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Abstract—The open-source hardware IP model has recently started
gaining popularity in the developer community. This model offers the
integrated circuit (IC) developers wider standardization, faster time-
to-market and richer platform for research. In addition, open-source
hardware conforms to the Kerckhoff’s principle of a publicly-known
algorithm and thus helps to enhance security. However, when security
comes into consideration, source transparency is only one part of the
solution. A complex global IC supply chain stands between the source
and the final product. Hence, even if the source is known, the finished
product is not guaranteed to match it. In this article, we propose the
Open Scan model, in which, in addition to the source code, the IC
vendor contributes a library-independent information on scan insertion.
With scan information available, the user or a certification lab can
perform partial reverse engineering of the IC to verify conformance
to the advertised source. Compliance lists of open-source programs, such
as of the OpenTitan cryptographic IC, can be amended to include this
requirement. The Open Scan model addresses accidental and dishonest
deviations from the golden model and partially addresses malicious
modifications, known as hardware Trojans. We verify the efficiency of the
proposed method in simulation with the Trust-Hub Trojan benchmarks
and with several open-source benchmarks, in which we randomly insert
modifications.

I. INTRODUCTION

The software community, both academia and commercial enter-
prises, has long understood the benefits of the open-source model.
The active community of developers contributes to security, reliability
and adherence of the product to the latest standards. Starting from
GNU OS and Linux, through PHP and continuing to Ruby on
Rails, Hadoop, Memcached and Redis, the open-source software was
possibly one of the driving forces to create the today’s landscape of
successful software mega-enterprises [1].

Inspired by the open-source software model success, the Silicon IP
reuse paradigm has emerged. Open-source hardware enables reusing
hardware components and by this shortens the design cycle of systems
on chip. Some examples of the early open-source IC initiatives are
the Opencores project [2], OpenPOWER [3], OpenRISC [4] and
OpenSPARC [5]. The recent introduction of the RISC-V architec-
ture [6] have produced a big open-source bang both in the academic
and in the industrial communities. Enthusiasm about the open source
IC code lead to the establishment of several RISC-V-centric open-
source SoC projects, such as OpenTitan [7] and others [8], [9], [10].
Even though the RISC-V creators intended it to be only an open-
architecture project, the RISC-V community is now the main driver
of the open source hardware IP.

Arguably, product security is one among many beneficiaries of
the open-source hardware model. In line with the Kerckhoff’s law,
the white-box model increases the confidence in the contents of the
IC [11]. Admittedly, security of the open-source hardware can be a
controversial topic. The open-source model can be both good and
bad news for security [12], and there are publications that expose
its threats [13]. The answer depends on the application and the
policy. This article addresses the wide community that has already

chosen open source as a contributing factor to security. In any case,
open source alone is hardly sufficient [14]. In contrast to software,
authenticity of which is easy to verify, for integrated circuits that
go a long way from the source to the manufactured and packaged
device, validating the source of a given unit is far from being an
easy task. The IC supply chain involves multiple parties with various
levels of trust, so that integrity can be compromised along the chain
either by a malicious or by a dishonest party. Vast research has been
devoted to the threats of the IC supply chain, such as hardware
Trojans [15], [16]. A malicious IC vendor may claim adherence to the
open-source code, but modify it at his discretion to insert a Trojan. A
malicious service provider may modify the contents to inject a Trojan
during one of the stages along the chain, such as synthesis, place and
route, GDSII generation and mask fabrication. In additions to Trojans,
there are economic incentives. Consider for example a dishonest SoC
designer that aims to save costs by weakening the countermeasures
against side-channel attacks. In this case, the product will have the
same functionality, but its security will be compromised.

Addressing these threats requires either establishing trust in the
entire supply chain, which is usually impractical, or finding a way to
validate that the manufactured product is based solely on the declared
source. This resonates with the Trojan detection problem, for which
many approaches were proposed, but so far no universal practical
solution exists. In contrast to the general Trojan problem, here the
validator has a clear advantage of the available golden model and a
certification program that may enforce specific implementation.

To correlate between the source and the finished product, one can
examine the chip development flow and apply a transitive validation
approach by comparing between an input and an output of each stage.
Figure 1 shows a simplified chip development flow. The way from the
Register Transfer Language (RTL) source to the manufactured device
comprises several stages that start from software representations and
proceed to physical manufacturing steps. Automatic verification tools
such as formal logic equivalence and Layout-versus-Schematic (LVS)
can cover software representations. The problem arises in the stages
that deal with tangible material: stages like mask fabrication, wafer
manufacturing and packaging. To validate them, one needs to do
reverse engineering of the physical outcome of the specific stage
and compare it to the input to this stage. For example, the wafer
manufacturing stage gets the mask set at the input and produces a
multi-layer Silicon wafer. Verifying the equivalence between the input
and the output of this stage involves checking that each produced
layer matches its corresponding mask. Although IC reverse engi-
neering tools that acquire layer images do exist, they are expensive
and not sufficiently accurate. Even if such an investment of time
and money can be afforded, and a single part can be verified for
equivalence, there is no guarantee of the authenticity of the other
parts. Moreover, if there is no trust in the service provider, there is no
point in checking separate stages, since there is no guarantee that the
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Fig. 1: IC development process and transitive verification possibilities.

provider used the input to the stage that he claims to use. Thereby, the
only reliable method is an end-to-end verification, namely a process
that verifies the logic equivalence between the final product and the
source. This process should be cost-effective, fast and built to apply
to a large population of parts. The latter also means that it must be
non-destructive.

In this paper, we present the Open Scan methodology, a new step
that we propose to add to the open source certification program,
in particular of the cryptographic devices. The IC vendor will be
required to expose the production scan harness of the open-source
based hardware, and the certifying body with the IC customer may
use it to check the conformance of the IC to the original model.
Open Scan builds on the production scan mechanism embedded in
virtually every digital integrated circuit, therefore it consumes no
extra resources. Production scan allows for the automatic test pattern
generation (ATPG) used by the production sort program to identify
damaged parts to be discarded. Scan provides serial access to all
the internal registers from the interface of the IC. The production
tester can use this access channel to examine the digital logic in
the IC and to verify that it behaves as expected by comparing
the values sampled in the registers to the results obtained from
the simulation model. We propose to use the same approach to
compare the IC contents to the model available as open source.
This comparison comprises several stages, which include register
correspondence generation, register dependency graph comparison,
combinational logic equivalence check and search for hidden state.
The logic equivalence check of IC vs. the reference model is a
hard task due to the lack of structural information from the IC. We
propose to use an ATPG-based approach as a heuristic solution to
the equivalence check problem.

Open Scan is intended only for fully open-source IC projects.
It addresses a specific problem of genuineness of the open-source
RTL-based cryptographic products, and it does not replace generic
hardware Trojan detection methods. Open Scan is effective against
several classes of source modification attacks. The first class is
downgraded secure functionality. The second class is malicious
modifications (Trojan horses) inserted by a party (such as the man-
ufacturing facility) that has limited modification capabilities, which
prevent it from inserting a sophisticated Trojan hidden from scan. The
third class is malicious modifications that can be hidden from scan.
Although Open Scan as is cannot address those attacks, we suggest
a methodology that significantly hampers the attacker’s ability to
inject such modifications. The methodology is based on comparison
between the scan and mission modes.

II. BACKGROUND

A. Scan Technique and Reverse Engineering with Scan

Scan insertion is a widely used Design-For-Test (DFT) technique
that allows for the automatic generation of test vectors for production
test of integrated circuits. Thanks to its efficiency and ability to
achieve high coverage, it has become a de-facto standard for testing
digital circuits, supported by all the major synthesis tools. Moreover,
scan insertion is usually enforced by ASIC vendors.

The scan insertion algorithm introduces a new operational mode,
shift mode, which arranges the internal registers in one or more
shift registers, called scan chains . The production tester may switch
the chip to the shift mode and use the scan chains both to place
the chip in the desired state (ShiftIn(vecin)) and to sample its
current state (vecout = ShiftOut). The ShiftIn and ShiftOut
operations can be combined with a single (Capture) clock cycle
in the mission mode to construct a sequence that sets the state
of the IC and tests the response of the cumulative combinational
function F to this state. We denote this as a probe operation
(vecout = ProbeF (vecin)), comprising three-operation sequence:
ShiftIn(vecin) → Capture → ShiftOut. This effectively turns
the testing problem from stateful to stateless, namely combinational.

The scan testing aims to cover all possible faults in the IC,
where the fault stands for an effect of a production defect on the
functionality of the IC. Based on the classical ’stuck-at’ model,
two faults are assigned to every net: ’stuck-at-0’ and ’stuck-at-1’. A
production test is said to cover a fault when the faulty unit produces
response on the test stimulus different from the response of the
good part. Using the scan infrastructure, the automatic test pattern
generation (ATPG) tools create test vectors that produce maximum
coverage of all the faults [17] under constraints. Two conditions have
to hold for a fault to be covered: (1) the net corresponding to the
fault must be driven with a value opposite to the fault value (fault
sensitization); and (2) the value of the net has to be propagated to
an output (fault propagation).

In addition to being an effective DFT technique, scan provides a
convenient channel for reverse engineering of the digital part of the
integrated circuit. Thanks to scan, the learning problem, analogously
to the testing problem, turns to combinational. Therefore, performing
an exhaustive search over all possible states of the device’s registers
and input pins will reveal a truth table that fully describes the
function F . The exhaustive search itself is exponential in nature, and
therefore not feasible. However, the function F can be approximated
using Boolean function and other learning algorithms [18]. This
approximation can be good enough for many practical purposes [19].
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Fig. 2: The miter construct used to check logic equivalence between
single-output circuits A and B presented as finite state machines. If
the circuits are equivalent, the XOR output is constant ’0’.

B. Logic equivalence checking

Logic equivalence checking is used in the IC development cycle to
compare between different views of the design, for example between
the RTL entry and the gate-level netlist or between the original netlist
and the one extracted from the post-place-and-route data.

Often, when checking equivalence, both designs are regarded as a
Finite State Machine (FSM). A product machine of the two circuits
can be formed by connecting each corresponding primary input pair
of the two machines together, and connecting each corresponding
primary output pair to an XOR gate. This model is also referred to
as the miter [20]. Figure 2 illustrates the miter for two logic circuits A
and B. If A and B are logically equivalent, the XOR gate connected
to the circuits outputs returns 0 for any combination of values applied
to the miter’s inputs for any reachable state. Therefore, the tools
assume the same state encoding for both circuits. This assumption
is justified in the classical applications of the equivalence checking,
because the IC implementation tools, such as the synthesis tools,
retain most of the sequential elements. Some synthesis tools may
perform local sequential optimizations, removing unnecessary flip-
flops and optimizing state machines. These special cases are handled
by using local sequential equivalence checks.

Given the state encoding equivalence and known correspondence of
the state registers between the two circuits, the check task is reduced
to combinational. The registers are removed from the miter, and the
primary inputs are joined with the flip-flop outputs. In addition, a
new miter is created for each flip-flop input.

Even after the reduction to combinational, the task still remains
NP-hard. While circuits with a small number of inputs can be ex-
haustively simulated for all possible input vectors, for larger circuits
this brute-force method is impractical. In this case, an incremental
verification is employed [21] with the general idea of optimizing the
miter to bring the complexity down to the acceptable level. This can
be done when the circuits exhibit some similarity, for example if they
have common signal names or hierarchical structures.

In [22], Agrawal makes an interesting observation that comparing
two circuits using a test set that covers all possible stuck-at faults in
both circuits, produces correct answer with high probability. To get
the intuition behind this statement, observe that the combination of
ATPG test patterns that cover all the faults in circuits A and B in
Figure 2 also covers the stuck-at-0 fault at the output of the XOR
gate.

III. OPEN SCAN METHODOLOGY

A. System, Roles and Infrastructure

The ecosystem we use to demonstrate the open scan methodology
comprises the following actors:

a) Open source organization: a roof organization that manages
the open source data, defines laws and regulates the development and
usage.

b) IC vendor: a company that develops and markets a product
based on the open source.

c) Subcontractors: organizations that provide service to the IC
vendor at different stages of product development and production.

d) System integrator: a company that purchases the product and
integrates it into the target application.

e) Validator: a body that validates the conformance of the
product to the source. The validator can report either to the open
source organization or to the system integrator.

The open scan methodology works in the transparent open source
model, in which the IC vendor is required to update the repository
with all the changes made to the source, and all the digital parts of
the IC are based only on open source. The rules are regulated by the
open source organization. The vendor will be also required to provide
information about the scan operation protocol, which includes the
procedure to place the target device into the scan mode, instructions
about accessing the scan chains, scan architecture description, scan
chain order, and in general everything the validator needs to apply
scan vectors. The IC vendor is also expected to provide the register
correspondence mapping, which associates each register on the scan
chain with the corresponding RTL register. In addition, the IC vendor
will provide maximum-coverage ATPG vectors that will be used
for equivalence checking (Section III-E). We denote the information
above as scan metadata.

In general, it should be in the vendor’s interests to provide the
tools for proving the conformance to the open source model. In
addition, such a cooperation may be formulated as a requirement
for conformance to the relevant open-source certification program.
In that case, the certification body will need to establish rules for
Open Scan, when the rationale is providing the validator with the
means to run the equivalence check.

The IC should be placed in a receptacle to run scan. For that
purpose, the IC vendor may provide a test board or other type of
an embedded system. For example, the load board used to host the
device under test, when it is placed on the production tester is a good
fit. Since such systems may incur high costs, it may suffice to require
only the reference design, so that the validator will build the board
on his own.

The IC vendor can be either honest or dishonest. An honest vendor
provides accurate information on the scan structure and operation, in
which case the potential adversary can be one of the subcontractors.
In the honest vendor model, the vendor’s information is trusted, but
the IC content is untrusted. A dishonest IC vendor may falsify scan
metadata to obfuscate the deviation of the IC from the original source.
In this section, we lay out the verification approach for the honest
vendor model. In Section IV-A, we extend the discussion to the
dishonest vendor model.

B. Verification Principle

As in Section II-B, we treat the IC logic as a FSM. We start from
verifying the equivalence of the FSM state register to RTL, namely
the mapping of the RTL registers to the locations on the scan chains.
This information is provided by the IC vendor (Section III-A), albeit
is not necessarily trusted (Section IV-A). The following step covers
the combinational logic, which is derived using scan. This section
outlines the method of learning the combinational logic from scan.

The verification starts from validating the register correspondence,
provided by the IC vendor, namely checking a one-to-one correspon-



dence between the scan cell set and the set of sequential elements
in RTL. This allows for running the combinational logic equivalence
verification (Section II-B).

Initially, the combinational logic can be represented by a black-
box oracle based on the Probe operation (Section II-A) that receives
a vector of the chip state, stored in the scan registers, and returns
the next state, namely the scan registers values after running a
single scan capture cycle. Furthermore, the vector oracle can be split
into a collection of bit oracles. In the digital circuit domain, the
bit oracle corresponds to the combinational logic cone (Definition
III.1), a subcircuit comprising all the combinational logic gates in
the transitive fan-in of a sequential element (a register).

The IC design must comply with a set of rules (scan design rules)
to be scan-ready [23]. For example, it must be fully synchronous
and edge-triggered, and clock inputs of the internal registers must be
controllable from the IC interface. Typical modern designs comply
with most of the rules, and the parts that don’t comply are modified
when the device is placed in the scan mode. For example, an
internally generated clock is replaced by an external clock. As
a result, the IC functionality in the scan mode deviates from its
functionality in the mission mode. This deviation, though, must be
small enough to prevent notable impact on the test coverage. For the
sake of further discussion, we assume that both the IC and the model
are compared when placed in the scan mode. In Section IV-A, we
discuss the pitfalls of this assumption.

The scan design rules ensure that the logic subject to scan test
can be represented as a simple automaton, whereas the scan registers
represent the state, and the combinational logic represents the next-
state function. Furthermore, it is possible to derive the next-state
function for each register from the functionality of a subcircuit
comprising all the combinational logic gates in the transitive fan-in of
this register, i.e. a logic cone. Let us now formalize the scan-based
equivalence check principle.

Definition III.1. Given a circuit S comprising a set of sequential
gates (registers) R and a set of combinational gates A, for every
register ri, a logic cone Ai is a subset of A, which includes all
the elements in A, from which a combinational path exists to some
synchronous input of ri.

The definition above implies that the logic cone is a combinational
subcircuit of S, such that its inputs are outputs of registers, and all of
its outputs are inputs to one register. For simplicity, we assume that
all the registers are D flip-flops. Other types of flip-flops that have
additional synchronous inputs can be converted to a D flip-flop with
combinational logic. As a result of this conversion, each logic cone
will have one output only.

Lemma III.2. Let S be a fully-synchronous digital circuit comprising
(1) n sequential elements (registers) triggered by a single clock, and
(2) combinational gates connected to the sequential elements and
between themselves. The sequential elements comprise a state register
r = (r1, . . . , rn) ∈ {0, 1}n, and the combinational logic implements
the next state function F (r) = (F0, . . . , Fn). Let Sref be a reference
RTL representation of a fully-synchronous digital circuit with a n-
bit wide state register rref , such that the state correspondence is
known a priori (for every i = 1, . . . , n, ri corresponds to rrefi ). S is
logically equivalent to Sref if: (1) r and rref have the same initial
value and (2) for every value v, F (v) = F ref (v).

The conditions above are sufficient, but not necessary. In a general
case, two state machines are equivalent if for any given sequence
of inputs, both produce the same sequence of outputs. However, we

D Q

Qri

D Q

Q
 
rj 

Fig. 3: False dependency of register rj on register ri.

do allow ourselves to assume that the IC netlist was generated from
RTL using automatic synthesis tools, which preserve the registers
functionality with some exceptions, discussed in Section IV-B2.
Therefore, we will require equivalence not only for the sequence
of outputs, but also for the sequence of states. This effectively
turns the conditions to necessary. Here, we also ignore the primary
inputs and outputs without loss of generality. The a priori register
correspondence is required to avoid isomorphism-based equality.

The next-state function F can be split into n single-bit functions
Fi, thus the comparison can be performed for each bit individually.
Notably, Fi is logically equivalent to the corresponding logic cone.
There are many ways to map the Boolean function Fi to a logic
gate-level circuit. Since our goal is logic equivalence, the specific
mapping is irrelevant.

The logic cone is a combinational circuit with multiple inputs and
one output. Definition III.1 implies a combinational path between
any input of the cone and its respective register ri and the cone’s
output and its respective register rj . Such a combinational path must
exist if there is a combinational logic dependency of rj on ri. We
denote it as a dependency link. We can then represent these links as
edges in a directed graph with vertices designating registers. This is a
register dependency graph of the circuit S. Notably, a combinational
path from ri to rj does not necessarily imply logic dependency. We
denote such paths as false dependencies (Figure 3), which are unlikely
in real designs.

To quantify the dependency, we use Influence, a measure of
the dependency that designates the extent to which certain input
affects the function [24]. Namely, the influence of the variable xi

on function f : {0, 1}n→{0, 1} is a probability that for a random
input x, inverting the variable xi changes the output of the function.

Infi[f ] = Pr
x∼[0,1]n

[f(x1, . . . , xi, . . . , xn) ̸= f(x1, . . . ,¬xi, . . . , xn)]

(1)

Definition III.3. For two registers ri and rj in a fully synchronous
circuit S, a dependency link li,j exists if there is a combinational
path from the output of ri to the input to rj and Infrj [ri] > 0.

Definition III.4. A register dependency graph GS = (VS , ES) of a
fully synchronous circuit S is a directed graph with vertices designat-
ing the registers of S and edges (i, j) ∈ ES ⇐⇒ ∃li,j designating
the dependency links between the corresponding registers.

Equivalence of two circuits implies isomorphism of their respective
dependency graphs. In the presence of the register correspondence
list as required in Section III-A, the graph vertices can be labeled,
reducing isomorphism to equality.

Lemma III.5. Two fully synchronous circuits S1 , S2 with full state
bit correspondence are logically equivalent at the state sequence level
only if their respective register dependency graphs are equal.

Thus, a necessary condition for the (state sequence-based) equiva-
lence of two circuits is the equivalence of their register dependency
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graphs. This in turn implies equal number of registers. A sufficient
condition for the equivalence is formulated in Lemma III.2 as an
equivalence of the function F (v) for every v. The proof of this
equivalence is an exponential task with the number of registers.
However, given the dependency graph, the complexity can be reduced
by comparing each logic cone individually.

Drawing from these conditions, we can build the verification
flow as a multi-step process, checking all the necessary conditions,
starting from the easiest and gaining confidence with each step.
The Open Scan verification flow starts with register correspondence
(Section III-B), followed by dependency graph comparison (Sec-
tion III-C), search for hidden state (Section III-D) and ATPG-based
logic cones equivalence check (Section III-E).

C. Dependency graph extraction

The objective is verifying equivalency of the register dependency
graph Gimpl = (Vimpl, Eimpl) of the implemented device to the
graph Grtl = (Vrtl, Ertl) of the reference RTL representation Sref .
Extraction of Grtl is straight-forward. For this, we map the RTL
to a generic logic library, containing sequential and combinational
elements. The dependency graph is derived from traversing the logic
paths in the mapped RTL. Variety of synthesis tools, as well as
specialized tools for reverse engineering [25] can be used for that
purpose. Since this graph is built on structural and not logical
connections, it may contain false dependency links.

In contrast to the RTL reference, no a priori structural information
exists for the implemented device, and the only tool in our possession
is scan. Scan queries can be used to construct a partial dependency
graph [18]. The construction algorithm’s complexity in O(2k), where
k is a parameter of the algorithm. The algorithm finds with high
probability all the dependencies with the influence Inf > 2−k.

In practice, the algorithm can find the majority of dependencies
in reasonable time [26]. The resulting register dependency graph
Gscan = (Vscan, Escan) is a subgraph of Gimpl. If the design
implementation is equal to the RTL reference, Gscan will contain
the same set of vertices and a subset of edges of Grtl. Namely, we
will require Vscan = Vrtl and Escan ∈ Ertl.

To prove strict equivalence between the RTL and the implementa-
tion dependency graphs, two more conditions should hold:

1) All the non-false dependency edges from Ertl that do not
appear in Escan do exist in Eimpl.

2) All the edges that exist in Eimpl also exist in Ertl.
The first condition can be verified in the following way. For every

edge Ei,j from Ertl − Escan, find a distinguishing vector x̄ for
input index i and output index j such that fj(x1, . . . , xi, . . . , xn) ̸=
fj(x1, . . . ,¬xi, . . . , xn). This is exactly what the ATPG algorithms
do for fault propagation. Hence, ATPG algorithms can be used to
find the distinguishing vector. This vector can then be applied using
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scan first with xi = 0 and then with xi = 1. If the two applications
produce different fj , then the edge Ei,j exists in Gimpl. Failure of the
ATPG algorithm to find a distinguishing vector indicates with high
probability that the edge corresponds to a false dependency. In such a
case, this edge will be removed from Grtl, and the comparison will
be reapplied. Naturally, the dependency graph extracted from scan
does not contain false dependencies.

To sum up, following are the steps of checking equivalence of the
register dependency graphs between the device implementation and
its respective RTL reference.

1) Extract RTL reference register dependency graph Grtl =
(Vrtl, Ertl) using design exploration tools.

2) Extract partial design implementation register dependency
graph Gscan = (Vscan, Escan) using scan.

3) Verify Vscan = Vrtl and Escan ∈ Ertl.
4) Verify that all the edges in Ertl − Escan exist in the design

implementation using distinguishing vectors removing all the
probably false edges ( which no vector was found) from Ertl.

D. Hidden state

We draw our methodology from the fact that scan essentially con-
verts the device to a combinational function (Section II-A), provided
all the registers connected to the scan chain(s). If this condition is not
met, a hidden state is created. Whether created intentionally or by
mistake, it substantially raises the verification complexity. Hence, the
open source organization shall demand full scan coverage of all the
registers in the qualifying device. The validator has to enforce this
requirement by detecting the presence of a hidden state. Note that if
a hidden state exists, it will necessarily contain registers, which are
not part of the published source.

We argue that harmful hidden states must both depend on and affect
the visible state. Namely, we assume a mutual dependency between
the state r and the hidden state rh (Figure 4). Lack of dependency of r
on rh effectively means that rh belongs to a logically disjoint circuit
and, excluding scenarios where a Trojan has its own communication
means like RF antennae, can make no harm. Likewise, if there is no
dependency of rh on r, the hidden circuit does not have read access
to the secrets, hence its capabilities are very limited.

Intuitively, to detect the hidden state using scan, first we need to
find a value of the visible state, for which the hidden state value
affects the next state of r. We call it a distinguishing value. In a
more formal language, the hidden state rh is in the domain of the
next state function rnext = F (r, rh), which implies existence of at
least one distinguishing value rd, s.t. ∀rh0, ∃rh0n, s.t. F (rd, rh0) ̸=
F (rd, rh0n). Namely, if the state register contains the value rd,
the value of the hidden state register affects the next state. If the
hidden scan state depends on nk bits from r, there will be at least
2n−nk distinguishing values of r, and the probability to find at least



one using brute force will be ≥ 2−nk . Assuming without loss of
generality that Fref (r

d) = F (rd, rh0n), that is the next state for
rh0n is equal to the next state as if there was no hidden state, we
need to find the pair of values rd, rh0, for which the next state will
be different from next state in the reference model for rd.

Algorithm 1 is a random heuristic algorithm essentially performing
a random search for a tuple (rd, rh0). The algorithm searches for a
distinguishing value among the vectors from the ATPG set, assuming
that these vectors reflect the functionality in the best way (see
the reasoning further in this section). In addition, to increase the
probability of finding rh, the algorithm performs sequential ATPG
by executing several capture cycles, assuming that the hidden state
may contain an automaton that starts from an ”interesting” functional
state, which at the end modifies the main state. After each capture
cycle, the algorithm compares the result to the reference model.

Algorithm 1 Hidden state search (MaxDepth – algorithm parame-
ter)

1: for vecin in ATPG Vector Set do
2: TestV ectors = {}
3: for depth = 1 to MaxDepth do
4: ShiftIn(vecin)
5: Perform depth Capture cycles
6: vecout = ShiftOut
7: append vecout to TestV ectors
8: end for
9: for testvecin in TestV ectors do

10: testvecout = Proberef (testvecin)
11: if testvecout ̸= next item in TestV ectors then
12: Halt: hidden state found
13: end if
14: end for
15: end for

Let us demonstrate the rationale of this algorithm in two steps:
a) Step 1: Assume that the hidden state depends only on the

visible state and not on itself, that is rh,next = Fh(r). Then, one
capture cycle is sufficient to set the hidden state to any desired
value. With probability of at least 2−nk , the visible state rnext after
the capture will be a distinguishing vector. Two consecutive capture
cycles will give rnext2 = F (rnext, rh,next). In the absence of the
hidden state, performing a single capture after shifting in the vector
rnext should result in rnext2. Hence, we can test this vector in
simulation on the reference model, and a different answer than rnext2

will prove the existence of the hidden state. Note that for the case of
rh,next = Fh(r), only one additional capture cycle is required, thus
MaxDepth = 2 should be used. For success, we need at least one
distinguishing vector r, for which F (rnext, rh,next) ̸= Fref (r

next).
The worst case probability to find the hidden state using this approach
will be Prob = 1− (1− 2−nk−|rh|)NV , where NV is the number
of tested vectors.We expect a significantly higher probability in a
typical case. In particular, the ATPG vector set will likely contain
a distinguishing vector. A simplified example in Figure 5 illustrates
it. Let’s assume that the hidden-state based logic affects the visible
state via a single (taking the worst case) wire wh, which merges with
the rest of logic via gate A. The input wi−1 connected to an input
of A should be sensitized and a wire wi connected to the output
of this gate should be propagated by the ATPG vector set. Hence,
to make a fault on wh propagate to a scan flip-flop, what’s left is
make it propagate through gate A, which can be achieved with high

probability provided sufficient number of vectors and assuming a
small number of inputs to A.

b) Step 2: Now we remove the constraint on the hidden state
from Step 1, so that rh,next can depend on r and on itself. That means
MaxDepth = 2 may be insufficient. In this case, we add more
capture cycles to try and cover as many hidden states as possible.
If one of the values of r along the way of the capture sequence is
a distinguishing vector, checking the same vector on the reference
model may reveal the presence of the hidden state. Hence, all the
vectors along the capture sequence are recorded and then applied to
the reference model. Since here the hidden state implements a state
machine that does not provide shortcuts, the worst case depth is equal
to the number of possible hidden states, equal to 2|r

h|.

E. Logic Equivalence Verification

The state register correspondence and the dependency graphs
obtained in the previous stages allow for running a formal equivalence
check between RTL and IC one logic cone at a time. The heuristic
equivalence check algorithms (Section II-B) exploit metadata, such
as signal names, as well as a structural similarity of the two circuits
to reduce complexity. None of these is available in our case, since we
don’t have a circuit description of the IC. Instead, the IC logic cones
are represented by oracles providing a vector answer on a vector
query. Hence, no internal structure-assisted verification techniques
can apply. However, Agrawal’s [22] heuristic relies on the structural
information just to create the ATPG vectors. The verification that
follows is merely a simulation of the entire miter as a black box, for
which the oracle suffices. Thanks to the rules that enforce publishing
the maximum-coverage ATPG vectors (Section III-A), the ATPG
vector set for the IC is available from the IC vendor. Hence, this
method fits the needs of Open Scan. Although relying on the vendor
data for verification may contradict the goal of the verification ,
our threat model does not necessarily mark the vendor as dishonest.
Additional entities are involved in the process. Moreover, forging
ATPG vectors in a way that they still pass on IC is a challenging task,
and this won’t necessarily help, since the equivalence verification also
includes the ATPG vectors for the reference model. We discuss this
in more details in Section IV-A.

The Agrawal’s method combines ATPG vectors for both circuits,
so that vectors for the RTL reference have to be created. Since
ATPG can only run on a gate-level netlist, the reference RTL should
be first synthesized. Clearly, there is a transitive relation: for gate-
level netlists G1, G2 and a reference model M : G1 ≡ G2 ∩
G1 ≡ M =⇒ G2 ≡ M . Namely, it should be sufficient to
check the equivalence between any mapping of the reference model
to gates and the IC scan-based oracle. The mapping can use also a
generic technology-independent library of gates as long as it allows
to run ATPG on it.

The following sequence summarizes the proposed equivalence
verification:

1) Map the RTL reference model to a gate-level netlist
2) Obtain input vector set Tref by running ATPG on the RTL

reference model mapped to netlist
3) Combine Tref with the IC vendor’s ATPG vector set TIC

4) Verify ATPG test with TIC passes on IC
5) Apply the combined vector set Tcomb to the IC using scan and

to the reference model using simulation and verify they provide
matching results.



IV. DISCUSSION

Section III assumes an honest vendor model; additionally, it makes
several assumptions about the design and the implementation flow.
Moreover, the algorithms have practical limitations, but we make
statistical assumptions, under which they find the deviations in most
of the cases. Below, we discuss the justifications of the model
assumptions and draft possible actions for when they are not met.

A. The dishonest vendor model

A dishonest IC vendor provides misleading information to the val-
idator to prevent him from finding the deviation of the implementation
from the claimed open-source model. This misinformation can be
injected in several places as discussed below.

a) Forged register correspondence data: The vendor is expected
to give correspondence data for all the registers that exist in RTL,
hence no RTL registers could be missing, and the scan chains lengths
are easily verified. Adding unreported scan chains essentially creates
a hidden state, addressed in Section III-D.

b) Forged ATPG vector set: Here, need to keep in mind that
the vector set must still pass testing on IC. Therefore, the forging
capabilities are limited. The vendor can still provide vectors with
partial coverage by excluding the vectors that expose the deviation.
However, there is a substantial chance of the deviation to be detected
by the vectors generated for the reference model. Our experiments
show that almost all the modified benchmarks were categorized as
modified even when using only the ATPG set of the reference model.

c) Logic obfuscation in scan mode: The IC vendor may present
different logic in scan mode than in mission mode. As an extreme ex-
ample, consider a completely-simulated scan, i.e. the ATPG response
is just read from an internal ROM. Although, this extreme case can
be easily detected by adding more vectors. However, a small Trojan
circuit can be completely hidden. This is arguably the most serious
limitation of the open-scan verification framework when applied to
malicious modification by the IC vendor himself. Together with
that, this obfuscation is not effective for the economically motivated
dishonest vendor, since the logic that was intended for saving will
be added back in scan mode.

Open Scan can be enhanced for better detection of obfuscated
Trojans. Since the obfuscation counts on access to the indication of a
’scan mode’, the idea is to verify that the ’scan mode’ logic is equal
to the mission mode logic without exposing the register contents in
mission mode. This can be achieved by adding a light-weight hash
function that will generate a signature of the register contents in
mission mode.

d) Good and bad ICs.: A malicious actor can manufacture two
revisions of the product: a good revision for testing and a bad revision,
containing a malicious circuit for field. To counter this, the validator
can perform periodic testing of randomly selected parts. For security
critical applications, each part can be tested.

B. Mapping ambiguities

The algorithm in Section III implies that the RTL reference de-
scribes a single logic circuit. In fact, there is even stronger assumption
– these two mappings have to be logically equivalent at the resolution
of the logic cones. This assumption is not necessarily met in all the
cases. Below, we discuss two typical cases.

1) Don’t care conditions: RTL allows to describe logic with don’t
care conditions. It is commonly used, for example when describing
state transition of a FSM, in which only only part of the state vector
space is used for the state encoding, while the remaining part is

unused. Don’t care conditions automatically imply more than one
logic implementation.

The don’t care conditions may lead only to false negative verifi-
cation results. Empirically, we didn’t observe failures resulting from
the don’t care conditions, for example when comparing two gate-
level netlists, generated with different synthesis tools (Section V-A).
This may mean either that both tools map the don’t care conditions
identically or that the don’t care terms do not generate new faults,
and therefore not chosen by the ATPG algorithms. The empirical
evidence suggests that the number of false negatives caused by the
don’t care conditions is low. Therefore, each case can be handled
manually by checking whether the distinguishing vector contains a
don’t care condition for the failing output. Automatic checks are also
available. Such checks are based on three-value similar algebra [27].
The existing methods are built for the typical usage of comparison
between RTL and netlist, so they can take advantage of the netlist
structure. They can be adjusted to fit our usage model. It should also
be mentioned that design for security discourages using don’t care
conditions. For example, reaching an unassigned FSM state encoding
should be treated as a tampering attempt.

2) Sequential transformations: So far we assumed full state regis-
ter correspondence in a sense of equivalent functionality of registers
in the reference and the implemented circuits. In other words, the
synthesis and other tools are assumed to modify only combinational
logic and leave the sequential elements intact. However, the synthesis
tools may perform local sequential optimizations, such as retiming
and sequential redundancy removal.

In general, we can assume that all the sequential transformations
that are handled by the commercial logic equivalence check tools,
can also be applied to the Open Scan verification flow.

C. Preventing attacks via Open Scan

Scan can simplify not only reverse engineering, which is not a
threat for open-source designs, but also attacks on confidentiality and
integrity of the application itself [28], [29]. Access to the internal
registers and logic can expose application confidential data as well
as compromise application integrity. Making scan metadata public,
as required by Open Scan, facilitates the attacker’s needs even more.
Although this seems as a security weakness introduced by Open Scan,
several solutions exist that can eliminate its effect [30], most of which
are already in use. Below are two examples:

a) Enforcing reset when switching between modes.: Access to
the volatile internal state relies on the ability to switch dynamically
from mission mode to scan mode and back to retrieve or alter the
real-time information. To prevent this, the IC enforces full reset when
switching between the modes [31].

b) Scan lock after verification.: The device life cycle can define
a separate phase for Open Scan verification, where scan access is
open. After this phase, for example during provisioning, scan mode
can be permanently disabled or one of the known authentication
mechanisms can be switched on.

V. EXPERIMENTAL RESULTS

A. Benchmarks and tools

All the experiments were performed on simulated models. We used
benchmarks from the Trust-Hub Trojan database [32], as well as the
following open-source RTL designs: a toy RISC-V model [33], IBEX
RISC-V [34], tiny AES [35] and SHA-256 [36]. The approximate
standard cell count figures of the designs are 6K, 14K, 145K and
180K respectively. Synopsys Design Compiler and Cadence Genus
were used to synthesize the RTL sources, insert scan and generate the



TABLE I: Trust-hub results

Benchmark Hidden state Stage
AES-T2300/2400 No ATPG
AES-* except T2300/2400 Yes Prep (diff chain length)1

B15-* Yes Hidden state search
B19-* Yes Hidden state search
BASICRSA-T100 No Failed to detect2
BASICRSA-T300/400 Yes Hidden state search
EthernetMAC-T100-T600 No Failed to detect3
EthernetMAC-T7* Yes Hidden state search
MC8051 No ATPG
1 Trojan flops were connected to scan
2 Detectable with the implementation ATPG
3 Timing Trojans

netlists. The synthesis tool reports were used to obtain the register
correspondence. Synopsys TetraMax was used to create the ATPG
vectors. HAL, the hardware analyzer framework [37] was used to
insert modifications to the netlists and to run dependency analysis.
Cadence Xcelium was used for the ATPG simulation.

B. Results

a) Proof of concept: For each benchmark, we used two different
synthesis and scan insertion flows from different EDA vendors.
After obtaining two implementations, we applied the ATPG stimulus
created by one of the flow to both (adjusting the scan chain order)
and verified it passed on both netlists. This provided evidence of the
invariance of the scan logic to the scan insertion method.

b) Trust-Hub benchmarks: We started the evaluation from
checking how the Open Scan flow detects Trojans from the Trust-
Hub Trojan database [32]. The Trojan-free circuit played the role of
the reference model, and the Trojan-inserted circuit – implementation.
The benchmarks provided in a netlist form were used as is, and RTL-
based benchmarks were synthesized. We tested all the benchmarks
from the database except benchmarks having synthesis or DFT rules
compliance issues and netlist benchmarks without scan metadata.

The flip-flop dependency graph of the golden model was created
using HAL by traversing netlist connections. This graph contains
all combinational dependencies by construction. For the deviated
netlists, the dependency graphs were created in a similar way,
however, dependencies with Boolean influence lower than a threshold
of 1

30,000
were excluded from the graph to emulate the limitations

of the scan-based extraction. According to the procedure defined
in Section III-C, first we verify Escan ∈ Ertl, and if this relation
holds, we generate the distinguishing patterns from ATPG and check
whether the dependencies corresponding to the remaining edges in
Ertl exist also in the implementation.

Although in Section III-E, we require an ATPG vector set com-
bining the vector sets Tref from the reference model and TIC from
the vendor, here we assume a worst case, namely a dishonest vendor,
and therefore the only reliable vector set is Tref . Hence, we generate
ATPG vectors only for the original benchmark netlist, based on which
the logic equivalence check is performed.

Table I shows the evaluation results with the Trust-hub bench-
marks, grouped by the original circuit type. Some of the benchmarks
were provided in a netlist form with scan. However, Trojan was not
part of scan, which created a hidden state. This hidden state was easily
detected using our methodology. As can be seen from the table, two
Trojans types evaded detection by the Openscan flow. BasicRSA-
T100 contained a low-influence Trojan that was not covered by the
reference model’s ATPG set . However, it will be detected if ’true’
implementation ATPG set is available. The other undetected Trojan
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Fig. 6: Success rate of the logic deviation detection applied to four
benchmarks. Solid lines indicate dependency graph comparison and
dashed lines – ATPG-based checks.

type (EthernetMAC-T100-T600) is a timing Trojan, in which signals
timing was modified by manipulation of wire parameters. Although
these Trojans are not detectable by a zero-delay logic simulation, in
reality, they will most likely affect the at-speed scan behavior. It has
to be noted that the Trust-hub benchmarks did not include logic that
hides the Trojan logic in scan mode. Moreover, there was no notion
of scan mode. We believe that some of the Trojans can be completely
hidden from scan given the presence of the scan mode indication.

c) Random netlist deviations: For this part, we used the open-
source RTL benchmarks: [33], [34], [35], [36]. For each benchmark,
we generated a set of deviated netlists by applying a predefined num-
ber of random modifications to the netlists generated from the original
benchmark. Each modification is either a random gate removal or
a random gate insertion. The original benchmark netlist played the
role of the open-source ’golden model’, completely available to
the validator, and the deviated netlists represented the partial data
extracted from Silicon using scan. The subsequent flow was identical
to the Trust-hub flow.

Figure 6 shows the success rate of detection of the modifications
for different benchmarks using the dependency graph comparison and
the ATPG-based equivalence checks versus number of modifications.
Each gate insertion or deletion counts as a modification. In all cases,
the verification flow successfully identified a deviation in at least one
of the stages. Clearly, equivalence check with ATPG vectors has much
greater coverage. Together with that, the experiments have shown
both steps are essential. Several modifications were captured only
by the dependency graph comparison, but not by the ATPG-based
logic equivalence check. All such cases had a common property —
the deviated netlist only had gates added to the original netlist. The
added gates essentially introduce new faults that are not necessarily
covered by the ATPG vectors of the original netlist. Recall that we
did not include the vectors of the deviated netlist to the verification
set, hence the verification may succeed in spite of the difference.

VI. CONCLUSIONS AND FUTURE WORK

The open source hardware IP model promises to improve security,
interoperability and reliability of the secure integrated circuits. In
this work, we brought to the attention of the community a significant
pitfall of the model existing along with its benefits. In contrast to
software, conformance of a cryptographic IC to the claimed open
source is not self-evident. Therefore, dishonest actors along the



supply chain may make malicious or cost-saving modifications that
will get unnoticed by the user. As a solution, we proposed Open Scan,
a verification technique that practically adds the missing part of the
open-source IC security model. The technique exploits the production
scan to perform partial reverse engineering of the device under test
and compares the result with the intended source. The IC vendor
cooperation is required to obtain scan metadata. The verification
comprises several stages, namely a dependency graph generation and
comparison, hidden state search and ATPG-based logic equivalence
check.

The proposed method does not formally prove equivalence. How-
ever, in the experimental part we observed that in practice it was able
to detect all the changes randomly inserted in the benchmarks and
majority of Trojans from Trust-Hub. We also discussed attacks via
Open Scan and a dishonest IC vendor that may provide deceiving data
or hide the malicious circuit from scan. The latter is a particularly
challenging question that can be addressed by future research. There
are additional interesting research questions that can be addressed in
the future. One of them is verification of a product, containing both
open-source and proprietary logic. We contribute the sources of the
Open Scan verification flow to the community [38].
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