Haze: A Compliant Privacy Mixer

1,2[0000—0001—6576—9724] Ayelet Lotem? [0000—0003—4037—1028]

Vald2 [0000—0003—1149—-7182]

Maya Dotan
and Margarita

! The Hebrew University of Jerusalem
{mayadotan, ayelet.lotem}@mail.huji.ac.il
2 Intuit Israel Inc. margarita.vald@cs.tau.ac.il

Abstract. Blockchains enable mutually distrustful parties to perform
financial operations in a trustless, decentralized, publicly-verifiable en-
vironment. Blockchains typically offer little privacy, and thus motivated
the construction of privacy mizers, a solution to make funds untraceable.
Privacy mixers concern regulators due to their increasing use by bad ac-
tors to illegally conceal the origin of funds. Consequently, Tornado Cash,
the largest privacy mixer to date is sanctioned by large portions of the
Ethereum network.

In this work, we present Haze, a compliant privacy mixer. Haze guaran-
tees users’ privacy together with compliance, i.e., funds can be withdrawn
as long as they were deposited from a non-banned address, without re-
vealing any information on the matching deposit. We empirically evaluate
our solution in a proof-of-concept system, demonstrating gas consump-
tion for each deposit and withdrawal that is comparable to Tornado Cash
for compliant users, and there is an optional feature for non-compliant
funds to be released from the mixer to some predetermined entity. To
the best of our knowledge, our solution is the first to guarantee compli-
ance and privacy on the blockchain (on-chain) that is implemented via
a smart contract. Finally, we introduce an alternative compliant privacy
mixer protocol that supports de-anonymization of non-compliant users,
at the cost of increased trust in the banned-addresses maintainer, which
is realized in the two-server model.

1 Introduction

Blockchains and privacy. Blockchains are decentralized, publicly ver-
ifiable, and distributed append-only immutable ledgers that allow mutu-
ally distrustful parties to maintain a common state. Bitcoin [27] is the
first blockchain system to go live, enabling parties to engage in money
transfers using the native currency of the blockchain. Ethereum [40] is
a blockchain platform that enables users, in addition to simple money
transfers, to perform more complex operations in the form of a smart

contract. A smart contract can be any program implemented on the
blockchain. The state of the smart contract is maintained as part of
the state of the blockchain. While Bitcoin and Ethereum offer users
pseudonymity, in both blockchains funds are traceable. Over the years,
there have been several attempts at adding various flavors of privacy to
blockchains [5}|18]/31,/38]. One such flavor is untraceability of funds. A
popular way to make funds untraceable in blockchains is through the use
of privacy mixers [4,/17,37]. A widely used privacy mixer in practice is
Tornado Cash [28], which is decentralized and implemented via a smart
contract on the blockchain. The untraceability property provided by pri-
vacy mixers aided a growing phenomenon of money being laundered via
such systems. For instance, the Ethereum address Oz . ..383FE2f96 which
belongs to the hacker group Lazarus of North Korea [34] used Tornado
Cash to launder millions of dollars in stolen funds.

The U.S. Department of Treasury publishes the “Specially Designated
Nationals And Blocked Persons List (SDN)” [35] that contains addresses
of persons that the U.S. prohibits dealing with, as part as the OFAC
list (Office of Foreign Assets Control). This list contains, amongst other
things, blockchain addresses suspected to be involved in various types of
illegal activity. In August 2022, following the Lazarus incident, the list
was updated to include Tornado Cash [36]. This act changed the patterns
of block-inclusion for Tornado Cash transactions by miners/validators.
Today about a third of validators in the Ethereum network censor Tor-
nado Cash transactions [23]. Currently, such a list is maintained on the
Ethereum blockchain by Chainalysis [7].

The extensive usage of privacy mixers to move illicit funds and the
addition of Tornado Cash to OFAC’s list emphasizes the need for solutions
that provide privacy only to “good” users, but do not allow access to
the system to entities that do not comply with the policy. In this paper
we refer to the problem of preventing addresses from OFAC’s list from
transferring funds through a privacy mixer as the “compliance” problem.

A compliant privacy mizer is therefore a mixer that preserves privacy
in the sense of fund untraceability for honest users, ones that are not
on the banned-addresses list, and does not enable the release of funds
deposited from banned addresses on the list, even if the address only
becomes banned after successfully depositing funds to the mixer. To con-
struct such mixers one needs to take into account the dynamic nature
of the banned-addresses list that is constantly updated to include new
addresses. For this reason, a compliant privacy mixer must verify that, at

Deposit D from Address A added to Withdraw request for
Address A banned addresses list deposit D

I SR N
Reject™> TMe

Fig. 1: Deposit becoming non-compliant after entering the mixer.

the time of withdrawal, the funds being withdrawn did not originate from
a banned address, see Fig. [1, However, this requirement that is essential
for achieving compliance together with privacy induces a non-trivial com-
bination, as at the time of withdrawal the mixer must be oblivious to the
origin of the funds. Burleson et al. [6] were the first to introduce the
question of compliant privacy mixers, and discuss at a high level the de-
sired features of such a solution. However formal security definitions and
implemented solutions are still missing. This raises the following question:

How can we construct a practical privacy mizer with compliance?

1.1 Owur contribution

In this work we construct the first compliant privacy mixer, Haze, that
guarantees the following security properties: (1) correctness - compliant
users can always withdraw their funds, (2) soundness - funds cannot be
double spent, (3) privacy in the form of deposit-withdrawal unlinkability,
and (4) compliance - users on the banned-addresses list cannot with-
draw funds from the mixer. Moreover, we formalize these properties and
cast them into general security definitions. As mentioned before, we con-
sider compliance with respect to the banned-addresses list, but nonethe-
less, our construction can be coupled with any general compliance policy
that can be checked against a deposit transaction. We implement Haze
and evaluate its performance together with a detailed comparison to the
most prominent privacy mixer, Tornado Cash. We introduce an alter-
native compliant privacy mixer protocol with an additional feature of
de-anonymization of non-compliant users. This feature comes at the cost
of increased trust in the entity maintaining the banned-addresses list,
which can be realized in the two-server model. We further show how both
our protocols can be extended to allow funds deposited to the mixer from
banned addresses (i.e., funds that cannot be withdrawn) to be released to

a predetermined trusted entity. This enables, for example, stolen funds to
be returned to their rightful owner instead of being locked forever inside
the mixer.

Formalization of compliance for mixers. In order to formalize com-
pliance, we consider an idealized compliant ledger. In this ledger, deposits
that become non-compliant are “removed” from the ledger, alongside the
funds that are associated with them. This implies that mixer protocols in
the idealized compliant ledger are compliant by default, as non-compliant
deposits are not inside the mixer and hence cannot be withdrawn. Infor-
mally, our compliance definition is the following: a mixer protocol is com-
pliant if it behaves indistinguishably in the idealized compliant ledger and
the standard (append-only) ledger. Concretely, any accepted withdrawal
transaction by the mixer is also accepted if the ledger is replaced with
the idealized compliant ledger and vice versa. This definition coincides
with the intuitive notion of compliance - illicit funds can’t go through the
mixer.

Overview of our construction. Haze is comprised of two entities, a
user and a mixer. The mixer is a smart contract implemented on the
blockchain, and the user is a client run locally by any user wishing to
interact with the smart contract of the mixer. Users interact with the
mixer by depositing and withdrawing funds, by means of transactions on
the blockchain.

Similarly to Tornado Cash, our solution utilizes Merkle trees and zero-
knowledge proofs. Deposits are made by submitting a leaf to the Merkle
tree maintained by the mixer. Withdrawals are made by users by creating
a zero-knowledge proof that asserts that they have an unspent deposit
from a compliant address in the mixer. The proof is sent to the mixer
alongside a nullifier, where both are based on some secret information
known only to the depositor. The nullifier is then stored in the smart
contract and is used to ensure funds cannot be double-spent. The proof
is constructed and verified with respect to the compliant Merkle tree, a
tree where leaves associated with deposits from non-compliant addresses
are removed.

A non-compliant address is an address on the banned-addresses list.
The banned-addresses list is implemented as a smart contract on the
blockchain, and maintained by a trusted entity. At withdrawal, the mixer
queries this list in order to keep the compliant Merkle tree up-to-date,
and if an address of a deposit had become non-compliant (banned), it

o #
Y | } | >
aA N\ _

Compliant

. Mixer I
b \ Nuliifiers
= %erkel fullfier_1

Merkel

Tree V V
| EeCRe

Fig.2: Our privacy mixer with compliance, Haze. Deposits from non-
compliant addresses are removed from the tree (the red X). The removal
is triggered by a withdrawal transaction and done by zeroing their leaf
value and updating the hashes at the nodes along the path from this leaf
to the root. The privacy guarantee is that a withdrawal cannot be linked
to its corresponding deposit.

removes the corresponding leaf from the Merkle tree and updates the
relevant path in the tree accordingly. Funds belonging to removed leaves
(equivalently, funds deposited from non-compliant addresses) are unrecov-
erable to the depositor, as it no longer can generate a successfully verifi-
able zero-knowledge proof to withdraw these funds, see Fig. 2] Therefore,
Haze ensures that funds can never be withdrawn once the address they
deposited from becomes non-compliant. Moreover, we emphasize that our
technique for achieving compliance via removing leaves in the Merkle tree
that are associated with non-compliant deposits can be applied with re-
spect to any general compliance policy that can be checked against a
deposit and not only policies defined by addresses. Thus, Haze captures
a richer family of compliance policies.

Implementation. We implement both Haze’s client (i.e., “user”) in
JavaScript and server (i.e., “mixer”) in Solidity and evaluate the pro-
tocol’s performance and gas consumption, demonstrating;:

— No overhead at deposit. The gas consumption of a deposit transaction
and the running time of the user are identical to Tornado Cash, i.e.,
~ 1M gas and 0.32 seconds, respectively.

— ~ 1M gas consumption for the Merkle tree update per each newly non-

compliant address that is associated with a leaf in the tree. The gas for
the this update operation is paid by the withdrawal that triggers this

tree update (i.e., the first withdrawal transaction since this address
entered the banned-addresses list).

— Negligible running time overhead at withdrawal. Concretely, 0.24 sec-
onds user running time amortized per Merkle tree node, with a 0.0042
seconds difference from Tornado Cash. The time difference stems from
fetching the banned-addresses list.

— The gas consumption per withdrawal is ~ 0.31M for the zero-knowledge
proof and nullifier validation (as in Tornado Cash) plus ~ 1M gas per
newly non-compliant address that requires an update of the Merkle
tree.

The gas consumption per Merkle tree update is identical to the gas
consumption of a deposit transaction, as both only require updating the
relevant path in the tree. Therefore, a reasonable solution to cover the
additional gas consumption of withdrawal due to compliance is to charge
an extra fee per deposit proportional to the gas consumption of a single
deposit. The legitimacy for the fee is by having each user cover not only
the cost of the deposit itself but also the cost of preserving compliance in
case its address becomes non-compliant. This approach makes a deposit
transaction in Haze cost at most twice compared to Tornado Cash, while
maintaining the cost of a withdrawal identical to Tornado Cash. Con-
cretely, the cost of withdrawal is comprised of the gas consumption of the
zero-knowledge and nullifier verification and an additive factor propor-
tional to the number of newly non-compliant addresses associated with
leaves in the tree. The extra cost paid at withdrawal for the Merkle tree
updates is refunded to the withdrawer by the mixer, and funded by the
extra fee charged with each deposit transaction. The cost overhead in the
deposit is refunded to compliant users, as described in Section [£.4] mak-
ing this a type of limited-time escrow. Overall, together with this feature,
our protocol does not incur a cost overhead over Tornado Cash.

De-anonymizing non-compliant users. Due to the strong privacy
guarantees of Haze, users that manage to withdraw funds prior to becom-
ing non-compliant succeed in concealing the trace of their illicit funds.
However, it might be desirable to construct a solution that enables a
trusted entity to publicly revoke the privacy of users that become non-
compliant, even if they became non-compliant after withdrawing funds
from the mixer. To achieve this property we suggest an alternative con-
struction of a compliant privacy mixer as follows: when depositing funds
to the mixer, a user additionally provides an encryption of its nullifier,
encrypted with the trusted entity’s public key. Later, if a user becomes

non-compliant, the trusted entity updates the banned-addresses list with
the user’s address and the nullifier in plaintext. Upon a withdrawal re-
quest, the mixer checks the banned-addresses list. Instead of updating the
tree, it simply adds the nullifier of newly non-compliant addresses to the
nullifier set, making funds of deposits from non-compliant addresses non
withdrawable. We note that this solution eliminates the cost overhead
at withdrawal, as no tree updates are required for newly non-compliant
addresses. In this solution, the cost overhead of a deposit transaction is
fixed at ~ 300K gas, due to a validation of a zero-knowledge proof pro-
vided with a deposit transaction for ensuring consistency of the encrypted
nullifier. We note that for the protocol to guarantee privacy for compliant
users, we assume that the trusted entity is semi-honest in the sense that
it does not decrypt nullifiers’ of compliant users. We suggest instantiat-
ing it in the two server model using a CCA-2 secure threshold encryption
scheme, for example of [3]. This type of solution resembles real world
scenarios such as police requiring search warrant from court to execute a
search.

Releasing non-compliant funds. Our construction ensures that funds
deposited into Haze from addresses on the banned-addresses list cannot
be withdrawn. However, this might mean that stolen funds deposited into
Haze are locked forever in the smart contract and cannot be returned to
their rightful owners. For this reason, Haze can be deployed with a prede-
fined life-cycle, defined in the smart contract implementing the protocol
(i.e. is publicly known), and users are to withdraw their funds within the
life of the mixer. After this time, the mixer is closed and remaining funds
are transferred to a predetermined trusted entity. Additionally, at the
time of closing the mixer, all compliant depositors are refunded the fee
overhead they were charged at the time of deposit to cover the cost if they
were to become non-compliant. The entity can be a hard-coded address
of a law enforcement agency that can then redistribute these funds. The
entity can also have a dispute resolution mechanism for individuals that
claim to be wrongly placed on the list.

Due to Haze’s strong privacy guarantee, counting the amount of funds
from banned addresses inside Haze is a non-trivial task, as the privacy
feature means that it is indistinguishable whether a non-compliant user
withdrew its funds or not. Nonetheless, in our alternative protocol with
the de-anonymiztation feature, the counting problem becomes easier. The
mixer can count and release non-compliant funds at any desired period
during the life-time of the mixer. This is elaborated in Section [6]

1.2 Related Work

Flavors of privacy over the blockchain. Prior to this paper, exten-
sive work has been done towards ensuring transaction privacy on the
blockchain, e.g., Hopwood et al., Sasson et al. etc. [2,5,[18,29,31,138] are
blockchain solutions that utilize cryptography to anonymize transactions.
Most of them utilize Merkle trees and nullifiers, as in our construction.
However, these solutions tend to be slow and expensive deeming them
less popular for use in practice.

Other works, such as [10,25,/30] by Malatova et al, Roos et al., etc.
provide privacy to layer 2 systems implemented on top of the blockchain.
They however do not address the privacy of on-chain transactions.

Another desired flavor of privacy is untraceability of funds over the
blockchain, that is commonly achieved through the use of privacy mixers.
These are sometimes referred to as “add-on” privacy solutions that derive
privacy by mixing a user’s funds with many other funds. Mixers can be
either centralized, see Bonneau et al., Heilamn et al., etc. [4,]17,37], and
depend on a trusted central entity or decentralized, see Meiklejohn et el.,
Pertsev et al., Bunz et al. etc. [5,26128] which means that the functionality
is implemented via an on-chain smart contract. Several papers quantify
the privacy achieved by existing systems. For instance, Wu et al. [41] and
Wang et al. |[39]. However, none of these systems provide any guarantees
of compliance. Moreover, some of these systems have been prone to abuse
by money launderers, as mentioned above.

Compliance with privacy over the blockchain. Additionally, sev-
eral papers have studied the intersection of privacy and compliance in
the blockchain setting. In particular, Goldwasser et al. [15] proposes a
protocol that enables to prove that specific regulations are being adhered
to while maintaining secrecy of recorded data. Burleson et al. [6] were the
first to introduce the question of compliance for privacy mixer, and state
it in the sense of a banned-addresses list. They however do not provide a
concrete construction, or definitions of the desired properties.

Paper Organization

The rest of this paper is organized as follows. Preliminary terminology and
definitions appear in Section [2l Our protocol for compliant privacy mixer
in Section [3] Details on integrating our protocol with the blockchain in

Sectiond] The implemented system and empirical evaluation in Section
An alternative compliant privacy mixer protocol with de-anonymization
of non-compliant users in Section [0} Conclusions in Section

2 Preliminaries

We use standard definitions for functions being negligible with respect
to a system parameter X called the security parameter, denoted negl(\);
similarly for polynomial, where ppt stands for probabilistic polynomial time
in A. See definitions in |22].

In the following we establish definitions and terminology required for
the rest of the paper.

Hash functions. We call an efficiently computable family of keyed func-
tions

H={H::{0,1}" = {0, 1}'},_y(), se0.13*, reN

collision resistant hash functions, if for every ppt adversary A, and any A,
a uniformly random function Hs € H satisfies that A cannot find = # 2’
s.t H(x) = H(2'), except with negligible probability.

Merkle trees. A Merkle tree T is a complete binary tree equipped with
a collision-resistant hash function H and computed on n leaves having
values [v1],...,[vy], and the value of each internal node is H = (al|b)
where a and b are the values of its two children; (We assume n is a power
of 2; if not, we fix a zero value for the missing leaves). We use a standard
notion where each leaf value [v]; is a hash of some cleartext data d;. An
authentication path O(T,) of a leaf with position £ in T is made up of the
values of all “sibling” nodes on the path from leaf ¢ to the root denoted
R, as well as [v]y itself and d,. We use the Pedersen hash function [19)
for the leaf values, and the MiMC hash function [16], to compute the
internal nodes of T.

Zero-knowledge succinct non-interactive Argument of Knowl-
edge [16]. Let R be a polynomial time decidable binary relation over
pairs (¢, w) where ¢ is the statement and w the witness.

An efficient-prover publicly verifiable non-interactive argument @ =
(ZK.Setup, ZK.Prove, ZK.Ver, ZK.Sim) for R is a quadruple of ppt algo-

rithms as follows:

(0,7) + ZK.Setup(R): The setup produces a common reference string
o and a simulation trapdoor 7 for R.

7 <— ZK.Prove(R, 0, ¢, w): The prover algorithm takes as input a com-
mon reference string o and (¢, w) € R and returns an argument 7.
0/1 < ZK.Ver(R,0,¢,m): The verification algorithm takes as input
a common reference string o, a statement ¢ and an argument 7 and
returns 0 (reject) or 1 (accept).

— 7w+ ZK.Sim(R, 7, ¢): The simulator takes as input a simulation trap-
door and statement ¢ and returns a simulated argument .

Definition 1 (Succinct non-interactive zero-knowledge argument
of knowledge). We say & = (ZK.Setup, ZK.Prove, ZK.Ver, ZK.Sim) is a
perfect succinct non-interactive zero-knowledge argument of knowledge
(ZK-SNARK) for R if it has:

— perfect completeness: Given any true statement, an honest prover
should be able to convince an honest verifier to accept it. Formally,
for all (p,w) € R

Pr[ZK.Ver(R, o, ¢, m) = 1|(0,T) < ZK.Setup(R);
7 < ZK.Prove(R, 0, ¢, w)] =1
— perfect zero-knowledge: An argument that does not leak any informa-

tion besides the truth of the statement. Formally, for all (¢,w) € R
and all adversaries A

Pr[A(R,o,7,7) = 1|(0,7) < ZK.Setup(R);
7+ ZK.Prove(R, 0, ¢, w)]
= Pr[A(R,o0,7,7) = 1|(0,7) < ZK.Setup(R);
7 ZK.Sim(R, T, ¢)]

— computational knowledge soundness: There exists an extractor that
extracts a witness whenever the adversary produces a valid argument
(given access to its internal state). Formally, for all non-uniform poly-
nomial time adversaries A there exists a non-uniform polynomial time
extractor x4, and a negligible function negl(-) such that,

Pr[(¢,w) ¢ R and ZKVer(R, 0, ¢, m) = 1|
(0,7) = ZK.Setup(R); (¢, m); w) < (Allxa)(R,0)]
< negl(\)

— The proof 7 is of polynomial size in A and ZK.Ver is polynomial in
A+ g,

10

3 Compliant Privacy Mixer

In this section we present our protocol for privacy mixers with compli-
ance (Section and Fig. and provide a security analysis. Formal
definitions for the properties achieved by our protocols and listed in this
section are available in Appendix [A]

3.1 Our Protocol

In this section we formally describe our protocol. We enhance the Tor-
nado Cash protocol [28] to obtain compliance in the sense of preventing
withdrawals of funds that belong to non-compliant deposits, without ex-
posing information on the deposit being withdrawn, thus maintaining
privacy of the user. A deposit is non-compliant if it was deposited from
an address that has become non-compliant in the duration leading to the
withdrawal attempt. The main difference between our protocol and [2§]
is in the withdrawal phase, where we first manipulate the Merkle tree to
remove leaves corresponding to non-compliant deposits. This treatment
guarantees that even if deposits become non-compliant after entrance to
the mixer, they cannot be withdrawn. More formally,

The protocol IT = (deposit, withdraw) consists of a pair of protocols,
deposit and withdrawal where any user Usr can communicate with Srv to
perform the following functionality:

— deposit enables users to deposit money to Srv. Depositing is done
by user Usr generating a deposit transaction of a fixed amount and
communicating it to Srv.

— withdraw enables users to withdraw deposited funds from Srv. With-
drawing is done by user Usr generating a withdraw transaction (of the
same fixed amount) using undisclosed data generated by Usr during
the deposit phase and communicating it to Srv.

Communication between users and Srv is done via the Bulletin board
Fup, a functionality that models the blockchain. Fpp, supports the following
requests from any entity in the (blockchain) system: Write a message,
and Read written messages. Written messages are stored in an append-
only linked list, where each list node is a tuple containing: its index in
Fup, sender’s and recipient’s address, and the message itself. Similarly to
the blockchain, entities in the system can generate and possess multiple
addresses, where each address is unique (w.h.p), and there is no linkability

11

between the addresses and the identity of the user. Read requests return
the content of the linked list at the request time (i.e., up to the node with
the most recent index). When a user executes either deposit or withdraw,
the generated transaction is written to Fp, with the address of Srv as
the recipient’s address, which is hard-coded within the protocol II. The
sender’s address is recorded as well. Users can access JFp, from any address
they own, but cannot use other entities’ addresses (as in the blockchain,
sending a message from an address requires signing the message with the
secret key associated with the address being used). See Fig. 3| for formal
details.

Bulletin-board Functionality F,

Functionality Fup, proceeds as follows: Set index = 0
Upload. Upon receiving (Write, msg, addressz) from some address address 4, store
the tuple (index, msg, (addressa,addressg)), output (index, msg,addressa) to

addressp, and set index + +.

Read. Upon receiving Read request from a party return all stored records in Fpp.

Fig. 3: The bulletin-board functionality

Compliance in the context of privacy mixers requires rejecting de-
posits and withdrawals of funds associated with banned addresses. Con-
cretely, since the banned addresses are dynamic, in the sense that new
banned addresses are added from time to time, we consider an interac-
tive banned-addresses functionality]-"lgm, that stores the banned addresses
and is updated only by a predefined entity (with a fixed address Q). The
banned-addresses list can be read by any entity in the system, and in
particular, by users and Srv in IT. The decision on which addresses are

updated in flf?m is left outside the model. See Fig. for formal details.

Our protocol. We present our privacy mixer protocol with compliance
IT = (deposit, withdraw) in Fig. 5| Our protocol modifies the Tornado Cash
protocol to obtain compliance in the sense that deposits from banned ad-
dresses cannot be withdrawn. That is, IT operates in the presence of]:b?m
and rejects withdrawal of funds that were deposited from addresses that

are recorded in]-'Ign at the moment of withdrawal. This guarantees block-

ing banned addresses, that were not necessarily in ‘Fbcz?zn when the deposit

transaction communicated to Srv. The protocols deposit and withdraw

12

Banned-addresses Functionality Fo

ban

Functionality fﬁn is parameterized on address) and proceeds as follows:

Update. Upon receiving (Ban, address 4, data) from address @, record
(address 4, data).

Read. Upon receiving Read request from any party, return all stored records in

]:Q

ban*

Fig.4: The banned-addresses functionality. Records are pairs of banned
address, together with an (optional) field containing data related to the
address.

are non-interactive in the sense that users communicate with Srv, but
not vice versa, and Srv only performs Read requests to the Fp, and }fin
functionalities. The communication to Srv (i.e., deposit and withdrawal
transactions) is done by users sending a Write request to Fy, with the
transaction and addresss,, being the recipient’s address.

The difference between our protocol and Tornado cash resides in the
withdraw protocol. In the original Tornado Cash withdrawal protocol (28],
when a user Usr wants to withdraw funds that it deposited in a deposit
transaction dtxn, it proceeds as follows: (1) computes the root Ry of a
Merkle tree T, where the leaves of T are all deposit transactions sub-
mitted to Srv so far, where £ is the leaf associated with the deposit dtxn.
Then, (2) Usr computes O(T,¥¢), the authentication path of ¢ in T as
defined in Section [2l Next, (3) it computes a hash, called nullifier, over
part of the randomness used to generate dtxn. Finally, (4) Usr produces
a proof that it "knows” the authentication path for one of the leaves in
T that has not been previously withdrawn.

The proof in (4) is generated using a ZK-SNARK scheme @ for a
polynomial time decidable binary relation R, where the statement is (R,
nullifier) and the witness is (randomneesgixn, £, O(T,¢)). The withdrawal
transaction submitted by Usr consists of (nullifier, proof).

Upon receiving the withdrawal request, Srv fetches its locally stored T
and verifies the proof wrt its root and the received nullifier (in addition to
the nullifier uniqueness assertion). In our withdrawal protocol, we modify
T and nullify the leaves that correspond to deposit transactions associated
with an address that appears in]:lffm. Consequently, if the ZK-SNARK

13

proof verifies, it guarantees that the deposit transaction it withdraws is
not from an address in]:lgm’ as those do not appear in 7 anymore.

The formal description of our protocol II appears in Fig.

Our protocols deposit and withdraw in IT provide the same time com-
plexity as Tornado Cash except for an additive factor in withdraw for Srv,
that is, for a security parameter A:

— deposit has time complexity of Usr and Srv, which is poly(\) and
poly () - O(log(n)), respectively.

— withdraw has a Usr time complexity of poly()A) - O(n - log(n)), and an
additive factor of A - poly(A)-O(log(n)) on the Srv side, compared to
Tornado Cash.

where n is the maximal number of leaves in 7, and A is the number of
added addresses to flﬁn’ since the previous withdrawal transaction, that
are associated with leaves in 7. See Section [5| for performance measure-
ments of withdraw and deposit.

Our protocol II provides correctness, soundness, privacy, and compli-
ance in the following sense. Detailed formalization these properties ap-
pears in Appendix [A]

Correctness is in the sense that any deposited funds can be withdrawn
(once) as long as the matching deposit transaction is compliant at the time
of the withdrawal, i.e., the withdrawn funds were not deposited from an
address in }'Ign. Correctness stems from the collision resistance of H(-)
together with the completeness property of @, and k being randomly
sampled. Concretely, a valid deposit transaction H(k||r) is a leaf in T as
long as it is not from an address in F;° . Therefore, on input (k,r) the
withdraw protocol produces an accepting zero-knowledge proof 7 and a
unique nullifier A.

Soundness is in the sense that a user cannot withdraw funds that it did
not deposit. Soundness stems from the collision resistance of H, and the
computational knowledge soundness of @. That is, a user that produces
a valid proof for the instance (R7, H(k)), without possessing (k,r) for
one of the leaves, can be used to break the collision resistance property
of H. This is done by applying the knowledge extractor xysr, guaranteed
by the knowledge soundness of IT, to extract the witness (k,r, ¢, O(T,/))
with non-negligible probability.

Privacy is in the sense that a withdrawal cannot be linked to any non
withdrawn deposit. Privacy stems from the property of H being a random

14

Common parameters: A security parameter \, a function H sampled uniformly at random from a collision-
resistant hash function family H, and a ZK-SNARK scheme & = (ZK.Setup, ZK.Prove, ZK.Ver, ZK.Sim) for

relation R as defined above.

Parties and addresses: A mixer Srv with public address addresss,, and a user Usr with some addresses

addressysr, and addressysy, .

Storage: Srv locally stores a full binary Merkle tree 7 on n leaves, all initialized to zero, the location of the
next available leaf next = 0, and, initially empty, nullifier set Sg. Each leaf in 7T is associated with an address,

initially set to L.

Trusted setup: Bulletin-board functionality Fu,, and Banned-addresses Functionality Fﬁn. A common ref-
erence string o produced by running ZK.Setup.

Deposit: deposit is executed by user Usr from some address addressys,, and mixer Srv, as follows:

1. User: samples uniformly at random &, < {0, 1}*® for some polynomial ¢(-), computes C' = H (k||r), and
sends (Write, C, addresssn,) to Fpp. We call C' a deposit transaction.

2. Mixer: Upon receiving (index, C, addressysr,) from Fpp, perform the following steps:
(a) Check that C is in the range of H (else output 0).
(b) Invoke the subroutine in Fig. |§|on Update_Tree(T, next, C, addressys,) to update T, set next = next+1,

and output 1 if successful. We call such a deposit transaction valid. E|

Withdrawal: withdraw is executed by user Usr from some address addressysr, and mixer Srv, as follows:

1. User: On input (k,r), to withdraw a deposit transaction C' = H (k||r) proceed as following:

(a) Send Read request to f,,Qan and denote by Spen the received banned-addresses list.

(b) Send Read request to Fi, and denote by Sieqves = {(index;, Cs, addressi)}ie[k] the subset of the returned
records from Fp, where C; is a valid deposit transaction, and address; is the address associated with
it. For each ¢ € [k] such that address; € Span set C; = 0 and address; = L.

(c) Construct a Merkle tree 7 with (C1,...,Cy) being the leaves and let Ry be the root of T.

(d) Compute the authentication path O(T,£), where £ is the leaf index of C' in the computed T (if no leaf
C, abort).

(e) Compute h = H(k) and 7 < ZK.Prove(o, (R1,h), (k,7,¢,0(T,£))).

(f) Send (Write, (h,), addresssy) to Fpp. We call (h,) a withdrawal transaction and h its nullifier.

2. Mixer: Upon receiving (index, (h,), addressysr,) from Fpp, perform the following steps:

(a) Send Read request to ‘Flgn and denote by Spen the received banned-addresses list.

(b) Zero leaves associated with deposits from banned addresses: For each leaf ¢ in 7 and an address
address; associated with it, check if addressy € Span, and if so invoke the subroutine in Fig. |§| on
Update_Tree(7, 4,0, L) to update 7.

(c¢) Verify that h did not appear in any previous withdrawal transaction (output 0 otherwise).

(d) Output b < ZK.Ver(o, (R7,h),n) and if b =1 set Sy = Sp U h.

% in the blockchain implementation the mixer also verifies that the deposit transaction is funded.

Fig.5: Compliant privacy mixer protocol I1
15

Subroutine Update_Tree executed by Srv on (7,4, C,address), and shared parame-
ters as in Fig. |5] where T is a Merkle tree on n leaves (and height log(n)).

For a node v € T we denote by [v] its value, and similarly by [v]s, and [v]p, its sibling
and parent values, respectively.

The subroutine proceeds as follows:

1. Set the value of the £’th leaf to C' and denote this leaf by v.
2. while v # Ry compute:
(a) [v]pr = H ([v]||[v]sb) for left child v and
[v]pr = H ([v]sb]|[v]) for right child v.
(b) v = parent(v)

Fig. 6: The subroutine Update_Tree updates the hashes along the path
from the £’th leaf to the root in 7.

oracle (or alternatively H is hiding) and the zero-knowledge property of @.
Concretely, the zero-knowledge proof guarantees to hide (k,r,¢,O(T,¥))
and the random oracle H guarantees that H (k) can be linked to H (kl||r)
w.p at most negligibly larger than a random guess.

Compliance is in the sense that funds deposited from an addresses in
'Flgm cannot be withdrawn. This follows immediately from the construc-
tion as leaves associated with deposit transactions from banned addresses
are zeroed and do not appear in 7. Therefore, depositors from addresses
in fb%n cannot produce an accepting nullified and zero-knowledge proof
to withdraw these funds.

See Appendix [A] for formal definition of these properties.

4 Integrating with the Blockchain

In this section we address the necessary adjustments needed to make our
protocol in Fig. [f|securely deployed on a blockchain. In particular, it needs
to remain correct, compliant, private, and sound on the blockchain. Our
protocol uses primitives that are available on many contemporary plat-
forms, and in particular all EVM blockchains, and therefore is broadly
applicable. In Section we introduce additions to our protocol to en-
able balanced distribution of the cost overhead induced by the compliance
maintenance mechanism. Additionally, in Section [1.4] we propose a solu-

16

tion that enables releasing funds deposited from non-compliant addresses
back to some predetermined entity.

4.1 Deployment on the Blockchain

In the blockchain deployment of our protocol, the mizer Srv is an on-chain
smart contract that implements the logic of Fig. bl and can be publicly
audited. The Merkle tree 7 is stored in the smart contract’s storage.
Users interact with Srv by sending transactions to the blockchain. The
address of a transaction sender is publicly visible and therefore a deposit
to Srv can be linked to the address from which it originated. However, a
user may send many transactions to Srv from multiple addresses.

The Banned-addresses list functionality fgm is an on-chain smart
contract which receives queries from users and asserts whether an ad-
dress has been included in the banned address list (sanctions list). Today,
the company Chainalysis maintains such a contract [7] on the Ethereum
blockchain and reflects the sanctions designations listed on economic/trade
embargo lists from governments and organizations including the US, EU,
and the UN.

A deposit transaction is an on-chain transaction transferring M coins
to the smart contract Srv (we assume for ease of notations that M = 1,
but any amount will work as long as it is the same amount across all
users and all transactions). The transaction will also have as auxiliary
data C = H(k||r) as described in deposit, Fig. [5 Step (I} The user must
also include in the transaction additional funds to pay the gas fees.

A withdrawal transaction is an on-chain transaction from the user to
Srv. In order to maintain our protocol’s privacy guarantees, the transac-
tion should originate from a previously unused address. The transaction
does not transfer any funds into Srv, and includes in the auxiliary data the
user inputs as described in withdraw, Fig. [, Step[I] When the withdrawal
is processed by Srv, M coins will be released to the address designated in
the transaction. The transaction should again include the gas fee needed
to execute the withdrawal. Paying for gas of a withdrawal is preferably
done via a relay in order to preserve privacy, see Section [4.2}

4.2 Security Concerns over the Blockchain

Care needs to be taken in order to deploy our protocol (we call the de-
ployed protocol Haze) on top of the blockchain, due to the asynchronous

17

nature of the blockchain and the fact that messages are not written to
the blockchain directly by users. The blockchain is indeed an append-only
linked list, as per our theoretical model. However, messages may arrive at
the blockchain simultaneously and several messages may be included in a
single block (a single state update). Messages are sent to the blockchain
either via broadcast, through a trusted relay or directly to validators
through private channels. Block builders\validators choose how to order
transactions inside a block according to their own best interest (typically
according to a tip-maximizing order) [§]. This means that in addition to
the security properties mentioned above, over blockchains, several other
security concerns arise. For example, the deployed protocol needs to guar-
antee resilience to hijacking and front-runningﬁ We therefore have to take
extra precautions when implementing our protocol as a smart contract to
mitigate these concerns.

Hijacking resilience. In the idealized bulletin-board model, messages
are written to Fpp directly without the possibility of interception. In the
blockchain world messages are sent either via broadcast to the entire net-
work, or through private channels to builders\validators. This introduces
a previously undiscussed risk of messages being hijacked and modified in
order to steal funds headed out of Srv. Haze prevents hijacking by in-
cluding the recipient address in the zero-knowledge proof included in the
withdrawal transaction.

Front-running resilience. The front-running problem arises when Alice
issues a withdrawing transaction w.r.t some state, and before Alice’s with-
drawal is included in a block, a new deposit or withdrawal by Bob is made
to the mixer and is included in a block, thus changing the state of the
mixer and potentially deeming Alice’s withdrawal invalid |24] (meaning
Bob’s transaction front-ran Alice’s). Due to this concern, we extend Haze
to be front-running resilient. Haze enables a withdrawal to reference any
previous root, as long as there were no updates to the banned-addresses
list since that root was valid. In this case, the previous root is simulated
(“zeroing” the relevant deposits) which can be done in O(log(n)) time,
where n is the number of leaves in 7. This means the withdrawal trans-
action will be processed correctly.

Withdrawal gas fees. In order to pay the gas fee of a withdrawal trans-
action, the initiator of the transaction needs to have sufficient funds. The
recipient address of a withdrawal needs to be a fresh address to maintain

3 We note that the protocol is replay resilience due to its soundness guarantee.

18

the privacy of our protocol. If the withdrawal were initiated by a fresh
address, that address would need to somehow have these funds. However,
the withdrawal address needs to be unlinkable to the address of the de-
positor. So the depositor can’t simply fund this fresh address to pay the
gas fees. This raises the question of how the gas fees can still be paid.
For this reason, users should utilize relays to minimize the privacy loss.
Relays exist in the original Tornado Cash implementation [28]. A relay
receives a withdrawal transaction from the depositor via a private secure
channel. In the recipient field of the withdrawal, the depositor will list
a fresh address. The relay funds the gas costs for the withdrawal and
forwards the withdrawal transaction to Srv. The relay cannot alter the
recipient field since Haze is hijacking resilient. Srv processes the with-
drawal and releases the funds to the fresh recipient address, minus a fee
paid to the relay and the gas cost for the withdrawal transaction which
are sent to the relay. This way, the withdrawal request cannot be linked
to the depositor’s address on-chain. However, this requires trust between
the depositor and the relay, as the relay can link the depositor to the
withdrawal request. See Fig. [7]

. Relay * Mixer
withdraw to Bob withdraw to Bob funds .
’HE(_FS A

Alice (gas + fees) Bob

Fig. 7: In order to pay the gas costs of the withdrawal transaction withdraw
addressed to Bob, the depositor Alice should utilize a relay. Alice and
the relay communicate through a private channel. The relay forwards
the withdrawal transaction to Srv. Srv then processes the withdrawal
and sends the released funds to Bob, minus the gas cost and fee that
is sent back to the relay. This way Alice remain unlinkable to Bob on the
blockchain.

4.3 Economic Concerns over the Blockchain

In addition to the concerns addressed above, when implemented over the
blockchain, Haze needs to not fail due to gas limitations. Concretely, the
number of tree updates required per withdrawal depend on the newly
banned addresses, thus making the cost of withdrawal non uniform per
withdrawal and a priori unpredictable. In this section we provide a twofold
treatment: once at the feasibility level, enforcing that such updates do

19

not fail due to technical limitation of the host blockchain, and at the user
level: a single user should not be made to cover the cost of a large update
due to “bad timing”. We also implement and evaluate the gas cost of a
deposit and a withdraw operation in Section

Balancing the gas costs associated with withdraw. As mentioned
in Section |3 enforcing compliance introduces a cost proportional to the
number of newly non-compliant deposits times the cost of a single path
update in 7. This implies that the cost of withdrawal depends on the
number of newly non-compliant deposits and hence is a priori unpre-
dictable and also non uniform on all withdrawals. In order to resolve this
issue and create uniformity in the cost of withdrawals, we suggest creating
a fund in the smart contract of Srv which will be funded by a depositor
fee for every deposit to refund these users that happen to bear the cost
of updates induced by changes in the banned-addresses list. As an up-
date costs the same amount of gas as a deposit, the maximal amount of
fee Haze needs to charge in order to cover these costs (per deposit) is
bounded by the gas fee per a deposit transaction. This makes the price of
a deposit increase by at most a factor of 2. In Section we show how
this overhead can be refunded to compliant users, making the overall cost
of using Haze comparable to Tornado Cash.

The cost of banned-addresses list spamming. In our protocol, when-
ever there is an update to the banned-addresses list, an update to the
Merkle tree T is necessary. An attacker that wants to disrupt the opera-
tion of Haze might therefore be incentivized to spam the banned-addresses
list in order to make its operation expensive. However, the cost of the at-
tack grows linearly with the number of spammed addresses, which makes
this type of attack less appealing. This is due to the fact that Haze only
takes into account banned-addresses that have entered Srv. Since enter-
ing Srv requires depositing funds, spamming this intersection becomes
expensive as these funds cannot be retrieved due to non-compliance of
the addresses from which they originated.

Overcoming block gas limit for large simultaneous updates to
T. We first recall again that the only updates to the banned-addresses
list of interest to Haze are ones of addresses that have made deposits
into Haze. This limits the number of updates Haze needs to handle, as
there potentially can be many updates to the banned-addresses list, and
only a small fraction might affect Haze. Additionally, at every withdrawal
request, Haze only needs to consider changes to the banned-addresses list

20

that have occurred since the last withdrawal request was processed, which
further limits the number of updates.

Even so, if a withdrawal transaction invokes a number of path updates
in T that require gas that exceeds the gas limit for a single block, it could
potentially fail. To mitigate this issue, in the blockchain implementation
of Srv, the withdraw function is split into two functions - withdraw and
update. withdraw handles the withdrawal logic, while update handles the
logic for updating 7 according to the banned-addresses list. This way,
if the backlog of updates is too big for a single withdrawal transaction
to be processed, any user in the system can call the update function to
relieve the backlog. The gas for this altruistic transaction can be funded
by the fees collected upon deposit, and will be refunded to the caller of
the update function. This solution is compatible with the incentives of
users of Haze who want to be able to withdraw funds from Srv.

4.4 Releasing Non-compliant Funds

While our protocol in Fig. [f|is compliant in the sense that funds deposited
from banned addresses cannot be withdrawn, it leads to the problem of
these funds being permanently locked in the mixer. For this reason, we
propose a mechanism that enables releasing these funds to a predeter-
mined entity. We recall that due to the privacy property of Haze, it is
indistinguishable whether a non-compliant user withdrew its funds or
not, and thus counting the amount of non withdrawn funds from banned
addresses inside Haze is difficult.

Our solution works as follows: the mixer will have a limited life-cycle
of some predetermined amount of timeﬁ At the end of its life-cycle, the
mixer will no longer take new deposits and there will be a period in
which all users are allowed to withdraw their remaining funds. At the
end of this period, all funds that are not withdrawn are transferred to
the predetermined entity. This entity can implement a dispute process in
which users with compliant funds that for some reason did not withdraw
their funds in time can request their funds by exposing the (k,r) that
are associated with the disputed funds (this causes a privacy loss for the
user). At the end of the mixer’s life-cycle, Haze also enables refunding
compliant users the fee overhead they paid at the time of deposit. We
remind that the purpose of this overhead is to cover the cost of the tree
update in the event a deposit would ever become non compliant. Since

4 Time is measured in blocks.

21

at the end of the mixer’s life-cycle the deposit is still compliant, this cost
will never be realized. Therefore, Haze can safely refund the remaining
fees to each compliant address that deposited funds to the mixer.

Recall that on the blockchain, a smart contract can only be triggered
by a transaction signed by a user. We therefore design Haze in a way that
enables anyone, including the trusted entity, to trigger the end-of-life of
the mixer. There will be a hard-coded condition in the smart contract
to verify that enough blocks have been added since the creation of the
contract, and only upon meeting that requirement, can the end-of life be
triggered. The refund to compliant users guarantees the incentive to trig-
ger the end-of-life of the mixer. This construction maintains the properties
of Haze: compliance, correctness, privacy, and soundness.

5 Empirical Evaluation

In this section we implement and empirically evaluate the performance of
our protocol from Fig. [5| and compare it to Tornado Cash [2§].

Setup In our experiments, we used an Intel(R) Core(TM) i9-12900H
machine with 32G RAM to run client Usr. We deploy and manage the
mixer Srv on an Ethereum local blockchain using Ganache [14].

5.1 Implementation
Our implementation comprises of two components:

— Server Srv: the mixer, implemented as a smart contract in Solidity [11].
— Client Usr: the user, implemented in JavaScript.

Both are implemented using a fork of the Tornado Cash mixer [32] and
client [33] extended to our protocol. As in Tornado Cash, the hash func-
tions used are the Pedersen hash function [19] and the MiMC hash func-
tion 1], which are implemented in the circomlib library [20]. The SNARK
keypair and the Solidity verifier code are generated using SnarkJS [21], It
uses the Groth16 [16] Protocol (3 point only and 3 pairings), PLONK [13]
and FFLONK [12].

The changes we introduced in the code are as follows:

— The smart contract of the mixer now calls an external smart contract
that manages the banned-addresses list.

22

— We store the Merkle tree 7 in the smart contract as a map with the
node indices as keys. The map grows gradually as deposits enter our
system. In addition we maintain a map of depositors’ addresses to the
indices of the tree leaves representing their deposits. This map is used
to efficiently locate leaves in the tree associated with non-compliant
deposits.

— We maintain a queue of the indices of the Merkle tree leaves associated
with all non-compliant addresses that are currently known and not
yet zeroed in the Merkle tree, based on the list of banned-addresses
obtained from the external contract.

— Path updates for preserving the compliance of the Merkle tree are
realized as follows: We implement an update function, that on input n
zeroes the leaves associated with the first n indices in the queue and
updates the values along their path to the root accordingly. We allow
n < 35 as this is the maximum possible number of leaves that can be
handled in a single transaction within the block gas limit of 30M, see
Fig. We change the implementation of the withdraw function to
call the update function as part of its internal logic.

5.2 Experiments and Results

We evaluate Haze’s performance in terms of gas consumption and running
time of the client, for deposits and withdrawals in different scenarios. We
compare our measurements to Tornado Cash.

In all our experiments, we measure the actual gas consumption using
the transaction receipt “gasUsed” field of corresponding requests. We set
the block gas limit to 30-10% which is the gas limit used by the Ethereum
mainnet today. We repeat each experiment 20 times and present the av-
erage result of all repetitions.

The purpose of our first experiment is to show that when there are no
non-compliant addresses the gas consumption of the smart contract and
running time of the client of our Haze is comparable to Tornado Cash,
which is widely used.

Experiment A: comparison of our protocol to Tornado Cash. We
measure the cost of deployment of Haze to the blockchain, as well as the
cost of a single deposit and withdrawal when there are no non-compliant
addresses (we denote it the baseline setting). We run the deposit and
withdrawal measurements on the client side as well. We compare the

23

baseline gas costs and running time of our protocol with the deposit and
withdrawal of Tornado Cash.

The results appear in Table [I} We see that on average the gas cost
has increased by 1.1% for our mixer compared to Tornado Cash for a
withdrawal transaction, by 4.1% for a deposit transaction, and by 7.2% for
the deployment. These increases are explained by the additional storage
in Haze compared to Tornado Cash. The running time of the deposit
on the client side of our protocol is identical to Tornado Cash and the
withdrawal running time increases by 5.7% on average. This difference
stems from the fact that in our implementation, in each withdrawal, the
client checks for updates of the banned-addresses list.

Server (gas) Client (sec)
Action |Tornado Cash|Ours (base line)| Tornado Cash|Ours (base line)
Deploy 1960209 2099721 — —
Deposit 957037 996139 0.32 0.32
Withdraw 312254 315782 7.78 8.22

Table 1: Comparison of our protocol in the baseline setting vs. the Tor-
nado Cash, for smart contract deployment (gas units), deposit (seconds),
and withdrawal (gas units). Measurements taken when the mixer is pop-
ulated with 1K deposits.

Experiment B: Gas cost vs. number of non-compliant addresses.
After populating the mixer with 1K deposits we measure the gas con-
sumption of a deposit transaction and a withdrawal transaction as the
number of deposits associated with newly non-compliant addresses in-
creases.

We find that the gas consumption of withdrawal increases linearly
with the number of deposits associated with non-compliant addresses.
For completeness, we also present the gas consumption of a deposit oper-
ation, which does not change with the number of non-compliant addresses.
Moreover, we find that the maximal number of tree updates due to non-
compliant address that can be supported in one transaction is at most 35,
since after that the gas required surpasses the block gas limit of 30M gas.
The results are summarized in Fig. |8l We note that the results of this
experiment are independent of the number of deposits that were made
to the mixer prior to the measurement. We verified this independence

24

by repeating the experiment when populating the mixer with different
numbers of deposits in {1,...,1000}, checking at increments of 100, and
obtained the same results. The gas consumption of a withdrawal trans-
action consists of the zero-knowledge proof verification and tree updates,
which result from each newly non-compliant address. The number of de-
posits in the mixer does not influence either of these components, as the
updates depend only on tree height which is fixed throughout the lifetime
of the mixer. Similarly, a deposit transaction depends on the tree height
and is oblivious of the number of deposits inside the mixer, as well the
number of non-compliant addresses.

1e7
3.0

Withdraw
Deposit

2.5

2.0

1.0

0.5

0.0

0 5 10 15 20 25 30 35
number of deposits associated with
non-compliant addresses

Fig. 8: The deposit cost (blue) and withdrawal cost (red) of our protocol in
gas units vs. the number of non-compliant newly non-compliant addresses
as part of the upcoming withdrawal transaction. Measurements taken
when the mixer is populated with 1K deposits.

Experiment C: Running time vs. number of deposits in the
mixer. We measure the client’s withdrawal running time as the num-
ber of deposits in the mixer increases in the baseline setting (i.e., there
are no non-compliant addresses).

Results are summarized in Fig.[9a] We see that the running time of the
client for the withdrawal increases linearly with the number of deposits

25

in the mixer. The increase in running time stems from increasing number
of nodes in the constructed tree by the client.

Next, we assert that the number of newly non-compliant addresses
does not influence the running of the client both for deposit and with-
drawal transactions. More formally,

Experiment D: Running time vs. number of non-compliant ad-
dresses After populating the mixer with 1K deposits we measure the run-
ning time of the client for a deposit transaction and a withdrawal trans-
action as the number of deposits associated with newly non-compliant
addresses increases.

The results are summarized in Fig. [Ob] We find that the running time
of withdrawals is unaffected by the number of non-compliant addresses,
per fixed number of deposit populating the mixer. For different numbers of
mixer deposit populations, we get similar constant lines, in accordance to
the results in Fig. [9a] We verified this by repeating the measurements for
different deposit populations in the mixer, for the same values presented
in Fig. This is due to the fact that the client, similar to Tornado
Cash, rebuilds the entire tree in each withdrawal request. Moreover, the
deposit running time does not change with the amount of non-compliant
addresses and the number of deposits in the mixer, similarly as for gas
cost of deposits.

6 De-anonymizing Non-compliant Users

In this section we propose a protocol for compliant privacy mixer that
provides de-anonymization of non-compliant users. Our protocol in Sec-
tion [3] maintains the privacy of users, even in the event they become non-
compliant after withdrawing their funds. In such cases, a user successfully
launders money and cannot be traced. This strong post-withdrawal pri-
vacy guarantee for deposits that became non-compliant might not be
acceptable in practice. For instance, funds of non-compliant users are not
traceable even in the event of a court order.

Due to this concern, we suggest an alternative protocol to de-anonymize
withdrawals of funds that originated from non-compliant addresses, even
if these funds were successfully withdrawn from the mixer. This requires
enhanced trust in the predetermined trusted entity that manages the
banned-addresses list. We emphasize that in the case the trusted entity
is corrupted, it can potentially violate the privacy of all users, compliant

26

Withdraw A

25 =
/”‘t/
~20 A
[&] e
8 A
o -7
E15 s
= /4—’
10 LA
/)///
lr’x
5
0 2000 4000 6000 8000 10000

number of deposits in mixer
(a) The time in seconds it takes the client to prepare a withdraw

transaction. This measurement is taken in the baseline setting
when there are no non-compliant addresses.

8 [ST GRS (SN SN S DR ST SN

—~6
[
0]
L '
° Withdraw
€4 - Deposit
=
c
=]
—
2
0 Ft4-F+4--F+a4-F+4-F+4--t+a4-F+4-F - =R+

0 5 10 15 20 25 30 35
number of deposits associated with
non-compliant addresses

(b) The running time of the client in deposit and withdrawal
in seconds as the numbers of newly non-compliant addresses

increases. Measurements taken when the mixer is populated
with 1K deposits.

Fig.9: Results of Section and Section

and non-compliant alike. The privacy revocation, however does not give
the trusted entity any advantage in stealing funds from the mixer.

27

The protocol presented in this section has the following advantages:
(1) Revoking privacy of non-compliant users and (2) less funds are needed
upfront for deposit, and no cost overhead at withdrawal (3) releasing non-
compliant funds does not require active participation of the users, and
does not terminate the operation of mixer.

More formally, the protocol presented in this section, denoted by ¥, re-
lies on a trusted entity @ that in addition to uploading the non-compliant
addresses to]-"lgn, also provides for each such address a data field that
enables to publicly disclose the trace of funds deposited from this address
to the mixer. Concretely, it enables linking the withdrawal to the address
of the deposit, and hence revoking privacy. The privacy and compliance
of the protocol rely on @ to perform the data extraction (1) correctly and
(2) only on deposits to the mixer that are from non-compliant addresses.
We discuss an optional realization of @ later in this section. The protocol
¥ instructs the user to encrypt its nullifier as part of the deposit, and
in case its address becomes non-compliant the trusted entity decrypts
and publishes the nullifier. The idea in ¥ is to guarantee compliance by
blocking withdrawals that present a nullifier that is associated with a
non-compliant address. Concretely:

— In deposit, in addition to sampling &, r and computing H (k||r), the Usr
computes an encryption of the nullifier under the public-key pkq of the
trusted entity @, and a ”consistency” proof. The proof is generated
using a ZK-SNARK scheme @ for a polynomial time decidable binary
relation Reonsist, Where the statement is (H (k||r), pkq, ciphertext) and
the witness is (k,r, ciphertext randomness). The deposit transaction
submitted by Usr consists of ((H(k||r), ciphertext) , proof).

— The withdraw protocol of ¥ differs from Tornado Cash only in its nulli-
fier treatment. That is, the Srv compares the nullifier in the withdraw
transaction not only to nullifiers of prior withdrawals but also to the
nullifiers in the data field in fﬁn, and rejects withdrawal if appears
in either.

We emphasize that in ¥ the mixer is not required to maintain a compliant
Merkle tree, and in particular does not perform any tree updates for non-
compliant leaves. This significantly reduces the gas consumption of ¥
compared to the protocol in Fig. 5] The formal description of our protocol

¥ appears in Fig.

28

The protocol ¥ provides correctness, privacy, soundness and compli-
ance in the same sense as in Section [3] where privacy is guaranteed only
for compliant users.

Instantiating the trusted entity (). Motivated by real world set-
tings, such as search warrants, where authorities that have achieved some
threshold of permissions can ”de-anonymize” a user’s call log, bank trans-
actions, etc. We follow a similar approach and reduce trust in @ by adding
another (non-colluding) server B and replacing the CPA-secure scheme
in Fig. with a CCA-2 secure threshold encryption as defined in De-
vevey et al., section 2.4 in [9]. For example, ¥ can be instantiated with
the scheme of Boneh et al. |3]. The trusted entity) and B hold key
shares and together decrypt nullifiers associated with deposits from non-
compliant addresses by running threshold decryption. To ensure only pri-
vacy of non-compliant users is revoked, () is required to submit to B a
non-compliant address and a proof of it being non-compliant in order for
B to engage in the decryption process. We note as long as (Q and B are
not colluding, the privacy of compliant users is maintained.

Releasing non-compliant funds. In the protocol presented in this sec-
tion the trusted entity publicly exposed the nullifier of non-compliant
users, which makes the counting of non withdrawn banned funds easy.
This is since in ¥ we can distinguish if a non-compliant deposit has al-
ready been withdrawn or not. This makes it so that the mixer can count
banned funds at any desired period during the life-time of the mixer. This
amount can be released to some predetermined trusted entity.

7 Conclusions

In this work we presented a compliant privacy mixer that is the first
to attain all the following desired properties: correctness, soundness, pri-
vacy, and compliance. We ran extensive experiments using Solidity for the
mixer Srv and JavaScript for the client Usr, demonstrating efficient user
running time (0.32s per deposit and 8.22s per withdrawal for 1K deposits
to the mixer in the client) and realistic gas requirements comparable to
the standard protocol of Tornado Cash (1M gas per deposit and ~ 315K
gas per basic withdrawal plus 1M gas per update that is eventually paid
only by non-compliant users). Our protocol can be deployed and used
over the blockchain guaranteeing resiliency against: transaction hijack-
ing, front-running, and banned-addresses list spamming. Moreover, our

29

solution can be instantiated for any banning policy that can be applied
on deposit transactions. We introduce an alternative protocol for a com-
pliant privacy mixer, that supports de-anonymization of non-compliant
users. In this protocol, the privacy of compliant users is guaranteed in
the two server model. In addition, we propose a solutions for responsible
release of banned funds due to non-compliance in both protocols.

An interesting question left for future work is to obtain compliant pri-

vacy mixers with de-anonymization requiring weaker trust assumptions.

References

1.

10.

M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. Mimc: Efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, pages 191-219. Springer, 2016.

K. M. Alonso and J. Herrera-Joancomarti. Monero - privacy in the blockchain.
TACR Cryptol. ePrint Arch., 2018:535, 2017.

D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. R. Rasmussen, and
A. Sahai. Threshold cryptosystems from threshold fully homomorphic encryption.
In H. Shacham and A. Boldyreva, editors, Advances in Cryptology — CRYPTO
2018, pages 565—-596, Cham, 2018. Springer International Publishing.

J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and E. W. Felten.
Mixcoin: Anonymity for bitcoin with accountable mixes. In Financial Cryptogra-
phy and Data Security: 18th International Conference, FC 2014, Christ Church,
Barbados, March 3-7, 2014, Revised Selected Papers 18, pages 486-504. Springer,
2014.

B. Biinz, S. Agrawal, M. Zamani, and D. Boneh. Zether: Towards privacy in a smart
contract world. In Financial Cryptography and Data Security: 24th International
Conference, FC 2020, Kota Kinabalu, Malaysia, February 10-14, 2020 Revised
Selected Papers, pages 423—443. Springer, 2020.

J. Burleson, M. Korver, and D. Boneh. Privacy-protecting regulatory solutions
using zero-knowledge proofs. https://api.al6zcrypto.com/wp-content/uploads/
2022/11/ZKPs-and-Regulatory-Compliant-Privacy.pdf, 2022.

Chainalysis. Chainalysis oracle for sanctions screening. https://
go.chainalysis.com/chainalysis-oracle-docs.html, 2023.

P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, and
A. Juels. Flash boys 2.0: Frontrunning in decentralized exchanges, miner ex-
tractable value, and consensus instability. In 2020 IEEE Symposium on Security
and Privacy (S€P), pages 910-927. IEEE, 2020.

J. Devevey, B. Libert, K. Nguyen, T. Peters, and M. Yung. Non-interactive cca2-
secure threshold cryptosystems: achieving adaptive security in the standard model
without pairings. In TACR International Conference on Public-Key Cryptography,
pages 659-690. Springer, 2021.

M. Dotan, S. Tochner, A. Zohar, and Y. Gilad. Twilight: A differentially pri-
vate payment channel network. In 31st USENIX Security Symposium (USENIX
Security 22), pages 555-570, 2022.

30

https://api.a16zcrypto.com/wp-content/uploads/2022/11/ZKPs-and-Regulatory-Compliant-Privacy.pdf
https://api.a16zcrypto.com/wp-content/uploads/2022/11/ZKPs-and-Regulatory-Compliant-Privacy.pdf
https://go.chainalysis.com/chainalysis-oracle-docs.html
https://go.chainalysis.com/chainalysis-oracle-docs.html

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

Ethereum Foundation. Solidity — programming language. https:
//docs.soliditylang.org/en/latest/|

A. Gabizon and Z. J. Williamson. fflonk: a fast-fourier inspired verifier efficient
version of plonk. Cryptology ePrint Archive, 2021.

A. Gabizon, Z. J. Williamson, and O. Ciobotaru. Plonk: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, 2019.

Ganache. https://www.trufflesuite.com/docs/ganache/overview.

S. Goldwasser and S. Park. Public accountability vs. secret laws: Can they coexist?
Cryptology ePrint Archive, 2018.

J. Groth. On the size of pairing-based non-interactive arguments. In Advances
in Cryptology-EUROCRYPT 2016: 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part II 35, pages 305-326. Springer, 2016.

E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Goldberg. Tumblebit:
An untrusted bitcoin-compatible anonymous payment hub. In Network and dis-
tributed system security symposium, 2017.

D. Hopwood, S. Bowe, T. Hornby, N. Wilcox, et al. Zcash protocol specification.
GitHub: San Francisco, CA, USA, 4(220):32, 2016.

Iden3. edersen hash. https://iden3-docs.readthedocs.io/en/latest/
iden3_repos/research/publications/zkproof-standards-workshop-2/
pedersen-hash/pedersen.html, 2019.

iden3. Circomlib/circuits. https://github.com/iden3/circomlib/tree/master/
circuits| 2022.

iden3. Javascript and pure web assembly implementation of zksnark and plonk
schemes. https://github.com/iden3/snarkjs, 2022.

J. Katz and Y. Lindell. Introduction to modern cryptography. CRC press, 2020.
Labrys. Mev watch. https://web.archive.org/web/20230428094150/https://
www.mevwatch.info/, 2023.

D. V. Le and A. Gervais. Amr: Autonomous coin mixer with privacy preserving
reward distribution. In Proceedings of the 8rd ACM Conference on Advances in
Financial Technologies, pages 142-155, 2021.

G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei. Silentwhispers: En-
forcing security and privacy in decentralized credit networks. In NDSS, 2017.

S. Meiklejohn and R. Mercer. Mobius: Trustless tumbling for transaction privacy.
Proceedings on Privacy Enhancing Technologies, 2018(2):105-121, 2018.

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized busi-
ness review, page 21260, 2008.

A. Pertsev, R. Semenov, and R. Storm. Tornado cash privacy solution ver-
sion 1.4. https://berkeley-defi.github.io/assets/material/Tornado’20Cashi,
20Whitepaper.pdf, 2019.

A. Rondelet and M. Zajac. Zeth: On integrating zerocash on ethereum. arXiv
preprint arXiv:1904.00905, 2019.

S. Roos, P. Moreno-Sanchez, A. Kate, and 1. Goldberg. Settling payments fast and
private: Efficient decentralized routing for path-based transactions. arXiv preprint
arXiw:1709.05748, 2017.

E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE sympo-
stum on security and privacy, pages 459-474. IEEE, 2014.

31

https://docs.soliditylang.org/en/latest/
https://docs.soliditylang.org/en/latest/
https://www.trufflesuite.com/docs/ganache/overview
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html
https://github.com/iden3/circomlib/tree/master/circuits
https://github.com/iden3/circomlib/tree/master/circuits
https://github.com/iden3/snarkjs
https://web.archive.org/web/20230428094150/https://www.mevwatch.info/
https://web.archive.org/web/20230428094150/https://www.mevwatch.info/
https://berkeley-defi.github.io/assets/material/Tornado%20Cash%20Whitepaper.pdf
https://berkeley-defi.github.io/assets/material/Tornado%20Cash%20Whitepaper.pdf

32. Tornado Cash. Tornado cash privacy solution. https://github.com/tornadocash/
tornado-core, 2019.

33. Tornado Cash. Tornado-cli. https://github.com/tornadocash/tornado-cli)
2019.

34. TRM Labs. North korea’s lazarus group moves funds through tornado
cash. https://www.trmlabs.com/post/north-koreas-lazarus-group-moves-
funds-through-tornado-cash) 2022.

35. U.S. Department Of Treasury. Specially designated nationals and blocked persons
list (sdn) human readable lists. https://home.treasury.gov/policy-issues/
financial-sanctions/specially-designated-nationals-and-blocked-
persons-list-sdn-human-readable-1lists) 2022.

36. U.S. Department Of Treasury. U.s. treasury sanctions notorious virtual currency
mixer tornado cash. https://home.treasury.gov/news/press-releases/jy0916,
2022.

37. L. Valenta and B. Rowan. Blindcoin: Blinded, accountable mixes for bitcoin. In Fi-
nancial Cryptography and Data Security: FC 2015 International Workshops, BIT-
COIN, WAHC, and Wearable, San Juan, Puerto Rico, January 30, 2015, Revised
Selected Papers, pages 112-126. Springer, 2015.

38. N. Van Saberhagen. Cryptonote v 2.0. 2013.

39. Z. Wang, S. Chaliasos, K. Qin, L. Zhou, L. Gao, P. Berrang, B. Livshits,
and A. Gervais. On how zero-knowledge proof blockchain mixers improve, and
worsen user privacy. Cryptology ePrint Archive, Paper 2023/341, 2023. https:
//eprint.iacr.org/2023/341.

40. G. Wood et al. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151(2014):1-32, 2014.

41. M. Wu, W. McTighe, K. Wang, I. A. Seres, N. Bax, M. Puebla, M. Mendez, F. Car-
rone, T. De Mattey, H. O. Demaestri, et al. Tutela: An open-source tool for assess-
ing user-privacy on ethereum and tornado cash. arXiv preprint arXiv:2201.06811,
2022.

A Formal Definitions

Our solution is compliant, private, sound, and correct in the following
sense. Correctness is in the sense that any deposited funds can be with-
drawn (once) as long as the matching deposit transaction is compliant at
the time of the withdrawal, i.e., the withdrawn funds were not deposited
from an address that is banned in flgn. Soundness is in the sense that no
user can withdraw more than it deposited. Privacy is in the sense that a
withdrawal cannot be linked to any non withdrawn deposit. Compliance
is in the sense that funds belonging to deposit transactions associated
with an address in]:lf?m cannot be withdrawn.

To formally state these properties we first set some notations. We
denote the view of user Usr in an execution of the deposit and withdraw
protocols in Figure [5] by

32

https://github.com/tornadocash/tornado-core
https://github.com/tornadocash/tornado-core
https://github.com/tornadocash/tornado-cli
https://www.trmlabs.com/post/north-koreas-lazarus-group-moves-funds-through-tornado-cash
https://www.trmlabs.com/post/north-koreas-lazarus-group-moves-funds-through-tornado-cash
https://home.treasury.gov/policy-issues/financial-sanctions/specially-designated-nationals-and-blocked-persons-list-sdn-human-readable-lists
https://home.treasury.gov/policy-issues/financial-sanctions/specially-designated-nationals-and-blocked-persons-list-sdn-human-readable-lists
https://home.treasury.gov/policy-issues/financial-sanctions/specially-designated-nationals-and-blocked-persons-list-sdn-human-readable-lists
https://home.treasury.gov/news/press-releases/jy0916
https://eprint.iacr.org/2023/341
https://eprint.iacr.org/2023/341

(r, dtxn, address 4) < view{ P (\) and

(wtxn, addressp) « view}jtnd™W (. \)

respectively, where the view consists of the party’s randomness, the gener-
ated (deposit/withdrawal) transaction, and the address associated with
the transaction. We note that viewljtda¥(r)) is defined wrt the first
execution of withdraw on input r. We denote the output of Srv by

out 2P (dixn, \) = b and

outithdraw (wiyn \) = b

where the bit b is the output of Srv. We call a transaction valid if b = 1.
We remark that Fb%n and Fpp are accessible to any party in the system,
and the transactions as well as the output of Srv may depend on their
content.

Definition 2 (Correctness). A mizer protocol II = (deposit, withdraw)
is correct if for every A € N and

(r, dtxn, address) « view;:>°%*(\) and

(wtxn, addressg) < view'thdraw - \)
the following holds with probability > 1 — negl(\):

— outzisos“(dtxn, A) =1

— if addressy is not recorded in fﬁn prior to wtxn generation then
outWithdraw (ypyn \) = 1

where the probability is over the randomness of Usr and Srv.

Intuitively, the soundness property needs to capture that any user
cannot withdraw more funds than it deposited. We formalize this by re-
quiring that for any user in any point of time, represented by index in
Fip, the number of valid withdrawals made from addresses belonging to
a user must not exceed the number of successful deposits made by the
user.

Definition 3 (Soundness). A mizer protocol II = (deposit, withdraw)
is sound if for every index € N, and any ppt user Usr, associated with

33

address set Sysr, the following holds with probability > 1 — negl(\) over
the randomness of Usr and Srv:

H(Za dtxnia (addressi, addreSSSrv))}i<index and address; €S s,

> H(Z, wixng, (addressia address&v))}iﬁindex and address; €S s,

where the tuples are recorded in Fpp, and for every i it holds that: dtxn;
and wtxn; are valid deposit and withdrawal transactions, respectively.

Intuitively, the definition of privacy captures the idea that an adver-
sary should not be able to, given two deposit transactions and a with-
drawal transaction belonging to one of the deposits, distinguish which of
the deposits the withdrawal belongs to. This should hold true even if the
adversary gets to freely interact with system.

Privacy. We define privacy for a mixer protocol II = (deposit, withdraw)
using the following experiment between a challenger Chal and an adver-
sary A with access to flf?m:

The privacy experiment EXP , .,]_.gm(/\).

1. The adversary A can send to Chal a deposit and withdrawal requests
that are processed by Chal as follows:

— Honest deposit generation: Upon receiving a (deposit) request from
A it executes deposit and simulates Fy, using the stored values.
Then Chal stores (r,dtxn,addressg) viewfj?:os't(/\) and sends
(dtxn, address 4) to A.

— Honest withdrawal generation: Upon receiving a (withdrawal, dtxn)
request from A it fetches r that is associated with dtxn (if no such
exists return L to A), it executes withdraw on input r and simulates
Fup using the stored values. Then Chal stores (wtxn, addressp) <
view}yithdraw (A} and sends wtxn to A.

— Adversarial deposit/withdrawal submission: In addition, A can sub-
mit a deposit or withdrawal transaction of its choice to Chal that
records it in the simulated Fy, with appropriate index.

2. A outputs a pair of deposit transactions dtxng, dtxn; that correspond
to two deposit transactions previously generated by Chal and were
not requested to be withdrawn in Item

3. Chal chooses a random bit b € {0,1} and fetches r, that is asso-
ciated with dtxn,. Then it executes withdraw on input 7, and send

34

to A the generated withdrawal transaction i.e., (wtxn,addressp) <+
viewithdraw (dtxn;). We call witxn the challenge transaction. A contin-
ues to have access to Chal, interacting as in Item

4. The adversary A outputs a bit '. The experiment’s output is defined

to be 1 if b’ = b, and 0 otherwise.

Definition 4 (Privacy). A protocol II = (deposit, withdraw) is private
if for all ppt adversaries A, there exists a negligible function negl(-) such
that for all A € N,
1
Pr[EXP , ; z0 (A) =1] < 7t negl(\)

ban

where the probability is taken over the random coins used by A and Chal.

Intuitively, a compliant protocol should not allow the flow of illicit funds
through the mixer. Additionally, compliance is somewhat meaningless for
non sound protocols, i.e., ones that release funds without an appropri-
ate assurance of their deposit by the withdrawing entity. Therefore, we
focus our attention on compliance for sound protocols, according to Def-
inition (3] and define compliance as follows: Our definition considers an
idealized world where compliance is enforced by an ideal compliant ledger
that “magically” deletes deposits from non compliant addresses, as if
they never happened. Our compliance definition requires the protocol to
behave indistinguishably when executed in our standard (append-only)
ledger and the idealized world. In particular, we require that any valid
withdrawal transaction is also valid in the idealized world, where no de-
posits from non-compliant addresses reside in the mixer. Combined with
soundness this guarantees that the protocol enables withdraw funds only
for compliant deposits. Formally,

Definition 5 (Compliance). Let Fy, and]-'gm be the functionalities
from Fig. @ and Fig. |4, respectively, and let IT = (deposit, withdraw) be a
sound mizer protocol as defined in Definition [3, with all entities having
access to Fpy and Fﬁn. We say that II is compliant if the following holds:

— The mizer Srv is stateless (i.e., it does not maintain state between
executions of deposit or withdraw and it only performs Read requests
to Fup)-

— The user Usr only performs Upload requests to Fy, in deposit.

— for every tuple (index,wtxn, (addressg, addresss,,)) in Fup, it holds
that:

35

wtxn is a valid withdrawal transaction if and only if
Pr[out\g:/hdraw(ﬁb)(wtxn, AN)=1]=1

where withdraw(F};) is the withdraw protocol of II, where calls to f,fin
are ignored and Fyy, is replaced with the following functionality Fy, :
o Write and Read requests are treated as in Fpp.
o cvery request (Ban, address 4, data) from address Q to flfin is for-
warded to Fpp, and treated by overwriting every tuple

(index, msg, (address 4, addresss,,))

in Fpy to (’ind€$> 0, (J-7 addresssrv))ﬁ

We note that though Srv in our protocol in Fig. [f] is not stateless,
it can be equivalently defined as stateless that does not store the entire
tree T, but rather recreates it with each withdrawal call by reading the
bulletin-board Fp,. We avoid this in order to increase efficiency. Therefore
compliance of our non-stateless protocol follows.

5 A similar treatment could suggest removing the records from Fy; instead of over-
writing, however for the ease of presentation we define it as above.

36

Common parameters: A security parameter A\, a function H sampled uniformly at random from a collision-
resistant hash function family H, and a ZK-SNARK scheme ¢ = (ZK.Setup, ZK.Prove, ZK.Ver, ZK.Sim) for relation
R as defined in Section and Reonsist as defined above. A CPA-secure PKE scheme £ = (E.Gen, E.Enc, E.Dec).

Parties and addresses: A mixer Srv with public address addresss,, and a user Usr with some addresses addressysr,

and addressys, .

Storage: Srv locally stores a full binary Merkle tree 7 on n leaves, all initialized to zero, the location of the next
available leaf next = 0, and, initially empty, nullifier set Sg. Each leaf in T is associated with an address, initially
set to L.

Trusted setup: Bulletin-board functionality F, and a Banned-addresses Functionality J—"gm, containing records
(address,, datag), where data; = E.Decs,, (€) for e appearing in a deposit from address,. A common reference string
o produced by running ZK.Setup. A key pair (skg, pkg) produced by running E.Gen, where]-'lf?m is parameterized
on pkq, and skq is securely stored by the predefined entity with address Q.

Deposit: deposit is executed by user Usr from some address addressys, and mixer Srv, as follows:

1. User: samples uniformly at random k,r,r. + {0, l}t(/\> for some polynomial ¢(-) and performs the following:
(a) computes C = H(k||r) and e = E.Encprg, (H (k),7e).
(b) in < ZK.Prove(o, (C, pkq,e€), (k,r,7e)).
(c) Sends (Write, ((C, e, min), addresssy,) to Fpp.
2. Mixer: Upon receiving (index, (C, e, Tin), addressysr,) from Fpp, perform the following steps:
(a) Compute b < ZK.Ver(o, (C, pkq,e), min) and if b = 0 output 0.
(b) Invoke the subroutine in Fig. |§| on Update_Tree(T, next,C, addressysr,) to update T, set next = next + 1,
and output 1 if successful. We call such a deposit transaction valid.

Withdrawal: withdraw is executed by user Usr from some address addressys, and mixer Srv, as follows:

1. User: On input (k,r), to withdraw a deposit transaction C' = H(k||r) proceed as following:
(a) Send Read request to Fp, and denote by Sicqves = {(index;, Cs, addressi)}ie[k] the subset of the returned
records from Fp, where C; is a valid deposit transaction, and address; is the address associated with it.
(b) Construct a Merkle tree 7 with (C1,...,Ck) being the leaves and let R be the root of T.
(¢) Compute the authentication path O(T,¥), where £ is the leaf index of C' in the computed 7 (if no leaf C,
abort).
(d) Compute h = H (k) and mous < ZK.Prove(o, (R7, h), (k,r,¢,0(T,£))).
(e) Send (Write, (h, Tout), addresssy,) to Fuy. We call (h,) a withdrawal transaction and h its nullifier.
2. Mixer: Upon receiving (index, (h, Tout), addressysr,) from Fyp, perform the following steps:
(a) Send Read request to 2, and denote by Span = {(address;, datay) }¢c(m) the received banned-addresses
list.
(b) Add nullifiers associated with deposits from banned addresses: For each leaf £ in 7 and an address address,
associated with it, check if address; € Span, and if so Sy = Sy U datay.
(c¢) Verify that h ¢ Sy (output 0 otherwise).
(d) Output b + ZK.Ver(o, (R7,h),Tout) and if b =1 set Sg = Sp U h.

Fig. 10: Compliant privacy mixer protocol ¥, with de-anonymization of
non-compliant users. 37

	 Haze: A Compliant Privacy Mixer

