
Instant Zero Knowledge Proof of Reserve

Xiang Fu0000−0002−6608−1654

Xiang.Fu@hofstra.edu, Hofstra University

July 26, 2023

Keywords: Proof of Reserve, Proof of Asset, Solvency, Lookup Argument, Zero
Knowledge, Aggregated Non-Membership Proof, Zero Knowledge Set Disjoint
Proof

Abstract

We present two zero knowledge protocols that allow one to assert sol-
vency of a financial organization instantly with high throughput. The
scheme is enabled by the recent breakthrough in lookup argument, i.e., af-
ter a pre-processing step, the prover cost can be independent of the lookup
table size for subsequent queries. We extend the cq protocol [EFG22] and
develop an aggregated non-membership proof for zero knowledge sets.
Based on it, we design two instant proof-of-reserve protocols. One is non-
intrusive, which works for crypto-currencies such as BTC where transac-
tion details are public. It has O(n log(n)) prover complexity and O(1)
proof size/verifier complexity, where n is the number of transactions as-
sembled in a cycle. The other works for privacy preserving platforms
where the blockchain has no knowledge of transaction details. By sacri-
ficing non-intrusiveness, the second protocol achieves O(1) complexity for
both the prover and verifier.

1 Introduction

First defined in Provisions [DBB+15], the zero knowledge (zk) solvency problem
is to prove in zero knowledge that the asset of an organization is greater than its
liability. Due to the volatility of financial market, we are interested in a variation
called instant zk-solvency problem, i.e., to prove solvency of an organization
instantly, e.g., at the frequency of 1Hz. This seems like a daunting task that
requires very expensive computing resources. For instance, in [DBB+15] to
generate and then verify a single zk-solvency proof for an anonymity set size
of 500k BTC addresses needs about 1 hour. In our work, we are using the
entire 80 million BTC addresses as the anonymity set, and the design goal is to
support 2000 transactions per second (TPS). We build our protocols over the
recent breakthrough in lookup arguments [ZBK+22, PK22, GK22, ZGK+22,
EFG22]: if the container table is preprocessed, then all lookup arguments can

1

be generated at a cost independent of the lookup table size. We assume that
the registration and verification of liability is handled by frameworks such as
DAPOL(+) [CLMN20, JC21], then we just need to focus on the instant zk-
proof for asset only. In the rest of the paper we use terms “proof-of-reserve”
and “proof-of-asset” interchangeably.

We first consider the zk-asset protocols for open cryptocurrencies such as
BTC where transaction details are public. Here, we abstract away platform
specifics and use “account” to denote e.g., BTC address. We observe that an
organization can pre-compute a fixed set T of accounts that includes both those
currently in use and those to be used in future.1 We will leverage this fact later
in applying lookup arguments. At each transaction cycle, the market discloses
two vectors a and ∆ where ai is an account and ∆i is its balance change. Given
the Pedersen commitments to a, ∆, and T, we present a zk-proof πASSET1, which
convinces the verifier that Cv commits to a value v that accumulates the balance
change of those accounts in the intersection of a and T as sets.

The main challenge here is the concrete performance, as for the state of
the art, to prove 220 R1CS constraints needs about 101 to 102 seconds for the
vast majority of proof systems. A recent research line in lookup arguments
[GW20, ZBK+22, PK22, GK22, ZGK+22, Hab22, EFG22] has shed a light. For
the most recent protocol cq, after running a preprocessing of O(N log(N)) on T,
the prover cost is O(nlog(n)) field and O(n) group operations to show that all
elements of a table of size n belong to T. Built upon the cq protocol, we are
able to develop an aggregated non-membership proof for zero knowledge sets,
i.e., to show that the intersection of two committed zk-sets is empty. Then, the
account set a can be split into two disjoint sets a∩T and T−a, as sets. Balance
can be accumulated over a ∩T only. The first protocol has O(nlog(n)) prover
complexity and O(1) proof size.

The asset proof for privacy preserving cryptocurrencies such as Monero
[YSL+] and ZeroCoin [MGGR13] is more delicate, as the blockchain itself may
only have partial or no knowledge of transaction details at all. In the past,
there are platform specific asset proof protocols such as [DV19, DBV21], but
they are costly in proof generation and verification. Our solution is orthogonal
to the platform and is efficient and instant. The basic idea is to require each
transaction participant to submit an additional zk-proof correlating a hiding
commitment of the organization ID and balance change to the transaction re-
quest. Then the blockchain can collect the two tables of commitments of IDs
and balance changes, make them public and generate vector commitments to
them. These two tables are preprocessed and treated as lookup table. Then
the prover runs a 1-query lookup argument against these tables. This results a
protocol costs O(1) at both the prover and verifier.

1T can be expanded periodically.

2

2 Preliminaries

Let G be a generator of bilinear groups, i.e., (p,g1,g2, G1,G2,GT , e) ← G(1λ).
Here G1, G2, and GT all have prime order p, with g1 (g2) as the generator
of G1 (G2). e : G1 × G2 → GT is the bilinear map s.t. for any a, b ∈ Zp:
e(g1

a,g2
b) = e(g1,g2)ab and e(g1,g2) is the generator of GT . Following the

notations in Groth16 [Gro16], we write G1 and G2 as additive groups. That is:
given a ∈ Zp, we denote g1

a as [a]1, and similarly are group elements in G2 and
GT denoted. For instance, g1

ag1
b is written as [a]1 + [b]1 or [a+ b]1, (g2

a)b as
[ab]2, and e(g1

a,g2
b) is denoted as [a]1 · [b]2 or [ab]T .

We use [n] to denote range [1, n]. We use bold symbols to denote a vector,
e.g., T ∈ Fn is written as (T1, . . . ,Tn). Given two vectors of the same size,
u + v is (u1 + v1, . . . ,un + vn), and αu is (αu1, . . . , αun). Let t ∈ Fn and
T ∈ FN , a lookup argument for t ⊂̂ T asserts that for each i ∈ [n]: ti ∈ T.
Note that both t and T may contain duplicates, and they are not mathematical
sets. When the context clear, ν and ω are n’th and N ’th root of unity, i.e.,
νn = 1 and ωN = 1. We define V = {ω1, . . . , ωN} and H = {ν1, . . . , νn}. Let
{Li(X)}Ni=1 be the Lagrange base polynomials s.t. for each i ∈ [n] : Li(ω

i) = 1
and Li(ω

j) = 0 for j 6= i. Similarly, the Lagrange polynomials for n is denoted
as li(X).

Given T, we use the same symbol (with regular font) to denote the cor-

respondingly polynomial T (X) =
∑N
i=1 TiLi(X). Similarly, given t, t(X) =∑n

i=1 ti · li(X). Given a KZG commitment [KZG10] key
(
[s]i
)N
i=1

, the KZG
commitment to T (X) is [T (s)]1.

Given a multi-set S, its vanishing polynomial ZS(X) is defined as ZS(X) =∏
s∈S(X − s). It is known that ZV(X) = XN − 1 and ZH(X) = Xn − 1.

2.1 Lookup Argument

We need a homomorphic and zero knowledge look-up argument, and a slight
zk-enhancement of cq [EFG22] satisfies our needs. We denote it as πZK LOOKUP.

1. srs← Setup (N,λ) : a trusted set-up given security parameter λ and con-
tainer table size limit N , samples bilinear groups and generates common
reference string srs. We here do not distinguish between prover and verifier
keys, however, in general verifier key is much smaller.

2. (auxT,CT)← Preprocess(T): Given the container table T, it generates
auxT (the preprocessed information) and CT (a vector commitment to T).

3. π ← Prove(srs, auxT,T, t): produces a zero knowledge proof π for t ⊂̂ T.

4. 1/0← Verify(srs,CT,Ct, π) : checks that the zk-aux-lookup argument is
valid.

5. π ← FoldProve(srs, auxU,U, auxV,V,u,v, α): produces a zero knowledge
proof π for u + αv ⊂̂ U + αV.

3

The definition for completeness, knowledge soundness and zero knowledge
is standard and will be presented in a full-version of this manuscript. The
difference from a zero knowledge subset proof is that t is a multi-set (allowing
repetitions). Also the FoldProve operation allows to easily prove multi-column
tables exploiting the homomorphic property of cq. There are two options to
provide zk. One way is bounded leaky-zk [CHM+20, CGG+23] where the degree
of a polynomial is increased by k if it is known that it will be evaluated at most
k − 1 times. Another alternative is to blind each KZG commitment with a
random factor, which increases the proof with O(1) size extra Schnorr style
proof. In the rest of the paper, for convenience of presentation, all protocols
can be enhanced with zk, but we omit the details.

2.2 Batched Range Proof

We use πRANGE(Ca, B) to denote a batched zk-range proof which asserts that
each ai in a vector commitment a is in range [0, 2B).

One possible O(1) proof size construction is to build it over lookup argument.
For example, given an array a, if one wishes to assert that each ai is a valid
BTC address (a 160-bit number), a pre-processed table of all 32-bit numbers
can be constructed, and ai can be split into 5 chunks with each chunk to be
asserted a valid 32-bit number. 2

3 Positive-Negative Lookup

The goal is to show that a smaller table t does not have any common elements
with a preprocessed lookup table T. Here the elements of t are “unexpected”
(e.g., new BTC addresses in a transaction cycle), thus aggregation of existing
non-membership in [SKBP22] does not apply. The argument will be based on
lookup and have the same asymptotic complexity.

We will in fact provide a more expressive construction called Zero Knowledge
Positive-Negative Lookup argument (“zk-PN-Lookup” for short and denoted as
πPN LOOKUP(CT,Ct,Co). It asserts that the Pedersen vector commitment Co

encodes a Boolean array that for each i ∈ [|t|]: oi = ti ∈ T.
The basic idea is straight-forward. Let T be a sorted vector of distinct

elements in ascending order, and N = |T|. Let T′ = {T2, . . . ,TN}. There are
two cases to consider: (1) ti ∈ T. This is the standard lookup argument, and
(2) ti 6∈ T. Then the prover provides Tj and Tj+1 s.t. Tj < ti < Tj+1. Given
that Tj+1 = T′j , a folded lookup argument can accomplish the job.

Formally, we assume that all elements in lookup tables are in range [0, 2B),
e.g., for BTC, B is 160. Given a private and sorted table S = {S1 < ... <
SN−1} with all elements less than 2B . Define T = {0,S1, . . . ,SN−1}, and
T′ = {S1, . . . ,SN−1, 2

B}. We call (T,T′) the sorted vector pair for S with

2Some adaptation of the polynomial and pairing based range proof is also a possibility. We
will explore this option later.

4

bound 2B . Their relation can be proved with a separate zk-proof. Let t be the
lookup query of size n. The πPN LOOKUP is defined as below.

πPN LOOKUP(CT,CT′ ,Ct,Co, B){
(T,T′, t,o) : ∀i ∈ [n] :

Ct = [t(s)]1 ∧ Co = [o(s)]1 ∧
(oi = 1 ∧ ∃j s.t. Tj = ti) ∨ (oi = 0 ∧ ∃j s.t. Tj < ti < T′j)

}

It is clear a πPN LOOKUP can be generated if and only if all elements of t are

in range [0, 2B). Let KZG keys be
(
[xi]1

)N
i=0

. The protocol is presented below.
We did not present the addition of zk for simplicity of notations, but it can be
achieved using the techniques mentioned earlier.

1. P computes location vector s of size n for t:

si =

{
j if Tj = ti
k if Tk < ti < T′k

and computes o s.t.

oi =

{
1 if Tj = ti
0 if Tk < ti < T′k

Then P computes table u = (Tsi)
n
i=1 and v = (T′si)

n
i=1.

P→ V : ([u(s)]1, [v(s)]1).

2. V→ P : α ∈ F.

3. P computes π ← FoldProve(srs, auxT,T, auxT′ ,T′,u,v, α). P→ V : π.

4. V aborts if Verify(srs,CT + αCT′ ,Cu + αCv, π) returns 0.

5. P and V run πRANGE(Ct/Cu, B), and πRANGE(Cv/Ct, B).

6. P shows o is a Boolean array by proving that there exists a qo(X) s.t.

o(X)(o(X)− 1) = qo(X)zH(X)

7. P proves that o(X) is a correct output, i.e., when ti > ui, the value of oi
is set to 1, otherwise 0.

This is accomplished by the following: P computes d = t − u. Then P
shows that there exist q(X) and v(X) (encoding the inverse of of each di
if exists) s.t.

(1− o(X))d(X) + o(X)(v(X)d(X)− 1) = q(X)zH(X)

5

πPN LOOKUP immediately leads to aggregated non-membership proof. Given a
preprocessed CT, to prove that t ∩ T = ∅ involves running πPN LOOKUP first and
then showing that Co is a Pedersen vector commitment to (0)

n
i=1.

Efficiency: The asymptotic complexity is the same of the construction of
πZK LOOKUP. Using cq as the underlying homomorphic lookup argument, the prover
complexity is O(nlog(n)) and verifier complexity is O(1). Concretely, the main
protocol needs 8n G1 operations. The batch range proofs need about 80n G1

operations (2 range proofs and each costing 5 lookups). Altogether it needs
about 100n G1 operations. Verification can be batched to reduce pairings. The
proof size is O(1). Concretely it costs about about 100 G1 elements (this is
about 4kb). 3

4 Non-Intrusive Protocol πASSET1

For markets that are “regulated”, e.g., banks that require explicit identification
of accounts, the asset proof in zero knowledge is simple and low cost, because
the bank can directly run a database query and post a Pedersen commitment to
the total asset of each client. We now consider the asset proof for typically cryp-
tocurrencies where customer identity (instead of their accounts) and customer’s
ownership of accounts are typically hidden.

We first introduce the πASSET1 protocol. It is non-intrusive in the sense that
there is no changes needed on the cryptocurrency blockchain, or any participants
who have no need for asserting assets. The protocol assumes that the blockchain
has information of transaction details such as sender/receiver accounts (note:
not client identity) and transaction amount. It is applicable to platforms such
as BTC and ETH.

We assume that each organization possess a fixed set S of accounts (e.g.,
BTC wallet addresses), including which are being used and those to be used in
the future. This set can be expanded periodically. Let T and T′ be the sorted
vector pair defined for S of bound B (e.g., B = 160 for BTC). A Pedersen
vector commitment over Lagrange bases is generated for T. More formally,
let T (X) =

∑N
i=1 TiLi(X), and CT =

∑N
i=1 Ti[Li(s)]1.4 At bootstrap, the

organization needs to provide an ownership proof, asserting the knowledge of
the secret key to each of the accounts in T. For instance, for BTC, combinations
of Σ-protocols and zkSNARK systems can be used as shown in [AGM18]. It
is expensive, however, the proof is only needed once. Then T and T′ will be
preprocessed and used as the lookup table for instant zk-asset proofs.

For each transaction period, the blockchain makes two vectors public: a: the
list of accounts, and ∆, the corresponding balance change on each account. We
use [0, 2B) as positive values and [|F| − 2B , |F|) as negative values. Let n = |a|,

3The batched range proof, although O(1) proof size, accounts for the majority of
prover/verifier cost. For the design goal of 2000 TPS, this results in 400k G1 exponentia-
tions (which is almost 50 seconds of CPU time for prover). We still need to improve range
proof efficiency. A potential direction is polynomial and pairing based range proof.

4In practice, the hiding is achieved by appending a blinding factor r[h]1. We omit all
zk-related details in the presentation.

6

and N = |T|. Typically, the value of n is not large and determined by the TPS
of the platform. For instance, BTC, ETH, Visa Network and NYSE operate at
7, 30, 2000, and 24000 TPS, respectively. In this work, we aim at accomplishing
2000 TPS on a regular desktop computer. We set n = 2048 and N = 8 million.

Define Ca = [a(s)]1 (without blinding factor) and similarly is C∆ defined.
They are used only as succinct representation of a and ∆ and need to be publicly
computable (thus no hiding property is needed). On the other hand, CT and
CT′ are published as the permanent commitment to the fixed set of accounts
of the prover of πASSET1. They need to be hiding.

Intuitively, πASSET1 states that Cv commits to a value v that is the sum of
balance changes for all accounts that appear in the intersection of T and a as
sets. It is formally defined below.

πASSET1(B,CT,CT′ ,Ca,C∆,Cv){(T,T′,a,∆, v, r) :

Cv = [v] + r[h]1 ∧ v =
∑

aj∈T∩a

∆j ∧

Ca,C∆ are commitments to a,∆

}

The protocol is surprisingly simple with πPN LOOKUP. Let Co be the Pedersen
commitment to the output Boolean array o of πPN LOOKUP, which indicates if ai
appears in T. We simply declare an accumulator polynomial u(X) s.t. ui+1 =
ui + ∆i if oi = 1.

1. P and V run πPN LOOKUP(CT,CT′ ,Ca,Co, B).

2. Define polynomial u(X) = ui · li(X) s.t.

u(ν0) = 1

u(νn−1) = v

u(Xν)− u(X)− o(X)∆(x) = q(X)zH(X)/((X − νn−1)(X − 1))

P sends [u(s)]1 and proves the above relation where Cv commits to v.

The protocol can be enhanced for zk, and the details are omitted here.
Efficiency: The prover complexity is O(nlog(n)). Proof size and verifier

complexity are both O(1). The concrete efficiency will be slightly greater than
πPN LOOKUP.

5 Intrusive Protocol πASSET2

We then introduce the “intrusive” protocol πASSET2, which works for cryptocur-
rencies such as Monero [YSL+] and ZeroCoin [MGGR13], where the blockchain

7

itself has no (or partial) knowledge of the sender/receiver account and the trans-
action amount. As the blockchain is unable to publish the aggregated and suc-
cinct transaction information, the change of blockchain system and participants
is unavoidable, to support proof of assets. In this sense, the protocol is “intru-
sive”. Note that πASSET2 also works with open platforms such as BTC and ETC,
if platform change is allowed. By sacrificing non-intrusiveness, the protocol is
more efficient than πASSET1 asymptotically and concretely. By leveraging prepro-
cessing of lookup arguments (more exactly vector commitment open proof), the
protocol’s prover and verifier complexity are both O(1).5

In the past, there are platform specific zk-asset proofs such as [DV19, DBV21]
for Monero [YSL+], and [DV21] for MimbleWimble. Compared with the afore-
mentioned work, our protocol is orthogonal to the cryptocurrency platform,
i.e., its core framework does not depend on platform’s transaction protocols.
Instead, we need each platform to add a zk-proof component to be compatible
with our framework. In addition, our protocol is much more efficient concretely
and asymptotically, e.g., in contrast to the linear proof size and verifier time
in earlier work [DBB+15, DV19, DBV21, DV21]. In addition, our “anonymity
set” is the entire cryptocurrency platform’s existing accounts.

For a platform to comply with πASSET2, we require that each platform user
should have a unique and secret key si that generates its organization ID ai =
[si]1 + r[h]1, which is a Pedersen commitment to si and is made public. Each
account (e.g., a wallet address in BTC, and a coin in ZeroCash) is generated by
a one-way function f(si, aux) where aux are other pertinent information, and si
is the private key. For instance, si can be simply added as a leaf node of the
Merkle tree that generates a ZeroCash coin.

We require that a unique random nonce k be available for each transaction
cycle. When a user submits a transaction request to transfer balance from an
account of organization ai to an account of another organization aj , let R be
the original transaction request (usually including a zero knowledge proof for
its validity), we require the following record be submitted.

R, hash(si, k),C∆i
, πi, hash(sj , k),C∆j

, πj

Here we simplify the model and assume that ai is the sender and aj is the
receiver. hash() is a collision resistant, and pre-image resistant hash function,
and hash(si, k) is uniquely determined by si and k. πi asserts that the change
of balance for the account of ai is consistent with the information hidden in the
transaction requestR. Similarly is πj defined. We require that C∆i

is a Pedersen
commitment (thus homomorphic) to balance change of i so that balance change
for the same organization can be accumulated for a given transaction cycle. We
require that C∆i is defined over a nested curve for a zkSNARK system so that
its Fp is the Fr of the zkSNARK system (e.g., the customized curve 25519 for
BN-254 in [KCM+15]). We let G and H be two Pedersen keys defined over the
nested curve, thus C∆i

= G∆iHr for some random factor r.

5It requires O(nlog(n)) lookup argument preprocessing at the server side of cryptocurrency.
This can be handled by a trusted smart contract service that employs parallel computing.

8

Once all transaction requests are collected. The blockchain publishes the
following three vectors by merging the records for the same organization. This
is possible because they are hashed using the same random nonce k.

(h,C∆.x,C∆.y)

Here hi is hash(si, k) for some account ai and C∆i is the corresponding accu-
mulated balance changes (a Pedersen commitment). Note that the platform has
no knowledge behind the commitments, and only when an organization is the
owner of ai, she knows the opening of the corresponding C∆i. As each element
in C∆ is a curve point. We use C∆.x and C∆.y to indicate the vectors of x and
y coordinates. Let Ch, CC∆.x

, and CC∆.y
be the Pedersen vector commitment

to the three vectors with blinding factor set to 0, i.e., they are just used as
succinct representation.

We note that the scheme leaks some structural information of a transac-
tion cycle, e.g., how many distinct organizations and the multiplicity of their
transactions. Notice that these organizations are anonymous and untraceable
(linkable) between transaction cycles. We regard this small leak does not hurt
the overall security. Under this restriction, the scheme has O(1) prover/veri-
fier complexity. A complete zk variation is available at increasing the prover
complexity to O(nlog(n)) where n is the size of transaction set in a cycle.

Our scheme essentially relies on position-hiding vector commitment such as
Caulk [ZBK+22]. However, for the convenience in implementation, we re-use the
lookup argument in πASSET1, as a size-1-query zk-lookup argument is essentially a
vector commitment open proof, with the same asymptotic complexity. Replac-
ing it with a vector commitment scheme results in gain in concrete performance,
and remains as a future direction of the work.

Once the transaction set is determined, the blockchain preprocesses h, C∆.x,
and C∆.y. Blockchain publishes the corresponding aux information. The prover
(the organization) constructs πASSET2(ai,Cv,Ch,CC∆.x,CC∆.y), which asserts
that given the three succinct representation, for ai: Cv hides its total balance
change.

1. P computes Chi
= [hash(si, r)]1 +ri[h]1, and Cx = [C∆i

.x]+r2[h]1, Cy =
[C∆i .y] + r3[h]1, Then P and V run a folded 1-query lookup argument
which asserts that the above three commitments hide an element (with
the same index) in h, C∆.x and C∆.y.

2. P use a commit-and-prove zk-SNARK to prove the relation between Chi
,

Cx, Cy with the statement. Formally, it is defined as below:

πSNARK(Chi
,Cx,Cy, ai,Cv, k)

(si, ri, r1, r2, r3, x, y) :

hi = hash(si, k) ∧
(x, y) = GvHr

}

9

The system mainly reasons about how hi is generated by hash and how
(x, y) is generated by a Pedersen commitment over G and H (embedded
curve). Note that the random nonces r1, r2, r3 are served as witness wires
in the above proof, and hi, x, y are still private witness values. Their
commitment Chi

,Cx,Cy are extracted using QA-NIZK (the technique
used by CP-link in LegoSnark [CFQ19]) from the zkSNARK proof (e.g.,
[Gro16]).

Efficiency: The platform cost is O(nlog(n)) for preprocessing, and the
prover complexity and verifier complexity are bothO(1). Concretely, the SNARK
proof needs to encode one hash operation and one curve point exponentiation.
When hash like Poseidon [GKK+21] is used, the total number of R1CS con-
straints will be less than 1k. The cost of the 1-query lookup argument is neg-
ligible. We estimate that one computing thread can generate the proof in 0.1
second. The only restriction is the preprocessing for the three tables at the
server side. Parallel/distributed computing can be leveraged. For instance, for
24k TPS (e.g., that of NYSE), the preprocessing step at the platform will need
to run 220 G1 exponentiations. We estimate that with 256 CPUs, the computing
time can be controlled within 1 second.

Acknowledgment: We would like to thank Dr. Ariel Gabizon for the discus-
sion over lookup arguments.

References

[AGM18] S. Agrawal, C. Ganesh, and P. Mohassel. Non-interactive zero-
knowledge proofs for composite statements. In CRYPTO, pages
643–673, 2018.

[CFQ19] M. Campanelli, D. Fiore, and A. Querol. LegoSNARK: Modular
Design and Composition of Succinct Zero-Knowledge Proofs. In
CCS, pages 2075–2092, 2019.

[CGG+23] A. Choudhuri, S. Garg, A. Goel, S. Sekar, and R. Sinha. Sublonk:
Sublinear prover plonk. https://eprint.iacr.org/2023/902,
2023.

[CHM+20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. P. Ward.
Marlin: Preprocessing zkSNARKs with Universal and Updatable
SRS. In EUROCRYPT, pages 738–768, 2020.

[CLMN20] K. Chalkias, K. Lewi, P. Mohassel, and V. Nikolaenko. Distributed
auditing proofs of liabilities. IACR Cryptol. ePrint Arch. https:
//eprint.iacr.org/2020/468, 2020.

[DBB+15] G. Dagher, B. Bünz, J. Bonneau, J. Clark, and D. Boneh. Provi-
sions: Privacy-preserving proofs of solvency for bitcoin exchanges.
In CCS, pages 720–731, 2015.

10

[DBV21] A. Dutta, S. Bagad, and S. Vijayakumaran. MProve+: privacy
enhancing proof of reserves protocol for monero. IEEE TRANS-
ACTIONS ON INFORMATION FORENSICS AND SECURITY,
16:3900–3915, 2021.

[DV19] A. Dutta and S. Vijayakumaran. MProve: a proof of reserves proto-
col for monero exchanges. In Euros&p Workshops, pages 330–339,
2019.

[DV21] A. Dutta and S. Vijayakumaran. Revelio: a MimbleWimble proof
of reserves protocol. In CVCBT, pages 7–11, 2021.

[EFG22] L. Eagen, D. Fiore, and A. Gabizon. cq: Cached quotients for fast
lookups. IACR Cryptol. ePrint Arch., 2022.

[GK22] A. Gabizon and D. Khovratovich. Flookup: Fractional
decomposition-based lookups in quasi-linear time independent of
table size. IACR Cryptol. ePrint Arch., 2022.

[GKK+21] L. Grassi, D. Kales, D. Khovratovich, A. Roy, C. Rechberger, and
M. Schofnegger. Poseidon: A new hash function for zero-knowledge
proof systems. In USENIX Security, 2021.

[Gro16] J. Groth. On the size of pairing-based non-interactive arguments.
In EUROCRYPT, pages 305–326, 2016.

[GW20] A. Gabizon and Z. J. Williamson. Plookup: A simplified polynomial
protocol for lookup tables. IACR Cryptol. ePrint Arch., 2020.

[Hab22] U. Habock. Multivariate lookups based on logarithmic derivatives.
IACR Cryptol. ePrint Arch., 2022.

[JC21] Y. Ji and K. Chalkias. Generalized proof of liabilities. In CCS,
pages 3465–3486, 2021.

[KCM+15] A. Kosba, Z. Chao, A. Miller, Y. Qian, T. H. Chan, C. Papa-
manthou, R. Pass, and a. shelat. cøø: A framework for building
compososable zero-knowledge proofs. Cryptology ePrint Archive.
2015/1093, 2015.

[KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size com-
mitments to polynomials and their applications. In ASIACRYPT,
pages 177–194, 2010.

[MGGR13] I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anony-
mous distributed e-cash from bitcoin. In SSP, pages 397–411, 2013.

[PK22] J. Posen and A. Kattis. CaulkPlus: Table-independent lookup ar-
guments. IACR Cryptol. ePrint Arch., 2022.

11

[SKBP22] S. Srinivasan, I. Karantaidou, F. Baldimtsi, and C. Papamanthou.
Batching, Aggregation, and Zero-Knowledge Proofs in Bilinear Ac-
cumulators. In CCS, pages 2719–2733, 2022.

[YSL+] T. H. Yuen, S.-F. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang,
and D. Gu. Ringct 3.0 for blockchain confidential transaction:
Shorter size and stronger security. available at https://eprint.
iacr.org/2019/508.pdf.

[ZBK+22] A. Zapico, V. Buterin, D. Khovratovich, M. Maller, A. Nitulescu,
and M. Simkin. Caulk: Lookup Arguments in Sublinear Time. In
CCS, pages 3121–3134, 2022.

[ZGK+22] A. Zapico, A. Gabizon, D. Khovratovich, M. Maller, and C. Ràfols.
Baloo: Nearly Optimal Lookup Arguments. IACR Cryptol. ePrint
Arch., 2022.

12

