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Abstract. MAYO is a topical modification of the established multi-
variate signature scheme Unbalanced Oil and Vinegar (UOV), with a
significantly reduced public key size while maintaining the appealing
properties of UOV, like short signatures and fast verification. Therefore,
MAYO is considered an attractive candidate in the NIST standardization
process for additional post-quantum signatures and an adequate solution
for real-world deployment in resource-constrained devices.
This paper presents the first hardware implementation of the signature
scheme MAYO. Our implementation can be easily integrated with differ-
ent FPGA architectures. Additionally, it includes an agile instantiation
with respect to the NIST-defined security levels for long-term security
and encompasses modules’ optimizations such as the vector-matrix mul-
tiplication and the Gaussian elimination method employed during the
signing process. Our implementation is tested on the Zynq ZedBoard
with the Zynq-7020 SoC and its performance is evaluated and compared
to its counterpart multivariate scheme UOV.
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1 Introduction

As quantum computing continues to advance, it is anticipated that quantum at-
tacks can break many of the computational problems that classical cryptography
relies on, such as factorization and discrete logarithms used in RSA and ECDSA,
respectively. To address this, researchers have proposed new mathematical as-
sumptions and computational problems that are difficult to solve with quantum
computers, resulting in the field of post-quantum cryptography. These new as-
sumptions are grouped into different families, such as lattice-based, code-based,
hash-based, and multivariate cryptography.

Multivariate schemes mainly rely on the difficulty of solving large systems
of multivariate quadratic equations, known as the MQ Problem. As such, the
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signature scheme Rainbow [DS05] was a finalist in the third round of the NIST
post-quantum cryptography (PQC) Standardization Process. Rainbow is a two-
layered version of the UOV signature scheme [KPG99]. Hence, multivariate sig-
nature schemes based on the oil and vinegar principle received a lot of attention.
They offer very short signatures and efficient verification, since the signature is
mainly the solution to a system of multivariate quadratic equations, and verifying
boils down to evaluating the polynomials at the presumed solution. Still, during
the third round, Beullens developed an algebraic attack on Rainbow [Beu22a],
targeting the layer structure that differentiates Rainbow from UOV. This led to
the elimination of Rainbow from the ongoing process since it lost all its alleged
advantages over the base scheme UOV.

Meanwhile, NIST has completed the third round of the PQC standardization
process, which resulted in the selection of a total of four candidate algorithms
for standardization, i.e., two lattice-based signature schemes, one hash-based
signature scheme, and one lattice-based Key Encapsulation Mechanism (KEM).
An upcoming round of post-quantum digital signature standardization will be
introduced, where NIST aims at enhancing the variety of the signature schemes
by prioritizing signature schemes that are not reliant on structured lattices, have
small keys, and offer concise and efficient verification processes.

In [Beu22b], Beullens introduced a novel multivariate signature scheme called
MAYO, which builds upon UOV. It uses the same trapdoor - a secret oil space
that is annihilated by the public key map - but is developed such that the signer
and the verifier locally enlarge the public key matrices. Therefore, the dimension
of the oil space can be reduced. That allows also to reduce other parameters like
the number of variables in the quadratic equations since certain algebraic attacks
get harder with a smaller oil space [KS06]. In total, this leads to significantly
smaller public keys in MAYO, while keeping good performance numbers and
signature sizes. For instance, with parameters targeting the first security level of
the NIST process, the public key size of MAYO is 1,168 bytes, the secret key is
24 bytes, and the signature size is 321 bytes [BCC+23]. These results make the
MAYO signature scheme more compact than other state-of-the-art lattice-based
signature schemes such as Falcon and Dilithium [PQD23].

Contribution In this paper, we present the first pure hardware implementation
of the multivariate signature scheme MAYO. Our contribution is summarized as
follows:

• We manually settle a pure hardware implementation of MAYO. Our im-
plementation is reconfigurable and can be easily integrated with different
FPGA architectures and for different security levels.

• We optimized certain functionalities used within key generation and signing.
• We present a new approach for the Gaussian solver and compare it to the
well-known GSMITH approach of Rupp et al. in [REBG11].

The source code of our implementation is publicly available 5.

5 https://anonymous.4open.science/r/MAYO-0A15/

https://anonymous.4open.science/r/MAYO-0A15/
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Related work At the time of writing this paper, there is a scarcity of complete
hardware designs for post-quantum cryptographic schemes [ZZW+21, XL21,
FG18,HZ18]. However, given that the NIST PQC reached the fourth round, it
is expected that more dedicated hardware designs will emerge. These designs
would be instrumental in showcasing the strength and inherent properties of
specific protocols [NIS23a].

Multivariate schemes necessitate the development of comprehensive and ex-
tensive implementation designs to address the challenging gaps due to the
schemes’ large key sizes [DS05,KPG99]. These key sizes often pose challenges for
devices with limited resources, as they may struggle to accommodate the stor-
age requirements of these schemes. Moreover, multivariate schemes commonly
involve memory and time-consuming blocks, with the Gaussian solver being
a well-known performance bottleneck [REBG11]. Despite the above-mentioned
challenges, there have been a few published hardware implementations that have
reported results for multivariate schemes [TYD+11,HZ18,FG18].

In [FG18], Ferozpuri and Gaj present a high-speed FPGA implementation
of Rainbow. Their hardware implementation uses a parameterized system solver
where the execution time is proportional to the system dimension, i.e., it can
solve an n-by-n system in n clock cycles. Moreover, their work reduces the num-
ber of required multipliers by almost half, speeds up execution as compared to
the previous state-of-the-art work, and implements Rainbow for higher security
levels.

In [TYD+11], Tang et al. present another high-speed hardware implementa-
tion of Rainbow. The authors targeted similar functionalities for optimization
as in [FG18], i.e., the Gaussian solver and the multipliers. They developed a
new parallel hardware design for the Gaussian elimination and designed a novel
multiplier to speed up the multiplication of three elements over a finite field.

With Rainbow being broken [Beu22a], all its previously published software
and hardware implementations are rendered obsolete for practical use. To ad-
dress this issue, MAYO is seen as a viable alternative, showcasing improved
performance results. Nevertheless, there remains a significant gap in practical
implementations of the MAYO scheme, hindering its real-world deployment. At
the moment of writing this paper, there is no hardware implementation of the
MAYO post-quantum signature scheme.

2 Preliminaries

Notation. We write Fq for a finite field with q elements. The set of matrices
over Fq with m rows and n columns is given by Fm×n

q . By In×n we denote the
identity matrix of size n and 0m×n is them×n zero matrix. We represent a vector
x ∈ Fn

q in bold letters unless specified otherwise. Thus, 0n is the zero vector in
Fn
q . We denote by x[i] or xi the i-th entry of x, i.e., x = {x[i]}i∈[n] = {xi}i∈[n].

For 0 ≤ i < j ≤ n, we mean by x[i : j] ∈ F j−i
q the vector whose j−i elements are

xi, . . . , xj−1. We define the component-wise sum as x+ y := {xi + yi}i∈[n], and
the scalar multiplication as ax := {axi}i∈[n]. For the concatenation of the two
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vectors x ∈ Fn
q , y ∈ Fm

q , we write (x,y) as the corresponding vector in Fq
n+m.

For a finite set X, we write x ← X to indicate the sampling of the element x
from the uniform distribution over X. For a, b ∈ N, we denote by [a, b] the set
{a, . . . , b} and similarly we denote by [b] the set {1, . . . , b}.

2.1 Multivariate Quadratic Maps

The MAYO signature scheme [Beu22b] is a special modification of the UOV
signature scheme [KPG99] and belongs to the field of multivariate cryptography.
Herein, the main object is the multivariate quadratic map P : Fn

q → Fm
q with m

components and n variables. In more detail, it is a sequence p1(x), . . . , pm(x) of
m quadratic polynomials in n variables x = (x1, . . . , xn), with coefficients in a
finite field Fq. If we want to evaluate the map P at a given vector a ∈ Fn

q , we can
simply evaluate each of its component polynomials in a to get a vector P(a) =
b ∈ Fm

q , where the i-th entry of b is given by bi = pi(a). Very abbreviated,
multivariate cryptography is based on the hardness of finding a preimage s ∈ Fn

q

of a target vector t ∈ Fm
q under a given multivariate quadratic map P, i.e.,

solving a multivariate system of quadratic equations. This task is often referred
to as the MQ problem.

To solve this problem for parameters that are relevant in cryptography, var-
ious algorithms have been developed such as F4/F5 or XL that use a Gröbner-
basis-like approach [Fau99,CKPS00]. Since their efficiency depends on the given
instance of the problem and the parameter sizes, the preferable algorithm might
vary in different settings. Recently, the most important classical algorithms have
been collected in [BMSV22], where an overview of the estimated computational
complexities of the respective algorithms is presented.

There are mainly two different approaches of constructing signature schemes
from the MQ Problem. The first is to employ a zero-knowledge identification
scheme and turn it into a non-interactive signature scheme with the Fiat-Shamir
transform [FS87]. In the multivariate case, this implies the proof of knowledge
of a certain secret s, such that P(s) = v for a random multivariate quadratic
map P. Mudfish [Beu20] and MQDSS [HRSS16] are based on such protocols,
but they come with the drawback of rather huge signature sizes since a lot of
parallel rounds are required to obtain a secure scheme. Second, one can follow
the hash-and-sign approach, where the message is hashed to a target vector in
the right domain. This requires including a trapdoor into the public key map
P, such that the signer is able to invert this map and find a preimage s of t.
Both UOV and MAYO follow this idea and even share a similar trapdoor. We
will introduce them in the following.

2.2 The Trapdoor in UOV

In UOV, the trapdoor information is a basis of a secret linear subspace O ⊂ Fn
q

of dimension dim(O) = m, the so-called oil space [Beu21]. The multivariate
quadratic map P : Fn

q → Fm
q is then chosen in a way that it vanishes on this oil

space, i.e., P(o) = 0n for all o ∈ O. For the multivariate quadratic polynomials
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pi(x), which constitute the map P via P(x) = p1(x), . . . , pm(x), one can define
their polar form or differential as

p′i(x,y) := pi(x+ y)− pi(x)− pi(y) + pi(0).

Since we commonly work with homogeneous polynomials, the term pi(0) will be
omitted in the following. Similarly, we can define the polar form of P as

P ′(x,y) = p′1(x,y), . . . , p
′
m(x,y).

As shown in [Beu21, Theorem 1], the map P ′ : Fn
q × Fn

q → Fm
q is a symmetric

and bilinear map. Furthermore, if one has knowledge of the secret oil space, it
can be used to efficiently find preimages x ∈ Fn

q of a given target t ∈ Fm
q such

that P(x) = t. To do so, one can randomly pick a vinegar vector v ∈ Fn
q and

solve the system P (v + o) = t for o ∈ O. This is possible since in

t = P(v + o) = P(v) + P(o) + P ′(v,o) (1)

the term P(v) is constant and P(o) vanishes, so whenever the linear map P ′(v, ·)
is non-singular, the system has a unique solution o ∈ O, which can be computed
efficiently. This happens with probability roughly q−1

q . If this is not the case,
one can simply pick a new value for v and try again. Without a description of
the oil space O, the term P(o) implies that Equation 1 constitutes a system of
quadratic equations, which remains hard to solve.

Remark 1. The given description of signatures using the oil and vinegar ap-
proach is different from the original one as in [Pat97] or [KPG99]. Nevertheless,
it allows for a simpler representation and is closer to the way schemes like UOV
and MAYO are implemented nowadays.

Building a signature scheme directly from this setting has one big disadvan-
tage. The oil space needs to be as large as the image space of the multivariate
quadratic map P, i.e., dim O = m. To counter the Kipnis-Shamir attack [KS06],
the parameter n needs to be sufficiently larger than m, with n ≈ 2, 5m be-
ing used in all currently considered implementations. The parameter m itself
needs to be of a certain size as well, to provide security against direct attacks or
the intersection attack [Beu21]. This leads to key pairs of enormous size, which
is considered the main drawback of multivariate signatures. Recently, Beullens
developed the signature scheme MAYO to tackle this problem.

2.3 Description of MAYO

The essential modification is the downsizing of the dimension of the oil space to
dim O = o < m. Actually, this oil space is now too small to sample signatures,
since the system P(v + o) = t given in Equation 1 consists consequently of
m linear equations in o variables and is unlikely to have any solutions. Thus,
the approach taken in [Beu22b] is to stretch the public key map into a larger
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whipped map P∗ : Fkn
q → Fm

q , such that it accepts k input vectors x ∈ Fn
q .

This is realized by defining

P∗(x1, ...,xk) :=

k∑
i=1

EiiP(xi) +
∑

1≤i<j≤k

Eij(P ′(xi,xj)), (2)

where the matrices Eij ∈ Fm×m
q are fixed system parameters with the property

that all their non-trivial linear combinations have rank m. In the MAYO spec-
ification it is currently proposed to choose Eij that represent multiplications

by 1, X,X2, . . . , X(k2)−1 in Fq[X]/f(X), for some monic irreducible polynomial

f(X) of degree m. This is possible for parameter sets that satisfy
(
k
2

)
< m.

It is easy to see that P∗ vanishes on the subspace Ok =
{(o1, . . . ,ok)| with oi ∈ O for all i ∈ [k]} of dimension ko. By choosing the
parameters such that ko > m, the k copies of the oil space are large enough to
construct preimages of a target vector t ∈ Fm

q under the whipped map P∗. In

more detail, the signer randomly samples (v1, . . . ,vk) ∈ Fkn
q , and then solves

P∗(v1 + o1, ...,vk + ok) = t (3)

for (o1, ...ok) ∈ Ok. Observe from Equation 2 that this system remains linear
in the presence of the linear emulsifier maps Eij ∈ Fm×m

q . Thus, the signer can
efficiently compute a preimage {si = vi + oi}i∈[k] of t. Similar to UOV, the
verifier just needs to check if the given {si}i∈[k] satisfy Equation 3.

Remark 2. Please note that both, the signer and the verifier, only locally whip up
the public key map P to P∗, so this modification comes with no additional cost
in terms of key sizes. However, it entails additional computations during signing
and verification. Furthermore, it increases signature size, since now a k-tuple of
vectors in Fn

q constitute the signature. These negative effects are cushioned by
the ability to reduce parameter sizes while maintaining the security level.

3 Hardware Design

In this section, we discuss the different aspects that led to the reasoning behind
our hardware design. Therefore, we introduce a general description of our design
and detail on the optimized modules. Our primary goal is to provide an optimized
and reconfigurable hardware code that can be easily integrated with different
FPGA architectures and for different security levels.

3.1 Design Rationale

The selection of the FPGA chip is crucial and must be taken into consideration,
as most low-tier options may not offer sufficient memory and resources to house
the design and the intermediate calculations required by MAYO.
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Although MAYO’s keys and signature stream have reduced fingerprint com-
pared to other multivariate alternatives, it still internally necessities approxi-
mately 140KB for key-generation process and 250KB of memory to execute the
signing phase, for the first security level defined by NIST [Beu22b]. For im-
plementation and testing of our hardware design, we opted for the target board
Zynq ZedBoard with the Zynq-7020 SoC [Xil23b], which has 85K Logic Cells and
4.9MB Block RAM, deemed to be the main storage space of the overall hardware
design. The board is also equipped with 512MB DDR3 RAM and 256MB QSPI
Flash as external memory. The Zynq ZedBoard offers also an ARM Cortex-A9
hardcore that will be employed later in our design.

The majority of the system architecture of our hardware design is described
in VHDL, while a few modules are implemented using Verilog. AMD’s Vivado
SDK [Xil23a] tool provides, in fact, such source language mixture during the
design’s synthesis and validation to ensure flawless compatibility.

It is essential for the architecture to be encapsulated as an Intellectual Prop-
erty (IP), to ensure design reuse. Therefore, two main IPs, namely Keygen, and
Sign, were developed to describe the hardware implementation of MAYO. It is
possible to utilize one of the IPs on the target chip. Both cores are independent
and capable of coexisting on the Programmable Logic operating at respectable
frequencies.

The CPU-Peripheral communications between the built IPs are handled
through AXI4-FULL, AXI-Lite, and interrupts. The provided firmware takes
care of the AXI transactions, thanks to the Zynq hybrid architecture. Inciden-
tally, the design focuses on maintaining high transfer bit-rates by extensively
leveraging the CPU’s 32-bit architecture. Frequencies and reset signals are also
controlled by the hardcore and are propagated throughout the design.

Based on the proposed MAYO pseudo-code in [BCC+23], the scheme in-
corporates multiple helper functions that are implemented as sub-modules and
arithmetic units within the hardware IPs. This approach fulfills another signif-
icant design requirement by minimizing unused modules and maximizing the
utilization of Flip-Flops (FFs) and Lookup Tables (LUTs). By avoiding code
duplication in hardware and organizing the design into smaller, specialized mod-
ules, each capable of performing a single functionality, the overall efficiency and
modularity of the design are improved.

All the previously explained design decisions and optimizations contribute to
a more understandable, efficient, and integrated system, which will be discussed
in depth in the following section.

3.2 General Description

Since the targeted board is of AMD’s Zynq Chip Family, the external data-flow
including the public key, the message input, and resulting signature extraction
are provided by the Zynq dual Cortex ARM Core. The design incorporates both
an AXI4 interface for data stream and an AXI-Lite interface for configuration
and control. Therefore, to use the proposed implementation, it is encouraged to
utilize the provided C firmware discussed later in Section 3.8.
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The design aligns itself with the 32-bit ARM multi-core processor architec-
ture and uses a 32-bit data bus width. This approach simplifies data processing
within each sub-module. In the case of MAYO, the values are usually stored in a
5 bits-wide reduced space. For the NIST security level 1, the scheme operates on
values that are eventually reduced to Fq

6, meaning that the results must be less
or equal to q = 31. To store such numbers, 5 = ⌈log2(31)⌉ bits are mandatory.
As a result, the design allocates 8 bits of memory (i.e., unsigned char) for each
numerical unit. We, then, exploited the 32-bit architecture in various pipeline
techniques by processing simultaneously four 8-bit values.

MAYO core’s structure is generalized as two primal IPs consisting of combi-
natorial Finite State Machines (FSMs) that govern the multivariate scheme pro-
cedure. These FSMs are interconnected with various multi-purpose sub-modules
through an extended wire network, that determines the destination of the ex-
changed data on the bus laying in between. As depicted in Figure 2, although
both FSMs coexist, they typically share the same bus to any specific arithmetic
core. Each core, though designed for an exclusive functional purpose (such as
subtracting two vectors) is enabled multiple times throughout the design, with
different source and destination addresses to the system’s memory.

Likewise, the sub-modules themselves are smaller state machines designed
with a focus on parallelism and reaching maximum throughput. The time-
consuming modules are pipelined and feature a familiar bundle of ports, as
illustrated in Figure 1. The IPs’ state machines define these ports’ content and
await the port’s signal indicating the completion of the operation in hand. The
process then moves on to the subsequent step of the MAYO scheme.

Memory BUS

previous state

MAIN FSM

next state

Submoduleclk

enable

source adr.

target adr.

done

FSM

IOALUIO

Figure 1: IP-Submodule interconnect block diagram

The MAYO public key map is expanded throughout certain steps of the
algorithm (Equation 2, Section 2.3). To address this, MAYO’s polynomial map-
pings P and P∗ (in Section 2.3), and the vectors that represent solutions to the
various systems of equations required by the algorithm are stored within three
separate Block Random Access Memories (BRAMs). These storage units refer to

6 The chosen MAYO security parameters (n,m, o, k, q) are (62, 60, 6, 10, 31) as in
[BCC+23]
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dedicated configurable memory blocks within the FPGA, providing fast on-chip
access to multiple storage cells organized into an array structure. For our design,
Vivado’s BRAM generator is employed, allowing the SDK to automatically orga-
nize the BRAM layout based on specified depths. This technology can be easily
replaced on other FPGA alternatives such as Intel’s QDR SRAM Controller in
Quartus Prime, or by simply re-describing the memory as RTL arrays that can
be understood by the compiler of choice [Int].

Other than registers and temporary value holders inside the sub-modules,
BRAMs serve as the main storage unit for the MAYO hardware system. The
memory is divided into three True Dual Port BRAMs, statically partitioned into
2 × 256KB BRAMs to store big matrices and large vectors like the P system
and Ok subspaces, and 1×8KB BRAM designated for small scratch buffers and
sensitive information such as the seed, signature, and secret key. Among these
BRAMs, only one of the big BRAMs is exposed to CPU through the AXI bus.
Detailed memory management and utilization is deliberated later in Section 3.6.
As shown in Figure 2, most modules are connected to the BRAMs accordingly.

To handle the increasing number of memory-to-module interconnections, we
needed a multiplexer or a bus controller to merge the modules’ I/Os into the
memory’s interfaces. As a result, only one core is allowed to hold a control signal
up. The bus manager then gives this core permission to access the memory space.
Furthermore, output registers are placed on the memory’s ports to ensure better
hold timings for Place and Route (P&R).

ZYNQ CPU

KEYGEN FSM

SIGN FSM

IRQ

AXI-LITE
CONTROLLER

LINEAR COMBINATION

ADDER

GAUSS. ELIM.

TRNG

AXI4 CONTROLLER

HASH (Keccak)

SAMPLER

Arithmetic Core N

DP-BRAM 0

DP-BRAM 1

DP-BRAM 2

M
U

X / BU
S

32

32

32

32

32

32

IPs

32

Figure 2: Block Diagram of the MAYO Core

3.3 Hash Function

Our design employs the Keccak core [BDH+22] to generate seeds and expand
the message as a first step of the signing process. For the first security level,
SHAKE128 was used as an extendable-output function (XOF) based on the FIPS
202 standard [NIS23c]. We note that for higher security levels, it is necessary
to adjust the parameters within the Keccak core accordingly. Nonetheless, the
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fundamental design of the hash sub-module remains applicable and does not
require significant changes.

The Keccak implementation in [BDH+22] streams data utilizing a different
format compared to the proposed MAYO hardware 32-bit format. To address
this discrepancy, we developed a wrapper around the core. The reasoning behind
this is that MAYO algorithm requires a hash of approximately 120KB for the key
generation. The hash is eventually stored in the inner 32-bit-wide block memory.

The proposed architecture, as shown in Figure 3, stores the input seed and
output message in separate descriptor-like registers. These intermediate registers
are simultaneously accessed by the hash core and BRAM. Keccak can, in fact,
access 64 bits, meaning a full descriptor at a time, while BRAM treats the
descriptors as lower and upper halves and needs 2 read/write operations to fully
manage a descriptor. This can create a synchronization problem between the
hash core and the BRAM. To solve this issue, the descriptors are arranged to
form a ring-shaped buffer, which can only be modified through indexing pointers.
By doing so, we ensure a continuous flow of information within the BRAM, even
while the hash module is still generating additional bytes.

Keccak

write_ring_ptr

64

BRAM

N Read descriptors
M Write descriptors

64

32

Hash input 0 Hash input 1

... Hash input
N*2

read_ring_ptr
Hash output 0 Hash output 1

Hash input M*2Hash outptut
(M*2) -1

Figure 3: Block Diagram of the hash core; the descriptors are arranged to form a
ring-shaped buffer which is simultaneously accessed by the hash core and BRAM

3.4 True Random Number Generator

For random number generation, we employed the neoTRNG [FI]. It uses ring-
oscillators as a source of entropy. Although the TRNG is compact running on
its’ default configuration, a total number of 16 clock cycles is still required to
generate one raw random byte. As a result, we developed a wrapper to reduce this
output delay. The TRNG maintains a nearby First-In-First-Out (FIFO) buffer
full. The MAYO Core reads exclusively from the FIFO, thus popping bytes that
are once more replaced in the FIFO by the random number generator. This
process helps eventually reduce the power usage, as the TRNG is not active at
all times but only when the FIFO is not full anymore and is able to capture
more random bytes.
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3.5 Vector-Matrix Multiplication

The MAYO hardware implementation contains various arithmetic cores that
are called multiple times by the main state machines of both IPs as shown in
Figure 2. Upon analyzing the proposed MAYO pseudo code [BCC+23, Section
2], it becomes evident that matrix-vector multiplication proceeded by a Fq space
reduction, is frequently utilized operations throughout the algorithm. Hence, its
optimization will improve the performance of our design.

Compared to the initial MAYO Software C implementation7, the vector-
matrix multiplication iterates through a matrix stored in a row-wise manner, as
seen in the left side of Figure 4, multiplying (using MULT operation) the content
with a given series of coefficients and accumulating the results. Once this nested
row/column loop concludes, another loop starts reducing the accumulated result
through MOD operation. For instance, on an ARM Cortex-M3 with ARMv7-M
instruction set, a single MULT operation with 8-bit operands takes around 2 to
3 clock cycles [ARM]. The reduction is done using the MOD operation that is
usually translated to MULT and UDIV as Cortex-M3 lacks native modulo calcu-
lation. Consequently, the vector-matrix multiplication function could consume
up to 6500 clock cycles, excluding the memory load and store operations.

i

j

i8bit

j

Software Implentation

Hardware Implentation

Buffer1

32

Buffer2

DSPs
(MAC)

DSPs
(MAC)

mod q

32
32

row 0

row 1

row 2

row 3

BRAM FETCH 8bit 8bit 8bit

Result
buf1

buf2

en

en

FSM

8 8 88

32

8 8

Figure 4: Matrix-Vector multiplication architecture; on the left side the vector-
matrix multiplication iterates through a matrix stored in a row-wise manner as
in the software implementation. In hardware design, we reversed the indexing
order, and input four bytes to each DSP which executes 4 multiplications simul-
taneously.

In this paper, we process the multiplications differently. Firstly, our design
offers four values on each memory read operation thanks to its 32-bit wide bus
and executes 4 MULT operations from one row simultaneously. Secondly, we
reversed the indexing of the input matrix, as shown in Figure 4.

7 Note here that we refer to the first implementation of MAYO scheme by Ward
Beullens in [Beu22b]
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As matrices are stored row-wise, each memory access returns four sequential
cells from one row. Note that the matrix is stored in BRAMs and not in an FF-
layered structure as might be understood from the figure below.

Furthermore, the input of both Digital Signal Processors (DSPs) is com-
posed of 4 bytes. This architecture helps increase the throughput and enables
the parallelization of both MULT and MOD operations.

Once the accumulated data of a block of four columns begins the final MOD
operation, the subsequent block is fetched and starts with MULT operation, as
shown in the timing diagram in Figure 5. The first row of the Matrix M and
the first coefficient of the Vector V are fetched from the BRAMs. The read port
then keeps feeding the system with blocks from each consequent row noted as
M[rowIndex, columnBlock], until the accumulated result is ready to be stored
through a different write-only port (WriteRES).

Figure 5: A simplified example showing the Matrix-Vector multiplication schedul-
ing of M8×8 ×V = RES, where M is a matrix of size 8 × 8, and V and RES
are vectors of size 8. M, V, and RES are stored in Mem0A, Mem0B, and
Mem1A, respecitively. M[rowIndex, columnBlock] corresponds to the row of
index rowIndex of the block having the index columnBlock. We mean by MAC
the Multiply And Accumulate function.

The design encloses a number of DSPs to enhance the Multiply And Accumu-
late functionality (MAC) of the sub-module, therefore, achieving better timing
results during synthesis. Finally, instead of using a full M × 32−bit accumulate
vector, we incorporate double-buffered temporary registers that are flushed al-
ternatively at the end of each sequence. Similarly, this reduces the usage of FFs
within the sub-module. Since the accumulated values are stored in BRAM once
ready, its’ FFs can accumulate the proceeding series instead of allocating extra
registers.

3.6 Memory Organization

The hardware implementation of MAYO mainly relies on BRAMs to store its
vectors and matrices. To ensure that both cores, namely the KeyGen and Sign,
have sufficient stack-like memory, 98% of the available on-chip BRAM is allo-
cated for the implementation. Thereby we provide enough headroom for potential
parameter modification of MAYO that might increase memory usage, e.g., when
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changing the security level from 1 to 5, the expanded secret key size increases
from 70KB to 557KB [BCC+23]. It is important to note, that not all the dedi-
cated memory is utilized for the first security level. In fact, only roughly 60% of
the 4.9MB Block Memory of the Zynq device is allocated with data.

The content of the BRAM cells is pre-allocated and statically organized since
the sizes of most elements are pre-defined. In other words, all vectors and ma-
trices’ addresses are provided in a VHDL file to create a mapping. This file is
then included in all sub-modules for better consistency.

The memory is partitioned into three dual port BRAMs, offering enhanced
performance and flexibility. This configuration allows, for instance, efficient read-
ing from one port while dedicating the other port for writing. Some sub-modules,
such as vector-matrix multiplication, or vector addition, tend to utilize three
ports for dual read and final write operations, therefore allowing better oppor-
tunities for parallelism within the sub-module. Moreover, the BRAMs offer the
“write enable” signal to address bytes of a memory row separately.

A simplified example of the memory data space allocation is presented in
Figure 6. Small buffers and vectors that are not meant to be accessed exclusively
by programmable hardware are found in the smaller BRAM. The big BRAMs are
indeed also shared with the CPU through AXI bus to stream input information
such as the message and secret key to the MAYO core itself. Furthermore, since
the key generation and the signing are not designed to operate synchronously
but rather consecutively, multiple arrays and vector spaces overlap if one of their
lifetimes expires. This approach helps the system avoid unnecessary increases in
memory fingerprints.

Secret key

Message
Vinegar Temporary matrix

transposed

Big matrix1 Augmented matrix

CPU Space

0x00020

P1P2

0x00064

0x000C2

...

...

0x40000

0x3F814

0x1C4D0

0x26250

0x01D10

0x33180

0x40000

...Small BRAM

Big BRAM 1

0x02000

Big BRAM 2

Figure 6: MAYO Block memory mapping presenting three True Dual Port
BRAMs statically partitioned into 2 big BRAM (each is 256KB) for large ma-
trices and vector storage, and small BRAM (of 8KB) for small scratch buffers
and other sensitive information.

3.7 Gaussian Elimination

Solving a System of Linear Equations (SLE) is evidently one of the primordial
computations for the MAYO algorithm to generate a valid message signature
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as explained in Section 2.3. Internally, the SLE is represented as a matrix A
of coefficients that resides in one of the large BRAMs. After defining the right-
most b vector, the Gaussian elimination method is applied to determine the xi

unknowns of the vector x within the Ax = b system. In this section, we present
a hardware implementation specifically designed for this task.

The Gaussian elimination can be summarized as transforming the system into
a similar triangular-shaped matrix to easily identify the solution. The initial step
is to perform forward elimination to create the desired triangle shape. Starting
from the first row, each following row is scaled and subtracted from the rows
below it to eliminate the coefficients below the main diagonal. Rows can be
interchanged to ensure that the largest coefficient aij is placed in the pivot
position. Once the upper triangular matrix is obtained, back substitution is
performed. Starting from the last row, the unknown variables are unraveled one
by one.

Several publications deal with hardware implementation of Gaussian elimi-
nation for various cryptographic applications, primarily focusing on F2. Among
them, GSMITH [REBG11] has been widely recognized for efficiently handling
F2k equations. Unfortunately, GSMITH’s architecture only conforms with small
and medium-sized matrices, whereas MAYO’s SLE m × m shaped matrix is
larger. This quadratic shape depends on the NIST security level. Not only would
the proposed GSMITH architecture utilize costly resources, but also hinder
the overall architecture’s performance and increase the needed Look-up Tables
(LUTs) when targeting F31. GSMITH describes, in fact, a systolic network com-
posed of various types of tiny processors capable of specific Gaussian steps and
propagating its values. Yet, since the source code was not open-sourced, we had
to redesign GSMITH. The final architecture, however, fails to meet our resource
requirements, depleting the Zynq’s FFs and LUTs, due to the internal registers
required in each GSMITH processor and its’ interconnection with the proposed
BRAM. When considering the other needed arithmetic cores, we concluded it
was unfeasible to fit GSMITH for the first security level.

To overcome this issue, we developed a state machine that fetches values
directly from BRAM as the matrix is stored externally rather than within the
core’s FFs. Additionally, it was mandatory to allocate sufficient memory to ac-
cumulate every cell in the matrix. In other words, during the first step of the
Gaussian elimination, multiplying rows with scalars may surpass the existing 8-
bit limit. Hence, the targeted matrix is initially unpacked into 16-bit wide values
with added padding, meaning that every row in the BRAM now contains two
instead of four values.

Moreover, to speed up the mod-inverse, which calculates the needed value
to transform the pivot element into 1 throughout the first scale step, prefilled
Read-Only Memory (ROM) with end results of this operation is utilized in-
stead of performing the actual calculations on run-time. These optimizations
contribute to the overall effectiveness of the MAYO core in solving an SLE. Al-
though GSMITH might offer superior performance, this core certainly consumes
less resources and power. Our architecture is theoretically compatible with other
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configuration sets, with a marginal difference in resource utilization. For instance,
n,m, o control the SLE size which should affect BRAM consumption, while q
modifies the LUT consumption, cell width, and the unpacking operation. The
solver should support up to F28 and for smaller q values, unpacking the matrix
might become unnecessary, as the result could still fit inside the original 8-bit
vector.

3.8 Optimizations and Firmware

Many sub-modules within our design share the same access to one of the BRAM
ports. Nevertheless, the usage of each port, whether for reading, writing, or both
differs. The core responsible for the vectors’ addition, for example, features mul-
tiple modes depending on the location of the input vectors in different BRAMs.
It manages to efficiently utilize all available ports to leverage data throughput
and synchronize the addition process accordingly.

Another notable design optimization lies in the polynomial reduction sub-
module where multiple arrays of scratch buffers are used to minimize memory
interactions. Hence, the core is provided only with new values which are stored
as final results.

Resource Utilization

Submodules LUTs FFs DSP

Keccak (Hash) 10580 18448 0

TRNG 460 218 0

Vector-Matrix multiplication 1035 528 8

Oil Space Sampling 176 289 0

Gaussian Elimination 1822 413 3

Vector Addition 485 300 0

Vector Negation 176 93 0

Vinegar Sampling 245 277 0

BRAM Port management 448 9 0

FSM Signing 2874 1068 0

Combined Architectures 23356 24645 11

Table 1: Resource utilization of our
hardware design on Zynq 7020 at a fre-
quency of 100 Mhz

Figure 7: Zynq Design CLB
utilization and mapping di-
agram showing a worst tim-
ing path

Various functionalities of MAYO are divided into separate modules, each de-
scribed individually. That said, each module still has access to header-like files
that declare the security level parameters, the memory space allocations, utility
functions required to fetch offsets or even ROM secret keys specifically intended
for non-debugging purposes. Numerous bit vectors are built upon these con-
stants. The code’s style guide itself heavily discourages simple number inclusion,
but instead, it is expected to utilize these pre-defined macro-like lines to im-
prove code readability and ensure that the overall architecture can fit different
configuration sets, i.e., different security levels.
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In addition to the hardware implementation, the utilization of the MAYO
core necessitates the development of accompanying firmware. This firmware
serves as the interface between the hardware core and the software MAYO appli-
cation, setting AXI/AXI-Lite transactions up. The existing C Bit-fields feature
Control and Status Registers that can enable debug mode, interrupts, and sup-
ply the ARM CPU with the end of executions information besides the interrupt
signal.

4 Results, Comparison, and Discussion

4.1 Results

In Table 1, we show the resource consumption of the whole design and sub-
modules for the first security level defined by the NIST PQC standardization
process [NIS23b]. The parameters defining MAYO are q (the size of the finite
field), n (the number of variables in the multivariate quadratic polynomials in
the public key), m (the number of multivariate quadratic polynomials in the
public key), o (the dimension of the oil space), and k (the whipping parameter,
satisfying k < n−o). For our results, these parameters are set to q = 31, n = 62,
m = 60, o = 6, and k = 10.

The proposed design uses approximately 50% of the available logic resources
on the Zynq board. These resources are distributed among different sub-modules.

Keccak The Keccak core occupies the most slices, which cover almost half of the
design. This is primarily due to its wide internal buffer and the tightly inter-
connected XOR network to generate the output hash. The descriptor read/write
wrappers contribute to this massive FF utilization, as we employ 4 read and 20
write descriptors to mitigate synchronization issues between Keccak and the rest
of the cores.

Gaussian Elimination Compared to the rest of the sub-mdoules, the Gaussian
elimination unit stands out with the longest state machine, as it involves various
steps and is designed to handle bigger matrices.

Vector-Matrix Multiplication The vector-matrix multiplication core also con-
sumes a considerable amount of FFs and 8 DSPs due to the optimization tech-
niques explained in Section 3.5.

FSM Signing The FSM Signing serves as the main control unit inside the overall
design and occupies 5% of the LUTs. This FSM combines multiple functionali-
ties, including key expansion, resulting in higher resource utilization. The system
also utilizes 97.14% of the BRAMs on the board to incorporate all the vectors
and matrices required by MAYO in a cohesive storage space, as explained in
Section 3.6.
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Data Flow Management Additionally, port and data flow management constitute
an important part of our design. The summed multiplexers and various managers
used in the implementation can consume up to 6% of the LUTs. For instance, the
BRAM port manager is employed 5 times in the design, one for each BRAM port.
These buses are crucial to facilitate arithmetic core inclusion and communication.
However, they affect the amount of combinatorial logic residing between the
start-FF and end-FF at each clock, hence, they introduce an additional delay.

We manage to synthesize the design at 100 MHz. However, any changes
to reach higher frequencies are constrained by the inherent limitations of the
BRAM-to-Submodule data transmission system and the associated net delay.
On average, it takes approximately 5 ns for a data signal to reach the target core,
leaving only about 4.5 ns (half a clock cycle) for logic operations. As illustrated
in Figure 7, the worst path of the design starts indeed at an FF and ends at a
BRAM port. Despite attempts to address congestion through P&R, the target
BRAM slice remains the furthest from the programmable logic.

4.2 Discussion and Comparison

Though our design consumes about 2 W of energy and utilizes less than half
of the available resources (24K FFs, 25K LUTs), Figure 7 indicates that the
implementation is not compiled for efficient on-chip surface management but
rather for better performance and routing. This explains the resource distribu-
tion throughout all slices of the FPGA. Since MAYO operates on diverse data
widths, synthesis necessitates the use of various logic elements (such as LUT3,
LUT4, LUT5, LUT6) which might not be located close to each other. One key
aspect to modify the frequency lies in incorporating more idle cycles to account
for the 2-clock cycle BRAM read delay. Moreover, incoming data is often stored
in a nearby FF before applying any further operations. Therefore, we estimate
that almost 30% of the total clocks are spent on memory operations (i.e., data
fetch and storage). Therefore, fine-tuning the BRAM allocation by only dedicat-
ing the necessary amount for the targeted NIST security level or reducing q to
16 can clearly improve the implementation speed.

Software Reference Software Implementation Optimized Hardware
Implementation with AVX Optimization Implementation

Scheme MAYO UOV MAYO UOV MAYO

Source [Beu22b] [BCH+23, Table 3] [Beu22b] [BCH+23, Table 21] Our Work

KeyGen 993,959 4,450,838 733,310 11,072,933 996,098

Sign 4,485,915 2,473,254 2,250,601 843,885 3,491,998

Table 2: Comparison with other hardware and software implementations

We present in Table 2 a comparison of the performance of different multivari-
ate schemes’ implementations, i.e., the software and hardware implementation of
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UOV [BCH+23], two software implementations of MAYO [Beu22b], and our im-
plementation. Note that all the implementations correspond to the first security
level. We compared with the UOV parameter set ’ov-Is-pkc+skc’ from [BCH+23],
since MAYO also uses the technique to compress public and secret keys, which
implies the requirement for key expansion before signing.

Our implementation demonstrates improved efficiency when compared to the
reference software implementation of MAYO. This is due to the optimization of
frequently used functions, such as mod-inverse in Gaussian elimination and the
matrix-vector multiplications, resulting in a similar number of cycles for the key
generation and a speedup of approximately 22% for signing as compared to the
reference C implementation.

In comparison to the MAYO AVX optimized implementation, our work has
an increase in cycle counts for key generation and for signing. This can be ex-
plained by the heavy impact of memory operations, which can be further opti-
mized in software implementations. Observe from the cycle counts of the UOV
key generation, that hardware implementations are not generally faster than
optimized software implementations.

Compared to the hardware implementation of UOV, our implementation has
considerably fast key generation, but slower signing. Even though we do not
completely match the exceptionally good performance of the highly optimized
hardware implementation of [BCH+23], we are still in a compatible range. By
moving to the newest parameters that use q = 16, further improvement can be
expected.

The overall good performance of our implementation can also be attributed
to the simplified memory design minimizing unwanted delays caused by CPU-
Cache-RAM architecture. In addition, our implementation significantly enhances
the performance of the scheme by utilizing pipelining techniques that process
four values simultaneously. This stands in contrast to the non-optimized C im-
plementation, which handles each value individually.

5 Conclusion

The implementation of multivariate signature schemes has faced challenges due
to their large key sizes, impeding them from deployment on resource-constrained
embedded devices. In response, the MAYO scheme was developed as a new mod-
ification of the mature UOV signature scheme. MAYO has successfully addressed
the issue of large key sizes and can now be seen as one of the prominent candi-
dates of NIST’s call for additional digital signatures in regard of performance,
key, and signature size. In this paper, we introduced the first full hardware, opti-
mized, and reconfigurable implementation of MAYO. Our implementation serves
as evidence of MAYO’s practicality for real-world deployment. Notably, we de-
liberately chose a ”modest” board that lacks sophisticated hardware encryption
capabilities and extensive memory storage, demonstrating the ease of deploying
the MAYO scheme.
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However, the deployment of the MAYO scheme brings forth a set of new
security challenges, particularly in terms of defending against side-channel at-
tacks such as [AKKM22,ACK+23]. Therefore, we emphasize the importance of
strengthening the security of our implementation against potential side-channel
attacks.
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