

a lock to elected leader’s proposal and confirm that they are all locked, commit
to the lock and terminate. If at any point they see that the VLE failed, then
they move onto a new view and announce that they are doing so (with proof).
In the NWH protocol, parties provided cryptographic proofs for their keys and
locks in the form of signatures on “echo” and “key” messages respectively. These
signatures are inherently transferable since they can be sent to any party which
can verify those signatures on their own. In order to allow the “transfer” of such
proofs, parties broadcast their “echo” and “key” messages. This allows a party
that formed a key or a lock to know that any other party will eventually hear the
same “echo” and “key” messages and believe that it could have formed that key
or lock. Similar techniques are employed when providing “blame” and “echo”
messages, which are used to inform parties of a failed VLE session.

In more detail:
Round 1: The first round in each view begins with a viewChange protocol. In
the viewChange protocol parties choose their proposals and broadcast them to all
parties. They send their current key to all other parties in a “suggest” message.
Before accepting a key, parties make sure that it could have been achieved in
the relevant view by waiting to receive the broadcasted messages required to
form a key (“echo” messages to be explained later). Upon accepting n− t keys,
parties choose the key and value from the most recent view and broadcast the
chosen key and value in a “proposal” message. Following that, they call the
VLE protocol to choose a leader for the current view, using leaderCorrecti as
an asynchronous validity predicate. This guarantees that any chosen leader has
already broadcasted a proposal.
Round 2: In the second round, parties check whether the VLE was successful or
not. If it was they continue in the view, but if it wasn’t they inform each other
and proceed to the next view.

– Upon electing a leader using the VLE protocol, if the leader’s proposed value
is correct then echo that message to all other parties and include a proof
that the this is the leader elected in the VLE protocol.

– If the leader’s proposed value is incorrect, send a “blame” message and a
proof that the this is the leader elected in the VLE protocol and that its
proposed value is incorrect and proceed to the next view. In this context,
by an incorrect proposal we mean that its key wasn’t high enough to open
the receiving party’s current lock. Every party can check that the purported
lock could have been set in a later view by waiting to receive the same
broadcasted “key” messages required to set a key.
Upon receiving a correct “blame” message and proof, send the “blame” mes-
sage to all parties and proceed to the next view.

– Upon receiving “echo” messages with two different values suggested by two
different leaders who were independently elected in the VLE protocol, send
an “equivocation” message containing the two values and the two proofs to
all parties, and proceed to the next view.
Upon receiving an “equivocation” message with different values and correct
proofs, forward that message, and proceed to the next view.

21

Round 3: Parties proceed to this round if they have received many “echo”
messages without seeing an error in the form of a “blame” or an “equivocation”
message. This also means that no other value was committed to in an earlier
view, meaning that a key can be formed. Upon receiving n− t “echo” messages,
update the key and key_val fields before sending a “key” message to all parties.
Round 4: Upon receiving n − t “key” messages, update the lock and lock_val
fields before sending a “lock” message to all parties. Before setting a lock, every
party makes sure that at least t+ 1 honest parties set their keys to the current
value. By doing that, every party guarantees that when choosing which value
and key to input to the VLE protocol, all honest parties will hear of the current
value and will be capable of opening any older lock an honest party might have.
Round 5: Finally, upon receiving n − t correct “lock” messages, parties send
“commit” messages with the same value. Such a message is sent after having
received “lock” messages from n− t parties, guaranteeing that t+1 parties have
set their lock in the current view. These parties will not be willing to echo any
message about any other value in subsequent views unless an adequate key is
provided. Since forming a key requires a message from one of those parties, we
can reason inductively that no correct key will be formed for a differing value in
any subsequent view.
Output: In order to allow parties to terminate, a termination gadget is also
run outside of any specific view. Similarly to Bracha broadcast [11], every party
echoes a “commit” message if it sees t + 1 such messages with the same value.
Finally, parties terminate after seeing n− t such messages.

Algorithm 6 AVABA(xi)

1: keyi ← 0, key_vali ← xi

2: locki ← 0, lock_vali ← ⊥
3: ∀v ∈ N proposalsi ← ∅, echoesi,v ← ∅, keysi,v ← ∅, locksi,v ← ∅
4: viewi ← 1
5: continually run checkTermination()
6: while true do
7: cur_view← viewi

8: as long as cur_view = viewi, run
9: delay any message from any view v such that v > viewi

10: call viewChange(viewi) and continually run the upon commands within it
11: continually run processMessages(viewi) and processFaults(viewi)
12: continue updating sets and participating in broadcasts from older views, but

do not send news messages or broadcasts or update keyi, key_vali, locki, lock_vali
in previous views

5.1 Security Analysis

In this section we will show that AVABA is an Asynchronously Validated Asyn-
chronous Byzantine Agreement protocol in Theorem 7. We start by proving

22

Algorithm 7 processMessages(view)

1: upon VLEi,view outputting `, π, do . continue updating state according to
VLEi,view

2: let (k, v) be a tuple such that (`, (k, v)) ∈ proposalsi,view
3: if k ≥ locki then
4: broadcast 〈“echo”, k, v, `, π, view〉
5: else
6: send 〈“blame”, k, v, `, π, locki, lock_vali, view〉 to every party j
7: viewi ← viewi + 1

8: upon receiving an 〈“echo”, k, v, `, π, view〉 broadcast from j, do
9: upon VLEVerifyi,view(`, π) terminating with the output 1, do

10: if (`, (k, v)) ∈ proposalsi,view then
11: echoesi,view ← echoesi,view ∪ {(j, k, v, `, π)}
12: if ∃(j′, k′, v′, `′, π′) ∈ echoesi s.t. (k, v) 6= (k′, v′) then
13: send 〈“equivocation”, k, v, `, π, k′, v′, `′, π′, view〉 to every party j
14: viewi ← viewi + 1
15: else if |echoesi,view| = n− t then
16: keyi ← view, key_vali ← v
17: broadcast 〈“key”, v, view〉
18: upon receiving a 〈“key”, v, view〉 broadcast from j, do
19: upon keyCorrecti,view+1(view, v) terminating with the output 1, do
20: keysi,view ← keysi,view ∪ {(j, v)}
21: if

∣∣keysi,view∣∣ = n− t then
22: locki ← view, lock_vali ← v
23: send 〈“lock”, v, view〉 to every party j

24: upon receiving the first 〈“lock”, v, view〉 message from j, do
25: upon lockCorrecti(view, v) terminating with the output 1, do
26: locksi,view ← locksi,view ∪ {(j, v)}
27: if |locksi,view| = n− t then
28: send 〈“commit”, v〉 to every party j

Algorithm 8 leaderCorrecti,view(`)

1: upon there being a tuple of the form (`, (k, v)) in proposalsi,view, do
2: output 1 and terminate

Algorithm 9 keyCorrecti,view(k, v)

1: if view > k then
2: upon validatei(v) terminating with the output 1, do
3: if k = 0 then
4: output 1 and terminate
5: else
6: upon |{j|∃k′, `, π s.t. (j, k′, v, `, π) ∈ echoesi,k}| ≥ n− t, do
7: output 1 and terminate

23

Algorithm 10 lockCorrecti(k, v)

1: if k = 0 then
2: output 1 and terminate
3: else
4: upon

∣∣{j|(j, v) ∈ keysi,k}
∣∣ ≥ n− t, do

5: output 1 and terminate

Algorithm 11 checkTermination()

1: upon receiving a 〈“commit”, v〉 message with the same value v from t+ 1 parties,
do

2: send 〈“commit”, v〉 to every party j if no such message has been previously sent
3: upon receiving a 〈“commit”, v〉 message with the same value v from n− t parties,

do
4: output v from the AVABA protocol and terminate AVABA

Algorithm 12 viewChange(view)

1: suggestions← ∅ . suggestions is a multiset
2: send 〈“suggest”, keyi, key_vali, view〉 to every party j
3: upon receiving the first 〈“suggest”, k, v, view〉 message from party j such that k <

view, do
4: upon keyCorrecti,view(k, v) terminating with the value 1, do
5: suggestions← suggestions ∪ {(k, v)}
6: if |suggestions| = n− t then
7: (k, v)← argmax(k,v)∈suggestions{k} . break ties arbitrarily
8: if k = 0 then
9: (k, v)← (0, xi)

10: broadcast 〈“proposal”, k, v, view〉
11: upon receiving a 〈“proposal”, k, v, view〉 broadcast from j, do
12: upon keyCorrecti,view((k, v)) terminating with the output 1, do
13: proposalsi,view ← proposalsi,view ∪ {(j, (k, v))}
14: if j = i then
15: call VLEi,view() with the validity predicate leaderCorrecti,view

Algorithm 13 processFaults(view)

1: upon receiving the first 〈“blame”, k, v, leader, π, l, lv, view〉 message from j, do
2: upon lockCorrecti(l, lv) and VLEVerifyi,view(leader, π) terminating with the out-

put 1, do
3: if k < l and (leader, (k, v)) ∈ proposalsi,view then
4: send 〈“blame”, leader, π, l, lv, view〉 to every party j
5: viewi ← viewi + 1

6: upon receiving the first 〈“equivocation”, k, v, `, π, k′, v′, `′, π′, view〉 message from
j, do

7: upon VLEVerifyi,view(`, π) and VLEVerifyi,view(`
′, π′) terminating with the output

1, do
8: if (`, (k, v)), (`′, (k′, v′)) ∈ proposalsi,view and (k, v) 6= (k′, v′) then
9: send 〈“equivocation”, k, v, `, π, k′, v′, `′, π′, view〉 to every party j

10: viewi ← viewi + 1

24

several lemmas. Lemma 5 and Lemma 6 are instrumental for showing the safety
of the protocol. By that we mean that if some honest party outputs a value v,
no other honest party outputs a differing value v′ 6= v. The Correctness property
of the protocol is then an immediate consequence of Lemma 11.

The remaining lemmas deal with the liveness of the protocol. By that we
mean that eventually some progress is made, leading to the termination of the
protocol. More specifically, we start by showing that parties don’t get stuck
in any view without being able to output a value or to progress to the next
view. We then show that once an honest party is chosen as a leader that is the
unique verifiable output from the VLE protocol (which happens with constant
probability), all honest parties will commit at the end of the view.

We start by defining what it means for a key or lock to be correct.

Definition 2. A “key” message of the form 〈“key”, v, view〉 is said to be correct
if for some honest i, keyCorrecti,view′(view, v) = 1 holds for every view′ > view.
Similarly, a “lock” message of the form 〈“lock”, v, view〉 is said to be correct if
lockCorrecti(view, v) = 1 for an honest i. In addition, the value of each such
message is said to be the field v.

As stated above, the following two lemmas are used in the proof that the
protocol is safe. First, we show that in any given view only one value can proceed
into the later rounds, meaning that any two values committed to in a single view
must be the same. Following that, we show that if an honest party committed to
a value, there are t+ 1 honest parties that won’t send “echo” messages for any
other value in any subsequent view. This prevents any other value from being
included in correct “key” or “lock” messages, thus preventing other values from
being committed to in later views. This idea is explored more fully and proved
in Lemma 11. The proofs for the lemmas are provided in Appendix D.

Lemma 5. If two messages from a given view are correct, they both have the
same value v.

Lemma 6. If an honest party sends a 〈“commit”, v〉 message in line 28 of
processMessages(view), then for any view′ ≥ view there exist t+ 1 honest parties
that never send an 〈“echo”, k′, v′, `′, π′, view′〉 message with v′ 6= v .

We now turn to deal with the liveness of the protocol, showing that parties
either progress through views or terminate.

Definition 3. An honest party i is said to reach a view if at any point its local
viewi field equals view. Similarly, an honest party i is said to be in view if its
local viewi field equals view at that time.

We will start by showing that the methods used for validating leaders, keys
and locks are asynchronous validity predicates and that keys and lock are always
correct according to the party holding them. This means that parties can use
the VLE protocol with leaderCorrect as an asynchronous validity predicate. In
addition, this means that every honest party will be convinced of the correctness

25

of other parties’ keys and locks, allowing them to progress through views in the
case that “blame” messages are sent. The proofs of the lemmas are provided
in Appendix E

Lemma 7. Let keyCorrectview and leaderCorrectview be the predicates defined by
keyCorrecti,view and leaderCorrecti,view for every i respectively. keyCorrectview and
leaderCorrectview are asynchronous validity predicates for every view. Further-
more, for any view > keyi, keyCorrecti,view(keyi, key_vali) = 1 at any point in
time.

Lemma 8. lockCorrect is an asynchronous validity predicate. Furthermore, at
any point in time lockCorrecti,view(locki, lock_vali) = 1.

The next lemmas show that progress is made. We start in Lemma 9 by
showing that parties don’t get stuck in a view. More precisely, if no honest party
completes the protocol in a given view, every honest party eventually reaches
the next view. Lemma 10 then shows that if an honest party is chosen as the
unique verifiable leader using the VLE protocol, the adversary cannot convince
any honest party to proceed to the next view using a “blame” message. We then
show in Lemma 11 that if some honest party terminates, every honest party does
so as well. Finally, Lemma 12 shows that there is a constant probability of all
parties terminating in any given view, using the fact that there is a 1

3 probability
that an honest party is elected in that view. The proofs of the following lemmas
are straightforward, and mostly consist of showing that parties eventually send
the required messages and reach agreement. The lemmas are stated here, but
proved in Appendix F.

Lemma 9. If every honest party i has an input xi such that validatei(xi) = 1
at the time it calls AVABA, all honest parties participate in the protocol, and no
honest party terminates during any view′ such that view′ < view, then all honest
parties reach view.

Lemma 10. If an honest j broadcasts a 〈“proposal”, k, v, view〉 message, then
no honest party sends a 〈“blame”, k, v, j, π, l, lv, view〉 message for any π, l, lv.

Lemma 11. If some honest party outputs v and terminates, then all honest
parties eventually do so as well.

Lemma 12. If all honest parties start view and every honest i has an input xi

such that at the time it calls the AVABA protocol validatei(xi) = 1, then with
constant probability all honest parties terminate during view.

As in the description of the VLE protocol, the resilience threshold of t < n
4

because of the use of a packed AVSS protocol with guaranteed termination.
Similarly to above, any resilience threshold between n

4 and n
3 can be adopted

by allowing an ε probability of error or non termination in the AVSS protocol,
yielding the result of Theorem 2.

26

Theorem 7. Protocol AVABA is a Validated Asynchronous Byzantine Agree-
ment protocol resilient to t < n

4 Byzantine parties.

Proof. Each property is proven individually.
Correctness. This property was proven in Lemma 11.
Validity. Before some honest i outputs a value v, it sends 〈“commit”, v, view〉

message. As discussed in the proof of Lemma 11, at least n − t parties sent
“key” messages in view with the value v as well. At least one of those par-
ties is honest. Party i only sends a 〈“key”, v, view〉 message after receiving an
〈“echo”, k, v, `, π, view〉 message such that VLEVerifyi,view(`, π) terminates and
(`, (k, v)) ∈ proposalsi,view. Party i adds a tuple (`, (k, v)) to proposalsi,view after
receiving a 〈“proposal”, k, v, view〉 from ` and having keyCorrecti,view(k, v) = 1.
Before keyCorrecti,view(k, v) terminates with the output 1, i sees that validatei(v)
= 1. Therefore, validatei(v) = 1 at that time.

Termination. If at any point an honest party terminates, from Lemma 11,
all honest parties do so as well. Now assume that every honest party i has an
input xi such that validatei(xi) = 1 at the time it calls AVABA and that all
honest parties participate in the protocol. Observe some view, and assume no
honest party terminated during view′ for any view′ < view. In that case, from
Lemma 9 all honest parties eventually reach view. Then, from Lemma 12, with
constant probability all honest parties terminate during view. In order for an
honest party not to terminate by view, that constant probability event must not
have happened in each one of the previous views. The honest parties run the VLE
protocol with independent randomness in each view and thus for any adversary’s
strategy, there is an independent constant probability of terminating in each
view. Therefore, the probability of reaching a given view decreases exponentially
with the view number and thus approaches 0 as view grows. In other words, all
honest parties almost-surely terminate.

Quality. Assume some honest party i completed the protocol, otherwise
the claim holds trivially. This means that it at least completed the VLE pro-
tocol in view = 1. From the α-Binding property of VLE, with probability α or
greater the binding value is the index `∗ of some party that behaved in an hon-
est manner when starting VLE. From the Completeness and Validity properties
of VLE, at that time leaderCorrecti,view(`

∗) = 1 and thus there exists some tu-
ple (`∗, (k, v)) ∈ proposalsi,view at that time, which was added after receiving
a 〈“proposal”, k, , v, view〉 broadcast from `∗. Using the same arguments as the
ones made in Lemma 12, in that case no honest party sends a “blame” or an
“equivocation” message during view. Then, following similar logic to the one in
Lemma 12, every honest party that hasn’t committed due to a message from
an earlier view eventually terminates after sending a “commit” message with
the value v proposed by party i. No party can commit due to a message from
an earlier view because there is no earlier view. Therefore, every honest party
that participates in view and outputs a value from VLE, terminates and out-
puts the value v that `∗ proposed. Before sending its proposal, `∗ sees that
|suggestions| = n− t. `∗ only adds a tuple to suggestions after receiving the first
〈“suggest”, k, v, view〉 message from each party. Each of those tuples must have

27

k < view = 1 because keyCorrecti,1(k, v) = 1. At that time no honest party
updated its keyj and key_valj fields, so they send messages with k = 0. Since at
least one of the n − t messages was sent by an honest party, there exists some
(k, v) ∈ suggestions such that k = 0, and as shown above there is no such tuple
with k > 0. Therefore, when computing choosing the tuple (k, v), i sees that the
tuple with maximal k in suggestions has k = 0. Party i then sets (k, v) = (0, xi,),
with xi being its input to the AVABA protocol. As shown above, with constant
probability all honest parties that start view output xi, completing the proof.

5.2 Efficiency

We set m to be the size of inputs to the protocol and we use the same broad-
cast and packed AVSS protocols as described in the previous efficiency sections.
Similarly to above, define O(b(m)) to be the number of words sent when broad-
casting messages with O(m) values, and O(s(n)),O(r(n)) to be the number
of words sent while sharing n secrets and reconstructing the sum of secrets
O(n) secrets respectively. Using the same protocols as above we get b(m) =
n2 log n + n · m, s(n) = n4, r(n) = n3. Using these values in the theorem be-
low, we get an Asynchronously Validated Asynchronous Byzantine Agreement
protocol with an efficiency of O(n5 + n2 ·m).

Theorem 8. The expected total number of words sent in the AVABA protocol is
O(n · (b(n+m)+ s(n)+ r(n)+n2 +n ·m)) and all parties terminate after O(1)
rounds in expectation.

Proof. In each view, every party sends a constant number of messages of size
O(n+m) to all parties, totalling in O(n3+n2 ·m) words. In addition, each party
broadcasts messages of size O(n+m), totalling in O(nb(n+m)) additional sent
words. Finally, each party calls VLE once in each view, adding O(n·(b(n)+s(n)+
r(n))) total words. Summing all of these terms gives the result of O(n · (b(n +
m) + s(n) + r(n) + n2 + n ·m)) total words in each view. In addition, each view
consists of protocols that terminate in O(1) rounds, yielding a constant number
of rounds per view.

As shown in the proof of termination, all parties terminate in a given view
with probability 1

3 or greater. This means that the expected number of views
required in the protocol is at most 3, meaning that the protocol also requires an
expected constant number of rounds and O(n·(b(n+m)+s(n)+r(n)+n2+n·m))
words to be sent in expectation overall.

6 Agreement on a Core Set

Using the above Validated Asynchronous Byzantine Agreement protocol, we
construct a protocol ACS for agreement on a core set. Each party i has access
to an asynchronous validity predicate validatei such that eventually for at least
n− t indices k ∈ [n], validatei(k) = 1.

A functionality for Agreement on a Core Set, using the above protocol, is
also provided in Appendix G

28

Algorithm 14 ACSi()

1: Si ← ∅
2: call validatei(k) for every k ∈ [n]
3: upon validatei(k) terminating with the output 1 for some k ∈ [n], do
4: Si ← Si ∪ {k}
5: if |Si| = n− t then
6: call AVABAi(Si) with the asynchronous validity predicate ACSValidityi
7: upon AVABA terminating with the output S, do
8: output S and terminate

Algorithm 15 ACSValidityi(S)

1: if S ⊆ [n], |S| ≥ n− t then
2: upon S ⊆ Si, do
3: output 1 and terminate

6.1 Security Analysis

We will start by showing that ACSValidity is indeed an asynchronous validity
predicate, and then show that ACS is a protocol for agreeing on a core set.

Lemma 13. ACSValidity is an asynchronous validity predicate.

Proof. Let i, j be two honest parties and assume ACSValidityi(S) = b at some
point in time. Note that ACSValidity only outputs 1, so b = 1. We will show each
property independently

Finality. If ACSValidityi(S) = 1, then i saw that S ⊆ [n], |S| ≥ n − t and
that S ⊆ Si. The first two conditions clearly continue to hold. Honest parties
never remove indices from their Si sets, so S ⊆ Si will continue to hold, and
thus ACSValidityi(S) will terminate with the output 1 in the future as well.

Correctness. Similarly to above, i saw that S ⊆ [n], |S| ≥ n − t and that
S ⊆ Si. Any honest j that calls ACSValidityj(S) will also see that S ⊆ [n] and
that |S| ≥ n− t. In addition, i added indices k to Si after calling validatei(k) and
getting the output 1. When starting the ACS protocol, j also calls validatej(k)
for every k ∈ [n], and from the Consistency of the validate, validatej(k) will
eventually return 1 for every k ∈ Si. After receiving such an output for every
k ∈ Si, Si ⊆ Sj and thus S ⊆ Sj as well, at which point ACSValidityj(S)
terminates with the output 1 as well.

Theorem 9. ACS is an Agreement on a Core Set protocol resilient to t < n
3

Byzantine parties.

Proof. We will prove each property independently.
Agreement. Assume two honest parties output sets from the ACS protocol.

Those sets are the parties’ output from the AVABA protocol, and thus from the
Agreement protocol of AVABA they are equal.

29

Validity. Assume some honest party i outputs a set S from the ACS protocol.
That set is its output from the AVABA protocol, so ACSValidityi(S) = 1 at that
time from the Validity property of AVABA. This means that S ⊆ [n], |S| ≥ n− t
and that at that time S ⊆ Si. Note that i only adds indices k ∈ [n] for which
validatei(k) = 1 to Si, and thus ∀k ∈ S, validatei(k) = 1 at that time.

Termination. Every honest i starts the protocol by calling validatei(k) for
every k ∈ [n]. By assumption, there exists a set S ⊆ [n] such that |S| ≥ n−t and
for every k ∈ S, eventually validatei(k) = 1. After i sees that this is the case for
every k ∈ S, it adds each of those indices to Si and sees that |Si| = n− t. Follow-
ing that it calls the AVABA with the input Si. Note that Si ⊆ [n], |Si| ≥ n−t and
that at that time Si ⊆ Si. In other words, every honest party calls AVABA with
a valid input and using the asynchronous validity predicate ACSValidity. From
the Termination property of AVABA all honest parties complete the protocol,
after which they output a value from the ACS protocol and terminate.

Note that parties simply call the AVABA protocol with inputs of size O(n)
without sending additional messages, and thus the ACS protocol has the same
efficiency as the AVABA protocol, yielding an ACS protocol with O(n5) commu-
nication complexity.

7 Acknowledgments

We would like to thank the anonymous reviewers of Crypto 2022 for pointing
out that [9] claimed to solve parallel broadcast also in asynchrony and the folk-
lore assumption that this implies they also solve Agreement on a Core Set in
asynchrony. This caused us to be clearer that we believe [9] does not claim and
cannot be used directly to solve Agreement on a Core Set in asynchrony.

References

1. Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra. Asymptotically
free broadcast in constant expected time via packed vss. In Theory of Cryptography:
20th International Conference, TCC 2022, Chicago, IL, USA, November 7–10,
2022, Proceedings, Part I, pages 384–414. Springer, 2023.

2. Ittai Abraham, Danny Dolev, and Gilad Stern. Revisiting asynchronous fault tol-
erant computation with optimal resilience. Distributed Computing, 35(4):333–355,
2022.

3. Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern,
and Alin Tomescu. Reaching consensus for asynchronous distributed key gener-
ation. In Proceedings of the 2021 ACM Symposium on Principles of Distributed
Computing, pages 363–373, 2021.

4. Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically Op-
timal Validated Asynchronous Byzantine Agreement. In Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing, page 337–346, New York,
NY, USA, jul 2019. ACM.

30

5. Ittai Abraham and Gilad Stern. Information theoretic hotstuff. In OPODIS, vol-
ume 184 of LIPIcs, pages 11:1–11:16, Dagstuhl, Germany, 2020. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik.

6. Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xi-
ang, and Haibin Zhang. Balanced byzantine reliable broadcast with near-optimal
communication and improved computation. In Proceedings of the 2022 ACM Sym-
posium on Principles of Distributed Computing, PODC’22, page 399–417, New
York, NY, USA, 2022. Association for Computing Machinery.

7. Laasya Bangalore, Ashish Choudhury, and Arpita Patra. Almost-surely terminat-
ing asynchronous byzantine agreement revisited. In Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, pages 295–304, 2018.

8. Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure compu-
tation. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory
of Computing, STOC ’93, page 52–61, New York, NY, USA, 1993. Association for
Computing Machinery.

9. Michael Ben-Or and Ran El-Yaniv. Resilient-optimal interactive consistency in
constant time. Distributed Comput., 16(4):249–262, 2003.

10. Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations
with optimal resilience (extended abstract). In Proceedings of the Thirteenth An-
nual ACM Symposium on Principles of Distributed Computing, PODC ’94, page
183–192, New York, NY, USA, 1994. Association for Computing Machinery.

11. Gabriel Bracha. Asynchronous byzantine agreement protocols. Inf. Comput.,
75(2):130–143, 1987.

12. Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and
Efficient Asynchronous Broadcast Protocols. In Joe Kilian, editor, Advances in
Cryptology — CRYPTO 2001, pages 524–541, Berlin, Heidelberg, 2001. Springer
Berlin Heidelberg.

13. Ran Canetti. Studies in secure multiparty computation and applications. PhD
thesis, Citeseer, 1996.

14. Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal
resilience. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory
of Computing, STOC ’93, page 42–51, New York, NY, USA, 1993. Association for
Computing Machinery.

15. Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Margo I.
Seltzer and Paul J. Leach, editors, Proceedings of the Third USENIX Symposium on
Operating Systems Design and Implementation (OSDI), New Orleans, Louisiana,
USA, February 22-25, 1999, pages 173–186. USENIX Association, 1999.

16. Ashish Choudhury and Arpita Patra. An efficient framework for unconditionally
secure multiparty computation. IEEE Transactions on Information Theory, 2016.

17. Thomas Dinsdale-Young, Bernardo Magri, Christian Matt, Jesper Buus Nielsen,
and Daniel Tschudi. Afgjort: A partially synchronous finality layer for blockchains.
In Clemente Galdi and Vladimir Kolesnikov, editors, Security and Cryptography
for Networks - 12th International Conference, SCN 2020, Amalfi, Italy, September
14-16, 2020, Proceedings, volume 12238 of Lecture Notes in Computer Science,
pages 24–44. Springer, 2020.

18. Paul Neil Feldman. Optimal algorithms for Byzantine agreement. PhD thesis,
Massachusetts Institute of Technology, 1988.

19. Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM, 32(2):374–382,
April 1985.

31

20. Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.
Dumbo-ng: Fast asynchronous BFT consensus with throughput-oblivious latency.
In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, pages 1187–1201. ACM,
2022.

21. Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for
byzantine agreement. Journal of Computer and System Sciences, 75(2):91–112,
2009.

22. Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abra-
ham. Hotstuff: Bft consensus with linearity and responsiveness. In Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing, PODC ’19,
page 347–356, New York, NY, USA, 2019. Association for Computing Machinery.

32

A Definitions for Protocols Used in Our Constructions

A.1 Reliable Broadcast

A Reliable Broadcast is an asynchronous protocol with a designated sender. The
sender has some input value M from some known domain M and each party may
output a value in M. A Reliable Broadcast protocol has the following properties
assuming all honest parties participate in the protocol:

– Agreement. If two honest parties output some value, then it’s the same
value.

– Validity. If the dealer is honest, then every honest party that completes the
protocol outputs the dealer’s input value, M .

– Termination. If the dealer is honest, then all honest parties complete the
protocol and output a value. Furthermore, if some honest party completes
the protocol, every honest party completes the protocol.

A.2 Packed Asynchronous Verifiable Secret Sharing

A packed asynchronous verifiable secret sharing protocol (packed AVSS) over a
finite field F consists of a pair of protocols (Share,Reconstruct) with a designated
party acting as dealer. The dealer has inputs s1, . . . , sm ∈ F to the Share protocol
for some m ∈ N, whereas the rest of the parties have no input. On the other
hand, each party can call Reconstruct(k) for each k ∈ [m], and output some
value from the protocol. Honest parties only call the Reconstruct protocol after
having completed the Share protocol. A packed AVSS protocol has the following
properties:

– Correctness. Once the first honest party completes the Share protocol,
there exist values r1, . . . , rm such that:
• if the dealer is honest then ∀k ∈ [m] rk = sk; and
• if some honest party completes Reconstruct(k) for some k ∈ [m], then its

output is rk.
– Termination. If all honest parties participate in the Share protocol, then:

• if the dealer is honest, all honest parties complete the Share protocol;
and

• if some honest party completes the Share protocol, then all honest parties
complete the share protocol.

In addition, if all honest parties participate in Reconstruct(k) then they all
complete the protocol.

– Secrecy. If the dealer is honest and no honest party called Reconstruct(k)
for some k ∈ [m], then the adversary’s view is distributed independently of
sk.

In addition, we are interested in protocols that allow reconstructing sums
of secrets. That is, packed AVSS schemes with an additional Sum− Reconstruct
protocol that takes an input dealers ⊆ [n] and an input k ∈ N and outputs

33

a value. Parties call Sum− Reconstruct(k, dealers) only after having completed
the Share protocol with i as dealer for every i ∈ dealers. The Sum− Reconstruct
protocol has the following two properties:

– Correctness. If an honest party completes Sum− Reconstruct(k, dealers) for
some k ∈ [m], then its output is

∑
i∈dealers ri,k, with ri,k being the value rk

defined for the dealer i in the Correctness property above.
– Termination. If all honest parties call Sum− Reconstruct(k, dealers), then

they all complete the protocol.

Note that it is possible to trivially construct a packed AVSS protocol from an
AVSS protocol (i.e. a protocol with m = 1) by simply sharing each value inde-
pendently. However, some protocols allow to share several values more efficiently
than sharing them independently. In addition, it is possible to reconstruct the
sum

∑
i∈dealers ri,k by simply reconstructing each of the ri,k values individually

and then summing the outputs. However, some protocols allow for more efficient
reconstruction of sums as well.

B Proofs of Lemmas for the Gather Protocol

Lemma 1. Assume some honest party completed the protocol. There exists some
i∗ such that at least t+ 1 parties sent broadcasts of the form 〈2, T 〉 with i∗ ∈ T .

Proof. Assume some honest party completed the protocol. Before completing
the protocol, it found that |Ui| ≥ n− t, and thus it received n− t broadcasts of
the form 〈2, Tj〉 such that |Tj | ≥ n− t. Let I be the set of parties who sent those
broadcasts. Now assume by way of contradiction that every index k appears in
at most t of the broadcasted sets Tj such that j ∈ I. Since there are a total of
n possible values, this means that the total number of elements in all sets is no
greater than nt. On the other hand, there are n − t such sets, each containing
n− t elements or more, resulting in at least (n− t)2 elements overall. Combining
these two observations:

(n− t)2 ≤ nt

n2 − 2nt+ t2 ≤ nt

n2 − 3nt+ t2 ≤ 0

However, by assumption n > 3t, and thus:

0 ≥ n2 − 3nt+ t2

= n2 − n · (3t) + t2

> n2 − n2 + t2

= t2 ≥ 0

reaching a contradiction. Therefore, there exists at least one value i∗ such that
for at least t+ 1 of the 〈2, T 〉 broadcasts sent, i∗ ∈ T .

34

Lemma 2. Let i, j be two honest parties. Observe the sets Ti, Ui at any time
throughout the protocol. Eventually Ti ⊆ Tj and Ui ⊆ Uj.

Proof. Observe some k ∈ Ti. Party i added k to Ti after receiving a 〈1, Sk〉 broad-
cast from k such that |Sj | ≥ n − t and seeing that validatei(x) = 1 for every
x ∈ Sk. From the Agreement and Termination properties of the broadcast pro-
tocol, j eventually receives the same message and from the Consistency property
of the asynchronous validity predicate, it will eventually see that validatei(x) = 1
for every x ∈ Sk. At that point j will add k to Tj as well. Similarly, observe
some (k, Vk) ∈ Ui. Party i received a 〈2, Tk〉 message such that |Tk| ≥ n− t and
saw that Tk ⊆ Ti. Party j will also receive that same message and eventually see
that Tk ⊆ Ti ⊆ Tj , at which point it will add a tuple (k, V ′

k) to Ui. Note that
both parties compute Vk and V ′

k to be the union of the Sl sets such that l ∈ Tk.
Since both of them receive the same broadcasts 〈1, Sl〉, they both compute the
same set, and thus j adds the same tuple (k, V ′

k) = (k, Vk) to its Uj set.

C Proofs of Lemmas for the VLE Protocol

Lemma 3. Let i and j be honest parties. Observe the sets dealersi,attachedi,
and ranksi at any time throughout the protocol. Eventually dealersi ⊆ dealersj,
attachedi ⊆ attachedj and ranksi ⊆ ranksj.

Proof. Let k be some index in dealersi. Party i adds k to dealersi after completing
all Share calls with k as dealer. From the Termination property of the AVSS
scheme, j completes those calls as well and adds k to dealersj .

Let (k, dealersk) be a tuple in attachedi. Party i adds the tuple to attachedi
after receiving an 〈“attach”, dealersk〉 broadcast from k, seeing that dealersk ⊆
dealersi, that |dealersk| ≥ t+1 and that validatei(k) = 1. Eventually j receives the
same broadcast and as shown above eventually sees that dealersk ⊆ dealersi ⊆
dealersj and from the Consistency property of validate, validatej(k) eventually
terminates with the output 1 as well. It then adds (k, dealersk) to attachedj .

Finally, let (k, rk) be a tuple in ranksi. Party i adds such a tuple to ranksi
after calling Sum− Reconstruct(k, dealersk) for (k, dealersk) ∈ attachedi and the
protocol terminating with the output rk. Before calling the protocol, i receives a
〈“candidates”, candidatesl〉 broadcast from some party l such that k ∈ candidatesl
and that GatherVerifyl(candidatesl) terminates with the output 1. In addition i
completes its call to Gatheri, which it called after having |attachedi| = n −
t. As shown above, eventually attachedj ⊆ attachedi, so j will also see that
|attachedj | = n− t at some point. It will then call Gatherj , and from the Termi-
nation property of the Gather protocol complete the call to Gatherj as well. In ad-
dition, j will receive the same “candidates” broadcast, and from the Agreement
on Verification property of GatherVerify, GatherVerifyj(candidatesl) will termi-
nate with the output 1, at which point j will call Sum− Reconstruct(k, dealersk).
Finally, from the correctness property of the AVSS protocol, the protocol will
terminate with the output rk and j will add (k, rk) to ranksj .

35

Lemma 4. checkValidity is an asynchronous validity predicate.

Proof. We will show that the predicate has the Finality and Consistency prop-
erties.

Finality. Assume that checkValidityi(k) terminated with the output b for
some honest i. First note that checkValidityi never outputs 0 so b = 1. In that
case, i saw that there exists a tuple of the form (k, dealersk) in attachedi. Parties
never remove tuples from their attachedi sets, so i will output 1 in any subsequent
calls to checkValidityi(k).

Consistency. Assume that checkValidityi(k) = 1 for some honest k. Since
checkValidityi(k) = 1, i saw that there exists a tuple of the form (k, dealersk) in
attachedi. From Lemma 3, eventually (k, dealersk) will be added to attachedj as
well, and checkValidityj(k) will terminate with the output 1.

D Proofs of AVABA Safety

Lemma 5. If two messages from a given view are correct, they both have the
same value v.

Proof. First, observe two correct messages 〈“key”, v, view〉 and 〈“key”, v′, view〉.
The messages are correct, so keyCorrecti,view+1(view, v) = 1 for some honest i. Be-
cause view > 0, this must mean that |{j|∃`, k′, π s.t.(j, k′, v, `, π) ∈ echoesi,view| ≥
n − t. Party i adds a tuple (j, k′, v, `, π) to echoesi,view after receiving a broad-
casted 〈“echo”, k′, v, `, π, view〉 message from j. This means that i received such a
broadcast with the same value v from at least n− t parties. For similar reasons,
j also received similar broadcasts with the value v′ from n − t parties. Since
n ≥ 3t + 1 at least t + 1 of those broadcasts must have been received from the
same parties, and thus the received values v, v′ are the same value.

Now observe a correct “lock” message 〈“lock”, v′, view〉. Similarly to the
case above, for some honest i, lockCorrecti(view, v

′) = 1 with view > 0, so∣∣{j|(j, v′) ∈ keysi,view
∣∣ ≥ n− t. Following similar logic to above, this means that

i received correct 〈“key”, v′, view〉 broadcasts from n − t parties before adding
those tuples to keysi,view. As shown above, all of those messages have the same
value v, and thus also v′ = v.

Lemma 6. If an honest party sends a 〈“commit”, v〉 message in line 28 of
processMessages(view), then for any view′ ≥ view there exist t+ 1 honest parties
that never send an 〈“echo”, k′, v′, `′, π′, view′〉 message with v′ 6= v .

Proof. We will prove inductively that for any view′ ≥ view, there must exist
t+ 1 such honest parties. First observe view′ = view. Since some honest i sends
a 〈“commit”, v〉 in line 28, it added n− t tuples (j, v) to locksi,view and saw that
|locksi,view| = n − t. An honest i only does so after receiving 〈“lock”, v, view〉
messages from n − t parties and seeing that lockCorrecti(view, v) = 1. Out of
those parties, at least t + 1 were honest, and they sent their 〈“lock”, v, view〉
broadcast after seeing that

∣∣keysj,view∣∣ ≥ n − t. Following similar logic, they

36

received n − t 〈“key”, v, view〉 messages and saw that they are correct. At least
one of those messages was sent by an honest i that added n−t tuples of the form
(j, k, v, `, π) to its echoes set after receiving 〈“echo”, k, v, `, π, view〉 broadcasts
from n− t parties. Note that i sent a “key” message, so it did not change view
before sending the message, meaning that it did not send an “equivocation”
message at that time and thus at that time there were every tuple (j, k, v, `, π)
in echoesi,view had the same k and v. In other words, it sent its 〈“key”, v, view〉
message after receiving an “echo” broadcast with the same value v from n − t
parties. Out of those parties, at least t + 1 are honest and they only send one
“echo” broadcast per view. From Lemma 5, all correct “key” and “lock” messages
from view had the same value v, and thus the “commit” message had the same
value as well.

Assume the claim holds for every view′′ such that view′ > view′′ ≥ view. As
shown above, there are at least t + 1 honest parties that send 〈“lock”, v, view〉
broadcasts. Every honest party j only sends such a message after setting its lockj
field to view. Let the set of those honest parties be I. It is important to note that
the field lockj only grows throughout the protocol, so every one of the parties j
such that j ∈ I has lockj ≥ view from that point on. Now assume by way of con-
tradiction that some party j ∈ I sent an 〈“echo”, k′, v′, `′, π′, view′〉 message with
v′ 6= v. Before doing that, it output `′, π′ from VLEi,view′ . From the Completeness
and Validity properties of the VLE protocol, leaderCorrecti,view′(`′, π) = 1 at that
time, so there was a tuple (`′, (k′, v′)) ∈ proposalsi,view′ , and k′ ≥ lockj ≥ view be-
cause i did not send a “blame” broadcast. Party i adds such a tuple after receiving
a 〈“proposal”, k′, v′, view′〉 from `′ and seeing that keyCorrecti,view′((k′, v′)) = 1,
so view′ > k′ and |{j′|∃k′′, `′, π′′ s.t. (j′, k′′, v′, `′, π′′) ∈ echoesj,k′}| ≥ n − t.
As discussed above, each honest party only adds a tuple (j′, k′′, v′, `′, π′′) to
echoesj,k′ after receiving an “echo” message with the value v′ from j′. However,
view′ > k′ ≥ view, so by assumption there exist t + 1 parties that never send
such a message in view k′. Any set of n− t parties that sent the “echo” broad-
casts must have at least one party in common with the parties in I, reaching a
contradiction.

E Proofs of the Correctness of AVABA’ Asynchronous
Validity Predicates

Lemma 7. Let keyCorrectview and leaderCorrectview be the predicates defined by
keyCorrecti,view and leaderCorrecti,view for every i respectively. keyCorrectview and
leaderCorrectview are asynchronous validity predicates for every view. Further-
more, for any view > keyi, keyCorrecti,view(keyi, key_vali) = 1 at any point in
time.

Proof. Let i, j be two honest parties and assume that at some point in time
keyCorrecti,view(k, v) = b and leaderCorrecti,view(`) = b. Note that both keyCorrect
and leaderCorrect only output 1, so b = 1.

Finality. The first things that i does in keyCorrecti(k, v) are checking that
view > k and that validatei(v) = 1. From the Finality property of validate,

37

validatei(v) will output 1 in the future as well. This means that if k = 0,
keyCorrecti,view(k, v) terminates with the output 1 in any time in the future.
If k 6= 0, then |{j|∃k′, `, π s.t. (j, k′, v, `, π) ∈ echoesi,k, }| ≥ n− t. Honest parties
do not remove values from echoesi,k, so this will continue to hold in the future
and keyCorrecti,view(k, v) will output 1 and terminate in any future call. Addi-
tionally, if leaderCorrecti,view(`) returned 1, then there was a tuple of the form
(`, (k, v)) in proposalsi,view. Parties don’t remove tuples from proposalsi,k either,
so this will continue to hold as well and thus leaderCorrecti,view(`) will return 1
in the future.

Consistency. As shown above, view > k and validatei(v) = 1. Therefore,
from the Consistency property of validate, validatej(v) = 1 will also eventually
hold. If k = 0, then keyCorrectj,view(k, v) will terminate at that time and output
1. We will now prove by induction on view that any call keyCorrectj,view(k, v)
eventually terminates and outputs 1 if keyCorrecti,view(k, v) does and that any call
leaderCorrectj,view(`) eventually terminates and outputs 1 if leaderCorrecti,view(`)
does. For view = 1, since keyCorrecti,view(k, v) = 1, view > k, and thus k = 0.
In this case, we’ve already shown above that keyCorrectj,view(k, v) will terminate
with the output 1. In addition, if leaderCorrecti,view(`) terminates with the output
1, then there exists a tuple of the form (`, (k′, v′)) in proposalsi,view. i adds such
a tuple after receiving a 〈“proposal”, k′, v′, view〉 broadcast from ` and seeing
that keyCorrecti,view(k

′, v′) = 1. j will receive the same broadcast and as shown
above, eventually see that keyCorrectj,view(k

′, v′) = 1. Following that j will add
(`, (k′, v′)) to proposalsi,view and return 1 from leaderCorrectj,view(`).

Now assume that the claim holds for every view′ < view. This means that for
every view′ < view, keyCorrecti,view′ and leaderCorrecti,view have both the Finality
and Consistency properties, and are thus asynchronous validity predicates. As
above, |{j|∃k′, `, π s.t. (j, k′, v, `, π) ∈ echoesi,k}| ≥ n − t. Party i adds a tu-
ple of the form (j, k′, v, `, π) to echoesi,k after receiving an 〈“echo”, k′, v, `, π, k〉
broadcast from a party `, having VLEVerifyi,k(`, π) terminate with the output 1
and seeing that (`, (k′, v)) ∈ proposalsi,k. Party j will receive the same broad-
casts and call VLEVerifyj,k(`, π). Note that view > k and thus leaderCorrectk
is an asynchronous validity predicate, so from the Agreement on Verification
property of VLEVerify, eventually VLEVerifyj,k(`, π) will terminate with the out-
put 1 for every such tuple. From the Validity property of VLEVerify, at that
time leaderCorrectj,k(`) = 1, so there is a tuple (`, (k′′, v′)) ∈ proposalsj,k. i and
j add those tuples to proposalsj,k after receiving the same 〈“proposal”, k′, v, k〉
broadcast from `. This means that j adds the same tuples to echoesi,k and even-
tually sees that the same condition holds, at which point it will output 1 from
keyCorrecti,view.

As for leaderCorrectview, similarly to above, there exists a tuple of the form
(l, (k′, v′)) in proposalsi,view because leaderCorrecti,view(`) = 1, so i received a
〈“proposal”, k′, v′, view〉 broadcast from j and saw that keyCorrecti,view(k

′, v′) =
1. j will receive the same broadcast, and from the Consistency property of
keyCorrectview, eventually see that keyCorrectj,view(k

′, v′) = 1. At that point, j
will add (`, (k′, v′)) to proposalsj,view and return 1 from leaderCorrectj,view(`).

38

We will now turn to show that keyCorrecti,view(keyi, key_vali) = 1 for any
view > keyi at any point in time. First, by definition view > keyi so the first condi-
tion checked in keyCorrecti,view holds. If i has not updated keyi, key_vali through-
out the protocol, then keyi = 0, key_vali = xi. By assumption, validatei(key_vali)
= 1 at the time i calls AVABA, so i will immediately see that keyi = 0, output
1 and terminate. Otherwise, i updated both fields in the view keyi in line 16
after seeing that

∣∣echoesi,keyi∣∣ = n − t. Party i only does so after receiving an
〈“echo”, k′, v′, `′, π′, keyi〉 broadcast and seeing (`′, (k′, v′)) ∈ proposalsi,view. It
then updates its key_vali field to be v′. Note that before adding such a tuple to
proposalsi,keyi , i checks that keyCorrecti,keyi(k

′, v′) = 1, and thus validatei(v′) = 1
at that time. At that time for every (j′′, k′′, v′′, l′′, π′′) ∈ echoesi,keyi , (k

′′, v′′) =
(k′, v′). Otherwise, j would have seen an equivocation in line 12, and proceeded to
the next view before updating keyi. Therefore, |{j|∃k′′, `, π s.t. (j, k′′, v′, `, π) ∈
echoesi,keyi}| ≥ n − t at that time, so i will output 1 and terminate from
keyCorrecti(keyi, key_vali).

Lemma 8. lockCorrect is an asynchronous validity predicate. Furthermore, at
any point in time lockCorrecti,view(locki, lock_vali) = 1.

Proof. Let i, j be two honest parties and assume lockCorrecti(k, v) = b at some
point in time. Note that lockCorrect only outputs 1, so b = 1.

Finality. If k = 0, then i will always immediately output 1 and terminate.
Otherwise, i saw that

∣∣{j|(j, v) ∈ keysi,k}
∣∣ ≥ n− t. Honest parties do not remove

elements from their keys sets, so this condition will continue to hold and thus i
will output 1 and terminate from lockCorrecti(k, v).

Correctness. If k = 0, then j immediately outputs 1 from lockCorrectj(k, v)
as well. Otherwise, k > 0. Since i output 1 from lockCorrecti(k, v), it saw that∣∣{j|(j, v) ∈ keysi,k}

∣∣ ≥ n− t. i only adds a tuple (j, v) to its keysi,k sets after re-
ceiving a 〈“key”, v, k〉 broadcast from j and seeing that keyCorrecti,k+1(k, v) = 1.
From Lemma 7, keyCorrectk+1 is an asynchronous validity predicate, so eventu-
ally keyCorrectj,k+1(k, v) = 1 as well. At that point, j will add the same tuple
(j, v) to keysj,k. After adding all of those tuples, j will see that the same condition
holds and return 1 from lockCorrectj(k, v).

Finally, we will show that lockCorrecti(locki, lock_vali) = 1 at any point in
time. If i did not update those fields, then locki = 0, lock_vali = ⊥. In that case,
when running lockCorrecti, i will immediately see that locki = 0 and output 1.
Otherwise, i updated its locki and lock_vali fields after adding a tuple (j, v)
to keysi,view and seeing that

∣∣keysi,view∣∣ = n − t. This happens after receiving a
〈“key”, v, view〉 broadcast from j and seeing that keyCorrecti,view+1(view, v) = 1.
From Lemma 5, those messages have the same value v, and thus |{j|(j, v) ∈
keysi,view}| ≥ n− t at that time, meaning that lockCorrecti(view, v) = 1.

F Proofs of AVABA Liveness

Lemma 9. If every honest party i has an input xi such that validatei(xi) = 1
at the time it calls AVABA, all honest parties participate in the protocol, and no

39

honest party terminates during any view′ such that view′ < view, then all honest
parties reach view.

Proof. We will prove the claim inductively on view. First, all honest parties
start in view = 1. Now observe some view > 1 and assume no honest party
terminated in any view′ < view, and that they all reached view − 1. Since they
reached view − 1, they started off broadcasting “suggest” messages with their
current key, key_val fields. An honest i only update its keyi field to the view
it is currently in, and thus in the beginning of view − 1, keyi < view − 1. From
Lemma 7, for every honest j, keyCorrectj,view−1(keyj , key_valj) at the time it sent
those fields, and from the Consistency property of keyCorrectview−1, eventually
keyCorrecti,view−1(keyj , key_valj) terminates with the output 1 for every honest i.
After receiving such a message from every honest j and seeing that the suggested
keyj , key_valj are correct, every honest i adds a tuple to suggestions. After adding
a tuple for each honest party, i broadcasts 〈“proposal”, k, v, view〉 with (k, v)
either being a tuple from suggestions or (k, v) = (0, xi). Note that (k, v) is only
added to suggestions after i sees that keyCorrecti,view−1(k, v) = 1. In addition,
0 and xi are the first values to which keyi and key_vali are set, so as argued
in Lemma 7, keyCorrecti,view−1(0, xi) = 1 at that time. This means that when
receiving its own broadcast, i adds (i, (k, v)) to proposalsi,view and calls VLEi,view

with the asynchronous validity predicate leaderCorrecti,view−1. Since there is a
tuple (i, (k, v)) ∈ proposalsi,view at that time, leaderCorrecti,view(i) = 1. From the
Termination of Output property of VLE, every honest i outputs some index `
and a proof π from VLEi,view−1.

First we will show that if some honest party sends an “equivocation” or a
“blame” message, then the claim holds. If some honest party i sends a 〈“blame”,
k, v, leader, π, l, lv, view − 1〉 message, then it either did so in line 6 or in line 4.
In the first case, it did so after outputting leader, π from VLEi,view−1 and seeing
that there is a tuple (leader, (k, v)) ∈ proposalsi,view such that k < locki. It then
sent the “blame” message with l = locki, lv = lock_vali, and from Lemma 8,
lockCorrecti(locki, lock_vali) = 1 at that time. Every honest j will eventually
receive the message and see that k < l. Then, from the Consistency property
of lockCorrect and from the Completeness property of VLEVerify, j will see that
lockCorrectj(l, lv) = 1 and that VLEVerifyj,view−1(leader, π) = 1. From the Valid-
ity property of VLEVerify, there exists a tuple (leader, (k′, v′)) ∈ proposalsj,view−1.
Both i and j added their respective (leader, (k, v)) and (leader, (k′, v′)) after re-
ceiving the same broadcast, so (k, v) = (k′, v′) and thus j will also proceed to the
next view. Otherwise, i sent the message in line 4, after seeing that k < l and hav-
ing lockCorrecti(l, lv) = 1 and VLEVerifyi,view−1(leader, π) = 1. Similarly, from
the Consistency property of lockCorrect and Agreement on Verification property
of VLEVerify, j will see that the same conditions hold. In addition, i saw that
(leader, (k, v)) ∈ proposalsi,view−1, so j will see that the same holds and proceed
to the next view.

Following similar arguments, i can either send an “equivocation” message in
line 13 or in line 9. In the first case, it does so after having received two “echo”
messages with values k, v, `, π and k′, v′, `′, π′ such that (k, v) 6= (k′, v′), seeing

40

that VLEVerifyi,view−1(`, π) and VLEVerifyi,view−1(`
′, π′) terminate with the out-

put 1, and that (`, (k, v)), (`′, (k′, v′)) ∈ proposalsi,view−1 and then sending the
message. In the second case it received an 〈“equivocation”, k, v, `, π, k′, v′, `′, π′,
view− 1〉 message directly and saw that the same conditions hold, after which it
forwarded the message. Every honest j will then receive the 〈“equivocation”, k, v,
`, π, k′, v′, `′, π′, view − 1〉 message sent by i and see that (k, v) 6= (k′, v′). From
the Agreement on Verification property of VLEVerify, j will eventually see that
VLEVerifyj,view−1(`, π) = 1 and that VLEVerifyj,view−1(`

′, π′) = 1. From the
Validity property of VLEVerify, at that time leaderCorrectj,view−1(`) = 1 and
leaderCorrectj,view−1(`

′) = 1. Therefore there are tuples of the form (`, (k′′, v′′))
and (`′, (k′′′, v′′′)) in proposalsj,view−1. Following the same logic as above, those
are the same tuples that i added to proposalsi,view−1, so (`, (k, v)), (`′, (k′, v′)) ∈
proposalsj,view−1, and thus j proceeds to the next view. In other words, if some
honest party sends either a “blame” message or an “equivocation” in view − 1,
and no honest party completes the protocol in this view, then all honest parties
proceed to view.

Now assume no honest party sends a “blame” or an “equivocation” mes-
sage in view − 1. In that case, after completing the call to VLEj,view with the
output `, π every honest j broadcasts an 〈“echo”, k, v, `, π, view − 1〉 message
since it did not send a “blame” message instead. Every honest i receives that
message, and from the Completeness property of VLEVerify eventually sees that
VLEVerifyi,view−1(`, π) = 1 and adds a tuple to echoesi,view−1. By assumption, i
does not send an “equivocation” in view−1, so after adding such a tuple for each
honest party, i has |echoesi,view−1| ≥ n − t, and thus i updates keyi to view − 1
and key_vali to v and broadcasts a 〈“key”, v, view− 1〉 message during view− 1.
From Lemma 7, at that time keyCorrecti,view(view − 1, v) = 1. Every honest j
receives that message and from the Consistency property of keyCorrectview, even-
tually sees that keyCorrectj,view(view − 1, v) = 1 as well. After that, j adds a
tuple to keysj,view−1 for every honest party and sees that

∣∣keysj,view−1

∣∣ ≥ n − t,
so j sends a “lock” message to every party. Following identical reasoning, every
honest i receives the “lock” message from every honest party, eventually sees
that lockCorrecti(view, v) = 1 and updates its locksi,view set. After doing so for
all honest party, it sends a “commit” message. From Lemma 5, all correct “lock”
messages contain the same value, so all honest parties sent “commit” messages
with the same value. Finally, after receiving those messages from all honest par-
ties, every honest i sees that it received n − t such messages and complete the
AVABA protocol in line 4. In other words, every honest party completes the
protocol, reaching a contradiction.
Lemma 10. If an honest j broadcasts a 〈“proposal”, k, v, view〉 message, then
no honest party sends a 〈“blame”, k, v, j, π, l, lv, view〉 message for any π, l, lv.
Proof. Assume by way of contradiction some honest party i sends such a mes-
sage. It either does so in line 6 or in line 4. In both cases, it first checked that
k < l and that (j, (k, v)) ∈ proposalsi,view. i adds such a tuple to proposalsi,view
after seeing that keyCorrecti,view((k, v)) = 1. Since keyCorrecti,view(k, v) = 1, ei-
ther k = 0 or there exist at least n − t tuples in echoesi,k with k > 0 and thus

41

k ≥ 0. In addition, if i sent the message in line 6, then l = locki, lv = lock_vali,
and from Lemma 8, lockCorrecti(l, lv) = 1 at that time. If i sent the message in
line 4, then it first checked that lockCorrecti(l, lv) = 1 at that time. It cannot
be the case that l = 0, because then k ≥ l, reaching a contradiction. There-
fore,

∣∣{j′|(j′, v) ∈ keysi,l}
∣∣ ≥ n − t. Each tuple (j′, v) was added to keysi,l after

receiving a 〈“key”, v, l〉 message from j′. At least t + 1 of those tuples were
added after receiving a “key” message from honest parties. Note that an honest
j′ sends such a message after updating keyj′ to l and key_valj′ to v. Since the
keyj′ field only increases throughout the protocol, keyj′ ≥ l from this point on.
Let I be the indices of the honest parties j′ that sent those “key” messages,
for whom it is guaranteed that keyj′ ≥ l from this point on. Now observe the
pair (k, v) that i chose to input into VLEi,view. At the time it chose (k, v), i had
|suggestions| = n− t, so it received 〈“suggest”, k′, v′, view〉 from n− t parties and
added corresponding tuples to suggestions. As shown above, |I| ≥ t + 1, so at
least one of those messages was received from a party j′ such that j ∈ I, for
whom k′ = keyj ≥ l. Party i chooses the tuple (k, v) to be the one with the
maximal k in suggestions. Therefore, k ≥ k′ ≥ l, reaching a contradiction.

Lemma 11. If some honest party outputs v and terminates, then all honest
parties eventually do so as well.

Proof. Assume some honest party output v and terminated. It first received
〈“commit”, v〉 messages from n− t parties, with t+ 1 of them being honest. Let
i be the first honest party that sent such a message. First we will show that
no honest party sends a 〈“commit”, v′〉 message with any other value v′ 6= v.
Assume by way of contradiction that some honest party sends such a message,
and let j be the first honest party to send such a message. Since both i and j
were the first honest parties to send such messages, at the time they sent the
message they received “commit” messages from at most t parties. This means
that both i and j sent their respective “commit” messages in line 28 at the end of
view and view′ respectively. Assume without loss of generality that view ≤ view′.
From Lemma 6, in view′, there are t+1 honest parties that never send an “echo”
message with any value v′ 6= v. If some honest party sends a “key” message in
view′, then it does so after receiving n− t “echo” messages with the same value
(i.e. without detecting equivocation and proceeding to the next view). At least
one of those messages was sent by the t + 1 honest parties described above, so
any “key” message sent by an honest party in view′ has the value v. For similar
reasons, any “lock” message sent by an honest party in view′ has the value v.
Before sending a “commit” message, j receives n− t correct “lock” messages and
sent a “commit” message with the value v′ of a received correct “lock” message.
From Lemma 5, those messages had the value v, and thus v = v′, reaching a
contradiction. Therefore, if two honest parties send “commit” messages, they
send messages with the same value v.

We will now turn to show that if i completed the protocol with the output v,
every honest party will do so as well. Since i completed the protocol, it received
〈“commit”, v〉 messages from n − t parties, with t + 1 of them being honest.

42

Those honest parties send their “commit” messages to all parties, and thus every
honest party receives 〈“commit”, v〉 messages from at least t + 1 parties. Once
that happens, every honest party sends the same message to all parties in line 2.
every honest party then receives those messages from at least n−t honest parties
and outputs v and terminates in line 4. Note that if some honest party terminated
before receiving the “commit” messages from the t + 1 honest parties specified
above, it must have received “commit” messages from n − t other parties with
the same value v′. At least one of those was sent by an honest party, so v =
v′. Therefore, before completing the protocol every honest party also receives
〈“commit”, v〉 messages from some n− t parties and also sends a 〈“commit”, v〉
message as described above.

Lemma 12. If all honest parties start view and every honest i has an input xi

such that at the time it calls the AVABA protocol validatei(xi) = 1, then with
constant probability all honest parties terminate during view.

Proof. If at any point some honest party terminates with the value v, then
from 11 every honest party will do so as well. From this point on, we will not
deal with the case that some of the parties terminate early in view and some do
not terminate at all. The first thing that an honest party does in view is calling
viewChange and sending a “suggest” message to every party with the local fields
keyi and key_vali. From Lemma 7, keyCorrecti,view(keyi, key_vali) = 1 at that
time, and from the Consistency of keyCorrectview, for every honest j eventually
keyCorrectj,view(keyi, key_vali) = 1 as well. Therefore, when an honest party j
receives that message, it eventually adds a tuple to suggestions. After receiving
such a message from every honest party, j finds that |suggestions| ≥ n− t, and it
broadcasts a 〈“proposal”, k, v, view〉 message. At that time it either has (k, v) =
(0, xj) and as shown in Lemma 7 keyCorrectj,view((k, v)) = 1, or it has chosen a
tuple (k, v) ∈ suggestions for which it checked that keyCorrectj,view((k, v)) = 1.
Therefore, when receiving its own “proposal” broadcast, it adds a tuple (j, (k, v))
to proposalsj,view and thus leaderCorrectj,view(j) = 1 at that time. j then calls
VLEj,view.

Before an honest i sends a “blame” or an “equivocation” message it must
either output a value from VLEi,view, or find that VLEVerifyi,view terminates with
the output 1 for some value. Both of those things only happen after completing
VLEi,view. In other words, all honest parties participate in VLE and wait for it to
terminate before any of them proceed to the next view. From the Termination of
Output property of VLE, all honest parties eventually output some value when
running VLE. We now prove that if the binding value `∗ of VLEview as defined in
the α-Binding property of the VLE protocol is the index of some honest party
that acted in an honest manner when it started the VLE protocol, then all parties
terminate during view. From the α-Binding property of VLE this event happens
with probability α = 1

3 , so all parties terminate during view with a constant
probability.

If the binding value is indeed the index of a party that acted in an honest
manner when it started VLE, then from the Binding Verification property of VLE

43

there is exactly one index `∗ for which it is possible that VLEVerifyi,view(`
∗, π)

terminates with the output 1 for an honest i. If an honest i adds a tuple
(j′, k′, v′, `′, π′) to echoesi,view, then it did so after receiving an “echo” message
and seeing that VLEVerifyi,view(`

′, π) = 1 and that (`′, (k′, v′)) ∈ proposalsi,view.
Therefore, `′ = `∗ for every such tuple. An honest i adds a tuple (`∗, (k′, v′)) to
proposalsi,view after receiving a 〈“proposal”, k′, v′, view〉 broadcast from `∗, and
thus all tuples in the set echoesi,view have the same values k′, v′, which pre-
vents an honest party from sending an “equivocation” message in line 13. In
addition, no honest i sends an “equivocation” message in line 9 after receiving
an 〈“equivocation”, k, v, `, π, k′, v′, `′, π′, view〉 message because ` = `′ = `∗, and
thus (k, v) = (k′, v′). We would now like to show that no honest party i sends
a “blame” message in view. If an honest party sends a 〈“blame”, k, v, `, π, l, lv〉
message, it does so either in line 6 or in line 4. In the first case, it did so
after outputting `, π from VLEi,view and from the Completeness and Binding
Verification properties of VLE, ` = `∗. In the second case, it checked that
VLEVerify(`, π) = 1 and for the same reasons ` = `∗. Before starting VLE, `∗

broadcasts 〈“proposal”, k, v, view〉. For similar reasons as above, if an honest i
has a tuple (`∗, (k′, v′)) ∈ proposalsi,view, then (k′, v′) = (k, v). Therefore, i sends
the message 〈“blame”, k, v, `∗, π, l, lv, view〉, contradicting Lemma 10.

Honest parties only proceed to view+1 after sending either a “blame” or an
“equivocation” message, so no honest party proceeds to view+1. Since no honest
i sends a “blame” message, each one sends an 〈“echo”, k, v, `∗, π, view〉 message
after completing the VLEi,view call. From the Completeness property of VLE,
VLEVerifyi,view(`

∗, π) eventually terminates with the output 1. Since i doesn’t
send an “equivocation” message in view, it then adds a tuple to echoesi,view. After
such a tuple is added for every honest party, i sees that |echoesi,view| = n− t and
it sends a message 〈“key”, v, view〉 to all parties after updating keyj to view and
key_valj to v. From Lemma 7, at that time keyCorrecti,view+1(view, v) = 1 so from
the consistency property of keyCorrectview+1 eventually keyCorrectj,view+1(view, v)
= 1 for every honest j. Therefore, when receiving that message, every honest
j eventually sees that the message is correct and adds a pair (i, v) to keysi,view.
After adding such a pair for every honest party, j has

∣∣keysi,view∣∣ = n − t and
it sends a “lock” message. Using identical arguments, eventually every honest
party sends a “commit” message. Finally, after receiving a “commit” from n− t
parties, every honest party terminates.

G Modelling ACS as a Functionality

The notion of an agreement on a core set can also be modelled as a functionality
FACS. In the functionality, each party i receives (record, i, k) commands with
k ∈ [n] and sends them to the functionality. Each party is guaranteed to receive at
least n−t such commands and if some honest i receives a (record, i, k) command,
every honest j is guaranteed to eventually receive a (record, j, k) command as
well. In addition, parties can receive receiveS() commands which they forward
to the functionality. The functionality then returns a set S ⊆ [n] as a response.

44

The functionality is fully described in Algorithm 16 Note that in either case,

Algorithm 16 FACS – Agreement on a Core Set Functionality
The functionality is parameterized by the set of corrupted parties I ⊆ [n]. Initialize
sets Si ← ∅ for every i ∈ [n] and S ← ⊥. In addition, initialize returned← 0 .

1. (record, i, k): Upon receiving this command from party i, add the index k to Si.
Forwards (record, i, k) to the adversary. If |Si| ≥ n− t then set i as ready. If n− t
honest parties are ready and returned = 0, set S to be the set of all indices k ∈ [n]
such that there exists some ` 6∈ I for which (record, `, k) was sent.

2. (advSet, S′): Upon receiving this command from the adversary, check that S′ ⊆ [n]
and that |S′| ≥ n − t. Moreover, check that for every k ∈ S′, there exists some
` 6∈ I for which k ∈ S` (i.e., P` has submitted (record, `, k)). If all those conditions
hold, and returned = 0, then store S ← S′ and store returned← 1.

3. receiveS(): Upon receiving this command from some party i, if S 6= ⊥, set
returned← 1. Return S.

all parties eventually receive the same set of indices S ⊆ [n], such that for every
k ∈ S at least one honest party received a (record, i, k) command.

The following protocol implements the FACS functionality:

Algorithm 17 ΠACS – protocol implementing FACS

Each party i initializes a set Si ← ∅.

1. (record, i, k): Party i executes this command by adding k to Si.
2. receiveS(): If this is the first receiveS command executed by i, call ACSi (See Al-

gorithm 14) with the validity predicate validatei that returns 1 on an index k once
k ∈ Si. Wait for ACSi to output a set S and then return it. If i has already
completed the call to ACSi with some output S, return S as well.

Lemma 14. validate is a validity predicate.

Proof. Note that validate only returns the value 1, so if validatei(S) = b for some
honest party, b = 1.

Finality. If validatei(k) = 1 for some honest i then k ∈ Si. Honest par-
ties don’t remove indices from their Si sets, so validatei(k) will return 1 in any
subsequent call.

Consistency. If validatei(k) = 1 for some honest i, k ∈ Si. Party i adds
indices k ∈ [n] to Si after receiving a (record, i, k) command. By assumption,
every honest j will eventually receive a (record, j, k) command as well for every
k ∈ Si. This means that eventually k ⊆ Sj as well, and thus validatej(k) = 1
will eventually hold as well.

45

Theorem 10. ΠACS securely computes the FACS functionality in the presence of
an adversary controlling up to t parties.

Proof. The simulator S acts as follows:

1. The simulator invokes A.
2. The simulator delivers all (record, i, k) messages to the functionality imme-

diately upon them being sent and then receives the messages forwarded by
the functionality.

3. The simulator initializes sets Si = ∅ for every i /∈ I. Upon receiving a
(record, i, k) command from the functionality, the simulator adds k to Si.

4. Upon an honest i receiving a receiveS command, simulate i acting honestly in
the ACSi protocol with the validity predicate validatei defined in the receiveS
description of the ΠACS protocol. Once some honest i outputs a set S from
the simulated AVABA call, send a (advSet, S) command to the functionality.

5. Deliver any receiveS() command after having delivered a (advSet, S) com-
mand to the functionality and then deliver the functionality’s response.

The simulator simulates a run of the ACS protocol with every honest party
acting honestly when interacting with the adversary, with the same validity
predicate as the one in ΠACS. The simulator then sends and delivers a (advSet, S′)
command to the functionality after some honest i outputs S′. From the validity
property of the ACS protocol, at the time i outputs S′, it has validatei(k) = 1
for every k ∈ S′ and S′ ⊆ [n], |S′| ≥ n − t. From the definition of validatei, for
every k ∈ S′, k ∈ Si as well. This means that i sent a (record, i, k) command to
the functionality for every k ∈ S′. The simulator didn’t deliver any receiveS()
command yet and thus returned = 0, so the functionality will update S to be S′.

Since the simulator honestly simulates all honest parties when interacting
with A, the adversary’s view is distributed identically to the way it would be
distributed in a run of the ΠACS protocol. Furthermore, the receiveS() commands
sent by an honest j are received after the simulator delivers the (advSet, S′) com-
mand to the functionality. Therefore, j receives S′ and outputs it from receiveS().
From the Agreement property of the ACS protocol, all honest parties output the
same set from the ACS protocol. This means that j outputs the same set S′ from
the ACS protocol, which it would then return from the receiveS command of the
ΠACS protocol. In other words the joint distributions of the adversary’s view and
the output from the receiveS calls are identical in ΠACS and in the simulated
protocol.

46

	Perfectly Secure Asynchronous Agreement on a Core Set in Constant Expected Time

