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Abstract. Secret sharing is a cryptographic primitive that divides a se-
cret into several shares, and allows only some combinations of shares to
recover the secret. As it can also be used in secure multi-party computa-
tion protocol with outsourcing servers, several variations of secret sharing
are devised for this purpose. Most of the existing protocols require the
number of computing servers to be determined in advance. However,
in some situations we may want the system to be “evolving”. We may
want to increase the number of servers and strengthen the security guar-
antee later in order to improve availability and security of the system.
Although evolving secret sharing schemes are available, they do not sup-
port computing on shares. On the other hand, “homomorphic” secret
sharing allows computing on shares with small communication, but they
are not evolving. As the contribution of our work, we give the definition of
“evolving homomorphic” secret sharing supporting both properties. We
propose two schemes, one with hierarchical access structure supporting
multiplication, and the other with partially hierarchical access structure
supporting computation of low degree polynomials. Comparing to the
work with similar functionality of Choudhuri et al. (IACR ePrint 2020),
our schemes have smaller communication costs.

Keywords: Secure multi-party computation · Evolving secret sharing ·
Homomorphic secret sharing · Hierarchical secret sharing.

1 Introduction

Secret sharing is a cryptographic primitive that divides a secret into several
shares, and different shares will be given to different parties. The authorized
sets of parties can recover the secret from their shares, while the unauthorized
sets cannot. A collection of authorized sets is called as an access structure. In
one type of the access structures, called as threshold structures, a set of parties
is in the collection if the size of the set is larger than a particular number.

This basic primitive can be used as a building block to construct secure multi-
party computation protocols [13, 3]. We will consider the model of outsourcing
servers [10, 15]. In this model, there are three roles, namely, several input clients
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(dealers), several computing servers, and one output client. We have several
secrets from several input clients. Each input client divides its secret into shares,
and distributes them to computing servers. The goal of the scheme is to let
only the output client know some functions of the secret inputs. We want to
use multiple servers to calculate a function of those secrets without having them
know the secrets. To achieve the goal, the computing servers calculate some
functions on the shares, may communicate to other servers, and send their results
to the output client. The output client then reconstructs the final result using
partial results from participating servers. We note again that the protocol may
require several communications back and forth between computing servers.

To achieve a smaller communication cost, a variation of secret sharing called
as “homomorphic” secret sharing is introduced by Boyle et al. in [6]. Functions
can be calculated on shares homomorphically without any communication be-
tween computing servers. Homomorphic secret sharing has been widely studied
recently with multiple constructions from different assumptions, such as deci-
sional Diffie–Hellman assumption (DDH) [7] and learning with errors (LWE) [8].
Furthermore, evaluation of low-degree polynomials in homomorphic secret shar-
ing setting was also considered in [22, 24]. Homomorphic secret sharing is shown
in [7] to imply a useful related primitive called server-aided secure multi-party
computation [16, 17].

In most of the existing multi-party computation protocols from secret shar-
ing, including homomorphic secret sharing, number of outsourcing servers must
be determined in advance, and the access structure has to be fixed. This prevents
us from adding more servers in order to improve availability of the system, or
changing the access structure in order to improve security. Some recent works
[4, 9, 14] allow new servers to join during the protocol, but they use resharing
which requires interactions and communications. In addition, these works only
support threshold structures.

There are some cryptographic schemes that allow us to add more servers
without resharing. We call such schemes as “evolving” schemes. Those include
evolving secret sharing proposed by Komargodski et al. [20]. Some improvements
in this research area were proposed in [21, 1, 2]. Although we can construct secure
multi-party computation protocols for outsourcing servers from secret sharing,
it is not trivial to construct an evolving version from the evolving secret sharing.
The construction is stated as a future work in [20], and is still an open problem.

1.1 Our Contributions

To provide a solution for the open problem, we give the definition of “evolving
homomorphic” secret sharing. For “evolving”, the schemes allow us to increase
the number of outsourcing servers without resharing, and for “homomorphic”,
the schemes support computing on shares without any communications between
servers. Thus, our schemes provide protocols for evolving outsourcing servers
with smaller communication cost than previous works.

Our proposed evolving homomorphic secret sharing schemes focus on hier-
archical access structures, where threshold values can be changed for different
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Table 1. Our contributions compared to evolving secret sharing schemes

Homomorphic Correctness Security Access structure

Evolving secret
sharing [20, 21, 1, 2]

7 Perfect Perfect
(Dynamic)

threshold or ramp

Our warm-up
scheme

3

Degree-d
Almost perfect Perfect Fixed threshold

Our scheme 1
3

Multiplication
Almost perfect Perfect

Dynamic
threshold

Our scheme 2
3

Degree-d
Perfect Computational

Partially dynamic
threshold

number of servers. These “hierarchical access structures” allow us to adjust the
security level when new servers are added.

We construct our schemes from combinations of homomorphic secret shar-
ing and cryptographic primitives, namely hash functions and pseudo-random
functions. This work focuses on the schemes that support low degree polynomial
computation. Our two proposed schemes support hierarchical structure and par-
tially hierarchical structure. We relax some constraints in order to get simple
schemes. The first scheme is perfectly secure, but almost perfectly correct. This
scheme is quite simple, uses only one share per secret, and has flexible access
structure. However, the supported function here is just multiplication. In the
second scheme, the supported function is improved to degree-d polynomials, but
the access structure is a little more restricted, and it requires a few more shares
per secret. This scheme is perfectly correct, but computationally secure. Table 1
compares our work to the existing evolving secret sharing schemes.

There exists a concurrent and independent work by Choudhuri et al. [9], who
consider a secret sharing scheme that involves dynamic sets of servers and can
securely compute on shares. However, their scheme requires interactions among
servers, and thus, is different from our evolving secret sharing setting, which
does not require interaction among servers. We will compare their scheme with
our work in Section 1.3.

1.2 Our Approach

As a warm-up, we introduce our idea here. If we allow the secret sharing scheme
to be almost perfectly correct, the scheme can be simpler than the existing evolv-
ing secret sharing scheme. From the homomorphic property of the Shamir’s secret
sharing [25], we would like to extend it to evolving homomorphic secret sharing.
Normally, each input client in the Shamir’s scheme generates a polynomial over
a specified prime field. However, the degree of the polynomial has to be fixed.
This means the security threshold of the scheme cannot be change without re-
sharing. In addition, the number of computing servers is limited due to the size
of the underlying field.

Our idea is that, it is possible to use a collision-resistant hash function to
map the ID of each server, which can be infinite, to an element in the finite prime
field. Informally, the share of the original Shamir’s scheme is the polynomial P of
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Fig. 1. The overview of our warm-up evolving homomorphic secret sharing scheme.

the ID of each server, P (ID), while our idea uses P (h(ID)) where h is the hash
function. Using this technique, the scheme can support infinite number of servers,
with negligible collision probability from the hash function. The reconstructions
and homomorphic property immediately follow from the Shamir’s scheme. The
overview of the warm-up scheme can be shown as in Fig. 1.

Shamir’s scheme supports only one fixed threshold value k, i.e., any combi-
nations with more than k servers can reconstruct the secrets. We may want to
change the threshold when we add new servers to the system. To address this
issue in the first proposed scheme, we elaborate the hash function idea into the
hierarchical secret sharing of [26]. However, it is not straightforward to see which
polynomials will be used in this case. Originally, the work of [26] used deriva-
tives of polynomials. To realize evolving hierarchical access structure, which is
equivalent to dynamic threshold structure in [21], our proposed scheme will use
integrals. This scheme is correct with overwhelming probability. As shown in
Table 2, share size of this scheme is poly(λ) where λ is the security parameter.

To improve the scheme to be perfectly correct and support more general
functions, we trade-off the share size, the security, and the generality of the
access structure in the second proposed scheme. Based on the Shamir’s scheme,
instead of using only one fixed prime field, we try to expand the field during
the sharing phase. We change the tool to pseudo-random function in order to
maintain the consistency between several shares of different prime fields. Each
computing server will get two or three values as its shares instead of one. In our
second scheme, we can divide the protocol into two phases. In the setup phase,
random values with size O(λ) can be distributed in advance before secret inputs
are determined. And in the online phase, when the secret inputs are ready, the
t-th party that join the protocol will get a share with size O(log t). Share size of
each phase is also shown in Table 2.

1.3 Related Works

We consider two types of secret sharing that involve dynamic sets of servers.

Schemes that only support storage and retrieval of secrets. Evolving
secret sharing is a secret sharing scheme that supports infinite number of parties.
The input clients will secretly share their inputs to the computing servers, and
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Table 2. Quantitative comparison of evolving secret sharing schemes

Scheme |Unauth. Set| |Auth. Set| Share Size

Komargodski et al. [20] k k + 1 O(k log t)

Komargodski et al. [21] f(t) f(t) + 1 O(t4 log t)

Beimel and Othman [1] αt βt O(1)

Beimel and Othman [2] γt− tβ γt O(t4−log−2(1/β) log t)

Our warm-up scheme k k + 1 O(λ)

Our scheme 1 f(t) f(t) + 1 poly(λ)

Our scheme 2 See Section 5
O(λ) for setup phase

O(log t) for online phase

only authorized subsets of servers can reconstruct the secrets. The idea was firstly
proposed by Komargodski et al. in [20]. Their scheme has one fixed threshold
value k, i.e., subsets with more than k servers can reconstruct the secrets. The
scheme is improved to dynamic threshold by Komargodski et al. in [21]. In this
case, when the t-th party arrives, the threshold is changed to f(t), which can be
any non-decreasing function of t.

The next two schemes are based on ramp access structure. For some integers
x and y, subsets with at most x parties will not be able to reconstruct the secret,
and subsets with at least y parties will be able to reconstruct the secret. The
key of the ramp schemes is that x and y do not have to be adjacent in order to
reduce the share size, and there is no condition for subsets with size between x
and y. In the work of Beimel and Othman [1], x = αt and y = βt for some value
0 ≤ α < β ≤ 1. The same authors proposed closer bounds in [2], with x = γt
and y = γt − tβ for some value 0 ≤ γ, β ≤ 1. Table 2 shows the maximum size
of unauthorized sets, the minimum size of authorized sets, and the share sizes.

None of the previous works claimed an application to multi-party computa-
tion. In these works, several generations of secret sharing are used, and some are
additive secret sharing. If we build multi-party computation protocol from these
schemes, the multiplication operation will require a lot of communication. Thus,
we want to construct a better protocol which has no communication between
computing servers at all.

For our proposed scheme, with security parameter λ, the access structure
of the warm-up scheme is equivalent to [20], and that of the first scheme is
equivalent to [21]. The access structure of the second scheme is less general, and
details will be presented in the later section.

Schemes that also support computation on shares. Apart from evolving
secret sharing, there exist some other works that achieve a somewhat similar
evolving functionality by using blockchain. These works allow a set of partic-
ipating servers to change during the protocol. The work of Goyal et al. [14]
used a technique called “dynamic proactive secret sharing”, and the work of
Benhamouda et al. [4] used a similar idea called “evolving-committee proactive
secret sharing”. Although the main objective of both works is to store and re-
trieve secrets on blockchain, an application to MPC is also suggested. A notable
work that directly focuses on MPC in the setting where dynamic sets of servers
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securely computing functions on shares is a recent protocol called “Fluid MPC”
by Choudhuri et al. [9], which can be considered as a “fluid” version of the classic
BGW protocol [3].

In these three papers, a set of participating servers is changed during the
protocol by resharing the secrets from one set of servers to the other set. This
point increases the numbers of communication and interaction in the protocol,
and is obviously different from our work. In addition, these works only support
threshold access structures, and hence all computing servers have the same role.
On the other hand, our schemes support hierarchical access structures [26], where
some parties can be assigned with different roles and powers in accessing the
shared secret, and thus can be more flexible.

1.4 Organization

In Section 2, we review the background on secret sharing and some crypto-
graphic primitives. Combining these definitions, we propose the definition of the
evolving homomorphic secret sharing in Section 3. The first evolving protocol
with hierarchical access structure is proposed in Section 4. The second proposed
scheme, which improve the first one with some trade-offs, is proposed in Section
5. We compare our schemes to the work with similar functionality [9] in Section
6. Finally, Section 7 concludes the papers.

2 Preliminaries

In this section, we review the definitions of secret sharing, homomorphic secret
sharing, and evolving secret sharing. We then review two cryptographic primi-
tives, including collision-resistant hash function and pseudo-random function.

2.1 Secret Sharing

Our setting includes n input clients, t computing servers, and one output client
(see Fig. 1). For now, t will be fixed. In the next subsection, t can be “evolving”
or increased during the protocol.

For the i-th input client, who has secret input xi, a pack of t shares will be
generated as si,1, . . . , si,t, and the share si,j is forwarded to the j-th computing
server. To reconstruct the secret, the authorized subset of servers will send the
given shares to the output client. The output client then reconstructs the desired
value from these shares. We refer to the definitions on access structure and secret
sharing from [20]. Let P = {1, . . . , t} = [t] be the set of t computing servers.

Definition 1. An access structure A ⊆ 2P contains all subsets of computing
servers that can reconstruct the secret. The set A must be monotone, i.e., if
A ∈ A and A ⊆ A′ ⊆ P, then A′ ∈ A. Subsets in A are called authorized, while
subsets not in A are called unauthorized.
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Definition 2. Secret sharing scheme for an access structure A consists of two
probabilistic algorithms Share and Recon. The properties are:

1. Secret Sharing. As in the earlier description, the i-th input client uses
Share(xi) = (si,1, . . . , si,t) to randomly generate shares of xi. The share si,j
is given to the j-th computing server.

2. Correctness. For every authorized set A ∈ A and every secret xi in the
domain, we have Pr[Recon((si,j)j∈A) = xi] = 1.

3. Security. Consider the following game.

– The adversary chooses two different secrets x
(0)
i and x

(1)
i , and sends to

the challenger.
– The challenger randomly chooses b ∈ {0, 1}, and generates shares from

Share(x
(b)
i ) = (s

(b)
i,1 , . . . , s

(b)
i,t ).

– The adversary chooses an unauthorized subset B ∈ 2P \A, and sends to
the challenger.

– The adversary receives (s
(b)
i,j )j∈B, and outputs b′.

We say that the scheme is secure if b′ = b with probability 1
2 .

There exists several well-known secret sharing schemes. Here, we introduce
the work of Shamir [25] and Tassa [26]. Shamir’s secret sharing supports thresh-
old access structures. The definition and the scheme are as follows.

Definition 3. The access structure A = {A ∈ 2P : |A| > k} of P = [t] is called
(k, t)-threshold access structure.

Let the desired access structure be (k, t)-threshold. To share the secret input
xi using the Shamir’s scheme, the i-th input client generates degree-k polynomial
Pi over a prime field with size larger than t such that Pi(0) = xi. Then, si,j =
Pi(j) is distributed to the j-th computing server. From Lagrange interpolation,
secrets can be reconstructed by using a system of linear equations si,j = Pi(j)
where j is the server in the authorized set A ∈ A.

Tassa’s secret sharing supports hierarchical access structures. (In this paper,
we only focus on disjunctive type.) The definition and the scheme are as follows.

Definition 4. In disjunctive hierarchical access structure, the computing servers
are divided into disjoint partitions P1 ∪ . . . ∪ P` = P = [t]. Let k1 ≤ . . . ≤ k`
be threshold for each hierarchical level. The (k1, . . . , k`,P1, . . . ,P`)-hierarchical
access structure is defined as

A =

{
A ∈ 2P : ∃j ∈ [`],

∣∣∣∣∣A ∩
j⋃

m=1

Pm

∣∣∣∣∣ > kj

}
.

In other words, the hierarchical access structure can be viewed as a disjunc-
tion of several threshold structures, namely, (k1, |P1|)-threshold, (k2, |P1 ∪P2|)-
threshold, . . ., and (k`, |

⋃`
m=1 Pm|)-threshold.

Let P = [t], and the desired access structure be (k1, . . . , k`,P1, . . . ,P`)-
hierarchical. To share the secret input xi, the i-th input client generates degree-k`
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polynomial Pi over a prime field with size p > t such that the coefficient of the
term with the highest degree is xi. Then, si,j = Pi(j) is distributed to the j-th
computing server in P`. For the j-th computing server in Pm where m < `, the

share si,j = P
(k`−km)
i (j) is given, where P

(k`−km)
i is the (k` − km)-th deriva-

tive of Pi. Note that P
(k`−km)
i has degree km, and the coefficient of the term

with the highest degree includes xi. From Birkhoff interpolation, secrets can be

reconstructed by using a system of linear equations si,j = P
(k`−km)
i (j) where

j ∈ Pm is the server in the authorized set. Although the equations may not have
a unique solution in some settings, it is unique with overwhelming probability,
as stated in the following theorem.

Proposition 1. [26], [18]. For random allocation of participant identities, the
above scheme from [26] realized the access structure in Definition 4 with proba-
bility at least 1− ε′ where

ε′ ≤
(
t+1
k`+1

)
k`(k` − 1)

2(p− k` − 1)
.

2.2 Homomorphic Secret Sharing

We continue considering the same setting as in the previous subsection. In multi-
party computation, we want to do more than reconstructing the secrets. The
goal of multi-party computation is to let the output client learns the result
of a function of secret inputs. Unauthorized subsets of servers must not learn
the secret inputs or the results. Multi-party protocols can be constructed from
garbled circuits [28], homomorphic encryption [11], secret sharing [13], etc.

In this paper, we focus on multi-party computation protocols that are based
on homomorphic secret sharing. Each server can locally calculate some functions
of the shares, but communication with other servers is not allowed. We refer to
the definition of homomorphic secret sharing from [7] as follows.

Definition 5. A degree-d homomorphic secret sharing is a secret sharing scheme
with one additional algorithm Eval. The property for Eval is that, for every
degree-d polynomial f of secret inputs, every secret inputs x1, . . . , xn, and some
authorized subset A ∈ A′ ⊆ A, the j-th computing server which j ∈ A can locally
compute yj = Eval(A, f, j, (si,j)i∈[n]) such that Recon((yj)j∈A) = f(x1, . . . , xn).

In addition to the the previous subsection, Shamir’s scheme has the following
homomorphic property.

Proposition 2. [3]. Shamir’s scheme with (k, t)-threshold is degree-d homomor-
phic when A′ = {A ∈ 2P : |A| > d · k}. The value f(x1, . . . , xn) where f is a
degree-d polynomial can be reconstructed from f(s1,j , . . . , sn,j) for the j-th server
in an authorized set with at least d · k + 1 servers.

It is also proved in [18] that Tassa’s scheme is 2-multiplicative for some
specified settings, i.e., value f(xi, xi′) = xixi′ can be reconstructed from si,jsi′,j
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for the j-th server in some authorized subsets. The scheme can also be strongly
2-multiplicative in some stronger settings, i.e., value f(xi, xi′) = xixi′ can be
reconstructed from si,jsi′,j where j comes from “any” authorized subsets.

2.3 Evolving Secret Sharing

In contrast to the previous subsections, evolving secret sharing allows infinite
number of participated servers. We then have P = Z+. The following definitions
for evolving access structure and evolving secret sharing are from [20].

Definition 6. An evolving access structure A ⊆ 2P is defined in the same way
as Definition 1, except that P is infinite and A can be infinite. At = A ∩ 2[t] is
a finite access structure of the first t servers.

Definition 7. Let A = {At}t∈P be an evolving access structure. An evolving
secret sharing scheme for A contains two algorithms Share and Recon such that

1. Secret Sharing. To share the secret input xi, the share si,t randomly gen-
erated from Share(xi, si,1, . . . , si,t−1) is given to the t-th computing server
when it arrives. This share cannot be modified later after it is given.

2. Correctness. For every secret input xi and t ∈ P, an authorized subset
A ∈ At can reconstruct the secret. That is Pr[Recon((si,j)j∈A) = xi] = 1.

3. Security. Consider the following game.

– The adversary chooses two different secrets x
(0)
i and x

(1)
i , and sends to

the challenger.

– The challenger randomly chooses b ∈ {0, 1}, and generates s
(b)
i,j from x

(b)
i

using Share algorithm.
– The adversary chooses t ∈ P and an unauthorized subset B ∈ 2[t] \ At,

and sends to the challenger.

– The adversary receives (s
(b)
i,j )j∈B, and outputs b′.

We say that the scheme is secure if b′ = b with probability 1
2 .

2.4 Cryptographic Primitives

We refer to the definition of collision-resistant hash function from [5, Chapter 8].

Definition 8. Let λ be the security parameter. A collision-resistant hash func-
tion h : S1 → S2 is a function such that for all probabilistic polynomial time
algorithm Λ, the following probability is negligible in λ.

Pr[x1, x2 ← Λ(h);x1 6= x2 : h(x1) = h(x2)]

In the real-world implementation, one normally uses the current standard
hash function, namely, SHA-3 [23]. Heuristically, it can be said that outputs
from SHA-3 look almost uniformly distributed [5, Chapter 8]. We will use this
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latter property to attain the random allocation, as required by Proposition 1 in
our first construction.3

The other tool that we review is pseudo-random function [12].

Definition 9. Let λ be the security parameter, and S1, S2, and S3 be collections
of sets indexed by λ. A pseudo-random function g : S1 × S2 → S3 is a function
such that for all probabilistic polynomial time algorithm Λ, the following proba-
bility is negligible in λ.

| Pr[s← S1 : Λ(g(s, ·)) = 1]−Pr[a random map g from S2 to S3 : Λ(g(·)) = 1] |

3 Evolving Homomorphic Secret Sharing

In this section, we propose the definition of evolving homomorphic secret sharing.
We combine Definition 5 and Definition 7 as follows. We also allow the scheme
to be almost perfectly correct and computationally secure.

Definition 10. An evolving degree-d homomorphic secret sharing is an evolv-
ing secret sharing scheme with three algorithms Share,Recon, and Eval. Security
parameter λ can be used as necessary. Properties of the three algorithms include:

1. Secret Sharing. This is the same as in Definition 7.
2. Correctness. Pr[Recon((si,j)j∈A) = xi] equals to 1 for perfect correctness,

or equals to 1− ε for almost perfect correctness where ε is negligible in λ.
3. Security. Consider the following game.

– The adversary chooses two different secrets x
(0)
i and x

(1)
i , and sends to

the challenger.

– The challenger randomly chooses b ∈ {0, 1}, and generates s
(b)
i,j from x

(b)
i

using Share algorithm.
– The adversary chooses t ∈ P and an unauthorized subset B ∈ 2[t] \ At,

and sends to the challenger.

– The adversary receives (s
(b)
i,j )j∈B, and outputs b′.

We say that the scheme is perfectly secure if b′ = b with probability 1
2 , and is

computationally secure if b′ = b with probability 1
2 + ε, where the advantage

ε is negligible in λ.
4. Homomorphism. For every degree-d polynomial f , every secret inputs

x1, . . . , xn, every t ∈ P, and some authorized subset of servers A ∈ A′t ⊆ At,
the j-th computing server which j ∈ A can locally compute yj = Eval(A, f, j,
(si,j)i∈[n]) such that Recon((yj)j∈A) = f(x1, . . . , xn).

This definition will be applied for our first scheme in Section 4 and our second
scheme in Section 5.

3 We could also go all the way by using the random oracle model. However, the random
oracle model usually allows us to do more: a reduction algorithm can simulate an
output of any queried input to the hash function. We do not use this property, and
hence do not directly assume the random oracle.
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4 Our Scheme 1: From Hierarchical Secret Sharing

In the first proposed scheme, we combine the hierarchical secret sharing from [26]
and [18] with a collision-resistant hash function. The purpose of hash function
here is similar to the warm-up scheme in Section 1.2.

4.1 Access Structure

The evolving disjunctive hierarchical access structure is similar to the disjunctive
hierarchical access structure in Definition 4. In addition, the computing servers
may be infinite, and the partition of servers may also be infinite.

Definition 11. In evolving disjunctive hierarchical access structure, the com-
puting servers are divided into disjoint partitions (Pm)m∈Z+ such that

⋃
m∈Z+ Pm

= P = Z+. Let (km)m∈Z+ be threshold for each hierarchical level where km ≤
km+1 for all m ∈ Z+. The evolving ((km)m∈Z+ , (Pm)m∈Z+)-hierarchical access
structure is defined as

A =

{
A ∈ 2P : ∃j ∈ P,

∣∣∣∣∣A ∩
j⋃

m=1

Pm

∣∣∣∣∣ > kj

}
.

Note that the number of partitions and number of thresholds are unbounded.
This evolving disjunctive hierarchical access structure is equivalent to the dy-
namic threshold structure in [21]. We have dynamic threshold f(t) = km for
t ∈ Pm. Here, the computing servers in Pm must come before those in Pm+1.

4.2 Construction

Secret sharing. We propose the first scheme based on the idea of hierarchical
secret sharing. In [26], the work realized the access structure by using the idea of
derivatives. Our work will use the idea of integrals, since the number of servers
can not be determined in advance. In this way, our scheme can support the
evolving setting while preserving the properties of [18].

1. All input clients agree on a collision-resistant hash function h with uniformly
distributed output. The domain and range of h are {0, 1}∗ and Zp\{0} where
p (will be specified later) is a prime number greater than 2λ, and λ is the
security parameter. We also assume that each t-th computing server has a
unique random identity, IDt, over {0, 1}∗.4

2. To share the secret input xi to the computing servers in P1, the i-th input
client generates a degree-k1 polynomial Pi,1(χ) =

∑k1
j=0 ajχ

j over Zp with
random coefficients aj , and the coefficient ak1 = xi. When the t-th computing
server in P1 arrives, it gets its share as si,t = Pi,1(h(IDt)). It can be seen
that the hash function h is used in order to map from infinite set of IDs
({0, 1}∗) to the finite prime field Zp.

4 A public bulletin board can be used for keeping the record and checking the unique-
ness of all IDs.
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3. For m ≥ 2, when the first server in Pm arrives, the input client generates a
degree-km polynomial

Pi,m(χ) = P
[km−km−1]
i,m−1 (χ) +

km−k(m−1)−1∑
j=0

ajχ
j

with random coefficients aj , where the term P
[km−km−1]
i,m−1 (χ) is defined as the

(km− km−1)-th integral of Pi,m−1(χ). For t ∈ Pm, when the t-th computing
server arrives, it gets its share as si,t = Pi,m(h(IDt)).

Reconstruction. Assume that a subsetA ∈ At for some t is going to reconstruct
the secret. The linear system described in Section 2.1 can be constructed from
the equations si,t = Pi,m(h(IDt)) for all t ∈ A. According to Proposition 1,
the secret can be reconstructed by using Birkhoff interpolation. Recall that the
coefficient of the term with the highest degree of Pi,m(χ) is akm . Then, the secret
is akm × (km!/k1!).

Evaluation. From the multiplicative property shown in [18], to calculate the
multiplication of two secret inputs xi and xi′ , each j-th computing server can
locally compute its partial result yj = si,jsi′,j . Suppose that we share the secrets
using polynomials Pi,m(χ) and Pi′,m(χ), and the coefficients of the terms with
the highest degree are akm and a′km . We will obtain akma

′
km

from the reconstruc-
tion. To obtain the multiplication result, which is (akmkm!/k1!)(a′kmkm!/k1!), we
multiply the value from the reconstruction with (km!/k1!)2.

Example 1. Assume that the thresholds are k1 = 1, k2 = 2, and k3 = 3. (The
setting for other levels are omitted.) To share a value 12, the i-th input client
randomly chooses a polynomial Pi,1(χ) = 12χ+2, and uses it to generate shares
for servers in the first level.

To generate shares for other levels, we calculate the integration result of
Pi,1(χ) as 6χ2+2χ. We add the result with a random constant to obtain Pi,2(χ).
Suppose that the constant is 3. We then have Pi,2(χ) = 6χ2 + 2χ+ 3. Similarly,
we have Pi,3(χ) = 2χ3 + χ2 + 3χ+ 4.

In reconstruction process, after recovering Pi,3(χ) from Birkhoff interpola-
tion, we know that the coefficient of the term with the highest degree (a3) is 2.
The secret is then a3 × (k3!/k1!) = 12.

Compare to [26], there exists a scheme using the same sequence of polyno-
mials. To share a value 2, the input client randomly chooses Pi,3(χ) = 2χ3 +
χ2 + 3χ+ 4 for the third level. From derivatives, the polynomials for the second
and the first levels are Pi,2(χ) = 6χ2 + 2χ+ 3 and Pi,1(χ) = 12χ+ 2. Thus, the
correctness from [26] and [18] can be applied to ours.

4.3 Properties

In this subsection, we are interested in correctness, security, and share size of
the scheme. We summarize the properties of the first scheme in the following
theorem, and give a brief explanation.
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Theorem 1. If km ≤ poly(λ), there exists p with poly(λ) bits such that the
evolving homomorphic secret sharing scheme over Zp proposed in Section 4.2 is
almost perfectly correct and perfectly secure.

Correctness. From the construction in Section 4.2, the sequence of polyno-
mials (Pi,1(χ), Pi,2(χ), . . . , Pi,m(χ)) from integrals is the same as (Pi,m(χ), . . . ,

P
(km−k2)
i,m (χ), P

(km−k1)
i,m (χ)) from derivatives, but the order is reversed. Using the

correctness of [26] and [18], the combinations according to the access structure
A in Definition 11 can reconstruct the secret by using Birkhoff interpolation.

Although we have km+1 servers from the first m levels, we cannot reconstruct
the polynomial only when 1) the solution of Birkhoff interpolation is not unique,
or 2) some of the parties holds the same point in the polynomial.

Since IDt is random and the output of h is uniformly distributed, Proposition
1 can be applied. The probability that the interpolation solution is not unique is
no more than ε′. And because h is collision-resistant, h(IDt) and h(IDt′) from
two servers are equal with negligible probability ε′′. The probability that there
is at least one collision in km + 1 servers is at most

(
km+1

2

)
ε′′. Therefore, the

probability that we cannot have the polynomial is no more than ε′ +
(
km+1

2

)
ε′′.

There is p with poly(λ) bits that makes ε′ in Proposition 1 negligible. Also,
if we assume that km ≤ poly(λ), the value of

(
km+1

2

)
ε′′ will be also negligible.5

Thus, the probability that we cannot have the polynomial is negligible.

From [18], if there exists m ∈ P such that |Pm| > 2km, then the scheme is
2-multiplicative, i.e., all the servers together can calculate multiplication of two
inputs. If |Pm| > 3km for some m, then the scheme is strongly 2-multiplicative,
any authorized subsets can calculate multiplication of two inputs. (See Section 7
for more discussion.) The scheme that can calculate more general functions will
be proposed in the next section.

Security. From Proposition 1, our scheme realizes evolving disjunctive hierar-
chical access structure, and is perfectly secure with overwhelming probability. We
know from [26] and [18] that, even when the adversary knows exactly kj pieces
of different Pi,m(h(IDt)) for any m ≤ j, they cannot recover the secrets from
those values. When the adversary can collect shares from at most kj servers from⋃j
m=1 Pm, they will know at most kj pieces of different Pi,m(h(IDt)). Therefore,

they cannot recover the secrets from those values.

Share size. From the description, the t-th computing server in Pm will get only
one share si,t = Pi,m(h(IDt)) for each secret input xi, which is an element in Zp.
In this scheme, we can trade-off the share size with correctness. If we increase
λ, the share size will be larger, but the probability that the hashed values will
be collided is reduced.

5 It is important to note that the correctness of our protocol does not depend on
the number of all parties, but the minimum number of parties involving in the
reconstruction, denoted by km. Therefore, although km must be polynomial of the
security parameter, our protocol can support infinite number of parties.



14 K. Phalakarn et al.

5 Our Scheme 2: Multi-generation of Shamir’s Scheme

From the previous section, it can be seen that the first proposed scheme has
negligible error probability from the hash function, so it is not perfectly correct.
The computable function is also limited. We will address these issues in this
section. Here, we combine the Shamir’s secret sharing [25] with pseudo-random
functions, and allow the computing servers to store more than one shares. A
variant of this scheme is also proposed.

5.1 Access Structure

We describe the partially hierarchical structure as follows. This structure is sim-
ilar to, but less general than the hierarchical one introduced in the previous
section. Parameters for the access structure are (km)m∈N where each km is a
non-negative integer. The authorized sets that can reconstruct the secret are
the combination of km + 1 servers from the first km+2 servers, or (km, km+2)-
threshold, for any m ∈ N. The authorized sets that can compute degree-d poly-
nomials are the combination of d · km + 1 servers from the first km+2 servers, or
(d · km, km+2)-threshold, for any m ∈ N. We call the set of all servers 1 ≤ j ≤ k1
as the 1st generation, and the set of all servers km−1 < j ≤ km as the m-th gen-
eration for m ≥ 2. Note that the number of thresholds here is also unbounded.

5.2 Construction

Secret sharing. In this scheme, we use pseudo-random functions with security
parameter λ. The usage is different from hash functions in the previous section.

1. When the first server arrives, the i-th input client generates a degree-k0
polynomial Pi,1 of prime field p1 > k2, where Pi,1(0) = xi.

2. For 1 ≤ t ≤ k2, the share si,t, which includes Pi,1(t) and a random bit
string ri,t of size λ, is given to the t-th computing server in the 1st and
2nd generations when it arrives. Note that the random value ri,t can be
distributed in the setup phase before the value of xi is known.

3. For all j ≥ 2, when the (kj−1 +1)-th server (which is the first server of the j-
th generation) arrives, the input clients agree on a pseudo-random function
gj : {0, 1}λ × Zpj−1

→ Zpj , where pj > kj+1 is a prime number. Then,
generate a degree-kj−1 polynomial Pi,j of prime field pj , where Pi,j(0) = xi
and Pi,j(t) = gj(ri,t, Pi,j−1(t)) for all 1 ≤ t ≤ kj−1.

4. For all j ≥ 2 and kj−1 + 1 ≤ t ≤ kj+1, the share si,t which includes Pi,j(t)
and a random bit string ri,t of size λ is given to each server in the j-th and
the (j + 1)-th generations when it arrives. Intuitively, the pseudo-random
functions in this second scheme are used to maintain the consistency of the
shares from different prime fields.

Table 3 summarizes the share values related to the i-th input client. In addi-
tion to ri,t, each server will get only bold values in the corresponding row which
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Table 3. Values need for reconstruction in the second scheme.

Polynomial Pi,1 Pi,2 Pi,3 Pi,4 . . .

Prime field p1 > k2 p2 > k3 p3 > k4 p4 > k5 . . .

Degree k0 k1 k2 k3 . . .

Threshold (dk0, k2) (dk1, k3) (dk2, k4) (dk3, k5) . . .

Gen. 1: Server 1 to k1 Pi,1(t) g2(ri,t, Pi,1(t)) g3(ri,t, Pi,2(t)) g4(ri,t, Pi,3(t)) . . .

Gen. 2: Server k1 + 1 to k2 Pi,1(t) Pi,2(t) g3(ri,t, Pi,2(t)) g4(ri,t, Pi,3(t)) . . .

Gen. 3: Server k2 + 1 to k3 Pi,2(t) Pi,3(t) g4(ri,t, Pi,3(t)) . . .

Gen. 4: Server k3 + 1 to k4 Pi,3(t) Pi,4(t) . . .

. . . . . . . . . . . .

is at most two elements per secret input. Other values that are not given can be
generated from ri,t, Pi,j(t), and the pseudo-random functions.

Reconstruction. According to Shamir’s scheme [25], if the subset satisfies the
access structure, Lagrange interpolation can be used to reconstruct the cor-
responding polynomial. The values in Table 3 will be used in the reconstruc-
tion process corresponding to the specified polynomial. For example, suppose
(k0, k1, k2, k3) = (1, 2, 5, 9). When we have information from server 1, 6, and 7,
we can reconstruct Pi,2 using Pi,2(1) = g2(ri,1, Pi,1(1)), Pi,2(6), and Pi,2(7).

Evaluation. From the property of Shamir’s scheme, to calculate a degree-d
polynomial f of the secret inputs, each computing server can locally compute f
on its given shares corresponding to the satisfied threshold level (see Table 3).

5.3 Properties

Similar to the previous section, the properties of the second scheme are summa-
rized in the following theorem with a brief explanation.

Theorem 2. The evolving homomorphic secret sharing scheme proposed in Sec-
tion 5.2 is perfectly correct and computationally secure.

Correctness. Each polynomial Pi,j can be uniquely generated from pseudo-
random value of the first j − 1 generations. According to Proposition 2, a set of
computing servers satisfied the conditions in the defined access structure will be
able to compute degree-d polynomials. The Eval algorithm can be performed by
calculating the function f on the corresponding share of each secret input.

The correctness of scheme 2 should not be confusing with scheme 1. In scheme
1, the “input” of the polynomial may be collided from the use of hash function.
Thus, the scheme is almost perfectly correct. However, in scheme 2, the “output”
of the polynomial may be collided from the use of pseudo-random function, but
this does not affect the perfect correctness of the scheme. That is because in the
original Shamir’s scheme, shares for different servers can have the same value.

Security. We prove the security of the scheme with a sequence of games. It starts
from the first setting with values from pseudo-random functions, and ends with
the final setting with totally random values.



16 K. Phalakarn et al.

Game 0. This game is based on the exact construction in Section 5.2. Assume
that the adversary collects at most kj shares for all level j, and q ≤ poly(λ) of
them are shares from pseudo-random functions. The adversary tries to distin-
guish between shares of any two secrets.

Game 1. The setting is same as Game 0 except that one share from pseudo-
random function is changed to random value.

We continue changing one pseudo-random share to random value for each
game. In the final game, Game q, all shares are totally random values.

The security of the final game follows the security of the Shamir’s scheme.
The advantage of the adversary to distinguish the shares is εq = 0. Let us
consider the following lemma.

Lemma 1. Assume that there is an adversary with advantages εg and εg+1 in
Game g and Game g + 1, respectively. Then, we can construct an adversary
against pseudo-random function with advantage AdvPRF = 1

2 (εg − εg+1).

Proof. We define Game g based on the secret sharing setting with the usage
of q − g pseudo-random functions. The difference between Game g and Game
g+1 is only at the g-th part of the share; the former comes from pseudo-random
function while the latter comes from random function. The other parts of the
shares are exactly the same. Assume that we have an adversary Ψ such that the
advantage to distinguish shares in Game g and Game g + 1 are εg and εg+1,
respectively. We will construct an adversary Φ against the security of pseudo-
random function as follows.

The challenger flips coin a ∈ {0, 1} which represents pseudo-random and
random function, respectively. Adversary Φ wins if it can make a guess a′ equals
to a. Adversary Φ firstly let the adversary Ψ generate two secrets x0 and x1.
Next, Φ flips coin b ∈ {0, 1}, and generates shares of xb according to the scheme
in Section 5.2, using one query to the challenger and its own q − g − 1 pseudo-
random functions. Φ then forwards the shares to Ψ . After receiving b′ in return
from Ψ , if b′ = b, Φ guesses a′ = 0, and guesses a′ = 1 otherwise.

If the challenger has a = 0, the setting is Game g, which Ψ has advantage of
εg. On the other hand, if the challenger has a = 1, the setting is Game g + 1,
which Ψ has advantage of εg+1. Hence by the definition, we have

Pr[b′ = b | a = 0]− 1

2
= εg

Pr[b′ = b | a = 1]− 1

2
= εg+1.

Let the advantage to break pseudo-random function is AdvPRF . In the other
words, Pr[a′ = a] − 1

2 = AdvPRF . And from the explanation above, Pr[a′ =
0] = Pr[b′ = b] and Pr[a′ = 1] = 1− Pr[b′ = b]. We will show that εg − εg+1 =
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2AdvPRF . Consider the probability that a′ = a as follows.

Pr[a′ = a] = Pr[a′ = 0 | a = 0]Pr[a = 0]

+ Pr[a′ = 1 | a = 1]Pr[a = 1]

= (
1

2
+ εg)(

1

2
) + (

1

2
− εg+1)(

1

2
)

=
1

2
+

1

2
εg −

1

2
εg+1

Substitute this probability to the advantage of pseudo-random function, we
have AdvPRF = 1

2 (εg − εg+1). ut

Put everything together, the advantage to break our scheme is ε0 = ε0−εq =
(ε0−ε1)+· · ·+(εq−1−εq) = 2qAdvPRF which is negligible if AdvPRF is negligible.

Share size. Since the random values ri,t are not related to the secrets, these
values can be distributed in the setup phase. The communication complexity
here is O(λ) for each pair of input client and server. After the secret inputs are
determined in the online phase, the t-th computing server will get at most two
shares per secret input. The share size depends on the value kj in the access
structure. One possible way is to choose kj ≈ d(j+1)/2. If t ≈ dj , it will receive
two field elements, where the size of the field is at most dj+1. The share size is
then approximately 2(j + 1) log d. Thus, the share size of the t-th server in the
online phase is approximately O(log t).

5.4 Variant of the Scheme

The scheme in this section can be generalized so that each server receives at
most α shares, where α is a positive integer. In this case, the combinations of
computing servers that can compute degree-d polynomials are (d · km, km+α)-
threshold, for any m ∈ N. Compare to Table 3, the parts with pseudo-random
functions are the same, but more cells of bold shares will be added. It can be
seen that these combinations are more generalized than the scheme in Section
5.2 when α is increased. This is a trade-off between the generality of the access
structure and the share size.

6 Comparison to a Recent Scheme

In this section, we briefly compare communication costs of our schemes to Fluid
MPC [9]. Note that the cost of our works is a result from Definition 10, and does
not depend on the construction.

Assume that there are n input clients. For computing servers, at first we use
m1 servers. Later, we increase the number of servers to m2, and then m3, . . . ,m`.
In [9], there are nm1 messages sent from n input clients to the first set of m1

computing servers. Since resharing between servers is required, mimi+1 messages
are sent from the i-th set of servers to the (i+ 1)-th set. Thus, the total number
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of messages sent is nm1 + m1m2 + · · · + m`−1m`. In contrast, our schemes do
not use resharing, shares are only sent from the input clients to newly added
servers. With some restrictions on computing functions, our schemes only require
nm1 + n(m2 −m1) + · · ·+ n(m` −m`−1) = nm` communications. Furthermore,
servers which already received shares do not have to be online when new servers
are added.

7 Concluding Remarks

In this paper, we propose two evolving homomorphic secret sharing schemes. By
relaxing the conditions to be almost perfectly correct or computationally secure,
our schemes are simpler than the existing ones. Users can choose the appropriate
schemes and trade-off between several parameters. We suggest some interesting
issues that are left for future studies.

For the first scheme, the number of shares for each computing server is small,
but the share size may be large, since the prime p has to be large. If we can
increase the size of the prime field later during the protocol (similar to the
second scheme), then the share size can be reduced. In order to do this, we may
integrate the polynomial to a different prime field, and then solve multi-variable
Chinese remainder theorem, which is studied in [19], instead of simple linear
system. However, the multi-variable CRT is not thoroughly understood.

As the other issue, the paper [18] mentioned the access structure of type Qd
(union of any d sets in the access structure cannot cover all parties), but not the
multiplicativity of d secret inputs when d > 2. This issue should be further in-
vestigated. The other work [27] can perform unlimited number of multiplications
by using precomputed multiplicative triples. This requires some interactions be-
tween computing servers.

For the second scheme, the appropriate value of threshold km for all m ∈
N should be suggested, but these values may depend on the applications. We
may try to extend the idea of this construction to more general class of access
structures.
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