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Abstract. Research about the theoretical properties of side channel dis-
tinguishers revealed the rules by which to maximise the probability of
first order success (“optimal distinguishers”) under different assumptions
about the leakage model and noise distribution. Simultaneously, research
into bounding first order success (as a function of the number of observa-
tions) has revealed universal bounds, which suggest that (even optimal)
distinguishers are not able to reach theoretically possible success rates.
Is this gap a proof artefact (aka the bounds are not tight) or does a dis-
tinguisher exist that is more trace efficient than the “optimal” one? We
show that in the context of an unknown (and not linear) leakage model
there is indeed a distinguisher that outperforms the “optimal” distin-
guisher in terms of trace efficiency: it is based on the Kruskal-Wallis
test.
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1 Introduction

To exploit the information contained in side channels we use distinguishers:
these are key-guess dependent functions, which are applied to the side chan-
nel observations and some auxiliary input (plaintext or ciphertext information),
that attribute scores to key guesses. Optimal distinguishers [HRG14] are distin-
guishing rules derived by the process of maximising the likelihood of ranking
the key guess that corresponds to the true secret value first (via their respec-
tive scores). The mathematical setup to derive optimal distinguishers is agnostic
to estimation and trace efficiency, and thus an optimal distinguisher is not per
construction the most trace efficient one. However, the optimal distinguishing
rules that were derived in [HRG14] outperformed (experimentally) other distin-
guishers, or when not, [HRG14] showed mathematical equivalence between an
optimal distinguishing rule and a classical rule. For instance, the correlation dis-
tinguisher turned out to be equivalent to the optimal rule in the situation where
the leakage function is known and the noise is Gaussian.

The situation in which an adversary is confronted with a new device that
contains an unknown key is interesting because it corresponds to the “hardest
challenge” for the adversary: they should recover the key with only informa-
tion about the cryptographic implementation. Framing this in the context of
side channel distinguishers, this leads to a type of distinguisher that neither



requires assumptions about the noise distribution nor information about the
device leakage distribution. Previous research has looked at distinguishers such
as mutual information [GBTP08], Spearman’s rank correlation [BGL08], and
the Kolmogorov-Smirnov (KS) test [WOM11] in this context — these papers
pre-date the seminal paper [HRG14] that establishes how to derive an optimal
distinguishing rule.

Relatively recently only it was argued that the mutual information can be
recovered as the optimal distinguishing rule [dCGHR18] if no assumptions about
the device leakage distribution can be made. They also show experimentally that
mutual information is the most trace efficient distinguisher in this setting. Next,
better bounds for the estimation of the first order success rate (i.e. the probability
to rank the key guess that corresponds to the true secret key first based on
distinguishing scores) were derived in [dCGRP19]. The idea here was to derive
these bounds independently of any specific distinguisher, purely based on the
mutual information between the observed leakage and the key. The bounds were
then compared to the respective optimal distinguishing rule. It turned out that
there is a considerable gap between the optimal distinguisher and the bounds.
This begs the question: could there indeed be a distinguisher that is more trace
efficient than the one recovered as the optimal distinguishing rule?

1.1 Our contributions

We find a more trace efficient distinguisher by switching to rank based statistics.
Previous work has once touched on rank based statistics before (Spearman’s rank
correlation) but we seek out a method that works even if the relationship between
the intermediate values and the device leakage is not monotonic: this leads us
to explore the Kruskal-Wallis method. We show how to translate it to the side
channel context (the important trick here is to rank the traces itself
prior to any partitioning) and we demonstrate how to estimate the number
of needed traces for statistical attack success. We extend the existing work here
by developing a lower bound for the number of needed traces.

Following established practice we then provide experimental results that en-
able us to conclude also from a practical point of view that the anticipated
theoretical advantages show in practice. We cover a range of situations where
we explore different target functions and different device leakage functions. In
terms of target functions, we use non-injective target functions (as required by
the assumptions in [HRG14,dCGHR18]), and also injective target functions with
the bit-dropping trick. For device leakage functions we cover functions that range
from highly non-linear to linear. We investigate Gaussian and Laplacian noise.
Our philosophy is to include settings from prevoius work and more. We also
consider implementations based on shared out intermediate values. Experiments
that vary all these factors are necessarily based on simulations. We also demon-
strate that our observations translate to real device data by using traces from
two AES implementations: one with and one without masking.

Our research exhibits, for the first time, in the setting where no information
about the device leakage distribution is available, a distinguishing rule that is



more trace efficient than the optimal distinguishing rule (MI). Our research also
shows for the first time that a purely rank based distinguisher is effective in the
context of masking.

We provide the necessary background about (rank based) distinguishers, and
our notation in Sect 2. Then we introduce the Kruskal-Wallis method and turn
it into a distinguisher (alongside the analysis for the number of needed traces
from a statistical point of view) in Sect. 3. In Sect.4 we show and discuss the
simulation results, and in Sect. 5 we show and discuss the results for the real
traces. We conclude in Sect. 6.

2 Background

We try and use notation that is uncluttered whenever we refer to well established
background, in particular, when it comes to known facts about distinguishers,
and we “overload” variables so that they simultaneously refer to sets and random
variables. For instance, we use L to refer to the set of observed traces, which we
also know to have a distribution.

2.1 Side channel attacks and notation

We assume that the side-channel leakage L can be expressed as a sum of a key
dependent function M and some independent noise ε:

L = M(Vk∗) + ε.

The device leakage model M is not known in practice. It is a function of V ,
an intermediate value, which depends on some input word X and a fixed and
unknown secret key word k∗. We assume that the noise follows a Gaussian distri-
bution ε ∼ N (0, σ).1 The intermediate V is derived by the keyed cryptographic
function fk∗ :

Vk∗ = fk∗(X).

In a side-channel attack, the adversary is given a set of leakages L and their cor-
responding inputs X2. To recover the correct (secret) key k∗ embedded within
the device, the adversary first computes the (predicted) intermediates Vk un-
der all possible guesses of k, from the given input X. Then they compute the
hypothetical leakage value LH,k = H(Vk) by assuming a leakage function H.
In side-channel attacks that rely on a direct or proportional approximation of
the device leakage, the quality of H determines the success or efficiency of the
corresponding attacks. When no model is known, then H is simply the identity
function.

1 For readability we do not make input and key dependence explicit in the leakage L.
2 Side-channel attacks are also possible by exploiting the output with f−1

k∗ .



A distinguisher D is used to compute the distinguishing score dk from the
predicted intermediates Vk and the observed leakage L. In a successful side-
channel attack, the correct key k∗ is determined as the maximum distinguishing
score(s):

k∗ = argmax
k

dk = argmax
k

D(LH,k, L)

It is important to bear in mind that distinguishers are based on estimators of
statistical quantities, thus in the formulas below we indicate this fact by placing
a hat above the respective quantity. Distinguishers may or may not be based on
some either assumed or known properties of the observed leakage L. In statisti-
cal jargon, statistics that require assumptions about the distribution are called
“parametric” and statistics that do not require assumptions about the distri-
bution are called “non-parametric”. In this paper we work on the assumption
that we are in a “first contact” scenario where the adversary utilises no infor-
mation about L in their initial attack attempt: this hence requires them to use
non-parametric statistics, thus a non-parametric distinguisher.

In all practical side-channel attacks, the targeted intermediate Vk is normally
a part of operands being processed by the device during the cryptographic al-
gorithms, and the key k is a chunk of the cryptographic key. The complete key
recovery is done via performing multiple side-channel attacks on each of the key
chunks (thus we use a divide and conquer strategy). Also observable leakage
often is given as a real-valued vector: e.g. power traces consist of many mea-
surement points. Distinguishers are either applied to individual trace points, or
to specific subsets of trace points. Therefore, in our aim to keep the notation
uncluttered, we do not include any variables for indices for trace points or the
like. We implicitly understand that the distinguisher is applied to (many) trace
points or sets of trace points individually.

2.2 Rank transformations

Many statistical techniques that do not require assumptions about the underly-
ing distributions have been developed by working on ranked data. Suppose that
we have a set of leakages L: there are several ways in which ranks can be assigned
to the leakages in the set. The two most natural types of assigning ranks are the
following:

Type 1: The entire set is ranked from smallest to largest (or vice versa), and
the smallest leakage having rank 1, the second smallest having rank 2, etc.

Type 2: The set L is partitioned according to some rule into subsets, then each
subset is ranked independently of all other subset, by ordering the elements
within a set (either from smallest to largest or vice versa).

Ties are resolved by assigning the average of the ranks that the ties would have
received.

Any monotonic increasing function that is applied to the data does not change
the ranking of the data. In our text we indicate that ranking takes place by
applying the rank() function to the resp. variables. The type of ranking will be
clear from the context.



2.3 Non-parametric side-channel distinguishers

For the sake of completeness we provide a very brief description of the non-
parametric side-channel distinguishers that we use as comparisons with are new
distinguisher.

Difference of Means The Difference of Means (DoM) [KJJ99] is often used
as a baseline distinguisher, and it can be defined such that it makes minimal
assumptions about the leakage distribution. For its’ computation, the traces are
divided into two groups LVk=0 and LVk=1 depending on whether a predicted
single bit of a targeted intermediate is zero or one (Vk = 0 or Vk = 1). The
distinguishing score is defined as the estimated difference of means (often one
takes the absolute value)):

dk = |Ê(LVk=0)− Ê(LVk=1)|.

Spearman’s Rank Correlation This is a non-parametric alternative to Pear-
son’s correlation, and it was investigated in [BGL08] against an AES implemen-
tation. It was shown to be significantly more efficient (in terms of success rate)
compared to Pearson’s correlation-based attack [BCO04] (a.k.a. CPA). In this
attack, the adversary computes the hypothetical leakage from Vk by computing
LH,k where H is guessed/assumed by the adversary. Then LH,k and L are ranked
and the (absolute value of the) correlation coefficient is estimated as follows

dk =

∣∣∣∣∣ ˆCov(rank(L), rank(LH,k))

σ̂rank(L)σ̂rank(LH,k)

∣∣∣∣∣ .
Notice that although the adversay must “guess” a hypothetical leakage model,

there is no requirement for the device leakage to follow a Gaussian distribution.

Mutual Information Mutual Information [GBTP08] analysis is a distinguish-
ing method that can be used without the need for H. The MI distinguishing
score is computed by estimating the mutual information from a set of collected
traces and the corresponding inputs or plaintexts:

dk = Î(L, Vk) = Ĥ(L)− Ĥ(L|Vk)

where Ĥ and Î denote the (estimated) Shannon’s entropy and mutual infor-
mation respectively. For estimating MI, different entropy estimation methods
have been studied, but the most commonly applied and efficient method (over
R) is the so-called binning method that is used in the original proposal of MIA
[GBTP08]. We also use this same estimation method in our experiments.

Note that MI requires that the target function fk is not a bijection as dis-
cussed in [WOS14,dCGHR18]. When MIA is applied to cryptographic target
that is a bijection, then the bit dropping technique [RGV14] that simply chops
off a selected number bits from the output, is used. Although it is not necessary
to supply MI with a hypothetical leakage model H this is frequently done in the
literature, in particular by selecting the Hamming weight as H.



Kolmogorov–Smirnov (KS) The KS test-based distinguisher [WOM11] is
suggested as an alternative to using MI. The distinguishing score (of a key) is
defined as the average of KS distances between the leakage distribution of L and
leakage distributions of LVk

for each predicted intermediate Vk i.e.

dk = ÊVk

(
sup
l

|FL(l)− FLVk
(l)|

)
where FL(l) and FLVk

(l) are the Cumulative Distribution Functions (CDFs) of L
and LVk

respectively. From a finite sample set A the empirical CDF is computed
by FA(x) =

1
n

∑
a∈A Ia≤x where I is the indicator function and |A| = n.

3 The Kruskal-Wallis test as side-channel distinguisher

The Kruskal-Wallis test (KW) [KW52] is a non-parametric method for the anal-
ysis of variance (ANOVA): this means it does not require any distributional
assumption about the leakage L. The KW test is based on the ranks of the
observed data and it is often used to check whether (or not) multiple groups
of samples are from the same distribution. In this section we explain how to
construct a KW based distinguisher, and we discuss the salient properties of the
resulting distinguisher.

3.1 The KW statistic as a distinguisher

In this section we describe how to compute the KW statistic in a side-channel
setting, and we argue why it gives a sound side channel distinguisher. For a
generic description of the KW statistic we refer the readers to appendix A.

Informally, the KW test statistic is derived by first ranking the observed
data, and second by grouping the data according to the resp. (key dependent)
intermediate values. Then the tests checks if the groups can be distinguished
from another or not, by comparing the variances between the groups and within
the groups.

More formally, let us assume that we have N side channel leakages. We apply
the type 1 rank transformation to the side channel leaks, and then work with the
ranked data: rank(L). For each key guess k, the ranked data is grouped according
to the respective intermediate Vk. Thus the set Ri

k = {rank(L)|Vk = i} contains

the ranks of leakages where the intermediate Vk equals i. Let Ri,j
k refers to the

j-th element in Ri
k. Suppose that we have t groups and the size of group Ri

k is

ni and so N =
∑t

i=1 n
i.

Let us assume that the group Ri
k has distribution F i. The null hypothesis

is that all the groups have the same distribution, and alternative hypotheses of
KW test is that the groups can be distinguished:

H0 : F 0 = F 1 = . . . = F t−1 (1)

Ha : F i ̸= F j for some i, j s.t i ̸= j.



The average of the ranks in Ri is given as:

R̄i
k = 1/ni

ni∑
j=1

Ri,j
k

and R̄k = (N + 1)/2 the average of all Ri,j
k .

The KW test statistic is defined [KW52] as:

dk = (N − 1)

∑t
i=1 ni(R̄i

k − R̄k)
2∑t

i=1

∑ni

j=1 (R
i,j
k − R̄k)2

(2)

If the elements in Ri
k are all from the same distribution, then all R̄i

k are
expected to be close to R̄k and thus the statistic dk should be smaller, than
when the elements in Ri

k are from different distributions. Thus large values of
the test statistic imply that we reject the null hypothesis of the KW test (i.e. we
have enough data to conclude that there are meaningful groups). We can use this
test statistic readily as a side channel distinguisher: the groups are given by the
key dependent intermediate values Vk. Thus, for k = k∗ we have a meaningful
grouping of the ranked leakages, and thus the test statistic is large. If k ̸= k∗,
then the ranked side channel leaks are randomly assigned to different groups,
which will lead to a small test statistic. Consequently the value of dk∗ >= dk
for ∀k, which implies that it is a sound side channel distinguisher.

3.2 Properties of the KW distinguisher

Side channel distinguisher are most useful if they can be applied in different
settings, including higher order attacks. It is also beneficial to be able to derive
sample size estimates. For some of the existing non-parametric, in particular in
the case of MI, this is hard to achieved. We now explain what is possible for the
KW distinguisher.

Application to higher order attack scenarios. In masked implementations,
an intermediate value is represented as a tuple of shares. The leakage of a single
share is uninformative, but a statistic that exploits the distribution of the en-
tire tuple enables key recovery. The canonical way of applying distinguishers to
masked implementations is via processing the observed leakage traces: a popular
(processing) function is the multiplication of (mean-free) trace points [PRB09].
Such trace processing produces a new trace in which each point now is based
on the joint leakage of multiple points (aka shares). Using the mean-free prod-
uct to produce joint leakage is compatible with the Kruskal-Wallis distinguisher
(if the mean-free product of two values is larger than the mean-free product of
another two values then this property is preserved by ranking: it is a monotoni-
cally increasing function), and we show how well it performs in the experimental
sections.



Computational cost. The KW test is often compared to theWilcoxon-Whitney-
Mann test (MWW) [MW47] with respect to computation costs, which is another
rank based non-parametric test. The major difference between the two is that
MWW is applied to paired data against two values, whereas KW is applied
to multiple groups. The latter thus naturally fits with the side channel setting
where the intermediate values fall naturally in multiple (independent) groups.
Applying MWW in the side channel setting increases the computational cost.
For example, in case of t groups we need to apply MWW in the worst case

(
t
2

)
times. Thus the KW test is a natural choice over the MWW test. We found that
the computational cost of KW is of the same order as other generic distinguishers
(MI, KS).

Number of samples. For the KW statistic, the theoretical analysis [FZZ11,
Theorem 1] shows how to estimate the sample size. The main result necessary for
estimating the sample size in a KW test is that under the alternative hypothesis
the KW statistic follow a non-central χ2distribution. Let λi = ni/N ≥ λ0 for all
i and a fixed λ0 > 0. And let α be the confidence level and β be the power of
the test. Then the estimated sample size is given as

Ñ =
τα,β

12
∑t

i=1 λi

(∑
s̸=i λs(p̂is − 1/2)

)2 . (3)

For each pair i, s s.t. i ̸= s, the probability estimates p̂is can be computed from
the given data sample of size N as follows

p̂is =
1

NiNk

Ni∑
j=1

Ns∑
ℓ=1

(I(Xsℓ < Xij) + I(Xsℓ = Xij)/2)

where I is the indicator function, and i, s ∈ {1, 2, . . . t}. Note that the second
part of the above expression corresponds to the ties in ranking. In eq. (3) τα,β
is solution to P(χ2

t−1(τ) > χ2
t−1,1−α) = 1 − β for some fixed α, β, and χ2

t−1,1−α

is the (1− α) quantile of central χ2distribution with t− 1 degrees of freedom.
The estimation of sample size following equation eq. (3) is biased and needs

to be adjusted. As explained in [FZZ11], an adjusted estimator N̂ is defined as
follows

N̂ = Ñ ·
median{χ2

t−1(τ̂)}
τ̂

(4)

where τ̂ = N · 12
∑t

i=1 λi

(∑
s̸=i λs(p̂is − 1/2)

)2

.

Considering correct and incorrect key hypotheses. The application of sample size
estimation technique requires care in the context of side-channel key recovery
attack. Recall that in a statistical (hypothesis) testing there are two types of
errors namely



1. Type I error α where the null hypothesisH0 is rejected when the hypothesis
H0 is true, and

2. Type II error β where the null hypothesis H0 is not rejected when the
alternate hypothesis Ha is true.

In a successful attack the null hypothesis should not be rejected for any k
where k ̸= k∗ (thus we want α to be small). However, under the correct key
guess k = k∗ the alternative hypothesis Ha is true and we should not fail to
reject H0. Hence, β should be small so that the power of the test 1− β is large.
In fact we wish to have a high power for both cases.

Thus we should perform the sample size estimation for both cases (correct
and incorrect keys) and then take the maximum of these sample sizes as a
conservative estimate. In statistical hypothesis testing typically it is ensured
that the value of P(Type I error) ≤ 0.1 and P(Type II error) ≤ 0.2.

Example 1. In this example we show the sample size estimation for N = 1000
using simulated Hamming weight traces of AES Sbox where the Gaussian noise
has σ = 6.

We choose α = 0.025 (corresponding to the confidence level) and β = 0.05
(corresponding to the power of the test). First, using the technique as described
above, we find the generic estimate of the sample size as per eq. (3). For applying
the leakage estimation (or KW attack) we extract the 4 Least Significant Bits
(LSB) from the output of the Sbox.

For this experiment the degrees of freedom of the χ2distributions is 16− 1 =
15 (the number of different groups are 16 corresponding to the 4-bit output
values obtained). Note that τα,β depends only on the degrees of freedom, α and

β. In this case τα,β = 1.8506. We compute Ñ for different key choices. Here we

only show the computation for one key that corresponds to the maximum Ñ .
The estimation process is carried out in the same way for other keys.

Estimating λi and p̂is from 1000 data points we obtain the Ñ = 1.8506
.0041 ≈ 451.

Since this is a biased estimate we obtain the adjusted estimate as

N̂ = Ñ ·
median{χ2

t−1(τ̂)}
τ̂

= 451 · median{χ2
15(4.1)}

4.1
≈ 2015. (5)

Remark 1. For estimating the sample size in the context of side-channel attack,
λi can be estimated from the target cryptographic function (instead of estimating
it from the data). Suppose, the target function is 8-bit Sbox, and say 4 bits of the
output is chosen for the attack. In this case, for all 28 input values, the number
of elements ni in each 24 groups can be computed.

Example 2. In this example we show the sample size estimation when traces are
simulated from ARX function with a HW leakage model and Gaussian noise
with σ = 6. We fix N = 1000 and follow the same process as in Example 1. Here
we choose α = 0.001 and β = 0.1.



We consider a key recovery attack (using KW statistic) which recovers 4-bit
key chunk from each k1 and k2, in the usual divide and conquer process used for
side-channel attack. The ARX function is defined as

A(x) = (x⊕ k1)⊞ (y ⊕ k2).

(⊕ denotes the bit-wise exclusive-or and ⊞ the addition in GF (216)). So, the
degrees of freedom for the χ2distribution remains 16−1 = 15. The biased sample
size estimation gives Ñ ≈ 992. After adjusting the bias as in Example 1 we get
N̂ ≈ 2212.

Corollary 1. The generic estimate Ñ in eq. (3) (and bias adjusted estimate N̂
in eq. (4)) gives estimated lower bound on sample size.

Proof. The sample estimate is derived from the fact that τ̂ ≈ τα,β . Recall that
τα,β is the solution to the equation

P(χ2
t−1(τ) > χ2

t−1,1−α) = 1− β.

for some fixed β. Now, if we obtain a τ̂1 from the fixed sized data such that
τ̂1 ≥ τα,β , then P(χ2

t−1(τ1) > χ2
t−1,1−α) will be more than 1−β. This is favourable

since we want to maximise the power of the test. Thus we have

τ̂ ≥ τα,β =⇒ Ñ∗ ≥ τα,β

12
∑t

i=1 λi

(∑
s̸=i λs(p̂is − 1/2)

)2 = Ñ

The lower bound on the bias adjusted estimate N̂∗ follows from this.

4 Experiments based on simulated leakage

We now detail a range of experiments that are based on simulating side channel
data. Experiments based on simulated data offer the advantage, over experi-
ments based on data from devices, that we can efficiently vary implementation
characteristics such as the leakage function, the cryptographic target function,
and the signal to noise ratio. Therefore the inclusion of simulations is standard
in research on distinguishers.

We display simulation outcomes in terms of the success rate as function of
an increasing number of side channel observations. Our comparisons include
the KW test, mutual information analysis (MI) with an identity leakage model,
mutual information analysis with a Hamming weight leakage model (MI-HW),
the Kolmogorov-Smirnov test and Spearman’s test. We included MI-HW because
of its wide use in the literature (and despite the obvious fact that it is no longer
assumption free).

Before we discuss the outcomes, we provide an informal but detailed descrip-
tion of the choices for the cryptographic target functions Vk as well as the device
leakage functions M .



4.1 Simulation setup

Our choice of target functions Vk is informed by best-practice: it is well known
that properties of the target function impact on distinguishability and there-
fore we aimed to select a function that is known to be “poor” target, to chal-
lenge all distinguishers. Our selection observed a further requirement imposed
by the use of MI (as main comparison) that MI is only a sound distinguisher
for non-injective target functions (if a target function is injective, then MI can-
not distinguish any key candidates)[HRG14], and the bit-dropping trick must
be used. Therefore, we selected as a poor non-injective target function Vni the
non-injective target function is the modular addition that is part of many ARX
constructions, which is also the basis of modern permutation based ciphers such
as SPARKLE:

Vni(xl, xr, kl, kr) = (xl ⊕ kl)⊞ (xr ⊕ kr)

where xl∥xr ∈ {0, 1}32 is a state element, and kl∥kr ∈ {0, 1}32 is the key, and ⊞
is the addition modulo 216.

We also experimented with a function that is known to be an excellent target
function, namely the AES SubBytes operation, which is injective, and thus the
bit-dropping trick must be applied. To aid the flow of this submission, we include
the results of this in the appendix (they are aligned with the results for the
injective target function).

Our choice of leakage functions M is also informed by best-practice: leakage
functions are also well known to impact on distinguisher performance. Linear
leakage functions help distinguishers that are based on distributional assump-
tions or simple hypothetical leakage models. Highly non-linear leakage func-
tions are representative of of complex leakage originating in combinational logic
([LBS19] and [GMPO20]) are a motivating factor for studing “assumption free”
distinguishers like MI, KS and KW.

In our experiments we thus use a range of device leakage functions, which
are defined as follows. Let yi be the ith bit of y. Then we consider two linear
device leakage functions (Hamming weight and Randomly weighted bits), and
two non-linear leakage functions (Strongly non-linear and Binary), as follows:

Hamming weight: M(y) =
∑n

i=1 yi
Randomly weighted bits: M(y) =

∑n
i=1 wiyi with w ∈ [−1, 1]

Strongly non-linear: M(y) = S(y), with S(y) defined to be the Present S-Box
Binary: M(y) =

∑
i S(y)i (mod 2), with S(y) defined to be the Present S-Box

4.2 First order attack simulations

Figure 1a shows that the Spearman rank correlation has indeed a significant
advantage (because it uses the correct hypothetical leakage model), compared
to the other distinguishers. Note that the KW test-based attack outperforms the
other generic distinguishers with a clear margin that is more significant in the
lower SNRs.



(a) HW leakage model

(b) Rrandomly weighted bits leakage model

(c) Strongly non-linear (PRESENT S-Box) leakage model

(d) Binary leakage model

KW: MI: MI-HW:+ KS:× Spearman:

Fig. 1: Simulations for Modular Addition as a Target



(a) Hamming weight (b) Randomly weighted bits (c) Strongly non-linear

KW: MI: MI-HW:+ KS:× Spearman:

Fig. 2: 2-share Boolean masking of ARX with different leakage models

Figure 1b shows that the Spearman rank correlation fails: more traces re-
duce the success rate, which is a clear indication that that the “built in leakage
model” is incompatible with M . This is a useful reminder that linear models
are not necessarily compatible with a Hamming weight assumption. All model-
free distinguishers succeed, and KW turns out to be the most trace efficient in
all SNR settings. The MI and MI-HW distinguishers show similar performance
while KS is the least trace efficient one among the successful attacks.

In the non-linear simulation (Figure 1c) We expect that Spearmans rank
correlation will fail because the leakage model is not compatible. However MI
with the same model works very well, alongside MI without model and KS. These
three distinguishers show a very similar performance in all SNR settings. KW
shows a clear margin to the other distinguishers, which is evidence that it is the
preferable distinguisher in this setting.

The last simulation (Figure 1d) is a binary leakage model that represents
an extreme case where the leakage is either 0 or 1 such that only a minimum
resolution exists in the leakage values. In a high SNR setting, all assumption-free
distinguishers recover the key. In low SNR seetings, the KW distinguisher show
the quickest convergence to a high success rate, which is evidence that it is the
preferable distinguisher in this setting.

4.3 Masked implementation

We further extend our simulations to a masked implementation by simulating the
leakages of a 2-shares Boolean masking scheme using the same leakage models
as before. To perform an attack we use the a well understood, and frequently
adopted approach of combining the leakages from all independent shares via the
centred product-combining function, [PRB09], which was also used in [BGP+11].
3

3 It is worth noting that there exists no known optimal multivariate implementation
for the above mentioned side-channel distinguishers [BGP+11,WOM11], because the
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KW: MI: MI-HW:+ KS:×

Fig. 3: Higher order Boolean masking of AES with Hamming weight leakage

The results of the simulations for the 2-share Boolean masking scheme are
shown in Figure 2a, Figure 2b and Figure 2c. For succinctness, we excluded the
very low SNR settings of 2−3 and 2−5 (because the observations are the same
as for the higher SNRs), and the results of binary leakage model (because all
distinguishers failed in this setting). As is evident from the graphs, Spearman
fails in all settings; among the successful attacks, KW turned out to be the most
trace efficient distinguisher.

We then turn our attention to masking for the AES SubBytes operation,
where Figures 3a-3c show that KW provides a clear advantage for low order
masking.

5 Experiments based on Device Data

To complement our simulation results we also show experiments that were per-
formed based on measurements from two processors. These processors are based
on the ARM Cortex M0 and the ARM Cortex M3 architecture. We implemented
the same target functions as before in the simulations.

To work with the masked implementation, we perform the same mean-free
product combining pre-processing as in the simulations. Before showing the out-
comes, we discuss the implementation characteristics in some more detail.

5.1 Implementation characteristics and experimental setup

Our simulated experiments ranged from unprotected implementations to imple-
mentations based on sharing out intermediate values. For implementations that
are unprotected we only ensure functional correctness of our implementation.
In the case of the non-injective target function, we utilise the modular addition

outcomes are highly sensitive to various factors, including leakage models, noise levels
and methods for pre-processing, etc.



in C and let the compiler translate this into Assbembly code. In the case of
the AES SubBytes implementation we use a simple table-based lookup. For the
masked SubBytes implementation we use a custom Thumb-16 Assembly imple-
mentation of a two share ISW multiplication gadget. This implementation is
specifically crafted to ensure that there are no first-order leaks.

Both processors are mounted in a special purpose measurement rig4. We
have a state of the art scope and probe, but do not perform any filtering or
de-noising before applying the distinguishers. The devices that we use are well
characterised, and we know that they exhibit a range of leakage functions, which
all have a strong linear component (thus they resemeble the two linear leakage
functions that we considered in the simulations).

We apply the distinguishers to all trace points, and perform repeat experi-
ments to determine the first order success rate. We then select the best point
and plot the success rate graphs for this point only.

5.2 Experimental results

Non-injective target function. Figure 4a shows the results of repeat attacks on
the modular addition on the M0. In the corresponding simulated experiments,
we supplied Spearman with the Hamming weight leakage model and as a result
it outperformed the other distinguishers when the device leakage model was also
the Hamming weight. To demonstrate that Spearmans succeess in the Hamming
weight simulation really was because we supplied it with the Hamming weight
model, we now supply it with only 4 bits of the intermediate values. We give the
same 4 bit intermediate values also to MI, MI-HW, KS and KW.

Lacking the correct leakage model, Spearman now completely fails. All other
side-channel distinguishers successfully recover the key. KW shows again a better
success rate than the competitors.

Injective target function. Figure 4b shows the results of repeat attacks on the
SubBytes operation on the M0. Now we supply Spearman once more with the
Hamming weight leakage model, which gives it a significant advantage over the
other distinguishers (because the device features signifant linear leakage in all
trace points).

KW is the most trace efficient distinguisher among the other distinguishers.
DoM is the least efficient one which might due to the fact that DoM can only
exploit a single bit leakage whereas other distinguishers exploit all 4 bit leakages.

Masked implementation. Figure 4c 5 shows a familiar picture: KW achieves a
higher success rate by a clear margin over the other distinguishers. Spearman
failed, so we did not include it anymore. The picture also shows that MI-HW

4 We refrain to include more details at this point in order to maintain the anonymity
of the submission.

5 Spearman and DoM are excluded from Figure 4c as they failed against the masked
implementation.
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(c) 4LSB of Masked AES
SBox on M3

KW: MI: MI-HW:+ KS:× Spearman: DoM: ◦

Fig. 4: Experiments based on real device data

no longer shows any advantage over MI, which one should expect given that
pre-processing is applied to the trace points as part of attacking the masking
scheme.

6 Discussion and Conclusion

Of the distinguishers that we compared in this submission, Spearman and MI-
HW are supplied with the Hamming weight leakage model. Theoretically, this
gives them an advantage in situations where there is strong Hamming weight
device leakage. We can see this advantage also experimentally: in all Hamming
weight simulations, Spearman outperforms all other distinguishers, including
MI-HW. This particular simulation showcases that iff the device leakage model
is “simple” then there is no point in using MI, KS or KW.

In situations where the leakage model is unknown and HW based attack fail,
they are the premise of our work, MI, KS, and KW are considerably better than
Spearman (and MI-HW). When looking carefully at the experimental outcomes,
then we can observe that the gap between the distinguishers decreases with lower
SNR values. This behaviour is expected because of [MOS11], according to which
they must, asymptotically speaking, get closer in terms of trace efficiency the
lower the SNR.

All together our experiments provide strong evidence that MI is not the most
trace efficient distinguisher setting where no leakage model is available, which is
in contrast to [dCGHR18], who selected different distinguishers for comparison
with MI.

Our results help clarify that “optimal distinguishers” are not necessarily the
most trace efficient distinguishers, despite that in previous work they have always
been identified as being more trace efficient (in their respective categories) than
their “normal” counterparts.
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A The KW Statistic

Let Xij where i = 1, . . . , t, j = 1, . . . , ni be independent random samples col-
lected from a population having t groups and the sample size for group i is ni.
Let us assume that the random variables Xij have distribution Fi. The generic
null and alternative hypotheses of KW test are

H0 : F1 = F2 = . . . = Ft (6)

Ha : Fi ̸= Fj for some i, j s.t i ̸= j.

The observations are combined into one sample of size N where

N =

t∑
i=1

ni



This combined sample is ranked. Suppose, Ri,j is the ranking of the j-th sample
from the group i, R̄i the average rank of all samples from group i:

R̄i = ni
−1

ni∑
j=1

Ri,j

and R̄ = (N + 1)/2 the average of all Ri,j .
The KW test statistic HKW is defined [KW52] as:

HKW = (N − 1)

∑t
i=1 ni(R̄i − R̄)2∑t

i=1

∑ni

j=1 (Ri,j − R̄)2
(7)

In eq. (7) the denominator
∑t

i=1 ni(R̄i − R̄)2 describes the variation of ranks

between groups, and the numerator
∑t

i=1

∑ni

j=1 (Ri,j − R̄)2 describes the varia-
tion of ranks in the combined sample. Intuitively, if Xij are all sampled from the
same distribution, then all R̄i are expected to be close to R̄ and thus the statis-
tics HKW should be smaller, and vice versa. Large values of the test statistic
results in rejecting the null hypothesis of the KW test.

B Further experimental results

(a) HW leakage

(b) Randomly weighted bits leakage

KW: MI: MI-HW:+ KS:× Spearman: DoM: ◦

Fig. 5: Attacking the AES SubBytes target, dropping 4 most significant bits
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