
Broadcast-Optimal Two Round MPC
with Asynchronous Peer-to-Peer Channels

Ivan Damg̊ard1, Divya Ravi1 ∗, Luisa Siniscalchi2, and Sophia Yakoubov1†

1 Aarhus University, Denmark; {ivan, divya, sophia.yakoubov}@cs.au.dk
2 Danish Technical University; luisi@dtu.dk

Abstract. In this paper we continue the study of two-round broadcast-
optimal MPC, where broadcast is used in one of the two rounds, but
not in both. We consider the realistic scenario where the round that
does not use broadcast is asynchronous. Since a first asynchronous round
(even when followed by a round of broadcast) does not admit any secure
computation, we introduce a new notion of asynchrony which we call
(td, tm)-asynchrony. In this new notion of asynchrony, an adversary can
delay or drop up to td of a given party’s incoming messages; we refer to
td as the deafness threshold. Similarly, the adversary can delay or drop
up to tm of a given party’s outgoing messages; we refer to tm as the
muteness threshold.
We determine which notions of secure two-round computation are achiev-
able when the first round is (td, tm)-asynchronous, and the second round
is over broadcast. Similarly, we determine which notions of secure two-
round computation are achievable when the first round is over broadcast,
and the second round is (fully) asynchronous. We consider the cases
where a PKI is available, when only a CRS is available but private com-
munication in the first round is possible, and the case when only a CRS
is available and no private communication is possible before the parties
have had a chance to exchange public keys.

Keywords: Secure Computation, Round Complexity, Asynchrony

∗Funded by the European Research Council (ERC) under the European Unions’s
Horizon 2020 research and innovation programme under grant agreement No 803096
(SPEC).

†Funded by the Danish Independent Research Council under Grant-ID DFF-2064-
00016B (YOSO).

Table of Contents

Broadcast-Optimal Two Round MPC with Asynchronous
Peer-to-Peer Channels . 1

Ivan Damg̊ard, Divya Ravi, Luisa Siniscalchi, and Sophia Yakoubov
1 Introduction . 1
2 Secure Multiparty Computation (MPC) Definitions 9
3 P2P-BC . 11
4 BC-P2P . 40
A Preliminaries . 48
B Non-Interactive One-or-Nothing Secret Sharing of Damg̊ard et al.

[DMR+21] . 55
C One-or-Nothing Secret Sharing with Intermediaries of Damg̊ard et

al. [DRSY23] . 58
D Formal description of Πsl-abort . 64

1 Introduction

Round complexity is an important metric of the efficiency of a secure compu-
tation (MPC) protocol. When MPC is run over a high latency network, each
round of communication can take a long time. Two rounds has been shown to be
optimal; one round of communication is clearly not enough for secure computa-
tion, since it leaves the protocol vulnerable to residual function attacks, where
the adversary can recompute the function with the same honest party inputs
and different corrupt party inputs simply by preparing different messages on the
corrupt parties’ behalf.

However, optimal round complexity is only the first step towards efficient
use of resources. Broadcast, which, in practice, requires either multiple rounds
of peer-to-peer communication or special channels (which use, e.g., physical as-
sumptions or blockchains), is itself an expensive resource. Most known two-round
MPC protocols either use broadcast in both rounds [GLS15,GS18,BL18], or only
achieve the weakest security guarantee (selective abort) [ACGJ19]. Cohen et al.
[CGZ20], Damg̊ard et al. [DMR+21] and Damg̊ard et al. [DRSY23] explore the
tradeoffs between the security of two-round MPC protocols and their use of
broadcast (where broadcast can be used in the first round only, in the second
round only, in both rounds, or in neither round). Cohen et al. focus on the dis-
honest majority setting; Damg̊ard et al. [DMR+21] focus on the honest majority
setting; and Damg̊ard et al. [DRSY23] additionally remove the use of PKI and
private peer-to-peer channels in the first round from the previous works. All
three of these papers gave tight characterizations of the security guarantees that
can be achieved in the different settings.

1.1 Our Contributions

In this paper, we focus on the realistic setting where the rounds that do not use
broadcast are also not fully synchronous. Since fully asynchronous MPC has been
studied in the literature extensively [BCG93,BKR94,HNP05,HNP08], we limit
ourselves to the case where at least one of the two rounds uses a synchronous
broadcast channel.

Asynchrony in the First Round If the first round is fully asynchronous, the ad-
versary can prevent a party from communicating anything to any of the honest
parties in the first round; since correctness demands that the protocol produce
an output even in the event of adversarial message scheduling, this means that
either that party’s input cannot influence the output (this is known as input de-
privation), or that the protocol is vulnerable to residual function attacks (since
the adversary can, like in one-round protocols, recompute the second-round mes-
sages on behalf of a corrupt party who no-one heard from in the first round).

So, we introduce a new flavor of asynchrony, where the adversary is only able
to delay up to a certain threshold of messages to and from any one party. We
call it (td, tm)-asynchrony. In (td, tm)-asynchrony, at most tm of any party’s mes-
sages can be arbitrarily delayed or dropped, where tm is the muteness threshold.
Similarly, at most td of the messages to a given party can be arbitrarily delayed
or dropped, where td is the deafness threshold. We allow the adversary to be
rushing i.e. determine which messages to delay or drop based on the messages
she sees during the round. By setting tm, we ensure that each party communi-
cates to sufficiently many parties in the first round, enabling us to sidestep the
problem of input deprivation.

This new notion of asynchrony is a contribution in and of itself. It is incompa-
rable to the standard notion of asynchrony, where the adversary can arbitrarily
delay — but not drop — any number of the messages 3.

We now summarize our findings about two-round MPC where the first round
is (td, tm)-asynchronous (over peer-to-peer channels), and the second round uses
synchronous broadcast. Let n be the number of participants, and t be the cor-
ruption threshold. We show that, if a PKI is available, no such secure two-round
MPC is possible if n ≤ t+ tm. When t+ tm < n ≤ 2t+ tm, the best achievable
guarantee is unanimous abort, where honest parties either all learn the output,
or abort. When 2t + tm < n, identifiable abort — where in the event of an
abort, honest parties agree on the identity of a corrupt party — is additionally
achievable. (Stronger guarantees have already been ruled out if broadcast is not
available in the first round, as long as t > 1 [DMR+21].) Our constructions that
rely on a PKI use one-or-nothing secret sharing [DMR+21] (which is a flavor of

3Our notion is also incomparable to the notion of send / receive-omission corrup-
tions of [ZHM09] which considers an adversary who can send-corrupt some parties
whose (any number of) sent messages may be dropped and / or receive-corrupt some
parties that may not receive (any of the) messages sent to them. This is different from
our notion where a bounded number of outgoing and incoming messages for each party
is blocked.

2

secret sharing that allows a dealer to share a vector of secrets, among which at
most one secret would be reconstructed).

If a PKI is not available, but parties are able to send one another private
messages in the first round, as before no such secure two-round MPC is possible
if n ≤ t+ tm. Additionally, nothing is achievable if n ≤ t+ 2td and n ≤ t+ 2tm.
However, the rest of the time, unanimous abort is possible. Identifiable abort is
unachievable if n ≤ 3t + tm; we show that it is achievable if 3t + tm < n and
min(td, tm) ≤ t, but we leave what happens without that last requirement as an
open problem.

If neither a PKI nor private channels are available in the first round, we show
that no such secure two-round MPC is possible if n ≤ t+ td + tm. However, the
rest of the time, unanimous abort is achievable. As before, identifiable abort is
unachievable if n ≤ 3t + tm; we show that it is achievable if 3t + tm < n and
3t + td < n, but we leave what happens without that last requirement as an
open problem.

We give several constructions that do not rely on a PKI. For somewhat looser
bounds, we show constructions that rely on standard assumptions by generalizing
the one-or-nothing secret sharing with intermediaries introduced by Damg̊ard et
al. [DRSY23]. We provide also new constructions with the tightest bounds of t, td
and tm that rely on differing-inputs obfuscation to demonstrate feasibility, or,
rather, the infeasibility of a negative result. (The obfuscation-based constructions
that achieve identifiable abort are additionally limited to a constant number of
parties.)

Asynchrony in the Second Round If the first round uses fully synchronous broad-
cast, security is possible even if the second round is asynchronous in the classical
sense; that is, the adversary can arbitrarily delay (but not drop) any number
of the second-round messages. In this setting, we show that if a PKI is avail-
able, no secure MPC is possible if n ≤ 2t. However, the strongest guarantee
— guaranteed output delivery — is achievable otherwise, as shown by a simple
observation by Rambaud and Urban [RU21].

If a PKI is not available, but parties are able to send one another private
messages in the first round, selective abort is achievable as long as 2t < n. No
stronger guarantee is achievable, by the lower bounds of Patra and Ravi [PR18]
and Damg̊ard et al. [DRSY23].

If neither a PKI nor private channels are available in the first round, we show
that no secure MPC is possible for any corruption threshold t ≥ 1.

1.2 Terminology

We characterize our protocols in terms of (a) the kinds of communication chan-
nels used in each round, (b) the security guarantees they achieve, (c) the setup
they require, and (d) the corruption threshold t they support. We will use short-
hand for all of these classifications to make our discussions less cumbersome.

3

Communication Structure We consider different kinds of channels:

Broadcast Channels (BC), where each broadcast message recipient has
the guarantee that all other recipients received the same message.
Peer to Peer Channels (P2P), where recipients have no guarantee of con-
sistency.

When a PKI is available, or when the parties have already had a chance to
exchange encryption keys, private communication is possible over both BC and
P2P channels. However, when this is not the case (that is, when a PKI is not
available, and this is the first round), it makes sense to break these up into the
following:

Public Peer to Peer Channels (PubP2P), where recipients don’t have
the guarantee that all others see the same message (nor do they have a
guarantee of privacy).
Private Peer to Peer Channels (PrivP2P), where recipients don’t have
the guarantee that all others see the same message, but parties can commu-
nicate messages privately.
Public Broadcast Channels (PubBC), where a party can either broad-
cast a message or communicate it over public peer to peer channels. (Note
that using a broadcast channel is strictly stronger than using a public peer to
peer channel; the only reason to choose to use a public peer to peer channel
instead of a broadcast channel is efficiency.)
Broadcast with Private Channels (PrivBC), where a party can either
broadcast a message or communicate it privately.

We use a concatenation of two channel names to denote the communication
structure of a protocol. As an example, PrivP2P-BC denotes a protocol whose
first round is over private peer to peer channels, and whose second round is over
broadcast. (Private messages are also possible in the second round, since the
parties can exchange public keys in the first round.)

Security Guarantees An MPC protocol can achieve one of five notions of security.
These are described below, from weakest to strongest (with the exception that
fairness and identifiable abort are incomparable).

Selective Abort (SA): Every honest party either obtains the output, or
aborts.
Unanimous Abort (UA): Either all honest parties obtain the output, or
they all (unanimously) abort.
Identifiable Abort (IA): Either all honest parties obtain the output, or
they all (unanimously) abort identifying one corrupt party.
Fairness (FAIR): Either all parties obtain the output, or none of them do.
(An adversary should not be able to learn the output if the honest parties
do not.)
Guaranteed Output Delivery (GOD): All honest parties will learn the
computation output no matter what the adversary does.

4

Setup We consider two kinds of setup: either only a common reference string
(CRS), where parties have access to a common string generated in a trusted
way, or both a CRS and a (trusted) PKI, where parties additionally know one
another’s public keys before the protocol starts.

1.3 Technical Overview

We consider protocols with and without a PKI. With a PKI, we consider the
P2P-BC and BC-P2P settings; without a PKI, we consider the PrivP2P-BC,
PubP2P-BC, PrivBC-P2P and PubBC-P2P settings. We explore what security
guarantees are achievable when the P2P and PrivP2P rounds are asynchronous.

Asynchrony in the First Round As we explained earlier, in the P2P-BC
and PrivP2P-BC settings, no security guarantee is achievable when the adver-
sary can schedule the first-round messages arbitrarily. However, if we make some
restrictions on the message scheduling, some notions of security become achiev-
able for some thresholds. To this end, we introduce (td, tm)-asynchrony, where
the adversary can drop or delay only td incoming messages for each party, and
tm outgoing messages for each party.

0
td

tm

n− t

n− 2t

Theorem 2

7IA (Theorem 3), 7FAIR ([DMR+21], t > 1)

3UA (Theorem 8)

3IA (Theorem 7)

Fig. 1: Partial Asynchrony Feasibility and Impossibility Results in the P2P-BC
setting, with a PKI and CRS

Prior works [Cle86,DMR+21] show that even in the synchronous setting (with
td = tm = 0) and given a PKI, no P2P-BC or PrivP2P-BC protocol can achieve
fairness or GOD4. Figures 1 and 2 describe our findings about the feasibility of

4The impossibility holds for more general settings such as when t > 1 or n ≤ 3t.
However, it is possible to achieve GOD for the special case when t = 1 and n ≥ 4
[IKP10], [IKKP15] (even in the P2P-P2P synchronous setting with no CRS or PKI).

5

0
td

tm

n− t

n− 3t

n−t
2

n−t
2

Theorem 2

Theorem 4

3UA (Theorem 14)
7IA (Theorem 5)
3IA (t ≥ min(td, tm), Theorem 16)

(a) PrivP2P-BC
(with Private Channels in Round 1)

td

tm

n− t

n− 3t

n− tn− 3t

Theorem 6

7IA (Theorem 5)
3UA (Theorem 13)

3IA (Theorem 15)

(b) PubP2P-BC
(without Private Channels in Round 1)

Fig. 2: Partial Asynchrony Feasibility and Impossibility Results with a CRS.

SA, UA and IA when a PKI is available, when a PKI is not available but private
channels in the first round are, and when neither a PKI nor private channels in
the first round are available.

Lower Bounds Most of our negative results follow a common blueprint. We start
by showing (in Theorem 1) that if there is a group of parties A whose second-
round messages do not depend on messages from a disjoint group B, and if
the adversary has all the information she needs in order to recompute the first
and second round messages of B and other messages that depend on messages
from B (while keeping the messages — and thus inputs — of A fixed), then
the adversary is able to execute a residual function attack by recomputing the
function with different inputs on behalf of B. We then show how adversarial
network scheduling and corruption strategies can lead to such groups in various
settings.

In the P2P-BC, SA, PKI, tm ≥ n − t, td ≥ 1 setting, the messages of one
corrupt party B = {Pi} to the set A of honest parties (of whom there are
n − t ≤ tm) need not be delivered. The adversary can then fix the input of the
honest parties and the rest of the corrupt parties, and recompute the first round
messages of Pi (and the subsequent second round messages of all corrupt parties)
based on various inputs, resulting in a residual function attack. This shows that
in this setting, even SA cannot be achieved (Theorem 2).

In the P2P-BC, IA, PKI, tm ≥ n − 2t, td ≥ 1 setting, if one corrupt party
B = {Pi} does not send any messages to a set A of t honest parties, Pi cannot

We leave open the question of weakening the synchrony assumptions for these special
cases.

6

be identified as a cheater by the other parties, since they do not know whether
Pi is truly to blame, or whether A is corrupt and are lying about not having
heard from Pi. So, output must still be computed. The messages from Pi to
the remaining n − 2t ≤ tm honest parties can be dropped, so now, messages
from Pi are only delivered to other corrupt parties. As before, the adversary
can then fix the input of the honest parties and the rest of the corrupt parties,
and recompute the first round messages of Pi (and the subsequent second round
messages of all corrupt parties) based on various inputs. This shows that in this
setting, IA cannot be achieved (Theorem 3).

In the PrivP2P-BC, SA, CRS, n ≤ t+2td, n ≤ t+2tm setting, the adversary
can partition the honest parties into sets A and B of equal size that do not
communicate at all in the first round, since |A| = |B| = n−t

2 ≤ td and |A| =
|B| = n−t

2 ≤ tm. Now, since a PKI is not available (and thus the parties in B
have no long-term secrets), the adversary can simulate B with arbitrary inputs,
and recompute the corresponding messages of the corrupt parties. Since the
messages of parties in A need not change, this is an effective residual function
attack. This shows that in this setting, even SA cannot be achieved (Theorem 4).

In the PubP2P-BC, SA, CRS, n ≤ t + td + tm setting, the adversary can
partition the honest parties into sets A and B where |A| = tm and |B| = td,
and where A does not hear from B in the first round. Now, since a PKI is not
available (and thus the parties in B have no long-term secrets), the adversary can
simulate B with arbitrary inputs (using the public messages from A to B as part
of the view of B, which affects B’s second round messages), and recompute the
corresponding messages of the corrupt parties. This shows that in this setting,
even SA cannot be achieved (Theorem 6).

The PrivP2P-BC, IA, CRS, n ≤ 3t + tm setting is the only one for which
we use a different blueprint. This proof follows the proof of Damg̊ard et al.
[DRSY23], which shows that in the fully synchronous PrivP2P-BC, IA, CRS,
n ≤ 3t, IA cannot be achieved. They do this by showing how t corrupt parties
can get away with sending first round messages computed on different inputs to
two disjoint sets of honest parties; they show that the protocol must yield output
on both inputs, since the honest parties may not be able to identify a cheater. We
show that the presence of an additional tm parties, all of who may not have heard
a given first round message due to network scheduling, does not help matters.
This shows that in this setting, IA cannot be achieved (Theorem 5).

Upper Bounds Our upper bounds in the presence of a PKI follow the blueprint
of the constructions of Cohen et al. [CGZ20], Damg̊ard et al. [DMR+21] and
Damg̊ard et al. [DRSY23]. Damg̊ard et al. introduce one-or-nothing secret shar-
ing; for our constructions with PKI, we simply tweak the reconstruction thresh-
olds of one-or-nothing secret sharing to account for the adversary’s ability to
drop tm of each party’s outgoing messages.

When a PKI is not available, we show protocols using variant of one-or-
nothing secret sharing defined by Damg̊ard et al. [DRSY23], which is called one-
or-nothing secret sharing with intermediaries. Here we adjust the privacy as well
as reconstruction thresholds to adapt them to the (td, tm)-asynchronous setting.

7

Unfortunately, these constructions without PKI are not tight with respect to our
lower bounds. This led us to bring our study forward and investigate if it was
possible to obtain tighter lower bounds or alternatively, design matching upper
bounds that are based on stronger assumptions (as this would give evidence that
proving a tighter lower bound is not possible).

Towards this, we provide completely new constructions based on differing-
inputs obfuscation (diO) [BGI+01,ABG+13]. These constructions rely on a CRS
in the form of an obfuscated program the code of which hides a secret decryption
key. In the first round, each party encrypts her input to the corresponding public
encryption key, generates a signing - verification key pair, signs her ciphertext,
and sends the ciphertext, verification key and signature to all of her peers. In the
second round, the parties echo everything they heard in the first round over the
broadcast channel; these echos then serve as input to the obfuscated program.
The program checks that the echos are consistent enough before decrypting the
ciphertexts and evaluating the function. If the echos are not consistent enough,
it aborts; to achieve identifiable abort it is possible to use the conflict graph that
it derives from the echos to identify a cheater. One difficulty is that we must
make sure that the adversary cannot copy and reuse an honest party’s ciphertext
(with a fresh verification key). We do this by introducing a new primitive which
we call puncturable public key encryption. Here, the sender uses her own public
key as an input to the encryption algorithm, so that the resulting ciphertext is
bound to the sender. The receiver’s public key can be punctured at one or more
senders’ public keys, so that ciphertexts produced by those senders no longer
carry any information about the messages used.

Of course, diO is wildly impractical, and as mentioned previously, our results
which use diO should be seen as feasibility results (or rather, as evidence of the
infeasibility of proving a tighter lower bound).

Asynchrony in the Second Round For BC-P2P protocols, the classical no-
tion of asynchrony in the second round does not preclude secure computation,
so we stick to that. We summarize our findings about asynchronous BC-P2P
protocols in Table 1.

In this setting, we show that for n ≤ 2t, a BC-P2P protocol cannot even
achieve selective abort, even if a PKI is available (Theorem 17)5. This follows
from the fact that parties can’t wait for more than n − t ≤ t second-round
messages before computing output, since the remaining ≤ t parties may be
corrupt and may not have sent messages. So, parties must be able to compute
output even if they only received second-round messages from corrupt parties;
this allows the adversary to recompute the output based on different corrupt
parties’ inputs, in what is an effective residual function attack.

For 2t < n, given a PKI, a BC-P2P protocol can achieve the strongest notion
of security — GOD. This follows from an observation in [RU21] (that we state in

5It already followed from the work of Cohen et al. that unanimous abort is un-
achievable in this setting.

8

t Setup &
Communication

Pattern

selective abort unanimous abort identifiable
abort

fairness guaranteed
output
delivery

n ≤ 2t CRS + PKI,
BC-P2P

7(Theorem 17) 7[CGZ20] 7 7[Cle86] 7

2t < n CRS + PKI,
BC-P2P

3 3 3 3 3Obs 4 [RU21]

2t < n CRS,
PrivBC-P2P

3(Theorem 20) 7[PR18], [DRSY23] 7 7 7

2t < n CRS,
PubBC-P2P

7(Theorem 19) 7 7 7 7

Table 1: Feasibility and impossibility of partially-asynchronous BC-P2P MPC
with different guarantees. The first-round broadcast and peer-to-peer communi-
cation is synchronous and second round communication is asynchronous. Exist-
ing impossibility results in the BC-P2P setting where the second round is syn-
chronous extend to the BC-P2P setting where the second round is asynchronous.
Arrows indicate implication: the possibility of a stronger security guarantee im-
plies the possibility of weaker ones in the same setting, and the impossibility of a
weaker guarantee implies the impossibility of stronger ones in the same setting.

Obs 4) that shows that the BC-P2P construction of Damg̊ard et al. [DMR+21]
works even if the second round is asynchronous.

Without a PKI, a PrivBC-P2P protocol can achieve selective abort as long
as 2t < n, which is the best guarantee we can hope for (Theorem 20)4. (Nothing
is possible in the PubBC-P2P setting (Theorem 19)). For our SA construction,
we rely on certain properties of synchronous schemes to extend them to this
setting. We show that any synchronous protocol that is PrivBC-P2P SA CRS
2t < n could be also executed with an asynchronous second round as long as it
is easy to determine whether second-round messages are “valid”, the inputs can
be extracted from first-round messages, and n − t valid second-round messages
are sufficient to recover the output. We then adapt the construction of Ananth
et al. [ACGJ18], using commitments and NIZKs, to provide an instantiation of
the starting PrivBC-P2P synchronous protocol.

1.4 Organization

In Section 2, we define our MPC security notion and the notation we need for
our setting. In Section 3, we describe our lower and upper bounds for the setting
when the first round is over (td, tm)-asynchronous channels. In Section 4, we
describe our lower and upper bounds for the setting when the second round is
asynchronous.

2 Secure Multiparty Computation (MPC) Definitions

In this section we recall the relevant MPC definitions.

9

2.1 Security Model

We follow the real/ideal world simulation paradigm and we adopt the security
model of Cohen, Garay and Zikas [CGZ20]. As in their work, we state our results
in a stand-alone setting.6

Real-world. An n-party protocol Π = (P1, . . . , Pn) is an n-tuple of probabilistic
polynomial-time (PPT) interactive Turing machines (ITMs), where each party
Pi is initialized with input xi ∈ {0, 1}∗ and random coins ri ∈ {0, 1}∗. We let A
denote a special PPT ITM that represents the adversary and that is initialized
with input that contains the identities of the corrupt parties, their respective
private inputs, and an auxiliary input.

During the execution of the protocol, the corrupt parties receive arbitrary
instructions from the adversary A, while the honest parties faithfully follow the
instructions of the protocol. At the end of the protocol execution, the honest
parties produce output, and the adversary outputs an arbitrary function of the
corrupt parties’ view. The view of a party during the execution consists of its
input, random coins and the messages it sees during the execution.

Definition 1 (Real-world execution). Let Π = (P1, . . . , Pn) be an n-party
protocol and let I ⊆ [n], of size at most t, denote the set of indices of the parties
corrupted by A. The joint execution of Π under (A, I) in the real world, on input
vector x = (x1, . . . , xn), auxiliary input aux and security parameter λ, denoted
REALΠ,I,A(aux)(x, λ), is defined as the output vector of P1, . . . , Pn and A(aux)
resulting from the protocol interaction.

Ideal-world. We describe ideal world executions with selective abort (sl-abort),
unanimous abort (un-abort), identifiable abort (id-abort), fairness (fairness) and
guaranteed output delivery (god).

Definition 2 (Ideal Computation). Consider type ∈ {sl-abort, un-abort, id-abort,
fairness, god}. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function and let
I ⊆ [n], of size at most t, be the set of indices of the corrupt parties. Then,
the joint ideal execution of f under (S, I) on input vector x = (x1, . . . , xn),
auxiliary input aux to S and security parameter λ, denoted IDEALtype

f,I,S(aux)(x, λ),
is defined as the output vector of P1, . . . , Pn and S resulting from the following
ideal process.

1. Parties send inputs to trusted party: An honest party Pi sends its input xi
to the trusted party. The simulator S may send to the trusted party arbitrary
inputs for the corrupt parties. Let x′i be the value actually sent as the input
of party Pi.

2. Trusted party speaks to simulator: The trusted party computes (y1, . . . , yn) =
f(x′1, . . . , x′n). If there are no corrupt parties or type = god, proceed to step 4.

6We note that our security proofs can translate to an appropriate (synchronous)
composable setting with minimal changes.

10

(a) If type ∈ {sl-abort, un-abort, id-abort}: The trusted party sends {yi}i∈I to
S.

(b) If type = fairness: The trusted party sends ready to S.
3. Simulator S responds to trusted party:

(a) If type = sl-abort: The simulator S can select a set of parties that will
not get the output as J ⊆ [n] \ I. (Note that J can be empty, allowing
all parties to obtain the output.) It sends (abort,J) to the trusted party.

(b) If type ∈ {un-abort, fairness}: The simulator can send abort to the trusted
party. If it does, we take J = [n] \ I.

(c) If type = id-abort: If it chooses to abort, the simulator S can select a
corrupt party i∗ ∈ I who will be blamed, and send (abort, i∗) to the
trusted party. If it does, we take J = [n] \ I.

4. Trusted party answers parties:
(a) If the trusted party got abort from the simulator S,

i. It sets the abort message abortmsg, as follows:
– if type ∈ {sl-abort, un-abort, fairness}, we let abortmsg = ⊥.
– if type = id-abort, we let abortmsg = (⊥, i∗).

ii. The trusted party then sends abortmsg to every party Pj, j ∈ J , and
yj to every party Pj, j ∈ [n] \ J .

Note that, if type = god, we will never be in this setting, since S was
not allowed to ask for an abort.

(b) Otherwise, it sends y to every Pj, j ∈ [n].
5. Outputs: Honest parties always output the message received from the trusted

party while the corrupt parties output nothing. The simulator S outputs an
arbitrary function of the initial inputs {xi}i∈I , the messages received by the
corrupt parties from the trusted party and its auxiliary input.

Security Definitions. We now define the security notion for protocols.

Definition 3. Consider type ∈ {sl-abort, un-abort, id-abort, fairness, god}. Let f :
({0, 1}∗)n → ({0, 1}∗)n be an n-party function. A protocol Π t-securely computes
the function f with type security if for every PPT real-world adversary A with
auxiliary input aux, there exists a PPT simulator S such that for every I ⊆ [n]
of size at most t, for all x ∈ ({0, 1}∗)n, for all large enough λ ∈ N, it holds that

REALΠ,I,A(aux)(x, λ) c≡ IDEALtype
f,I,S(aux)(x, λ).

3 P2P-BC

In this section, we assume that the first round of communication occurs over peer-
to-peer channels with (td, tm)-asynchrony (and the peer-to-peer and broadcast
communication in the second round is fully synchronous). We determine the
feasibility of various notions of security, in three settings: (1) when a PKI is
available, (2) when no PKI is available, but a CRS and private peer-to-peer
channels are, and (3) when no PKI or private channels are available in the first
round, but a CRS is. Our results are summarized in Figures 1 and 2.

11

3.1 Lower Bounds

Before describing our lower bounds, we present a theorem that is useful for
our lower bound arguments. In this theorem, we identify what type of protocol
design makes it vulnerable to a residual attack by the adversary i.e. allows the
adversary to obtain the output on multiple inputs of her choice, while keeping
the inputs of a subset of honest parties fixed.

Theorem 1. Consider an n-party two-round protocol Π. Let E be the event that
the parties can be assigned to three sets A,B and C with the following properties:

1. A contains a subset of honest parties.
2. C contains the set of corrupt parties, where 1 ≤ |C| ≤ t.
3. |A|, |B| ≥ 1, and A is disjoint from B ∪C (but B and C are not necessarily

disjoint).
4. The second-round messages of parties in A do not depend on the first-round

messages of parties in B.
5. The adversary (controlling the parties in C) has access to the communication

from A to B as well as private information that parties in B receive from
the setup (if any).

6. The adversary obtains the output (computed on honest parties’ inputs).

If Π allows the above event E to occur with non-negligible probability, then
there exists functions f such that Π can not securely compute f .

Proof. We use the function fmot. Let the input of Pn be a pair of strings xn =
(z0, z1), where z0, z1 ∈ {0, 1}λ, and let the input of every other party Pi (i ∈
{1, . . . , n− 1}) be a single bit xi ∈ {0, 1}. fmot allows everyone to learn zc where
c = ⊕n−1

i=1 xi.
Towards a contradiction, we assume that the two-round secure protocol Π

computes fmot securely. Suppose that event E (described in the theorem) occurs
during an execution of Π and results in the adversary obtaining the output
(computed on honest parties’ inputs).

We observe that, since the second-round messages of parties in A do not
depend on the first round messages of parties in B, these are independent of
the inputs of parties in B. This makes Π susceptible to the following residual
attack: the adversary can use different choices of inputs on behalf of the parties
in B and recompute their first and second round messages, while keeping the
messages of parties in A fixed. The adversary also keeps the first-round messages
of parties in C \B fixed and recomputes their second-round messages (based on
the recomputed first-round messages of B).

Note that recomputing messages on behalf of parties in B (based on chosen
inputs) requires (a) the private information (if any) that parties in B receive
from the setup, and (b) the first-round messages that parties in B received
from parties in A and C. Since the adversary has access to all of this (based
on the assumptions and the fact that the adversary controls C), it is possible
for the adversary to recompute messages on behalf of parties in B (using chosen
inputs). It is now easy to see that this will allow the adversary to obtain multiple

12

evaluations of the function, for different choices of inputs of parties in B while
the inputs of other parties remain fixed. This contradicts the security of Π. More
concretely, suppose Pn ∈ A. Then, this “residual attack” breaches the privacy
property of the protocol, as it allows the adversary to learn both input strings
of an honest Pn (which is not allowed in an ideal realization of fmot).

Corollary 1. Assume a setup with PKI or correlated randomness and the exis-
tence of a protocol Π where properties (1), (2), (3), (4) and (6) of E described
in Theorem 1 are satisfied with non-negligible probability. If B ⊆ C holds, then
there exists functions f such that Π cannot securely compute f .

Proof. We observe that when B ⊆ C, property (5) of Theorem 1 automatically
holds – as the adversary controlling the parties in B has access to their private
information received as a part of the setup and incoming messages. Hence, the
corollary holds.

Corollary 2. Assume a setup with CRS, a network with private peer-to-peer
channels and the existence of a protocol Π where properties (1), (2), (3), (4)
and (6) of E described in Theorem 1 are satisfied with non-negligible probability.
If there is no communication from parties in A to parties in B, then there exist
functions f such that Π cannot securely compute f .

Proof. It is easy to see that if there is no communication from parties in A to B
and the setup is public, then property (5) of Theorem 1 is satisfied by default.
Hence, the corollary holds.

Corollary 3. Assume a setup with CRS, a network with public peer-to-peer
channels and the existence of a protocol Π where properties (1), (2), (3), (4)
and (6) of E described in Theorem 1 are satisfied with non-negligible probability.
Then, there exist functions f such that Π cannot securely compute f .

Proof. Property (5) of Theorem 1 must also hold since the setup is public and
the public peer-to-peer channels enable the adversary to learn the incoming
messages of parties in B. Hence, the corollary holds.

With PKI In this section, we assume the availability of a PKI. We adopt the
same proof approach in each of our negative results in this section: we describe
an adversarial strategy and message scheduling that results in the occurrence of
the event E described in Cor 1. We then invoke the impossibility result of Cor 1
to complete the proof.

Theorem 2 (P2P-BC, SA, PKI, tm ≥ n− t, td ≥ 1). There exist functions
f such that no n-party two-round protocol can compute f with selective abort if
tm ≥ n− t and td ≥ 1; where the first round communication is over peer-to-peer
channels with (td, tm)-asynchrony and the second round communication is over
synchronous broadcast and peer-to-peer channels.

13

Proof. We use the function fmot described in Theorem 1. Towards a contradic-
tion, we assume a protocol Π computing fmot with selective abort exists, whose
first round communication is over peer-to-peer channels with (td, tm)-asynchrony
and second round communication is over synchronous broadcast and peer-to-peer
channels.

Consider a scenario where the adversary passively corrupts the parties in a set
C (where |C| = t) and A denotes the set of honest parties. Since the first round is
over peer-to-peer channels with (td, tm)-asynchrony, the adversary can schedule
the first round messages of a party in C, say Pi, such that they are received
by only corrupt parties. Such a scheduling is allowed, since the messages of Pi
are delivered to parties in C where |C| = t ≥ n − tm parties, and each honest
party hears from n − 1 ≥ n − td parties. The correctness of Π (which must
hold as everyone including the passively controlled parties behaved honestly)
dictates that this execution must result in output computation. However, since
none of the parties in A received the first round messages of Pi, it is easy to see
that their second-round messages are independent of Pi’s first round message.
Setting B = {Pi} ⊆ C, it is easy to check that each of the conditions of Cor 1
hold. It now directly follows from Cor 1 that Π cannot securely compute fmot,
completing the proof.

Theorem 3 (P2P-BC, IA, PKI, tm ≥ n− 2t, td ≥ 1). There exist functions
f such that no n-party two-round protocol can compute f with identifiable abort
if tm ≥ n− 2t and td ≥ 1; where the first round communication is over peer-to-
peer channels with (td, tm)-asynchrony and the second round communication is
over synchronous broadcast and peer-to-peer channels.

Proof. We use the function fmot described in Theorem 1. Towards a contradic-
tion, we assume a protocolΠ computing fmot with identifiable abort exists, whose
first round communication is over peer-to-peer channels with (td, tm)-asynchrony
and second round communication is over synchronous broadcast and peer-to-peer
channels.

Consider a partition of the set of parties into three disjoint sets S0, S1 and
S2, where |S0| = tm, |S1| = t and |S2| ≤ t. The adversary schedules the first
round messages of a party in S1, say Pi, such that they are not received by
parties in set S0. Such a scheduling is allowed, since the messages of Pi are
delivered to everyone except the tm parties in S0 and each party hears from at
least n− 1 ≥ n− td parties.

We now consider two scenarios:

Scenario 1: Adversary controls the party Pi in S1 who behaves as per pro-
tocol specifications except the following:
– In the first round, Pi does not send first-round messages to honest parties

in S2.
– In the second round, Pi pretends as if she did not receive first-round

messages from parties in S2. In other words, Pi sends second-round mes-
sages based on protocol specifications when Pi did not receive first-round
messages from parties in S2.

14

Scenario 2: Adversary controls the parties in S2 (where |S2| ≤ t) who be-
have as follows:
– In the first round, parties in S2 behave honestly, except that they do not

send their first-round message to Pi.
– In the second round, parties in S2 pretend as if they did not receive the

first-round message from Pi.

The honest parties in S0 cannot distinguish between the above two scenarios,
since in both scenarios Pi and parties in S2 claim that they have not received
first-round messages from each other. Since the honest parties in S0 do not know
whom to blame (Pi or the parties in S2, where |S2| ≤ t), it must be the case
that both the above scenarios result in output computation (i.e. does not result
in an abort).

Consider an execution of Π where the adversary controls the parties in S1
who behave honestly except a single party Pi ∈ S1 who behaves as per Scenario
1. Since none of the honest parties in S0 ∪ S2 received the first round messages
of Pi, it is easy to see that their messages are independent of Pi’s input. Based
on the above argument, this scenario must result in output computation. This
output must also be learnt by the adversary since its view subsumes the view of
an honest Pi in Scenario 2 (who learns the output).

Setting A = S0 ∪ S2 as the set of honest parties, B = {Pi} and C = S1
(where B ⊆ C), one can check that each of the conditions of Cor 1 holds. It now
directly follows from Cor 1 that Π cannot securely compute fmot, completing the
proof.

Without PKI, With Private Channels In this section, we present two
negative results for the setting when PKI is not available but the peer-to-peer
channels are private. For the first negative result, just like in the previous sec-
tion, we adopt the approach of describing an adversarial strategy and message
scheduling that results in the occurrence of the event E described in Cor 2. We
then invoke the impossibility result of Cor 2 to complete the proof. The second
negative result shows impossibility of identifiable abort when n ≤ 3t+ tm. This
proof is a slight modification of the proof of Damg̊ard et al. [DRSY23], which
shows the impossibility of identifiable abort in the synchronous P2P-BC setting
when n ≤ 3t.

Theorem 4 (PrivP2P-BC, SA, CRS, n ≤ t+2td, n ≤ t+2tm). There exist
functions f such that no n-party two-round protocol can compute f with selective
abort if n ≤ t + 2td and n ≤ t + 2tm; where the first round communication is
over private peer-to-peer channels with (td, tm)-asynchrony and the second round
communication is over synchronous broadcast and peer-to-peer channels.

Proof. We use the same function fmot used in the proof of Theorem 1. Towards a
contradiction, we assume a PrivP2P-BC, SA, CRS protocol Π with n ≤ t+ 2td
and n ≤ t + 2tm securely computing fmot exists, whose first-round communi-
cation is over peer-to-peer channels with (td, tm)-asynchrony and second-round
communication is over synchronous broadcast and peer-to-peer channels.

15

Consider a partition of the parties into three disjoint sets A,B and C, where
|A| = n−t

2 , |B| = n−t
2 , and |C| = t, respectively. Consider an execution of Π

where the adversary passively corrupts the t parties in C and schedules the
messages in the first round so that no messages from B are delivered to A,
and vice versa. Such a scheduling is permitted based on the assumption that
tm ≥ n−t

2 and td ≥ n−t
2 .

The correctness of Π (which must hold as everyone including the passively
controlled parties behaved honestly) dictates that this execution must result in
output computation. However, we note that second-round messages of parties
in A do not depend on the first-round messages of parties in B (as parties in A
did not receive any first-round messages from parties in B). Furthermore, since
there is no first-round communication from parties in A to parties in B as well,
we observe that all the conditions of Cor 2 are satisfied. It now directly follows
from Cor 2 that Π cannot securely compute fmot, completing the proof.

Theorem 5 (PrivP2P-BC, IA, CRS, n ≤ 3t+tm, td ≥ 1). There exist func-
tions f such that no n-party two-round protocol can compute f with identifiable
abort if n ≤ 3t + tm; where the first round communication is over private peer-
to-peer channels with (td, tm)-asynchrony and the second round communication
is over synchronous broadcast and peer-to-peer channels.

Proof. We use the function fot (also used in Theorem 1 of [DRSY23]), described
below. Let the input of P1 and P2 be a pair of strings x1 = (m0,m1) and x2 =
(m′0,m′1), where m0,m1,m

′
0,m

′
1 ∈ {0, 1}λ, and the input of Pn be a choice bit

xn = c ∈ {0, 1}. The input of other parties is ⊥ (i.e. xi = ⊥ for i ∈ [n]\{1, 2, n}).
fot allows everyone to learn (mc,m

′
c).

Towards a contradiction, we assume a PrivP2P-BC, IA, CRS protocol Π
with n ≤ 3t + tm securely computing fot exists, whose first-round communi-
cation is over peer-to-peer channels with (td, tm)-asynchrony and second-round
communication is over synchronous broadcast and peer-to-peer channels.

This proof is similar to the IA impossibility in [DRSY23], whose main proof
idea for n ≤ 3t and the synchronous PrivP2P-BC setting is as follows. The
adversary splits the set of honest parties into two disjoint groups S0 and S1 (of
size at most t) where S0 contains P1 and S1 contains P2. On behalf of a corrupt
party Pn, she sends first-round messages computed based on xn = 0 to S0 and
x′n = 1 to S1. This creates confusion among the honest parties who are unable to
identify whom to blame (for instance, honest parties in S0 do not know whether
Pn is corrupt or the parties in S1 are corrupt) and therefore must compute the
output. Their proof shows how this confusion can be exploited by the adversary
to learn both m0 and m′1 (which is not allowed as per the ideal computation of
f , as an adversary who corrupts neither P1 nor P2 would either learn (m0,m

′
0)

or (m1,m
′
1)) .

We observe that the same proof idea as above can be used for our setting,
with the difference being that our first round communication is over private
peer-to-peer channels with (td, tm)-asynchrony and we have an additional set of
tm honest parties, say Sm. If the message scheduling is such that the first-round

16

messages from Pn are not delivered to parties in Sm, then the same confusion
(as in the above argument) can be created and the proof follows similarly. This
completes the high-level description; we elaborate below.

Let S0, S1, Sm and I denote disjoint sets of parties, where |S0| = |S1| =
n−t−tm

2 ≤ t, |Sm| = tm and |I| = t. Suppose Pn ∈ I, P1 ∈ S0 and P2 ∈ S1.
Consider an execution of Π and the following scenarios:

Scenario 1: Suppose the adversary corrupts the t parties in I that includes
Pn. The adversary does the following:

Round 1. Compute and send, on behalf of the party Pn, messages based
on input xn = 0 and xn = 1 to parties in S0 and S1 respectively. Behave
honestly on behalf of other corrupt parties. Further, schedule the first-
round messages such that the first-round message of Pn is not delivered
to parties in Sm.
Round 2. Compute and send, on behalf of the corrupt parties, messages
as if Pn computed her first-round message based on xn = 0.

Scenario 2: Consider an adversary who corrupts parties in S1 (where S1 is
as defined in Scenario 1 and in particular is such that it contains neither Pn
nor P1). Suppose the input of honest Pn is xn = 0. The adversary behaves
as follows on behalf of corrupt parties:

Round 1. Behave honestly as per protocol specifications. Further, sched-
ule the messages such that the first-round messages of Pn are not delivered
to parties in Sm.
Round 2. Pretend (on behalf of the corrupt parties) to have received
first-round messages from Pn based on xn = 1. Note that the adversary
can do this without being caught, since the setup is public (i.e. no private
setup information is required to compute the first round message on behalf
of honest Pn with respect to chosen input).

The first observation is that the view of honest parties in S0 in Scenario 1 is
identically distributed to her view in Scenario 2. Since the identity of the corrupt
parties is different in the two scenarios, it cannot be the case that the honest
parties in S0 determines the identity of the cheater based on such a view (else,
an honest person will be identified as the cheater in one of the two scenarios). We
can thus conclude that the protocol execution must terminate with the honest
parties obtaining an output.

The output obtained by honest parties (including Pn) in Scenario 2 must
consist of m0 as it should be computed with respect to the input xn = 0 of honest
Pn and input (m0,m1) of honest P1. Since the adversary’s view in Scenario 1
subsumes the view of honest Pn in Scenario 2, we can conclude that the adversary
in Scenario 1 is able to learn the output m0.

Similarly, we can argue that if the adversary in Scenario 1 had computed the
second-round messages of parties in I based on xn = 1, then she can obtain m′1.
This is because in such a case, the honest parties in S1 cannot identify whether
Pn is corrupt or the t parties in S0 are pretending to have received first round
message from Pn based on xn = 0 (say the latter is referred to as Scenario

17

2’, whose output must include m′1 as it is based on honest inputs xn = 1 and
x2 = (m′0,m′1)). Therefore, by locally computing Round 2 messages on behalf of
parties in I based on xn = 1, the adversary can obtain a view that subsumes the
view of honest Pn in Scenario 2′, enabling her to learn m′1 as well. This shows
that there exists a strategy that allows the adversary corrupting I to learn both
m0 and m′1 which contradicts the security of Π; completing the proof.

Without PKI, Without Private Channels In this section, we assume that
the first-round peer-to-peer channels are public. We show that selective abort is
impossible to achieve when n ≤ t+ td + tm. This proof follows the approach of
the previous results, where we describe an adversarial strategy and scheduling
that reduces the argument to Cor 3.

Theorem 6 (PubP2P-BC, SA, CRS, n ≤ t+td+tm). There exist functions
f such that no n-party two-round protocol can compute f with selective abort if
n ≤ t+ td + tm; where the first round communication is over public peer-to-peer
channels with (td, tm)-asynchrony and the second round communication is over
synchronous broadcast and peer-to-peer channels.

Proof. We use the same function fmot used in the proof of Theorem 1. Towards a
contradiction, we assume a PubP2P-BC, SA, CRS protocolΠ with n ≤ t+td+tm
securely computing fmot exists, whose first-round communication is over public
peer-to-peer channels with (td, tm)-asynchrony and second-round communication
is over synchronous broadcast and peer-to-peer channels.

Consider a partition of the parties into three disjoint sets A,B and C, where
|A| = tm, |B| = td, and |C| = t, respectively. Consider an execution of Π where
the adversary passively corrupts the t parties in C and schedules the messages
in the first round so that no messages from B are delivered to A.

The correctness of Π (which must hold as everyone including the passively
controlled parties behaved honestly) dictates that this execution must result in
output computation. Note that the second-round messages of parties in A do
not depend on the first-round messages of parties in B (as parties in A did not
receive any first-round messages from parties in B). It is now easy to see that
all the conditions of Cor 3 are satisfied. It now directly follows from Cor 3 that
Π cannot securely compute fmot, completing the proof.

3.2 Upper Bounds

With PKI In this section, we present two upper bounds for the setting where
a PKI is available, the first-round communication is over peer-to-peer chan-
nels with (td, tm)-asynchrony, and the second-round communication is over syn-
chronous peer-to-peer and broadcast channels.

An important tool in our constructions is one-or-nothing secret sharing, in-
troduced in Damg̊ard et al. [DMR+21], which we describe briefly below.

18

One-or-Nothing Secret Sharing (1or0). One-or-nothing secret sharing is a spe-
cial kind of secret sharing that allows a dealer to share a vector of secrets. As
the name suggests, at most one among these secrets is eventually reconstructed.
Once the shares are distributed, each receiver votes on the index of the value to
reconstruct by producing a “ballot”. If the receiver is unsure which index to vote
for, she can publish a special equivocation ballot instead. Damg̊ard et al. define
a non-interactive variant of such a secret sharing, which supports parties being
able to vote even if they have not received the shares. We recall the syntax in
Appendix B.1. Informally, the properties required from a one-or-nothing secret
sharing scheme are as follows.

δ-Correctness. This property requires that if at least δ parties produce
their ballot using the same index v (and the rest produce their ballot with
⊥ i.e. the special equivocation ballot), then the secret at index v is recon-
structed.
Privacy. If no honest party produced their ballot using v, then the adversary
learns nothing about the secret at index v.
Contradiction-privacy. If two different honest parties produce their bal-
lots using different votes (i.e. vote for different indices), then the adversary
learns nothing at all.

While the definition in Damg̊ard et al. defined correctness with respect to
δ = n − t, we consider a more general version of the same to adapt it to our
setting with (td, tm)-asynchrony. Their work presents a construction of a non-
interactive one-or-nothing secret sharing scheme with (n − t)-correctness when
n > 2t. We observe that, more generally, the same construction (with a minor
tweak) serves as a non-interactive one-or-nothing secret sharing scheme with δ-
correctness when δ > t holds. We defer the formal details of this construction to
Appendix B.2.

Looking ahead, in our upper bounds, we use a non-interactive one-or-nothing
secret sharing scheme with (1) (n − t − tm)-correctness when n > 2t + tm, and
(2) (n− tm)-correctness when n > t+ tm.

Protocol Overview of P2P-BC, ID, PKI, 2t < n [DMR+21]. Since both our
upper bounds are constructed by slight modifications to the fully synchronous
P2P-BC, ID, PKI, 2t < n construction of Damg̊ard et al., we give an overview of
their construction below (we refer to [DMR+21] for the formal description). Their
work presents a compiler that transforms a fully synchronous BC-BC, ID, PKI
protocol Πbc to a fully synchronous P2P-BC, ID, PKI, 2t < n protocol Πp2pbc.
The following steps are executed in Πp2pbc: In the first round over synchronous
peer-to-peer channels, the parties send their first-round message of Πbc along
with a signature to each of their peers. In the second round (over broadcast),
the parties do the following:
1. Compute and broadcast a garbling of their next-message function (that has

hardcoded input and randomness of a party, takes as input the first-round
messages of Πbc from all parties and computes the second-round message of
the party according to Πbc);

19

2. Use the non-interactive 1or0 scheme with (n− t)-correctness to share all the
input labels for their garbled circuit;

3. Based on the first-round messages received, “vote” 7 for which labels to
reconstruct corresponding to everyone’s garbled circuit (vote for ⊥ in case
no or invalid first-round message was received);

4. Compute a zero-knowledge proof to prove correctness of the actions taken
in the second round; and

5. Echo all the first-round messages of Πbc with the corresponding signatures
received from the other parties in the first round.

During output computation, parties first verify the zero-knowledge proofs and
signatures and catch the relevant party in case anyone’s proof fails or there exist
distinct first-round messages with valid signatures from the same party. They
then proceed to reconstruct the appropriate labels of the garbled circuits of all
parties. A party Pi is blamed if the reconstruction of the label corresponding to
her first-round message fails. If all the labels are reconstructed successfully, the
parties proceed to evaluating the garbled circuits and obtain the second round
messages of Πbc for all parties; which is subsequently used to obtain the output.

Intuitively, the protocol achieves identifiable abort when n > 2t. This is
because, to avoid being caught, a corrupt party needs to send her first-round
message with a valid signature to at least one honest party (otherwise n− t > t
parties would claim to have a conflict with her and she would be implicated).
Further, she cannot afford to send different first-round messages to different hon-
est parties with valid signatures (otherwise the contradictory signatures would
implicate her). Contradiction privacy of one-or-nothing secret sharing ensures
that in such a case the adversary does not learn any of the labels. Next, the
zero-knowledge proof in the second round ensures that every corrupt party gar-
bles and shares its garbled circuit labels correctly. Lastly, if no party is caught,
it must hold each party’s first-round message is echoed by at least (n − t) par-
ties who would vote accordingly. The (n− t)-correctness of one-or-nothing secret
sharing ensures that in such a case, exactly one label from each label pair is
reconstructed, which enables the underlying protocol Πbc to be carried out.

We are now ready to present the upper bounds for our setting where the first-
round communication is over peer-to-peer channels with (td, tm)-asynchrony.
Theorem 7 (P2P-BC, IA, PKI, 2t + tm < n). Let f be an efficiently com-
putable n-party function and let 2t + tm < n. Let Πbc be a BC-BC, ID, PKI
protocol that securely computes f with the additional constraint that the straight-
line simulator can extract inputs from corrupt parties’ first-round messages. As-
sume the existence of a secure garbling scheme, digital signature scheme, non-
interactive one-or-nothing secret sharing scheme [DMR+21], non-interactive key
agreement scheme and non-interactive zero-knowledge proof system. Then, there
exists a P2P-BC, ID, PKI protocol that securely computes f over two rounds,
the first of which is over peer-to-peer channels with (td, tm)-asynchrony, and the
second of which is over a synchronous broadcast and peer-to-peer channel.

7Note that the one-or-nothing secret sharing is non-interactive; thereby “share” and
“vote” can be executed in the same round.

20

Proof (Sketch). We sketch a two-round construction Π id-abort
asyncp2pbc achieving identi-

fiable abort when 2t+ tm < n, where the first round uses peer-to-peer communi-
cation with (td, tm)-asynchrony, and the second round uses synchronous broad-
cast and peer-to-peer communication. This construction is the same as the con-
struction of [DMR+21] described above, except that we use the non-interactive
one-or-nothing secret sharing scheme satisfying (n − t − tm)-correctness when
n > 2t+ tm.

The main difference is that in our setting it may so happen that an honest
party’s first round message is echoed by only n − t − tm parties (because her
messages to up to tm honest parties may be dropped, and t corrupt parties
may pretend to have not received her first-round message sent over peer-to-peer
channels). Therefore, we can implicate a party as being a cheater only if her
message is echoed by fewer than n− t− tm parties. Accordingly, to ensure that
the appropriate labels (corresponding to the first-round message) are successfully
reconstructed when no cheater is identified, we use the non-interactive one-or-
nothing secret sharing with (n− t− tm)-correctness.

At a high level, the proof that the protocol Π id-abort
asyncp2pbc achieves identifiable

abort is similar to the one shown by Damg̊ard et al. [DMR+21]. First, if a party
sent two different first-round messages with valid signatures, then this party
can be easily implicated. Second, if a corrupt party is not caught, then we can
infer that at least one honest party received a first-round message with a valid
signature. This is because a party can avoid being implicated as a cheater only
if at least n − t − tm > t parties echo her first round message. Finally, by the
simulation-soundness of the NIZK we ensure that every corrupt party garbles
and shares its garbled circuit labels correctly. Note that if no party is caught,
the (n− t− tm)-correctness property of the one-or-nothing secret sharing scheme
ensures that one label corresponding to each wire of all the garbled circuits is
successfully reconstructed, and therefore the protocol Πbc can be executed.

Theorem 8 (P2P-BC, UA, PKI, t + tm < n). Let f be an efficiently com-
putable n-party function and let t + tm < n. Let Πbc be a BC-BC, UA, PKI
protocol that securely computes f with the additional constraint that the straight-
line simulator can extract inputs from corrupt parties’ first-round messages. As-
sume the existence of a secure garbling scheme, non-interactive one-or-nothing
secret sharing scheme [DMR+21], non-interactive key agreement scheme and
non-interactive zero-knowledge proof system. Then, there exists a P2P-BC, UA,
PKI protocol that securely computes f over two rounds, the first of which is over
peer-to-peer channels with (td, tm)-asynchrony, and the second of which is over
synchronous broadcast and peer-to-peer channels.

Proof (Sketch). In order to construct a protocol Πun-abort
asyncp2pbc in the setting of The-

orem 8, we make the following modifications to the protocol Πp2pbc of [DMR+21]
described above.

– First, since in this case we are not required to identify a cheater (as the goal
is unanimous abort), the protocol simply outputs ⊥ in all the cases where

21

the cheater was identified. Therefore, we can avoid the use of signatures,
which are needed only for cheater identification.

– Second and more crucial, we use the non-interactive one-or-nothing secret
sharing scheme with (n − tm)-correctness when n > t + tm. This ensures
that when everyone behaves honestly and it so happens that a party’s first
round message is received by only n− tm parties (who would all vote for the
same value and others vote for ⊥), the appropriate labels of all the garbled
circuits corresponding to this party’s first-round message are successfully
reconstructed and subsequently the protocol results in output computation.

We now briefly analyze the security of Πun-abort
asyncp2pbc. At a high-level if the ad-

versary in the first round sends two different first-round messages of Πbc to a
pair of honest parties, then these parties will vote for different values (at least
for the bits where the two messages differ). However, we are guaranteed from
the contradiction privacy of the one-or-nothing secret sharing scheme that no
information about the labels for the corresponding wires in the garbled circuit
will be revealed. Since the parties cannot proceed to evaluating the garbled cir-
cuit, all honest parties abort unanimously. If this is not the case, then there are
two possibilities: (a) no honest party received a valid first-round message from
the adversary; or (b) there is a unique valid first-round message of Πbc that
the adversary sent to a subset of the honest parties (others received nothing or
an invalid message). In case (a) the privacy of the one-or-nothing secret shar-
ing scheme ensures that no information is revealed on any of the labels and all
parties unanimously abort. In case (b), depending on whether at least n − tm
parties echo the same first-round message or not, the protocol will either result
in successful reconstruction of the label (corresponding to the unique first-round
message) or result in parties aborting unanimously. Lastly, note that the ad-
versary learns at most one label per wire of an honest party’s garbled circuit,
due to the contradiction privacy of the one-or-nothing secret sharing scheme.
Since the second-round communication only involves broadcast communication,
unanimity amongst the honest parties is easy to maintain.

Without PKI, Without Private Channels, from One-or-Nothing Se-
cret Sharing with Intermediaries In this section, we present two construc-
tions for the CRS setting where the first-round communication is over public
peer-to-peer channels with (td, tm)-asynchrony and the second round communi-
cation is over synchronous peer-to-peer and broadcast channels. In contrast to
the obfuscation-based constructions in Section 3.2 , the ones in this section can
be built from standard assumptions and for any polynomial number of parties.
However, the bounds on t, td and tm they achieve are looser.

Next, we analyze the following constraints with respect to the above param-
eters.

(C.1) ε+ t ≤ β must hold. To see this suppose ε+ t > β and (ε− 1) honest
parties produce their ballot for the same value v. Then, those ballots and
the t additional ballots on v (that the adversary can produce) are sufficient

22

to reconstruct the secret at v, based on the property of β-correctness (as
ε− 1 + t ≥ β would hold). However, this contradicts ε-privacy.
(C.2) 2ε > n−t ensures that the secret at at most one index is reconstructed,
even when honest parties vote for different indices. This is because if this
condition holds, then it cannot be the case that a set of ε honest parties
vote for v (necessary to reconstruct the secret at index v based on privacy)
and a different (disjoint) set of ε honest parties vote for v′ (necessary to
reconstruct the secret at index v′ based on privacy). Looking ahead, this
property is useful for our IA upper bound construction.

From the above two constraints, we get that n−t
2 < ε ≤ β − t, which implies

that β > n+t
2 holds. Note that the construction of Damg̊ard et al. [DRSY23]

with ε = n − 2t and β = n − t satisfies both these constraints as it works for
n > 3t. We give a brief overview of this construction below, and then explain
how it can be adapted to our setting.

Overview of 1or0wi Construction [DRSY23]. At a high-level, in this construc-
tion, the dealer computes two levels of threshold secret sharing (Section A.2) for
each of the secrets (among the vector of secrets). First, she shares a secret, say
s, using threshold (n − t − 1), creating for each party R a share sR. Next, each
of these first-level shares is re-shared using threshold (n− 2t− 1).

All the parties now act as intermediaries to pass on subshares of sR to R.
This is done using a tool referred to as transferrable encryption. Briefly, this
works as follows: For the sub-share of sR intended for intermediary I, the dealer
broadcasts an encryption c of the sub-share under a public key received from
I. Simultaneously, I prepares an encryption, say c′ of its (one-time) secret key
(corresponding to the public key using which the dealer prepared this encryption
c) using the public key received from R. This encryption c′ is referred to as
a transfer key (as it transfers the ability to decrypt c to R). Depending on
which value should be decrypted (corresponding to which secret R wishes to
reconstruct), R broadcasts the relevant decryption key which can be used to
decrypt c′ to retrieve the secret key of I, which is subsequently used to decrypt
c to obtain the intended sub-share. All the actions are augmented with NIZK
proofs to ensure correctness.

It is important to note that the public keys may not have been exchanged con-
sistently, but there are enough intermediaries to reconstruct successfully when
no one is identified as corrupt. More specifically, a party is identified as corrupt
if she is in conflict with more than t parties with respect to their public keys
(this ensures that an honest party is never implicated). Therefore, when no one
is identified, it must be the case that the dealer is in agreement with at least
(n − t) intermediaries about their public keys. Furthermore, each R must be in
agreement with at least (n − t) intermediaries about its public key. Therefore,
there are at least (n − 2t) intermediaries who are in agreement with both the
dealer and R, which is sufficient to enable the transfer of sR to R (as sR is thresh-
old shared using threshold (n− 2t− 1)). It is crucial that (n− 2t) > t holds, as
otherwise the t corrupt parties acting as intermediaries would be sufficient to re-

23

cover the share sR meant for honest R. This choice of thresholds leads Damg̊ard
et al. [DRSY23] to obtain (n − t)-identifiability and (n − 2t)-privacy (as per
constraint (C.1)). Moreover, it follows from (C.2) that 2(n − 2t) > n − t, i.e.
n > 3t, must hold so that the secret at at most one index is reconstructed.

Adapting to (td, tm)-Asynchrony With Identifiability. To adapt the above to
the case when the public keys are communicated over peer-to-peer channels
with (td, tm)-asynchrony, we observe that an honest dealer must have received
public keys from at least (n − td) intermediaries among which at most t may
not be in agreement (as they may be corrupt). So, there are at least (n− td− t)
intermediaries who will be in agreement with the dealer (with respect to their
public keys which the dealer used to compute the c ciphertexts). If not, the dealer
can be implicated as corrupt. Similarly, we observe that R’s public key would be
received by at least (n − tm) intermediaries among which at most t will not be
in agreement. So, there are at least (n − tm − t) intermediaries who will be in
agreement with R (with respect to R’s public keys that the intermediaries used to
compute the c′ ciphertexts). If not, R can be implicated as corrupt. Thus, there
are at least (n−2t−td−tm) intermediaries who are in agreement with the dealer
(with respect to the intermediary’s public key) and R (with respect to R’s public
key). Setting the second-level threshold to (n − 2t − td − tm − 1) ensures that
this set of intermediaries is enough to reconstruct sR. To ensure that a set of t
corrupt intermediaries are not sufficient to recover the share sR meant for honest
R, (n − 2t − td − tm) > t i.e. n > 3t + tm + td must hold. Tying up loose ends,
we choose the first-level threshold to be (n− tm− t− 1) to achieve (n− tm− t)-
identifiability as per the requirement in our IA MPC protocol. We thus extend
the construction to a one-or-nothing secret sharing with intermediaries with
(n − tm − t)-identifiability (and (n − tm − t)-correctness) and (n − 2t − tm)-
privacy (respecting constraint (C.1) mentioned above). Furthermore, it follows
from (C.2) that if 2(n− 2t− tm) > n− t i.e. n > 3t+ 2tm holds, then the secret
at at most one index can be successfully reconstructed.

Based on the above observations and minor modifications to the construction
of 1or0wi of Damg̊ard et al. [DRSY23], we obtain the following (details appear
in Section C.2).

Theorem 9 ([DRSY23] (with minor modifications)). Assume the exis-
tence of a public key encryption scheme with CPA security, and a secure non-
interactive zero knowledge proof system. Then, there exists a maliciously secure
one-or-nothing secret sharing with intermediaries with (n− tm− t)-identifiability
(which implies (n − tm − t)-correctness) and (n − 2t − tm)-privacy when n >
3t+ tm + td and n > 3t+ 2tm holds.

Next, we adapt the construction of 1or0wi to the asynchronous setting where
identifiability is not required.

Adapting to (td, tm)-Asynchrony Without Identifiability. We again consider the
case when the public keys are communicated over peer-to-peer channels with

24

(td, tm)-asynchrony but demand only correctness (not identifiability). Suppose
everyone behaves honestly. Then, the dealer must have received public keys from
at least (n − td) intermediaries who will be in agreement with the dealer (with
respect to their public keys that the dealer used to compute the c ciphertexts).
Similarly, we observe that R’s public key would be received by at least (n− tm)
intermediaries who will be in agreement with R (with respect to R’s public keys
that the intermediaries used to compute the c′ ciphertexts). If these conditions
are not satisfied, it must be the case that some party misbehaved and all parties
simply abort. When everyone behaves honestly, we can conclude that there are
at least (n− td − tm) intermediaries who are in agreement with both the dealer
and R. Setting the second-level threshold to (n − td − tm − 1) ensures that
this set of intermediaries is enough to reconstruct sR. To ensure that a set of t
corrupt intermediaries are not sufficient to recover the share sR of an honest R,
(n− td− tm) > t i.e. n > t+ tm+ td must hold. For use in our UA MPC protocol,
we obtain a construction of one-or-nothing secret sharing with intermediaries
with (n− tm)-correctness and (n− t− tm)-privacy (respecting constraint (C.1)
mentioned above). Further, it follows from (C.2) that if 2(n − t − tm) > n − t
i.e. n > t+ 2tm holds, then the secret at at most one index can be successfully
reconstructed.

We thus obtain the following (details appear in Section C.2).

Theorem 10 ([DRSY23] (with minor modifications)). Assume the exis-
tence of a public key encryption scheme with CPA security, and a secure non-
interactive zero knowledge proof system. Then, there exists a maliciously secure
one-or-nothing secret sharing with intermediaries with (n− tm)-correctness and
(n− t− tm)-privacy when n > t+ tm + td and n > t+ 2tm holds.

We are now ready to present our upper bounds. Both our upper bounds are
constructed via slight modifications to the fully synchronous PubP2P-BC, ID,
CRS, 3t < n construction of Damg̊ard et al. Their work presents a compiler that
transforms a two-broadcast round ID, CRS protocol Πbc to a fully synchronous
PubP2P-BC, ID, CRS, 3t < n protocol Πp2pbc where the peer-to-peer channels
are assumed to be public. Roughly speaking, their compiler proceeds similarly
to the compiler of Damg̊ard et al. [DMR+21] (described in Section 3.2) which
involves parties computing garbled circuits corresponding to the next message
function of Πbc and secret sharing the labels of these garbled circuits. A crucial
difference is that the tool used for secret sharing in the CRS setting is the
maliciously-secure one-or-nothing secret sharing with intermediaries.

We observe that plugging in the (malicious secure) one-or-nothing secret
sharing with intermediaries with modified parameters of correctness, privacy and
identifiability in the above compiler yields P2P-BC IA and UA upper bounds
tolerating (td, tm)-asynchrony in the first round for certain range of thresholds.
We state the formal theorems below.

Theorem 11 (PubP2P-BC, IA, CRS, 3t + tm + td < n, 3t + 2tm < n).
Let f be an efficiently computable n-party function and suppose 3t + tm + td <
n, 3t + 2tm < n holds. Let Πbc be a BC-BC, ID, CRS protocol that securely

25

computes f with the additional constraint that the straight-line simulator can
extract inputs from corrupt parties’ first-round messages. Assume the existence of
a secure garbling scheme and a maliciously-secure one-or-nothing secret sharing
with intermediaries with (n − tm − t)-identifiability and (n − 2t − tm)-privacy.
Then, there exists a PubP2P-BC, ID, CRS protocol that securely computes f over
two rounds, the first of which is over public peer-to-peer channels with (td, tm)-
asynchrony, and the second of which is over a synchronous broadcast and peer-
to-peer channel.

Proof (Sketch). We observe that when the one-or-nothing secret sharing with
intermediaries with (n−tm−t)-identifiability and (n−2t−tm)-privacy is plugged
into the compiler of Damg̊ard et al. [DRSY23], it yields a PubP2P-BC, ID, CRS
protocol where the first round communication can be carried over public peer-
to-peer channels with (td, tm)-asynchrony and the second round communication
is executed over a synchronous broadcast and peer-to-peer channel.

The main difference is that in the asynchronous setting it may so happen
that an honest party’s first round message is echoed by only n− tm − t parties
(because her messages may be dropped to tm honest parties, and t corrupt parties
may pretend to have not received her first-round message sent over peer-to-peer
channels). Therefore, we can implicate a party as being a cheater only if her
message is echoed by fewer than n− tm− t parties. The property of (n− tm− t)-
identifiability ensures that in such a case (when a party’s first-round message is
supported by n − tm − t parties), either the appropriate labels (corresponding
to a party first-round message) are successfully reconstructed or a cheater is
identified; maintaining the IA guarantee.

The above also means that on behalf a corrupt party, the adversary needs to
send a consistent first round message to only n− tm − 2t honest parties. This is
because their support combined with the additional support of t corrupt parties’
would be sufficient to avoid being implicated and obtain the labels corresponding
to this first-round message. If the adversary has this behaviour, then (n− 2t−
tm)-privacy ensures that the adversary gets at most one label corresponding to
her first round message based on the analysis of constraint (C.2) above – In
more detail, in order for two different labels to be successfully reconstructed,
the adversary must send different first-round messages to two disjoint sets of
honest parties, each of size at least n − tm − 2t. However, this is not possible
since 2(n− tm − 2t) ≤ n− t contradicts our assumption that 3t+ 2tm < n.

Lastly, we note that the formal proof of security would follow identically to
that of Damg̊ard et al. [DRSY23], except that the privacy and identifiability
properties are invoked with respect to the one-or-nothing secret sharing with
intermediaries with the modified parameters of (n − tm − t)-identifiability and
(n− 2t− tm)-privacy.

Theorem 12 (PubP2P-BC, UA, CRS, t + tm + td < n, t + 2tm < n).
Let f be an efficiently computable n-party function and suppose t + tm + td <
n, t + 2tm < n holds. Let Πbc be a BC-BC, UA, CRS protocol that securely
computes f with the additional constraint that the straight-line simulator can

26

extract inputs from corrupt parties’ first-round messages. Assume the existence of
a secure garbling scheme and a maliciously-secure one-or-nothing secret sharing
with intermediaries with (n − tm)-correctness and (n − t − tm)-privacy. Then,
there exists a PubP2P-BC, UA, CRS protocol that securely computes f over
two rounds, the first of which is over public peer-to-peer channels with (td, tm)-
asynchrony, and the second of which is over a synchronous broadcast and peer-
to-peer channel.

Proof (Sketch). We observe that the following minor modifications to the com-
piler of Damg̊ard et al. [DRSY23] yields a PubP2P-BC, UA, CRS protocol where
the first round communication can be carried over public peer-to-peer channels
with (td, tm)-asynchrony and the second round communication is executed over
a synchronous broadcast and peer-to-peer channel.

– First, since in this case we are not required to identify a cheater (as the goal
is unanimous abort), the protocol simply outputs ⊥ in all the cases where
the cheater was identified.

– Second and more crucial, we use the one-or-nothing secret sharing with in-
termediaries scheme with (n− tm)-correctness and (n− t− tm)-privacy when
n > t+ tm + td and n > t+ 2tm holds.

The main difference is that in the asynchronous setting it may so happen that
a party’s first round message is echoed by only n − tm parties in an all-honest
execution (because her messages to up to tm honest parties may be dropped).
The property of (n − tm)-correctness ensures that the appropriate labels of all
the garbled circuits corresponding to this party’s first-round message are success-
fully reconstructed and subsequently the protocol results in output computation.
Next, since the constraint (C.2) i.e. n− t < 2ε is satisfied (since ε = n− t− tm
and we assume n > t+ 2tm), we can infer that the adversary who sends incon-
sistent first-round messages to different sets of honest parties obtains at most
one label corresponding to her first round message (therefore security of garbled
circuits can be invoked to argue security of the protocol).

The formal proof of security would follow identically to the compiler of
[DRSY23], except that the privacy and correctness properties are invoked with
respect to the one-or-nothing secret sharing with intermediaries with the modi-
fied parameters of (n− tm)-correctness and (n− t− tm)-privacy.

Without PKI, With private channels, from One-or-Nothing Secret
Sharing with Intermediaries The PubP2P-BC CRS upper bounds of Theo-
rem 11 and Theorem 12 work in the setting where the first round peer-to-peer
communication is public (similar to the upper bounds in [DRSY23]). While in the
fully synchronous setting, availability of private channels in the first round does
not seem to be useful in obtaining stronger security guarantees or achieving fea-
sibility for wider threshold ranges (except the case where corruption threshold is
one), we observe that this makes a difference when we adapt the approach based
on one-or-nothing secret sharing with intermediaries to the setting where first-
round communication is over peer-to-peer channels with (td, tm)-asynchrony.

27

As described in Section 3.2, recall that in the construction of 1or0wi, the
set of intermediaries that enabled the share transfer (via the transferrable en-
cryption) belonged to the non-deaf set of the dealer (i.e. belonged to the set of
parties from whom the dealer received the public keys in the first round) as well
as belonged to the non-mute set of the receiver R (i.e. belonged to the set of
parties who received the public key from R in the first round).

Transferrable encryption enabled this share transfer to occur non-interactively
over broadcast channel, as the dealer could “share” (by preparing encryptions to
the intermediaries) and the receivers could “vote” simultaneously. When this is
plugged in the PubP2P-BC MPC protocols, the only communication required in
the first round with respect to 1or0wi was exchanging public keys which could
be done over public peer-to-peer channels.

We observe that if private peer-to-peer channels were available in the first
round, then the sharing could be split into two parts – In the first round, the sub-
shares could be handed over to the intermediaries privately in the first round
itself. In the second round, over broadcast, the intermediaries could publish
the transfer keys and the receivers could vote simultaneously (same as in the
original construction). Note that with this modification the set of intermediaries
that enable the share transfer is changed. More specifically, the intermediaries
that enable the share transfer are those who belonged to the non-mute set of
the dealer (i.e. received the private shares from the dealer in the first round) as
well as belonged to the non-mute set of the receiver R (i.e. belonged to the set
of parties who received the public key from R in the first round). Following the
analysis similar to Section 3.2, we observe that this modification in the 1or0wi
(of communicating the sub-shares to the intermediaries privately in the first
round) results in the condition (n − t − tm − t − tm) > t i.e. n > 3t + 2tm
for the case with identifiability and the condition (n − tm − tm) > t i.e. n >
t + 2tm without identifiability. We thus conclude that using private channels
yields a better feasibility bound (with no dependence on td) for 1or0wi, which
in turn improves the feasibility bounds of the MPC constructions. We state the
inferences below.

Observation 1 (PrivP2P-BC, IA, CRS, 3t+ 2tm < n) Let f be an efficiently
computable n-party function and suppose 3t + 2tm < n holds. Assume the exis-
tence of a maliciously-secure one-or-nothing secret sharing with intermediaries
with (n − tm − t)-identifiability and (n − 2t − tm)-privacy. Then, there exists a
PrivP2P-BC, ID, CRS protocol that securely computes f over two rounds, the
first of which is over private peer-to-peer channels with (td, tm)-asynchrony, and
the second of which is over a synchronous broadcast and peer-to-peer channel.

Observation 2 (PrivP2P-BC, UA, CRS, t+ 2tm < n) Let f be an efficiently
computable n-party function and suppose t+2tm < n holds. Assume the existence
of a maliciously-secure one-or-nothing secret sharing with intermediaries with
(n− tm)-correctness and (n− t− tm)-privacy. Then, there exists a PrivP2P-BC,
UA, CRS protocol that securely computes f over two rounds, the first of which
is over private peer-to-peer channels with (td, tm)-asynchrony, and the second of
which is over a synchronous broadcast and peer-to-peer channel.

28

Without PKI, from Obfuscation In this section, we discuss the constructions
from diO. These constructions have the purpose of showing feasibility, or rather,
to give an evidence of infeasibility of a negative result in those settings. We
provide an overview of the constructions below.

Informally, differing-inputs obfuscation (diO, refer Appendix A.1) [BGI+01,ABG+13]
is an algorithm that transforms a program into a form in which it can still be
evaluated, but its inner workings are hidden. The security guarantee of diO is
that, given two programs P0 and P1 such that it is computationally hard to find
an input x such that P0(x) 6= P1(x), it is also hard to distinguish between diO(P0)
and diO(P1).8

Our constructions use something we call puncturable public-key encryption.
This new type of encryption allows us to create punctured decryption keys that
are unable to decrypt messages from certain senders, while behaving correctly
with respect to all other senders.

Puncturable Public-Key Encryption

Definitions Puncturable public key encryption (PPKE) requires the use of the
sender’s secret key — in addition to the receiver’s public key — to encrypt. In
a PPKE scheme, the decryption key can be punctured with respect to a set of
sender public keys in such a way that ciphertexts produced by those senders do
not reveal the encrypted message even given the receiver’s punctured decryption
key. More formally, a PPKE scheme consists of four algorithms:

keygenS(1λ)→ (pkS , skS) generates a key pair belonging to a sender.
keygenR(1λ)→ (pkR, skR) generates a key pair belonging to a receiver.
pkeygenR(1λ,P)→ (pkR, skR) generates a key pair belonging to a receiver,
where the decryption key is punctured at the set of public keys P.
enc(skS , pkS , pkR,msg)→ c encrypts a message.
dec(skR, pkS , c)→ msg decrypts a ciphertext.

Definition 4 (Secure PPKE). A PPKE scheme is secure if:

1. It is correct in the usual sense.
2. It is semantically secure in the usual sense.
3. It is securely puncturable, meaning that given a receiver key pair produced

by pkeygenR(1λ,P),
(a) correctness holds for all sender public keys pkS /∈ P, but
(b) semantic security holds for pkS ∈ P even given the secret key skR.

4. It is puncture hiding, meaning that the public key pkR does not reveal whether
it is punctured or not (or the points of puncture).

8It has been conjectured that differing-inputs obfuscation does not exist [BSW16].
However, its non-existance has not been definitively proven; finding such definitive
proof is a very hard open problem.

29

Observation 3 (Inter-Key Non-Malleability) A given ciphertext c under
pkS cannot be transformed to c′ under a different pk′S such that the plaintexts
msg recovered by decrypting c under pkS and msg′ recovered by decrypting c′

under pk′S are correlated.
In other words, an adversary who provides msg0 and msg1 and is shown

c = enc(skS , pkS , pkR,msgb) cannot come up with a ciphertext c′ and pk′S 6= pkS
such that, given dec(skR, pk′S , c

′), she can guess b with non-negligible advantage.

Proof. We start with an honestly generated (pkS , skS) and an honestly generated
(pkR, skR) punctured at pkS . Given msg0 and msg1 provided by the adversary
A (who knows pkS , pkR and skR), we choose b ← {0, 1}, and, encrypt c ←
enc(skS , pkS , pkR,msgb), and give c to A. If A could transform c to c′ under
pk′S (where pkR is not punctured at pk′S) such that the decryption of c′ is not
independent of msgb, A could then decrypt c′ (using skR) and guess b, which
should be impossible by secure puncturability.

Construction We propose a simple PPKE scheme that uses diO, a pseudoran-
dom function (PRF), and a puncturable PRF (PPRF). The receiver’s public
encryption key is pkR = OPenc, which is an obfuscation of the encryption pro-
gram Penc

k,k′ (with hardcoded PPRF key k and PRF key k′, which also form skR).
To generate a punctured public key, the key k embedded in Penc

k,k′ is punctured.
The sender’s secret key is a signing key skS = sk, and the corresponding

public key is the verification key pkS = vk. The sender encrypts the message
msg by choosing a random nonce nonce, signing (msg, nonce, “encrypt”) to get
σ, and evaluating OPenc on (vk,msg, nonce, σ) to get c.9

Penc
k,k′ (vk,msg, nonce, σ) :

if SIG.verify(vk, (msg, nonce, “encrypt”), σ) = accept then
c′ := PPRFk(vk)⊕ PRFk′ (nonce)⊕ msg
c := (c′, nonce)
return c

end if

The receiver uses skR = (k, k′) to decrypt by computing msg = c′⊕PPRFk(vk)⊕
PRFk′(nonce). (If k is punctured at vk, a default output of ⊥ is given.)

By puncturing k at a set of verification keys P, we can ensure that ciphertexts
produced by the owners of these verification keys will look uniformly random
even given both OPenc and the punctured key k. Furthermore, OPenc with a punc-
tured k will be computationally indistinguishable from OPenc with an intact k,
since signatures are hard to forge, and it is thus hard for anyone other than
the owner of the corresponding signing keys to find inputs on which the two
obfuscated programs disagree.

9We use the same signature scheme for multiple purposes in our secure computation
construction; to ensure that signatures produced for one purpose cannot be used to
break security elsewhere, we always include a keyword (such as “encrypt”) in our
signed messages.

30

MPC From diO Consider the function Pdk,dk′ , in which the puncturable public-
key decryption keys dk and dk′ are hard-coded. The obfuscation OP = diO(Pdk,dk′),
as well as the PPKE receiver keys ek and ek′, are available in a CRS. (dk′ and
ek′ are necessary for a technicality in the proof.) We consider four flavors of the
obfuscated program. The one in Figure 3 only offers UA; the one in Figure 4
offers identifiable abort. In both programs, if the steps in magenta are present,
the program exploits the availability of private peer-to-peer channels in the first
round; if they are omitted, the program assumes only public peer-to-peer chan-
nels.

In our constructions, each party generates a signing / verification key pair,
and sends all her peers the verification key, as well as a signed PPKE encryp-
tion of her input in the first round; this encryption is under the public key ek.
Informally, PPKE ensures that honest party inputs are not leaked, despite the
presence of the decryption key in the obfuscated program. If private peer-
to-peer channels are available, the parties generate additional signing
/ verification key pairs, one for each of their peers. They send one
secret signing key from such a pair privately to each peer. These help
provide our obfuscated program with proofs of successful one-way
communication (PoOWC).

In the second round, all parties broadcast signed echos of all the public mes-
sages they received. (Each party’s second round broadcast message also includes
the authoritative version of her own public verification key, and, if private
peer-to-peer channels are available, all of the public verification keys
she generated for the purposes of proofs of successful one-way com-
munication. Finally, it includes an additional ciphertext cttp (under the key
ek′); this ciphertext is only used for the proof of security, so we will not discuss it
further until the proof. Her signature is produced on all of this, as well as on the
function the party wishes to compute.) If private peer-to-peer channels are
available, the parties use the secret signing keys they thus received to
produce additional signatures.

The parties then use the second round broadcast messages as inputs to the
obfuscated program, which gives them the output. The signed echos provide a
verifiable broadcast of the encrypted inputs, in the sense that after the second
round, each party holds a proof that sufficiently many other parties saw the same
encrypted inputs. This proof is checked by the program before it produces an
output, and serves to prevent the adversary from recomputing the output with
different inputs. If the check passes, the program decrypts the ciphertexts and
evaluates the function on the inputs thus obtained.

Figure 3.1: P2P-BC MPC with Asynchrony from Obfuscation

Private Input. Every party Pi has a private input xi ∈ {0, 1}∗ and
randomness ri ∈ {0, 1}∗.
Common Input.

31

– An puncturable public key encryption scheme PPKE = (keygenS,
keygenR, pkeygenR, enc, dec).

– A signature scheme SIG = (keygen, sign, verify).
(We make liberal use of the fact that, in our construction of PPKE,
PPKE.keygenS and SIG.keygen can be the same.)
Setup.
– The CRS is set up as follows:
• (ek, dk)← PPKE.keygenR(1λ).
• (ek′, dk′)← PPKE.keygenR(1λ).
• OP← diO(Pdk,dk′).
• (ek, ek′, OP) is published as the CRS.

First Round. Each party Pi does the following:
– Runs (vki, ski)← SIG.keygen(1λ).
– Runs (vkPoOWC(i→j), skPoOWC(i→j))← SIG.keygen(1λ) for j ∈ [n].
– Encrypts her input xi as ci ← PPKE.enc(ski, vki, ek, xi).
– Signs ci, the round number and her identitya as

σi,round1 ← SIG.sign(ski, (ci, “round1”, “party i”)).
– Sends (vki, ci, σi,round1) to every other party.
– Sends skPoOWC(i→j) privately to party Pj for j ∈ [n].

Second Round. Let vkj→i, cj→i, and σj→i,round1 denote the verification
key, ciphertext and signature received by party Pi from party Pj over
peer-to-peer channels in the first round. Let skPoOWC(j→i) denote the
signing key received by party Pi from party Pj over private peer-
to-peer channels. Each party Pi does the following:
– Lets pubviewi := {(vkj→i, cj→i, σj→i,round1)}j∈[n] denote all the public

messages she received in the first round.
The next step is only necessary for the proof.

– Encrypts a null value ⊥ as cttpi ← PPKE.enc(ski, vki, ek′,⊥).
– Lets mi := (vki, {vkPoOWC(i→j)}j∈[n], pubviewi, cttpi) denote every-

thing she will send in this round.
– Signs mi, as well as the function to be computed, as σi,round2 ←

SIG.sign(ski, (mi, f, “round2”, “party i”)).
– Produces additional signatures using each of the

privately received signing keys as σPoOWC(j→i) ←
SIG.sign(skPoOWC(j→i), (mi, f, “round2”,“party i”)) for every
j ∈ [n].

– Broadcasts (mi, σi,round2, {σPoOWC(j→i)}j∈[n]).
Output Computation. Each party Pi computes the output as y ←
OP(f, {(mj , σj,round2, {σPoOWC(k→j)}k∈[n])}j∈[n]).

P2P-BC using diO.
aWe have parties sign their protocol identities to prevent key copying at-

tacks. Whether a PKI is available or not, we assume all parties agree on an
assignment of protocol identities. This is reasonable to do because in practice,
communication requires e.g. a unique IP address for each participant.

32

Pdk,dk′ (f, {(mi, σi,round2, {σPoOWC(j→i)}j∈[n])}i∈[n]) :

for i ∈ [n] do
Parse mi as (vki, {vkPoOWC(i→j)}j∈[n], pubviewi, cttpi)
Parse pubviewi as {(vkj→i, cj→i, σj→i,round1)}j∈[n]
if SIG.verify(vki, (mi, f, “round2”, “party i”), σi,round2) = reject then

return abort
end if

end for
for i, j ∈ [n] do

if (vki→j , ci→j , σi→j,“round1”) = (⊥,⊥,⊥) then
di→j := silence

else
di→j := SIG.verify(vki, (ci→j , “round1”, “party i”), σi→j,round1)
if vki→j 6= vki then

di→j := reject
end if
if SIG.verify(vkPoOWC(i→j), (mj , f, “round2”, “party j”), σPoOWC(i→j)) = reject then

di→j := reject
end if

end if
end for
for i ∈ [n] do

if ∃i1, i2 s.t. ci→i1 6= ci→i2 and di→i1 = di→i2 = accept then
return abort

end if
if ∃j s.t. di→j = reject then

return abort
end if
if ∃M ⊆ [n] s.t. |M | > tm and ∀j ∈M, di→j = silence then

return abort
end if
if ∃D ⊆ [n] s.t. |D| > td and ∀j ∈ D, dj→i = silence then

return abort
end if

end for
for i ∈ [n] do

Ai := {j : di→j = accept}j∈[n]
Select any j ∈ Ai
ci := ci→j
xi ← PPKE.dec(dk, vki, ci)
mtpi ← PPKE.dec(dk′, vki, cttpi)

end for
if ∃i1 6= . . . 6= in−t s.t. mtpi1 = · · · = mtpin−t 6= ⊥ then

return mtpi1
else

return f(x1, . . . , xn)
end if

Fig. 3: Program that returns computation output (for security with UA).

Unanimous Abort In order to achieve unanimous abort, the program in Figure 3
performs the following checks:

1. It verifies all the signatures on the second-round messages (including those
produced using the privately communicated signing keys), and all

33

Pdk,dk′ (f, {(mi, σi,round2, {σPoOWC(j→i)}j∈[n])}i∈[n]) :

for i ∈ [n] do
Parse mi as (vki, {vkPoOWC(i→j)}j∈[n], pubviewi, cttpi)
Parse pubviewi as {(vkj→i, cj→i, σj→i,round1)}j∈[n]
if SIG.verify(vki, (mi, f, “round2”, “party i”), σi,round2) = reject then

return aborti
end if

end for
for i, j ∈ [n] do

if (vki→j , ci→j , σi→j,“round1”) = (⊥,⊥,⊥) then
di→j := silence

else
di→j := SIG.verify(vki, (ci→j , “round1”, “party i”), σi→j,round1)
if vki→j 6= vki then

di→j := reject
end if
if SIG.verify(vkPoOWC(i→j), (mj , f, “round2”, “party j”), σPoOWC(i→j)) = reject then

di→j := reject
end if

end if
end for
for i ∈ [n] do

if ∃i1, i2 s.t. ci→i1 6= ci→i2 and di→i1 = di→i2 = accept then
return aborti

end if
Let Ri→ ⊆ [n] be the maximal set s.t. ∀j ∈ Ri→, di→j = reject.
Let R→i ⊆ [n] be the maximal set s.t. ∀j ∈ R→i, dj→i = reject.
Let Mi ⊆ [n] be the maximal set s.t. ∀j ∈Mi, di→j ∈ {silence, reject}.
Let Di ⊆ [n] be the maximal set s.t. ∀j ∈ Di, dj→i ∈ {silence, reject}.
if |Ri→ ∪ R→i| > t then

return aborti
end if
if |Mi| > tm + t then

return aborti
end if
if |Di| > td + t then

return aborti
end if
if |Mi ∪Di| > td + tm + t then

return aborti
end if

end for
if ∃D,M ⊆ [n] s.t. D ∩M = ∅, |D| > t, |M | > t, |D| + |M | > t + td + tm or |D| + |M | >
t + 2 min(td, tm) and ∀i ∈ D, ∀j ∈ M, dj→i ∈ {silence, reject}∧di→j ∈ {silence, reject}
then

return abort . Note that
this will never happen, so it does not violate security with identifiable abort. There must be at
least one honest party in each of D and M . Let hD be the honest party in D, and hM be the
honest party in M . Let JD be the set of parties i such that dhD→i ∈ {silence, reject}; note
that M ⊆ JD. Let JM be the set of parties i such that di→hM ∈ {silence, reject}; note that
D ⊆ JM . In any real execution, it must be that |JD ∪ JM | ≤ t + td + tm. However, here we
have |JD ∪JM | ≥ |M ∪D| > t+ td + tm. The conditions in magenta will never happen
if private peer-to-peer channels are available, by similar logic.
end if
for i ∈ [n] do

Ai := {j : di→j = accept}j∈[n]
Select any j ∈ Ai
ci := ci→j
xi ← PPKE.dec(dk, vki, ci)
mtpi ← PPKE.dec(dk′, vki, cttpi)

end for
if ∃i1 6= . . . 6= in−t s.t. mtpi1 = · · · = mtpin−t 6= ⊥ then

return mtpi1
else

return f(x1, . . . , xn)
end if

Fig. 4: Program that returns computation output (for security with IA).

34

echoed signatures on the first-round messages, under the keys provided in
the second-round messages.

2. It checks that there do not exist verifying signatures on two different cipher-
texts from the same party.

3. It checks that at least n−tm parties echoed each party’s first-round message,
and that each party echoed at least n−td other parties’ first-round messages.
(If private peer-to-peer channels are available, a party Pi is con-
sidered to have successfully echoed party Pj’s first-round message
only if she signs her second-round message with the signing key
she received privately from Pj.)

Checking the successful communication via first-round private chan-
nels helps obtain better bounds, as shown in Theorem 14, because
not seeing all the messages a given honest party receives helps make
it difficult for the adversary to produce fake second-round messages
on behalf of that party.

Theorem 13 (PubP2P-BC, UA, CRS, t + td + tm < n). Let f be an effi-
ciently computable n-party function and let t + td + tm < n. Then, the protocol
described in Figure 3.1 with the program described in Figure 3 (excluding the
steps in magenta) is a PubP2P-BC, UA, CRS protocol that securely computes
f over two rounds, the first of which is over public peer-to-peer channels with
(td, tm)-asynchrony, and the second of which is over synchronous broadcast and
peer-to-peer channels.

Theorem 14 (PrivP2P-BC, UA, CRS, t + 2 min(td, tm) < n, t + tm <
n). Let f be an efficiently computable n-party function and let t +
2 min(td, tm) < n, t + tm < n. Then, the protocol described in Figure 3.1
with the program described in Figure 3 (including the steps in ma-
genta) is a PrivP2P-BC, UA, CRS protocol that securely computes f
over two rounds, the first of which is over private peer-to-peer chan-
nels with (td, tm)-asynchrony, and the second of which is over syn-
chronous broadcast and peer-to-peer channels.

We now argue that, after an execution of the protocol in Figure 3.1, the
adversary can only run the obfuscated program in Figure 3 on one set of inputs
any of which belong to honest parties without getting an abort. We argue this
in two parts: first, why the adversary is unable to use only some of the honest
parties’ inputs, and second, why the adversary is unable to substitute corrupt
parties’ inputs.

Honest Party Second Round Messages Must All Be Used Together
The adversary cannot drop honest party second-round messages and still ob-
tain the output; if she tries this, she will simply get an abort as a result of
the first if-statement. The adversary might hope to be able to replace some
honest parties’ second-round messages with different second-round messages,

35

along with a different verification keys. (Note that it’s very important that
the adversary be unable to take an honest party ciphertext and use it to-
gether with a corrupt party verification key in a way where information
about the honest party’s input is preserved. Obs 3 shows that PPKE guar-
antees that swapping in a different verification key causes a ciphertext to
decrypt to something unrelated to the original message.) Such an attack by
the adversary results in a partitioning of honest parties into two groups: the
group M of parties whose second-round messages remain untouched, and the
group D of parties whose second-round messages got replaced. In order not
to get rejected by the second if-statement of the third for-loop, the adversary
must also prevent first-round communication from D to M (and either also
prevent first-round communication from M to D, or claim, in the
new second-round messages of D, that this communication was pre-
vented). For each i ∈ D and j ∈ M , we then have dj→i =di→j = silence.
If |D| > tm or |M | > tm, then the third if-statement of the third for-loop
will abort; if |M | > td or |D| > td, then the fourth if-statement of the third
for-loop will abort. If td + tm < n − t, 2td < n − t or 2tm < n − t, then we
must have either |D| > tm, |D| > td, |M | > td, or |M | > tm, so an abort will
happen.
A is Unable to Substitute Corrupt Party Inputs While Keeping Hon-
est Party Second Round Messages If different signatures on different
ciphertexts verify under the same key, then the first if-statement of the third
for-loop will abort. If any honest parties receive a non-verifying signature,
then the second if-statement of the third for-loop will abort. If more than tm
parties echo ⊥, then the third if-statement of the third for-loop will abort.
So, if an abort does not happen, then at most tm honest parties can echo
⊥ from a corrupt party, and the rest echo one fixed ciphertext. As long as
n− t− tm > 0 (which is the number of honest parties minus tm), this guar-
antees that at least one honest party echoed each corrupt party ciphertext.
So, the adversary cannot swap out a corrupt party ciphertext for a different
one (without swapping out at least one honest party second-round message,
which requires swapping out all honest party second-round messages, as per
the above argument); if the adversary attempts this, the first if-statement of
the third for-loop will abort.

We conclude that the adversary can only evaluate the program on one set of
corrupt party ciphertexts with the honest parties’ set of ciphertexts.

Proof (of Theorems 13 and 14). We prove security by building a simulator.
Recall that we allow each party Pi to include a ciphertext cttp, encrypted to the
obfuscated program’s key ek′, within with their signed and broadcast second-
round message. In a real execution, honest parties will encrypt ⊥, and these ci-
phertexts will be ignored by the program. However, we will use these ciphertexts
to allow simulated honest parties to communicate the output of the function to
the program.

We now proceed to provide a proof sketch of the indistinguishability between
the ideal and the real execution through a sequence of hybrids.

36

1. We start with a real execution; the simulator honestly plays the role of all
honest parties, given their inputs. Notice that the simulator runs the setup
phase, including the generation of the program’s keys. As a consequence, the
simulator knows the secret key dk and is able to use it to extract the corrupt
parties’ inputs from their ciphertexts; details follow.
The simulator does all the checks in the same way as the program OP de-
scribed in Figure 3 does. If these checks go through, each corrupted party
sent the same ciphertext to at least n − (t + tm) other honest parties. The
simulator uses this ciphertext to extract the input of the corrupted party.

2. During the CRS setup, the simulator punctures the key (ek′, dk′) (used to
decrypt cttp) at the set of honest party verification keys {vki}i∈H. ek′ is
indistinguishable from that in the previous hybrid by the puncture hiding
property of PPKE. By the security of diO, this hybrid is indistinguishable
from the previous one, since the program output does not change for any
inputs that are computationally feasible for the adversary to find (as cttp
does not affect the output in this hybrid).

3. The simulator, having extracted the corrupt parties’ inputs, sends them to
the trusted party and obtains the function output y.
The simulated honest parties set cttpi ← PPKE.enc(ek′, vki, ski, y). By the
secure puncturability of PPKE, this hybrid is indistinguishable from the pre-
vious one, since the decryption key dk′ is punctured at the honest party
verification keys, and thus all their ciphertexts always decrypt to ⊥.
The simulator computes all the steps of Pdk,dk′ . If it gets y as output, it
sends continue to the trusted party; otherwise, it forwards the returned abort
message.

4. The simulator goes back to not puncturing dk′. Now, the obfuscated program
will be using the messages mtpi to determine the output. By our earlier
argument that honest party second-round messages must all be used together
and that corrupt party inputs cannot be substituted, the adversary cannot
find any inputs on which the program in this hybrid and the program in the
previous hybrid differ, and so is limited to only one set of inputs (modulo
signature randomness) that gets him past the checks. That set of inputs
results in the same output from both programs. It follows that program in
the previous hybrid will only ever evaluate f on those inputs; the program
in this hybrid will return the output of f on those inputs as instructed by
the (simulated) honest parties (who are at least n− t) through mtp. So, by
the security of diO, the two obfuscations are indistinguishable.

5. All that remains is for us to get rid of encryptions of the honest parties’
inputs. The simulator accomplishes this by puncturing dk at the set of honest
party verification keys {vki}i∈H. The new program is indistinguishable from
the previous one by the puncture hiding property of PPKE and by the
security of diO.

6. Finally, we have the honest parties encrypt ⊥ instead of their inputs. By
the secure puncturability of PPKE, this hybrid is indistinguishable from the
previous one.

37

Note that this final hybrid no longer requires the simulator to know the
inputs of the honest parties.

Identifiable Abort In order to achieve identifiable abort, the program in Figure 4
performs the following checks:

1. It verifies all the signatures on the second-round messages produced using
the parties’ own keys. If a signature does not verify, it blames the owner of
the bad signature.

2. It checks that there do not exist verifying signatures on two different cipher-
texts from the same party. If this happens, it blames that party.

3. For each party Pi, it checks that for at most t other parties Pj , either Pj
echoed a non-verifying signature from Pi, or Pi echoed a non-verifying sig-
nature from Pj . Otherwise, it blames Pi.

4. For each party Pi, it checks that at least n−t−tm parties successfully echoed
Pi’s correct ciphertext, and Pi successfully echoed at least n− t− td others’
correct ciphertexts. It also checks that both of these things happened for at
least n− t− td− tm others. Otherwise, it blames Pi. (As before, if private
peer-to-peer channels are available, a party Pi is considered to
have successfully echoed party Pj’s ciphertext only if she signs her
second-round message with the signing key she received privately
from Pj.)

5. Finally, the program aborts blaming no-one if in one special case that can
never happen in a real execution, and thus it is not a problem to abort there.
This case is described in detail in Figure 4.

An important caveat is that the last check takes time exponential in the num-
ber of parties. This limits our constructions with identifiable abort to support
only a constant number of parties.

Theorem 15 (PubP2P-BC, IA, CRS, 3t+ max(td, tm) < n, 2t+ td + tm <
n). Let f be an efficiently computable n-party function for constant n, and let
3t+max(td, tm) < n. Then, the protocol described in Figure 3.1 with the program
described in Figure 4 (excluding the steps in magenta) is a PubP2P-BC, UA,
CRS protocol that securely computes f over two rounds, the first of which is over
public peer-to-peer channels with (td, tm)-asynchrony, and the second of which is
over synchronous broadcast and peer-to-peer channels.

Theorem 16 (PrivP2P-BC, IA, CRS, 3t+ tm < n, 2t+ 2 min(td, tm) < n).
Let f be an efficiently computable n-party function for constant n, and
let 3t + tm < n, tm ≤ t. Then, the protocol described in Figure 3.1 with
the program described in Figure 4 (including the steps in magenta)
is a PrivP2P-BC, IA, CRS protocol that securely computes f over
two rounds, the first of which is over private peer-to-peer channels
with (td, tm)-asynchrony, and the second of which is over synchronous
broadcast and peer-to-peer channels.

38

As before, we argue that, after an execution of the protocol in Figure 3.1, the
adversary can only run the obfuscated program in Figure 4 on one set of inputs
any of which belong to honest parties without getting an abort.

Honest Party Second Round Messages Must All Be Used Together
The adversary cannot drop honest party second-round messages and still ob-
tain the output; if she tries this, she will simply get an abort as a result of
the first if-statement. The adversary might hope to be able to replace some
honest parties’ second-round messages with different second-round messages,
along with different verification keys. Such an attack by the adversary results
in a partitioning of honest parties into two groups: the group M of parties
whose second-round messages remain untouched, and the group D of parties
whose second-round messages got replaced. In order not to get rejected by
the second if-statement, the adversary must prevent first-round communi-
cation from all but t members of D to each member of M , and to all but
t members of M from each member of D. This is true since every message
that is successfully delivered from a member of D to a member of M triggers
a rejection once the second round messages of D are replaced.
If |D| > t+ tm or |M | > t+ tm, then the third if-statement of the third for-
loop will abort; if |M | > t+ td or |D| > t+ td, then the fourth if-statement
of the third for-loop will abort.
If |M | > t, |D| > t and |M | + |D| > t + td + tm or |M | + |D| > t +
2 min(td, tm), then the program will abort (blaming no-one, since such a
situation cannot happen in the real world). In order to make sure that if
the third and fourth if-statements go untriggered, this abort is triggered, we
need that n− t > 2t+ max(td, tm) (or, if private channels are available,
n− t > 2t+ min(td, tm)) and n− t > t+ td + tm.
(We explain the last observation in the case where private peer-to-peer chan-
nels are not available. If the third and fourth if-statements go untriggered, we
know that |D| ≤ t+td and |M | ≤ t+tm. In order to force |D| to be larger than
t, we need |D|+|M | = n−t > t+t+td = 2t+td ⇒ 3t+td < n. Symmetrically,
in order to force |M | to be larger than t, we need |D|+ |M | = n− t > t+ t+
tm = 2t+ tm ⇒ 3t+ tm < n. We conclude that we need 3t+max(td, tm) < n.
We also need |D|+ |M | = n− t ≥ t+ td + tm ⇒ 2t+ td + tm < n.
We now explain the last observation in the case where private peer-
to-peer channels are available. If the third and fourth if-statements
go untriggered, we know that |D|, |M | ≤ t + min(td, tm); in order to
force both |D| and |M | to be larger than t, we need |D| + |M | =
n − t > t + min(td, tm) + t = 2t + min(td, tm) ⇒ 3t + min(td, tm) < n. We
also need |D|+ |M | = n− t ≥ t+ 2 min(td, tm).)
A is Unable to Substitute Corrupt Party Inputs While Keeping Hon-
est Party Second Round Messages Consider corrupt party a. If different
signatures on different ciphertexts verify under party a’s key, then the first
if-statement will abort; if > t honest parties reject party a, then the second
if-statement will abort. Let A be the set of parties who accept party a. If
the adversary substitutes that corrupt party’s input, then all honest parties

39

who accepted before will reject now. As long as |A| > t, this is ok, and does
not allow input substitution (thanks to the second if-statement). As long as
n− t > 2t+ tm, such input substitution is impossible.

The description of the simulator and the proof of indistinguishability be-
tween real and ideal execution are very similar to the one of Theorem 13, with
modifications to the corresponding thresholds.

Remark 1. We would, of course, prefer to use indistinguishability obfuscation
rather than differing-inputs obfuscation, since indistinguishability obfuscation is
a weaker (more realistic) assumption. Informally, while differing-inputs obfus-
cation guarantees that the obfuscations of two programs are indistinguishable
if it’s hard to find inputs on which they differ, indistinguishability obfuscation
only guarantees that the obfuscations of two programs are indistinguishable if
there do not exist inputs on which they differ. One might think that the use of
signatures in our program is an insurmountable obstacle to basing security on
indistinguishability obfuscation, since there always exist signatures on any mes-
sage — they are just hard to find. However, Boneh and Zhandry [BZ14] introduce
constrained signatures, where it is possible to limit the domain of messages on
which signatures exist (in a way where the public verification key does not reveal
this domain). Unfortunately, we cannot leverage constrained signatures in our
proof, since the public verification keys (which determine the domain of messages
on which signatures exist) are fixed when the program is published during setup,
while the desired message domain is determined by corrupt parties’ messages in
the first round, since honest parties are obliged to sign echos of corrupt party
messages.

4 BC-P2P

In this section, we explore the setting in which the first round communication
(over the broadcast and peer-to-peer channels) is assumed to be synchronous
and the second round communication (over peer-to-peer channels) is assumed
to be asynchronous. Here, we only consider asynchrony in the form of arbitrary
message scheduling since the issue of input deprivation does not occur in BC-
P2P protocols, because the first round communication is synchronous (therefore,
an honest party’s input can always be included in output computation since her
first round messages will be received by everyone). We summarize our results in
Table 1.

4.1 Lower Bounds

In this section, we show two negative results. First, we show that even the weakest
form of security — security with selective abort — is impossible in the BC-P2P
setting when n ≤ 2t, where the first round communication is synchronous (over
broadcast and private peer-to-peer channels) and the second round peer-to-peer
communication is asynchronous. This holds even if parties have access to a PKI.

40

To prove the impossibility, we show that any such protocol must be such that
a set of t parties would learn the output at the end of first round itself, which
makes the protocol vulnerable to a residual attack.

Next, we show that selective abort remains impossible for arbitrary n and t ≥
1 in the PubBC-P2P setting when the first round communication is synchronous
over broadcast and public peer-to-peer channels and the second round peer-to-
peer communication is asynchronous. At a high-level, we argue that any such
protocol must be such that the output can be computed without using t of
the second-round messages (in an execution where everyone behaves honestly),
which contradicts an impossibility result of Damg̊ard et al. [DRSY23].

With PKI

Theorem 17 (BC-P2P, SA, PKI, n ≤ 2t). There exist functions f such
that no n-party two-round protocol can compute f with selective abort if n ≤ 2t;
where the first round communication is synchronous over broadcast and peer-to-
peer channels and the second round communication is asynchronous over peer-
to-peer channels.

Proof. Towards a contradiction, assume protocol Π that achieves selective abort
against t ≥ n

2 corruptions, where the first round communication is synchronous
(over broadcast and peer-to-peer channels) and the second round peer-to-peer
communication is asynchronous. Consider an execution of Π where everyone
behaves honestly. Due to correctness, this must result in all parties obtaining
the correct output with overwhelming probability. Since the second round com-
munication is asynchronous, an honest party, say Pi, computes her output after
receiving messages from n− t parties (say, constituting the set S, where Pi ∈ S)
in Round 2. This means that the combined view of parties in S at the end of
Round 1 itself was sufficient to compute the protocol output with overwhelm-
ing probability. This makes the protocol vulnerable to the following residual
attack: Consider a scenario where the adversary passively corrupts the parties
in S, where |S| = (n − t) ≤ t. The parties in S can compute the output at the
end of Round 1. Therefore, the passive adversary can plug in various inputs of
its choice on behalf of the parties in S and obtain multiple evaluations of the
function, while the inputs of the honest parties remain fixed. This breaches pri-
vacy of honest parties, contradicting the security of Π. We refer to Theorem 1
for concrete example of f (namely fmot), where we demonstrate how multiple
evaluations of a function violates privacy.

Without PKI, Without Private Channels Before presenting the proof, we
recap a useful definition and theorem from [DMR+21,DRSY23].

Definition 5 (Last Message Resiliency [DMR+21]). A protocol is r-last
message resilient if, in an honest execution, any protocol participant Pi can com-
pute its output without using r of the messages it received in the last round.

41

Theorem 18. [DRSY23] Assume parties have access to a CRS, but a PKI is
unavailable. There exists a function f such that any two-round protocol Π se-
curely realizing f whose first round can be executed over broadcast and public
peer-to-peer channels cannot be r-last message resilient for r > 0.

Theorem 19 (PubBC-P2P, SA, CRS, t ≥ 1). There exists a function f such
that no n-party two-round protocol can compute f with selective abort against
t ≥ 1 corruptions, where the first round communication is synchronous (over
broadcast and public peer-to-peer channels) and the second round (private) peer-
to-peer communication is asynchronous.

Proof. Towards a contradiction, assume protocol Π that achieves selective abort
against t ≥ 1 corruptions, where the first round communication is synchronous
(over broadcast and public peer-to-peer channels) and the second round peer-
to-peer communication is asynchronous. Correctness demands that Π must be
such that when everyone behaves honestly, a party is able to compute the out-
put (with overwhelming probability) upon receiving messages from just (n− t)
parties in the second round. In other words, Π must be t-last message resilient
(Definition 5). However, this contradicts the impossibility of Damg̊ard et al.
[DRSY23] which proves that a protocol whose first round communication is over
broadcast and public peer-to-peer channels cannot be r-last message resilient for
r > 0 (Theorem 18). We have thus arrived at a contradiction, completing the
proof of Theorem 19.

4.2 Upper Bounds

In this section, we first formally state the observation in [RU21] that when a PKI
is available and n > 2t, even the strongest guarantee of GOD can be achieved.
More specifically, Rambaud and Urban [RU21] make the simple observation that
the BC-P2P, GOD, PKI, n > 2t protocol of [DMR+21] also extends to the setting
when the second round peer-to-peer communication is asynchronous.

Next, we show that when a PKI is not available (only a CRS and private peer-
to-peer channels are available) and n > 2t, selective abort can be achieved. This
is the best one can hope for as the works of [PR18,DRSY23] show that PrivBC-
P2P UA CRS is impossible even in the fully synchronous setting. Further, such a
construction must use private peer-to-peer channels in the first round, following
the impossibility result of Theorem 19 (which shows that even selective abort
cannot be achieved if the first round peer-to-peer communication is public).

With PKI

Observation 4 (BC-P2P, GOD, PKI, n > 2t [RU21]) Let f be an efficiently
computable n-party function and let n > 2t. Suppose Πbc is a two broadcast-
round protocol that securely computes the function f with guaranteed output
delivery with the additional constraint that the straight-line simulator can ex-
tract inputs from the first-round messages and it is efficient to check whether

42

a given second-round message is correct. Then there exists a BC-P2P, GOD,
PKI protocol that securely computes f over two rounds, the first of which is over
synchronous broadcast and peer-to-peer channels and the second of which is over
asynchronous peer-to-peer channels.

Without PKI, With Private Channels

Theorem 20 (PrivBC-P2P, SA, CRS, n > 2t). Let f be an efficiently com-
putable n-party function and let n > 2t. Suppose Πsl-abort is a PrivBC-P2P pro-
tocol that securely computes the function f with selective abort satisfying the fol-
lowing additional constraints – (1) there exists a straight-line simulator that can
extract inputs from the first-round messages (2) it is efficient to check whether
a given second-round message is correct and (3) (n − t) correct second-round
messages are sufficient to compute the output in an execution where everyone
behaves honestly. Then there exists protocol Πasync

sl-abort that achieves the same guar-
antee of selective abort when the second round peer-to-peer communication is
asynchronous.

Proof (Sketch). Starting from Πsl-abort, it is possible to define Πasync
sl-abort with the

following modifications: (a) the second round peer-to-peer communication is sent
over asynchronous peer-to-peer channels and (b) In the second round, honest
parties efficiently check if the second round message they receive is generated
correctly (possible due to property (2)), wait for (n − t) correctly generated
messages and compute the output based on them.

Correctness holds when everyone behaves honestly, as property (3) ensures
that the honest parties are able to compute the output. The simulator for Πasync

sl-abort
can proceed identical to the simulator for Πsl-abort, since the simulator extracts
the input from the first (broadcast) round and it is unaffected by the asynchrony
in the second round.

We argue now that the the two-round construction of Ananth et al. [ACGJ18],
sayΠsm

god, that achieves guaranteed output delivery against t < n/2 semi-malicious
fail-stop corruptions can be modified to obtain Πsl-abort. Intuitively, this protocol
is a promising starting point because its GOD guarantee is useful to achieve
property (3) i.e., we require that (n− t) second-round messages are sufficient to
compute the output.

At a high-level, Ananth et al. present a compiler that compiles a two-round
broadcast semi-malicious protocol φ into Πsm

god. The compiler proceeds as follows:
In the first round of Πsm

god, each party broadcasts the first round of φ. Addition-
ally, she garbles her second-message function from φ, which has her own input
hardcoded, and takes as input all the first-round messages she receives. Further,
she secret-shares the input labels for her garbled circuit with threshold t < n/2
and sends to other parties their respective shares using the private peer-to-peer
channels in the first round. In the second round of Πsm

god, parties simply broadcast
the appropriate shares of the garbled circuit, based on the first-round messages
received via broadcast. This protocol achieves guaranteed output delivery against
t < n/2 semi-malicious fail-stop corruptions, because even if t parties abort in

43

the second round, the shares obtained from the (n− t) > t remaining parties is
sufficient to reconstruct the appropriate labels.

Next, we describe the modifications to the compiler required to upgrade
Πsm

god to malicious security with selective abort (i.e. Πsl-abort) – A maliciously
secure two-round broadcast protocol with abort security (such as the protocols
of [BL18][GS18]) is used as the underlying two-round broadcast protocol to be
compiled. In the first round, we make the parties broadcast a set of commit-
ments corresponding to the secret shares and send the openings of the relevant
commitment to the recipient of the corresponding share over private peer-to-
peer channels. Further, the parties are required to broadcast a NIZK proof to
ensure correctness of their actions in the first round. In the second round, a
party sends an “abort” message to all the other parties and outputs ⊥ if any
of the NIZK proofs failed or she received an invalid opening. Otherwise, she
sends the relevant shares (similar to Πsm

god), with an accompanying NIZK proof
showing correctness of her second-round message over peer-to-peer channels. A
party proceeds to reconstruction of the labels and evaluating the next-message
garbled circuits only if all the NIZK proofs she obtained verify and she did not
receive “abort” message from any party.

We claim that Πsl-abort satisfies the properties outlined in Theorem 20. Prop-
erties (1) and (2) are satisfied as the zero knowledge proofs accompanying the
first round messages can be used for input extraction; the zero knowledge proofs
accompanying the second round messages can be used to efficiently determine
which of these second round messages are generated correctly. Lastly, property
(3) is satisfied as when everyone behaves honestly, the second round messages of
(n−t) > t parties is sufficient to proceed to output computation. This completes
the overview of the construction of Πsl-abort.

Security of Πsl-abort can be shown by augmenting the security proof of Πsm
god

with additional arguments that rely on the security of commitments and NIZKs.
Lastly, we point that even though the second-round messages of Πsl-abort are sent
over peer-to-peer channels (unlike Πsm

god), this cannot lead to parties obtaining
an incorrect output or a pair of honest parties obtaining different non-⊥ outputs
since the input is extracted from the first round itself. We refer to Appendix D
for a formal description of Πsl-abort and further details.

References

ABG+13. Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark
Zhandry. Differing-inputs obfuscation and applications. Cryptology ePrint
Archive, Report 2013/689, 2013. http://eprint.iacr.org/2013/689.

ACGJ18. Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek
Jain. Round-optimal secure multiparty computation with honest majority.
In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptol-
ogy – CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Computer
Science, pages 395–424. Springer, Heidelberg, August 2018.

ACGJ19. Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek
Jain. Two round information-theoretic MPC with malicious security. In

44

http://eprint.iacr.org/2013/689

Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology – EURO-
CRYPT 2019, Part II, volume 11477 of Lecture Notes in Computer Science,
pages 532–561. Springer, Heidelberg, May 2019.

BCG93. Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure
computation. In 25th Annual ACM Symposium on Theory of Computing,
pages 52–61. ACM Press, May 1993.

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages 1–18. Springer,
Heidelberg, August 2001.

BHR12a. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure
garbling with applications to one-time programs and secure outsourcing.
In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology – ASI-
ACRYPT 2012, volume 7658 of Lecture Notes in Computer Science, pages
134–153. Springer, Heidelberg, December 2012.

BHR12b. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of gar-
bled circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors,
ACM CCS 2012: 19th Conference on Computer and Communications Se-
curity, pages 784–796. ACM Press, October 2012.

BKR94. Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure compu-
tations with optimal resilience (extended abstract). In Jim Anderson and
Sam Toueg, editors, 13th ACM Symposium Annual on Principles of Dis-
tributed Computing, pages 183–192. Association for Computing Machinery,
August 1994.

BL18. Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from
k-round oblivious transfer via garbled interactive circuits. In Jesper Buus
Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EURO-
CRYPT 2018, Part II, volume 10821 of Lecture Notes in Computer Science,
pages 500–532. Springer, Heidelberg, April / May 2018.

BSW16. Mihir Bellare, Igors Stepanovs, and Brent Waters. New negative results on
differing-inputs obfuscation. In Marc Fischlin and Jean-Sébastien Coron,
editors, Advances in Cryptology – EUROCRYPT 2016, Part II, volume 9666
of Lecture Notes in Computer Science, pages 792–821. Springer, Heidelberg,
May 2016.

BZ14. Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor
tracing, and more from indistinguishability obfuscation. In Juan A. Garay
and Rosario Gennaro, editors, Advances in Cryptology – CRYPTO 2014,
Part I, volume 8616 of Lecture Notes in Computer Science, pages 480–499.
Springer, Heidelberg, August 2014.

CGZ20. Ran Cohen, Juan A. Garay, and Vassilis Zikas. Broadcast-optimal two-
round MPC. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology – EUROCRYPT 2020, Part II, volume 12106 of Lecture Notes
in Computer Science, pages 828–858. Springer, Heidelberg, May 2020.

Cle86. Richard Cleve. Limits on the security of coin flips when half the processors
are faulty (extended abstract). In 18th Annual ACM Symposium on Theory
of Computing, pages 364–369. ACM Press, May 1986.

DDO+01. Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Per-
siano, and Amit Sahai. Robust non-interactive zero knowledge. In Joe
Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of

45

Lecture Notes in Computer Science, pages 566–598. Springer, Heidelberg,
August 2001.

DMR+21. Ivan Damg̊ard, Bernardo Magri, Divya Ravi, Luisa Siniscalchi, and Sophia
Yakoubov. Broadcast-optimal two round MPC with an honest majority.
In Crypto, Lecture Notes in Computer Science, pages 155–184. Springer,
Heidelberg, 2021.

DRSY23. Ivan Damg̊ard, Divya Ravi, Luisa Siniscalchi, and Sophia Yakoubov. Min-
imizing setup in broadcast-optimal two round MPC. In EUROCRYPT,
2023.

ElG84. Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In G. R. Blakley and David Chaum, editors, Advances
in Cryptology – CRYPTO’84, volume 196 of Lecture Notes in Computer
Science, pages 10–18. Springer, Heidelberg, August 1984.

GLS15. S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with
fairness and guarantee of output delivery. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part II,
volume 9216 of Lecture Notes in Computer Science, pages 63–82. Springer,
Heidelberg, August 2015.

GM17. Jens Groth and Mary Maller. Snarky signatures: Minimal signatures
of knowledge from simulation-extractable SNARKs. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017,
Part II, volume 10402 of Lecture Notes in Computer Science, pages 581–
612. Springer, Heidelberg, August 2017.

GS18. Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure
computation from minimal assumptions. In Jesper Buus Nielsen and
Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018,
Part II, volume 10821 of Lecture Notes in Computer Science, pages 468–
499. Springer, Heidelberg, April / May 2018.

HNP05. Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Cryptographic
asynchronous multi-party computation with optimal resilience (extended
abstract). In Ronald Cramer, editor, Advances in Cryptology – EURO-
CRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages
322–340. Springer, Heidelberg, May 2005.

HNP08. Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Asynchronous
multi-party computation with quadratic communication. In Luca Aceto,
Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna
Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008: 35th Interna-
tional Colloquium on Automata, Languages and Programming, Part II, vol-
ume 5126 of Lecture Notes in Computer Science, pages 473–485. Springer,
Heidelberg, July 2008.

IKKP15. Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-
Cherniavsky. Secure computation with minimal interaction, revisited. In
Rosario Gennaro and Matthew J. B. Robshaw, editors, Advances in Cryp-
tology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in Computer
Science, pages 359–378. Springer, Heidelberg, August 2015.

IKP10. Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty compu-
tation with minimal interaction. In Tal Rabin, editor, Advances in Cryptol-
ogy – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science,
pages 577–594. Springer, Heidelberg, August 2010.

46

Ped92. Torben P. Pedersen. Non-interactive and information-theoretic secure ver-
ifiable secret sharing. In Joan Feigenbaum, editor, Advances in Cryptology
– CRYPTO’91, volume 576 of Lecture Notes in Computer Science, pages
129–140. Springer, Heidelberg, August 1992.

PR18. Arpita Patra and Divya Ravi. On the exact round complexity of secure
three-party computation. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology – CRYPTO 2018, Part II, volume 10992 of
Lecture Notes in Computer Science, pages 425–458. Springer, Heidelberg,
August 2018.

RU21. Matthieu Rambaud and Antoine Urban. Almost-asynchronous mpc under
honest majority, revisited. Cryptology ePrint Archive, Paper 2021/503,
2021. https://eprint.iacr.org/2021/503.

Sha79. Adi Shamir. How to share a secret. Communications of the Association for
Computing Machinery, 22(11):612–613, November 1979.

Yao82. Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In 23rd Annual Symposium on Foundations of Computer Science,
pages 160–164. IEEE Computer Society Press, November 1982.

ZHM09. Vassilis Zikas, Sarah Hauser, and Ueli M. Maurer. Realistic failures in secure
multi-party computation. In Omer Reingold, editor, TCC 2009: 6th Theory
of Cryptography Conference, volume 5444 of Lecture Notes in Computer
Science, pages 274–293. Springer, Heidelberg, March 2009.

47

https://eprint.iacr.org/2021/503

A Preliminaries

A.1 Differing-Inputs Obfuscation

A differing-inputs obfuscation scheme, introduced by Barak et al. [BGI+01], en-
ables a party to “hide” a program in such a way that it can still be evaluated.
Indistinguishability obfsucation (iO) demands that the obfuscation of two pro-
grams with identical behaviors be indistinguishable; in contrast, differing-inputs
obfsucation (diO) demands that the obfuscation of two programs for which it is
hard to find an input on which the outputs differ be indistinguishable.

Below, we restate the definitions of differing-input obfuscation due to Ananth
et al. [ABG+13]. Before we state the definition of diO, we first define a differing-
inputs circuit family, which is a family of circuit pairs such that it is hard to
find an input on which two circuits in a randomly sampled pair differ.

Definition 6 (Differing-Inputs Circuit Family). A differing-inputs circuit
family is a circuit family C associated with an efficient algorithm Sampler such
that for every efficient adversary A, there exists a negligible function negl in the
security parameter λ such that

Pr[C0(x) 6= C1(x) : (C0, C1, aux)← Sampler(1λ), x← A(1λ, C0, C1, aux)] ≤ negl(λ).

Definition 7 (Differing-Inputs Obfuscation (diO)). A differing-inputs ob-
fuscation (diO) scheme is an efficient algorithm diO that takes in a circuit or
program C, and outputs an obfuscated circuit or program OC.
We require the following properties of diO:

Correctness. We say diO satisfies correctness if for all circuits C ∈ C, for all
inputs x, we have that

Pr[OC(x) = C(x) : OC← diO(C)] = 1.

Polynomial Slowdown. We say that diO satisfies polynomial slowdown if for any
circuit or program C, the size and running time of diO(C) is only polynomially
larger than that of C.

Differing-Inputs. We say that diO satisfies differing-inputs if for any (not nec-
essarily uniform) PPT adversary A, for (C0, C1, aux) ← Sampler(1λ), we have
that

|Pr[A(diO(C0), aux) = 1]− Pr[A(diO(C1), aux) = 1]| ≤ negl(λ).

A.2 Threshold Secret Sharing Scheme

A t-out-of-n secret sharing scheme allows a party to “split” a secret into n shares
that can be distributed among different parties. To reconstruct the original secret
x at least t+ 1 shares need to be used.

48

Definition 8 (Secret Sharing). A t-out-of-n secret sharing scheme is a tuple
of efficient algorithms (share, reconstruct) defined as follows.

share(x)→ (s1, . . . , sn): The randomized algorithm share takes as input a
secret x and output a set of n shares.
reconstruct({si}i∈S⊆[n],|S|>t)→ x: The reconstruct algorithm reconstruct
takes as input a vector of at least t+ 1 shares and outputs the secret x.

We require the following properties of a t-out-of-n secret sharing scheme:

Perfect Correctness. The perfect correctness property requires that the shares of
a secret x should always reconstruct to x. More formally, a secret sharing scheme
is perfectly correct if for any secret x, for any subset S ⊆ [n], |S| > t,

Pr
[
x = x′ : (s1, . . . , sn)← share(x)

x′ ← reconstruct({si}i∈S)

]
= 1,

where the probability is taken over the random coins of share. Moreover, if a
negligible error probability is allowed, we simply say that the scheme is correct.

Privacy. The privacy property requires that any combination of up to t shares
should leak no information about the secret x. More formally, we say that a
secret sharing scheme is private if for all (unbounded) adversaries A, for any
set A ⊆ {1, . . . , n}, |A| ≤ t and any two secrets x0, x1 (such that |x0| = |x1|),

Pr
[
A(s) = 1 : {si}i∈[n] = share(x0);

s = {si}i∈A

]
≡ Pr

[
A(s) = 1 : {si}i∈[n] = share(x1);

s = {si}i∈A

]
.

Share Simulatability. Additionally, we require an efficient simulator for the gen-
erated shares. More formally, we say that a secret sharing scheme is share sim-
ulatable if there exists a PPT simulator simshare such that for every PPT
adversary A, for any set A ⊆ {1, . . . , n}, |A| ≤ t (and H = {1, . . . , n}\A), and
any two secrets x0, x1, for (s0, . . . , sn) ← share(x0), (s′1, . . . , s′n) ← share(x1)
and {s′′i }i∈H ← simshare({si}i∈A, x0),

|Pr [A({si}i∈A, {si}i∈H) = 1]− Pr [A({si}i∈A, {s′′i }i∈H) = 1] | ≤ negl(λ).

Instantiation. In our constructions, we use the Shamir’s threshold secret sharing
scheme [Sha79], and refer to its algorithms as (Shamir.s, Shamir.reconstruct).

A.3 Garbling Scheme

A garbling scheme, introduced by Yao [Yao82] and formalized by Bellare et al.
[BHR12b], enables a party to “encrypt” or “garble” a circuit in such a way that
it can be evaluated on inputs — given tokens or “labels” corresponding to those
inputs — without revealing what the inputs are.

49

Definition 9 (Garbling Scheme). A projective garbling scheme is a tuple of
efficient algorithms GC = (garble, eval) defined as follows.

garble(1λ, C)→ (GC,K): The garbling algorithm garble takes as input the
security parameter λ and a boolean circuit C : {0, 1}` → {0, 1}m, and outputs
a garbled circuit GC and ` pairs of garbled labels K = (K0

1 ,K
1
1 , . . . ,K

0
` ,K

1
`).

For simplicity we assume that for every i ∈ [`] and b ∈ {0, 1} it holds that
Kb
` ∈ {0, 1}λ.

eval(GC,K1, . . . ,K`)→ y: The evaluation algorithm eval takes as input the
garbled circuit GC and ` garbled labels K1, . . . ,K`, and outputs a value y ∈
{0, 1}m.

We require the following properties of a projective garbling scheme:

Perfect Correctness. We say GC satisfies perfect correctness if for any boolean
circuit C : {0, 1}` → {0, 1}m and x = (x1, . . . , x`) it holds that

Pr[eval(GC,K[x]) = C(x)] = 1,

where (GC,K) ← garble(1λ, C) with K = (K0
1 ,K

1
1 , . . . ,K

0
` ,K

1
`), and K[x] =

(Kx1
1 , . . . ,Kx`

`).
Next, we formally define the security notions we require for a garbling scheme.

When garbled circuits are used in such a way that decoding information is used
separately, obliviousness requires that a garbled circuit together with a set of la-
bels reveals nothing about the input the labels correspond to, and privacy requires
that the additional knowledge of the decoding information reveals only the appro-
priate output. In our work, we do not consider decoding information separately
(but rather, consider it to be included in the garbled circuit), so we do not need
obliviousness.

Privacy. Informally, privacy requires that a garbled circuit together with a set
of labels reveal nothing about the input the labels correspond to (beyond the ap-
propriate output).

More formally, we say that GC satisfies privacy if there exists a simulator
simGC such that for every PPT adversary A, it holds that

Pr[A wins] ≤ 1
2 + negl(λ)

in the following experiment:

50

Adversary A Challenger C

C : {0, 1}` → {0, 1}m

−−−−−−−−−−−−−−−−−−−−−−−−−−B
x = (x1, . . . , x`) ∈ {0, 1}`

−−−−−−−−−−−−−−−−−−−−−−−−−−B b← {0, 1}
if b = 0:

(GC, (K0
1 , K

1
1 , . . . , K

0
` , K

1
`))← garble(1λ, C)

Ki = K
xi
i

for i ∈ [`]
if b = 1:

(GC, K1, . . . , K`)← simGC(1λ, C, C(x))
GC,K1, . . . ,K`

C−−−−−−−−−−−−−−−−−−−−−−−−−−
b′

−−−−−−−−−−−−−−−−−−−−−−−−−−B
A wins if b = b′

Remark. It is possible to use an alternate variant of the simulator simGC
that takes as input a set of labels (K1, . . . ,K`) and returns a garbled circuit GC
compatible with these labels. The simulator of Yao’s [Yao82] garbling scheme can
be made to work easily as mentioned above.

Adaptive Privacy. Informally, this property requires that privacy is maintained
against an adversary who first obtains the garbled circuit and then selects the
input. More formally, we say that GC satisfies adaptive privacy if there exists a
simulator simGC such that for every PPT adversary A, it holds that

Pr[A wins] ≤ 1
2 + negl(λ)

in the following experiment:

Adversary A Challenger C

C : {0, 1}` → {0, 1}m

−−−−−−−−−−−−−−−−−−−−−−−−−−B b← {0, 1}
if b = 0:

(GC, (K0
1 , K

1
1 , . . . , K

0
` , K

1
`))← garble(1λ, C)

if b = 1:
GC← simGC(1λ, φ(C), “ckt”)
where φ(C) denotes the topology of C a

GC
C−−−−−−−−−−−−−−−−−−−−−−−−−−

x = (x1, . . . , x`) ∈ {0, 1}`
−−−−−−−−−−−−−−−−−−−−−−−−−−B if b = 0:

Ki = K
xi
i

for i ∈ [`]
if b = 1:

((K1, . . . , K`)← simGC(1λ, C(x), “input”)
K1, . . . ,K`

C−−−−−−−−−−−−−−−−−−−−−−−−−−
b′

−−−−−−−−−−−−−−−−−−−−−−−−−−B
A wins if b = b′

awe assume that the topology of a circuit does not reveal hard coded values (as
hard coded values are essentially fixed input labels for some wires)

Instantiation. For our constructions, adaptive garbled circuits can be obtained
using one-time pads with Yao’s garbled circuits (as shown by Bellare et al.
[BHR12a]).

51

A.4 Commitment Scheme

A commitment scheme allows a party to commit to a value while keeping it
hidden, and to later reveal the committed value with the guarantee that the
commitment is binding [Ped92].

Definition 10 (Commitment Scheme). A commitment scheme (C) is a tuple
of efficient algorithms C = (com, open) defined as follows.

com(msg)→ (o, com): The commitment algorithm com takes as input a mes-
sage msg ∈ {0, 1}λ and outputs a decommitment value o ∈ {0, 1}λ and a
commitment value com ∈ {0, 1}λ.
open(o, com)→ {msg,⊥}: The opening algorithm open takes as input a de-
commitment value o ∈ {0, 1}λ and a commitment value com ∈ {0, 1}λ and
outputs either a message msg or ⊥ in case o is not a valid decommitment for
com.

We require the following properties of a commitment scheme:

Correctness. We say that a commitment scheme C satisfies correctness if for
any message msg ∈ {0, 1}λ and (o, com)← com(msg), we have that

Pr[open(com, o) = msg] ≥ 1− negl(λ).

Hiding. The hiding property requires that a commitment reveals nothing about
the underlying message. More formally, we say that a commitment scheme C
satisfies hiding if for all PPT adversaries A,

Pr

b = b′

∣∣∣∣∣∣∣∣
(msg0,msg1)← A(1λ);
b← {0, 1};
(o, com)← com(msgb);
b′ ← A(com)

 ≤ 1
2 + negl(λ) .

Binding. The binding property requires that an adversary cannot open a commit-
ment in two different ways. More formally, we say that a commitment scheme
C satisfies binding if for all PPT adversaries A,

Pr

msg0,msg1 6= ⊥,msg0 6= msg1

∣∣∣∣∣∣
(com, o0, o1)← A(1λ);
msg0 ← open(com, o0);
msg1 ← open(com, o1)

 ≤ negl(λ) .

Definition 11 (Extractable Commitment Scheme). An extractable com-
mitment scheme with message space {0, 1}λ is a commitment scheme with an
additional algorithm comgen, which on input the security parameters generates
public parameters pp together with a trapdoor τ . Both com and open additionally
take pp as an input.

We require the following additional property:

52

Extractability. We say that a commitment scheme satisfies extractability if for
all PPT adversaries A there exists a PPT extraction algorithm extract and a
negligible function negl(·) such that

Pr[A wins] ≤ negl(λ)

in the following experiment:

Adversary A Challenger C

pp
C−−−−−−−−−−−−−−−−−−−−−−−−−− (pp, τ)← comgen(1λ)

com∗, o∗
−−−−−−−−−−−−−−−−−−−−−−−−−−B

msg← extract(pp, τ, com∗)
A wins if:

msg∗ ← open(pp, com∗, o∗)
msg 6= msg∗ and msg∗ 6= ⊥

Instantiation. An extractable commitment scheme in the CRS model could
be instantiated using, for instance, El-Gamal encryption [ElG84] (with the secret
key as the trapdoor τ).

Definition 12 (Equivocable commitment scheme). An equivocable com-
mitment scheme with message space {0, 1}λ is a commitment scheme with three
additional algorithms: comgen, eqcommit1, and eqcommit2. comgen on input the
security parameter generates public parameters pp together with a trapdoor τ ;
both com and open additionally take pp as an input. eqcommit1, and eqcommit2
are as follows:

eqcommit1(pp, τ)→ (com, aux): is the first randomized equivocation algo-
rithm that takes as input public parameters pp and trapdoor τ and outputs
commitment com and auxiliary information aux.
eqcommit2(msg, com, τ, aux)→ o is the second randomized equivocation al-
gorithm that takes as input message msg ∈ {0, 1}λ, commitment com, trap-
door τ and auxiliary information aux, and produces decommitment informa-
tion o such that open, on input (pp, com, o), outputs msg.

We require the following additional property:

Equivocability. An equivocal commitment scheme C satisfies equivocability if for
any PPT adversary A there exist a negligible function negl(·), s.t.

Pr[A wins] ≤ negl(λ)

in the following experiment:

53

Adversary A Challenger C

msg
−−−−−−−−−−−−−−−−−−−−−−−−−−B b← {0, 1}

(pp, τ)← comgen(1λ)
if b = 0:

(com, aux)← eqcommit1(pp, τ)
o← eqcommit2(com, τ, aux,msg)

if b = 1:
(com, o)← commit(pp,msg)

com, o
C−−−−−−−−−−−−−−−−−−−−−−−−−−

b′
−−−−−−−−−−−−−−−−−−−−−−−−−−B
A wins if b = b′

Instantiation. An equivocal commitment scheme in the CRS model could be
instantiated using, for instance, Pedersen commitments [Ped92].

A.5 Non-Interactive Zero-Knowledge Arguments of Knowledge

We take this definition from Groth and Maller [GM17].

Definition 13 (Non-Interactive Zero-Knowledge Arguments of Knowl-
edge (NIZKAoK)). A non-interactive zero-knowledge argument of knowledge
(NIZK) scheme is a tuple of efficient algorithms NIZK = (setupZK, prove, verify, simP)
defined as follows.

setupZK(1λ,R)→ (crs, td): The algorithm setupZK takes as input the secu-
rity parameter λ ∈ N, and outputs the global common reference string crs
and the trapdoor td for the NIZK system.
prove(crs, φ, w)→ π: The algorithm prove takes as input the common ref-
erence string crs for a relation R, a statement φ and a witness w, and outputs
a proof π that (φ,w) ∈ R.
verify(crs, φ, π)→ accept/reject: The algorithm verify takes as input
the common reference string crs for a relation R, a statement φ and a proof π,
and verifies whether π proves the existence of a witness w such that (φ,w) ∈
R.
simP(crs, td, φ)→ π: The algorithm simP takes as input the common ref-
erence string crs for a relation R, the trapdoor td and a statement φ, and
outputs a simulated proof of the existence of a witness w such that (φ,w) ∈ R.

We require the following properties of a NIZK scheme:

Correctness. We say that NIZK satisfies correctness if for any (φ,w) ∈ R, we
have that

Pr
[
verify(φ, π) = 1

∣∣∣∣ (crs, td)← setupZK(1λ,R)
π ← prove(φ,w)

]
≥ 1− negl(λ)

(where the randomness is taken over the internal coin tosses of setupZK, prove
and verify).

54

Zero Knowledge. We say that NIZK satisfies zero-knowledge if for all PPT ad-
versaries A,

Pr[A wins] ≤ 1
2 + negl(λ)

in the following experiment:

Adversary A Challenger C

crs
C−−−−−−−−−−−−−−−−−−−−−−−−−− (crs, td)← setupZK(1λ,R)

b← {0, 1}

Repeat poly(λ) times{
φ,w

−−−−−−−−−−−−−−−−−−−−−−−−−−B
if b = 0: π ← prove(crs, φ, w)
if b = 1: π ← simP(crs, td, φ)

π
C−−−−−−−−−−−−−−−−−−−−−−−−−−

b′
−−−−−−−−−−−−−−−−−−−−−−−−−−B
A wins if b = b′

Simulation Extractability. We say that NIZK satisfies simulation extractability
if for all PPT adversaries A there exists a PPT extraction algorithm extractA
such that

Pr[A wins] ≤ negl(λ)

in the following experiment:

Adversary A Challenger C

crs
C−−−−−−−−−−−−−−−−−−−−−−−−−− (crs, td)← setupZK(1λ,R)

Qsim = ∅

Repeat poly(λ) times{
φ

−−−−−−−−−−−−−−−−−−−−−−−−−−B
π ← simP(crs, td, φ)

π
C−−−−−−−−−−−−−−−−−−−−−−−−−− add π to Qsim

φ∗, π∗

−−−−−−−−−−−−−−−−−−−−−−−−−−B
w∗ ← extractA(crs, td, τA)

If all of the following checks pass,
A wins:

(φ∗, w∗) 6∈ R
verify(crs, φ∗, π∗) = accept
π∗ 6∈ Qsim

Instantiation. Simulation extractable NIZK could be instantiated using, for
instance, technique from [DDO+01].

B Non-Interactive One-or-Nothing Secret Sharing of
Damg̊ard et al. [DMR+21]

We recall the syntax and the construction of the non-interactive one-or-nothing
secret sharing of Damg̊ard et al. [DMR+21] below.

55

B.1 Syntax

A non-interactive one-or-nothing secret sharing scheme consists of a tuple of four
algorithms (setup, share, vote, reconstruct).

setup(1λ)→ sk is an algorithm that produces a key shared between the
dealer and one of the receivers. (This can be non-interactively derived by
both dealer and receiver by running setup on randomness obtained from e.g.
key exchange.)
share(sk1, . . . , skn, z(1), . . . , z(l))→ s is an algorithm that takes the n shared
keys sk1, . . . , skn and the l values z(1), . . . , z(l), and produces a public share
s.
vote(ski, v)→ si is an algorithm that takes a shared key ski and a vote v,
where v ∈ {1, . . . , l,⊥} can either be an index of a value, or it can be ⊥ if
party i is unsure which value it wants to vote for. It outputs a public ballot
si.
reconstruct(s, s1, . . . , sn)→ {z(v),⊥} is an algorithm that takes the public
share s, all of the ballots s1, . . . , sn, and outputs either the value z(v) which
received a majority of votes, or outputs ⊥.

The properties required from a one-or-nothing secret sharing scheme are
δ-correctness, privacy and contradiction-privacy (as described informally in Sec-
tion 3.2). We refer to [DMR+21] for the formal definitions.

B.2 Generalized Construction of the Non-Interactive
One-or-Nothing Secret Sharing of Damg̊ard et al. [DMR+21]

We present a more generalized version of the construction of Damg̊ard et al.
[DMR+21] such that it satisfies δ-correctness when δ > t. The original con-
struction satisfies (n − t)-correctness when n > 2t. Note that the security of
this construction holds against semi-honest adversary. The tool used in the con-
struction is a symmetric key encryption scheme (SKE.keygen, enc, dec) and a
threshold secret sharing scheme (for the formal definitions we refer the reader
to [DMR+21]).

Figure B.1: Non-Interactive One-or-Nothing Secret Sharing

setup(1λ)→ sk: Choose l+1 symmetric encryption keys k(1), . . . , k(l), k(⊥) us-
ing SKE.keygen(1λ). Let sk = (k(1), . . . , k(l), k(⊥)).
share(sk1, . . . , skn, z(1), . . . , z(l))→ s:
1. Compute (z(v)

1 , . . . , z(v)
n) as the additive sharing of z(v) for v ∈ [l].

2. Compute (z(v)
i→1, . . . , z

(v)
i→n) as the threshold sharing of z(v)

i with threshold
t for v ∈ [l], i ∈ [n].

3. Parse (k(1)
i , . . . , k(l)

i , k
(⊥)
i) = ski for i ∈ [n].

4. Compute c(v)
i = enc(k(v)

i , z(v)
i) for v ∈ [l], i ∈ [n].

5. Compute c(v)
i→j = enc

(
k(⊥)
i , enc(k(v)

j , z(v)
i→j)

)
for v ∈ [l], i ∈ [n], j ∈ [n].

56

6. Output s = ({c(v)
i }i∈[n],v∈[l], {c(v)

i→j}i,j∈[n],v∈[l]).
vote(ski, v)→ si where v ∈ {1, . . . , l,⊥}: Output si = (v, k(v)

i).
reconstruct(s, s1, . . . , sn)→ {z(v),⊥}:
1. Parse ({c(v)

i }i∈[n],v∈[l], {c(v)
i→j}i,j∈[n],v∈[l]) = s.

2. Parse (vi, ki) = si for i ∈ [n].
3. If there does not exist a v ∈ {1, . . . , l} such that at least δ a parties vote

for v and everyone else votes for ⊥, output ⊥.
4. Let v 6= ⊥ denote the only value which received votes; let S ⊆ {1, . . . , n}

be the set of i such that vi = v.
5. For i ∈ S (so, vi = v), compute zi = dec(ki, c(v)

i).
6. For i /∈ S (so, vi = ⊥), for each j ∈ S, compute zi→j =

dec
(
ki, dec(kj , c(v)

i→j)
)
. Let zi denote the value reconstructed using the

threshold shares {zi→j}j∈S .
7. If there exists any i such that zi = ⊥, output ⊥. Else, output z =

∑n

i=1 zi.

athis is the only modification to the construction in [DMR+21] which uses
δ = n− t.

The above construction satisfies δ-correctness, privacy and contradiction-
privacy, when δ > t as shown below. The proof of privacy and contradiction-
privacy is verbatim from [DMR+21] as it remains unaffected by our modification.

Correctness: Suppose a set of at least δ parties vote for v, and others
vote for ⊥. Let S and T denote the set of indices corresponding to parties
voting for v and ⊥ respectively. Firstly, it directly follows from the steps
of reconstruct that z(v)

i 6= ⊥ can be obtained for i ∈ S. Further, since
|S| ≥ δ > t holds, it follows that z(v)

i shared using threshold t can be success-
fully reconstructed corresponding to each i ∈ T . Lastly, since S∪T = [n], we
can infer that z(v)

i 6= ⊥ for each i ∈ [n]; thereby reconstruct would output
z(v).

Privacy: Suppose no honest party votes for v. Consider an honest party
i. We show that the adversary learns nothing about z(v)

i , which suffices to
show that z(v) remains perfectly hidden from the adversary. If party i votes
for vi 6= v, then it follows from the steps in vote that party i does not reveal
any information related to k(v)

i or k(⊥)
i . Due to the security of the encryption

scheme, the adversary learns nothing about z(v)
i from c

(v)
i and {c(v)

i→j}j∈[n].
Next, suppose party i votes for ⊥ and publishes k(⊥)

i . In this case, we note
that the adversary can use k(⊥)

i and k(v)
j to decrypt c(v)

i→j and obtain the
share z(v)

i→j if party j is corrupt. However, c(v)
i→j corresponding to an honest

party j can be decrypted by the adversary only if party j reveals k(v)
j ; since

this occurs only when honest party j votes for v (which does not happen as
per our assumption), we can conclude that the adversary learns no informa-
tion from c

(v)
i→j corresponding to an honest party j. Thus, the adversary has

57

access to at most t shares of z(v)
i which is shared using threshold t. It now

follows from the privacy of threshold secret sharing that the adversary learns
no information about z(v)

i .

Contradiction Privacy: Suppose two different honest parties, say parties
i and j, publish votes for vi 6= vj , vi, vj 6= ⊥. First, we argue that the adver-
sary learns nothing about z(vi)

j , which suffices to prove that adversary learns
nothing about z(vi). Since honest party j voted for vj 6= vi, the adversary
does not have access to k(vi)

j or k(⊥)
j . Therefore, the adversary cannot obtain

any information related to z(vi)
j via c(vi)j or c(vi)j→k (for any j ∈ [n]). A similar

argument as above can be used to show that the adversary learns nothing
about z(vj)

i , which suffices to prove that adversary learns nothing about z(vj).

C One-or-Nothing Secret Sharing with Intermediaries of
Damg̊ard et al. [DRSY23]

We recall the syntax and the construction of the maliciously-secure one-or-
nothing secret sharing with intermediaries of Damg̊ard et al. [DRSY23] below.

C.1 Syntax
setup(1λ)→ crs is an algorithm which takes as input the security parameter
and generates the common reference string.
keygen(crs)→ (sk, pk) is an algorithm which takes as input the common
reference string and generates a key pair.
share(crs, pk1, . . . , pkn, z

(1), . . . , z(l))→ s is an algorithm run by the dealer
D which takes as input all the parties’ public keys, and the l values that are
being shared. It outputs a single share s.
vote(crs, ski, pk1, . . . , pkn, vi)→ si is an algorithm run by party i which
takes as input party i’s secret key, all the parties’ public keys, and a vote vi,
where vi ∈ {1, . . . , l,⊥} can either be an index of a value, or it can be ⊥ if
party i is unsure which value it wants to vote for. It returns a ballot si.
Note that, to allow share and vote to be executed in a single round, vote
does not take as input the share s.
reconstruct(crs, s, (pk1, v1, s1), . . . , (pkn, vn, sn))→ {z(v),⊥,⊥i} is an al-
gorithm which takes as input the output of share run by the dealer D,
the outputs of vote run by each of the n parties, as well as their votes, and
outputs the value z(v) which received a majority of votes, or ⊥, or ⊥i where
i denotes the identity of a cheater.

The properties required from a one-or-nothing secret sharing with intermedi-
aries are ε-privacy, α-identifiability and β-correctness, (as described informally
in Section 3.2). The definitions assume that corrupt parties might provide honest
parties, including the dealer, with inconsistent or incorrect public keys. We refer
to [DRSY23] for the formal definitions.

58

C.2 (Modified) Construction of the One-or-Nothing Secret Sharing
with Intermediaries of Damg̊ard et al. [DRSY23]

The maliciously-secure construction uses the tools of a public key encryption
scheme with CPA security, say PKE = (keygen, enc, dec) and a non-interactive
zero-knowledge proof system NIZK = (setupZK, prove, verify, simP, extract)
(Section A.5) for the following relations:

Rkeygen =
{
φ = pk
w = (sk, r) (sk, pk)← PKE.keygen(1λ; r)

}
,

Rshare =

φ = {pk(v)

i→j , c
(v)
i→j}v∈[l],i,j∈[n]

w =
(
{z(v), r(v), {r(v)

i ,

{r(v)
i→j}j∈[n]}i∈[n]}v∈[l]

) {(s(v)
1 , . . . , s

(v)
n)← Shamir.share(z(v); r(v))

}
v∈[l]

∧
{

(s(v)
i→1, . . . , s

(v)
i→n)← Shamir.share(s(v)

i ; r(v)
i)
}
v∈[l],i∈[n]

∧
{
c

(v)
i→j ← PKE.enc(pk(v)

i→j , s
(v)
i→j ; r

(v)
i→j)

}
v∈[l],i,j∈[n]

 ,

Rvote =

φ =
(
{pk(v)

j→j , pk(v)
j→i, tk(v)

j→i}v∈[l],j∈[n],

vi, sk(vi)
i→i

)
w =

(
{sk(v)

j→i, r̄
(v)
j→i, r

(v)
j }v∈[l],j∈[n]

)
{

(sk(v)
j→i, pk(v)

j→i)← PKE.keygen(1λ; r̄(v)
j→i)

}
j∈[n],v∈[l]

∧
{

tk(v)
j→i ← PKE.enc(pk(v)

j→j , sk(v)
j→i; r

(v)
j)
}
v∈[l],j∈[n]

 .

We refer the reader to [DRSY23] for the formal definitions of these tools.
Figure C.1 describes the modified version of the one-or-nothing secret sharing

with intermediaries (1or0wi) scheme of Damg̊ard et al. [DRSY23] achieving the
properties outlined in Theorem 9. The minor tweaks to satisfy the properties
outlined in Theorem 10 are marked in blue.

Figure C.1: Construction of 1or0wi

setup(1λ) : Set up and output the common reference strings
crskeygen ← setupZK(1λ,Rkeygen),
crsshare ← setupZK(1λ,Rshare), and
crsvote ← setupZK(1λ,Rvote)

for the zero knowledge proof system. Return crs =
(crskeygen, crsshare, crsvote).

keygen(crs), run by party i:
1. For each j ∈ [n] and v ∈ [l], (sk(v)

j→i, pk(v)
j→i)← PKE.keygen(1λ; r̄(v)

j→i).
2. For each j ∈ [n] and v ∈ [l], π(v)

j→i ← NIZK.prove(crskeygen, φ =
pk(v)
j→i, w = (sk(v)

j→i, r̄
(v)
j→i)).

3. Let ski = ({sk(v)
j→i, r̄

(v)
j→i}j∈[n],v∈[l]), and pki =

({pk(v)
j→i, π

(v)
j→i}j∈[n],v∈[l]).

4. Output (ski, pki).

share(crs, pk1, . . . , pkn, z
(1), . . . , z(l)), run by the dealer D (where

pki = {pk(v)
j→i, π

(v)
j→i}j∈[n],v∈[l]):

59

1. For each v ∈ [l], compute (s(v)
1 , . . . , s

(v)
n) ← Shamir.share(z(v); r(v))

as the threshold sharing of z(v) with threshold t1 = n − t − tm − 1
(resp., t1 = n− tm − 1).

2. For each i ∈ [n] and v ∈ [l], compute (s(v)
i→1, . . . , s

(v)
i→n) ←

Shamir.share(s(v)
i ; r(v)

i) as the threshold sharing of s(v)
i with thresh-

old t2 = n− 2t− tm − td − 1 (resp., t2 = n− tm − td − 1).
3. For each i, j ∈ [n] and v ∈ [l], compute c

(v)
i→j ←

PKE.enc(pk(v)
i→j , s

(v)
i→j ; r

(v)
i→j).

4. Set
– φshare = ({pk(v)

i→j , c
(v)
i→j}v∈[l],i,j∈[n]) and

– wshare = ({z(v), r(v), {r(v)
i , {r(v)

i→j}j∈[n]}i∈[n]}v∈[l]).
Compute πshare ← prove(crsshare, φshare, wshare).

5. Set s = (φshare, πshare) and output s.

vote(crs, ski, pk1, . . . , pkn, vi), run by party i (where pki =
{pk(v)

j→i, π
(v)
j→i}j∈[n],v∈[l] and ski = {sk(v)

j→i, r̄
(v)
j→i}j∈[n],v∈[l]):

1. For each v ∈ [l] and j ∈ [n], let tk(v)
j→i ← PKE.enc(pk(v)

j→j , sk(v)
j→i; r

(v)
j).

2. Set
– φvote,i = ({pk(v)

j→j , pk(v)
j→i, tk(v)

j→i}v∈[l],j∈[n], vi, sk(vi)
i→i) a

– wvote,i = ({sk(v)
j→i, r̄

(v)
j→i, r

(v)
j }v∈[l],j∈[n]).

Compute πvote,i ← prove(crsvote, φvote,i, wvote,i).
3. Set si = (φvote,i, πvote,i) and output si.

reconstruct(crs, s, (pk1, v1, s1), . . . , (pkn, vn, sn)) (where s =
({pk(v)

i→j , c
(v)
i→j}v∈[l],i,j∈[n], πshare), pki = {pk(v)

j→i, π
(v)
j→i}j∈[n],v∈[l] and

si = (φvote,i = ({pk(v)
j→j , pk(v)

j→i, tk(v)
j→i}v∈[l],j∈[n], vi, sk(vi)

i→i), πvote,i)):
Identify the winning vote:

1. If there does not exist a v ∈ {1, . . . , l} such that at least t1 parties
vote for v, output ⊥. Let Svote ⊆ [n] be the set of parties i such that
vi = v.
Verify the zero knowledge proofs:

2. For i, j ∈ [n], if NIZK.verify(crskeygen, φ = pk(v)
j→i, π

(v)
j→i) = reject

(where pk(v)
j→i, π

(v)
j→i are taken from pki), return ⊥i (resp., ⊥).

3. If NIZK.verify(crsshare, φshare, πshare) = reject (where φshare, πshare
are taken from s), return ⊥D(resp., ⊥).

4. For i ∈ [n], if NIZK.verify(crsvote, φvote,i, πvote,i) = reject (where
φvote,i, πvote,i are taken from si), return ⊥i (resp., ⊥).
Check the consistency of the share, ballots and keys:

5. For i ∈ [n], let S′i ⊆ [n] be the set of parties j ∈ [n] such that pk(v)
i→i

is the same in pki and sj . b If |S′i| < n− t− tm, return ⊥i (resp., if
|S′i| < n− tm, return ⊥).

60

6. Let SD ⊆ [n] be the set of parties i such that {pk(v)
j→i}j∈[n] is the same

in pki and s. If |SD| < n− td − t, return ⊥D (resp, If |SD| < n− td,
return ⊥).

7. For i ∈ Svote, let Si = S′i ∩ SD. Note that |Si| ≥ n − 2t − tm − td
(resp., Note that |Si| ≥ n−tm−td). For j ∈ Si, we have a ciphertext
tk(v)
i→j (contained in sj), a secret key sk(v)

i→i (contained in si) and a
ciphertext c(v)

i→j (contained in s). Let sk(v)
i→j ← PKE.dec(sk(v)

i→i, tk(v)
i→j).

Let s(v)
i→j ← PKE.dec(sk(v)

i→j , c
(v)
i→j).

8. For each i ∈ Svote, let s(v)
i ← Shamir.reconstruct({s(v)

i→j}j∈Si).
9. Output z(v) ← Shamir.reconstruct({s(v)

i }i∈Svote).

Maliciously secure one-or-nothing secret sharing with intermediaries
aany string m(⊥) is to be interpreted as ⊥.
bThis is the crucial step that differs from the original construction where it

is additionally checked that parties Pi and Pj are in agreement with respect to
pk(v)
j→j as well.

Proof of Theorem 9 We argue below that the above construction satisfies (n −
tm − t)-identifiability and (n − 2t − tm)-privacy when n > 3t + tm + td and
n > 3t+ 2tm holds.

(n- tm- t)-Identifiability. Suppose (n − tm − t) parties, say constituting
the set Svote, produce ballot using the same v. Let H denote the set of indices
corresponding to honest parties.

First, we argue that ⊥i, where i ∈ H is output with negligible probability.
We observe that this can happen only when one of the following holds (a) NIZK
proof πshare (if i is the dealer) or πvote,i or π(v)

j→i (for any j ∈ [n]) does not
verify or (b) |S′i| < n − t − tm or (c) i is the dealer and |SD| < n − t − td.
First, it directly follows from correctness of NIZK that (a) cannot occur with
respect to an honest Pi, except with negligible probability. Next, we note that
|S′i| ≥ n − t − tm must hold as an honest Pi’s public keys will be received by
at least n − tm parties in the first round; and in the worst case t among them
are corrupt and do not echo Pi’s public keys. We can thus infer that (b) cannot
hold. Further, the set of n−td parties from whom an honest dealer should hear in
the first round may constitute at most t corrupt parties in the worst case. These
corrupt parties may not communicate to the honest dealer in the first round or
may possibly broadcast different public keys in the second round (i.e. different
than the one they sent to the dealer in the first round). Thus, we can conclude
that the public keys broadcast by the honest dealer must be consistent with the
public keys of at least n− td − t parties. Thus, |SD| ≥ n− t− td, implying that
(c) cannot hold. This completes the argument that ⊥i, where i ∈ H is output
with negligible probability. From the above, we can conclude that when ⊥i is

61

output, i /∈ H with overwhelming probability. Therefore, to complete the proof,
it suffices to show that when no cheater is identified, z(v) is reconstructed.

Suppose no cheating party is identified. Since |SD| ≥ n − t − td > 2t + tm
must hold, SD constitutes honest parties who must have verified πshare by a
potentially corrupt dealer. It follows from simulation-soundness of NIZK that
the encryptions {c(v)

k→j}k,j∈[n] must have indeed been computed correctly. Next,
consider k ∈ Svote and j ∈ Sk (where Sk = S′k ∩SD and |Sk| ≥ n− 2t− tm− td).
Recall that Pk and Pj are in agreement with respect to the public key pk(v)

k→k
and (πvote,k, π

(v)
k→k) sent by Pk and (πvote,j , π

(v)
k→j) sent by Pj verified successfully

(otherwise a party must have been identified as cheater). Simulation soundness
of NIZK ensures that the public key pk(v)

k→k used by Pj to broadcast ciphertext
tk(v)
k→j (contained in sj) corresponds to the secret key sk(v)

k→k (contained in sk)
broadcast by Pk. It now follows from the correctness of the encryption scheme
that sk(v)

k→j is obtained upon decrypting tk(v)
k→j with overwhelming probability.

Further, since j ∈ SD, it follows from simulation-soundness of the NIZK πshare

and πvote,j that the public key pk(v)
k→j (used by dealer for the ciphertext c(v)

k→j)
corresponds to the secret key sk(v)

k→j (used by Pj during vote). It thus follows
s

(v)
k→j is obtained upon decrypting c(v)

k→j with overwhelming probability.

Next, since |Sk| ≥ n−2t− tm− td and s(v)
k is shared using threshold (n−2t−

tm−td−1), it follows from correctness of shamir’s threshold sharing that s(v)
k 6= ⊥

is reconstructed successfully for all k ∈ Svote. Lastly, since |Svote| ≥ n− t− tm,
z(v) 6= ⊥ which is shared using threshold (n − t − tm − 1) is also reconstructed
successfully (due to correctness of shamir’s threshold sharing). This completes
the proof.

(n- 2t- tm)-Privacy. Let H denote the set of indices of honest parties and
S ⊂ H (where |S| ≤ n− 2t− tm − 1) denote the set of indices of honest parties
that produce ballot for v. We show that the adversary learns nothing about
s

(v)
i for any i ∈ H \ S. This would suffice to show that the adversary learns

nothing about z(v). This is because the adversary would have access to at most
t+ |S| ≤ t+ (n− 2t− tm − 1) = n− t− tm − 1 shares of z(v) (which is shared
using threshold (n− t− tm − 1)). Privacy of threshold sharing dictates that the
adversary learns nothing about z(v).

Consider an honest party i ∈ H \ S. Suppose party i votes for vi 6= v.
Firstly, we argue that the adversary learns nothing about sk(v)

i→j for any j ∈ H
as follows : Based on the specifications of vote, honest Pi reveals nothing about
sk(v)
i→i. It now follows from the CPA security of the PKE that the adversary

learns nothing about sk(v)
i→j from tk(v)

i→j (contained in sj). Further, the zero-
knowledge property of NIZK generated by honest Pj ensures that the adversary
learns nothing about sk(v)

i→j from {π(v)
i→j} (contained in pkj) and πvote,j . We can

now infer from CPA security of the PKE and zero-knowledge property of the
NIZK generated by the honest dealer, that the adversary learns nothing about
{s(v)
i→j}j∈H from {c(v)

i→j}j∈H and πshare respectively.

62

We can thus conclude that the adversary has access to at most t shares of
s

(v)
i which is shared using threshold (n − 2t − tm − td − 1) ≥ t. It now follows

from privacy of threshold sharing that the adversary learns nothing about s(v)
i ;

completing the proof.
Lastly, we point that (n − 2t − tm)-Privacy implies that at most one secret

is reconstructed when n > 3t + 2tm holds. To see this, suppose secrets at two
different indices, say v and v′ are learnt by the adversary. Then, privacy dictates
that at least (n − 2t − tm) honest parties produced ballots for v and a disjoint
set of at least (n − 2t − tm) honest parties produced ballots for v′. This can
occur only if (n− 2t− tm) + (n− 2t− tm) ≤ n− t holds which contradicts the
assumption that n > 3t+ 2tm.

Proof of Theorem 10 We argue below that the above construction (with the
tweaks in blue) satisfies (n − tm)-correctness and (n − t − tm)-privacy when
n > t+ tm + td and n > t+ 2tm holds.

(n- tm)-Correctness. Suppose everyone behaves honestly. Then, |SD| ≥
n− td must hold as the dealer must have received public keys in the first round
from at least n− td parties, all of whom would echo the same public key in the
second round. Further, |S′k| ≥ n − tm must hold for each k ∈ [n] as the public
keys pk(v)

k→k sent by Pk in the first round must be received by at least n − tm
parties, all of whom would echo the same public key in the second round. Let
Svote (where |Svote| ≥ n− tm) denote the set of parties that produce the ballot
using the same v and rest produce the ballot using ⊥. Next, consider k ∈ Svote

and j ∈ Sk (where Sk = S′k ∩SD and |Sk| ≥ n− tm− td). The public key pk(v)
k→k

used by Pj to broadcast ciphertext tk(v)
k→j (contained in sj) corresponds to the

secret key sk(v)
k→k (contained in sk) broadcast by Pk. It now follows from the

correctness of the encryption scheme that sk(v)
k→j is obtained upon decrypting

tk(v)
k→j with overwhelming probability. Further, since the public key pk(v)

k→j (used
by dealer for the ciphertext c(v)

k→j) corresponds to the secret key sk(v)
k→j (used by

Pj during vote). It thus follows s(v)
k→j is obtained upon decrypting c

(v)
k→j with

overwhelming probability.
Next, since |Sk| ≥ n−tm−td and s(v)

k is shared using threshold n−tm−td−1,
it follows from correctness of shamir’s threshold sharing that s(v)

k 6= ⊥ is recon-
structed successfully for all k ∈ Svote. Lastly, since |Svote| ≥ n − tm, z(v) 6= ⊥
which is shared using threshold (n − tm − 1) is also reconstructed successfully
(due to correctness of shamir’s threshold sharing). This completes the proof.

(n- t- tm)-Privacy. Let H denote the set of indices of honest parties and
S ⊂ H (where |S| ≤ n − t − tm − 1) denote the set of indices of honest parties
that produce ballot for v. We show that the adversary learns nothing about
s

(v)
i for any i ∈ H \ S. This would suffice to show that the adversary learns

nothing about z(v). This is because the adversary would have access to at most
t+ |S| ≤ t+ (n− t− tm − 1) = n− tm − 1 shares of z(v) (which is shared using

63

threshold (n− tm−1)). Privacy of threshold sharing dictates that the adversary
learns nothing about z(v).

Consider an honest party i ∈ H \ S. Suppose party i votes for vi 6= v.
Firstly, we argue that the adversary learns nothing about sk(v)

i→j for any j ∈ H
as follows : Based on the specifications of vote, honest Pi reveals nothing about
sk(v)
i→i. It now follows from the CPA security of the PKE that the adversary

learns nothing about sk(v)
i→j from tk(v)

i→j (contained in sj). Further, the zero-
knowledge property of NIZK generated by honest Pj ensures that the adversary
learns nothing about sk(v)

i→j from {π(v)
i→j} (contained in pkj) and πvote,j . We can

now infer from CPA security of the PKE and zero-knowledge property of the
NIZK generated by the honest dealer, that the adversary learns nothing about
{s(v)
i→j}j∈H from {c(v)

i→j}j∈H and πshare respectively.
We can thus conclude that the adversary has access to at most t shares of s(v)

i

which is shared using threshold (n− td− tm−1) ≥ t. It now follows from privacy
of threshold sharing that the adversary learns nothing about s(v)

i ; completing
the proof.

Lastly, we point that (n − t − tm)-Privacy implies that at most one secret
is reconstructed when n > t+ 2tm. To see this, suppose secrets at two different
indices, say v and v′ are learnt by the adversary. Then, privacy dictates that at
least (n − t − tm) honest parties produced ballots for v and a disjoint set of at
least (n− t− tm) honest parties produced ballots for v′. This can occur only if
(n− t− tm) + (n− t− tm) ≤ n− t holds which contradicts the assumption that
n > t+ 2tm.

D Formal description of Πsl-abort

In this section, we describe the BC-P2P, SA, CRS protocol Πsl-abort, assuming
n > 2t (used in Theorem 20). This protocol is a modified version of the proto-
col of Ananth et al. [ACGJ18]. We assume that the parties have access to the
following tools

Tools.
– A two-round broadcast protocol Πbc achieving security with unanimous

abort, which can be instantiated from existing protocols [BL18][GS18].
Πbc is represented by the set of functions {frst-msgi, snd-msgi, outputi}i∈[n].

– An adaptive garbling scheme (garble, eval, simGC) (Definition 9).
– The Shamir threshold secret sharing scheme (Shamir.share, Shamir.reconstruct,

Shamir.simshare) (Definition 8).
– A non-interactive equivocal commitment scheme (comgen, commit, eqcommit1,

eqcommit2, open) (Definition 12)
– A non-interactive simulation sound zero-knowledge proof system (setupZK,

prove, verify, simP, extract) (Definition 13), for the following relation:

64

R =

φ =
(
i ∈ {1, . . . , n},msgi, GC
{com(b)

j,l , pp}j∈[n],b∈{0,1},l∈[L]

)
w =

(
x, r, Ci,x,r, R1, R2,

{o(b)
j,l }j∈[n],b∈{0,1},l∈[L],

{K(b)
j,l }j∈[n],b∈{0,1},l∈[L]

)

msgi ← frst-msgi(x, r)
∧(GC, {Kb

l }b∈{0,1},l∈[L])← garble(1λ, Ci,x,r;R1)
∧ For b ∈ {0, 1}, l ∈ [L] :(

K
(b)
1,l , . . . ,K

(b)
n,l

)
← Shamir.share(K(b)

l ;R2)
∧ For b ∈ {0, 1}, l ∈ [L], j ∈ [n] :

K
(b)
j,l ← open

(
pp, com(b)

j,l , o
(b)
j,l

)
.

,

Notation. Let Ci,xi,ri(msg1
1, . . . ,msg1

n) denote the boolean circuit that has
Pi’s input xi and randomness ri hardcoded inside it, and takes as input
the first round messages msg1

1, . . . ,msg1
n, and outputs msg2

i . For simplicity
assume that each first round message is ` bits long, so each circuit has L = n·`
input bits. Note that Ci is public. Let g be the size of a garbled Ci.
Figure D.1: Πsl-abort with n > 2t

Private input. Every party Pi has a private input xi ∈ {0, 1}∗ and
randomness ri ∈ {0, 1}∗.
Setup.
– crs← setupZK(1λ,R).
– pp, τ ← comgen(1λ).
– The CRS is set to crs, pp.

First Round. Each party Pi does the following:
1. Let msg1

i ← frst-msgi(xi, ri) be Pi’s first round message in Πbc.
2. Compute (GCi,Ki) ← garble(1λ, Ci,xi,ri ;Ri,1), where Ki =
{K(0)

i,l ,K
(1)
i,l }l∈[L].

3. Compute threshold sharing of the input labels of GCi with thresh-
old t (where t < n/2) as follows: For each l ∈ [L], b ∈ {0, 1}, let(
K

(b)
1,i,l, . . . ,K

(b)
n,i,l

)
← Shamir.share(K(b)

i,l , Ri,2).
4. Commit to the shares of the input labels using a non-interactive

commitment scheme: For each l ∈ [L], b ∈ {0, 1}, j ∈
[n], compute (com(b)

j,i,l, o
(b)
j,i,l) ← commit(pp,K(b)

j,i,l). Set comi =
{com(b)

j,i,l}j∈[n],b∈{0,1},l∈[L].
5. Set φi = (i,msgi, GCi, comi) and wi =

(xi, ri, Ci,xi,ri , Ri,1, Ri,2, {o
(b)
j,i,l}j∈[n],b∈{0,1},l∈[L], {K

(b)
j,i,l}j∈[n],b∈{0,1},l∈[L]).

Compute πi ← prove(crs, φi, wi).

6. Broadcast
(
πi,msg1

i , GCi, comi

)
. Send {o(b)

j,i,l}b∈{0,1},l∈[L] privately

(over peer-to-peer channel) to Pj (j ∈ [n]).
Second Round (Asynchronous). Each party Pi does the following:
1. If there exists j ∈ [n] such that verify(crs, φj , πj) 6= 1, send abort

to all over peer-to-peer channel and output ⊥.
2. For each j ∈ [n], l ∈ [L], b ∈ {0, 1}: Compute K

(b)
i,j,l ←

open(pp, com(b)
i,j,l, o

(b)
i,j,l) where o(b)

i,j,l was received privately from Pj in
Round 1 and com(b)

i,j,l ∈ comj was broadcast by Pj in Round 1. If there

65

exists any K(b)
i,j,l = ⊥, send abort to all over peer-to-peer channels and

output ⊥.
3. Let (ν1, . . . , νL) denote the bits comprising (msg1

1, . . . ,msg1
n), where

msg1
j was broadcast by Pj in Round 1.

- For each (j ∈ [n]) and l ∈ [L], send oi,j,l = o
(νl)
i,j,l to each party Pk

(k ∈ [n]) over peer-to-peer channels.
Output Computation. Pi does the following after receiving second
round messages from (n − t) > t parties (say whose indices constitute
the set Si)
1. If received abort from any party Pk where k ∈ Si, output ⊥.
2. Else, for each j ∈ [n], k ∈ Si, l ∈ [L], compute Kk,j,l ←

open(pp, com(νl)
k,j,l, ok,j,l) where ok,j,l was received privately from Pk

in Round 2 and com
(νl)
k,j,l ∈ comj was broadcast by Pj in Round 1. If

there exists any Kk,j,l = ⊥, output ⊥. Else, continue.
- For each j ∈ [n], l ∈ [L], compute Kj,l ←

Shamir.reconstruct({Kk,j,l}k∈Si). If the reconstruction fails,
output ⊥.

3. Evaluate msg2
j ← eval(GCj , (Kj,1, . . . ,Kj,L)). If the evaluation fails,

output ⊥.
4. Output y ← outputi(xi, ri,msg1

1, . . . ,msg1
n,msg2

1, . . . ,msg2
n).

Two-round (where the first round is over synchronous broadcast and pri-
vate peer-to-peer channels, and the second is over asynchronous peer-to-
peer channel) secure computation in the CRS model with selective abort
and corruption threshold t, where t < n

2 .

The intuition why this protocol is secure goes via a series of hybrids experi-
ments that we sketch below. Let Sbc the simulator of Πbc.

– We start with a real execution; the simulator honestly plays the role of all
honest parties, given their inputs.

– The simulator sends abort to the ideal functionality if one of the following
holds: (a) the extractor extract of the NIZK fails w.r.t. any of the proofs sent
by the adversary; (b) there exists a corrupt party who does not send a valid
opening (consistent with the commitment that was broadcast) to any honest
party. Otherwise, the simulator uses the simulator Sbc to extract the inputs
of adversary (i.e. impersonating for Sbc an adversary of Πbc and running
internally A). The simulator sends the inputs to the ideal functionality (or
abort based on Sbc) which will respond with the output y. Finally, note
that if some parties abort in the real execution in the output phase, the
simulator will send the corresponding indices to the ideal functionality since
she computes the same checks in output phase as the honest parties do as
per the protocol steps. This hybrid is indistinguishable from the previous
one due to the security of Πbc.

66

– The simulator uses the simulator of the NIZK to compute the proofs of the
honest parties (that are sent in the first round). This hybrid is indistinguish-
able from the previous one due to the simulation-soundness property of the
NIZK.

– All the commitments generated by the honest parties whose corresponding
opening should be received by another honest party are switched to com-
mitment computed in equivocal mode. In the second round the simulator
equivocates the opening of these commitments (i.e. the one between honest
parties) – in particular, she will send as opening the shares of labels that are
computed in the first round (as it was done in the previous hybrid). This
hybrid is indistinguishable from the previous one due to equivocal property
of the commitment scheme.

– The simulator commits to random strings for the commitments that are gen-
erated by honest parties and whose respective openings are sent to adversary.
Then in the second round the simulator runs Shamir.simshare to equivo-
cate the shares of the honest parties, i.e. the shares of the honest parties are
computed based on the labels of the garbled circuit (computed in the first
round) and the random strings committed in the first round and delivered to
the adversary. Note that in this case the commitment between honest parties
are computed in equivocal mode, therefore the simulator simply equivocates
to the share of the label of the garbled circuit computed as stated above.
This hybrid is indistinguishable from the previous one due to the privacy of
the secret sharing scheme.

– The simulator in round one, uses the simulator of the adaptive garbled circuit
to compute the garble circuit of the honest parties. Then the simulator, in
the end of round one, uses the second round messages of Πbc as input for
the simulator of the adaptive garbled scheme to obtain the correct input
labels for the honest parties’ garbled circuits. The simulator equivocates the
shares of the labels of the honest parties as explained above. This hybrid is
indistinguishable from the previous one due to the security of the adaptively
secure garbling scheme.

– Finally, the simulator uses Sbc to generate the messages of Πbc, she does so
interacting as a proxy between the ideal functionality and the adversary, and
emulating an adversary of Πbc to Sbc. This hybrid is indistinguishable from
the previous one due to the security of Πbc and from the fact that the inputs
of the adversary are extracted from the first round. This hybrid corresponds
to the final simulator.

67

	 Broadcast-Optimal Two Round MPC with Asynchronous Peer-to-Peer Channels
	Introduction
	Secure Multiparty Computation (MPC) Definitions
	P2P-BC
	BC-P2P
	Preliminaries
	Non-Interactive One-or-Nothing Secret Sharing of Damgård et al.C:DMRSY21
	One-or-Nothing Secret Sharing with Intermediaries of Damgård et al.EC:DRSY23
	Formal description of sl-abort

